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Abstract

Polarization patterns in the transverse plane generically contain singularities: points of circular polarization (C

points), lines of linear polarization (L lines), instantaneous zeros (disclinations) and component zeros. We investigate

the geometry of ellipse fields at these singularities, using the Stokes parameters and others to characterize the singular

geometry and morphology. Comparison is made with analogous structures on random surfaces, namely umbilic points

and parabolic lines. The densities and correlations of the different types of polarization singularities are calculated in

random polarization fields, and compared to the statistics of phase singularities and random surfaces.
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1. Introduction

Polarization patterns in paraxial optical fields

are geometrically complicated: the electric field

vector at each point is moving, and for mono-

chromatic fields, sweeps out an ellipse. The shape,

size and orientation of the ellipse varies with po-

sition in the transverse plane, and the most obvi-

ous features of the overall pattern are polarization

singularities: places (usually points) where the el-

lipse is circular (C points), curves along which the

polarization is linear (L lines, or s lines), and

points where the instantaneous vector vanishes

(disclinations). These objects were appreciated as

generic features of paraxial polarization fields by

Nye [1–3], and have been the subject of much
subsequent research, in theoretical, numerical and

experimental aspects [4–16]. They are the vector

analog of phase singularities (zeros, wave disloca-

tions, optical vortices) in scalar fields [17–19]; the

geometry and topology of vector fields is richer,

and so are the singular structures.

The purpose of the present paper is twofold.

Firstly, to present the mathematics of polarization
singularities in order to make their connection

with phase singularities clear, and to emphasize the

connections between the different kinds of singu-

larities. Secondly, to present the calculations

of polarization singularity densities in random

isotropic paraxial vector wavefields, thereby
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complementing the corresponding description and

statistics of phase singularities [19–24] and polar-

ization singularities in nonparaxial three-dimen-

sional fields [7]. The random wave model is a

useful means to examine some of the properties of

singularities �in the wild�, that is, the generic fea-
tures of the singularities. The singular structures

arise naturally out of interference patterns, and are

not due to any special symmetries. Attention will

be restricted to monochromatic fields, and to the

two-dimensional spatial structure in the transverse

plane alone.

In addition to paraxial polarization patterns,

two-dimensional fields of ellipses are found in the
curvature fields on surfaces. That is, if f is a real,

smooth function in the x; y plane, the gaussian

curvature at a point in the plane is geometrically

related to an ellipse. Places (generically points)

where the curvature ellipse is circular are called

umbilic points [25,26], and places (generically

lines) where the gaussian curvature is zero (the

curvature ellipse is linear) is linear are called par-
abolic lines [26]; these places are important for

focusing when the surface represents the surface of

a lens, mirror or screen, and they organize the

caustics arising from geometrical optics [3]. Geo-

metric properties of random surfaces were previ-

ously studied [25,27–29] mainly for this reason. In

a sense, the present research applies these studies

of geometric randomness to a different physical
level: previous studies were on the geometric

properties of surfaces as lenses, and their aim was

to characterize the focusing of rays from them; the

present work aims to do this for the morphology

of the polarization wave patterns themselves.

However, the calculations bear strong similarities

to their random surface counterparts, as will be

discussed.
Fields of ellipses also occur in oceanography,

since the (changing) tidal current vector sweeps

out an ellipse in time, so the ocean tidal current

may be represented by a two-dimensional field of

phased ellipses (for instance, see the figures of

[30]), which generically has C points, L lines, and

disclination points. The locations and nature of

the C points in the North Sea were discussed in [8].
The morphology described in the present work

applies to tidal singularities, although the statis-

tics, which rely on an isotropic linear random wave

model, do not. There are also similarities to the

general flow fields studied in [31]. Geometrically

close to C points are line field singularities, which

occur physically as defects in plane confined liquid

crystals [32], morphological features of fingerprint
patterns [33], and in partial polarization patterns

arising from scattering in the atmosphere from

astronomical sources [34], and from sunlight

[35,36].

The most important tool in the study of any

type of wave pattern singularity are phase singu-

larities, that is, the zeros of a complex scalar field

w ¼ wðx; yÞ ¼ wðRÞ (we only consider fields in two
dimensions). If w represents an optical scalar field,

the phase singularities are wave dislocations (op-

tical vortices). Writing w ¼ n þ ig ¼ q expðivÞ
(where q P 0, v; n; g are real), the phase singulari-

ties are places where the real and imaginary zero

contours cross, and at these places the amplitude q
vanishes and the phase v is indeterminate (singu-

lar). Phase singularities generically occur at points,
and all equiphase lines (lines of constant v) meet at

them. Around the singularity, the phase must

change by 2ps, where s is an integer, positive,

negative or zero. s is called the dislocation strength

(or topological charge) of the singularity; the

strength is positive if the phase increases in an

anticlockwise sense, and decreases otherwise.

Therefore, around a closed curve L which does
not cross a zero of w, the line integralI
L

dv ¼
I

dR � rv ¼ 2ps ð1Þ

gives the total dislocation strength enclosed by L.

Generically, phase singularities have strength �1,

but more than one singularity may be enclosed by
L. For strength �1 singularities, the sign of s is

given by the sign of the function D [19,20],

D ¼ nxgy � gxny : ð2Þ

The foregoing discussion does not require w to be

a wavefield itself.

The plan of the paper is as follows: Section 2

provides a mathematical background to the rele-

vant ellipse geometry of polarization singularities;
it may be largely omitted by the reader familiar

with this material. In Section 3, the various ways
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of describing C points and their structure are gi-

ven, realized as phase singularities of different

scalar fields. Section 4 follows with a description of

L lines and relative singularities (component zeros,

disclinations) found on them. The statistical den-

sities of C points and L lines are computed in
Appendix B, using the isotropic random wave

model formulated in Appendix A; the results are

quoted and described in Section 5.

The main results of this paper are:

• The introduction of the phase sphere and asso-

ciated phase parameters (Eq. (18)) as a descrip-

tor of polarization ellipses complementary to

the Poincar�ee sphere and Stokes parameters.
• The expressions DL;DC (Eqs. (29) and (30)), giv-

ing the line and contour classification types of C

point in terms of Stokes parameters.

• Example (31), generalizing the C point example

of [8] to include all possible morphologies of C

points (including the contour classification).

• Expression (40), which proves the main result of

[15] in a simple way.
• The statistical results of Section 5, which gives

the density (Eq. (41)) and correlation functions

(Eqs. (46) and (47)) of C points in isotropic ran-

dom fields, related to the corresponding disloca-

tion statistics described in [19]. The Venn

diagram of different fractions of types of C

point is derived (Fig. 9), and compared to the

corresponding diagram for umbilic points de-
rived in [25]. The density of L lines is also given

(Eq. (54)), and their statistical geometry and

percolation properties are briefly compared to

the curvature properties of random surfaces.

2. Polarization ellipse morphology

This section is concerned with the mathematical

formalism of paraxial polarization, including the

Stokes parameters and Poincar�ee sphere. Much of

this description, with the exception of the phase
sphere at the end of the section, can be found in

standard textbooks, such as [37]. We are interested

in the geometric structure of a two-dimensional

complex vector wavefield E ¼ Eðx; yÞ ¼ EðRÞ,
representing the electric field in the transverse x; y
plane of a paraxial wavefield (i.e., E is the Jones

vector at R). E may be rewritten in terms of

cartesian components, or real and imaginary parts:

E ¼ ðEx;EyÞ ¼ pþ iq: ð3Þ
The physical quantities E; p; q (and others) are

taken to be smooth functions of position, although
for brevity R dependence is usually not written

explicitly. Derivatives will be represented by sub-

scripts after scalars (as in Eq. (2)), and by commas

after vector components (e.g., olEk ¼ Ek;l). The

modulus of a real vector is denoted by italics, for

instance jVj ¼ V .
The wave is monochromatic, and its time de-

pendence is given by a phase factor expð�ixtÞ;
where x is the unique angular frequency associ-

ated with the field. The real physical disturbance is

ERe
v ¼ ReE expð�ivÞ ¼ p cos v þ q sin v; ð4Þ

where v ¼ xt. Instead of explicitly treating time

dependence of the field, E is dependent on the
abstract phase v. Elementary linear algebra shows

that ERe
v sweeps out an ellipse from its centre, as v

increases. The orthogonal semiaxes of the ellipse

are denoted by p0; q0, with p0 P q0. If E
Re
v rotates

anticlockwise as v increases then E is said to be

right-handed (RH), if clockwise, left-handed (LH).

If E is RH, the two-dimensional cross product

ImE
 � E ¼ 2p� q is positive, and if LH, it is
negative.

The cartesian components Ex;Ey are complex

scalar fields. Using a circular basis, E may be re-

written

E ¼ wReR þ wLeL; ð5Þ
where wR;wL are the right- and left-handed cir-
cular components of E, and the circular basis

vectors, in cartesian coordinates, are defined

eR ¼ 1ffiffiffi
2

p 1

i

� �
; eL ¼ 1ffiffiffi

2
p 1

�i

� �
: ð6Þ

The phases of wR;wL are defined as vR; vL respec-

tively. With these definitions, the right-handed

component circulates in the anticlockwise direc-

tion. Note that some authors with this convention

define the right-handed circular unit vector as �eR:
In general, the real and imaginary parts p; q are

conjugate radii of the ellipse – the tangent to the

ellipse at one is parallel to the other. There is
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therefore a special phase v0 such that the real and

imaginary parts of the resulting vector E expð�iv0Þ
are perpendicular, in the direction of the semiaxes

p0 þ iq0 ¼ E expð�iv0Þ
¼ ðp cos v0 þ q sin v0Þ

þ iðq cos v0 � p sin v0Þ: ð7Þ

Since the real and imaginary parts of (7) are or-

thogonal, it is possible to show that

v0 ¼
1

2
arctan

2p � q
p2 � q2

¼ vR þ vL

2

¼ 1

2
argwRwL; ð8Þ

which is only defined modulo p. This phase was
denoted by e in [37] and [1]. Nye [1] called v0 the

�phase of the vibration�, but we use the more

concise term rectifying phase, because it rectifies

(makes right-angled) the real and imaginary parts

p; q.
Geometrically, the orientation of the ellipse is

specified by the angle c0 between the major semi-

axis p0 and the x-axis

c0 ¼ arctan
p0y
p0x

: ð9Þ

Using Eqs. (7) and (8), this may be written solely

in terms of the components of p; q, where, after
simplification

c0 ¼
1

2
arctan

2ðpxpy þ qxqyÞ
p2x þ q2x � p2y � q2y

¼ vL � vR

2

¼ 1

2
argw


RwL: ð10Þ

This expression is similar to expression (8) for v0,

and is also only defined modulo p. The relation

between the geometry of the polarization ellipse and

the parameters defined here are shown in Fig. 1.

The polarization matrix (coherence matrix, or

Stokes matrix) MS is a 2� 2 hermitian matrix

defined by its components

MSkl ¼ EkE

l; k; l ¼ x; y; ð11Þ

and its real part M 
 ReMS is a positive definite
symmetric matrix whose eigenvectors are in the

directions p0; q0, and whose eigenvalues are p20 and
q20. In fact, M�1, if it exists, is the quadratic form

matrix for the ellipse. The four components of the

complex polarization matrix with respect to the

usual Pauli spin matrices are known as the Stokes

parameters S0; S1; S2; S3, i.e.,

MS ¼
1

2

S0 þ S1 S2 � iS3
S2 þ iS3 S0 � S1

� �
; ð12Þ

and they are given by

S0 ¼ jwRj
2 þ jwLj

2

¼ jExj2 þ jEy j2 ¼ p2x þ p2y þ q2x þ q2y ;

S1 ¼ 2Reðw

RwLÞ ¼ jExj2 � jEy j2

¼ p2x þ q2x � p2y � q2y ;

S2 ¼ 2Imðw

RwLÞ ¼ 2ReðE


xEyÞ
¼ 2ðpxpy þ qxqyÞ;

S3 ¼ jwRj
2 � jwLj

2 ¼ 2ImðE

xEyÞ

¼ 2ðpxqy � pyqxÞ:

ð13Þ

The expressions for Si (i ¼ 1; 2; 3) in the circular

components wR;wL are evidently a cyclic permu-

tation of the expressions in cartesian components

Ex;Ey ; this is because the Pauli matrices (which

give the Stokes parameters) are permuted by the

transformation between the cartesian and circular

basis (6), as may be easily checked. Physically, S0
represents the intensity jEj2 of the field, and

pjS3j=2 is the area of the polarization ellipse; the

sign of S3 gives the handedness of the ellipse, + for

Fig. 1. Ellipse geometry. The major axis p0 is at angle c0 with

the x-axis. The real part p is displaced from p0 by a phase v0, as

in Eq. (7). The minor axis is labelled q0, and the ellipse is right-

handed (RH).
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RH, ) for LH (it is equal to p� q). By (10) and

(13), tan 2c0 ¼ S2=S1. The Stokes parameters are

independent of the rectifying phase v0.

The Stokes parameters, as defined, satisfy

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ; ð14Þ
confirming that the polarization is pure, and they

can be normalized

si ¼ Si=S0; i ¼ 1; 2; 3: ð15Þ
The unit vector (s1; s2; s3) is called the (normalized)

Stokes vector, and its direction in abstract Stokes

space describe the orientation and shape of the

polarization ellipse. The possible states of polari-

zation are therefore parameterized by positions on

the unit sphere, called the Poincar�ee sphere. All
possible polarization ellipses (up to size, given by

S0, and rectifying phase v0), are parameterized by

position on the Poincar�ee sphere, given by the

spherical polar angles a; b. The geometry of the

Poincar�ee sphere is shown in Fig. 2. The orientation

c0 is governed by the azimuthal angle

b ¼ 2c0; ð16Þ
and the polar angle a ¼ arccos s3 is related to the

eccentricity e of the ellipse, whose square is found

to be given by the following expressions:

e2 ¼ 1� q20
p20

¼ 4jwRjjwLj
ðjwRj þ jwLjÞ

2

¼ 4 tan a=2

ð1þ tan a=2Þ2

¼ 2

S2
3

S0

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
0 � S2

3

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
0 � S2

3

q
: ð17Þ

The eccentricity therefore changes with latitude: at

the poles, it is 0 (circular polarization), gradually

increasing to 1 (linear polarization) on the equa-

tor. RH polarization is in the northern hemisphere

(S3 > 0), LH in the southern (S3 < 0). The axis

ratio, signed by handedness, is given by

tanðp=4� a=2Þ.
The information about the rectifying phase v0 is

lost in the Stokes parameters (13), which only

contain information about intensity, handedness,

eccentricity and orientation (which are measurable

quantities). It is therefore possible to define a

sphere equivalent to the Poincar�ee sphere, but using
the rectifying phase v0 rather than orientation

angle c0 as azimuth [38]. The cartesian coordinates

on the phase sphere are given by the phase pa-

rameters (cf. Eq. (13))

T0 ¼ jEj2 ¼ S0;

T1 ¼ 2ReðwRwLÞ ¼ p2 � q2;

T2 ¼ 2ImðwRwLÞ ¼ 2ðp � qÞ;
T3 ¼ jwRj

2 � jwLj
2 ¼ S3:

ð18Þ

The zeroth and third phase parameters are iden-

tical to the corresponding Stokes parameters, so
the eccentricity dependence on latitude (17) is the

same as on the Poincar�ee sphere. T1 and T2 are the

same as the corresponding Stokes parameters ex-

cept wR is no longer conjugated, equivalent to

exchanging py and qx. The azimuth arctan T2=T1 is
equal to 2v0, from (8). Therefore, the phase (vi-

sualized as the position of p ¼ ReE on the ellipse),

varies with azimuth around the sphere.
It is worth noting that the geometry described

above only applies to ellipse fields in two dimen-

sions, when the ellipses are all confined to the

plane. If the polarization field is nonparaxial, and

the plane of the ellipse changes from point to

point, the Poincar�ee sphere is no longer appropriate

to describe the state, since the ellipse has no unique
Fig. 2. Depiction of the Poincar�ee sphere, with cartesian axes

(s1; s2; s3) indicating the Stokes parameters for certain ellipses.
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handedness. The correct polarization geometry

can be found using the Majorana sphere [39,40],

and this leads to some differences in the geometry

of polarization singularities in paraxial and non-

paraxial fields [4,7,8].

3. C points and their geometry

The most important type of polarization sin-

gularities are C points [1], that is, places in the

polarization field where the polarization is circular
(either RH or LH). This generically happens at

points because C singularities have codimension 2,

that is, two real conditions on the field variables

must be satisfied for the polarization to be circular.

They may be viewed in several different ways:

• The real and imaginary vectors p; q are of equal

length and orthogonal. This pair of conditions

holds for both the paraxial and nonparaxial
case, and has been used as the definition of C

points several times in the literature [1,3,8,11].

Note that this geometric condition is equivalent

to the requirement on the phase parameters

T1 ¼ p2 � q2 ¼ 0 ðequal lengthÞ
T2 ¼ 2p � q ¼ 0 ðorthogonalÞ

�
at a C point:

ð19Þ

The vanishing of these two parameters is

equivalent to the statement that the rectifying

phase v0 is undefined (singular) at a C point,

since p; q are rectified for any phase.

• The Stokes parameters S1; S2 vanish at the C
point. The two points of circular polarization

on the Poincar�ee sphere lie at the north and

south poles, where S3 ¼ �S0, and so

S1 ¼ S2 ¼ 0 by (14). The azimuthal angle b is

singular at the poles of a sphere, and this corre-

sponds to the singularity of the orientation an-

gle c0: no unique semiaxes can be defined for a

circle. This is a different singularity from that of
v0, although the two singularities always occur

together, at the poles of the phase sphere and

Poincar�ee sphere. The C point is RH if S3 ¼ S0,
LH if S3 ¼ �S0.

• The real symmetric matrix M is degenerate (this

is obvious from the above point and the defini-

tion (12)). Degeneracies of real symmetric ma-

trices are studied in more general contexts

[41,42], and all have codimension 2. The struc-

ture of these matrices around the singularity is

called a diabolical point because the two eigen-
values locally have a double cone structure.

This interpretation was used to define the umbi-

lic points of a real function f in [25,3], as

degeneracies of its hessian matrix H ¼ fab

(a; b ¼ x; y).
• The simplest and possibly most instructive way

of viewing C points is to consider the circular

components wR;wL; a point of RH circular
polarization occurs where wL ¼ 0, and equiva-

lently LH circular polarization where wR ¼ 0 –

that is, C points are dislocations of wR;wL

[1,3,5]. The phases vR; vL are therefore singular

at the respective C points, and by Eqs. (8), (10),

v0 and c0 are automatically both singular when

either vR or vL is.

The above implies that the ellipse orientation c0 is
undefined at a C point. As with phase singularities

and vector fields, this implies that the line integral

on a loop L,

1

2p

I
L

dR � rc0 ¼ I ; ð20Þ

is quantized as in (1), but in units of 1/2 since c0 is
only defined modulo p. This number I is said to be

the C point index, and is generically �1=2. C

points may be thought of as singularities in line

fields (that is, fields of �headless vectors� [32]); lines
are brought back to themselves after half a full
rotation, and this happens generically around a C

point.

So far, we have seen that generic C points may

be classified into four types, according to hand-

edness (RH or LH) and index (�1=2). A scalar

field may be defined from the Stokes parameters

[9–11]

r ¼ S1 þ iS2: ð21Þ
This vanishes exactly at a C point (where

S1 ¼ S2 ¼ 0), and its phase is clearly

arg r ¼ b ¼ 2c0: ð22Þ

The signed strength of any phase singularity in r is

therefore twice the index of the C point there. The
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sign of the index of a C point can therefore be

found as sign DI, where DI is defined

DI ¼ S1xS2y � S1yS2x; ð23Þ
the r analog to Eq. (2). This agrees with the form

stated in Appendix 3 of [31].
C points are also phase singularities in the cir-

cular components wL;wR, but how do the signs of

these dislocations agree with the C point index? By

Eq. (13),

r ¼ w

RwL; ð24Þ

implying that the strength of the dislocation in wL,

at a RH C point, has the same sign as the C point

index there, but the strength of a dislocation of wR,

at a LH C point, is minus the sign of the C point

index (this may also be seen using (10) [5]). r is

therefore a complex scalar field which has phase
singularities exactly at the C points, and the signs

of its phase singularities are the same as the C

point indices. However, just like the Stokes pa-

rameters themselves, this field is not itself a solu-

tion of any wave equation, and is quadratic in the

field variables.

An alternative scalar with nodes at C points was

used by [7,8], and is defined as the scalar product
of E with itself

u ¼ E � E: ð25Þ
This vanishes when the polarization is circular,

and from Eqs. (18),

u ¼ T1 þ iT2 ¼ wRwL: ð26Þ
Its phase argu is clearly equal to 2v0, and the

moduli juj; jrj are equal

juj2 ¼ jrj2 ¼ S2
0 � S2

3 ¼ ðp20 � q20Þ
2 ¼ p40e

4: ð27Þ
Eq. (26) shows that the sign of a phase singularity

in u is always the same as the dislocation strength

in the circular component at that point, and

therefore is opposite in sign to the C point index

at a LHC point. The equiphase lines of u are lines

of constant v0; the lines T1 ¼ 0 and T2 ¼ 0, from
(18), are respectively lines along which p and q

have equal length, and are orthogonal. The equi-

phase lines of r are lines where the orientation

angle u is constant, the a-lines discussed by [16];

we suggest the more evocative name isoclines for

these lines. As complex scalar fields, r;u;wR;wL,

satisfy the myriad sign rules discussed by [22].

Each of these phase functions has saddles and

possibly maxima and minima, which are station-

ary points of the appropriate angle, as described

by [16].
C points are singularities of their orientation

angle c0, which represents an undirected line at

each point; we therefore discuss the wider but

morphologically close phenomenon of line sin-

gularities. Line fields can be classified according

to their index, that is, the signed number of turns

the line makes around the singularity in a right-

handed sense, in units of 1/2. The number of
straight lines that terminate on the singularity is

generically 3 or 1. This is the line classification,

and for index �1=2 singularities, it is always 3;

such a singularity is called a star. If the index is

þ1=2, it may either be 1 or 3, and the two

morphologies are called lemon and monstar, re-

spectively [25]. The three singularity types in line

fields are shown in Fig. 3. The four polarization
neutral points that occur from sunlight scattering

in the atmosphere [35,36], not described by the

present theory since they involve partial polari-

zation, are nevertheless generic index +1/2 line

field singularities, and the polarization pattern

around them is of lemon type (as can be seen

from the figures in [36]).

In Section 5 the relative densities of lemon,
monstar and star types of C point in gaussian

random polarization fields are discussed, comple-

menting the corresponding calculation [25] for

umbilic points. In fact, it was in the context of

umbilic points that this classification was origi-

nally recognized [25,26], where the linefields are

the principal curvature directions (and so are sin-

Fig. 3. The patterns around the three types of line singularity:

(a) star; (b) lemon; (c) monstar. Adapted from [8], Fig. 6,

courtesy of Michael Berry.
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gular at degeneracies of the hessian, as previously

observed).

In order to distinguish between the line classifi-

cation types, we need a quantity equivalent to DI in

Eq. (23) whose sign gives the type of line classifi-

cation. The quantity defined in Eq. (6) of [25] is not
appropriate for C points, because the derivatives of

the components of M are more general than those

of H. However, the appropriate expression for C

points may be derived as follows. The C point is

translated to the origin, and S1; S2 in the expression

c0 ¼ arctanðS2=S1Þ=2 are expanded to first order (at

the C point) with polar coordinates R; h, with angle

h ¼ arctanðy=xÞ. This expression is rearranged to a
polynomial equation in t ¼ tan h,

S2yt3 þ ðS2x þ 2S1yÞt2 þ ð2S1x � S2yÞt � S2x ¼ 0;

ð28Þ
whose solutions give the angles where h ¼ c0, that
is, the angles of the straight lines terminating at the

singularity. The number of these solutions is given

by the discriminant of the polynomial (28), which

is (up to an unimportant numerical factor)

DL ¼ ðð2S1y þ S2xÞ2 � 3S2yð2S1x � S2yÞÞ
� ðð2S1x � S2yÞ2þ 3S2xð2S1y þ S2xÞÞ
� ð2S1xS1y þ S1xS2x � S1yS2y þ 4S2xS2yÞ2: ð29Þ

The sign of the discriminant gives the number of

roots – 3 (star or monstar) if DL > 0, 1 (lemon) if

DL < 0. This expression is equivalent to that of

[31], and Eq. (6) of [25] after the appropriate

substitution for umbilic points.

There is an additional classification, the contour

classification which specifies whether the singular-

ity is elliptic or hyperbolic, according to whether

the contour lines of the eigenvalues of M around

the degeneracy are ellipses or hyperbolas. For

umbilic points, this classification determines whe-

ther the resulting catastrophe of the normal rays is

the elliptic or hyperbolic umbilic catastrophe [3]. It

is not clear whether there is any correspondingly
simple physical interpretation for this classification

for C points. The function DC, whose sign deter-

mines the contour classification, was stated in [31]

Appendix 3; in terms of Stokes parameters, it is

proportional to

DC ¼ ðS1xS2y � S1yS2xÞ2 � ðS1xS0y � S1yS0xÞ2

� ðS0xS2y � S0yS2xÞ2: ð30Þ

The point is elliptic if DC > 0, and hyperbolic if

DC < 0. It may be readily checked that, at R0, DC

is the gaussian curvature of the surface locally

defined detðMðRÞ �MðR0ÞÞ; this surface – whose

interpretation also holds for umbilic points – is the

product of the differences of the two eigenvalues of

M from their degenerate value. Two C points from

a random polarization pattern are shown in Fig. 4,
with their line and contour types indicated.

An instructive example is the field

Eex ¼ 1ð þ iðaxþ byÞ; ið1� xÞÞ; ð31Þ
where a; b are real. There is a RH C point at the

origin, and its classification parameters DI;DL;DC

are

DI ¼ 4bð1þ aÞ; ð32Þ

DL ¼ �16bð2þ 2a� bÞ3; ð33Þ
DC ¼ 64ab2: ð34Þ
The form with a ¼ 0 was given in [8] Eq. (17). All

six morphological types are clearly possible (el-

liptic or hyperbolic, lemon, star or monstar) with

appropriate choices of a and b, as shown in Fig. 5.

The conjugate field E

ex to (31) has a LH C point at

the origin (the classification parameters in (34) are

Fig. 4. C points from the random pattern in Fig. 7: (a) elliptic

lemon; (b) hyperbolic star. The ellipse axes have been included

to aid the eye, and the straight lines terminating on the C points

are those of the line classification. The dotted grey lines are

contour lines of the surface detðMðRÞ �MðR0ÞÞ, used in the

contour classification, showing that the lemon is elliptic and the

star is hyperbolic. The lemon is a close up of the box (i) in Fig.

7, the star of the box (ii).
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unchanged), so all 12 types of C point are realiz-

able from this example. Both a and b are required

to realize all of the types, so the Venn diagram of

different morphological types, shown in Fig. 5, is

two-dimensional, unlike the umbilic point case

where it is only one-dimensional [25].

The number of C points in a given area A of the

plane, #C;A is

#C;A ¼
Z
A
d2RdðS1ÞdðS2ÞjDIj: ð35Þ

The d-functions pick out the C points only, and

the modulus of DI gives the correct jacobian for an

integral in real space. It is analogous to the ex-
pressions given in [19,20] for phase singularity

densities; this is the equivalent form for phase

singularities in r. Eq. (35) gives the same result if

S1; S2 are replaced by T1; T2. The density of lemon,

monstar, star, elliptic, hyperbolic, LH, RH types

(or a mixture) in A can be calculated by multi-

plying the integrand in Eq. (35) by the appropriate

product of step functions HðDLÞ;HðDIÞ;HðS3Þ,
etc.

If the polarization field is nonparaxial, the po-

larization is circular along lines, called CT lines (or

C lines) [4,7], which cross an (arbitrary) plane at

points. The scalar u ¼ E � E, which is defined when

the field is nonparaxial, has phase singularities

along CT lines. The scalar r is not defined in these

fields, because the Stokes parameters are not well-

defined.

4. L lines and relative singularities

The second type of singularity we consider are
places where the polarization is linear, that is,

when the third Stokes parameter S3 ¼ 0. vanishes.

The locus where this happens is therefore codi-

mension 1, giving lines in the transverse plane –

they were introduced by Nye [2], who called them s

lines. Following more recent work [8,16], we call

them L lines. On L lines, the handedness of the

ellipse is not defined (singular), consistent with the
fact that the singularities of fields specified by a

discrete parameter (i.e., sign S3) have codimension

1; in this case, the L lines separate regions of RH

and LH polarization.

The vanishing of S3 ¼ T3 can be interpreted by

Eq. (13), as the vanishing of the cross product of p

and q, that is, the vectors are (anti)parallel, and the

complex vector E becomes a real vector times a
complex phase factor. Both the plane angle of this

real vector (equivalent to c0) and its complex phase

(equivalent to v0), change continuously along the

L line. In terms of circular components, Eq. (13)

implies that jwRj ¼ jwLj on an L line, and the

phases vR; vL change continuously along it. Unlike

C points, which have a rich topological structure,

there is no characteristic structure around an L
line; generically, S3 passes through zero smoothly,

and the angles c0, v0 change smoothly along the

singular line. The analog of L lines for surfaces is

where the gaussian curvature, defined as the hes-

sian determinant H 
 detH ¼ 0. These are the

parabolic lines [26], separating regions of positive

curvature from negative curvature. Their signifi-

cance in focusing was described by Berry [43], who
showed that caustic lines in the far field are de-

formed images of the parabolic lines on the fo-

cusing surface.

The vector UL, defined to point in the direction

of an L line with the RH region on the left, is easily

defined: since rS3 points into the RH region, it is

UL ¼ ðS3y ;�S3xÞ: ð36Þ

Fig. 5. Depiction in ðb; aÞ plane of the different morphological

types of C point in the example (31). Values of ða; bÞ giving

lemons are dark grey, monstars are light grey, and stars are

white. Elliptic points have a > 0, hyperbolic a < 0.
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Note that, with this definition, jULj ¼ jrS3j. The
length of L line in an area A of the plane is given

by the integral

‘L;A ¼
Z
A
d2RdðS3ÞjrS3j; ð37Þ

and the number of L line crossings on a specified

line L in the plane is given by

#L;L ¼
Z
L
dRdðS3ÞjS0

3j; ð38Þ

where the integral is along L, and S0
3 is the deriv-

ative of S3 along this line.

There are two further types of singularity,

found on L lines, which we call relative singulari-

ties, because their singular nature is relative to a

chosen phase or orientation. The first are the zeros
of the instantaneous real field ERe

v ; these are ge-

nerically points, which may have a source, sink,

circulation, spiral or saddle morphology, and are

called wave disclinations [2]. They can only exist on

L lines, because otherwise ERe
v is never zero.

Throughout an entire cycle, 06 v6 2p, each point

on the L line is a disclination twice, and the dis-

clination points move along the L line as v in-
creases. Disclinations are relative singularities,

since their position is phase-dependent, unlike C

points and L lines, whose position is independent

of phase. The disclination index is defined to be the

Poincar�ee index of the zero of the real field ERe
v ,

which may be shown to be the sign of the function

Ddisc, (cf. Eqs. (1), (2) and (20))

Ddisc ¼ ERe
vx;xE

Re
vy;y � ERe

vx;yE
Re
vy;x: ð39Þ

On an L line, the minor semiaxis q0 is zero, and

E ¼ p0 expðiv0Þ from (7), implying that ERe
v ¼

p0 cosðv0 � vÞ, which is zero (a disclination) when

v0 � v ¼ p=2 mod p. Disclinations for different v
can therefore be identified by the crossings of the

phase contours of u with L lines. On the phase
sphere, they correspond to particular points (given

by the phase v) on the equator.

The analog of disclinations on the Poincar�ee
sphere are component zeros or component vortices

[13–15]: if a point of linear polarization on an L

line has orientation angle c0, the component of E

in the direction c0 þ p=2 is zero (a phase singu-

larity). These singularities, relative to a choice of

c0, are readily measurable using polarizers. Hajnal

[5] section 6 derived a topological result, relating

the number of disclinations on a closed L loop

with the total index of C points enclosed, namely

that the sum of disclination indices on the L line is

equal to �2p times the C point index enclosed by
the L loop. The analogous statement for compo-

nent zeros was made by [14,15]. In the following,

we prove this result more simply than in [15].

Consider a place on an L line (not necessarily

closed) where Ey ¼ 0; at this point, S1 ¼ S0,
S2 ¼ S3 ¼ 0 and through the point, c0 is smoothly

changing. We will show that the sense of rotation

of c0, along the L line in the direction of Us, is
equal to the dislocation strength (2) of the com-

ponent zero. The rate of change of c0 along the L

line is

Us

jUsj
� rc0 ¼

ðS3y ; S3xÞ
jUsj

� ðS1S2x � S2S1x; S1S2y � S2S1yÞ
S2
1 þ S2

2

¼ 1

S1jUsj
ðS2xS3y � S2yS3xÞ

/ signS1 signðS2 þ iS3Þ
/ py;xqy;y � py;yqy;x; ð40Þ

where Eqs. (10) and (36) have been used in the first
line, S2 ¼ 0 at the zero point in the second, and

S1 > 0 (Ey ¼ 0) in the third. The result in the third

equality is the sign of the phase singularity in Ey ,

and this result generalizes for a zero in any com-

ponent by rotating the plane. Note that the second

line involves the sign of the topological charge of

the Stokes field S2 þ iS3 [9]. Around a closed L

loop enclosing a RH region, the C point index
enclosed, by Eqs. (20) and (40) equals the total

topological charge of the component zeros on the

L line, for any choice of c0. If a LH region is en-

closed, the sign of Us must be reversed, so the C

point index enclosed is minus the sum of topo-

logical charges of the component zeros. Similar

results for disclinations hold, but v0 replaces c0
(and other quantities in the derivation are replaced
from their Poincar�ee sphere to their phase sphere

versions). An ellipse pattern around a closed L

loop containing a C point is shown in Fig. 6.

The corresponding singularities in nonparaxial

fields, where the polarization is linear, are lines

rather than surfaces (they have codimension 2, not
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1 as in the paraxial case). They are called LT lines
(or L lines) [4,7], and are singularities of the di-

rection of the normal to the polarization ellipse.

The difference in codimension reflects the topo-

logical difference between the Poincar�ee sphere and
the Majorana sphere [11,40].

5. Polarization singularities in isotropic random
fields

We now apply our study to polarization sin-

gularities �in the wild�, that is, in isotropic gaussian

random complex vector fields. Since we are as-

suming monochromaticity, for each realization of

the random function, there is a well-defined ellipse

at each point in the plane with a well-defined in-
tensity, eccentricity and (possibly singular) orien-

tation angle and rectifying phase. The scalar

analogs of these fields have been studied as a

model for speckle fields [44,45], and the scalar

singularity behaviour by [11,19–22,24]. Other

studies have calculated the statistics of geometric

properties of the polarization ellipse [46,47] and

Stokes parameter statistics [48–50], but not nec-
essarily for fields (instead, the randomness is in

time, which is not relevant here); by ergodicity of

the gaussian model, spatial averages are equal to

ensemble averages.

The fields are taken to be the sum of plane

waves with random phases, equally distributed in

direction, and are described in Appendix A; the

circular components wR;wL, and equivalently the

cartesian components Ex;Ey , are independent

identically distributed circular gaussian fields,

whose derivatives are also independent gaussian

random fields. The two-dimensional model is a
generalization of that considered in [19], where

more details may be found. The random field, as

defined, is extremely democratic; for instance, the

areas of LH and RH polarization are equal on

average, and only generic singularities contribute

to their averages. The details of the calculations

may be found in Appendix B, and only the re-

sults are discussed here. The random surface we
will compare with is simply a real scalar com-

ponent of this complex gaussian random field

model; it is discussed in more detail in [25,27–29].

The pattern in one square wavelength of a ran-

dom wave with the ring spectrum is shown in

Fig. 7.

Fig. 6. The ellipse field near a closed L loop, enclosing a region

of RH polarization (shaded). One C point, marked�, is in the

region, and there is one component zero Ey ¼ 0 on the enclosing

L line, marked j. The whole picture is the box marked (i) in

Fig. 7, and the field near the C point is depicted in Fig. 4(a).

Fig. 7. One square wavelength (ð2p=KdÞ2) of a random paraxial

field with the ring spectrum, constructed by superposing 50

monochromatic random waves from Eq. (A.1). The RH regions

are shaded, and separated from the LH regions by L lines (solid

lines). C points are represented by� when the index is +1/2,� when �1=2, and all +1/2 C points are lemons here. The

position of the real vector p is mared by a dot on each ellipse,

and a lines by dashed curves: Rer ¼ 0 (long dashes), Imr ¼ 0

by short dashes. A close up of the field in the box marked (i) is

shown in Fig. 6 (a further close up in Fig. 4(a)) and the box

marked (ii) is shown in Fig. 4(b).
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The density of C points in the paraxial plane dC
is the ensemble average of the density expression

(35), and is

dC ¼ K2

2p
¼ 0:15915K2; ð41Þ

where K2 denotes the second moment of the power

spectrum [19]. This result agrees with, and can

simply be derived from, the fact that C points are

dislocations in the circular components wL;wR; the

density of dislocations dD in a random complex

scalar paraxial wavefield was calculated in [19–21]

to be

dD ¼ K2

4p
: ð42Þ

The total C point density is the sum of dislocations

in wR;wL, each of which contributes a density of

dD, so dC ¼ 2dD, and the densities of LH and RH

C points are equal. The mean C point index is also

zero – a consequence of the global neutrality of

dislocation strength, discussed in [21,23]. In Fig. 7,
there are 9 C points: five lemons (two RH, three

LH) and four stars (two RH, two LH). The ex-

pected number, in one square wavelength of the

ring spectrum (4p2=K2
d), is 2p, slightly fewer than

in this sample. The total topological charge in this

square is 1. The interpretation of C points as dis-

locations means that many statistical results pre-

viously derived for dislocations apply to C points;
for instance, [20] computed the dislocation densi-

ties in anisotropic fields and in a longitudinal

plane, in addition to the paraxial plane; these re-

sults apply directly to RH and LH C points.

In any realization of the random field (i.e., a

sample function), the densities of C singularities at

two separated points are not independent, but

depends on their separation. In our isotropic
model, the direction of separation is unimportant,

and the average of two local C point densities (of

possibly different types), at points separated by

R ¼ jRj, is given by the correlation functions, nor-

malized by the C point density. This implies that

when the densities are independent (for instance,

for large R), the correlation is 1. The theory of

correlations for wave dislocations in the plane is
studied by [19,21,23,51], using results and nota-

tions from the statistical mechanics of fluids and

plasmas [52]; the dislocation correlation functions

are themselves functions of the field autocorrela-

tion function CðRÞ, defined in Eq. (A.7). We will

use the notation of [19], to which the reader is

referred for details; for instance, the partial cor-

relation function between types i; j is denoted by

gijðRÞ ¼ gij, which equals gji by isotropy.
Correlations are examined between four differ-

ent types of C point-index: +1/2 RH, �1=2 RH,

+1/2 LH, �1=2 LH. Of these, all RH densities are

independent of LH densities (since they are dislo-

cations of the independent fields wR;wL), so, in an

obvious notation

gþRþL ¼ gþR�L ¼ g�RþL ¼ g�R�L ¼ gþLþR

¼ gþL�R ¼ g�LþR ¼ g�L�R ¼ 1: ð43Þ

The partial correlations between C points of the

same handedness is clearly the same as the corre-

sponding correlations for dislocations, denoted by

gþþ ¼ g��; gþ� ¼ g�þ, so

gþRþR ¼ g�R�R ¼ gþLþL ¼ g�L�L ¼ gþþ; ð44Þ
gþR�R ¼ gþL�L ¼ g�RþR ¼ g�LþL ¼ gþ�: ð45Þ
The total number correlation function g ¼ gðRÞ is
the sum of all the 16 partial correlations, divided

by 16 in order that gðRÞ ! 1 as R ! 1,

g ¼ 1

16

X
ij

gij ¼
1

2
þ 1

4
ðgþþ þ gþ�Þ

¼ 1

2
þ gD

2
; ð46Þ

where i; j ¼ þR;þL, etc. and gD represents the

dislocation number correlation function [19].

It is also possible to calculate the C point charge

correlation function gI, that is the total correlation
function with local densities weighted by
their index (for dislocations, by topological

charge). It is

gI ¼
1

16

X
ij

signðijÞgij ¼
1

4
ðgþþ � gþ�Þ

¼ gQ

2
; ð47Þ

where gQ is the dislocation charge correlation

function [19,21]. The C point correlation functions

g, gI, gþþ, and gþ� are shown in Fig. 8, for the

three spectra defined in Appendix A. Therefore,

just as dislocations [19,23,51], C points �screen�
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each other, satisfying the C point analog of the

first Stillinger–Lovett sum rule [52]

dC

Z
d2RgIðRÞ ¼ 2pdC

Z 1

0

dRRgIðRÞ ¼ �1; ð48Þ

that is, each C point is surrounded by a cloud of C

points of the opposite index. Note that screening

only takes place between C points of the same

handedness. These screening results are discussed

further and compared with simulation data in [53].

The overall density of C points may be com-

pared to the number of nonparaxial CT line
crossings of a plane, which were calculated for

isotropic fields in [7], Eq. (5.10). After changing to

a correct plane projected spectrum [19], the density

is

dCT ¼ 3K2

4

3

10p

�
þ 1

5
ffiffiffi
3

p
�

¼ 0:15822K2: ð49Þ

The numerical value is therefore very close to dC,
although no approximation has been made in ei-

ther calculation and the analytic forms in (41) and

(49) are rather different. Physically, there is a sig-

nificant difference in the two fields – the circular

polarization ellipses of the CT points do not lie in

the plane in which the density is measured. This
phenomenon, where two random quantities which

are similar physically and give numerically close

but analytically different values, also appears for

the density of nonparaxial LT lines crossing a

plane, given in [7], which is close numerically to

dCT. It appears again in the comparison of densities

of L lines and parabolic lines, described below.

The C point density may also be compared to the
umbilic point density on isotropic random surfaces;

the total umbilic point density dU was calculated in

[25] to be

dU ¼ K6

4pK4

: ð50Þ

The factor K6=K4 involves higher moments than the
C point density, because umbilic points are singu-

larities in higher derivatives of the field. Apart from

this spectral factor, the density is half that of C

points, or equal to the density of RH C points.

The fractional densities aC of the lemon, mon-

star, star fractions of C points are calculated in

Appendix B (for total density, multiply by dC)

aC;star ¼ 0:5;

aC;monstar ¼ 0:05279;

aC;lemon ¼ 0:44721:

ð51Þ

These are precisely the same as the fractions for

umbilic points, calculated in [25] Eq. (41). Since

the star singularities are precisely those with index

�1=2, aC;star must be 1=2 since the total charge

density is zero. Just over a 10th of the index þ1=2
points are monstars, and the rest are lemons. The
fractions are the same for RH and LH C points.

The density fractions for C points under the

contour classification (E for elliptic, H for hyper-

bolic) are also calculated in Appendix B. The re-

sults for all possible combinations may be found

from the following results (and (51)):

aC;E ¼ 1=2;

aC;þE ¼ aC;�E ¼ 1=4;

aC;E lemon ¼ 0:2348 > aC;lemon=2:

ð52Þ

Half of the C points are elliptic, half are hyper-
bolic, and these are equally distributed in positive

and negative index. However, more than half

of the lemon type are elliptic, so fewer than half

of the monstars can be elliptic (in order that half

(a) (b) (c)

Fig. 8. C point correlation functions, g (thick line), gI (thin line), gþþ (dashed line), gþ� (dotted line), for the three paraxial spectra are

described in Appendix A: (a) disk spectrum; (b) ring spectrum; (c) gaussian spectrum. In (a) and (b), R is plotted in units of 1=Kd, and

in (c), in units of 1=Kr.
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of the positive index (lemons +monstars) C points

are elliptic). A two-dimensional Venn diagram,

with areas corresponding to the six different a
fractions, is shown in Fig. 9. This diagram should

be compared with the umbilic case, in [25] Fig. 2,
which is one-dimensional since for umbilic points,

only stars can be elliptic (and aU;E star ¼ 0:268).
Statistically, therefore, the line classification does

not distinguish between C points and umbilic

points, but the contour classification does. The

sign of the morphological parameter DL, defined

in Eq. (29), determines the line classification, and

only involves the Stokes parameters S1 and S2,
whereas DC, in Eq. (30), involves S0 as well. This

similarity in the line classification but difference in

the contour classification was observed by Nye

[3], pp. 90–91, for C point/umbilic point creation/

annihilation. It has already been stated that out of

the nine C points in Fig. 7, five are lemons and

four are stars (no monstars). Although not

shown, four are hyperbolic (two lemons and two
stars), and five are elliptic (three lemons and two

stars).

The density dr of any type of relative singularity

(either the component zeros in a specified direc-

tion, or the disclinations for a specified phase) is

clearly equal to the corresponding scalar disloca-

tion density; the zeros of a linearly polarized

component are just dislocations in that scalar field;

at a disclination the x and y components of a real

vector must vanish, and these pairs of fields are all

identically and independently distributed (just like
the real and imaginary parts of a complex scalar

field). The calculation reduces to that of disloca-

tions in each case, so

dr ¼ dD ¼ K2

4p
: ð53Þ

In fact, this argument may easily be extended to

show that the density of any polarization state,

specified either on the Poincar�ee or phase sphere,

has the dislocation density (53).
The density dL of L lines is shown in Appendix

B to be

dL ¼ p
4

ffiffiffiffiffi
K2

2

r
¼ 0:55536

ffiffiffiffiffi
K2

p
ð54Þ

and the related density of L lines crossing a

straight line is
ffiffiffiffiffi
K2

p
=2

ffiffiffi
2

p
: They differ by a factor of

2=p, which is general and given by the Buffon

needle relation – the density of crossings of a

random curve with a straight line is generally 2=p
times the length of that curve [54]. L lines may be
compared statistically and morphologically to two

other line morphologies on real random surfaces:

zero contour lines, whose density is denoted dz,
and parabolic lines (where H ¼ 0), whose density

is dp. Fig. 10 shows a sample of the three types of

line morphology.

The density of zero lines was computed by

Longuet–Higgins [28] to be

dz ¼
K2

2
ffiffiffi
2

p ð55Þ

and the corresponding line crossing density isffiffiffiffiffi
K2

p
=p

ffiffiffi
2

p
, also shown in [28], and also following

from Buffon�s relation. This density is smaller than
dL by a factor of p=2. The density of parabolic

lines of an isotropic gaussian random surface can

be shown to be [55]

dp ¼
2
ffiffiffi
5

p
Eð4=5Þ
3p

ffiffiffiffiffi
K6

K4

r
¼ 0:55920

ffiffiffiffiffi
K6

K4

r
; ð56Þ

Fig. 9. Venn diagram showing the fractions of different mor-

phological types of C points, from Eqs. (51) and (52). The areas

of the sets are proportional to the fraction of that type.

214 M.R. Dennis / Optics Communications 213 (2002) 201–221



where E denotes the complete elliptic integral of

the second kind [56], and the spectral factorffiffiffiffiffiffiffiffiffiffiffiffiffi
K6=K4

p
is the square root of that for umbilic

points (50). Numerically, this is very close to the L

line density, although they are not equal, as dis-
cussed above for C points and CT point crossings.

Mathematically, the difference comes about since

S3 ¼ pxqy � qxpy ¼ 0 on an L line, where the sec-

ond term is the product of independent random

variables, whereas on a parabolic line,

H ¼ fxxfyy � f 2
xy ¼ 0, where the second term is the

square of a random variable.

This difference might appear to be small as far
as the L and parabolic densities are concerned, but

leads to rather strong differences in the forms of

the two sets of line patterns, and the ensuing

morphologies of regions of RH and LH in polar-

ization fields, and positive and negative gaussian

curvature on random surfaces. Morphologically, L

lines are closer to zero contour lines than parabolic

lines, as may be seen in Fig. 10. This may be seen
more clearly in the probability distribution of the

values of S3, f and H – the L lines, zero contour

lines and parabolic lines are the zeros of these

functions. The distribution of S3 is symmetric

about 0 from (A.16), so the L lines partition the

plane into equal areas of LH and RH polarization,

just as the zero lines of the gaussian distributed f

partition the plane into equal areas of f > 0 and
f < 0. However, Longuet–Higgins [29] derived the

probability distribution of the gaussian curvature

(Eq. (7.14)), which is asymmetric, and in the

present notation is given by

PðHÞ¼ 4

K4

ffiffiffi
3

p exp
4H
K4

� �
1

 
�HðHÞerf

ffiffiffiffiffiffiffi
6H
K4

s !!
:

ð57Þ

Although the mean curvature hHi ¼ 0, the frac-

tion of the plane where H is positive is less than 1/

2,

hHðHÞi ¼ 1� 1ffiffiffi
3

p ¼ 0:42265 <
1

2
: ð58Þ

The symmetry of pðS3Þ and pðf Þ imply that the

regions of RH and LH polarizations, and positive

and negative regions of f, in a random field, are at
the percolation threshold [57–59], and there is an

infinite, �percolating� L line or zero contour (this

does not mean that there cannot be finite loops as

well, as in the figures). This contrasts with the

asymmetric distribution of H, where generically

there are isolated islands of positive curvature,

surrounding each extremum (either maximum or

minimum), surrounded by a sea of negative cur-
vature, which is evident from Fig. 10(c). Each

connected region of positive curvature contains

exactly one extremum, and the distribution of ex-

trema is statistically stationary and isotropic [28].
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Appendix A. Isotropic gaussian random polariza-

tion fields

The gaussian random polarization fields used to

derive the results in Section 5 are very simple –

each of the complex cartesian components Ex;Ey is

a circular gaussian random function, of the type

normally considered in speckle patterns [44,45],

and in the properties of wave dislocations in scalar

fields [19], on which the present discussion is
based. Each scalar component is a sum of plane

Fig. 10. Comparison of the morphology of three types of line in

random waves, in 16 square wavelengths: (a) L lines; (b) zero

contours of f; (c) parabolic lines of f. (a) uses the same random

complex vector field as Fig. 7, and (b), (c) are the zero contours

and parabolic lines over the same area of a random function f,

constructed by superposing 50 random waves with the ring

spectrum.
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wave components (neglecting the monochromatic

time dependence and paraxial z-dependence)

El ¼
X
K

aK expðiðK �Rþ/l;KÞÞ; l ¼ x; y; ðA:1Þ

where the K are transverse wavenumbers, isotropic

in direction in the x,y plane, the /l;K are uniformly

random phases (labelled by l and K) and aK are

spectral factors depending only on the length

K ¼ K, ensuring that the fields (A.1) are isotropic.

The sets of phases f/x;Kg; f/y;Kg are independent

so Ex;Ey are completely independent. All of the

polarization is pure in this model since the fields
are monochromatic, and all randomness is spatial.

The fields (A.1) are statistically stationary and

ergodic, so all spatial averages over R can be re-

placed by ensemble averages (over the /K), de-

noted by h�i; therefore
hExEyi ¼ 0: ðA:2Þ
From (6), the field may be rewritten in terms of
circular components wR;wL, and, from (A.2),

hwRwLi ¼ 0: ðA:3Þ
It may be shown that the above definition of the

random E field is equivalent to

E ¼
X
K

aKdK expðiðK � Rþ /KÞÞ; ðA:4Þ

where aK and /K are as above, and dK is a random

complex polarization vector for each K, repre-
senting a point chosen at random on the Poincar�ee
sphere,

dK ¼ 4 cosðaK=2Þ expðð � ibK=2Þ;
sinðaK=2Þ expðibK=2ÞÞ; ðA:5Þ

where aK and bK are the angles on the Poincar�ee
sphere, as defined in the text below Eq. (15), and
the factor 4 is for normalization.

Denoting any one of identically distributed and

independent real gaussian random fields px, qx, py ,

qy , RewR, ImwR, RewL and ImwL by f:

hf 2i ¼ 1

2

X
K

a2K ¼
Z

d2K
PðKÞ
2pK

; ðA:6Þ

where the second equality follows assuming that

the K are sufficiently finely spaced that the sum

may be replaced by an integral, and PðKÞ is the

radial power spectrum. The two-dimensional

Fourier transform of the power spectrum, by the

Wiener–Khintchine theorem, is the autocorrela-

tion function CðRÞ, also defined by

CðRÞ ¼ hf ð0Þf ðRÞi: ðA:7Þ
Note that the cross correlations corresponding to

the averages Eqs. (A.2), (A.3) are always 0.

The nth moment of K with respect to the radial

power spectrum PðKÞ is denoted Kn; without loss

of generality PðKÞ is normalized, so K0 ¼ 1. px, py ,

qx, qy , and their first derivatives are all independent
(this also applies to nR; gR; nL and gL) and again

denoting any of the fields by f:

hf 2i ¼ K0 ¼ 1;

hf 2
x i ¼ hf 2

y i ¼
K2

2
:

ðA:8Þ

Because of this independence, the normalized

probability density function of each of these fields

is

P ðf ; fx; fyÞ ¼ P ðf ÞP ðfxÞP ðfyÞ

¼ 2

ð2pÞ3=2K2

exp

 
� f 2

2
�
2ðf 2

x þ f 2
y Þ

K2

!
:

ðA:9Þ

The statistical model for random surfaces is

equivalent to any one of the fields denoted by f

here [28,25]. It should be noted that [28,25] use the

notation Mn for Kn.

Three particular spectra which the results apply

to are the following:

• Disk spectrum. This is a polarization speckle
pattern from a uniformly illuminated circular

scatterer, with radius r and distance L from

the plane; for wavelength k, writing Kd ¼ 2p=
K ¼ 2pr=kD, its power spectrum is a radial step

function, so

Kn;disk ¼
2Kn

d

2þ n
ðA:10Þ

and

CdiskðRÞ ¼
2J1ðKdRÞ

KdR
; ðA:11Þ

where J1 denotes the first order Bessel function.
This spectrum is frequently considered in
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speckle theory [45,44], and its phase singulari-

ties have been well-studied [22].

• Ring spectrum. As above, but the scatterer is

now a ring of negligible thickness; all of the K

vectors therefore have the same length (the
power spectrum is a d-function), and

Kn;ring ¼ Kn
d ðA:12Þ

and

CringðRÞ ¼ J0ðKdRÞ; ðA:13Þ
where J0 denotes the zeroth-order Bessel func-

tion.

• Gaussian spectrum. This is the field from a
gaussian scatterer, with standard deviation Kr,

so

Kn;gauss ¼ 2n=2 n
2

� �
!Kn

r ðA:14Þ

and

CgaussðRÞ ¼ exp

�
� K2

rR
2

2

�
: ðA:15Þ

The statistics of scalar wave singularities with

these spectra were described in [11]. It is pos-

sible to show, using this model, that the prob-

ability distribution P ðSiÞ of the Stokes

parameters Si; i ¼ 1; 2; 3; is

P ðSiÞ ¼
expð�jSij=2Þ

4
; ðA:16Þ

agreeing with the calculations of [48–50].

Appendix B. Calculations of singularity densities

In order to calculate the statistical density of C

points (including C points of certain types (RH or

LH, star, lemon or monstar, elliptic or hyper-

bolic)), we use the fact that the gaussian random

field E (A.1), (A.4) is ergodic, and replace the

spatial integral in (35) with ensemble averaging, so

the density dC of C points is

dC ¼ dðS1ÞdðS2ÞjDIjh i: ðB:1Þ
It is easier to evaluate (B.1) using the phase pa-

rameters T1; T2 instead of the Stokes parameters,
since the phase parameters are invariant with re-

spect to rotations of the plane. Also, the density of

any particular type of C point may be evaluated,

with an appropriate step H-function on the mor-

phological parameters, S3, DI, DL, DC, which is de-

noted for now simply by H, so, generalizing (B.1),

dC;type ¼ dðT1ÞdðT2ÞjT1xT2y
�

� T2xT1y jH
�
: ðB:2Þ

As in other derivations of singularity densities

[7,11,19], the calculation is simpler if an appropriate

coordinate system is chosen to start with; we will

represent p; q in polar coordinates as (p, h0), and (q,

h0 þ h). The phase parameters T1; T2, their deriva-
tives, and the signs of themorphological parameters

are unchanged when h0 is averaged in (B.2), so

dC;type ¼
8

p

Z 1

0

dp
Z 1

0

dq
Z 2p

0

dhpqdðp2 � q2Þ

� dð2pq cos hÞ � expð�2ðp2 þ q2ÞÞI1;
ðB:3Þ

where I1 represents all of the integrals involving

first derivatives, including H. The d-functions are

easy to integrate (with respect to q and h), and the

integral becomes

dC;type ¼
16

p

Z 1

0

dp
p2

4p3
expð�4p2ÞI1ðq¼p;cos h¼0Þ

ðB:4Þ
and the notation I1ðq¼p;cos h¼0Þ is obvious. cos h has

two zeros in the range 06 h6 2p, the first

(h ¼ p=2) when p; q are RH, the other LH. The

distributions of C points of any other type are the

same whether the points are RH or LH, and it will
be assumed in the following that the type does not

involve handedness.

The jacobian jT1xT2y � T2xT1y j now simplifies

jT1xT2y � T2xT1y j ¼ 4p2jpx;xpy;y þ px;xqx;y

� py;yqy;x þ qx;xqy;y

� px;ypy;x � px;yqx;x

� qx;yqy;x þ py;xqy;y j: ðB:5Þ

Rewriting the first derivatives as a vector

V ¼ 2=
ffiffiffiffiffi
K2

p
ðpx;x; px;y ; py;x; py;y ; qx;x; qx;y ; qy;x; qy;yÞ;

ðB:6Þ
the jacobian in (B.5) can be written as a quadratic

form, and after rescaling (to remove factors in the
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gaussian), is equal to ðK2=4Þ4jV � N � Vj, with N the

8� 8 symmetric matrix with entries 0, �1=2, from
(B.4). Therefore

dC;type ¼
16

p
K2

4p4

� �Z 1

0

dpp expð�4p2Þ

�
Z

d8VjV � N � Vj expð�V 2Þ: ðB:7Þ

Now we perform a linear transformation V !
W ¼ CV with C an orthogonal matrix diagonal-

izing N:

CTNC ¼ diagf1; 1;�1;�1; 0; 0; 0; 0g: ðB:8Þ

Such a C can always be found because N is real

symmetric. The jacobian of this transformation is
1 since C is orthogonal. Defining atype ¼ 2p=
K2dC;type, after the transformation, we may

write

atype ¼
1

p4

Z
d8WjW 2

1 þ W 2
2 � W 2

3

� W 2
4 j expð�W 2ÞHW ðB:9Þ

where any expression in H has been appropriately

changed to the Wi coordinates. The total density of
C points may therefore be confirmed by taking

HW ¼ 1 always in (B.9). By transforming

W1; . . . ;W6 to

W1 ¼ r cos h cos/1;

W2 ¼ r cos h sin/1;

W3 ¼ r sin h cos/2;

W4 ¼ r sin h sin/2;

W5 ¼ ru cos/3;

W6 ¼ ru sin/3;

06 r; u < 1; 06 h6 p=2;

06/1;/2;/3 6 2p;

ðB:10Þ

with jacobian r5u sinð2hÞ=2. With HW ¼ 1, this

integral can easily be shown to be 1, confirming
that dC ¼ K2=2=p, justified in Eq. (41) a different

way. Otherwise, W7;W8 may be integrated (they do

not appear in any of the morphological parame-

ters), and

atype ¼
1

2p3

Z 1

0

dr
Z 1

0

du

�
Z p=2

0

dh
Z

d3/ r7u sin 2hj cos 2hj

� expð�r2ð1þ u2ÞÞH; ðB:11Þ

where the morphological parameters, in terms of r,

h, /1, /2, /3, u, are written

DIW ¼ cos2h;

DLW ¼ 15� 28cos2hþ 11cos4h

� 4cosð3/1 þ/2Þ sin2hð1þ cos2hÞ; ðB:12Þ

DCW ¼ cos2 2h� 2u2ð1� cosð/1 þ/2 �2/3Þ sin2hÞ;

where overall positive multipliers have been ig-

nored. Note that only DC involves u. The star type

points are those with DI < 0, which from (B.11),
(B.12) has astar ¼ 1=2, implying that alemon þ
amonstar ¼ 1=2. In the following, it is convenient to

change the /i angles to /L ¼ 3/1 þ /2, /C ¼ /1 þ
/2 � 2/3, / ¼ /3=2, which may be done with ja-

cobian 1. Out of the original /i variables, DLW now

depends only on /L, DCW only on /C.

The total fraction of lemon type is found using

the fact that DL < 0 for lemons; DLW in (B.12) is
independent of r, u, /, and /C, so integrating these

from (B.11) is easy, and gives

alemon ¼ 1

p

Z p=2

0

dh
Z 2p

0

d/L sin2hj cos2hjHð�DLWÞ

¼ 18

100
þ 2

p

Z p=4

arccosð3=
ffiffiffiffi
10

p
Þ
dh sin2hcos2h

� arccos
15� 28cos2hþ 11cos4h

4sin2hð1þ cos2hÞ

 !

¼ 18

100
þ 1

p

Z 4=5

0

dt t arccos
4� 28tþ 22t2

4ð1þ tÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
 !

¼ 0:44721: ðB:13Þ

In this derivation, the second line was reached by
integrating /L, the third line by substituting h with

t ¼ cos 2h, the final line being a numerical
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integration. This derivation is similar to that for the

fraction of lemon umbilic points in [25], Section 4.

The corresponding calculation for the elliptic

(E) type, for which DC > 0, is similar. After inte-

grating out r, / and /L, we have

aE ¼ 6

p

Z p=2

0

dh
Z 2p

0

d/C

Z 1

0

du
u

ð1þ u2Þ4

� sin 2hj cos 2hjHðDCWÞ

¼ 3

2p

Z p

0

dh0
Z 2p

0

d/C

Z 1

0

dv
sin h0j cos h0j
ð1þ vÞ4

� H 1

 
� sin2 h0 � 2vð1� cos/C sin h0Þ

!
;

ðB:14Þ
where v ¼ u2, h0 ¼ 2h. Therefore, in h0, the

integrand is symmetric about p=2, that is, in

index (from the form of DIW), so aE;star ¼ aE;lemon þ
aE;monstar. Taking advantage of this symmetry, we

can substitute s ¼ sin h0, and integrate v:

aE ¼ 3

p

Z 1

0

ds
Z 2p

0

d/C

s
3

� 1� 8ð1� s cos/CÞ
3

ð3� s2 � 2s cos/CÞ
3

 !
¼ 1

2
; ðB:15Þ

where the final integration is straightforward.
This result implies that 1=2 ¼ aE ¼ aH ¼ 2aE;star,

etc.

The final density calculation is that of the el-

liptic lemons; although the total fraction of elliptic

lemons and monstars is half, they are not neces-

sarily in the same proportion as they are overall.

Therefore, after integrating out r and / from

(B.11)

aE;lemon ¼ 3

p2

Z p=2

0

dh
Z 2p

0

d/L

Z 2p

0

d/C

�
Z 1

0

du
u

ð1þ u2Þ4
sin 2hj cos 2hj

� HðDCWÞHð�DLWÞ
¼ 0:23481; ðB:16Þ

where the final numerical result is arrived at from

transformations similar to those used for alemon, aE,

and the other fractions may be derived from those

found here.

We now turn our attention to L lines, whose

average density, by stationarity and ergodicity, can

be found from Eq. (37), giving

dL ¼ dðS3ÞjrS3j
� �

: ðB:17Þ

Now, p and q may be transformed to polar coor-

dinates as before, and integrate h0, giving

dL ¼ 8

p

Z 1

0

dp
Z 1

0

dq
Z 2p

0

dh pqdð2pq sin hÞ

� exp
�
� 2ðp2 þ q2Þ

�
�
Z

d4rpd4rqpðrp;rqÞjrS3j

¼ 8

p

Z 1

0

dp
Z 1

0

dq exp ð � 2ðp2 þ q2Þ
�

�
Z

d4rpd4rqpðrp;rqÞjrS3j: ðB:18Þ

Transforming to polars ðp; qÞ ! ðU ;/Þ, and us-
ing the fact that both p; q are in the same di-

rection (relabelled as the x-direction), jrS3j
becomes

2U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðrqyÞ2 þ s2ðrpyÞ2 � 2csrpy � rqy

q
; ðB:19Þ

where C, s denote cos/, sin/, respectively. jrS3j
now only involves the derivatives of the y com-

ponents of p; q, so only these need to be integrated

over. Writing these as a vector V ¼
ffiffiffiffiffi
K2

p
=2

ðpy;x; py;y ; qy;x; qy;yÞ, and writing jrS3j as a quadratic
form TK2=2jV � N � Vj1=2, the integral becomes

dL ¼
4
ffiffiffiffiffiffiffiffiffiffi
K2=2

p
p3

Z 1

0

dUU 2 expð�2U 2Þ

�
Z 1

0

d/
Z

d4VjV �N �Vjexpð�V 2Þ: ðB:20Þ

As before, V can be orthogonally transformed to a

basis in which N is diagonal, and therefore can

easily be integrated, with the result

dL ¼ p
4

ffiffiffiffiffi
K2

2

r
: ðB:21Þ
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Similar methods are employed to show that the

corresponding density of L lines crossing a straight

line ds;1, starting from (38), is

dL;1 ¼
1

2

ffiffiffiffiffi
K2

2

r
: ðB:22Þ
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