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Abstract
In the 2 × 2 matrices representing retarders and ideal polarizers, the
eigenvectors are orthogonal. An example of the opposite case, where
eigenvectors collapse onto one, is matrices M representing crystal plates
sandwiched between a crossed polarizer and analyser. For these familiar
combinations, M2 = 0, so black sandwiches can be regarded as square roots
of zero. Black sandwiches illustrate physics associated with degeneracies of
non-Hermitian matrices.
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Tudor [1, 2] has recently remarked that the common
classification of polarizing devices into retarders, represented
by unitary operators, and ideal polarizers, represented by
projection operators, fails to include some commonly used
combinations of optical elements. Both retarders and ideal
polarizers are represented by 2 × 2 Jones matrices [3–5]
whose eigenvectors are orthogonal; the difference lies in the
eigenvalues: for retarders, two complex eigenvalues lie on
the unit circle, and for ideal polarizers, one eigenvalue is
zero. Tudor gives the example of a linear polarizer followed
by a quarter-wave plate, where the eigenvectors are not
orthogonal. He also gives an example of the extreme case
of nonorthogonal eigenvectors, namely parallel eigenvectors:
a linear polarizer sandwiched between two identical quarter-
wave plates oriented at 45◦ to the axes of the polarizer; this
example falls into a class described by de Lang [6].

Here we extend Tudor’s remark in a very simple way,
by pointing out that this extreme case of parallel eigenvectors
is realized optically by a much wider class of devices
including some of the most familiar combinations employed in
polarization optics, namely any specimen (e.g. a crystal plate)
between a crossed polarizer and analyser—which we call a
black sandwich, for obvious reasons. The matrix for a black
sandwich is

M = P+AP−, (1)

where
P± = |±〉〈±| (2)

are the projection matrices corresponding to the ideal polarizer
(−) and analyser (+) that select orthogonal states represented
by the column (e.g. Jones) vectors |±〉, and A, representing the
specimen, can be any 2 × 2 matrix.

Because of its unsymmetrical form (polarizer and analyser
different), M is non-Hermitian, and explicit calculation shows
that both of its eigenvalues are zero. Therefore the two
eigenvectors, that are different for the general case, have here
collapsed onto one, namely |+〉. A polarization |ψ〉 entering
the black sandwich emerges in the state

M|ψ〉 = (〈+|A|−〉〈−|ψ〉)|+〉. (3)

In contrast to the ideal polarizer P+, from which the emerging
light is also in the state |+〉 but which extinguishes incident light
in the orthogonal state |−〉, the black sandwich extinguishes
its own eigenstate. This is obvious when M is written in the
form

M = (〈+|A|−〉)|+〉〈−|. (4)

It follows immediately that

M2 = 0, (5)

i.e. M is nilpotent, reflecting the obvious fact that the
combination of two black sandwiches extinguishes all
light. Therefore black sandwiches (1), incorporating general
matrices A, can be regarded as nontrivial square roots of zero.
(The trivial square root M = 0 corresponds to A = 1—simply a
crossed polarizer and analyser, i.e. a sandwich with no filling.)

A familiar black sandwich consists of a transparent crystal
plate between a linear polarizer and analyser. If the polarizer
and analyser are

|−〉 =
(

0
1

)
(polarizer),

|+〉 =
(

1
0

)
(analyser),

(6)

1464-4258/04/030024+02$30.00 © 2004 IOP Publishing Ltd Printed in the UK S24

http://stacks.iop.org/JOptA/6/S24


Square roots of zero

and the orthogonal eigenpolarizations and eigenvalues of the
crystal are

|φ1〉 =
(

u
v

)
, eigenvalue λ0 + λ,

|φ2〉 =
(
v∗

−u∗

)
, eigenvalue λ0 − λ,

(7)

with |u|2 + |v|2 = 1, then A is the unitary matrix

A = exp(iλ0)[|φ1〉〈φ1| exp(iλ) + |φ2〉〈φ2| exp(−iλ)]

= exp(iλ0)

[
cos λI + i sin λ

( |u|2 − |v|2 2uv∗
2u∗v |v|2 − |u|2

)]
,

(8)

and the black sandwich matrix is

M = 〈+|A|−〉|+〉〈−| = 2iuv∗ exp(iλ0) sin λ

(
0 1
0 0

)
. (9)

For an anisotropic material, the polarization components
u and v depend on direction, and any diffuse light (e.g. the
sky, or white paper) viewed through the sandwich will exhibit
the familiar conoscopic figures [7, 8]. An easy way to see the
conoscopic figures displaying the polarization singularity at
the optic axis of a biaxial material is with a ‘crystal’ consisting
of a sheet of overhead-projector transparency film [9], so
this ‘black plastic sandwich’ is a square root of zero. For
conoscopic figures corresponding to more general polarization
singularities, with A representing crystals that are gyrotropic
and dichroic as well as birefringent, see [10].

The de Lang class [6] of nilpotent devices, mentioned
at the end of the first paragraph, is more restricted, being
of the form M = UPU, where U is a quarter-wave retarder
whose eigenpolarizations are directions on the Poincaré sphere
perpendicular to that selected by P. This class forms a
four-parameter family of devices (including overall phase),
whereas the black sandwiches form a ten-parameter family
(or, if A is restricted to the class of retarders, a six-parameter
family).

The polarization optics of black sandwiches joins a
growing class of physics associated with the collapse of
two eigenvectors onto one at a degeneracy of eigenvalues
of non-Hermitian matrices. Other examples occur in the
diffraction of atoms by ‘crystals of light’ [11–13], in nuclear
physics [14–17], and in the linewidths of unstable lasers [18].
Such degeneracies also occur in the optics of absorbing
crystals [8, 10, 19–21], for light travelling along a ‘singular
axis’ (to avoid confusion, we emphasize that in (1) these
degeneracies occur in the crystal matrix A, not the black
sandwich matrix M).
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