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Abstract
The nodal line singularities (optical vortices) of classical scalar optics are
smoothed in quantum optics, because of spontaneous emission into
unoccupied modes. The radius of the ‘quantum core’ surrounding each
classical singularity is proportional to

√
h̄. A trapped excited atom, steered

into a nodal line of the classical field, is a possible detector for the effect.
Analogous phenomena are anticipated for other waves, for example sound,
where the silence at a nodal line is disturbed by pressure fluctuations of the
fluid molecules.
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The geometric structures studied in singular optics [1] are
perhaps the most interesting objects predicted by the theories
of light. But in a sense they are nonexistent, because each
singularity disappears at a deeper level of description. The
same is true of other (perhaps all) singularities in physics.
Thus, the caustic singularities of geometrical optics disappear
in physical (i.e. scalar) optics, being softened by the phase
effects introduced by wave physics and replaced by diffraction
catastrophes [1–3]. Scalar optics has its own singularities, in
the form of nodal lines in space (that is, phase singularities,
or optical vortices), and these in turn disappear in polarization
(i.e. vector wave) optics, whose singularities are loci of purely
linear or purely circular polarization [1, 4].

Our aim here is to extend this process of dissolving
singularities to a further level, by exploring an earlier
suggestion [5, 6] that the quantum vacuum destroys the perfect
zero of a classical light field at a phase singularity, replacing
it with a quantum core of finite radius. We will calculate
this radius. Thus the dark light of a phase singularity can be
regarded as a window, opening to our view the faint glimmering
of the quantum vacuum. The classical nodal singularity results
from perfect destructive interference [7, 8], so its quantum
smoothing can be regarded as a fundamental decoherence
effect. (Smoothing can also arise from classical decoherence,
as exhibited in the colours of vortices created with white
light [9, 10]—a less fundamental effect.)

Consider for simplicity a large volume V , supporting
normalized modes un(r), here conveniently represented as

complex scalar waves (an appropriate description if the field is
paraxial and linearly polarized, for example). We are interested
in the mode n = N , with frequency ωN , and wavelength
λ = 2πc/ωN , that possesses a nodal line passing through the
origin and contains classical light, that is, many photons (e.g. in
a coherent state). We want to understand how observations
of the light in the ‘vacuum’ near r = 0 are affected by the
unoccupied modes n �= N , with frequencies degenerate with,
or near, ωN , that do not possess nodal lines near r = 0. To
probe the light on the sub-wavelength scale near a vortex, we
choose a single excited atom that can decay with frequency
close to ωN , that is, a ‘quantum counter’ (which could be
implemented by a three-level atom) [11, 12].

Light emitted by the atom will be dominated by stimulated
emission from u N , except near r = 0 where spontaneous
emission into the unoccupied modes will be important. The
intensity (energy density) I (r) of this light can be calculated
from the expectation value of the antinormally ordered operator
product Ê(r)Ê†(r), where

Ê(r) =
∑

n

ânun(r) (1)

is the electric field operator, involving the photon mode
annihilation operators ân . The result is

I (r) = IN (r) + h̄ω
∑′|un(r)|2, (2)

whose ingredients will now be described.
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Figure 1. (a) Density plot of modulus
√

IN (r) of a superposition of four degenerate plane waves, with mean value 〈IN (r)〉 = 1, showing
nodal points (where the nodal lines pierce the plane) as dark spots; the plot is two wavelengths square. (b) Plot of ρN (r) (equation (9)), for
K = 1/5; (c) as (b), with K = 1/300; the white regions are the quantum cores.

The first term IN (r) is the intensity of the classical field,
given by the expectation value of the energy density of the
photons in the mode N , where the light field has state |φN 〉,
namely

IN (r) = h̄ω〈φN |â†
N âN |φN 〉|u N (r)|2

≈ h̄ω〈φN |âN â†
N |φN 〉|u N (r)|2 (3)

(the small difference between the two expressions, represent-
ing spontaneous emission involving the state N , is irrelevant
near a vortex because of the factor |u N |2).

The second term in (2) represents the contribution from
spontaneous emission, with the prime denoting restriction of
the summation to those states n �= N for which |ωN − ωn| <
�ω, where �ω is the frequency range into which the atom
can decay, that is, the linewidth (proportional to Einstein’s A
coefficient). For large V , the density of such states is given by
the Weyl rule, and the average value of |un|2 is 1/

√
V , so

∑′|un(r)|2 ≈ ω2�ω

2π2c3
. (4)

Consider now the neighbourhood of the optical
vortex, where, with the vortex along Oz and R =
{x, y}, and approximating the usually elliptical vortex intensity
contours [13] by circles,

IN (r) ≈ C R2, (5)

with C proportional to ∇2
R IN (0). The quantum core can now be

defined as the region within which the ‘spontaneous’ term (4)
(now representing decay into a continuum of unoccupied
states) dominates the ‘stimulated’ term (3). Its radius RQ is
therefore

RQ ≈
√

h̄ω3�ω

2π2c3C
. (6)

Note that V does not appear in this formula, which therefore
applies to unconfined light. The presence of�ω indicates that
the quantum core depends not only on the electromagnetic field
but also on the atom employed to detect it.

To estimate RQ, we consider the simplest singular
Laguerre–Gauss beam with waist radius R0 (that is, intensity
profile ∼ R2 exp(−R2/R2

0 )) and power p. Integration across
the beam gives the constant C in (5) as

C = p

πcR4
0

. (7)

Thus the core radius is

RQ = 2πR2
0

√
h̄c�ω

pλ3
. (8)

For a 5 mW He–Ne laser light in a beam with waist
radius 100 µm, detected by a hydrogenic atom with minimum
linewidth for spontaneous emission into the visible [14, 15],
that is, �ω ∼ 5 × 106 s−1, (8) gives RQ ∼ 0.01R0.

The result (6) can be regarded as combining three types
of singularity. First, there is the phase singularity that is being
smoothed. Second, there is the singular semiclassical (small
h̄) limit, in which the core emerges as a distinct structure (we
are here referring to the explicit h̄ dependence associated with
the quantization of the light field; of course h̄ also occurs in
expressions for �ω, and ω itself, regarded as the result of
transition between atomic energy levels). And third, there
is the spectral singularity associated with the degeneracy (or
near-degeneracy) of the modes near N , into which the atom
can decay spontaneously.

In another sense (6) is disappointing, because it shows
that the quantum smoothing of a classical-optics singularity
appears to possess far less richness than, say, the diffraction
catastrophe smoothing of geometrical caustics. The core in (2)
merely reflects the inert addition of a constant vacuum term, K
say, to the classical intensity. This can however be presented as
a localized quantum correction by the contrivance of plotting
the amplitude shift

ρN (r) = √
IN (r) + K − √

IN (r), (9)

which possesses maxima at each phase singularity and is small
elsewhere (figure 1). Nevertheless, the core is a fundamental
quantum effect, and it would be interesting to carry out an
experiment to detect it, perhaps using the Laguerre–Gauss
vortex beam in the estimate above.

The spontaneously emitted light renders the phase χ of the
radiation ψ = ρ exp(iχ) uncertain in the core. At the position
x = r cos φ, x = r sinφ, the phase probability distribution
can be calculated to be (in dimensionless units)

P(χ; r, φ) = 1

2π

[
exp

(
−1

2
r 2

)

+ r cos(χ − φ) exp

(
−1

2
r 2 sin2(χ − φ)

)

× erfc
(

− 1√
2

r cos(χ − φ)

)]
. (10)
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At the centre of the core r = 0, P(χ) = 1/2π , i.e. the phase
is completely undetermined. As r increases, the distribution
sharpens, and far from the core P(c) → δ(χ − φ), reflecting
the well-defined phase in this region where classical phase
singularity ψ = x + iy dominates the field.

For vector waves whose state of classical polarization
depends on position, an analogous argument would lead to the
quantum smoothing of the polarization singularities through
decay into modes with unrelated polarizations.

Analogous effects can be expected to smooth away the
phase singularities in other types of wave. With sound,
for example, the vortices are zeros of fluid pressure in the
continuum description—the equivalent of classical optics. In
the centres of these fleeting threads, the silence is destroyed
by the faint pressure fluctuations of the gas molecules—
fluctuations analogous to chaos of the quantum vacuum,
audible in principle as Brownian fluctuations on a detector.

The radius Rs of this statistical core of an acoustic
vortex, as detected by the human ear, for sound of intensity
d decibels, conventionally measured in terms of the faintest
audible sound, can be estimated from two facts. The first is that
the pressure amplitude of the Brownian fluctuations, calculated
as (atmospheric pressure)/

√
N , where N is the mean number

of molecular impacts on the eardrum during the response time
of the ear ((15 kHz)−1 ∼ 7 × 10−5 s), is, coincidentally or
for reasons of evolution, comparable with that of the faintest
audible sound. The second fact is that for omnidirectional
random sound with wavelength λ and mean pressure amplitude
ps, the mean amplitude gradient at a nodal line (the analogue
of (5)) is approximately 10ps/λ (this is a simple consequence
of results in [13]). It follows that

Rs ∼ λ

101+d/20
. (11)

For a quiet musical note with loudness 40 dB, Rs ∼ 10−3λ:
for 500 Hz, Rs ∼ 0.6 mm. We note that the ear is a broadband
detector, unlike the atom in our proposal for detecting quantum
cores of optical vortices, which is a tuned (that is, narrow-band)
detector.

It is conceivable that quantum cores which are intrinsically
richer (as opposed to ones that are merely more complicated)
will emerge in situations other than that considered here. For
example, we envisage expectation values involving higher
powers of Ê(r), correlations between different values of r or
different times, entanglements between the quantum states of
the mode N and the unoccupied modes, light confined (e.g. in
a micromaser) so that all modes are discrete, and including the
kinetic energy of the detecting atom.

We emphasize that the poverty of the core structure
described here is associated with generic classical-optics phase
singularities, that is, nodal lines in free space. In active media,
by contrast, different core structures can occur, associated with
nonlinearity. And it has recently been suggested [16, 17]
that highly nontrivial new quantum phenomena, analogous

to Hawking radiation, may be associated with more exotic
logarithmic classical singularities such as the cores of classical
vortices in rapidly rotating dielectric fluids.

According to the general philosophy outlined at the
beginning of this paper, each deeper theory not only smooths
the singularities of the previous, less general, theory that
it supersedes, but contains the seeds of its own demise by
introducing new singularities. This raises the enigmatic
possibility that quantum-optical fields, considered ‘in the
wild’—that is, generically—might also possess singularities.
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