Bowditch, B.H. (1997) Peripheral splittings of groups. Transactions of the American Mathematical Society, 353, 4057-4082.
Abstract
We define the notion of a "peripheral splitting" of a group. This is essentially a representation of the group as the fundamental group of a bipartite graph of groups, where all the vertex groups of one colour are held fixed --- the "peripheral subgroups". We develop the theory of such splittings and prove an accessibility result. The main application is to relatively hyperbolic groups with connected boundary, where the peripheral subgroups are precisely the maximal parabolic subgroups. We show that if such a group admits a non-trivial peripheral splitting, then its boundary has a global cut point. Morever, the non-peripheral vertex groups of such a splitting are themselves relatively hyperbolic. These results, together with results from elsewhere, show that under modest constraints on the peripheral subgroups, the boundary of relatively hyperbolic group is locally connected if it is connected. In retrospect, one further deduces that the set of global cut points in such a boundary has a simplicial treelike structure.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.