Symmetric powers of Galois modules on Dedekind schemes
Symmetric powers of Galois modules on Dedekind schemes
We prove a certain Riemann–Roch-type formula for symmetric powers of Galois modules on Dedekind schemes which, in the number field or function field case, specializes to a formula of Burns and Chinburg for Cassou–Noguès–Taylor operations.
symmetric power operation, adams operation, grothendieck group, bass–whitehead group, locally free classgroup, dedekind scheme, equivariant adams–riemann–roch formula
195-217
Koeck, Bernhard
84d11519-7828-43a6-852b-0c1b80edeef9
2000
Koeck, Bernhard
84d11519-7828-43a6-852b-0c1b80edeef9
Koeck, Bernhard
(2000)
Symmetric powers of Galois modules on Dedekind schemes.
Compositio Mathematica, 124 (2), .
(doi:10.1023/A:1026579331113).
Abstract
We prove a certain Riemann–Roch-type formula for symmetric powers of Galois modules on Dedekind schemes which, in the number field or function field case, specializes to a formula of Burns and Chinburg for Cassou–Noguès–Taylor operations.
Other
Dedekind.dvi
- Accepted Manuscript
More information
Published date: 2000
Keywords:
symmetric power operation, adams operation, grothendieck group, bass–whitehead group, locally free classgroup, dedekind scheme, equivariant adams–riemann–roch formula
Identifiers
Local EPrints ID: 29781
URI: http://eprints.soton.ac.uk/id/eprint/29781
ISSN: 0010-437X
PURE UUID: b73edff0-ccce-48e2-945e-0052fb05292b
Catalogue record
Date deposited: 20 Jul 2006
Last modified: 16 Mar 2024 03:22
Export record
Altmetrics
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics