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COMPUTING THE HOMOLOGY OF KOSZUL COMPLEXES

BERNHARD KÖCK

Abstract. Let R be a commutative ring and I an ideal in R which is locally
generated by a regular sequence of length d. Then, each f. g. projective R/I-
module V has an R-projective resolution P. of length d. In this paper, we
compute the homology of the n-th Koszul complex associated with the homo-
morphism P1 → P0 for all n ≥ 1, if d = 1. This computation yields a new proof
of the classical Adams-Riemann-Roch formula for regular closed immersions
which does not use the deformation to the normal cone any longer. Further-
more, if d = 2, we compute the homology of the complex N Sym2 Γ(P.) where
Γ and N denote the functors occurring in the Dold-Kan correspondence.

Introduction

In the theory of exterior powers of f. g. projective modules over a commutative
ring R, there are various formulas which, so far, can only be proved by using geo-
metric means (e.g., the projective fibre bundle or blowing up). An example is the
formula which computes the composition of exterior powers in the Grothendieck
ring K0(R) (e.g., see [FL]). The plethysm problem is to find (explicit) functorial
short exact sequences which prove this formula within the framework of commuta-
tive algebra. It has been intensively studied in universal representation theory. In
this paper, we study the analogous problem for the Adams-Riemann-Roch formula
for regular closed immersions (between affine schemes).

We now recall the Adams-Riemann-Roch formula (see [FL]). Let i : Y ↪→ X
be a regular closed immersion of schemes with the locally free conormal sheaf C.
Let ψn : K0(X) → K0(X) denote the n-th Adams operation on the Grothendieck
ring K0(X); it is defined as a certain integral polynomial in the exterior power
operations on K0(X). For any locally free OY -module V , we choose a locally free
resolution P . of i∗(V) on X , and we map the element [V ] ∈ K0(Y ) to the Euler
characteristic

∑
k≥0(−1)k[Pk] ∈ K0(X). This association induces a well-defined

homomorphism i∗ : K0(Y ) → K0(X). The Adams-Riemann-Roch theorem for i∗
now states that, for all y ∈ K0(Y ), we have

ψn(i∗(y)) = i∗(θn(C) · ψn(y)) in K0(X);

here, θn(C) denotes the so-called Bott element associated with C (see [FL]).
This formula (for only one n ≥ 2) implies the famous Grothendieck-Riemann-

Roch theorem for i∗ in a rather formal manner (see [FL]). It has been formulated
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for the first time by Manin in [M], but it has been proved there only up to n2-
torsion in K0(X). Moreover, as a formula in K0(X) ⊗ Q, it follows already from
Théorème 4.3 in Expose VII of [SGA 6]. The given version without denominators
can be derived from Théorème 2.1 in Jouanolou’s paper [J] and can be found in
Soulé’s paper [S] and in the book [FL] by Fulton and Lang. In all these sources, the
deformation to the normal cone is the crucial tool in the proof. The object of this
paper is to construct explicit short exact sequences of OX -modules which prove this
formula in the case codim(Y/X) = 1, n arbitrary and in the case codim(Y/X) = 2,
n = 2. Since the proof of the Adams-Riemann-Roch formula in the general case
can immediately be reduced to the case codim(Y/X) = 1 using blowing up and
the excess intersection formula (see [SGA 6]), we in particular obtain a new, very
natural and simple proof in the general case which, in contrast to [J], [S], or [FL],
does not use the deformation any longer.

To illustrate our approach, we now describe it rather completely for codim(Y/X)
= 1 and n = 2. As in the beginning of the introduction, we consider only the affine
case; so, let X = Spec(R) and Y = Spec(R/I) where the ideal I of R is locally
generated by a nonzero-divisor. Let σ2 and λ2 denote the second symmetric power
and second exterior power operation. Let V be an f. g. projective R/I-module and

0→ P → Q→ V → 0

an R-projective resolution of V . Since ψ2 = σ2 − λ2 and θ2(I/I2) = 1 + [I/I2], it
suffices to prove the formula

σ2(i∗([V ])) = i∗([Sym2(V )]− [Λ2(V )⊗ I/I2]) in K0(X)(0.1)

and a similar formula for λ2. Now, the main idea is to consider the Koszul complex

K : 0→ Λ2(P )→ P ⊗Q→ Sym2(Q)→ 0

which, for instance, can be defined as a subcomplex of the natural short exact
sequence 0 → Λ2(Q) → Q ⊗ Q → Sym2(Q) → 0. It is immediately clear that
the alternating sum of the objects of this complex equals the left-hand side of
the formula (0.1). Since the alternating sum of the objects equals the alternat-
ing sum of the homology modules, it suffices to show that H0(K) ∼= Sym2(V ),
H1(K) ∼= Λ2(V )⊗I/I2, and H2(K) ∼= 0. (Here, H0(K), H1(K), and H2(K) denote
the homology of K at the places Sym2(Q), P ⊗Q, and Λ2(P ), respectively.) Whilst
the isomorphisms H0(K) ∼= Sym2(V ) and H2(K) ∼= 0 can be proved rather easily
(see Remark 3.3), the proof of the isomorphism H1(K) ∼= Λ2(V ) ⊗ I/I2 is more
complicated. The most important observation for this is the fact that H1(K) does
not depend on the chosen resolution and that the association V 7→ H1(K) =: F (V )
is even a functor. This can be proved as follows. Any homomorphism V → V ′

between f. g. projective R/I-modules can be lifted to a homomorphism from a res-
olution of V to a resolution of V ′, and this lifted homomorphism then induces a
homomorphism between the corresponding Koszul complexes K and K ′ in the obvi-
ous way. In order to prove that the induced homomorphism between the homology
modules does not depend on the lifting, we consider the complex

L : 0→ P ⊗ P → Sym2(P )⊕ P ⊗Q→ Sym2(Q)→ 0

(with the obvious differentials) which is quasi-isomorphic to the complex K. One
can show (see also Remark 2.6) that any homotopy between two homomorphisms
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between the resolutions induces a homotopy between the corresponding homomor-
phisms between the complexes L and L′. (The analogous statement for the com-
plexes K and K ′ is not true!) As usual in homological algebra, this implies that
the association V 7→ H1(L) ∼= F (V ) is a well-defined functor. In particular, for
any f. g. projective R/I-modules V,W , the direct sum F (V )⊕F (W ) is a canonical
direct summand of F (V ⊕W ). Let cr2(F )(V,W ) denote the complement. Then
cr2(F ) is a bifunctor. It is called the second cross effect of F . (This terminology
has been introduced by Eilenberg and Mac Lane in [EM].) One easily sees that
we have cr2(F ) ∼= TorR1 in our situation. Hence, cr2(F ) is biadditive, and we have
cr2(F )(R/I,R/I) ∼= I/I2. Furthermore, one immediately sees that F (R/I) ∼= 0.
Eilenberg ([E]) and Watts ([Wa]) have proved that any additive functor F on the
category of f. g. projective modules over a commutative ring A is isomorphic to the
tensor functor F (A) ⊗ −. Similarly, one easily shows that any functor F with the
three properties just proved is isomorphic to the functor Λ2(−)⊗ I/I2 (see Corol-
lary 1.6). This finally proves the claimed isomorphism H1(K) ∼= Λ2(V )⊗ I/I2 and
hence the formula (0.1). The analogous formula for λ2 can be proved in a similar
manner (see also Remark 3.6).

Now we briefly describe the idea of our approach in the case codim(Y/X) = 2,
n = 2. Let V be a locally free OY -module and P . a locally free resolution of i∗(V) on
X . Here, we compute the homology of the complex L := N Sym2 Γ(P .) where Γ and
N denote the functors occurring in the Dold-Kan correspondence (see section 2).
The idea to consider this complex is suggested by the observation that the complex
L used in the case codim(Y/X) = 1 is isomorphic to the complex N Sym2 Γ(P → Q)
(see section 2). On the contrary, it seems that an analogue of the Koszul complex
K does not exist in the case codim(Y/X) ≥ 2. We obtain the following result (see
Theorem 6.4): H0(L) ∼= i∗(Sym2(V)), H1(L) ∼= i∗(Λ2(V)⊗C), H2(L) ∼= i∗(D2(V)⊗
Λ2(C)), and Hk(L) ∼= 0 for k ≥ 3. This computation of the homology then implies
the Adams-Riemann-Roch formula in the case codim(Y/X) = 2, n = 2 as above
(see section 6). The main tools we use in this computation are the Eilenberg-
Zilber theorem and the universal form of the Cauchy decomposition developed by
Akin, Buchsbaum and Weyman in [ABW]. We again verify certain properties of
the corresponding cross effect functors which, together with easy abstract lemmas,
imply the above isomorphisms.

In section 5, we present a further application of the theory of cross effect functors
developed in section 1. We prove the Riemann-Roch formula for tensor power
operations (see Theorem 5.3) which has been proved in the paper [K 2] using the
deformation to the normal cone (and which in turn implies the Adams-Riemann-
Roch formula in characteristic 0; see section 4 in [K 2]). Here, the codimension of
Y in X may be arbitrary. For any locally free OY -module V and for any locally
free resolution P . → i∗(V) of i∗(V) on X , we compute the homology of the total
complex of the n-th tensor power P .⊗n of P . together with the canonical action of
the symmetric group (see Theorem 5.1).

Acknowledgments. I would like to thank D. Grayson and R. McCarthy for many
very helpful discussions where I have learned, for example, the (advantages of)
simplicial techniques. In particular, D. Grayson has contributed the basic idea for
the important Corollary 2.5. Furthermore, R. McCarthy has explained the main
features of cross effect functors to me. It is a pleasure to thank them for all this
assistance.
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1. On cross effect functors

First, we recall the definition of the cross effect functors crk(F ), k ≥ 0, asso-
ciated with a functor F between additive categories (cf. [EM] and [JM]). Then,
we introduce the diagonal and plus maps and describe these maps explicitly for
the second and third symmetric power functor. The most important result of this
section is Theorem 1.5 which states that any functor F (of finite degree) from the
category of f. g. projective modules over a ring A to any abelian category is essen-
tially determined by the objects crk(F )(A, . . . , A), k ≥ 0, and the diagonal and
plus maps between these objects. Finally, we characterize the classical exterior
power, symmetric power and divided power functors.

Let P be an additive category,M an abelian category, and F : P →M a functor
with F (0) = 0.

Definition 1.1. Let k ≥ 0. For any V1, . . . , Vk ∈ P and 1 ≤ i ≤ k, let

pi : V1 ⊕ . . .⊕ Vk → Vi → V1 ⊕ . . .⊕ Vk
denote the i-th projection. The k-functor

crk(F ) : Pk → M

(V1, . . . , Vk) 7→ Im

 k∑
j=1

(−1)k−j
∑

1≤i1<...<ij≤k
F (pi1 + . . .+ pij )


is called the k-th cross effect of F ; here, for any V1, . . . , Vk,W1, . . . ,Wk ∈ P and
f1 ∈ HomP(V1,W1), . . . , fk ∈ HomP(Vk,Wk), the map

crk(F )(f1, . . . , fk) : crk(F )(V1, . . . , Vk)→ crk(F )(W1, . . . ,Wk)

is induced by f1 ⊕ . . .⊕ fk ∈ HomP(V1 ⊕ . . .⊕ Vk,W1 ⊕ . . .⊕Wk). F is said to be
a functor of degree ≤ k if crk+1(F ) is identically zero.

The cross effect functors crk(F ), k ≥ 0, have the following properties. We obvi-
ously have cr0(F ) ≡ 0 and cr1(F ) = F . Furthermore, we have crk(F )(V1, . . . , Vk) =
0, if Vi = 0 for one i ∈ {1, . . . , k} (see Theorem 9.2 on p. 79 in [EM]). The canon-
ical action of the symmetric group Σk on V k = V ⊕ . . . ⊕ V induces a natural
action of Σk on crk(F )(V, . . . , V ) (see Theorem 9.3 on p. 80 in [EM]). Any natural
transformation F → G between functors F and G from P to M induces a natural
transformation crk(F ) → crk(G) (see Theorem 9.5 on p. 80 in [EM]). The most
important property is the following proposition.

Proposition 1.2. For any k, l ≥ 1 and V1, . . . , Vl ∈ P, we have a canonical iso-
morphism

crk(F )(. . . , V1 ⊕ . . .⊕ Vl, . . . )
∼=
⊕

1≤j≤l

⊕
1≤i1<...<ij≤l

crk+j(F )(. . . , Vi1 , . . . , Vij , . . . )

which is functorial in V1, . . . , Vl. In particular, F is of degree ≤ k, if and only if
crk(F ) is a k-additive functor.

Proof. See Theorem 9.1, Lemma 9.8 and Lemma 9.9 in [EM].

Proposition 1.2 states that

F (V1 ⊕ V2) ∼= F (V1)⊕ F (V2)⊕ cr2(F )(V1, V2)
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for all V1, V2 ∈ P ; i.e., cr2(F ) measures the deviation from additivity of the functor
F . This isomorphism can also be used to define cr2(F ) (see section 3 in [JM]).
Similarly, the higher cross effects can inductively be defined by the isomorphism

crk(F )(V1, . . . , Vk−1, Vk ⊕ Vk+1)
∼= crk(F )(V1, . . . , Vk−1, Vk)⊕ crk(F )(V1, . . . , Vk−1, Vk+1)
⊕ crk+1(F )(V1, . . . , Vk, Vk+1)

(see section 7 in [JM]). In fact, we will use this definition whenever we have to
compute cross effect functors.

Definition 1.3. Let l ≥ k ≥ 1, ε = (ε1, . . . , εk) ∈ {1, . . . , l}k with |ε| = ε1 + . . .+
εk = l and V1, . . . , Vk ∈ P . The composition

∆ε : crk(F )(V1, . . . , Vk)
crk(F )(∆,... ,∆) // crk(F )(V ε11 , . . . , V εkk )

π // // crl(F )(V1, . . . , V1, . . . , Vk, . . . , Vk)

of the map crk(F )(∆, . . . ,∆) (induced by the diagonal maps ∆ : Vi → V εii , i =
1, . . . , k) with the canonical projection π (according to Proposition 1.2) is called
diagonal map associated with ε. The analogous composition

+ε : crl(F )(V1, . . . , V1, . . . , Vk, . . . , Vk) � � // crk(F )(V ε11 , . . . , V εkk )

crk(F )(+,... ,+) // crk(F )(V1, . . . , Vk)

is called plus map associated with ε.

Obviously, the maps ∆ε and +ε form natural transformations between the func-
tors crk(F ) and crl(F ) ◦ (∆ε1 , . . . ,∆εk) from Pk to M. One easily sees that the
map ∆ε can be decomposed into a composition of maps ∆δ with δ ∈ {1, 2}j such
that |δ| = j + 1 and j ∈ {k, . . . , l− 1}. The same holds for +ε.

Example 1.4. Let P = M be the category of modules over a commutative ring
A. For any n ≥ 1, let Symn : P →M denote the n-th symmetric power functor.

(a) For all k ≥ 1 and V1, . . . , Vk ∈ P , we have

crk(Symn)(V1, . . . , Vk) ∼=
⊕

(n1,... ,nk)∈{1,... ,n}k
n1+...+nk=n

Symn1(V1)⊗ . . .⊗ Symnk(Vk).

(b) Let n = 2. Then the following diagrams commute for all V ∈ P :

cr2(Sym2)(V, V )

Sym2(V )

∆2

77nnnnnnnnnnnn
// V ⊗ V

v1v2
� // v1 ⊗ v2 + v2 ⊗ v1

and

cr2(Sym2)(V, V )
+2

''OOOOOOOOOOOO

V ⊗ V // Sym2(V )
v1 ⊗ v2

� // v1v2.

(c) Let n = 3. By virtue of the isomorphisms given in (a), the diagonal and plus
maps can be described as follows (for V,W ∈ P):

∆3 : Sym3(V ) → V ⊗ V ⊗ V
v1v2v3 7→

∑
σ∈Σ3

vσ(1) ⊗ vσ(2) ⊗ vσ(3).
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∆(2,1) : Sym2(V )⊗W ⊕ V ⊗ Sym2(W ) → V ⊗ V ⊗W
(v1v2 ⊗ w, v ⊗ w1w2) 7→ v1 ⊗ v2 ⊗ w + v2 ⊗ v1 ⊗ w.

∆(1,2) : Sym2(V )⊗W ⊕ V ⊗ Sym2(W ) → V ⊗W ⊗W
(v1v2 ⊗ w, v ⊗ w1w2) 7→ v ⊗ w1 ⊗ w2 + v ⊗ w2 ⊗ w1.

∆2 : Sym3(V )→ Sym2(V )⊗ V ⊕ V ⊗ Sym2(V )
v1v2v3 7→ (v2v3 ⊗ v1 + v1v3 ⊗ v2 + v1v2 ⊗ v3, v1 ⊗ v2v3 + v2 ⊗ v1v3 + v3 ⊗ v1v2).

+3 : V ⊗ V ⊗ V → Sym3(V )
v1 ⊗ v2 ⊗ v3 7→ v1v2v3.

+(2,1) : V ⊗ V ⊗W → Sym2(V )⊗W ⊕ V ⊗ Sym2(W ),
v1 ⊗ v2 ⊗ w 7→ (v1v2 ⊗ w, 0).

+(1,2) : V ⊗W ⊗W → Sym2(V )⊗W ⊕ V ⊗ Sym2(W )
v ⊗ w1 ⊗ w2 7→ (0, v ⊗ w1w2).

+2 : Sym2(V )⊗ V ⊕ V ⊗ Sym2(V ) → Sym3(V )
(v1v2 ⊗ v3, v

′
1 ⊗ v′2v′3) 7→ v1v2v3 + v′1v

′
2v
′
3.

Proof. Straightforward.

The following theorem states that any functor F of finite degree from the cat-
egory of all f. g. projective modules over a ring A to any abelian category M is
determined by the objects cri(F )(A, . . . , A), i ≥ 0, the diagonal and plus maps
between these objects, and the actions

A→ EndM(cri(F )(A, . . . , A)), a 7→ cri(F )(1, . . . , 1, a, 1, . . . , 1),

of the multiplicative monoid A on these objects. (Here, 1 and a denote the multi-
plication with 1 and a on A, respectively.)

Theorem 1.5. Let A be a ring, M an abelian category, d ∈ N, and

F,G : (f. g. projective A-modules) ////M
two functors of degree ≤ d with F (0) = 0 = G(0). Suppose that there exist isomor-
phisms

αi(A, . . . , A) : cri(F )(A, . . . , A) ∼ // cri(G)(A, . . . , A), i = 1, . . . , d,

which are compatible with the action of A in each component and which make the
following diagrams commute for all i ∈ {1, . . . , d−1} and ε ∈ {1, 2}i with |ε| = i+1:

cri(F )(A, . . . , A) ∼ //

∆ε

��

cri(G)(A, . . . , A)

∆ε

��
cri+1(F )(A, . . . , A) ∼ // cri+1(G)(A, . . . , A)

and

cri+1(F )(A, . . . , A) ∼ //

+ε

��

cri+1(G)(A, . . . , A)

+ε

��
cri(F )(A, . . . , A) ∼ // cri(G)(A, . . . , A).

Then the functors F and G are isomorphic.
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Proof. For any i ≥ 1 and n1, . . . , ni ≥ 1, we write cri(F )(An1 , . . . , Ani) as a direct
sum of copies of cri(F )(A, . . . , A), . . . , crd(F )(A, . . . , A) according to Proposition
1.2; in the same way, we write cri(G)(An1 , . . . , Ani) as a direct sum of copies of
cri(G)(A, . . . , A), . . . , crd(G)(A, . . . , A). The corresponding sum of copies of the
isomorphisms αi(A, . . . , A), . . . , αd(A, . . . , A) then yields an isomorphism

αi(An1 , . . . , Ani) : cri(F )(An1 , . . . , Ani) ∼ // cri(G)(An1 , . . . , Ani).

Now, we show by descending induction on i that, for all m1, . . . ,mi, n1, . . . , ni ≥ 1
and for all matrices A1 ∈ Hom(An1 , Am1), . . . , Ai ∈ Hom(Ani , Ami), the following
diagram commutes:

cri(F )(An1 , . . . , Ani)
αi(A

n1 ,... ,Ani ) //

cri(F )(A1,... ,Ai)
��

cri(G)(An1 , . . . , Ani)

cri(G)(A1,... ,Ai)
��

cri(F )(Am1 , . . . , Ami)
αi(A

m1 ,... ,Ami ) // cri(G)(Am1 , . . . , Ami).

For i = d+1, this assertion is clear since crd+1(F ) and crd+1(G) are identically zero.
So, we may assume that i ≤ d and that the assertion is already proved for i + 1.
Writing (A1, . . . ,Ai) as the composition of (A1, id, . . . , id), . . . , (id, . . . , id,Ai)
and using symmetry, we may furthermore assume that A2, . . . ,Ai are the identity
matrices. By construction of αi(An1 , . . . , Ani), we may finally assume that n2 =
. . . = ni = 1. Now, we write A for A1, cri(F )(An) for cri(F )(An1 , A, . . . , A),
and similarly for cri(G)(An1 , A, . . . , A), etc. By construction, the above diagram
commutes, ifA is a standard projection An → A or a standard embedding A→ Am.
Furthermore, the diagram commutes if n = m = 1 by assumption. Hence, the
diagram commutes for all matricesA which have at most one entry which is different
from zero. Thus it suffices to show that the diagram commutes for the matrix A+B
if it commutes for the matrices A and B. For this, we decompose A + B into the
composition

An
∆ //An ⊕An A⊕B //Am ⊕Am + //Am

and identify cri(−)(An ⊕ An) with cri(−)(An) ⊕ cri(An) ⊕ cri+1(−)(An, An) ac-
cording to Proposition 1.2. By construction and assumption, the following diagram
commutes:

cri(F )(An)
αi(A

n) //

cri(F )(∆)

��

cri(G)(An)

cri(G)(∆)

��
cri(F )(An ⊕An)

αi(A
n)⊕αi(An)⊕αi+1(An,An) // cri(G)(An ⊕An).

(To see this, one decomposes the map cri(F )(∆) into a direct sum of copies of the
maps

cri+j(F )(∆, . . . ,∆) : cri+j(F )(A, . . . , A)→ cri+j(F )(A ⊕A, . . . , A⊕A), j ≥ 0,

according to Proposition 1.2. The composition of such a map with a natural
projection cri+j(F )(A ⊕ A, . . . , A ⊕ A) → cri+j+k(F )(A, . . . , A) (again accord-
ing to Proposition 1.2) is then a diagonal map ∆ε for some ε ∈ {1, 2}i+j with
|ε| = i+ j+k.) Likewise, the corresponding diagram for + in place of ∆ commutes.
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By the assumption on A and B and by the induction hypothesis, the following
diagram also commutes:

cri(F )(An ⊕An)
αi(A

n)⊕αi(An)⊕αi+1(An,An) //

cri(F )(A⊕B)

��

cri(G)(An ⊕An)

cri(G)(A⊕B)

��
cri(F )(Am ⊕Am)

αi(A
m)⊕αi(Am)⊕αi+1(Am,Am) // cri(G)(Am ⊕Am).

Now, the proof of the above assertion is complete.
This assertion implies in particular that, for all n ≥ 1 and for all projectors A ∈
End(An), the isomorphism

F (An) = cr1(F )(An)
α1(An) // cr1(G)(An) = G(An)

induces an isomorphism

α1(Im(A)) : F (Im(A)) ∼= Im(F (A)) ∼ // Im(G(A)) ∼= G(Im(A)).

If B ∈ End (Am) is a further projector and f : Im(A) → Im(B) is an A-homo-
morphism, then the diagram

F (Im(A))
α1(Im(A)) //

F (f)

��

G(Im(A))

G(f)

��
F (Im(B))

α1(Im(B)) // G(Im(B))

commutes (again by the above assertion). Finally, if V is an arbitrary f. g. projective
A-module, we choose a projector A as above and an isomorphism V ∼= Im(A) and
define α1(V ) to be the composition

F (V ) ∼= F (Im(A))
α1(Im(A)) //G(Im(A)) ∼= G(V ).

It is clear that α1(V ) does not depend on the chosen projector and on the chosen
isomorphism and that α1 is an isomorphism of functors. This proves Theorem
1.5.

Corollary 1.6 (Characterization of the exterior power functors). Let A be a com-
mutative ring, B a further ring, d ∈ N, and

F : PA := (f. g. projective A-modules)→ (B-modules) =:MB

a functor with F (0) = 0 and with the following properties:
(i) crd(F ) is d-additive, i.e., crd+1(F ) ≡ 0.
(ii) The d A-module structures on crd(F )(A, . . . , A) coincide.
(iii) F (Ad−1) = 0.

Then we have for all V ∈ PA,

F (V ) ∼= Λd(V )⊗A crd(F )(A, . . . , A).

Proof. The assumption F (Ad−1) = 0 implies

cr1(F )(A) = 0, . . . , crd−1(F )(A, . . . , A) = 0
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by Proposition 1.2. Similarly, for the functor G defined by G(V ) := Λd(V ) ⊗A
crd(F )(A, . . . , A), we have cr1(G)(A) = 0, . . . , crd−1(G)(A, . . . , A) = 0. Further-
more, we have crd(G)(A, . . . , A) ∼= crd(F )(A, . . . , A). Thus, Corollary 1.6 follows
from Theorem 1.5.

Example 1.7. In the case d = 1, Corollary 1.6 yields the following statement which
has already been proved in [E] and [Wa]: Each additive functor F : PA →MB is
isomorphic to the tensor functor −⊗ F (A). By induction, we obtain the following
generalization: Let F : PdA →M be a d-additive functor such that the d A-module
structures on F (A, . . . , A) coincide. Then we have for all V1, . . . , Vd ∈ PA,

F (V1, . . . , Vd) ∼= V1 ⊗A . . .⊗A Vd ⊗A F (A, . . . , A).

Proposition 1.8 (Characterization of the symmetric power functors). Let A, B,
d, and F be as in Corollary 1.6. In contrast to Corollary 1.6, we assume however
that F has the following property in place of property (iii): For all i = 1, . . . , d− 1,
the B-module homomorphism

plusi :
⊕

ε∈{1,... ,d}i, |ε|=d
crd(F )(A, . . . , A) (+ε)ε∈{1,... ,d}i,|ε|=d // cri(F )(A, . . . , A)

is bijective. Then we have for all V ∈ PA,

F (V ) ∼= Symd(V )⊗A crd(F )(A, . . . , A).

Proof. We view crd(F )(V, . . . , V ) as a Σd-module with the action introduced above
and F (V ) as a Σd-module with trivial action. Then, the plus map

+d : crd(F )(V, . . . , V )→ F (V )

is obviously compatible with these Σd-actions. Since +d : crd(F )(A, . . . , A) →
F (A) is bijective by assumption, the symmetric group Σd acts trivially on the
object crd(F )(A, . . . , A). Hence, the composition

V ⊗d ⊗A crd(F )(A, . . . , A) ∼= crd(F )(V, . . . , V ) +d−→ F (V )

of the isomorphism given in Example 1.7 with the plus map +d induces a B-module
homomorphism

α(V ) : Symd(V )⊗A crd(F )(A, . . . , A)→ F (V )

which is functorial in V . One easily proves that, for all i = 1, . . . , d, the homo-
morphism cri(α)(A, . . . , A) coincides with the isomorphism plusi by virtue of the
isomorphism

cri(Symd)(A, . . . , A) ∼=
⊕

ε∈{1,... ,d}i, |ε|=d
A

(see Example 1.4(a)). Hence, cri(α)(A, . . . , A) is bijective. Then, by Proposition
1.2, α(V ) is bijective for all f. g. free A-modules V . Again by Proposition 1.2, the
same then holds for all V ∈ PA. This proves Proposition 1.8.

Proposition 1.9 (Characterization of the divided power functors). Let A, B, d,
and F be as in Corollary 1.6. In contrast to Corollary 1.6, we assume however that
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F has the following property in place of property (iii): For all i = 1, . . . , d− 1, the
B-module homomorphism

diagi : cri(F )(A, . . . , A)
(∆ε)ε∈{1,... ,d}i,|ε|=d //

⊕
ε∈{1,... ,d}i,|ε|=d

crd(F )(A, . . . , A)

is bijective. Then we have for all V ∈ PA,

F (V ) ∼= Dd(V )⊗A crd(F )(A, . . . , A).

Proof. The d-th divided power Dd(V ) of an f. g. projective A-module V is the
module of fixed elements under the natural action of the symmetric group Σd on
V ⊗d. Thus, Proposition 1.9 can be proved analogously to Proposition 1.8.

Remark 1.10. For any functor F : PA → MB with F (0) = 0, the composition

F (A)
∆2 // cr2(F )(A,A)

+2 //F (A) equals F (2 · idA)−2 · idF (A). Now assume that
d = 2. Under the assumptions of Proposition 1.8, the endomorphism F (2 · idA)
of F (A) then corresponds to the endomorphism cr2(F )(2 · idA, 2 · idA) = 4 · id of
cr2(F )(A,A); hence, F (2 · idA) = 4 · idF (A). Thus, +2 ◦ ∆2 = 2 · idF (A). This
proves that the assumptions of Proposition 1.8 also determine the map ∆2. Thus,
Proposition 1.8 follows from Theorem 1.5 in the case d = 2. The same holds for
Proposition 1.9. It seems that a simple generalization of this argument to the case
d ≥ 2 does not exist.

2. Simplicial modules and Koszul complexes

First, we recall the Dold-Kan correspondence; in particular, we introduce the
functors Γ and N between the category of simpicial modules and the category of
complexes. Then, we recall the definition of the n-th Koszul complex Kosn(f) as-
sociated with a homomorphism f : P → Q between the projective modules P,Q
over a commutative ring R. Finally, we construct an explicit complex homomor-
phism un(f) from Kosn(f) to N Symn Γ(. . . → P

f→ Q) and prove that un(f) is
a quasi-isomorphism.

LetM be an additive category. Let ∆ denote the category whose objects are the
sets [n] = {0 < 1 < . . . < n}, n ≥ 0, and whose morphisms are the order preserving
set maps. For 0 ≤ i ≤ n + 1, let δni : [n] → [n + 1] denote the injective order
preserving map given by Im(δni ) = [n+ 1]\{i}. For 0 ≤ i ≤ n, let σni : [n+ 1]→ [n]
denote the surjective order preserving map given by (σni )−1(i) = {i, i + 1}. A
simplicial object X. inM is a contravariant functor from ∆ toM. We write Xn for
X.([n]), di : Xn+1 → Xn for X.(δni ) and si : Xn → Xn+1 for X.(σni ). A simplicial
homomorphism f. : X.→ Y. between two simplicial objects X., Y. inM is a natural
transformation. A simplicial homotopy between simplicial homomorphisms f, g :
X.

// // Y. consists of homomorphisms hi(n) : Xn → Yn+1, n ≥ 0, 0 ≤ i ≤ n,
such that d0h0(n) = fn and dn+1hn(n) = gn for all n ≥ 0 and such that certain
further relations dihj(n) = . . . and sihj(n) = . . . hold (see 8.3.11 in [W] or (2.3)
in [JM]). A complex K. in M is a contravariant functor from the ordered set N0

to the categoryM such that ∂2 = 0 where ∂ : Ki+1 → Ki denotes the differential.
The normalized complex N(X.) of a simplicial object X. in an abelian categoryM
is given by

N(X.)n := Xn

/
n−1∑
i=0

Im(si : Xn−1 → Xn) ;
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the differential in N(X.) is

∂ =
n∑
i=0

(−1)idi : N(X.)n → N(X.)n−1

(for all n ≥ 0). Thus, we have a functor

N : Simp(M)→ Compl(M)

from the category Simp(M) of simplicial objects in M to the category Compl(M)
of complexes in M. We define a functor

Γ : Compl(M)→ Simp(M)

in the reverse direction as follows. For n ≥ k, let Sur([n], [k]) denote the set of
surjective order preserving maps from [n] to [k]. For (M., ∂) ∈ Compl(M) and
n ≥ 0, let Γ(M.)n be defined by

Γ(M.)n :=
n⊕
k=0

⊕
σ∈Sur([n],[k])

Mk.

Furthermore, di : Γ(M.)n → Γ(M.)n−1, i ∈ {0, . . . , n}, and si : Γ(M.)n →
Γ(M.)n+1, i ∈ {0, . . . , n}, are defined by

di(m,σ) :=


(m,σδi) if σδi ∈ Sur([n− 1], [k]),
(∂(m), σ̂) if σδi = δ0σ̂ (where σ̂ ∈ Sur([n− 1], [k − 1])),
0 if σδi = δj σ̂ with j ≥ 1,

si(m,σ) := (m,σσi)

(for k ∈ {0, . . . , n} and (m,σ) ∈ Mk × Sur([n], [k])). One easily verifies that these
definitions determine a simplicial object Γ(M.) inM (cf. section 2 in [JM] or section
8.4 in [W]).

Proposition 2.1 (Dold-Kan correspondence). For any abelian category M, the
functors N and Γ are inverse to each other (up to canonical isomorphisms). A
simplicial homotopy between two simplicial homomorphisms induces a homotopy
between the corresponding complex homomorphisms and vice versa.

Proof. See section 8.4 in [W].

Now, let F : P → M be a functor from an additive category P to an abelian
categoryM with F (0) = 0. If F is additive, then the induced functor Compl(P)→
Compl(M), K. 7→ F ◦K., maps homotopic complex homomorphisms to homotopic
complex homomorphisms. In the simplicial world, the analogous statement holds
even for an arbitrary functor F : The induced functor Simp(P)→ Simp(M), X. 7→
FX. := F ◦ X., maps simplicial homotopies to simplicial homotopies since only
compositions (and no sums) are involved in the defining relations of a simplicial
homotopy. Hence, using the Dold-Kan correspondence, we obtain a functor

Compl(P)→ Compl(M), K. 7→ NFΓ(K.),

which maps homotopic complex homomorphisms to homotopic complex homomor-
phisms and which is obviously isomorphic to the functor K. 7→ F ◦ K., if F is
additive. (This basic fact has already been observed by Dold and Puppe in [DP].)
If K. is a complex in P with Kn = 0 for all n ≥ 2, then the complex NFΓ(K.) can
be described as follows by using the cross effect functors introduced in section 1.
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Lemma 2.2. Let f : P → Q be a homomorphism in P. We consider f as a
complex with Q at the place 0 and P at the place 1. Then we have for all n ≥ 0:

NFΓ(P → Q)n ∼= crn(F )(P, . . . , P )⊕ crn+1(F )(Q,P, . . . , P );

the differential ∂ : NFΓ(P → Q)n → NFΓ(P → Q)n−1 is given by the following
diagram:

crn(F )(P, . . . , P ) //

**UUUUUUUUUUUUUUUU

⊕

crn−1(F )(P, . . . , P )

⊕

crn+1(F )(Q,P, . . . , P ) // crn(F )(Q,P, . . . , P );

here, the upper horizontal map is the alternating sum
∑n−1

i=1 (−1)i(+εi) of the plus
maps associated with ε1 = (2, 1, . . . , 1), . . . , εn−1 = (1, . . . , 1, 2); the lower hori-
zontal map is

(
(+(2,1,... ,1)) ◦ crn+1(F )(idQ, f, idP , . . . , idP )

)
+
∑n−1
i=1 (−1)i(+(1,εi));

the diagonal map is crn(F )(f, idP , . . . , idp).

Proof. By construction of Γ, we have Γ(P → Q)n ∼= Q ⊕ Pn for all n ≥ 0. By
virtue of these isomorphisms, the maps di : Γ(P → Q)n → Γ(P → Q)n−1 and
si : Γ(P → Q)n → Γ(P → Q)n+1 can be described as follows:

di(q, p1, . . . , pn) =


(q + f(p1), p2, . . . , pn) if i = 0
(q, p1, . . . , pi−1, pi + pi+1, pi+2, . . . , pn) if 1≤ i≤n− 1
(q, p1, . . . , pn−1) if i = n

si(q, p1, . . . , pn) = (q, p1, . . . , pi, 0, pi+1, . . . , pn) if 0 ≤ i ≤ n

(see also Lemma A.2 in [JM]). Hence, by Proposition 1.2, we have

FΓ(P → Q)n ∼= F (Q)⊕ F (Pn)⊕ cr2(F )(Q,Pn)

∼=
n⊕
k=0

(nk )⊕
(crk(F )(P, . . . , P )⊕ crk+1(F )(Q,P, . . . , P )) .

Thus we have

NFΓ(P → Q)n ∼= FΓ(P → Q)n

/(
n−1∑
i=0

Im(si)

)
∼= crn(F )(P, . . . , P )⊕ crn+1(F )(Q,P, . . . , P ).

Finally, one can easily check now that the differential has the claimed form.

For any object P in P and k ≥ 0, we write P [−k] for the complex which has P at
the place k and 0 else. Lemma 2.2 states, in particular, that NFΓ(P [0]) ∼= F (P )[0]
and that NFΓ(P [−1]) is isomorphic to the complex

. . . −→ crn(F )(P, . . . , P ) ∂n−→ crn−1(F )(P, . . . , P )
∂n−1−→ . . .

∂2−→ F (P ) −→ 0

where ∂n =
∑n−1
i=1 (−1)i(+εi).

Now, we recall the definition of the Koszul complex (see I 4.3.1.3 in [I 1], V.1.3
in [ABW], or section 2 in [G]). Let n ∈ N, let R be a commutative ring, and let
f : P → Q be a homomorphism between projective R-modules P,Q.
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Definition 2.3. For any k ∈ {0, . . . , n+ 1}, let

dk+1 : Λk+1(P )⊗ Symn−k−1(Q)→ Λk(P )⊗ Symn−k(Q)

denote the Koszul differential given by

p1 ∧ . . . ∧ pk+1 ⊗ qk+2 · · · qn

7→
k+1∑
i=1

(−1)k+1−ip1 ∧ . . . ∧ p̂i ∧ . . . ∧ pk+1 ⊗ f(pi)qk+2 · · · qn.

The complex

0→ Λn(P ) dn→ Λn−1(P )⊗Q dn−1→ . . .
d2→ P ⊗ Symn−1(Q) d1→ Symn(Q)→ 0

is called the n-th Koszul complex associated with f and is denoted by Kosn(f).

One can prove analogously to Lemme 2.1.2.1 on page 277 in [I 2] that the
complexes Kosn(f) and N Symn Γ(P → Q) are isomorphic in the derived cate-
gory of R. Whereas Illusie uses three complex homomorphisms (which cannot
be composed since they have different directions) to realize this isomorphism; we
now explicitly construct a single complex homomorphism un(f) from Kosn(f) to
N Symn Γ(P → Q) and show that un(f) is a quasi-isomorphism. For k = 0, . . . , n,
let unk(f) denote the composition

Λk(P )⊗ Symn−k(Q) ak⊗id−→ P⊗k ⊗ Symn−k(Q)
(1.4)(a)

−̃→ crk(Symk)(P, . . . , P )⊗ Symn−k(Q)

can
↪→

n−k⊕
i=0

crk(Symk+i)(P, . . . , P )⊗ Symn−k−i(Q)

(1.4)(a)

−̃→ crk(Symn)(P, . . . , P )⊕ crk+1(Symn)(Q,P, . . . , P )
(2.2)

−̃→ N Symn Γ(P → Q)k;

here, ak : Λk(P )→ P⊗k, p1∧ . . .∧pk 7→
∑
σ∈Σk

(−1)sgn(σ)pσ(1)⊗ . . .⊗pσ(k), denotes
the antisymmetrization map; the other homomorphisms are explained under the
indicated example or lemma.

Proposition 2.4. The homomorphisms unk (f), k = 0, . . . , n, define a quasi-iso-
morphism

un(f) : Kosn(f) →̃ N Symn Γ(P → Q).
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Proof. We write S for Sym, and we set L. := N Sn Γ(P → Q). The following picture
illustrates un(f):

Λn(P ) //

an

��

Λn−1(P )⊗Q //

an−1⊗id

��

. . . // P ⊗ Sn−1(Q) //

a1⊗id

��

Sn(Q)

id

��
Sn(Q)

⊕

P ⊗ Sn−1(Q)

88qqqqqqqqqq
//

⊕

0

⊕

. . .

::ttttttttttt ...

⊕

...

⊕

P⊗(n−1) ⊗Q

88ppppppppppppp
//

⊕

. . .

::tttttttttttttt // Sn−1(P )⊗Q //

⊕

0

⊕

P⊗n

66nnnnnnnnnnnnn
// crn−1(Sn)(P, . . . , P )

77oooooooooooooo
// . . .

99sssssssssss // Sn(P ) // 0

Ln
∂ // Ln−1

∂ // . . . ∂ // L1
∂ // L0;

here, the differentials in the middle complex are given by Lemma 2.2. For all
k = 0, . . . , n, the composition

Λk(P ) ak→ P⊗k ∼= crk(Sk)(P, . . . , P )
∑k−1
i=1 (−1)i(+εi )−→ crk−1(Sk)(P, . . . , P )

∼=
(
S2(P )⊗ P ⊗ . . .⊗ P

)
⊕ . . .⊕

(
P ⊗ . . .⊗ P ⊗ S2(P )

)
is obviously the zero map; furthermore, one easily sees that the diagram

Λk+1(P )⊗ Sn−k−1(Q)
dk+1 //

ak+1⊗id

��

Λk(P )⊗ Sn−k(Q)

ak⊗id

��
P⊗(k+1) ⊗ Sn−k−1(Q)

id⊗f⊗id// P⊗k ⊗Q⊗ Sn−k−1(Q)
can // P⊗k ⊗ Sn−k(Q)

commutes. This proves that u is a complex homomorphism. Obviously, the com-
plexes Kosn(f) and N Sn Γ(P → Q) can be filtered by subcomplexes such that
un(f) is compatible with these filtrations and such that, for k = 0, . . . , n, the map
between the k-th successive quotients induced by un(f) is the complex homomor-
phism

uk(0)⊗ id : Λk(P )[−k]⊗ Sn−k(Q)→ N Sk Γ(P → 0)⊗ Sn−k(Q).

Thus it suffices to show that, for all n ≥ 0, the complex homomorphism

un(0) : Λn(P )[−n]→ N Sn Γ(P → 0)
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is a quasi-isomorphism, i.e., that Proposition 2.4 is true in the case Q = 0. We
prove this by induction on n. For n = 0 this is clear. So let n ≥ 1. The homomor-
phism un(idP ) is a quasi-isomorphism since Kosn(idP ) is exact and the complex
N Sn Γ(P id→ P ) is homotopic to the zero complex. Furthermore, the complex
homomorphisms

uk(0)⊗ id : Λk(P )[−k]⊗ Sn−k(P )→ N Sk Γ(P → 0)⊗ Sn−k(P ),

k = 0, . . . , n − 1, are quasi-isomorphisms by the induction hypothesis. Using the
filtrations already considered above, we obtain that un(0) is a quasi-isomorphism.
(Alternatively, this also follows from Proposition I 4.3.2.1(i) on p. 111 in [I 1] and
the following fact which is a little bit tedious to prove: The complex homomorphism
N Sn Γ(P → 0)→ Λn(P )[−n] constructed in [I 1] is left inverse to un(0).) This ends
the proof of Proposition 2.4.

Any commutative square

P
f //

αP

��

Q

αQ

��
P ′

f ′ // Q′

of homomorphisms between projective R-modules induces a homomorphism

Kosn(α) : Kosn(f)→ Kosn(f ′)

between the corresponding Koszul complexes in the obvious way.

Corollary 2.5. If (α1
P , α

1
Q) and (α2

P , α
2
Q) are homotopic complex homomorphisms

between the complexes P
f→ Q and P ′

f ′→ Q′, then the induced homomorphisms
between the k-th homology modules of the corresponding n-th Koszul complexes are
equal:

Hk(Kosn(α1)) = Hk(Kosn(α2)) : Hk(Kosn(f))→ Hk(Kosn(f ′))

(for all k ≥ 0).

Proof. Obviously, the diagram

Kosn(f)
un(f) //

Kosn(αi)

��

N Symn Γ(P
f→ Q)

N Symn Γ(αi)

��
Kosn(f ′)

un(f ′) //
N Symn Γ(P ′

f ′→ Q′)

commutes for i = 1, 2. Furthermore, the complex homomorphisms N Symn Γ(α1)
and N Symn Γ(α2) are homotopic to each other. Thus, Corollary 2.5 follows from
Proposition 2.4.

Remark 2.6. In the next section, we will use only Corollary 2.5 (and not Propo-
sition 2.4). The simplicial methods used here to prove Corollary 2.5 are actually
not necessary: Alternatively, one can use use Lemma 2.2 to define the complex
NFΓ(P → Q) and one can directly show that homotopic complex homomorphisms
between P → Q and P ′ → Q′ induce homotopic complex homomorphisms between
NFΓ(P → Q) and NFΓ(P ′ → Q′). However, the simplicial definition of NFΓ(K.)
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has the advantage that it yields a more natural argument for the proof of Corollary
2.5 and that it can be applied also to complexes K. of length > 1 (see also section
6).

Remark 2.7. One can prove analogously to Proposition 2.4 that the Koszul complex

K̃os
n
(f) : 0→ Dn(P )→ Dn−1(P )⊗Q→ . . .→ P ⊗ Λn−1(Q)→ Λn(Q)→ 0

(defined analogously to 2.3) is quasi-isomorphic to the complex NΛnΓ(P → Q).

3. Computation of the homology of Koszul complexes

Let R be a commutative ring and n ∈ N. In this section, we compute the
homology modules of the n-th Koszul complex Kosn(f) for each homomorphism
f : P → Q between f. g. projective R-modules which has the following properties:
f is injective and Q/f(P ) is an f. g. projective R/I-module for some ideal I in R
which is locally generated by a nonzero-divisor.

First, we recall the definition of the Schur modules corresponding to Young
diagrams of hook type.

Definition 3.1. Let k ∈ {0, . . . , n} and V an f. g. projective R-module. Let

dk+1 : Λk+1(V )⊗ Symn−k−1(V )→ Λk(V )⊗ Symn−k(V )

denote the differential in the Koszul complex Kosn(idV ) (see Definition 2.3). The
module

Lnk (V ) := Im(dk+1) ⊆ Λk(V )⊗ Symn−k(V )

is called a Schur module associated with V and the Young diagram (k+ 1, 1, . . . , 1)
((n− k − 1) 1s).

Since Kosn(idV ) is exact, Lnk (V ) is an f. g. projective R-module for all k =
0, . . . , n. For instance, we have Ln0 (V ) ∼= Symn(V ), Lnn−1(V ) ∼= Λn(V ), and
Lnn(V ) ∼= 0. Obviously, the definition given here agrees with the definition on
p. 220 in [ABW].

Theorem 3.2. Let I be an ideal in R which is locally generated by a nonzero-
divisor. Let 0 → P

f→ Q → V → 0 be an R-projective resolution of an f.
g. projective R/I-module V . Then, for all k = 0, . . . , n, we have a canonical
isomorphism

Hk(Kosn(f)) ∼= Lnk (V )⊗ (I/I2)⊗k

between the k-th homology module of the n-th Koszul complex and the tensor product
of the Schur module Lnk (V ) with the k-th tensor power of the conormal module I/I2.
In particular, Hk(Kosn(f)) is a projective R/I-module.

Remark 3.3. We consider the following extreme cases:
(a) If k = n, Theorem 3.2 states that the differential

dn : Λn(P )→ Λn−1(P )⊗Q
is injective. This immediately follows from the exactness of the Koszul complex
Kosn(idP ) and the injectivity of f .

(b) If k = 0, Theorem 3.2 states that the sequence

P ⊗ Symn−1(Q) d1−→ Symn(Q) can−→ Symn(V ) −→ 0
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is exact. This already follows from the construction of symmetric powers.
In both cases, the assumption on the ideal I is not used.

Proof of Theorem 3.2. We fix k ∈ {0, . . . , n}. For any f. g. projective R/I-module

V , we choose an R-projective resolution 0 → PV
fV→ QV → V → 0 of V . For any

homomorphism α : V → W between f. g. projective R/I-modules V,W , there is a
complex homomorphism

PV //

αP

��

QV

αQ

��
PW // QW

which is compatible with α; this complex homomorphism is unique up to homotopy
by a standard argument of homological algebra. Thus, by Corollary 2.5, we obtain
a well-defined functor

F : PR/I → (R-modules), V 7→ Hk(Kosn(fV )).

Let G denote the functor

G : PR/I → (R-modules), V 7→ Lnk (V )⊗ (I/I2)⊗k.

We have to show that F (V ) ∼= G(V ) for all V ∈ PR/I . For this, we verify the
assumptions of Theorem 1.5.

One easily checks (see also 4.3.1.5 on p. 109 in [I 1]) that, for all f : P → Q,
f ′ : P ′ → Q′ in PR, we have

Kosn(f ⊕ f ′) ∼=
⊕

n1+n2=n

Kosn1(f)⊗Kosn2(f ′).

(The tensor product of two complexes K. and L. is a priori only a double complex.
In this paper, K. ⊗ L. denotes both the double complex and the total complex of
this double complex.) Using Proposition 1.2, we obtain the following isomorphism
for all i ≥ 0 and V1, . . . , Vi ∈ PR/I (see also Example 1.4(a)):

cri(F )(V1, . . . , Vi) ∼=
⊕

(n1,... ,ni)∈{1,... ,n}i
n1+...+ni=n

Hk (Kosn1(fV1)⊗ . . .⊗Kosni(fVi)) .

In particular, F is of degree ≤ n and, for V1 = . . . = Vi = R/I, we obtain

cri(F )(R/I, . . . , R/I) ∼=
⊕

(n1,... ,ni)∈{1,... ,n}i
n1+...+ni=n

Hk

(
(I can−→ R)⊗i

)
since Kosm(I → R) ∼= (I → R) for all m ≥ 1. The complex (I can−→ R)⊗i has the
shape

0→ I⊗i →
( i
i−1 )⊕

I⊗(i−1) → . . .→
( i1 )⊕

I → R→ 0;

here, the differential
⊕( ik ) I⊗k →

⊕( i
k−1 ) I⊗(k−1) is the composition of the differ-

ential
⊕( ik ) I⊗k →

⊕( i
k−1 ) I⊗k in the complex (R id→ R)⊗i⊗ I⊗k with the canon-

ical inclusion
⊕( i

k−1 ) I⊗k →
⊕( i

k−1 ) I⊗(k−1). Hence, the module Zk
(
(I → R)⊗i

)
of k-cycles is isomorphic to Zk

(
(R→ R)⊗i

)
⊗I⊗k, and the module Bk

(
(I → R)⊗i

)
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of k-boundaries is isomorphic to Bk
(
(R→ R)⊗i

)
⊗ I⊗(k+1). Since (R → R)⊗i is

exact, we obtain

Hk

(
(I → R)⊗i

) ∼= Bk
(
(R→ R)⊗i

)
⊗ (I/I2)⊗k.

Similarly, for the functor G, we obtain

cri(G)(V1, . . . , Vi)
∼=

⊕
(n1,... ,ni)∈{1,... ,n}i

n1+...+ni=n

Bk (Kosn1(idV1)⊗ . . .⊗Kosni(idVi))⊗ (I/I2)⊗k.

In particular, G is of degree ≤ n and we have for V1 = . . . = Vi = R/I:

cri(G)(R/I, . . . , R/I) ∼=
⊕

(n1,... ,ni)∈{1,... ,n}i
n1+...+ni=n

Bk

(
(R/I id→ R/I)⊗i

)
⊗ (I/I2)⊗k.

Thus, for all i ≥ 1, we obtain an isomorphism

αi(R/I, . . . , R/I) : cri(F )(R/I, . . . , R/I) →̃ cri(G)(R/I, . . . , R/I).

The multiplication with r̄ ∈ R/I in the l-th component of cri(F )(R/I, . . . , R/I)
obviously corresponds to the endomorphism⊕

(n1,... ,ni)

rni of
⊕

(n1,... ,ni)

Bk
(
(R→ R)⊗i

)
⊗ (I/I2)⊗k.

The analogous statement also holds for G. Thus, the maps αi(R/I, . . . , R/I),
i = 1, . . . , n, are compatible with the action of R/I in each component. For any
ε ∈ {1, . . . , n}i and V1, . . . , Vi ∈ PR/I , the diagonal map

∆ε : cri(F )(V1, . . . , Vi)→ cr|ε|(F )(V1, . . . , V1, . . . , Vi, . . . , Vi)

is induced by an obvious complex homomorphism

∆ε :
⊕

(n1,... ,ni)

Kosn1(fV1)⊗ . . .⊗Kosni(fVi)

→
⊕

(n1,... ,n|ε|)

Kosn1(fV1)⊗ . . .⊗Kosn|ε|(fVi).

Similarly, the diagonal map

∆ε : cri(G)(V1, . . . , Vi)→ cr|ε|(G)(V1, . . . , V1, . . . , Vi, . . . , Vi)

is induced by an obvious complex homomorphism

∆ε :
⊕

(n1,... ,ni)

Kosn1(idV1)⊗ . . .⊗Kosni(idVi)

→
⊕

(n1,... ,n|ε|)

Kosn1(idV1)⊗ . . .⊗Kosn|ε|(idVi).

Using these facts, one easily sees that the isomorphisms αi(R/I, . . . , R/I), i ≥ 1,
are compatible with the diagonal maps. In the same way one can prove that these
isomorphisms are compatible with the plus maps. Hence, by Theorem 1.5, the
functors F and G are isomorphic, and Theorem 3.2 is proved.

In the next proposition, we explicitly describe the isomorphism of Theorem 3.2.
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Proposition 3.4. The isomorphism

Lnk(V )⊗ Ik/Ik+1 →̃ Hk(Kosn(f))

constructed in the proof of Theorem 3.2 maps the element

dk+1(v1 ∧ . . . ∧ vk+1 ⊗ vk+2 · · · vn)⊗ r1 · · · rk
to the homology class of the element

k+1∑
i=1

(−1)k+1−i(r1q1) ∧ . . . ∧ q̂i ∧ . . . ∧ (rkqk+1)⊗ qiqk+2 · · · qn;

here, qi is a preimage of vi under the given surjective map Q→ V (for i = 1, . . . , n)
and, for any r ∈ I and q ∈ Q, the element rq of Q is considered as an element of
P .

Proof. The isomorphism G →̃ F constructed in the proof of Theorem 3.2 induces
an isomorphism crn(G) →̃ crn(F ) of n-functors. Obviously, the diagrams

crn
(

Λk+1 ⊗ Symn−k−1
)

(V, . . . , V )⊗ Ik/Ik+1 //

+n⊗id

��

crn(G)(V, . . . , V )

+n

��
Λk+1(V )⊗ Symn−k−1(V )⊗ Ik/Ik+1 // // G(V )

(where both horizontal maps are induced by dk+1) and

crn(G)(V, . . . , V ) ∼ //

+n

��

crn(F )(V, . . . , V )

+n

��
G(V ) ∼ // F (V )

commute for all V ∈ PR/I . The R/I-module crn
(

Λk+1 ⊗ Symn−k−1
)

(V, . . . , V )

is isomorphic to a direct sum of
(

n
k+1

)
copies of V ⊗n. We index these summands

by the subsets T of {1, . . . , n} with k + 1 elements in the canonical way. For
v1 ⊗ . . . ⊗ vn ∈ V ⊗n and T = {t1 < . . . < tk+1}, let (v1 ⊗ . . . ⊗ vn)[T ] denote the
corresponding element of crn

(
Λk+1 ⊗ Symn−k−1

)
(V, . . . , V ). We obviously have

+n((v1 ⊗ . . .⊗ vn)[T ])

= vt1 ∧ . . . ∧ vtk+1 ⊗
∏

t∈{1,... ,n}\T
vt in Λk+1(V )⊗ Symn−k−1(V ).

In particular, the restriction of +n to the direct summand which corresponds e.g.
to {1, . . . , k+ 1} is surjective. Thus it suffices to show that the composition of the
upper horizontal maps of the above diagrams with the right vertical map in the
lower diagram maps the element (v1 ⊗ . . . ⊗ vn)[{1, . . . , k + 1}] ⊗ r1 · · · rk to the
homology class of the element given in Proposition 3.4. We obviously have

crn(dk+1)(V, . . . , V )((v1 ⊗ . . .⊗ vn)[{1, . . . , k + 1}])

=
k+1∑
i=1

(−1)k+1−i(v1 ⊗ . . .⊗ vn)[{1, . . . , î, . . . , k + 1}]
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in crn
(

Λk ⊗ Symn−k
)

(V, . . . , V ). The isomorphism

crn(G)(V, . . . , V ) →̃ crn(F )(V, . . . , V )

is equal to the composition

crn(G)(V, . . . , V ) ∼= V ⊗n ⊗ crn(G)(R/I, . . . , R/I)
∼= V ⊗n ⊗ crn(F )(R/I, . . . , R/I) ∼= crn(F )(V, . . . , V )

where the middle isomorphism has been explicitly constructed in the proof of The-
orem 3.2 and the exterior isomorphisms have been introduced in Example 1.7. The
composition

Im (crn(dk+1)(R/I, . . . , R/I))⊗ Ik/Ik+1

∼= crn(G)(R/I, . . . , R/I) ∼= crn(F )(R/I, . . . , R/I)

maps the element crn(dk+1)(R/I, . . . , R/I)(1[{1, . . . , k+ 1}])⊗ r1 · · · rk to the ho-
mology class of the element
k+1∑
i=1

(−1)k+1−i(r1 ⊗. . .⊗ ri−1 ⊗ 1⊗ ri ⊗. . .⊗ rk ⊗ 1⊗. . .⊗ 1)[{1,. . ., î,. . ., k + 1}]

in the complex (I → R)⊗n (see the proof of Theorem 3.2). Furthermore, the
isomorphism V ⊗n ⊗ crn(F )(R/I, . . . , R/I) ∼= crn(F )(V, . . . , V ) maps the element
v1 ⊗ . . .⊗ vn ⊗ x to the image of x under the map

crn(F )(v1, . . . , vn) : crn(F )(R/I, . . . , R/I)→ crn(F )(V, . . . , V ).

(This easily follows from Example 1.7). Hence, the composition of the upper hori-
zontal maps in the above diagrams maps the element

(v1 ⊗ . . .⊗ vn)[{1, . . . , k + 1}]⊗ r1 · · · rk
to the homology class of the element

k+1∑
i=1

(−1)k+1−i((r1q1)⊗ . . .⊗ (ri−1qi−1)⊗ qi

⊗(riqi+1)⊗ . . .⊗ (rkqk+1)⊗ qk+2 ⊗ . . .⊗ qn)[{1, . . . , î, . . . , k + 1}]

in the complex (P → Q)⊗n. The plus map +n : crn(F )(V, . . . , V ) → F (V ) maps
the latter homology class to the homology class stated in Proposition 3.4. Thus,
Proposition 3.4 is proved.

In the following remark, we sketch an alternative proof of Theorem 3.2.

Remark 3.5. An easy, but tedious calculation shows directly that the association
described in Proposition 3.4 yields a well-defined homomorphism

G(V ) = Lnk (V )⊗ Ik/Ik+1 → Hk(Kosn(f)) = F (V )

for all V ∈ PR/I . Furthermore, one can verify that the induced homomorphisms
cri(G)(R/I, . . . , R/I) → cri(F )(R/I, . . . , R/I), i ≥ 1, are bijective. By Proposi-
tion 1.2, this implies that the morphism G→ F of functors is an isomorphism. So,
in this proof, the abstract argument Theorem 1.5 has been replaced by more explicit
computations which, from the combinatorial point of view, are more complicated.
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Remark 3.6. Analogously to Theorem 3.2, one can prove the following statement
for the Koszul complex K̃os

n
(f) introduced in Remark 2.7: Under the assumptions

of Theorem 3.2, we have

Hk(K̃os
n
(f)) ∼= L̃nk (V )⊗ (I/I2)⊗k for all k ≥ 0;

here, L̃nk (V ) denotes the co-Schur module of type (k + 1, 1, . . . , 1) which can be
defined analogously to 3.1 (see also Definition II 1.3 on p. 220 in [ABW]).

4. A new proof of the Adams-Riemann-Roch formula

for regular closed immersions

In this section, we deduce the Adams-Riemann-Roch theorem for regular closed
immersions of codimension 1 from the main result of the previous section. Using
blowing up and the excess intersection formula, the Adams-Riemann-Roch theorem
for regular closed immersions of arbitrary codimension then follows from this as in
[SGA 6]. In particular, we obtain an easy, elementary and natural proof of the
Adams-Riemann-Roch theorem which does not use the deformation to the normal
cone any longer.

First, we recall the following definitions and facts of the theory of λ-rings (see
Expose V in [SGA 6], section 4.5 in [S], or Chapter I in [FL]). Let K be a (special)
λ-ring, C ∈ K of (finite) λ-degree d, and x ∈ K arbitrary. Furthermore, let µ be
a polynomial in the λ-operations λ1, λ2, . . . without constant term. Then, there is
a unique element µ(C, x) ∈ K which is functorial in (K,C, x) and which has the
following property:

µ(x · λ−1(C)) = µ(C, x) · λ−1(C)

(here, λ−1(C) :=
∑d
i=0(−1)iλi(C)). This immediately follows from the following

fact which is easy to prove (cf. Lemma 5.2 in Expose V of [SGA 6]): If the elements
λ1(C), . . . , λd(C) and λ1(x), λ2(x), . . . are considered as indeterminates and if the
polynomial ring Z[λ1(C), . . . , λd(C), λ1(x), λ2(x), . . . ] is equipped with the obvious
λ-structure, then the element µ(x · λ−1(C)) is divisible by λ−1(C). For n ≥ 1,
let ψn denote the n-th Adams operation, i.e., ψn = Nn(λ1, . . . , λn) where Nn
denotes the n-th Newton polynomial. Furthermore, let θn(C) denote the n-th
Bott element of C (see §4 in [K 1] or p. 24 in [FL]). The n-th symmetric power
operation is inductively defined by σ0 ≡ 1 and σn =

∑n
i=1(−1)i−1λiσn−i for n ≥ 1.

For 0 ≤ k ≤ n, the Schur operation snk of type (k + 1, 1, . . . , 1) is defined by
snk =

∑n
i=k+1(−1)i−k−1λiσn−i.

Lemma 4.1. (a) Let µ be the product of two polynomials µ1 and µ2. Then we have

µ(C, x) = µ1(C, x) · µ2(C, x) · λ−1(C).

(b) For all n ≥ 0 and x, y ∈ K, we have

σn(C, x + y) = σn(C, x) +
n−1∑
i=1

σi(C, x) · σn−i(C, y) · λ−1(C) + σn(C, y).

(c) For all n ≥ 1 we have ψn(C, x) = θn(C) · ψn(x).
(d) Let d = 1. Then we have for all n ≥ 1,

σn(C, x) =
n−1∑
k=0

(−1)ksnk (x)Ck.

In particular, we have σn(1, x) = ψn(x).
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Proof. The assertions (a) and (b) immediately follow from the definition. The
assertion (c) follows from the multiplicativity of ψn. If d = 1, then we have

σn(x · λ−1(C)) = σn(x · (1− C)) =
n∑
i=0

σn−i(x) · σi(−xC)

=
n∑
i=0

(−1)iσn−i(x) · λi(xC) (since σi(−x) = (−1)iλi(x))

=
n∑
i=0

(−1)iσn−i(x) · λi(x) · Ci (since C is of λ-degree 1)

=
n∑
i=0

(−1)iσn−i(x) · λi(x) · (Ci − 1) (since
n∑
i=0

(−1)iσn−i(x) · λi(x) = 0)

=
n∑
i=0

(−1)i+1σn−i(x) · λi(x) · (1 + C + . . .+ Ci−1) · λ−1(C) (geom. sum).

Hence we have

σn(C, x) =
n∑
i=1

(−1)i+1σn−i(x) · λi(x) · (1 + C + . . .+ Ci−1)

=
n−1∑
k=0

(
n∑

i=k+1

(−1)i+1σn−i(x) · λi(x)

)
Ck =

n−1∑
k=0

(−1)ksnk (x)Ck.

In particular, we have σn(1, x) =
∑n−1

k=0 (−1)ksnk (x) = ψn(x) by section 3 in [G].

Now, let X be a noetherian scheme with the property that each coherent OX -
module is a quotient of a locally free OX -module (of finite type). Let K0(X)
denote the Grothendieck group of all locally free OX -modules and K∞0 (X) the
Grothendieck group of all coherent OX -modules which have a finite resolution by
locally free OX -modules. By Proposition 4.1 on p. 126 in [FL], the canonical
homomorphism K0(X) → K∞0 (X) is bijective. Let i : Y ↪→ X be a regular closed
immersion of codimension d with conormal sheaf C. Then, for any locally free OY -
module V , the direct image i∗(V) is a coherentOX -module which has a finite locally
free resolution (see p. 127 in [FL]). Thus, the association [V ] 7→ [i∗(V)] induces a
well-defined homomorphism

i∗ : K0(Y )→ K∞0 (X) ∼= K0(X).

The following formula describes the behavior of products with respect to this ho-
momorphism. It follows from the self-intersection formula and it will be used in
our proof of the Adams-Riemann-Roch formula.

Proposition 4.2. For all x, y ∈ K0(Y ), we have

i∗(x) · i∗(y) = i∗(x · y · λ−1([C])) in K0(X).

Proof. See Corollaire 2.8 on p. 436 in [SGA 6].

The assertion (a) of the following theorem has already been proved in Théorème
4.3 on p. 449 in [SGA 6], however, only modulo torsion. The claimed version without
denominators has been proved in Théorème 2.1 on p. 24 in [J] using the deformation
to the normal cone. The Adams-Riemann-Roch formula given in (b) follows also
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from Théorème 2.1 on p. 24 in [J] and it has been proved in Theorem 6.3 on p. 142
in [FL].

Theorem 4.3. Let n ≥ 1.
(a) (Riemann-Roch formula for σn) For all y ∈ K0(Y ) we have

σn(i∗(y)) = i∗(σn([C], y)) in K0(X).

(b) (Adams-Riemann-Roch formula) For all y ∈ K0(Y ) we have

ψn(i∗(y)) = i∗(θn([C]) · ψn(y)) in K0(X).

Proof. (a) First, let d = 1. By Lemma 4.1(b) and Proposition 4.2, the elements
y of K0(Y ) for which the Riemann-Roch formula for σn holds for all n ≥ 1 is
a subgroup of K0(Y ). Thus, it suffices to prove the Riemann-Roch formula for
y = [V ] where V is a locally free OY -module. We choose a locally free resolution

0→ P f→ Q→ i∗(V)→ 0 of i∗(V) on X . By gluing the isomorphisms of Theorem
3.2, we obtain isomorphisms

Hk(Kosn(f)) ∼= i∗(Lnk (V)⊗ C⊗k), k = 0, . . . , n.

Hence, we have in K∞0 (X),

n∑
k=0

(−1)k[Λk(P)⊗ Symn−k(Q)] = i∗

(
n−1∑
k=0

(−1)k[Lnk (V)⊗ C⊗k]

)
.

Thus, we obtain

σn(i∗([V ])) = σn([Q]− [P ]) =
k∑
k=0

(−1)k[Λk(P)⊗ Symn−k(Q)]

= i∗

(
n−1∑
k=0

(−1)ksnk ([V ]) · [C]k
)

= i∗(σn([C], [V ])) in K0(X);

here, we have used the exactness of the Koszul complex Kosn(idV) and Lemma
4.1(d). This proves assertion (a) in the case d = 1. The general case can be de-
duced from this as on p. 449 and p. 450 in [SGA 6] using blowing up and the excess
intersection formula.

(b) Let ψn =
∑
ν aνσ

ν1
1 · · ·σνnn be the representation of ψn as a polynomial in

the symmetric power operations σ1, . . . , σn. Then we have in K0(X),

ψn(i∗(y)) =
∑
ν

aνσ1(i∗(y))ν1 · · ·σn(i∗(y))νn

=
∑
ν

aν i∗(σ1([C], y))ν1 · · · i∗(σn([C], y))νn (Theorem 4.3(a))

= i∗

(∑
ν

aν σ1([C], y)ν1 · · ·σn([C], y)νn · λ−1([C])ν1+...+νn−1

)
(Prop. 4.2)

= i∗(ψn([C], y)) (Lemma 4.1(a))
= i∗(θn([C]) · ψn(y)) (Lemma 4.1(c)).

This ends the proof of Theorem 4.3.
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5. Riemann-Roch for tensor powers

In the paper [K 2], we have established Riemann-Roch formulas for tensor power
operations. In the case of regular closed immersions, we have used the deformation
to the normal cone to prove them. The aim of this section is to prove these formulas
by using the method developed in the previous sections. In contrast to the previous
sections, this method can be applied here to regular closed immersions not only of
codimension 1 but of arbitrary codimension.

Let R be a noetherian ring and n ∈ N. Let Σn denote the n-th symmetric group,
i.e., the group of permutations of In := {1, . . . , n}. We write R[In] for the direct
sum of n copies of R together with the obvious action of Σn. The Σn-module Kn

is defined by the short exact sequence

0 −→ Kn −→ R[In] sum−→ R −→ 0.

Let I be an ideal in R which is locally generated by a regular sequence of length
d. Furthermore, let P. → V be an R-projective resolution of an f. g. projective
R/I-module V . We view the total complex P.⊗n of the n-th tensor power of the
complex P. as a complex of Σn-modules in the canonical way. In particular, the
homology modules Hk(P.⊗n), k ≥ 0, are equipped with a canonical Σn-action.

Theorem 5.1. For all k ≥ 0, there is a canonical Σn-isomorphism

Hk(P.⊗n) ∼= V ⊗n ⊗ Λk(I/I2 ⊗Kn);

here, V ⊗n is considered as a Σn-module with the natural action and I/I2 as a Σn-
module with the trivial action. In particular, Hk(P.⊗n) is a projective R/I-module.

Proof. We fix k ∈ {0, . . . , n}. A homotopy between two complex homomorphisms
f, g : P. // //Q. induces a (non-equivariant) homotopy between the complex ho-
momorphisms f⊗n, g⊗n : P.⊗n ////Q.⊗n . In particular, the Σn-homomorphisms
Hk(f⊗n) and Hk(g⊗n) coincide. Therefore, we obtain a well-defined functor

F : PR/I → (R[Σn]-modules), V 7→ Hk(P.⊗n),

as in the proof of Theorem 3.2. Let G denote the functor

G : PR/I → (R[Σn]-modules), V 7→ V ⊗n ⊗ Λk(I/I2 ⊗Kn).

We have to show that F (V ) ∼= G(V ) for all V ∈ PR/I . Again, we verify the as-
sumptions of Theorem 1.5.

First, we suppose that the ideal I is globally generated by a regular sequence.
This means that there is a homomorphism ε : F → R from a free R-module F of
rank d to R such that the Koszul complex Kosd(ε) is a resolution of R/I (by virtue
of the canonical map Kosd(ε)0

∼= R −→→ R/I). One easily checks that the complex
(Kosd(ε))⊗n is Σn-isomorphic to the Koszul complex Kosnd(F ⊗R[In] sum−→ F

ε−→
R). By Lemma 3.3 in [K 2], the homology module Hk(Kosnd(F ⊗R[In]→ F → R))
is Σn-isomorphic to the k-th exterior power of

ker(F/IF ⊗R[In] sum−→ F/IF
ε̄−→ I/I2) ∼= F/IF ⊗Kn

∼= I/I2 ⊗Kn.

Thus, we have established a Σn-isomorphism F (R/I) ∼= Λk(I/I2 ⊗ Kn). It obvi-
ously does not depend on the chosen homomorphism ε. Hence, we can glue these
isomorphisms and obtain a canonical Σn-isomorphism F (R/I) ∼= Λk(I/I2 ⊗ Kn)
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also in the case the ideal I is only locally generated by a regular sequence. For any
two complexes P. and Q., we have

(P. ⊕Q.)⊗n ∼=
⊕

n1+n2=n

IndΣn
Σn1×Σn2

(P.⊗n1 ⊗Q.⊗n2).

Hence, as in the proof of Theorem 3.2, we obtain for all i ≥ 0,

cri(F )(R/I, . . . , R/I) ∼=
⊕

(n1,... ,ni)∈{1,... ,n}i
n1+...+ni=n

IndΣn
Σn1×...×Σni

ResΣn
Σn1×...×Σni

F (R/I)

∼=

 ⊕
(n1,... ,ni)

IndΣn
Σn1×...×Σni

(R)

⊗ Λk(I/I2 ⊗Kn)

∼= cri(G)(R/I, . . . , R/I).

One easily sees that these Σn-isomorphisms are compatible with the action of R/I
in each component and with the diagonal and plus maps. Thus, Theorem 5.1 follows
from Theorem 1.5.

Example 5.2. Let n=2. Then Theorem 5.1 yields the well-known Σ2-isomorphism

TorRk (V, V ) ∼= V ⊗2 ⊗ Λk((I/I2)sgn)

where the transposition in Σ2 acts by −1 on (I/I2)sgn.

Now, let X be a noetherian scheme with the property that each coherent OX -
module is a quotient of a locally free OX -module. Let K0(Σn, X) denote the
Grothendieck group of all locally free Σn-modules on X . Using the “binomial
theorem”

(F ⊕ G)⊗n ∼=
⊕

n1+n2=n

IndΣn
Σn1×Σn2

(F⊗n1 ⊗ G⊗n2),

the association [F ] 7→ [F⊗n] can be canonically extended to a map

τn : K0(X)→ K0(Σn, X)

(see section 1 in [K 2]). It is called the n-th tensor power operation. Let i : Y ↪→ X
be a regular closed immersion of codimension d with conormal sheaf C. Let i∗
denote both the homomorphism from K0(Y ) to K0(X) introduced in section 4
and the homomorphism from K0(Σn, Y ) to K0(Σn, X) defined analogously. The
following theorem is Theorem 4.1 of [K 2].

Theorem 5.3 (Riemann-Roch formula for τn). For all y ∈ K0(Y ), we have

τn(i∗(y)) = i∗(λ−1([C ⊗Kn]) · τn(y)) in K0(Σn, X).
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Proof. If Theorem 5.3 is true for y1, y2 ∈ K0(Y ) and for all n ≥ 1, then it is also
true for y1 + y2. This follows from the following calculation (Σn1,n2 := Σn1 ×Σn2):

τn(i∗(y1 + y2)) =
∑

n1+n2=n

IndΣn
Σn1,n2

(
τn1(i∗(y1)) · τn2(i∗(y2))

)
=
∑

IndΣn
Σn1,n2

(
i∗(λ−1([C ⊗Kn1 ]) · τn1(y1)) · i∗(λ−1([C ⊗Kn2 ]) · τn2(y2))

)
=
∑

IndΣn
Σn1,n2

(
i∗
(
λ−1([C ⊗Kn1 ])λ−1([C ⊗Kn2 ])λ−1([C])τn1(y1)τn2(y2)

))
=
∑

IndΣn
Σn1,n2

(
i∗
(

ResΣn
Σn1,n2

λ−1([C ⊗Kn]) · τn1(y1) · τn2(y2)
))

= i∗

(
λ−1([C ⊗Kn]) ·

∑
n1+n2=n

IndΣn
Σn1,n2

τn1(y1) · τn2(y2)

)
= i∗ (λ−1([C ⊗Kn]) · τn(y1 + y2)) .

(Here, we have used Proposition 4.2 and Frobenius reciprocity.) Thus, it suffices to
prove Theorem 5.3 for y = [V ] where V is a locally free OY -module. Let P .→ i∗(V)
be a locally free resolution of i∗(V) on X . By gluing the isomorphisms constructed
in Theorem 5.1, we obtain Σn-isomorphisms

Hk(P .⊗n) ∼= i∗(V⊗n ⊗ Λk(C ⊗Kn)), k ≥ 0.

Hence, we have in K0(Σn, X):

τn(i∗([V ])) = τn

∑
i≥0

(−1)k[Pk]

 =
∑
k≥0

(−1)k
[
(P .⊗n)k

]
=
∑
k≥0

(−1)ki∗
(
[V⊗n ⊗ Λk(C ⊗Kn)]

)
= i∗ (λ−1([C ⊗Kn]) · τn([V ])) .

This proves Theorem 5.3.

6. Some Computations for Regular Immersions of Higher Codimension

Let X be a noetherian scheme with the property that each coherent OX -module
is a quotient of a locally free OX -module. Let i : Y ↪→ X be a regular closed
immersion of codimension d with conormal sheaf C and n ∈ N. In this section,
we study the question whether, in the case d ≥ 2, the Riemann-Roch formula for
σn and i∗ (cf. Theorem 4.3(a)) can be proved directly with the methods developed
in the previous sections (i.e., without using blowing up). More precisely, for any
locally free OY -module V and any locally free resolution P .→ i∗(V) of i∗(V) on X ,
we are looking for a complex K.n of locally free OX -modules such that we have

σn(i∗([V ])) def= σn(
∑
k≥0

(−1)k[Pk]) =
∑
k≥0

(−1)k[Knk ] in K0(X)

and

σn([C], [V ]) =
∑
k≥0

(−1)k[Hk(K.n)] in K0(Y )

(or at least in the relative K0-group of Y in X , see [TT]). The existence of such a
complex would immediately imply the Riemann-Roch formula for σn (see the proof
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of Theorem 4.3(a)). In the case d = 1, we have used the complex Kosn(P1 → P0)
(see section 4) which is quasi-isomorphic to the complex N Symn Γ(P1 → P0) by
Proposition 2.4. In section 5, we have used the complex P .⊗n which is quasi-
isomorphic to the complex N(Γ(P .)⊗n) by the Eilenberg-Zilber theorem (see Ap-
plication 8.5.3 on p. 277 in [W]). Thus, a natural candidate for the above com-
plex K.n is the complex K.n := N Symn Γ(P .). We prove in Lemma 6.1 that this
complex satisfies at least the first condition σn(i∗([V ])) =

∑
k≥0(−1)k[Knk ]. In

Lemma 6.2, we give a representation of σ2([C], [V ]) as an alternating sum which
suggests the following conjecture: Hk(K.2) ∼= Sym2(V) ⊗ Λk(C) for k even and
Hk(K.2) ∼= Λ2(V)⊗Λk(C) for k odd. In fact, this conjecture is true if 2 is invertible
on X (see Corollary 6.3). Theorem 6.4 states that, in the case d = 2, we have
H0(K.2) ∼= Sym2(V), H1(K.2) ∼= Λ2(V) ⊗ C, however H2(K.2) ∼= D2(V) ⊗ Λ2(V),
i.e., the conjecture is false for k = 2. Nevertheless, this theorem implies the sec-
ond condition for the complex K.2 in the case d = 2 since [D2(V)] = [Sym2(V)] in
K0(Y ). In the case d > 2, Hk(K.2) probably has non-trivial 2-torsion for k ≥ 2 (see
Remark 6.5). In particular, it is not clear how to compute Hk(K.2) in general and
to check the second condition for the complex K.2. On the other hand, it might be
possible to compute Hk(K.n) in the case d = 2 even for all n ≥ 2 and to verify the
second condition for K.n in this case (see Example 6.6). I hope to say more on this
in a future paper.

For any finite complex P . of locally free OX -modules let [P .] denote the Euler
characteristic

∑
i≥0(−1)i[Pi] ∈ K0(X).

Lemma 6.1. Let P . be a finite complex of locally free OX-modules. Then we have
for all n ≥ 0,

[N Symn Γ(P .)] = σn([P .]) in K0(X).

Proof. One easily checks that the complex N Symn Γ(P .) has finite length. Fur-
thermore, the OX -modules N Symn Γ(P .)k, k ≥ 0, are locally free (see section 2 in
[JM]). Therefore, the expression [N Symn Γ(P .)] ∈ K0(X) is well-defined. First,
we suppose that P . is the complex P [−l] where P is a locally free OX -module and
l ∈ N0. We have to show that σn((−1)l[P ]) = [N Symn Γ(P [−l])] in K0(X). We
prove this by induction on l. For l = 0, 1 this follows for example from Proposition
2.4. We write C(P [−l]) for the mapping cone of the identity of the complex P [−l].
The obvious short exact sequence

0→ P [−l]→ C(P [−l])→ P [−l− 1]→ 0

of complexes induces a natural filtration of the complex N Symn Γ(C(P [−l])) whose
successive quotients are the complexes N(Symi Γ(P [−l]) ⊗ Symn−i Γ(P [−l − 1])),
i = 0, . . . , n. The complex N Symn Γ(C(P [−l])) is homotopic to the zero complex
(cf. section 2). For all i = 0, . . . , n, the complex

N(Symi Γ(P [−l])⊗ Symn−i Γ(P [−l− 1]))

is quasi-isomorphic to the complex N Symi Γ(P [−l]) ⊗ N Symn−i Γ(P [−l − 1]) by
the Eilenberg-Zilber theorem (see Application 8.5.3 on p. 277 in [W]). Hence, we
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have for all n ≥ 1,
n∑
i=0

[N Symi Γ(P [−l])] · [N Symn−i Γ(P [−l− 1])]

=
n∑
i=0

[N Symi Γ(P [−l])⊗N Symn−i Γ(P [−l− 1])]

=
n∑
i=0

[N(Symi Γ(P [−l])⊗ Symn−i Γ(P [−l− 1]))]

= N Symn Γ(C(P [−l])) = 0;

i.e., the power series
∑

i≥0[N Symi Γ(P [−l− 1])]ti is the inverse of the power series∑
i≥0[N Symi Γ(P [−l])]ti. Using the induction hypothesis, we obtain

[N Symn Γ(P [−l− 1])] = σn(−[P [−l]]) = σn((−1)l+1[P ]).

(Alternatively, this can be deduced from Proposition 4.3.2.1(i) on p. 111 in [I 1].)
Now, let P . be an arbitrary complex of length l. We prove Lemma 6.1 by induction
on l. Let σ≤l−1(P .) denote the brutal truncation of P .. The obvious short exact
sequence

0→ σ≤l−1(P .)→ P .→ Pl[−l]→ 0

of complexes yields the equality

[N Symn Γ(P .)] =
n∑
i=0

[N Symi Γ(σ≤l−1(P .))] · [N Symn−i Γ(Pl[−l])] in K0(X)

as above. Using the induction hypothesis and the formula already proved, we finally
obtain

[N Symn Γ(P .)] =
n∑
i=0

σi

(
l−1∑
i=0

(−1)i[Pi]
)
· σn−i((−1)l[Pl]) = σn([P .]).

Lemma 6.2. Let K be a λ-ring, C ∈ K of finite λ-degree d and x ∈ K arbitrary.
Then we have

σ2(C, x) = σ2(x)λ0(C)− λ2(x)λ1(C) + σ2(x)λ2(C)− λ2(x)λ3(C) + . . . in K.

Proof. We prove Lemma 6.2 by induction on d. The case d = 1 is a special case of
Lemma 4.1(d). So, we may assume that d ≥ 2 and that Lemma 6.2 holds for d− 1.
By the splitting principle (see Theorem 6.1 on p. 266 in [AT]), we may assume that
C = C′ + L where C′ ∈ K is of λ-degree d − 1 and L ∈ K is of λ-degree 1. Using
the induction hypothesis, we obtain

σ2(λ−1(C)x) = σ2(λ−1(C′)(1 − L)x)
= (σ2((1− L)x)− λ2((1 − L)x)C′ + σ2((1− L)x)λ2(C′)− . . . )λ−1(C′).

Since

σ2((1 − L)x) = (σ2(x) − λ2(x)L)(1 − L)

and

λ2((1 − L)x) = (λ2(x) − σ2(x)L)(1 − L),
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this implies

σ2(C, x) = σ2(x)− λ2(x)L − λ2(x)C′ + σ2(x)LC′

+ σ2(x)λ2(C′)− λ2(x)Lλ2(C′)− . . .
= σ2(x)− λ2(x)C + σ2(x)λ2(C)− λ2(x)λ3(C) + . . . .

Now, let R be a commutative ring and I an ideal in R which is locally generated
by a regular sequence of length d. For any f. g. projective R/I-module V , we choose
an R-projective resolution P.(V ) of V . The following statement is a consequence
of Theorem 5.1.

Corollary 6.3. Let 2 be invertible in R. Then we have

HkN Sym2 Γ(P.(V )) ∼=
{

Sym2(V )⊗ Λk(I/I2) for k even,
Λ2(V )⊗ Λk(I/I2) for k odd.

Proof. By the Eilenberg-Zilber theorem, we have

HkN Sym2 Γ(P.(V )) ∼= HkN(Γ(P.(V ))⊗2)Σ2 ∼= Hk(P.(V )⊗2)Σ2 .

Therefore, Corollary 6.3 follows from Theorem 5.1.

Theorem 6.4. Let d = 2. Then we have:

HkN Sym2 Γ(P.(V )) ∼=


Sym2(V ) for k = 0,
Λ2(V )⊗ I/I2 for k = 1,
D2(V )⊗ Λ2(I/I2) for k = 2,
0 for k ≥ 3.

Proof. Let Fk denote the functor

Fk : PR/I → (R-modules), V 7→ HkN Sym2 Γ(P.(V )).

Obviously, the functor Fk is of degree ≤ 2. By the Eilenberg-Zilber theorem (see
Application 8.5.3 on p. 277 in [W]), we have for all V,W ∈ PR/I ,

cr2(Fk)(V,W ) ∼= HkN(Γ(P.(V ))⊗ Γ(P.(W )))
∼= Hk Tot(P.(V )⊗ P.(W )) ∼= TorRk (V,W ).

Furthermore, we have TorRk (R/I,R/I) ∼= Λk(I/I2) by Example 5.2. Therefore,
by Proposition 1.8, Corollary 1.6, Proposition 1.9, and Example 1.7, it suffices to
show that the plus map +2 : cr2(F0)(R/I,R/I) → F0(R/I) is bijective, F1(R/I)
vanishes, the diagonal map ∆2 : F2(R/I)→ cr2(R/I,R/I) is bijective, and Fk(R/I)
vanishes for k ≥ 3. For this, we may assume that the ideal I is globally generated by
a regular sequence, say I = (f, g). Let K. denote the complex . . .→ 0→ R

f→ R

and L. the complex . . .→ 0→ R
g→ R. Then,

Tot(K.⊗ L.) ∼= Kos2(R⊕R (f,g)−→ R)

is a resolution of R/I. For any bisimplicial R-module M.., let ∆M.. denote the sim-
plicial R-module ∆op → (R-modules), [n] 7→ Mnn. The Dold-Kan correspondence
(see Proposition 2.1) and the Eilenberg-Zilber theorem yield natural isomorphisms

Fk(R/I) ∼= HkN Sym2 Γ Tot(K.⊗ L.) ∼= HkN Sym2 Γ Tot(NΓ(K.)⊗NΓ(L.))
∼= HkN Sym2 ΓN∆(Γ(K.)⊗ Γ(L.)) ∼= HkN Sym2 ∆(Γ(K.)⊗ Γ(L.))
∼= HkN∆ Sym2(Γ(K.)⊗ Γ(L.)).
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For any two f. g. projective R-modules P,Q, the following sequence is exact:

0→ Λ2(P )⊗ Λ2(Q)→ Sym2(P ⊗Q)→ Sym2(P )⊗ Sym2(Q)→ 0

(see p. 242 in [ABW]); here, the first map is given by

p1 ∧ p2 ⊗ q1 ∧ q2 7→ (p1 ⊗ q1)(p2 ⊗ q2)− (p1 ⊗ q2)(p2 ⊗ q1),

and the second map is given by (p1 ⊗ q1)(p2 ⊗ q2) 7→ p1p2 ⊗ q1q2. Thus, we obtain
the following short exact sequence of bisimplicial R-modules:

Λ2Γ(K.)⊗ Λ2Γ(L.) � � // Sym2(Γ(K.)⊗ Γ(L.)) // // Sym2 Γ(K.)⊗ Sym2 Γ(L.);

applying N∆ to this sequence then yields a short exact sequence of complexes. By
the Eilenberg-Zilber theorem and Proposition 2.4, we have

HkN∆(Sym2 Γ(K.)⊗ Sym2 Γ(L.))
∼= Hk Tot(N Sym2 Γ(K.)⊗N Sym2 Γ(L.))
∼= Hk Tot(Kos2(f)⊗Kos2(g))
∼= Hk Tot(K.⊗ L.)

∼=
{
R/I for k = 0,
0 for k ≥ 1.

Similarly, we obtain (cf. Remark 2.7)

HkN∆(Λ2Γ(K.)⊗ Λ2Γ(L.)) ∼=
{
R/I for k = 2,
0 for k 6= 2.

This finally implies

Fk(R/I) ∼=
{
R/I for k = 0, 2,
0 for k = 1 or k ≥ 3.

In particular, this finishes the proof of Theorem 6.4 in the cases k = 1 and k ≥
3. Next, we prove that the diagonal map ∆2 : F2(R/I) → cr2(F2)(R/I,R/I) is
bijective. As above, we have an isomorphism

cr2(F2)(R/I,R/I) ∼= H2N
(
Γ(Tot(K.⊗ L.))⊗2

) ∼= H2N∆
(
(Γ(K.)⊗ Γ(L.))⊗2

)
such that the following diagram commutes:

F2(R/I)
∆2 // cr2(F2)(R/I,R/I)

H2N∆ Sym2(Γ(K.)⊗ Γ(L.))
H2N∆(∆2) // H2N∆

(
(Γ(K.)⊗ Γ(L.))⊗2

)
.

Furthermore, we have the commutative diagram of bisimplicial R-modules

Λ2Γ(K.)⊗ Λ2Γ(L.) � � //

id⊗∆2

��

Sym2(Γ(K.)⊗ Γ(L.)) // //

∆2

��

Sym2 Γ(K.)⊗ Sym2 Γ(L.)

id⊗∆2

��
Λ2Γ(K.)⊗ Γ(L.)⊗2 � � // (Γ(K.) ⊗ Γ(L.))⊗2 // // Sym2 Γ(K.)⊗ Γ(L.)⊗2

where the upper row is the exact sequence already constructed above and the lower
row is induced by the natural exact sequence

0→ Λ2Γ(K.)→ Γ(K.)⊗2 → Sym2 Γ(K.)→ 0.
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Since both cr2(F2)(R/I,R/I) and F2(R/I) have rank 1, it therefore suffices to show
that the map

H2N∆(id⊗∆2) : H2N∆(Λ2Γ(K.)⊗ Λ2Γ(L.))→ H2N∆(Λ2Γ(K.)⊗ Γ(L.)⊗2)

is surjective and that H2N∆(Sym2 Γ(K.) ⊗ Γ(L.)⊗2) ∼= 0. As above, we have an
isomorphism

H2N∆(Λ2Γ(K.)⊗ Γ(L.)⊗2) ∼= H2 Tot(K̃os
2
(K.)⊗ L.⊗2)

∼= H2 Tot(K.[−1]⊗ L.⊗2) ∼= H1((R/(f)
ḡ→ R/(f))⊗2) ∼= (ḡ)/(ḡ)2 ∼= R/I.

(Note that ḡ is a nonzero-divisor in R/(f).) Similarly, we get

H2N∆(Sym2 Γ(K.)⊗ Γ(L.)⊗2) ∼= 0.

The homology class of the element (1 ⊗ 1) ⊗ (1 ⊗ 1) ∈ (K1 ⊗ K0) ⊗ (L1 ⊗ L0) ∼=
Tot(K̃os

2
(f)⊗ K̃os

2
(g))2 obviously generates H2 Tot(K̃os

2
(f)⊗ K̃os

2
(g)). The map

id⊗∆2 maps this element to the element (1 ⊗ 1)⊗ (1⊗ 1,−1⊗ 1) of

(K1 ⊗K0)⊗ (L1 ⊗ L0 ⊕ L0 ⊗ L1)
∼= K̃os

2
(K.)1 ⊗ (L.⊗2)1 ⊆ Tot(K̃os

2
(K.)⊗ L.⊗2)2.

The homology class of (1⊗1)⊗(1⊗1,−1⊗1) obviously generatesH2 Tot(K̃os
2
(K.)⊗

L.⊗2). This finishes the proof of Theorem 6.4 in the case k = 2. Similarly, one
can show that the plus map +2 : cr2(F0)(R/I,R/I)→ F0(R/I) is bijective. Then,
the proof of Theorem 6.4 is complete. However, this final case can also be proved
directly as follows:

H0N Sym2 Γ(P.(V )) ∼= coker(Sym2(P1)⊕ P1 ⊗ P0
d0−d1−→ Sym2(P0))

∼= coker(P1 ⊗ P0
can−→ Sym2(P0)) ∼= Sym2(V )

(see also Remark 3.3(b)).

Remark 6.5. For any functor F : PR → PR (with F (0) = 0) which commutes
with localization, the support of the homology modules HkNFΓ(P.(V )), k ≥ 0,
is contained in V (I) = Spec(R/I) since the complex NFΓ(P.(V ))|Spec(R)\V (I) is
homotopic to the zero complex (cf. section 2). In contrast to Theorem 3.2, Theorem
5.1, and Theorem 6.4, these homology modules need not to be projective R/I-
modules, they even need not to be annihilated by I in general. For instance, if
d = 1, the natural short exact sequence of complexes

0→ ND2Γ(P.(V ))→ N(Γ(P.(V ))⊗2)→ NΛ2Γ(P.(V ))→ 0

together with Remark 3.6 and Example 5.2 yield the long exact sequence

0→ H1ND
2Γ(P.(V ))→ V ⊗2 ⊗ I/I2 → D2(V )⊗ I/I2

→ H0ND
2Γ(P.(V ))→ V ⊗2 → Λ2(V )→ 0,

and one easily sees that H0ND
2Γ(P.(R/I)) ∼= R/I2 if char(R) = 2. If d = 2, the

natural short exact sequence of complexes

0→ NΛ2Γ(P.(V ))→ N(Γ(P.(V ))⊗2)→ N Sym2 Γ(P.(V ))→ 0
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together with Theorem 6.4 and Example 5.2 yield the long exact sequence

0→ H2NΛ2Γ(P.(V ))→ V ⊗2 ⊗ Λ2(I/I2)→ D2(V )⊗ Λ2(I/I2)
→ H1NΛ2Γ(P.(V ))→ V ⊗2 ⊗ I/I2 → Λ2(V )⊗ I/I2

→ Λ2(V )→ V ⊗2 → Sym2(V )→ 0.

One can show that the map V ⊗2⊗Λ2(I/I2)→ D2(V )⊗Λ2(I/I2) is +2⊗ id. Hence,
HkNΛ2Γ(P.(V )) has non-trivial 2-torsion for k = 1, 2. Similarly, one may expect
that HkN Sym2 Γ(P.(V )) can have non-trivial 2-torsion if d ≥ 3 and k ≥ 2. This is
also suggested by the calculation of the stable derived functors of Sym2 (e.g., see
Theorem 4.7 in [JM]).

Example 6.6. Let K be a λ-ring, C ∈ K of λ-degree 2, and x ∈ K, arbitrary.
An easy, but somewhat tedious calculation shows the following representation of
σ3(C, x):

σ3(C, x) = σ3(x)− s3
1(x)C + (σ2(x)xλ2(C) + λ3(x)σ2(C))

− s3
1(x)Cλ2(C) + σ3(x)λ2(C)2.

In view of Theorem 5.1 and Theorem 6.4, this suggests the following conjecture: If
d = 2, then we have

HkN Sym3 Γ(P.(V )) ∼=


Sym3(V ) for k = 0,
L3

1(V )⊗ I/I2 for k = 1,
L̃3

1(V )⊗ I/I2 ⊗ Λ2(I/I2) for k = 3,
D3(V )⊗ Λ2(I/I2)⊗2 for k = 4,
0 for k ≥ 5,

and there is a short exact sequence

0→ D2(V )⊗ V ⊗ Λ2(I/I2)→ H2N Sym3 Γ(P.(V ))→ Λ3(V )⊗ Sym2(I/I2)→ 0.
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