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Dynamical Systems, Vol. 17, No. 4, 2002, 389–420

Discontinuity geometry for an impact oscillator

D. R. J. CHILLINGWORTH

Department of Mathematics, University of Southampton, Southampton
SO17 1BJ, UK

Abstract. We use methods of singularity theory to classify the local geometry of the
discontinuity set, together with associated local dynamics, for a discrete dynamical
system that represents a natural class of oscillator with one degree of freedom
impacting against a fixed obstacle. We also include descriptions of the generic transi-
tions that occur in the discontinuity set as the position of the obstacle is smoothly
varied. The results can be applied to any choice of restitution law at impact. The
analysis provides a general setting for the study of local and global dynamics of
discontinuous systems of this type, for example giving a geometric basis for the
possible construction of Markov partitions in certain cases.

Received 16 May 2002

1. Introduction

An impact oscillator (sometimes called a ‘vibro-impact system’) here consists of a
system of ordinary differential equations in which the ‘free’ dynamics are interrupted
by an obstacle, together with a given ‘restitution rule’ for describing the dynamics
immediately after impact with the obstacle. A typical system of this kind with one
degree of freedom takes the form

€xxþ f ðx; _xxÞ ¼ gðtÞ ð1Þ
for x 2 R , where we assume f and g are smooth functions (meaning C1 or analytic)
and g is periodic with period T > 0 , and where the obstacle is placed at x ¼ c with
restitution rule that _xx is replaced by �r _xx for constant 0 < r4 1 whenever a trajec-
tory reaches x ¼ c . As usual the dot denotes differentiation with respect to t . An
important particular case is the linear system

€xxþ x ¼ cos !t ð2Þ
with 0 < ! 6¼ 1 .

The geometric analysis that we give in this paper can be applied to quite general
types of interaction of the obstruction with the ‘free’ dynamics of (2) such as, for
example, the presence of a thin resistant layer at x ¼ c which does not cause the
velocity v to change sign but merely replaces v by rv with r5 0. The purpose of our
analysis is to bring out the primary geometric role of the ‘obstacle’ at x ¼ c in the
overall phase space dynamics: after this, the imposition of any particular rule for
interaction with the obstacle is a second step which determines how our geometric
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information is to be used to help describe the dynamics. Indeed, taking r ¼ 1 allows
us to reconstruct most of the original free dynamics, an observation worth keeping in
mind in what follows. Our results apply to fixed values of the ‘clearance’ c and also
describe the transitions that take place as c is varied.

The main ideas of the paper are as follows. After straightening out the flow for (1)
we describe in sections 2 and 3 a 2-manifold (almost) in R

3 that represents the
impacts of the trajectories of (1) with the obstacle x ¼ c : we call this the ‘impact
surface’. The dynamics of the impact oscillator are then represented by a discrete
dynamical system obtained by choosing initial data (velocity and phase) at a point
where x ¼ c , proceeding parallel to the t-axis until meeting the impact surface, re-
setting the time to t ¼ 0 , applying the restitution rule and then repeating the process.
This involves studying (sections 4 and 5) the geometry of two maps from the impact
surface to the plane of initial data, namely the projection parallel to the t-axis (for
which we need to understand its discontinuous inverse) and the time ‘re-set’ map. We
use methods of singularity theory to analyse the geometry of both these maps under
explicit generic assumptions on (1). The dynamics for the impact oscillator can then
in principle be constructed (sections 6 and 7) from this information together with the
restitution rule. A list of notation is given in section 8.

There is an extensive literature on impact oscillators which we do not attempt to
survey here. Useful references include Nordmark (1991, 1997), Ivanov (1993, 1994),
Bishop (1994), Budd and Dux (1994 a,b), Chin et al. (1994), Casas et al. (1996),
Babitsky (1998), Foale and Bishop (1992) with their own bibliographies to which
the interested reader is referred. The first author to approach the geometry of dis-
continuities in a systematic way was Whiston (1987, 1992) whose pioneering
approach was the inspiration for the present work. In this paper we outline the
main geometric results; in a further paper (Chillingworth 2003) some examples
and specific applications to dynamics are given.

2. The impact surface in phase space

The natural phase space for the study of the system (1) is R
3 with coordinates

ðx; y; uÞ ¼ ðx; _xx; tÞ in which the system becomes a first-order system

_xx ¼ y

_yy ¼ �f ðx; yÞ þ gðuÞ

_uu ¼ 1

9>>>=
>>>;
: ð3Þ

The standard way to investigate the dynamics is to study the time-T map
ðx0; y0Þ 7! ðxðTÞ; yðTÞÞ where ðxðtÞ; yðtÞÞ ¼ ðxðtÞ; _xxðtÞÞ denotes the solution to (1)
with initial data ðxð0Þ; yð0ÞÞ ¼ ðx0; y0Þ. However, as observed by Shaw and Holmes
(1983), Whiston (1987), Foale and Bishop (1992), Bud and Dux (1994a) and others,
in the case of an impact oscillator it is more useful instead to work in the plane

�c ¼ fðx; _xx; tÞ 2 R
3 : x ¼ cg

and then to study the discrete dynamical system on (most of) �c generated by the
composition

~II ¼ ~RR � ~GG : �c ! �c
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where ~GG : �c ! �c is given by following the dynamics of (3) with initial data on �c

until the trajectory hits �c the next time (if at all), and ~RR is the ‘restitution map’
taking y to �ry or other appropriate rule.

The map ~GG is discontinuous at points of ~SS ¼ ~GG�1ð�0
cÞ where �0

c ¼ �c \ fy ¼ 0g : if
a trajectory ‘grazes’ �c at z (that is if it meets �c at z 2 �0

c where €xx 6¼ 0) then nearby
trajectories may miss �c in a neighbourhood of z and not hit �c until a considerable
time later (if at all). Therefore, as emphasized by Whiston (1987), the dynamical
behaviour of the system is crucially dependent on the nature and position of the
‘discontinuity set’ ~SS and its inverse iterates ~II�nð ~SSÞ for n ¼ 1; 2; 3; . . . . In what follows
we give a local and general global geometric description of the discontinuity set ~SS (in
a slightly different setting) for the system (1) under generic assumptions on f and g.
For the linear system (2) we give more specific information. We also describe the
changes that the discontinuity structure undergoes as the clearance parameter c is
varied. Some of the ways in which this geometric information gives insight into
various aspects of dynamical behaviour are also analysed.

Our approach is based on viewing the dynamics as being generated not by families
of curved trajectories meeting the plane �c in R

3 but rather by families of straight
lines intersecting a corresponding curved surface. This allows us to use methods of
singularity theory as applied to the study of apparent outlines (apparent contours).
We now give the details of this ‘straightened-out’ interpretation.

Let xðc; v; � ; tÞ denote the solution to (1) with initial data ðx; _xxÞ ¼ ðc; vÞ when
t ¼ � . For fixed c 2 R define the ‘impact surface’ Vc as

Vc ¼ fðv; � ; tÞ 2 R
3 : xðc; v; � ; � þ tÞ ¼ cg:

Observe that the plane

� ¼ fðv; � ; tÞ 2 R
3 : t ¼ 0g

is automatically part of Vc. The projection

p : R3 ! R
2 : ðv; � ; tÞ 7! ðv; �Þ

plays a major role in this paper, and we identify � with its image under p , that is the
ðv; �Þ-plane R

2. We write

pc ¼ pjVc : Vc ! �

and in what follows we use known generic properties of maps from a 2-manifold to a
plane in order to shed light on the structure of pc .

The straight line p�1ðv; �Þ intersects Vc at points whose t-coordinates are the times
t 2 R at which the trajectory of (1) starting at x ¼ c with initial velocity v at time �
meets the obstacle at x ¼ c.

There is a natural map � : R4 ! R
4 corresponding to ‘re-setting the initial data’,

namely

�ðc; v; � ; tÞ ¼ ðxðc; v; � ; � þ tÞ; _xxðc; v; � ; � þ tÞ; � þ t; 0Þ:
Then �ðfcg � VcÞ � fcg � R

2 � f0g and therefore writing �ðc; zÞ ¼ ðc; ’cðzÞ; 0Þ for
z 2 Vc gives a map

’c : Vc ! R
2

which we call the ‘re-set map’ as it represents re-setting ð _xx; � þ tÞ to the new initial
data for velocity and phase at points of Vc (where x is automatically re-set to c).
Thus ’c ¼ �cjVc where
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�c : R
3 ! R

2 : ðv; � ; tÞ 7! ð _xxðc; v; � ; tÞ; � þ tÞ:
For ðv; �Þ 2 � let Fcðv; �Þ be the point of p�1ðv; �Þ \ Vc with the smallest positive t-
coordinate, provided this exists. We assume that p�1ðv; �Þ \ Vc is a discrete set: we
disregard systems (1) where f and g are bizarre enough to give an accumulation point
of times t at which a solution xðv; � ; tÞ takes the value c . Thus Fcðv; �Þ is defined for
ðv; �Þ 2 �c where

�c ¼ pðVc n�Þ � �

and Fc is a right inverse for the projection pc ¼ pjVc . We call Fc the ‘first-hit map’. In
many cases (and certainly in the case of (2) as we see below) �c will be almost all of
� , as trajectories leaving x ¼ c can be expected to return. Observe that the map
Gc ¼ ’c � Fc : �c ! � corresponds to the map ~GG : �c ! �c previously described.
Finally, write

R : � ! � : ðv; �Þ 7! ð�ðvÞ; �Þ
where �ðvÞ ¼ �rv or some other appropriate formula. Using Vc we can now give the
following geometrical characterization of the dynamics of the impact oscillator (1).

. Start at x ¼ c at time � with initial velocity v.

. Proceed along the t-axis in the positive direction until the first point of inter-
section with Vc ; that is apply the map Fc .

. Re-set initial data by applying the map ’c .

. Replace the new v by �ðvÞ; that is apply the map R .

. Repeat the process.

In other words our model for the dynamics of the impact oscillator is the (dis-
continuous) discrete system

Ic ¼ R � Gc : �c ! �: ð4Þ
The points of discontinuity in the resulting discrete dynamical system are among the
points ðv; �Þ for which the straight line p�1ðv; �Þ is tangent to (that is, fails to be
transverse to) the impact surface Vc. In visual terms, these are the points such that
the line of sight along the t-direction is somewhere tangent to Vc, that is, they form
the ‘apparent outline’ or ‘apparent contour’ Pc of Vc viewed in the t-direction.
Technically, they are the ‘singular values’ of the projection pc ¼ pjVc : Vc ! �.
The tangency points themselves are the ‘singular points’ of pc (points where the
derivative fails to have rank 2). We call the set Hc of singular points the ‘horizon’
of Vc viewed in the t-direction; thus Pc ¼ pðHcÞ. See figure 1 for a schematic illus-
tration.

The points ofHc correspond to points in ðx; _xx; tÞ-space where the trajectories of (1)
‘graze’ (that is, are tangent to) the plane �c, and these points are central to under-
standing the nonlinear behaviour of an impact oscillator. Many authors such as
Foale and Bishop (1992), Chin et al. (1994) and Nordmark (1997) have studied
aspects of the dynamical behaviour close to graze points. Our interpretation of
these points in terms of singularities of smooth maps sheds new light on some
existing results and extends these to situations with more complicated local phase
space geometry. We study the structure of the horizon Hc � Vc and the outline
Pc � �, and describe their role in the dynamics both for a given fixed clearance c
and as c is allowed to vary. We give some key results for the general system (1), while
for the basic linear system (2) we provide a fairly complete analysis.
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3. Geometry of the impact surface

We have boldly called Vc a ‘surface’ but have yet to see whether it deserves the name:
is Vc indeed a 2-manifold? By definition Vc ¼ x�1

c ðcÞ where

xcðv; � ; tÞ ¼ xðc; v; � ; � þ tÞ ð5Þ

and so Vc is a particular level set of the function xc : R
3 ! R. The Implicit Function

Theorem implies that Vc will indeed be a smooth manifold in a neighbourhood of
every point where grad xc does not vanish, i.e. the regular points of the function xc .
We call these points ‘regular points’ of Vc . As we now see, all points of Vc where
v 6¼ 0 are regular points.

Let V�
c and V0

c denote the subsets of Vc where v 6¼ 0 and v ¼ 0, respectively.

Lemma 1. The set V�
c is a smooth 2-manifold in R

3.

Proof. Consider the flow f�tg on R
3 generated by the autonomous system of

equations (3). Write q ¼ ðx; y; uÞ 2 R
3. Since �t takes trajectories to trajectories its

derivative D�tðq0Þ takes the vector _qq0 to _qqt (where qt ¼ �tðq0Þ); thus if q0 ¼ ðc; v; �Þ
and _qq0 ¼ ðv; a; 1Þ we have

D�tðq0Þ:

v 0 0

a 1 0

1 0 1

0
BBB@

1
CCCA ¼

_xx
@x

@v

@x

@�
þ _xx

€xx
@ _xx

@v

@ _xx

@�
þ €xx

1 0 1

0
BBBBBB@

1
CCCCCCA

ð6Þ

where x stands for xðc; v; � ; � þ tÞ and @=@� denotes partial differentiation with
respect to the third variable. Since D�tðq0Þ is invertible it follows that the second
matrix is non-singular when v 6¼ 0 and so in particular

393Impact oscillator

Figure 1. Viewing the impact surface Vc.
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grad xcðv; � ; tÞ ¼
@xc
@v

;
@xc
@�

;
@xc
@t

� �
¼ @x

@v
;
@x

@�
þ _xx; _xx

� �

is not zero. &

There is another consequence of (6) that we shall use later.

Corollary 1.

ðv; aÞ ¼ ð0; 0Þ , @x

@�
;
@ _xx

@�

� �
¼ ð0; 0Þ:

Proof. Compare first and third columns of the matrices in (6). &

In the above a ¼ €xxcð0; � ; 0Þ which we denote more fully by acð�Þ. From (1) we have

acð�Þ ¼ �f ðc; 0Þ þ gð�Þ: ð7Þ
Next we study the nature of Vc at points of V0

c . Denote the �-axis by L0 : then
L0 � V0

c since L0 � � � Vc . Moreover, on � we have _xxcðv; � ; 0Þ ¼ v which vanishes
on L0.

Proposition 1. Assume r5 2. In a neighbourhood of L0 the impact surface Vc consists
of the plane � together with a 2-manifold V 0

c that is the graph of a smooth function
v ¼ vcð�; tÞ satisfying

vcð�; 0Þ ¼ 0; _vvcð�; 0Þ ¼ � 1

2
acð�Þ:

Proof. Since xc ¼ c on � we can write

xcðv; � ; tÞ ¼ cþ tycðv; � ; tÞ
in a neighbourhood of �, where yc ¼ _xxc ¼ v and _yyc ¼ 1

2
€xxc on � (i.e. t ¼ 0). Solutions

to xc ¼ c not on � are given by yc ¼ 0. Since @yc=@v ¼ 1 6¼ 0 we can (by the Implicit
Function Theorem) express yc ¼ 0 close to L0 as v ¼ vcð�; tÞ for a smooth function vc
with vcð�; 0Þ ¼ � _yycð�; 0Þ, which gives the result. &

Corollary 2. The contribution to the outline Pc from V 0
c intersects L0 at the points �

where acð�Þ ¼ 0.

We shall study the behaviour of Pc close to L0 in more detail in section 4 below.
The structure of V0

c away from L0 seems harder to pin down. Instead, we make a
conjecture on generic behaviour. Let M be a smooth manifold and hc : M ! R a
smooth function varying smoothly with a real parameter c . By a ‘Morse point’ we
mean a non-degenerate critical point x0 2 M of hc for some particular c ¼ c0 , and
we say that the level set h�1

c ð0Þ undergoes a ‘Morse transition’ at x0 as c passes
through c0 if ð@=@cÞhcðx0Þ 6¼ 0. We apply this to hc ¼ xc � c : �� R

2 ! R where
Vc ¼ h�1

c ð0Þ.

Conjecture 1. It is a generic property of the pair of functions f ; g in (1) that c 2 R is a
regular value of the function xc : R

3 n � ! R for all c 2 R except possibly for a
discrete set fcig. Each ci is the value of xci at one or more nondegenerate critical
points of xci , with Vc undergoing one or more Morse transitions as c passes through ci .

The conjecture is supported by the correspondence between Morse points of Vc on
V0

c and points of quadratic tangency of separate branches of Pc which we discuss
further below, and the fact that the latter occur as generic codimension-1 phenomena
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in 1-parameter families of apparent outlines. As we see later, the conjecture holds for
the linear system (2).

3.1. The linear system (2)
In this subsection we look at the precise structure of Vc for the specific system (2).
We can do this since we have an explicit general solution.

Proposition 2. The solution of ð2Þ gives the following formula for xc :

xcðv; � ; tÞ ¼ A cos tþ B sin tþ � cos!ð� þ tÞ ð8Þ
where

A ¼ c� � cos!�; B ¼ vþ !� sin!� ð9Þ

and � ¼ ð1� !2Þ�1.

Proof. Immediate verification.

Corollary 3. The domain of definition �c for the first hit map Fc in the case of the
linear system ð2Þ is given by

�c ¼

�; if ! 2 Q or jcj < �

� n fð0; 2n�=!Þ : n 2 Zg; if !=2Q and c > �

� n fð0; ð2nþ 1Þ�=!Þ : n 2 Zg; if !=2Q and c < ��

8>>><
>>>:

Proof. The only circumstances under which a trajectory ðxc; _xxcÞ can leave x ¼ c at
t ¼ 0 never to return (although it will return arbitrarily closely) are when !=2� is
irrational and the initial point is an extreme point on the x-axis, that is sin!� ¼ 0
and A has the same sign as cos!� . These conditions characterize �c as stated. &

For (2) there are important symmetries in the system that manifest themselves as
symmetries of Vc .

Corollary 4. For ð2Þ the impact surface Vc has the following symmetries:

(i) The surface Vc is invariant under translation � 7! � þ 2�=!. If ! ¼ p=q 2 Q

where p; q 2 N then Vc is also invariant under translation t 7! tþ 2q�.
(ii) The surface V�c is obtained from Vc by translating � 7! � þ �=! and changing

the sign of v.

Proof. Clear from the expression (8), because (i) 2q� is an integer multiple of both
2� and 2�=!, and (ii) x�cð�v; � þ �=!; tÞ ¼ �xcðv; � ; tÞ. &

Corollary 5. If ! ¼ p=q where p; q 2 N then the line segment in R
3 parallel to the t-

axis from ðv; � ; 0Þ to ðv; � ; 2�qÞ intersects Vc an odd number of times between these
points.

Proof. Any periodic trajectory meets x ¼ c an even number of times. &

For (2) we find from Proposition 2 that
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@xc
@v

¼ sin t

@xc
@t

� @xc
@�

¼ acð�Þ sin tþ v cos t

9>>>=
>>>;

ð10Þ

where

acð�Þ ¼ cos!� � c ¼ €xxcðv; � ; 0Þ: ð11Þ

Therefore, grad xc ¼ 0 precisely where

sin t ¼ acð�Þ sin tþ v cos t ¼ _xxcðv; � ; tÞ ¼ 0;

that is, v ¼ 0 (of course), t ¼ k�; k 2 Z and _xxcð0; � ; k�Þ ¼ 0. Investigating the geo-
metry of Vc in the neighbourhood of these singular points will occupy the remainder
of this section.

For k 2 Z let Lk denote the line t ¼ k� in the ð� ; tÞ-plane, that is,

Lk ¼ fðv; � ; tÞ 2 R
3 : v ¼ 0; t ¼ k�g:

At points of Lk we have

xcð0; � ; k�Þ ¼ ðc� � cos!�Þð�1Þk þ � cos!ð� þ k�Þ ð12aÞ

_xxcð0; � ; k�Þ ¼ � sin!�ð�1Þk � � sin!ð� þ k�Þ ð12bÞ

where � ¼ !�, so the points ð0; � ; k�Þ 2 Vc \ Lk are points where the right-hand side
of (12a) is equal to c, and those where Vc may be singular are those where also the
right-hand side of (12b) vanishes.

Recall from Proposition 1 that when k ¼ 0 (that is t ¼ 0) we have L0 � Vc and Vc

fails to be a 2-manifold at all points of the line L0 : there it is the transverse inter-
section of two 2-manifolds, namely the plane � and the manifold V 0

c that is a graph
v ¼ vcð�; tÞ . Therefore, we turn to cases where k 6¼ 0.

Case 1. k even.

With ðxc; _xxcÞ ¼ ðc; 0Þ equations (12) become

cos!� ¼ cosð!� þ k!�Þ ð13aÞ

sin!� ¼ sinð!� þ k!�Þ ð13bÞ

respectively, which imply k! 2 2Z. If ! =2Q this can never be satisfied, while if
! ¼ p=q 2 Q where p; q 2 N then (13a), (13b) are satisfied simultaneously for all �
when k is an integer multiple of 2q. In view of Corollary 4 we summarize this as
follows.

Proposition 3. There are no points on Lk for even k 6¼ 0 at which Vc fails to be
regular, apart from (when ! 2 Q) the images of L0 under the translations in the t-
direction which leave Vc invariant. &

Case 2. k odd.

The equations to solve now are
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cos!� þ cosð!� þ k!�Þ ¼ 2c!=� ð14aÞ

sin!� þ sinð!� þ k!�Þ ¼ 0: ð14bÞ

From (14b) we have one or other of the equalities

!� þ k!� ¼ �!� þ 2l� ð15aÞ

!� þ k!� ¼ !� þ ð2l þ 1Þ� ð15bÞ

for l 2 Z. Now (15a) gives

!� ¼ l�� k!
�

2
ð16Þ

and then from (14a)

cos!� ¼ c!=� ¼ c=�: ð17Þ
On the other hand, (15b) gives

k!� ¼ ð2l þ 1Þ�
and then from (14a)

c ¼ 0:

Thus (14a) and (15b) can have simultaneous solutions � only when ! is the ratio of
two odd integers, and then when c ¼ 0. However, (14a) and (15a) will have solutions
� for every ! for certain choices of c.

Therefore, we have two possible settings for solutions to (14) as follows:

I : k 2 2Zþ 1; k!=2 2Zþ 1;

II : k 2 2Zþ 1; k! 2 2Zþ 1; c ¼ 0:

We consider these each in turn.

Type I: k 2 2Zþ 1, k!=2 2Zþ 1

From (15a), (17) we have !�� ¼ l�� k!ð�=2Þ and c ¼ ck;l ¼ �� where � ¼ cos!�� .
We then find

xcðv; �� þ �; k�þ uÞ ¼ �vu� 1

2
c!2ð2�2 þ 4�uþ u2Þ þOð3Þ:

The quadratic terms are non-degenerate in ðv; �; uÞ so the Morse Lemma implies that
(up to a local diffeomorphism which is the identity map to first order) the structure
of Vc is locally that of a cone tangent to the v-axis. Notice moreover that for all
� 2 R we have

xcðv; � ; k�Þ ¼ �ðcos!� þ cos!ð� þ k�ÞÞ � c

which does not involve v. Since j cos!� þ cos!ð� þ k�Þj has a local maximum value
of 2j�j at � ¼ �� it follows that the impact surface Vc contains a pair of lines inter-
secting Lk and parallel to the v-axis that are created as c passes through the value ck;l
from above if ck;l > 0 or from below if ck;l < 0. When c ¼ ck;l the line � ¼ ��; t ¼ k�
is a line of tangency of Vc with the plane t ¼ k�, so the local cone structure is not
only tangent to the v-axis but contains it entirely. As c passes through ck;l the
structure of Vc undergoes a Morse transition at ð0; ��; k�Þ between (locally) a hyper-
boloid of one sheet and a hyperboloid of two sheets. See figure 2.
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Type II: k 2 2Zþ 1, k! 2 2Zþ 1; c ¼ 0

Here we find

xcðv; � ; k�Þ ¼ �c

_xxcðv; � ; k�Þ ¼ �vÞ

€xxcðv; � ; k�Þ ¼ c� cos!�

x
...
cðv; � ; k�Þ ¼ vþ ! sin!�

and so for all ðv; �Þ 2 R
2 and c 2 R we have

xcðv; � ; k�þ uÞ ¼ �c cos u� v sin uþ u � u

2
cos!� þ u2

6
ð! sin!�Þ þOðu3Þ

 !
:

Therefore in a neighbourhood of the plane t ¼ k� we may write Vc ¼ h�1ðcÞ where
h : R3 ! R is given by

hðv; � ; uÞ ¼ ð1þ cos uÞ�1 �v sin uþ u � u

2
cos!� þ u2

6
! sin!� þOðu3Þ

 ! !
:

Thus V0 consists of the plane t ¼ k� (that is u ¼ 0) itself together with a 2-manifold
V 00

0 intersecting this plane along the line Lk (that is u ¼ v ¼ 0) and locally the graph
of an analytic function v ¼ v0ð�; uÞ given by

 ðuÞv0ð�; uÞ ¼ � u

2
cos!� þ u2

6
ð! sin!�Þ þOðu3Þ

where again  ðuÞ ¼ u�1 sin u ðu 6¼ 0Þ;  ð0Þ ¼ 1. Clearly for !� 6¼ �ð�=2Þ ðmod 2�Þ
we see ð@v0=@uÞð�; 0Þ 6¼ 0 and the projection pjV 00

0 is regular at ð�; 0Þ. When
!� ¼ �ð�=2Þ ðmod 2�Þ we write � ¼ �ð�=2!Þ þ � ðmod 2�=!Þ and find

 ðuÞv0 � 2�

!
þ �; u

� �
¼ �! 1

2
�uþ u2

6
þOðu3Þ

 !

so v0 has a saddle point at ð�; uÞ ¼ ð0; 0Þ, that is ð�; tÞ ¼ ð��=2!; k�Þ 2 Lk. The
singular points of pjV 00

0 are given by @v0=@u ¼ 0, that is, (to first order)
3�þ 2u ¼ 0, giving the apparent outline P0 locally as v0 ¼ �3=8!�2 þOð�3Þ and
showing that P0 locally is a curve with quadratic tangency to v ¼ 0 from the v < 0
side at � ¼ �=2! and from the v > 0 side at � ¼ ��=2!.
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Figure 2. Morse transition for (2) at c ¼ ck;l; note that the vertical line lies in the
surface Vc.
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As c varies away from c ¼ 0 observe that Vc no longer contains the plane t ¼ k�;
contrast this with k ¼ 0 where the plane � remains automatically part of Vc. See
figure 3.

Closer analysis shows that Pc unfolds into the disjoint union (locally) of a regular
curve and a cusped curve as c moves away from zero in either sense: see figure 4.

An analogous description applies in the neighbourhood of � ¼ ��=2!, related to
the above by the symmetry described in Corollary 4.

The full set of local transitions of Vc that occur as c varies can therefore be
summarized as follows:

Theorem 1. There are no transitions for jcj > j�j.

(i) As c descends through positive values ck;l ¼ � cosðk!ð�=2Þ � l�Þ, where
k 2 2Zþ 1 and k! =2 2Zþ 1 and l 2 Z, there are simultaneous Morse (Type I)
transitions from two sheets to one sheet at corresponding points
ðv; � ; tÞ ¼ ð0;�kð�=2Þ þ lð�=!Þ; k�Þ.

(ii) If ! ¼ p=q where p; q 2 2Nþ 1 then as c descends through the value 0 there is a
Type II transition at ðv; � ; tÞ ¼ ð0; �=2!; q�Þ modulo t ¼ 2q�.

399Impact oscillator

Figure 3. Type II transition as c passes through 0.

Figure 4. Change in outline Pc at a Type II transition.
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(iii) As c descends through negative values ck;l ¼ � cosðk!ð�=2Þ � l�Þ as in (ii)
there are simultaneous Morse (Type I) transitions from one sheet to two sheets
at corresponding points ðv; � ; tÞ ¼ ð0;�kð�=2Þ þ lð�=!Þ; k�Þ.

4. Geometry of the projection pc ¼ pjVc

In section 2 we analyzed the local geometry of the impact surface Vc for the
general system (1), in particular at points where it fails to be a smooth 2-manifold,
and in Theorem 1 we classified the local changes in topology for the system (2) as c
passes through certain special values.

We now turn to look closely at the set of singular points and the set of singular
values of the projection pc ¼ pjVc : Vc ! �, at points where v may or may not be
zero. We give some results for the general system (1), and a more specific analysis
for (2).

First, some facts about apparent outlines in general. See for example Bruce
(1984a, b).

Theorem 2. Typically the only singularities exhibited by the projection into a plane of
a smooth 2-manifold in R

3 are curves of ‘folds’ with isolated ‘cusps’. See figure 5.
Typically the only transitions that occur in the projection of a 1-parameter family of

surfaces are ‘lips’, ‘beaks’ and ‘swallowtails’. See figure 6.

The word ‘typically’ can be expressed precisely in terms of openness and density of
relevant properties in certain function spaces: we omit a more formal statement. The
interpretation is that these phenomena are structurally stable (robust) under suffi-
ciently small perturbations, and that any other singular phenomena that may arise
can be perturbed into collections of these alone.

If the manifold is compact and the above conditions prevail then the singular set
will be compact and will in particular contain only finitely many cusps. In our case
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Figure 5. Curve of folds with a cusp in the apparent outline Pc.
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the manifold Vc is not compact. However, for the system (2) with ! 2 Q it is periodic
in t and hence compact modulo this period. The apparent outline Pc is thus compact.
For (1) in general and for (2) with ! =2Q the apparent outline will not be compact
and may contain infinitely many cusps.

To obtain more than the most basic results for (1) we need to make some generic
assumptions about the functions f and g.

Definition 1. The pair of functions f ; g in (1) is ‘generic’ if the following holds:
f ðc; 0Þ is a regular value of the function g except possibly for a finitely many
values ci of c , these being regular points of f ð�; 0Þ. Moreover, all critical points of
g with value ci are non-degenerate. Thus

gðtÞ ¼ f ðc; 0Þ; c 6¼ ci ) g 0ðtÞ 6¼ 0 ð18Þ
and

gðtÞ ¼ f ðci; 0Þ; g 0ðtÞ ¼ 0 ) g 00ðtÞ 6¼ 0;
@f

@c
ðci; 0Þ 6¼ 0: ð19Þ

If the pair f ; g is generic then as c varies the set of solutions t to gðtÞ ¼ f ðc; 0Þ
undergoes no worse than quadratic (Morse) transitions.

401Impact oscillator

Figure 6. Beaks, lips and swallowtail transitions.
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Recall that for (1) the set V�
c is a smooth 2-manifold. We begin by studying

singularities of pcjV�
c .

4.1. Behaviour of pc at points of V
�
c

Let H�
c ¼ Hc \ V�

c be the set of singular points of the map pcjV�
c , thus

H�
c ¼ fðv; � ; tÞ 2 �� R : v 6¼ 0; xcðv; � ; tÞ � c ¼ _xxcðv; � ; tÞ ¼ 0g:

Theorem 3.

(1) For the system (1) the horizon H�
c is a smooth 1-manifold.

(2) For the system (1) with the pair f ; g generic, for c 6¼ ci there is a fold singularity
at every point of H�

c except possibly for isolated cusp singularities. There are
swallowtail transitions as c passes through ci .

Proof. Let z ¼ ðv; � ; tÞ 2 R
3 and write

XcðzÞ ¼ ðxcðzÞ; _xxcðzÞÞ:

Then Hc ¼ X�1
c ðc; 0Þ, and

DXcðzÞ ¼

@xc
@v

@xc
@�

@xc
@t

@ _xxc
@v

@ _xxc
@�

@ _xxc
@t

0
BBB@

1
CCCA ð20Þ

¼

@x

@v

@x

@�
þ _xx _xx

@ _xx

@v

@ _xx

@�
þ €xx €xx

0
BBB@

1
CCCA ð21Þ

where here _xx ¼ 0. From the proof of Lemma 1 we see that this matrix has rank 2
(regardless of _xx) provided v 6¼ 0. Hence H�

c is a smooth 1-manifold by the Implicit
Function Theorem.

The projection p�c has a fold singularity at z 2 H�
c precisely when €xxcðzÞ 6¼ 0 and a

cusp point at z when €xxcðzÞ ¼ 0 but x
...
cðzÞ 6¼ 0. From (1) we have

€xxcðzÞ ¼ 0 , f ðc; 0Þ ¼ gðtÞ ð22Þ

and differentiating (1) with respect to t at z we find that if €xxcðzÞ ¼ 0 then

x
...
c ¼ _ggðtÞ: ð23Þ

Thus the genericity of f ; g guarantees finitely many cusp points (modulo t ¼ T) for
c 6¼ ci , and also guarantees xð4Þc 6¼ 0 when _xxc ¼ €xxc ¼ x

...
c ¼ 0 which can occur when

c ¼ ci. The fact that swallowtail transitions occur comes from the Morse transitions
in solutions of gðtÞ ¼ f ðc; 0Þ as c passes through ci : we omit the details which can be
found in Chillingworth (2003). &

A fold point ðv; � ; tÞ 2 Vc for pc corresponds to a non-degenerate ‘graze’ (quadratic
contact) in the trajectory for (1) with initial data ðv; �Þ ; a cusp point corresponds to a
‘degenerate graze’ with cubic contact. A swallowtail transition is the coalescence of
two (cubic) degenerate grazes into one with quartic contact. Our expression of these
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phenomena in terms of singularity theory is a way of describing how they respond to
(are ‘unfolded by’) the initial data v and � .

Next we look at the behaviour of pc at points where Vc intersects the plane v ¼ 0.
From Theorem 3 we know that it is only here that Hc can fail to be a smooth 1-
manifold. We first consider points of L0 .

4.2. Behaviour of pc at points of L0

Recall from (7) that along L0 the impact surface Vc consists of � intersected trans-
versally along L0 by a sheet V 0

c of Vc that is the graph of a smooth function
v ¼ vcð�; tÞ. Thus for small jtj the horizon Hc consists of L0 together with points
of V 0

c where _vvc ¼ 0 . By Corollary (2) these occur on L0 where acð�Þ ¼ 0 .

Proposition 4. Let gð�0Þ ¼ f ðc0; 0Þ so ac0ð�0Þ ¼ 0, and suppose a 0
c0ð�0Þ 6¼ 0, that is,

_ggð�0Þ ¼ k 6¼ 0 . Then vc0 has a non-degenerate saddle point at ð�0; 0Þ. The horizon Hc is
parametrized locally as

ðv; �; tÞ ¼ ð3
8
k�2 þOð�3Þ; �0 þ �;� 3

2
�þOð�2ÞÞ ð24Þ

so the outline Pc has quadratic contact with L0 at �0 from the side v > 0 or v < 0
accordingly as _ggð�0Þ is negative or positive, respectively.

Proof. Since vcð�; 0Þ ¼ 0 we have ð@2=@�2Þvcð�; 0Þ ¼ 0. Implicit differentiation of

ycðvcð�; tÞ; � ; tÞ ¼ 0 ð25Þ
and use of (1) gives

_vvcð�; 0Þ ¼ � _yycð0; � ; 0Þ ¼ � 1
2 acð�Þ;

€vvcð�; 0Þ ¼ �€yycð0; � ; 0Þ ¼ � 1
3
xð3Þc ð0; � ; 0Þ � @€xxc

@v ð0; � ; 0Þ _vvcð�; 0Þ

¼ � 2

3

@f

@ _xx
ðc; 0Þ þ @€xxc

@v
ð0; � ; 0Þ

� �
_vvcð�; 0Þ � 1

3
_ggð�Þ

from (1), so if gð�0Þ ¼ f ðc0; 0Þ then ac0ð�0Þ ¼ 0 and €vvc0ð�0; 0Þ ¼ � 1
3
k . Also

@ _vvc0
@�

ð�0; 0Þ ¼ � 1
2
a 0
c0
ð�0Þ ¼ � 1

2
k

and so the Hessian matrix for vc0 at ð�0; 0Þ is

� k

6

0 3
3 2

� �
:

Thus if � ¼ �0 þ � we have

vcð�0 þ �; tÞ ¼ � k

6
ð3�tþ t2Þ þOð3Þ ð26Þ

so V 0
c cuts the plane v ¼ 0 in a curve through ð�0; 0Þ with tangent direction ð1;�3Þ.

The horizon Hc0
given by _vvc ¼ 0 satisfies t ¼ � 3

2
�þOð�2Þ which yields (24). &

If gð�0Þ ¼ f ðc0; 0Þ and _ggð�; 0Þ ¼ 0 then the 2-jet of vc at ð�0; 0Þ vanishes. If the
critical point �0 of g is non-degenerate and ð@f =@cÞðc0; 0Þ 6¼ 0 we expect the coales-
cence or creation of two saddle points as in Proposition 4. This cannot happen
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without the involvement of other critical points of vc. As we now show, the geometry
is organised by a lips transition.

Proposition 5. Let ð�0; c0Þ satisfy gð�0Þ ¼ f ðc0; 0Þ. Suppose

_ggð�0Þ ¼ 0; €ggð�0Þ ¼ m 6¼ 0;
@f

@x
ðc0; 0Þ 6¼ 0 ð27Þ

so that f ðc; 0Þ passes with non-zero speed through the non-degenerate critical value
gð�0Þ of g as c passes through c0. Then pcjV 0

c : V 0
c ! � undergoes a lips creation or

annihilation as c passes through c0.

Proof. Further implicit differentiation of (25) yields

vð3Þc ð�; 0Þ ¼ �yð3Þc ð0; � ; 0Þ ¼ � 1

4
xð4Þc ð0; � ; 0Þ

¼ � 1

4
€ggð�Þ ¼ � 1

4
m 6¼ 0

at ðc; �Þ ¼ ðc0; �0Þ, so the 3-jet of vcð�0; �Þ does not vanish. We now invoke techniques
from singularity theory. After reparametrizing the t-axis (depending on ðc; �Þ) by
t ¼  ðc; � ; uÞ we may assume vc0ð�0; uÞ ¼ u3 and moreover (since a versal unfolding
of u3 has the form �þ �uþ u3 and we have vcð�; 0Þ ¼ 0) that

vcð�; uÞ ¼ �ðc; �Þuþ u3

for ðc; �Þ near ðc0; �0Þ and small u, where � is a C1 function with �ðc0; �0Þ ¼ 0. We
find �ðc; �Þ ¼ ð@vc=@uÞð�; 0Þ ¼ � 1

2
acð�Þ. Now consider

hðv; c; � ; uÞ ¼ �vþ �ðc; �Þuþ u3:

The condition for a lips transition in the outline of the graph v ¼ vcð�; tÞ in the ðv; �Þ-
plane as c passes through c0 is (see Arnold 1986, Corollary 4.5) that the function c
has a non-degenerate critical point when restricted to the ‘spine’ of the discriminant
of h, that is the set ��1ð0; 0Þ where � : ðv; c; �Þ 7! ðv; �ðc; �ÞÞ. This condition is thus
that the curve �ðc; �Þ ¼ 0 has quadratic tangency with the �-axis; this is precisely
what the conditions (27) guarantee. &

The geometry of the lips here has a particular form more complicated than the
‘standard’ picture from Arnold (1976), Bruce (1984b) and Bruce and Giblin (1985),
for example. Inspection of the graph of vcð�; �Þ for ðc; �Þ near ðc0; �0Þ shows that the
cusp points of the lips occur with opposite signs of v, and the lips themselves have
two points of quadratic tangency with v ¼ 0 from opposite sides as in Proposition 4.
See figure 7. Compare Bruce (1989) where the geometry of outlines rather than just
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Figure 7. The swan configuration.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
 
H
i
g
h
f
i
e
l
d
]
 
A
t
:
 
1
8
:
0
6
 
8
 
N
o
v
e
m
b
e
r
 
2
0
1
0



their differential topology is explored in some detail. To reflect the slender elegance
of this form of the lips we call this a ‘swan’ configuration.

4.3. Behaviour of pc at other points of V
0
c

Assuming Conjecture (1) the only points away from L0 that are not regular points of
Vc are the Morse points for particular values of c . This still leaves room for points of
V0

c that are regular points of Vc yet such that pc has a singularity more degenerate
than a fold. We conjecture that for most systems (1) this does not occur. However, it
turns out that for (2) this does happen as a result of the special symmetries in (2).

In the terminology of Theorem 3, at a singularity z of pc on V0
c we have

DXcðzÞ ¼
sin t �a sin t 0

cos t �a cos t €xxc

 !

and so for the system (2) the point z can fail to be a fold for pc only if

sin t ¼ 0; that is; z 2 Lk ð28Þ
or

€xxcðzÞ ¼ 0 with z=2Lk: ð29Þ
The first case (28) has already been studied in our earlier analysis of Vc itself at
points of Lk, therefore it remains to study Hc at the points z which satisfy (29),
corresponding to degenerate graze points. It turns out that the geometry and sym-
metry of the solutions to (2) imply that if the trajectory of (3) for (2) has a degenerate
graze then any other graze in the same trajectory must also be degenerate: this can be
seen in Whiston (1992) as a special case of Proposition A1. The consequence is that
such z ¼ ð0; � ; tÞ must satisfy acð�Þ ¼ 0 and the local geometry of pc at z and of Pc at
pcðzÞ become particularly degenerate. This corresponds to the fact that a cusp of P�

c

cannot cross a fold curve of P�
c but can meet P�

c only at another cusp, in contrast to
the typical behaviour of apparent outlines. See the Correspondence Principle below.

5. Geometry of the re-set map ’c ¼ �cjVc

The singularity structure of ’c naturally has close analogies with that of pc.

Proposition 6. The map ’c : Vc ! � is a local diffeomorphism at all points of V�
c and

is singular at all (regular) points of V0
c . If z ¼ ð0; � ; tÞ 2 V0

c and acð�Þ 6¼ 0 then ’c has a
fold singularity at z.

Proof. At z ¼ ðv; � ; tÞ 2 �� R we have

D�cðzÞ ¼
@ _xxc
@v

@ _xxc
@�

@ _xxc
@t

0 1 1

0
B@

1
CA ¼

@ _xx

@v

@ _xx

@�
þ €xx €xx

0 1 1

0
B@

1
CA ð30Þ

where x ¼ xðc; v; � ; � þ tÞ, and the matrix has kernel dimension 1 or 2 according to
whether D�cðzÞ has rank 2 or 1, respectively. We consider the two cases separately.

(a) rank D�ðzÞ ¼ 2:
Here ð@ _xx=@v; @ _xx=@�Þ 6¼ ð0; 0Þ and ker D�cðzÞ is spanned by the non-zero vector
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u ¼ @ _xx

@�
;� @ _xx

@v
;
@ _xx

@v

� �

so ’c ¼ �cjVc is singular precisely when u is orthogonal to grad xcðzÞ, that is
@ _xx

@�

@xc
@v

� @ _xx

@v

@xc
@�

þ @ _xx

@v

@xc
@t

¼ 0

which reduces to detW ¼ 0 where

W ¼ WðzÞ ¼
@x

@v

@x

@�
@ _xx

@v

@ _xx

@�

0
B@

1
CA; ð31Þ

evaluated at z. From (6) we see this determinant vanishes if and only if the matrix on
the left-hand side of (6) is also singular, that is v ¼ 0. We have
dimkerD’cðzÞ ¼ dimker�cðzÞ ¼ 1 , and the conditions for a fold are that Vc be
transverse to the plane fv ¼ 0g and that kerD’cðzÞ not lie in that plane. Now
transversality fails only if @xc=@� ¼ _xxc ¼ 0, i.e. @x=@� ¼ _xx ¼ 0. At a regular point
of Vc we then must have @x=@v 6¼ 0, so detW vanishes only if @ _xx=@� ¼ 0 ; by
Corollary (1) this happens only if acð�Þ ¼ 0. Likewise kerD’cðzÞ lies in fv ¼ 0g
only if @ _xx=@� ¼ acð�Þ ¼ 0 .

(b) rankD�ðzÞ ¼ 1:
Here ð@ _xx=@v; @ _xx=@�Þ ¼ ð0; 0Þ and kerD�cðzÞ is spanned by fð1; 0; 0Þ; ð0; 1;�1Þg.
Clearly detW ¼ 0 so v ¼ 0. Now dimkerD’cðzÞ > 1 if and only if kerD�cðzÞ is
the tangent space to Vc at z, that is if ð1; 0; 0Þ and ð0;�1; 1Þ are both orthogonal
to grad xc, that is

@xc
@v

¼ 0 ¼ @xc
@�

� @xc
@t

so ð@x=@v; @x=@�Þ ¼ ð0; 0Þ. This cannot occur (in particular, @x=@v 6¼ 0) as the
second columns of both matrices in (6) are non-zero. Thus kerD’cðzÞ ¼ 1 has dimen-
sion 1 and is spanned by ~uu ¼ ð@x=@�;�@x=@v; @x=@vÞ. It fails to be a fold only if
@x=@� ¼ 0 which (since @ _xx=@� ¼ 0) occurs only if acð�Þ ¼ 0. &

Remark 1. At singular points z of ’c the vectors fu; ~uug are linearly dependent since
detWðzÞ ¼ 0; either vector (if non-zero) can be taken as a basis for kerD’cðzÞ.

Next we identify the cusp singularities of ’c.

Proposition 7. At regular points z ¼ ðv; � ; tÞ of Vc nH where v ¼ 0, acð�Þ ¼ 0 and
a 0
cð�Þ 6¼ 0 the map ’c : Vc ! � has cusp singularities.

Proof. From the proof of Proposition 6 we know that ’c has a singularity at z that
is not a fold since ðv; acð�ÞÞ ¼ ð0; 0Þ implies ð@x=@�; @ _xx=@�Þ ¼ ð0; 0Þ.

The condition for a cusp is that the tangency of kerD’cðzÞ with fv ¼ 0g be as non-
degenerate as possible, meaning here that the v-component of kerD’cðzÞ have non-
zero derivative along V0

c at z. As grad xcðzÞ ¼ ð@x=@v; _xx; _xxÞ with _xx 6¼ 0 the tangent
space to V0

c at z is spanned by ð0; 1;�1Þ, so the cusp condition is @m=@� � _mm 6¼ 0
where m denotes ð@ _xx=@�Þðc; 0; � ; � þ tÞ in case (a) or ð@x=@�Þðc; 0; � ; � þ tÞ in case
(b). These reduce to @2 _xx=@�2 6¼ 0 (case (a)) or @2x=@�2 6¼ 0 (case (b)). Now
differentiating (6) with respect to � at z yields
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D tðqÞ

0

a 0
cð�Þ

0

0
BBB@

1
CCCA ¼ �

@2x

@�2
þ @ _xx

@�

@2 _xx

@�2
þ @€xx

@�

0
BBB@

1
CCCA:

We have @ _xx=@� ¼ 0 as acð�Þ ¼ 0, and also @€xx=@� ¼ 0 as follows from differentiating
(1) since ð@x=@�; @ _xx=@�Þ ¼ ð0; 0Þ; thus a 0

cð�Þ 6¼ 0 implies

@2x

@�2
;
@2 _xx

@�2

 !
6¼ ð0; 0Þ: ð32Þ

Also, differentiating detW ¼ 0 along V0
c gives

det

@2 _xx

@�2
@ _xx

@v

@2x

@�2
@x

@v

0
BBB@

1
CCCA ¼ 0:

In case (a) we have @ _xx=@v 6¼ 0, so if the cusp condition fails so that @2 _xx=@�2 ¼ 0 then
@2x=@�2 ¼ 0, contradicting (32). In case (b) we have @ _xx=@v ¼ 0 and @x=@v 6¼ 0 so
@2 _xx=@�2 ¼ 0 which by (32) implies @2x=@�2 6¼ 0. &

Finally, we can identify swallowtail transitions, using the generic assumptions
(18), (19) on f and g . We omit the proof; see Chillingworth (2003).

Proposition 8. Assume the pair f ; g is generic. Then acð�Þ ¼ a 0
cð�Þ ¼ 0 precisely when

c ¼ ci , and as c passes through ci there are creations or annihilations of pairs of cusps
of ’c at swallowtail transitions.

Using ’c we can show that swallowtails are the only transitions that occur where
v 6¼ 0, in other words there are no lips or beaks transitions in this context.

Theorem 4. As c varies there are no lips or beaks transitions occurring for pc on V�
c .

Proof. On V�
c the map ’c is everywhere a local diffeomorphism, and takesHc to the

line Lc. At a lips transition Hc would be a single point, while at a beaks transition it
would be a pair of mutually tangent arcs: in neither case is it a 1-manifold. &

6. The composition Gc ¼ ’c � Fc

Recall that Pc ¼ pðHcÞ is the apparent outline of Vc viewed in the t-direction, includ-
ing the �-axis L0, and corresponds to initial data ðc; v; �Þ that give rise to grazing
trajectories. Clearly Pc � �c except possibly for some points of L0. Write
�c n Pc ¼ �c n ð�c \ PcÞ. The first result is a straightforward consequence of the
definitions.

Proposition 9. For the general system (1) the map Gc ¼ ’c � Fc : �c ! � has the
following properties:

(i) Gc is injective;
(ii) Gcð�c \ PcÞ � Pc;
(iii) Gcð�c n PcÞ � � n Pc.
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Proof. Statement (i) follows from uniqueness of solutions to (1): two solutions with
x ¼ c and different ðv; �Þ cannot next pass through x ¼ c at the same time and with
the same velocity. Statements (ii), (iii) record the fact that a given trajectory of (1)
either is or is not a grazing trajectory regardless of the choice of initial point. &

Since pc is a local diffeomorphism away from Hc (which includes L0), and in the
previous section we have seen that ’c is a local diffeomorphism away from fv ¼ 0g ,
we immediately have the following regularity result:

Proposition 10. The composition Gc : �c ! � is a local diffeomorphism at all points
of �c n Pc.

Observe the analogous roles played on the one hand by Hc for pc and on the other
by V0

c for ’c. More precisely, let z 2 Hc : then pcðzÞ 2 Pc and ’cðzÞ 2 L0. If w 2 Pc

and w 0 2 L0 we say that w and w 0 ‘correspond’ if there exists z 2 Hc with
pcðzÞ ¼ w; ’cðzÞ ¼ w 0 . Under this correspondence, points of interesting geometry
on Pc correspond to points of interesting geometry on L0 . We pursue this principle
in greater detail below. First we set up some general terminology to describe local
behaviour of Fc and pc.

Let w0 ¼ ðv; �Þ 2 � ; then p�1
c ðw0Þ is a discrete set of points

p�1
c ðw0Þ ¼ fzi : i 2 N � Zg 2 Vc; zi ¼ ðw0; tiÞ

with t0 ¼ 0 and ti < tj for i < j 2 N, where N denotes a finite or infinite interval of
integers. For the linear system (2) we have N ¼ Z or (when !=2Q) exceptionally
N ¼ f0g by Corollary 3. By definition Fcðw0Þ ¼ z1. We occasionally blur the
distinction between w0 2 � and z0 ¼ ðw0; 0Þ 2 �� R.

Write wi ¼ ’cðziÞ 2 � and for each i 2 N let Ui be the connected component of
p�1ðU0Þ \ Vc containing zi. Let Wi ¼ ’cðUiÞ.

In the case of (2) if ! ¼ p=q 2 Q then fzi : i 2 Zg is a finite set modulo t ¼ 2�q and
fwi : i 2 Zg is a finite set modulo � ¼ 2�=! (see Proposition 3). In general for (1)
where Vc is periodic in t with period T ; in counting the points zi we shall count
modulo T , and write zj 	 zk when tj � tk 2 TZ, and also write wj 	 wk when
�j � �k 2 ð2�=!ÞZ where ! is the frequency of the forcing function g. If zj 	 zk
then wj 	 wk. We write �zz (or �ww) to denote the equivalence class of z modulo T (or
w modulo 2�=!).

The Correspondence Principle

We now list significant geometric features of Pc and their counterparts in L0 under
the Correspondence Principle. To simplify notation we write Fc ¼ F , Hc ¼ H and
Pc ¼ P with a fixed value of c understood, although we retain the suffix for Vc as a
reminder.

We begin with ‘codimension-0’ features, that is, those which occur for an open set
of values of c 2 R. First, the two features arising from local geometry of H :

(1) A ‘single fold point’ is a point w0 2 P� such that p�1ðw0Þ \H ¼ f�zzjg where zj
is a fold singularity of pc, that is zj 2 H and €xxcðzjÞ 6¼ 0. Then
wj ¼ ð0; �j; 0Þ 2 L0 satisfies €xxcðwjÞ 6¼ 0, that is acð�jÞ 6¼ 0. It is a point at
which @vc=@t 6¼ 0 so the sheet V 0

c of Vc passes through L0 with non-zero
slope: recall Proposition 1. The only branch of Pc passing through wj is L0.
We call any such point ð0; � ; 0Þ 2 L0 where acð�Þ 6¼ 0 a ‘simple point’ of L0.
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(2) A ‘single cusp point’ is a point w0 2 P� such that p�1ðw0Þ \H ¼ f�zzjg with
€xxcðzjÞ ¼ 0 but xð3Þc ðxjÞ 6¼ 0; then wj 2 L0 has €xxcðwjÞ ¼ 0, xð3Þc ðwjÞ 6¼ 0, that is
acð�jÞ ¼ 0, a 0

cð�jÞ 6¼ 0 and so wj is a point where a branch of P has quadratic
tangency with L0 by Proposition 4. We call ð0; � ; 0Þ 2 L0 where
acð�Þ ¼ 0; a 0

cð�Þ 6¼ 0 a ‘tangency point’ of L0.

Next the only codimension-0 feature arising from global geometry of H:

(3) A point w0 2 P� is a ‘transverse double point’ if p�1ðw0Þ \H ¼ f�zzj; �zzkg where
zj; zk are both fold singularities of pc with arcs Hj;Hk of H through zj ; zk,
respectively, such that the arcs Pi ¼ pcðHiÞ for i ¼ j; k intersect transversely at
w0. Then wj 2 L0, and p�1ðwjÞ \H consists of one point mod t ¼ T apart
from wj at which €xxc 6¼ 0. Likewise for wk. Since by Proposition 6 the map
’c is a local diffeomorphism at zj there is a neighbourhood Uj of zj in Vc such
that Uj \ p�1Pk is a smooth arc transverse to Hj taken by ’c to an arc of P
transverse to L0 at wj ; likewise for wk. We call wj;wk ‘transverse points’ of L0.

Note that for (2) when c ¼ 0 and ! ¼ p=q 2 Q the reduction of the t-periodicity
from 2�q to �q means in particular that all single fold points and all single cusp
points of P� become double points ðmod 2�qÞ: this is reflected in the doubling of the
tangency points of L0 at ��=! (Type II transition) as c passes through zero.

The three codimension-0 features are nicely illustrated in figures 6 and 7: at a
swallowtail transition an arc of single fold points acquires two cusp points and a pair
of transverse double points. Correspondingly, at a swan transition an arc of simple
points of L0 acquires two tangency points and a pair of transverse points.

Now we turn to ‘codimension-1’ features, meaning those which typically occur at
isolated values of c. There is only one such local feature.

(4) A ‘swallowtail point’ w0 2 P� (arising for (2) when c ¼ 1) has
p�1ðw0Þ \H ¼ f�zzjg where €xxcðzjÞ ¼ xð3Þc ðzjÞ ¼ 0 but xð4ÞðzjÞ 6¼ 0 ; then wj 2 L0

has €xxcðwjÞ ¼ xð3Þc ðwjÞ ¼ 0 but xð4ÞðwjÞ 6¼ 0, that is acð�jÞ ¼ a 0
cð�jÞ ¼ 0,

a 0
cð�jÞ 6¼ 0. By Proposition 4 this means V 0

c has cubic tangency with v ¼ 0
and generically a lips (swan) transition takes place at wj . We call wj a ‘swan
point’ of L0.

There are two global codimension-1 features:

(5) A ‘tangency point’ w0 2 P� is such that p�1ðw0Þ \H ¼ f�zzj; �zzkg with
€xxcðzjÞ; €xxcðzkÞ 6¼ 0 and with arcs Hj;Hk of H through zj; zk, respectively, such
that Pi ¼ pðHiÞ for i ¼ j; k are arcs of P� mutually quadratically tangent at w0.
Then Lj ¼ ’cðHjÞ is an interval of L0 containing wj. The quadratic tangency
implies that near zj the set p�1

c ðPkÞ is either:

(a) a pair of arcs through zj transverse to each other and to H, or
(b) the single point zj.

In case (a) since ’c is a local diffeomorphism at zj it follows from Proposition 9 that
P near wj consists of a pair of smooth arcs crossing each other and L0 transversely at
wj. If Conjecture 1 holds this must correspond to a Morse point of Vc at the point
ðwj; tk � tjÞ 2 H0 ¼ H \ V0

c . For the linear system (1) (recall Theorem 1) this means
c ¼ �cm with cm ¼ � cos!m�=2 for some m 2 Z, and jtj � tkj ¼ jmj�. We call wj a
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‘Morse point’ of L0. An analogous discussion applies to wk. See figure 8, in which
points of Vc are included to emphasize the local geometry.

In general for apparent outlines of surfaces in R
3 we expect either (a) or (b) to

apply to zj and zk independently. In the context of (2) it is only (a) that occurs. It is
unclear whether (b) can occur for (1); if so it would be necessary to include further
types of Morse point wj on L0 including those which are the image under p of an
isolated point of H.

Remark 2. The fact that for (2) all double points of P on L0 where acð�Þ 6¼ 0 are
transverse points or Morse points shows that for this system all tangencies of P� with
itself must indeed be quadratic.

(6) A ‘cusp/fold’ point w0 of P
� is a coincidence of a cusp point and a fold point:

thus p�1ðw0Þ \H ¼ f�zzj; �zzkg with €xxcðzjÞ 6¼ 0 but with €xxcðzkÞ ¼ 0 and
xð3Þc ðzkÞ 6¼ 0. Such points occur generically for apparent outlines and presum-
ably also for (1) but do not occur for (2) by Proposition A1 in Whiston (1992).
As c varies the generic local behaviour of P� is again a transition between zero
and two intersections, with corresponding transitions at the ‘double tangency’
point wj and ‘lips’ or ‘beaks’ point wk of L0. We omit the details.

In place of cups/fold points there is a codimension-1 phenomenon special to
the particular system (2) that would be expected to occur in the general system
(1) only in codimension 2, that is at isolated values of c for certain discrete
choices of a further parameter in f or g.

(7) A ‘cusp coincidence point’ w0 2 P� has p�1ðw0Þ \H ¼ f�zzj; �zzkg with
€xxcðzjÞ ¼ €xxcðxkÞ ¼ 0 and xð3Þc ðzjÞ; xð3Þc ðxkÞ 6¼ 0 : then wj and wk are points of
L0 corresponding to a double degenerate graze as described at the end of
section 4. We call these ‘cusp contact points’ of L0. At these points the outline
Pc has two branches quadratically tangent to L0 and tangent to each other
with order 9=2. We refer to Chillingworth (2003) for further details.

410 D. R. J. Chillingworth

Figure 8. Tangency point w0 2 P� and corresponding Morse point wj 2 L0.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
 
H
i
g
h
f
i
e
l
d
]
 
A
t
:
 
1
8
:
0
6
 
8
 
N
o
v
e
m
b
e
r
 
2
0
1
0



6.1. Some local geometry of Gc

We now turn to study the behaviour of the map Gc itself near its points of singularity
and/or discontinuity. These are the points of L0 together with the points w0 2 P� for
which Fcðw0Þ ¼ z1 2 H . The local geometry of Gc needs to be described on a case-
by-case basis, and for reasons of space we shall consider only single fold/simple
points and single cusp/tangency points, as well as transverse double points of P�

and transverse points of L0 . Further cases are studied in Chillingworth (2003).
For definiteness we focus on w0 2 P� \ �þ ; the description for P� \�� is analo-

gous, with the sign of v reversed.
The following results are useful in keeping track of local geometry.

Proposition 11. Let z ¼ ðv; � ; tÞ 2 H be a fold point for pc with
w ¼ ð0; � þ tÞ ¼ ’cðzÞ 2 L0. Then the image under D’cðzÞ of kerDpcðzÞ is spanned
by the vector ða; 1Þ where a ¼ €xxcðwÞ ¼ acð� þ tÞ.

Proof. Since kerDpcðzÞ is spanned by ð0; 0; 1Þ its image under D’cðzÞ is spanned by
ð€xxcðzÞ; 1Þ by Proposition 6, and €xxcðzÞ ¼ €xxcðwÞ as ’c simply re-sets the clock.

Definition 2. For w ¼ ð0; �Þ 2 L0 the ‘distinguished direction’ at w is that spanned
by the vector ðacð�Þ; 0Þ.

Proposition 12. If z ¼ ð0; � ; tÞ 2 H with acð�Þ 6¼ 0 then kerD’cðzÞ ¼ TzH.

Proof. The tangent space to H is spanned by a vector orthogonal to both grad xc
and grad _xxc with xc ¼ c and _xxc ¼ 0. Such a vector is

@x

@�
;� @x

@v
;
@x

@v

� �
þ ð0; 0; detWÞ

with W given by (31). At singular points of ’c we have detW ¼ 0, and the first
vector above spans kerD’c.

As with all the figures in this paper, those which illustrate key features of Gc below
are qualitative and not intended to be numerically accurate.

(1a) Single fold points
Let w0 2 P� \�þ be a single fold point, with H \ p�1ðw0Þ ¼ f�zz1g. Choose a suffi-
ciently small disc neighbourhood U0 of w0 so that the connected component U1 of
p�1
c U0 containing z1 intersects H in a smooth arc H1 ; thus U1 is folded by p alongH1

which is mapped by p diffeomorphically to a smooth arc P1 in �þ. We may assume
P1 separates U0 into two connected components Uþ

0 ¼ pðU1Þ and U�
0 . We say that

Uþ
0 lies on the ‘shadow side’ of P1 while U�

0 lies on the ‘free side’.
As z1 2 H we have w1 2 L0 and F is discontinuous along P1. Assuming 2 2 N

there is a neighbourhood U2 of z2 such that pjU2 : U2 ! U0 is a diffeomorphism, and
K2 ¼ U2 \ p�1P1 is an arc through z2 separating U2 into two open sets U�

2 with
pðU�

2 Þ ¼ U�
0 . Thus F jU�

0 is the restriction to U�
0 of the diffeomorphism

ðpjU2Þ�1 : U0 ! U2. If 2 =2N then F jU�
0 is undefined.

In contrast pjU1 : U1 ! U0 is a fold. We have GcðU0Þ ¼ GcðUþ
0 [ P1 [U�

0 Þ ¼
’cðUþ

1 [H1 [U�
2 Þ ¼ Wþ

1 [ J1 [W�
2 with J1 an open interval of L0 containing the

simple point w1, with Wþ
1 [ J1 an open neighbourhood of w1 in the closed half-plane

�� [ L0, and withW�
2 one of the two components into which Q2 ¼ ’cðK2Þ separates

W2. See figure 9.
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In the linear case with ! ¼ p=q 2 Q and z2 	 z0 the above still holds although now
Gc : U

�
0 ! W�

2 	 W�
0 ¼ U�

0 is the identity map.
Note that Gc : U

�
0 ! W�

2 is a diffeomorphism while Gc : U
þ
0 [ P1 ! Wþ

1 [ J1 has
the geometry of what we may call an ‘inverse fold’ at all points of P1. In particular,
any path in Uþ

0 [ P1 transverse to P1 at w 2 P1 is taken by Gc to a path with tangent
in the distinguished direction at GcðwÞ.

(1b) Simple points of L0

At a simple point w0 ¼ ð0; �0Þ 2 L0 we have ð@=@tÞvcð�0; 0Þ ¼ � 1
2
acð�0Þ 6¼ 0. To fix

matters we take acð�0Þ < 0, the other case being completely analogous. The implicit
function theorem allows V 0

c to be expressed locally as a graph t ¼ ucðv; �Þ, where
ucðv; �Þ here has the same sign as v. If U0 ¼ Uþ

0 [ J0 [U�
0 is a sufficiently small

connected open neighbourhood of w0 in � with U0 \ �� ¼ U�
0 and U0 \ L0 ¼ J0

then F jUþ
0 is just the restriction to Uþ

0 of the diffeomorphism
F0 ¼ ðpjU 0

0Þ�1 : U0 ! U 0
0 : ðv; �Þ 7! ðv; � ; ucðv; �ÞÞ where U 0

0 is a neighbourhood of
z0 in V 0

c . However, if 1 2 N then F is discontinuous along J0 and F jU�
0 [ J0 is

(for U0 sufficiently small) the restriction to U�
0 [ J0 of the diffeomorphism

F1 ¼ ðpjU1Þ�1 : U0 ! U1.
In the linear case (2) if z1 	 z0 then F ¼ F0 on all of U0.
We have described the action of F on U0 ; we now describe the action of ’c on

FðU0Þ. Since FðUþ
0 Þ � U 0

0 we need in particular to understand the action of ’c on
U 0

0. Let W
0
0 ¼ ’cðU 0

0Þ.

Lemma 2. The restriction ’cjU 0
0 : U

0
0 ! W 0

0 is a diffeomorphism.

Proof. The tangent space to V 0
c at z0 is spanned by

ð0; 1; 0Þ; � 1

2
acð�0Þ; 0; 1

� �� �
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Figure 9. Action of Gc near a single fold point w0 2 P�.
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since ð@vc=@�Þðw0Þ ¼ 0 as L0 � V 0
c , and

kerD�cðz0Þ ¼ spanfð0; 1;�1Þg

as ð@xc=@�Þðw0Þ ¼ 0 since L0 � Vc. Therefore, ’cjV 0
c is a local diffeomorphism at z0

if and only if

det

0 1 0

� 1

2
a0 0 1

0 1 �1

0
BBBB@

1
CCCCA 6¼ 0;

where a0 ¼ acð�0Þ. The value of the determinant is 1
2
a0 which is non-zero as w0 is a

simple point of L0. &

Corollary 6. The map GcjUþ
0 is the restriction to Uþ

0 of the diffeomorphism
’c � F0 : U0 ! W 0

0 .

Note that ’c � F0 is the identity on J0. Therefore, to first order the effect of Gc on
Uþ

0 is a shear in the direction of increasing � composed with a reflection in L0 ; we
call this a ‘shear-reflection’. From Corollaries 6 and 5.1 we therefore see that GcjU0 is
discontinuous along J0, being the restriction of a shear-reflection on Uþ

0 and a fold
on U�

0 [ J0. See figure 10.

For (2) when z1 	 z0 we have F jU0 ¼ F0jU0 and GcjU0 ! W 0
0 is a shear-reflection,

fixed along J0; then ðGcÞ2 ¼ id : U0 ! U0 because p
�1ðU0Þ ¼ U0 [U 0

0 (modulo 2�q-
periodicity in t ): trajectories leaving x ¼ c with initial state ðv; �Þ ¼ w close to
ðv0; �0Þ ¼ w0 and with v 6¼ 0 return to w after passing through x ¼ c once with
non-zero speed.

413Impact oscillator

Figure 10. Action of Gc near a simple point w0 2 L0.
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This completes the local description of Gc at single fold points of P� and simple
points of L0. Next we turn to cusp points of P� and corresponding tangency points of
L0.

(2a) Single cusp points
Let w0 2 P� \�þ be a single cusp point, with p�1ðw0Þ \H ¼ f�zz1g. Choose U0 suffi-
ciently small so that the connected component H1 of p

�1ðU0Þ \H containing z1 is a
smooth arc of fold points of pc apart from the cusp point at z1.

The projection pc has a cusp singularity at z1, so F is discontinuous along one
branch of the cusp of P� at w0 (although not at w0 itself). The connected component
U1 of p

�1
c ðU0Þ containing z1 is a neighbourhood of z1, and if U0 is small enough the

set U1 \ p�1ðPÞ is the union of a pair of smooth arcs H1 ¼ U1 \H and K1 with
quadratic tangency at z1. Now ’c is a local diffeomorphism at z1 by Proposition 6,
and ’cðH1Þ ¼ J1 � L0 ; hence ’cðK1Þ ¼ J 0

1 is an arc in �� [ L0 quadratically tangent
to L0 at w1. From the geometry of the cusp we see that F takes the two branches of
U0 \ P� at w0 to two arcs of a C1 (but not C2) curve in Vc passing through z1: one is
an arc of H1 while the other is an arc of K1. Thus Gc takes U0 to a subset of an open
neighbourhood of w1 bounded by two arcs of a C1 (but not C2) curve in � passing
through w1 2 L0: one arc is a subinterval of J1 (included) while the other is an arc of
J 0
1 (not included). See figure 11.

(2b) Tangency points of L0

Let w0 2 L0 be a tangency point. At w0 we have _xxc ¼ 0, €xxc ¼ 0 and from the corre-
spondence principle we know that w1 is a cusp point (unless w1 ¼ w0) and that ’c has
a ‘cusp’ singularity at z1=2H. We now put together this information on F at w0 and ’c

at z1=2H to describe the action of Gc on a neighbourhood of the tangency point
w0 ¼ ð0; �0; 0Þ. For definiteness we take xð3Þc ðw0Þ > 0 (so vcð�0; tÞ has a maximum at
t ¼ 0) and a 0

cð�0Þ > 0 (so ð@=@�Þvcð�0; 0Þ < 0), although the geometrical description
would be analogous in other cases.
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Figure 11. Action of Gc near a cusp point w0 2 P�.
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Choose U0 small enough so that the connected component of p�1ðU0Þ \H con-
taining z0 is the union of an interval J0 of L0 and a smooth arc H0 of H meeting only
at z0 ; write P0 ¼ pðH0Þ which is a smooth arc of P quadratically tangent to L0 at w0

from the side v > 0 . Let P�
0 denote the subarcs of P0 with � greater than or less than

�0, respectively.
From the geometry of Vc near z0 (recall section 2) we see that F is discontinuous

along L0 and along P�
0 , so we shall consider individually the three connected com-

ponents of the complement of L0 [ P�
0 in U0. We have already noted:

(1) Gcðw0Þ ¼ w1 is a cusp point of P� \ ��

and we also have

(2) GcðP�
0 Þ ¼ Jþ

0 , an open interval ð�0; �þÞ of L0 for some �þ > �0.

Let D denote the open subset of U0 \ �þ bounded by P�
0 and the interval

J�
0 ¼ f� 2 J0 : � < �0g. Then

(3) GcjD [ P�
0 has an inverse fold along P�

0 , and
(4) close to J�

0 the diffeomorphism GcjD is the restriction of a local shear-reflec-
tion that is the identity on J�

0 , although Gc itself is discontinuous along J�
0 .

See figure 12 which indicates the contours � ¼ const. and _xxc ¼ const. in D, as well as
their images under Gc. The latter images are of course the straight lines v ¼ const.,
while the former images are curves transverse to Jþ

0 along the distinguished direc-
tion.

Next we consider the open set E ¼ U0 \��, which we may take as GcðDÞ.

(5) GcjE is the restriction of a local shear-reflection along Jþ
0 , although Gc itself is

discontinuous along Jþ
0 . In contrast, Gc is continuous on E [ J�

0 and is a fold
along J�

0 (compare (1b) above) with GcðJ�
0 Þ ¼ Pþ

0 .

415Impact oscillator

Figure 12. Action of Gc near a tangency point w0 2 L0.
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Finally, it remains to consider the action of Gc on the subsets Cþ;C� of U0

bounded by Pþ
0 together with Jþ

0 ;P
�
0 , respectively. We may take Cþ ¼ GcðEÞ. Let

C ¼ Cþ [ C�.

(6) GcðCÞ is an open neighbourhood of the cusp point w1 with one branch Q1 of

the cusp of P� at w1 deleted; here ~CCþ ¼ GcðCþÞ lies ‘inside’ the cusp while
~CC� ¼ GcðC�Þ lies ‘outside’.

(7) GcjC [ Jþ
0 has a fold along Jþ

0 with GcðJþ
0 Þ ¼ Q1 , and is the restriction of the

diffeomorphism ’c � ðpjU1Þ�1 on a neighbourhood of P�
0 , where U1 is a neigh-

bourhood of z1 in Vc . The second branch of the cusp at w1 is Q2 ¼ GcðPþ
0 Þ.

See figure 12.

(3a) Transverse double points

Let w0 be a transverse double point with p�1ðw0Þ \H ¼ f�zz1; �zzkg with 1 < k. Choose

a neighbourhood U0 of w0 small enough so that for i ¼ 1; k the connected com-

ponents of p�1ðU0Þ \H containing zi are smooth arcs Hi that project by p to smooth

arcs Pi of P
� \ �þ intersecting transversely at w0 .

Since j ¼ 1 we have w1 2 L0 and (as in (1a)(ii) above) the map GcjU0 is discontin-

uous along the arc P1 through w0. Writing U0 ¼ Uþ
0 [ P1 [U�

0 as in (1a), the restric-

tion GcjUþ
0 [ P1 is an inverse fold along P1, with J1 ¼ GcðP1Þ an open interval of L0.

The image of Pk \ ðUþ
0 [ P1Þ under Gc is ~PPk \ ð�� [ L0Þ where ~PPk is an arc of P

through w1 transverse to L0; the shadow side of Pk is taken to the shadow side of ~PPk.

The effect of Gc on U�
0 will differ according as k ¼ 2 or k > 2.

If k > 2 then F jU�
0 is the restriction of the diffeomorphism ðpjU2Þ�1 : U0 ! U2, so

GcjU�
0 is the restriction of a diffeomorphism U0 ! W2 ¼ ’cðU2Þ. Let

Kl
2 ¼ U2 \ p�1ðPlÞ for l ¼ 1; k. Then GcðPk \U�

0 Þ is the free side W�
2 of

J1
2 ¼ ’cðK1

2 Þ in W2, and GcðPk \U�
0 Þ ¼ ~PP 0

k \W�
2 where ~PP 0

k is an arc of P� intersect-
ing J1

2 transversely at w2 2 ��. See figure 13(i).

If k ¼ 2 then GcjU�
0 is discontinuous along the arc P2 \U�

0 , which separates U�
0

into two open sets U�þ
0 and U��

0 on the shadow and free sides of P2, respectively.

Now F jU��
0 is the restriction to U��

0 of ðpjU3Þ�1 : U0 ! U3, and Gc takes U
��
0 to an

open subset W��
3 of W3 ¼ ’cðU3Þ bounded by two arcs of P� through w3 2 �� and

on the free side of both arcs. (If z3 	 z0 so w3 	 w0 then GcjU��
0 is the identity map.)

On the other hand U�þ
0 [ ðP2 \U�

0 Þ is taken to an open subset of W2 \ ð�� [ L0Þ
bounded by an arc of P through w2 (transverse to L0) and an interval of L0, the latter

being included. An inverse fold for Gc occurs along ðP2 \U�
0 Þ. See figure 13(ii).

(3b) Transverse points of L0

Let w0 2 L0 be a transverse point with p�1ðw0Þ \H ¼ f�zz0; �zzjg. Assume U0 chosen

small enough so that the connected component Uj of p
�1ðU0Þ containing zj meets H

in a smooth arc Hj that projects diffeomorphically by p to a smooth arc Pj of P

intersecting J0 transversely at w0.

As in case (1b) above, we assume acð�0Þ < 0. Then GcjUþ
0 is the restriction of a

diffeomorphism that is to first order a shear-reflection fixed along J0. Hence

GcðPj \Uþ
0 Þ is the intersection of W 0

0 \�� (which we can take to be U�
0 ) with an

arc of P through w0 and transverse to L0 ; this arc must therefore be Pj \U�
0 as Gc

preserves P by Proposition 9.

To see the effect of Gc on U�
0 we consider separately the cases j > 1 and j ¼ 1.

416 D. R. J. Chillingworth
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(i) j > 1
The restriction of Gc to U�

0 [ J0 is the restriction of a fold map with singular set J0. A
typical arc through w0 and transverse to J0 is taken by Gc to an arc tangent to P� at
w1 . The exceptional arcs are those whose tangent at w0 is in the direction
p kerD’cðz1Þ ¼ kerWðz1Þ, these being taken to arcs transverse to P� at w1 (that
is, transverse as 1-manifolds: as parametrized curves their speed becomes zero at
w1). Since from the Correspondence Principle (see (5)) self-intersections of P� at fold
points are always transverse unless they correspond to Morse points on L0 as in (2b)
in which case they are quadratic, it follows that Pj must be just such an exceptional
arc. See figure 14. This reflects the geometry already seen in (3a) above, as Pj can be
seen as the image under an inverse fold of an arc transverse to P� at w�1. A similar
argument applies at every zi 2 p�1ðw0Þ with zi =2H, replacing Fc by a local right
inverse to pjVc near zi. Thus we have the following result.

Proposition 13. If w0 is a transverse point of L0 then the branch of P through w0

transverse to L0 is tangent at w0 to p kerD’cðziÞ ¼ kerWðziÞ , this direction being the
same for every zi 2 p�1ðw0Þ with zi =2H.

417Impact oscillator

Figure 13. Action of Gc near a transverse double point w0 2 P�: (i) k > 2; (ii) k ¼ 2.
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(ii) j ¼ 1
Both the maps pc and ’c exhibit fold singularities at z1 with their singular sets
mutually transverse. Thus Gc near w0 is the result of composing an inverse fold
with a fold. We have that GcjU�

0 is discontinuous along P1 \U�
0 , which separates

U�
0 into two open subsets U��

0 and U�þ
0 with U�þ

0 on the shadow side of P1. Then
Gc takes U

��
0 to an open subset of W2 bounded by two transverse arcs of P� through

the transverse double point w2 2 P� \�þ. If z2 2 N and z2 6	 z0 then F jU��
0 is the

restriction to U��
0 of the diffeomorphism ðpjU2Þ�1 : U0 ! U2 ; if z2 	 z0 so w2 	 w0

then Gc is the identity map on U��
0 . Compare case (1b) above.

The arc P�
1 ¼ P1 \U�

0 is taken by Gc to an arc J�
1 of J1 � L0 with an endpoint at

w1 ; an arc Jþ
0 of J0 � L0 with endpoint at w0 and on the shadow side of P1 is taken

to an arc J 0
1 of P \ �þ with endpoint at w1 which by Proposition 13 is transverse to

L0. The map Gc takes the open set U�þ
0 of U�

0 bounded by P�
1 ; J

þ
0 to an open set in

Wþ
1 ¼ W1 \ �þ bounded by the arcs J�

1 and J 0
1, exhibiting a fold along Jþ

0 � L0 and
an inverse fold along P�

1 . See figure 14.

Remark 3. A local model for a pair of folds with transverse singular sets is the pair
of maps R2 ! R

2 given by ðx; yÞ 7! ðx2; yÞ and ðx; yÞ 7! ðx; y2Þ, and in this case the
inverse of one composed with the other takes the form ðu; vÞ 7! ð ffiffiffi

u
p

; v2Þ in the
positive quadrant. We cannot, however, assume that Gc has exactly this form near

418 D. R. J. Chillingworth

Figure 14. Action of Gc near a transverse point w0 2 L0: (i) j > 1; (ii) j ¼ 1.
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w0 as there may be no coordinate change on Vc near z1 that takes both folds to their
standard forms simultaneously (Teixeira 1982, Kurokawa 2003).

7. Global considerations

For a system such as (2) with ! 2 Q and for a given choice of clearance c the
apparent outline Pc (consisting of the part P�

c where v > 0 together with the �-axis
L0) separates the plane � into a finite number of complementary regions. In other
cases this description is still adequate if we bound the time that would be allowed to
elapse under the ‘free’ dynamics of (1). The dynamics of Gc can then be regarded as a
re-arrangement of these regions with a diffeomorphism on each open region, but
with discontinuities and singularities along L0; and along some of the boundary arcs
that comprise P�

c . In this paper we have discussed some of the geometry of this
decomposition of Gc. To construct the dynamics of the impact oscillator it is then
necessary to compose Gc with the restitution map R. Certain local features of this
picture have been previously used by other authors (Budd and Dux 1994a,b) to show
mechanisms for interesting dynamical behaviour such as ‘chatter’, and global fea-
tures are used by Dippnall (2003) to detect horseshoes. We propose this overall
geometric description, in which the complementary regions to Pc form a kind of
Markov partition (Adler 1998) for the dynamics, with local dynamics near disconti-
nuities as partially described in this paper, as a versatile setting for future study of
impact oscillators (1) and their generalizations.

8. List of notation

c x-coordinate of the obstacle
Fc first-hit map �c ! Vc

Gc ’c � Fc

Hc fðv; � ; tÞ 2 Vc : _xxðc; v; � ; tÞ ¼ 0g
Ic R � Gc : the dynamical system to be studied
Lk fðv; � ; tÞ 2 R

3 : ðv; tÞ ¼ ð0; k�Þg
L0 �-axis
p projection ðv; � ; tÞ 7! ðv; �Þ
pc restriction of p to Vc

Pc pðHcÞ= apparent outline of Vc in t-direction
R restitution map � ! �
v initial velocity
vc function of ð�; tÞ whose graph is V 0

c near L0

Vc impact surface fðv; � ; tÞ 2 R
3 : xðc; v; � ; tÞ ¼ cg

V 0
c sheet of Vc passing through L0 other than �

xðc; v; � ; tÞ solution to (1) with intial data ðc; v; �Þ
xcðv; � ; tÞ xðc; v; � ; � þ tÞ

’c re-set map Vc ! �
� ðv; �Þ-plane
�c subset of � for which future impact exists
� initial phase.
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