This article was downloaded by: [University of Southampton Highfield]

On: 8 November 2010

Access details: Access Details: [subscription number 918674995]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

S .

BEEs | 4EE-EIT

Dynamical Systems
Publication details, including instructions for authors and subscription information:
s RANPNNTTN = R=S SISl hitp://www.informaworld.com/smpp/title~content=t713414890

D.R.]. Chillingworth

Online publication date: 03 June 2010

@ Taylor b Frarcis

To cite this Article Chillingworth, D. R. J.(2002) ", Dynamical Systems, 17: 4, 389 — 420
To link to this Article: DOI: 10.1080/1468936021000041654
URL: http://dX.dOi.Org/IO.1080/1468936021000041654

PLEASE SCROLL DOWN FOR ARTICLE

Full terns and conditions of use: http://wwinformworld.conlterns-and-conditions-of-access. pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clains, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713414890
http://dx.doi.org/10.1080/1468936021000041654
http://www.informaworld.com/terms-and-conditions-of-access.pdf

18: 06 8 Novenber 2010

[ University of Southanpton Hi ghfield] At:

Downl oaded By:

DYNAMICAL SysTEMS, VOL. 17, No. 4, 2002, 389—420 Taylor & Francis

Taylor & Francis Group

Discontinuity geometry for an impact oscillator

D. R. J. CHILLINGWORTH

Department of Mathematics, University of Southampton, Southampton
SO17 1BJ, UK

Abstract. We use methods of singularity theory to classify the local geometry of the
discontinuity set, together with associated local dynamics, for a discrete dynamical
system that represents a natural class of oscillator with one degree of freedom
impacting against a fixed obstacle. We also include descriptions of the generic transi-
tions that occur in the discontinuity set as the position of the obstacle is smoothly
varied. The results can be applied to any choice of restitution law at impact. The
analysis provides a general setting for the study of local and global dynamics of
discontinuous systems of this type, for example giving a geometric basis for the
possible construction of Markov partitions in certain cases.

Received 16 May 2002

1. Introduction

An impact oscillator (sometimes called a ‘vibro-impact system’) here consists of a
system of ordinary differential equations in which the ‘free’ dynamics are interrupted
by an obstacle, together with a given ‘restitution rule’ for describing the dynamics
immediately after impact with the obstacle. A typical system of this kind with one
degree of freedom takes the form

4 £(x,%) = g(1) (1)

for x € R, where we assume f and g are smooth functions (meaning C* or analytic)
and g is periodic with period T > 0, and where the obstacle is placed at x = ¢ with
restitution rule that x is replaced by —rx for constant 0 < r < | whenever a trajec-
tory reaches x = c¢. As usual the dot denotes differentiation with respect to . An
important particular case is the linear system

X+ x = cos wt (2)

with0 <w# 1.

The geometric analysis that we give in this paper can be applied to quite general
types of interaction of the obstruction with the ‘free’ dynamics of (2) such as, for
example, the presence of a thin resistant layer at x = ¢ which does not cause the
velocity v to change sign but merely replaces v by rv with r > 0. The purpose of our
analysis is to bring out the primary geometric role of the ‘obstacle’ at x = ¢ in the
overall phase space dynamics: after this, the imposition of any particular rule for
interaction with the obstacle is a second step which determines how our geometric
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information is to be used to help describe the dynamics. Indeed, taking r = 1 allows
us to reconstruct most of the original free dynamics, an observation worth keeping in
mind in what follows. Our results apply to fixed values of the ‘clearance’ ¢ and also
describe the transitions that take place as ¢ is varied.

The main ideas of the paper are as follows. After straightening out the flow for (1)
we describe in sections 2 and 3 a 2-manifold (almost) in R’ that represents the
impacts of the trajectories of (1) with the obstacle x = ¢: we call this the ‘impact
surface’. The dynamics of the impact oscillator are then represented by a discrete
dynamical system obtained by choosing initial data (velocity and phase) at a point
where x = ¢, proceeding parallel to the f-axis until meeting the impact surface, re-
setting the time to ¢ = 0, applying the restitution rule and then repeating the process.
This involves studying (sections 4 and 5) the geometry of two maps from the impact
surface to the plane of initial data, namely the projection parallel to the f-axis (for
which we need to understand its discontinuous inverse) and the time ‘re-set’ map. We
use methods of singularity theory to analyse the geometry of both these maps under
explicit generic assumptions on (1). The dynamics for the impact oscillator can then
in principle be constructed (sections 6 and 7) from this information together with the
restitution rule. A list of notation is given in section 8.

There is an extensive literature on impact oscillators which we do not attempt to
survey here. Useful references include Nordmark (1991, 1997), Ivanov (1993, 1994),
Bishop (1994), Budd and Dux (1994 a,b), Chin et al. (1994), Casas et al. (1996),
Babitsky (1998), Foale and Bishop (1992) with their own bibliographies to which
the interested reader is referred. The first author to approach the geometry of dis-
continuities in a systematic way was Whiston (1987, 1992) whose pioneering
approach was the inspiration for the present work. In this paper we outline the
main geometric results; in a further paper (Chillingworth 2003) some examples
and specific applications to dynamics are given.

2. The impact surface in phase space
The natural phase space for the study of the system (1) is R’ with coordinates
(x,y,u) = (x,%,1) in which the system becomes a first-order system

xX=y
y=—f(xy)+g) ;. (3)
i=1

The standard way to investigate the dynamics is to study the time-7 map
(x0,y0) — (x(T),y(T)) where (x(z),»(t)) = (x(¢), x(¢)) denotes the solution to (1)
with initial data (x(0),y(0)) = (xg, ). However, as observed by Shaw and Holmes
(1983), Whiston (1987), Foale and Bishop (1992), Bud and Dux (1994a) and others,
in the case of an impact oscillator it is more useful instead to work in the plane

Yo ={(x,x,1) eR : x=c}

and then to study the discrete dynamical system on (most of) ¥, generated by the
composition

I:ROG:EC—>EC
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where G : X, — X, is given by following the dynamics of (3) with initial data on X,
until the trajectory hits ¥, the next time (if at all), and R is the ‘restitution map’
taking y to —ry or other appropriate rule.

The map G is discontinuous at points of S = G~ (X2) where ¥ = X, N {y = 0} : if
a trajectory ‘grazes’ 3. at z (that is if it meets >, at z € E? where X # 0) then nearby
trajectories may miss X in a neighbourhood of z and not hit ¥, until a considerable
time later (if at all). Therefore, as emphasized by Whiston (1987), the dynamical
behaviour of the system is crucially dependent on the nature and position of the
‘discontinuity set’ S and its inverse iterates IL"(S) forn=1,2,3,.... In what follows
we give a local and general global geometric description of the discontinuity set S (in
a slightly different setting) for the system (1) under generic assumptions on f and g.
For the linear system (2) we give more specific information. We also describe the
changes that the discontinuity structure undergoes as the clearance parameter ¢ is
varied. Some of the ways in which this geometric information gives insight into
various aspects of dynamical behaviour are also analysed.

Our approach is based on viewing the dynamics as being generated not by families
of curved trajectories meeting the plane ¥, in R® but rather by families of straight
lines intersecting a corresponding curved surface. This allows us to use methods of
singularity theory as applied to the study of apparent outlines (apparent contours).
We now give the details of this ‘straightened-out’ interpretation.

Let x(c,v,7;t) denote the solution to (1) with initial data (x,x) = (¢,v) when
t = 7. For fixed ¢ € R define the ‘impact surface’ V, as

V.={(v,7;1) € R’ : x(e,v, 73T+ 1) = c}.
Observe that the plane
M= {(v,7;1) eR’: 1 =0}
is automatically part of V.. The projection
PR = R*: (v, 750)— (v,7)
plays a major role in this paper, and we identify IT with its image under p, that is the
(v, 7)-plane R?. We write
pe=p|V.:V.—1

and in what follows we use known generic properties of maps from a 2-manifold to a
plane in order to shed light on the structure of p...

The straight line p~' (v, 7) intersects V, at points whose r-coordinates are the times
t € R at which the trajectory of (1) starting at x = ¢ with initial velocity v at time 7
meets the obstacle at x = c.

There is a natural map ® : R* — R* corresponding to ‘re-setting the initial data’,
namely

D(c,v,15t) = (x(e,v, 757+ 1), x(c,v, 757+ 1), T+ 1;0).
Then ®({c} x V,) C {¢} x R* x {0} and therefore writing ®(c,z) = (¢, ¢.(z);0) for
z € V, gives a map
e Ve — R?

which we call the ‘re-set map’ as it represents re-setting (X, 7 + ¢) to the new initial
data for velocity and phase at points of V. (where x is automatically re-set to c).
Thus ¢, = ®.|V, where
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®,:R* = R*: (v,730) = (xX(c, v, 751), 7+ 1).

For (v,7) € I let F.(v,7) be the point of p~'(v,7) N ¥, with the smallest positive 7-
coordinate, provided this exists. We assume that p_l(v, T)N V. is a discrete set: we
disregard systems (1) where f and g are bizarre enough to give an accumulation point
of times ¢ at which a solution x(v, 7; ¢) takes the value ¢. Thus F.(v,7) is defined for
(v,7) € II. where

Hc:p(Vc\H) cl

and F, is a right inverse for the projection p. = p|V, . We call F, the “first-hit map’. In
many cases (and certainly in the case of (2) as we see below) IT, will be almost all of
II, as trajectories leaving x = ¢ can be expected to return. Observe that the map
G. =@, 0 F,: T, — II corresponds to the map G : ¥, — ¥, previously described.
Finally, write

R:TT—TI: (v,7)— (p(v),7)

where p(v) = —rv or some other appropriate formula. Using V', we can now give the
following geometrical characterization of the dynamics of the impact oscillator (1).

e Start at x = ¢ at time 7 with initial velocity v.

Proceed along the r-axis in the positive direction until the first point of inter-
section with V. ; that is apply the map F. .

Re-set initial data by applying the map ¢, .

Replace the new v by p(v); that is apply the map R.

Repeat the process.

In other words our model for the dynamics of the impact oscillator is the (dis-
continuous) discrete system

I.=RoG,:II, — IL (4)

The points of discontinuity in the resulting discrete dynamical system are among the
points (v,7) for which the straight line p~'(v,7) is tangent to (that is, fails to be
transverse to) the impact surface V,. In visual terms, these are the points such that
the line of sight along the #-direction is somewhere tangent to V., that is, they form
the ‘apparent outline’ or ‘apparent contour’ P. of V. viewed in the ¢-direction.
Technically, they are the ‘singular values’ of the projection p.=p|V.: V. — IL
The tangency points themselves are the ‘singular points’ of p,. (points where the
derivative fails to have rank 2). We call the set H, of singular points the ‘horizon’
of V. viewed in the t-direction; thus P. = p(H,). See figure 1 for a schematic illus-
tration.

The points of H, correspond to points in (x, X, 7)-space where the trajectories of (1)
‘graze’ (that is, are tangent to) the plane ¥, and these points are central to under-
standing the nonlinear behaviour of an impact oscillator. Many authors such as
Foale and Bishop (1992), Chin et al. (1994) and Nordmark (1997) have studied
aspects of the dynamical behaviour close to graze points. Our interpretation of
these points in terms of singularities of smooth maps sheds new light on some
existing results and extends these to situations with more complicated local phase
space geometry. We study the structure of the horizon H, C V, and the outline
P. C II, and describe their role in the dynamics both for a given fixed clearance ¢
and as c is allowed to vary. We give some key results for the general system (1), while
for the basic linear system (2) we provide a fairly complete analysis.
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Figure 1. Viewing the impact surface V..

3. Geometry of the impact surface
We have boldly called V, a ‘surface’ but have yet to see whether it deserves the name:
is V. indeed a 2-manifold? By definition V, = x,'(¢) where

xc(‘)77_3 t) ZX(C, VvT;T+t) (5)

and so V, is a particular level set of the function x, : R* — R. The Implicit Function
Theorem implies that V, will indeed be a smooth manifold in a neighbourhood of
every point where grad x,. does not vanish, i.e. the regular points of the function x, .
We call these points ‘regular points’ of V.. As we now see, all points of V/, where
v # 0 are regular points.

Let V¥ and V? denote the subsets of ¥, where v # 0 and v = 0, respectively.

Lemma 1. The set V? is a smooth 2-manifold in R>.

Proof. Consider the flow {¥,} on R’ generated by the autonomous system of
equations (3). Write ¢ = (x,y,u) € R?. Since ¥, takes trajectories to trajectories its
derivative DV,(q,) takes the vector ¢, to ¢, (where ¢, = ¥,(q,)); thus if ¢y = (¢, v, 7)
and ¢, = (v,a,1) we have

v 0 0 X 8\7 87’ X
DV, (qy).la 1 0 =] . Ox Ox (6)
Yo o Y
1 0 1
1 0 1

where x stands for x(c¢,v,7;7+¢) and 0/0r denotes partial differentiation with
respect to the third variable. Since DV,(q,) is invertible it follows that the second
matrix is non-singular when v # 0 and so in particular
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Ox, Ox, Ox, ox Ox . .
grad x.(v,7;1) = 5 5 o) = E,g—i—x,x

is not zero. |

There is another consequence of (6) that we shall use later.

Corollary 1.

Ox Ox
= (0,0 —,— ] =1(0,0).
(v,a) = (0,0) (979) (0,0)
Proof. Compare first and third columns of the matrices in (6). |

In the above a = %,.(0, 7; 0) which we denote more fully by a.(7). From (1) we have
ac(r) = =f(c,0) +g(7). (7)
Next we study the nature of ¥, at points of ¥'?. Denote the T-axis by Ly : then

Lo C V2 since Ly € I C V.. Moreover, on IT we have X.(v,7;0) = v which vanishes
on L.

Proposition 1.  Assume r = 2. In a neighbourhood of L, the impact surface V, consists
of the plane 11 together with a 2-manifold V! that is the graph of a smooth function
v =v.(1,t) satisfying

1

v.(1,0) =0, v.(7,0) = —EaC(T).

Proof. Since x, = ¢ on II we can write
XC(V, 75 Z) =c+ tyc(v, 75 Z)

in a neighbourhood of II, where y. = x, = vand y. = %xc onlII (i.e. £ = 0). Solutions
to x, = ¢ not on II are given by y. = 0. Since dy./dv = 1 # 0 we can (by the Implicit
Function Theorem) express y,. = 0 close to Ly as v = v.(7, t) for a smooth function v,
with v.(7,0) = —p.(7,0), which gives the result. O

Corollary 2. The contribution to the outline P, from V. intersects Ly at the points T
where a (1) = 0.

We shall study the behaviour of P, close to L, in more detail in section 4 below.

The structure of V2 away from L, seems harder to pin down. Instead, we make a
conjecture on generic behaviour. Let M be a smooth manifold and /,.: M — R a
smooth function varying smoothly with a real parameter ¢. By a ‘Morse point” we
mean a non-degenerate critical point x, € M of &, for some particular ¢ = ¢,, and
we say that the level set h;l(O) undergoes a ‘Morse transition’ at x, as ¢ passes
throughlco if (0/8,)h.(xy) # 0. We apply this to s, = x, — ¢ : II x R®* = R where
V.=h,(0).

Conjecture 1. It is a generic property of the pair of functions f,g in (1) that ¢ € Ris a
regular value of the function x.:R® \II — R for all ¢ € R except possibly for a
discrete set {c;}. Each c; is the value of x., at one or more nondegenerate critical
points of x.,, with V, undergoing one or more Morse transitions as ¢ passes through c; .

The conjecture is supported by the correspondence between Morse points of V/, on
1% and points of quadratic tangency of separate branches of P. which we discuss
further below, and the fact that the latter occur as generic codimension-1 phenomena
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in 1-parameter families of apparent outlines. As we see later, the conjecture holds for
the linear system (2).

3.1.  The linear system (2)
In this subsection we look at the precise structure of V. for the specific system (2).
We can do this since we have an explicit general solution.

Proposition 2.  The solution of (2) gives the following formula for x. :
X.(v,7;1) = Acost+ Bsint + ycosw(T + 1) (8)
where
A =c¢—ycoswr, B=v+wysinwr 9)

and vy = (1 —w?)™".

Proof. Immediate verification.

Corollary 3. The domain of definition 11, for the first hit map F, in the case of the
linear system (2) is given by

11, ifweQorlc <7
II, =< II\ {(0,2n7/w) : n € Z}, if wgQ and ¢ >~
I\ {(0, 2n+ )w/w) :n € Z}, if w¢Q and ¢ < —v

Proof. The only circumstances under which a trajectory (x,, X.) can leave x = ¢ at
t = 0 never to return (although it will return arbitrarily closely) are when w/27 is
irrational and the initial point is an extreme point on the x-axis, that is sinwr =0
and A has the same sign as coswr. These conditions characterize II, as stated. []

For (2) there are important symmetries in the system that manifest themselves as
symmetries of V..

Corollary 4. For (2) the impact surface V. has the following symmetries:

(i) The surface V, is invariant under translation 7— 1+ 27n/w. If w=p/q € Q
where p,q € N then V, is also invariant under translation t — t + 2qm.

(ii) The surface V_, is obtained from V, by translating T+— 1 + w/w and changing
the sign of v.

Proof. Clear from the expression (8), because (i) 2¢~ is an integer multiple of both
27 and 27/w, and (ii) x_.(—v,7 + 7/w; 1) = —x.(v, 73 ). O

Corollary 5. If w = p/q where p,q € N then the line segment in R’ parallel to the t-
axis from (v,7;0) to (v,7;27nq) intersects V. an odd number of times between these
points.

Proof. Any periodic trajectory meets x = ¢ an even number of times. O

For (2) we find from Proposition 2 that
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—< =sin¢
0
(10)
Oxe 0% _ a.(t)sint+vcost
or or
where
a.(t) = coswr — ¢ = X.(v,7;0). (11)

Therefore, grad x. = 0 precisely where
sint = a.(7)sint + vcost = x.(v,7;1) =0,

that is, v =0 (of course), t = km, k € Z and x,(0, 7; km) = 0. Investigating the geo-
metry of V, in the neighbourhood of these singular points will occupy the remainder
of this section.

For k € Z let L, denote the line = k7 in the (7;¢)-plane, that is,

Ly ={(v,7;1) eR* :v=0, t = kmr}.
At points of L, we have
x.(0, 73 k7) = (¢ — ycoswr)(—1)F + v cosw(r + k) (12a)

%.(0, 75 km) = asinwr(—1)" — asinw(r + k) (12b)
where o = w, so the points (0, 7;k7w) € V. N L, are points where the right-hand side
of (12a) is equal to ¢, and those where V., may be singular are those where also the
right-hand side of (12b) vanishes.

Recall from Proposition 1 that when k = 0 (that is = 0) we have Ly C V. and V,
fails to be a 2-manifold at all points of the line Ly : there it is the transverse inter-
section of two 2-manifolds, namely the plane IT and the manifold ¥/ that is a graph
v =v.(7, ). Therefore, we turn to cases where k # 0.

Case 1. k even.

With (x., x.) = (¢,0) equations (12) become
coswt = cos(wr + kwm) (13a)
sin wr = sin(wr + kwr) (13b)

respectively, which imply kw € 2Z. If w¢ Q this can never be satisfied, while if
w=p/q € Q where p,q € N then (13a), (13b) are satisfied simultaneously for all 7
when k is an integer multiple of 2¢g. In view of Corollary 4 we summarize this as
follows.

Proposition 3. There are no points on Ly for even k # 0 at which V, fails to be
regular, apart from (when w € Q) the images of Ly under the translations in the t-
direction which leave V, invariant. |

Case 2. k odd.

The equations to solve now are
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coswT + cos(wr + kwr) = 2cw/a (14a)
sinwr + sin(wr + kwr) = 0. (14b)
From (14b) we have one or other of the equalities
wT + kwr = —wr + 2w (15a)
wr + kwr =wr + 21+ )7 (15b)
for [ € Z. Now (15a) gives
WT:lwfkwg (16)
and then from (14a)
coswt = cw/a = ¢/. (17)

On the other hand, (15b) gives
kwr = 21+ )w
and then from (14a)
c=0.

Thus (14a) and (15b) can have simultaneous solutions 7 only when w is the ratio of
two odd integers, and then when ¢ = 0. However, (14a) and (15a) will have solutions
7 for every w for certain choices of c.

Therefore, we have two possible settings for solutions to (14) as follows:

I: ke2Z+1, kw¢2Z+1;

II: ke2Z+1, kwe2Z+1, ¢=0.
We consider these each in turn.

Type I k € 22+ 1, kw¢2Z + 1

From (15a), (17) we have wr, = /7 — kw(7/2) and ¢ = ¢, = ¢ where £ = coswr, .
We then find

1
X.(v, 7y + ok +u) = —vu — Ecwz(Zoz +dou+u*) + 0(3).
The quadratic terms are non-degenerate in (v, o; u) so the Morse Lemma implies that
(up to a local diffeomorphism which is the identity map to first order) the structure
of V, is locally that of a cone tangent to the v-axis. Notice moreover that for all
7 € R we have

X (v, i k) = y(coswr + cosw(T + k7)) — ¢

which does not involve v. Since | coswT + cosw(T + k)| has a local maximum value
of 2|¢| at 7 = 7, it follows that the impact surface ¥, contains a pair of lines inter-
secting L, and parallel to the v-axis that are created as ¢ passes through the value ¢
from above if ¢, ; > 0 or from below if ¢;; < 0. When ¢ = ¢, the line 7 =7, t = km
is a line of tangency of V. with the plane ¢ = km, so the local cone structure is not
only tangent to the v-axis but contains it entirely. As ¢ passes through ¢, the
structure of V. undergoes a Morse transition at (0, 7,; k7) between (locally) a hyper-
boloid of one sheet and a hyperboloid of two sheets. See figure 2.
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Figure 2. Morse transition for (2) at ¢ = ¢;;; note that the vertical line lies in the
surface V.

Type II: k €2Z +1, kwe2Z+1, ¢=0
Here we find

x. (v, T km

X,(v,T;kmw) = ¢ — coswt

( ) =
Xo(v, Ti k) = —v)
%e( )
X.(v,m5km) = v+ wsinwr

and so for all (v,7) € R* and ¢ € R we have

2
x.(v,T3km+u) = —ccosu — vsinu + u<%cosw7+%(wsinw¢) + O(u3)>.
Therefore in a neighbourhood of the plane ¢ = kx we may write V, = i~ (¢) where
h:R® — R is given by

2
h(v,;u) = (1 +cosu)™" (vsinqu u(%coswr+%wsinw¢ + 0(u3)>>

Thus ¥V, consists of the plane ¢ = kx (that is u = 0) itself together with a 2-manifold
;' intersecting this plane along the line L, (that is u = v = 0) and locally the graph
of an analytic function v = vy(7, u) given by
2
Y(u)vo(ru) = — Y coswr + “ (
2 6
where again () = u~ ' sinu (u # 0), 1(0) = 1. Clearly for wr # £(r/2) (mod 27)
we see (Ovy/0u)(t,0) #0 and the projection p|Vy is regular at (7,0). When
wr = *(7/2) (mod 27) we write 7 = +(7/2w) + o (mod 27/w) and find

2
W(u)vg <:|:2§+ o, u) =tw (%Uu + % + O(u3)>

so vy has a saddle point at (o,u) = (0,0), that is (7,¢) = (£7/2w,km) € L;. The
singular points of p|V, are given by 0v,/0u =0, that is, (to first order)
30+ 2u = 0, giving the apparent outline P, locally as vy = F3/8wo” 4+ O(c”) and
showing that P, locally is a curve with quadratic tangency to v = 0 from the v < 0
side at 7 = /2w and from the v > 0 side at 7 = —7/2w.

wsinwr) + 0(u’)
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Plane t=k

C<o

V.

C>o
Figure 3. Type II transition as ¢ passes through 0.

rU=o

C<o ¢=0 cro

Figure 4. Change in outline P, at a Type II transition.

As ¢ varies away from ¢ = 0 observe that V. no longer contains the plane ¢ = k;
contrast this with k = 0 where the plane II remains automatically part of V.. See
figure 3.

Closer analysis shows that P, unfolds into the disjoint union (locally) of a regular
curve and a cusped curve as ¢ moves away from zero in either sense: see figure 4.

An analogous description applies in the neighbourhood of 7 = —7/2w, related to
the above by the symmetry described in Corollary 4.

The full set of local transitions of V. that occur as ¢ varies can therefore be
summarized as follows:

Theorem 1. There are no transitions for |c| > |7|.

(i) As c descends through positive values cy; = ~ycos(kw(m/2) —In), where
ke€2Z+1and kw¢2Z + 1 and | € Z, there are simultaneous Morse (Type I)
transitions from two sheets to one sheet at corresponding points
(v, 13 8) = (0, —k(7/2) + l(7/w); k).

(7)) If w=p/qwhere p,q € 2N + 1 then as c descends through the value O there is a
Type II transition at (v, 7;t) = (0, 7/2w; gm) modulo t = 2qr.
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(iii) As ¢ descends through negative values c; = ~cos(kw(n/2) —Im) as in (ii)
there are simultaneous Morse (Type I) transitions from one sheet to two sheets
at corresponding points (v,7;t) = (0, —k(w/2) + I(7/w); k).

4. Geometry of the projection p. = p|V.

In section 2 we analyzed the local geometry of the impact surface V, for the
general system (1), in particular at points where it fails to be a smooth 2-manifold,
and in Theorem 1 we classified the local changes in topology for the system (2) as ¢
passes through certain special values.

We now turn to look closely at the set of singular points and the set of singular
values of the projection p. = p|V, : V. — II, at points where v may or may not be
zero. We give some results for the general system (1), and a more specific analysis
for (2).

First, some facts about apparent outlines in general. See for example Bruce
(1984a, b).

Theorem 2. Typically the only singularities exhibited by the projection into a plane of
a smooth 2-manifold in R® are curves of ‘folds’ with isolated ‘cusps’. See figure 5.

Typically the only transitions that occur in the projection of a 1-parameter family of
surfaces are ‘lips’, ‘beaks’ and ‘swallowtails’. See figure 6.

The word ‘typically’ can be expressed precisely in terms of openness and density of
relevant properties in certain function spaces: we omit a more formal statement. The
interpretation is that these phenomena are structurally stable (robust) under suffi-
ciently small perturbations, and that any other singular phenomena that may arise
can be perturbed into collections of these alone.

If the manifold is compact and the above conditions prevail then the singular set
will be compact and will in particular contain only finitely many cusps. In our case

AT
i
i

Figure 5. Curve of folds with a cusp in the apparent outline P,.
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S
[T
P

Figure 6. Beaks, lips and swallowtail transitions.

the manifold V/, is not compact. However, for the system (2) with w € Q it is periodic
in ¢t and hence compact modulo this period. The apparent outline P, is thus compact.
For (1) in general and for (2) with w¢ Q the apparent outline will not be compact
and may contain infinitely many cusps.

To obtain more than the most basic results for (1) we need to make some generic
assumptions about the functions /" and g.

Definition 1. The pair of functions f,g in (1) is ‘generic’ if the following holds:
f(c,0) is a regular value of the function g except possibly for a finitely many
values ¢; of ¢, these being regular points of f(-,0). Moreover, all critical points of
g with value ¢; are non-degenerate. Thus

g0)=1(c,0), c#¢ = g{)#0 (18)
and
!/ " af
8()=1(c,0), &()=0 = g()#0, - (c;0)#0. (19)

If the pair f,g is generic then as ¢ varies the set of solutions ¢ to g(z) = f(c,0)
undergoes no worse than quadratic (Morse) transitions.
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Recall that for (1) the set V7 is a smooth 2-manifold. We begin by studying
singularities of p | V.

4.1.  Behaviour of p. at points of V'
Let H; = H.N V; be the set of singular points of the map p.|V;, thus

H:={(v,5t) eI xR:v#£0,x.(v,7;t) — ¢ = x.(v,75¢) = 0}.

Theorem 3.
(1) For the system (1) the horizon H is a smooth 1-manifold.
(2) For the system (1) with the pair [, g generic, for ¢ # c¢; there is a fold singularity
at every point of H, except possibly for isolated cusp singularities. There are
swallowtail transitions as ¢ passes through c; .

Proof. Let z = (v,7;1) € R® and write

X.(2) = (x.(2), x(2))-
Then H, = X, '(c,0), and

ox., Ox, Ox,
DX.(2) ov  or Ot (20)
c\Z) =
ox, 0x, Ox,.
v or Ot
O Ox v %
0
-7 (21)
dv or

where here x = 0. From the proof of Lemma 1 we see that this matrix has rank 2
(regardless of x) provided v # 0. Hence H is a smooth I-manifold by the Implicit
Function Theorem.

The projection p; has a fold singularity at z € H precisely when %.(z) # 0 and a
cusp point at z when %.(z) = 0 but ¥.(z) # 0. From (1) we have

X(z)=0 & f(c,0)=g(2) (22)
and differentiating (1) with respect to ¢ at z we find that if ¥.(z) = 0 then
%, = g(1). (23)

Thus the genericity of f, g guarantees finitely many cusp points (modulo ¢t = T') for
¢ # ¢;, and also guarantees x£.4) # 0 when X, = X, = X, = 0 which can occur when
¢ = ¢;. The fact that swallowtail transitions occur comes from the Morse transitions
in solutions of g(7) = f(c,0) as ¢ passes through c¢;: we omit the details which can be
found in Chillingworth (2003). O

A fold point (v, 7;1) € V, for p, corresponds to a non-degenerate ‘graze’ (quadratic
contact) in the trajectory for (1) with initial data (v, 7) ; a cusp point corresponds to a
‘degenerate graze’ with cubic contact. A swallowtail transition is the coalescence of
two (cubic) degenerate grazes into one with quartic contact. Our expression of these



18: 06 8 Novenber 2010

Downl oaded By: [University of Southanpton Hi ghfield] At:

Impact oscillator 403

phenomena in terms of singularity theory is a way of describing how they respond to
(are ‘unfolded by’) the initial data v and 7.

Next we look at the behaviour of p, at points where V, intersects the plane v = 0.
From Theorem 3 we know that it is only here that H, can fail to be a smooth 1-
manifold. We first consider points of L.

4.2.  Behaviour of p. at points of Ly

Recall from (7) that along L, the impact surface V, consists of II intersected trans-
versally along L, by a sheet V. of V, that is the graph of a smooth function
v =v.(7,t). Thus for small |¢| the horizon H. consists of L, together with points
of V! where v, = 0. By Corollary (2) these occur on L, where a.(7) = 0.

Proposition 4. Let g(7y) = f(cy,0) so a,, (7o) =0, and suppose a, (9) # 0, that is,
&(19) =k # 0. Then v, has a non-degenerate saddle point at (7,0). The horizon H, is
parametrized locally as

(v,7: 1) = Gko® + 0(c"), 7 + 0, =30+ 0(0%)) (24)

so the outline P. has quadratic contact with Ly at 7y from the side v >0 or v <0
accordingly as () is negative or positive, respectively.

Proof. Since v,(7,0) = 0 we have (8%/97)v.(r,0) = 0. Implicit differentiation of
yc(Vc(Ta 1)77—; t) =0 (25)
and use of (1) gives

‘30(770) = _J}c<0a7-; 0) = _%ac(7—>7

5.(7,0) = —5,(0,7;0) = —1x19(0,7;0) — %< (0, 7;0),(7, 0)

ov
— [0+ 0,50 5r0) - hatr)
from (1), so if g(r9) = f(co,0) then a, () = 0 and ¥, (7,0) = —1k. Also
v,
or

and so the Hessian matrix for v, at (7,0) is
k(03
6\3 2)°

ve(mo +0,1) = —%(30t +7)+0(3) (26)

%,

(c,0) +

(70.0) = —Sal,(r) =~k

Thus if 7 = 75 + o we have

so V! cuts the plane v = 0 in a curve through (7,,0) with tangent direction (1, —3).
The horizon H,, given by v, = 0 satisfies t = —%a + 0(02) which yields (24). |

If g(79) =f(cy,0) and g(r,0) =0 then the 2-jet of v. at (7y,0) vanishes. If the
critical point 7y of g is non-degenerate and (9f/9c)(cq,0) # 0 we expect the coales-
cence or creation of two saddle points as in Proposition 4. This cannot happen
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without the involvement of other critical points of v.. As we now show, the geometry
is organised by a lips transition.

Proposition 5.  Let (79, ¢) satisfy g(1y) = f(co,0). Suppose

an) =0, Er)=m#0, (.00 7)

so that f(c,0) passes with non-zero speed through the non-degenerate critical value
2(79) of g as ¢ passes through c,. Then p V. : V! — 11 undergoes a lips creation or
annihilation as ¢ passes through c.

Proof. Further implicit differentiation of (25) yields
1
v (7,0) = =37(0,7:0) = — 7x¥(0,7;0)

= )= gm#0

at (¢, ) = (¢, 70), S0 the 3-jet of v, (79, -) does not vanish. We now invoke techniques
from singularity theory. After reparametrizing the r-axis (depending on (¢, 7)) by
t = (¢, 7;u) we may assume v, (7o, u) = u® and moreover (since a versal unfolding
of u’ has the form a + Bu + u’ and we have v.(7,0) = 0) that

vo(r,u) = B(e, T)u +u’®
for (¢, 7) near (cgy, 79) and small u, where 3 is a C* function with 3(cy, 79) = 0. We
find B(c, ) = (9v./0u)(1,0) = —1a.(7). Now consider
h(v,e,m3u) = —v + Ble, Tu+u’.

The condition for a lips transition in the outline of the graph v = v.(7, ¢) in the (v, 7)-
plane as ¢ passes through ¢ is (see Arnold 1986, Corollary 4.5) that the function ¢
has a non-degenerate critical point when restricted to the ‘spine’ of the discriminant
of h, that is the set ¥~'(0,0) where U : (v, ¢,7) — (v, 8(c,7)). This condition is thus
that the curve 3(c¢,7) = 0 has quadratic tangency with the 7-axis; this is precisely
what the conditions (27) guarantee. O

The geometry of the lips here has a particular form more complicated than the
‘standard’ picture from Arnold (1976), Bruce (1984b) and Bruce and Giblin (1985),
for example. Inspection of the graph of v.(7,-) for (¢, ) near (¢, 7y) shows that the
cusp points of the lips occur with opposite signs of v, and the lips themselves have
two points of quadratic tangency with v = 0 from opposite sides as in Proposition 4.
See figure 7. Compare Bruce (1989) where the geometry of outlines rather than just

2

N\ .
7

Figure 7. The swan configuration.
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their differential topology is explored in some detail. To reflect the slender elegance
of this form of the lips we call this a ‘swan’ configuration.

4.3.  Behaviour of p. at other points of V?

Assuming Conjecture (1) the only points away from L, that are not regular points of

V. are the Morse points for particular values of ¢ . This still leaves room for points of

1'% that are regular points of ¥, yet such that p, has a singularity more degenerate

than a fold. We conjecture that for most systems (1) this does not occur. However, it

turns out that for (2) this does happen as a result of the special symmetries in (2).
In the terminology of Theorem 3, at a singularity z of p, on V? we have

sint —asint 0
DX.(z) =

cost —acost X,
and so for the system (2) the point z can fail to be a fold for p, only if
sint =0, that is, ze Ly (28)
or
X(z2)=0 with ¢ L. (29)

The first case (28) has already been studied in our earlier analysis of V, itself at
points of L, therefore it remains to study H, at the points z which satisfy (29),
corresponding to degenerate graze points. It turns out that the geometry and sym-
metry of the solutions to (2) imply that if the trajectory of (3) for (2) has a degenerate
graze then any other graze in the same trajectory must also be degenerate: this can be
seen in Whiston (1992) as a special case of Proposition Al. The consequence is that
such z = (0, 7; r) must satisfy a.(7) = 0 and the local geometry of p, at z and of P, at
p.(z) become particularly degenerate. This corresponds to the fact that a cusp of P;
cannot cross a fold curve of P} but can meet P} only at another cusp, in contrast to
the typical behaviour of apparent outlines. See the Correspondence Principle below.

5. Geometry of the re-set map ¢, = ¢.|V,
The singularity structure of ¢, naturally has close analogies with that of p,.

Proposition 6. The map ¢, : V., — Il is a local diffeomorphism at all points of 'V and
is singular at all (regular) points of V. If z = (0,7:1) € V. and a, (1) # 0 then @, has a

fold singularity at z.

Proof. Atz = (v,7;¢) € Il x R we have

0%, 0% 0%\ (0% 0% .
DO (z)=| Ov Or Ot [ =|0v Or (30)
0 1 1 0 1 1

where x = x(c, v, 7;7 + t), and the matrix has kernel dimension 1 or 2 according to
whether D®,.(z) has rank 2 or 1, respectively. We consider the two cases separately.

(a) rank DP(z) = 2.
Here (0x/0v,0x/07) # (0,0) and ker D®,(z) is spanned by the non-zero vector
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_[(0x 0x Ox
“—<59‘5agﬁ
so p, = ®.|V, is singular precisely when u is orthogonal to grad x.(z), that is
Ox0x, O0x0Ox, Ox0x.
oy wor v

which reduces to det W = 0 where

8x@
w=we =9 9], (31)
o or

evaluated at z. From (6) we see this determinant vanishes if and only if the matrix on
the left-hand side of (6) is also singular, that is v=0. We have
dimker Dp.(z) = dimker ®.(z) = 1, and the conditions for a fold are that V. be
transverse to the plane {v =0} and that ker Dp.(z) not lie in that plane. Now
transversality fails only if Ox./0r = %, =0, i.e. dx/0r = x = 0. At a regular point
of V, we then must have 0x/dv # 0, so det W vanishes only if 9x/0r =0; by
Corollary (1) this happens only if a.(7) = 0. Likewise ker Dp.(z) lies in {v =0}
only if 0x/0r = a.(1) =0.

(b) rank D®(z) = 1.

Here (0x/0v,0x/01) = (0,0) and ker D®.(z) is spanned by {(1,0,0),(0,1,—1)}.
Clearly det W =0 so v =0. Now dimker Dp.(z) > | if and only if ker D®.(z) is
the tangent space to V, at z, that is if (1,0,0) and (0,—1,1) are both orthogonal
to grad x,, that is

ox, 0— ox, _ 0x,

o or ot
so (0x/dv,0x/0r) = (0,0). This cannot occur (in particular, dx/dv # 0) as the
second columns of both matrices in (6) are non-zero. Thus ker Dy, (z) = 1 has dimen-

sion 1 and is spanned by @ = (Ox/0r, —0x/0dv,0x/0v). It fails to be a fold only if
Ox /0t = 0 which (since 9x/0r = 0) occurs only if a.(r) = 0. O

Remark 1. At singular points z of ¢, the vectors {u, &} are linearly dependent since
det W(z) = 0; either vector (if non-zero) can be taken as a basis for ker Dy, (z).

Next we identify the cusp singularities of ¢,.

Proposition 7. At regular points z = (v, ;1) of V,\ H where v=20, a,(t) =0 and
al(t) # 0 the map o, : V, — 11 has cusp singularities.

Proof. From the proof of Proposition 6 we know that ¢, has a singularity at z that
is not a fold since (v,a.(7)) = (0,0) implies (0x/0r,0x/0r) = (0,0).

The condition for a cusp is that the tangency of ker Dy, (z) with {v = 0} be as non-
degenerate as possible, meaning here that the v-component of ker Dy, (z) have non-
zero derivative along V0 at z. As grad x,(z) = (9x/dv, x, %) with x # 0 the tangent
space to V. at z is spanned by (0,1,—1), so the cusp condition is dn/dr — i # 0
where m denotes (0x/07)(c,0,7; 7+ ¢) in case (a) or (0x/97)(c,0,7;7 + ) in case
(b). These reduce to 82)&/872 #0 (case (a)) or 82x/ o> £0 (case (b)). Now
differentiating (6) with respect to 7 at z yields
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or?  or
Dyy(q
or?  or
We have 0x/0r = 0 as a.(7) = 0, and also 9%/9r = 0 as follows from differentiating
(1) since (Ox/0r,0%/0r) = (0 0); thus a/(7) # 0 implies
Ox 0%
(W’W) # (0,0). (32)
Also, differentiating det W = 0 along V' gives
or* Oy
det =0.
or? Oy

In case (a) we have 9x/9dv # 0, so if the cusp condition fails so that 82)%/ o> = 0 then
Bzx/é}rz = 0, contradicting (32). In case (b) we have 9x/0v =0 and 9x/dv # 0 so
d*x/dr* = 0 which by (32) implies 8*x/d7* # 0. O

Finally, we can identify swallowtail transitions, using the generic assumptions
(18), (19) on f and g. We omit the proof; see Chillingworth (2003).

Proposition 8.  Assume the pair f, g is generic. Then a.(T) = a.(7) = 0 precisely when
¢ =c¢;, and as ¢ passes through c; there are creations or annihilations of pairs of cusps
of . at swallowtail transitions.

Using ¢, we can show that swallowtails are the only transitions that occur where
v # 0, in other words there are no lips or beaks transitions in this context.

Theorem 4. As ¢ varies there are no lips or beaks transitions occurring for p. on V.

Proof. On ¥V the map ¢, is everywhere a local diffeomorphism, and takes H, to the
line L.. At a lips transition H,. would be a single point, while at a beaks transition it
would be a pair of mutually tangent arcs: in neither case is it a 1-manifold. O

6. The composition G, = ¢, o F,

Recall that P. = p(H,) is the apparent outline of V, viewed in the ¢-direction, includ-
ing the 7-axis Ly, and corresponds to initial data (c,v,7) that give rise to grazing
trajectories. Clearly P. C II. except possibly for some points of L,. Write
M.\ P, =TI.\ (TI.N P,.). The first result is a straightforward consequence of the
definitions.

Proposition 9. For the general system (1) the map G, = .o F, : 11, — II has the
following properties:
(i) G, is injective;
(il) G(l.NP,)C P
(iii) G.(II,\ P,) C II\ P,.
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Proof. Statement (i) follows from uniqueness of solutions to (1): two solutions with
x = ¢ and different (v, 7) cannot next pass through x = ¢ at the same time and with
the same velocity. Statements (ii), (iii) record the fact that a given trajectory of (1)
either is or is not a grazing trajectory regardless of the choice of initial point. [

Since p, is a local diffeomorphism away from H, (which includes L), and in the
previous section we have seen that ¢, is a local diffeomorphism away from {v = 0},
we immediately have the following regularity result:

Proposition 10. The composition G, : 11, — Il is a local diffeomorphism at all points
of I\ P..

Observe the analogous roles played on the one hand by H, for p. and on the other
by V' for .. More precisely, let z € H, : then p.(z) € P, and ¢.(z) € Ly. If we P,
and w’' € L, we say that w and w' ‘correspond’ if there exists z € H, with
Pe(z) = w,p.(z) = w'. Under this correspondence, points of interesting geometry
on P, correspond to points of interesting geometry on L,. We pursue this principle
in greater detail below. First we set up some general terminology to describe local
behaviour of F, and p..

Let wy = (v,7) € IT; then p_ ' (wy) is a discrete set of points

p;l(WO) = {Zi e NC Z} € Vca Zi= (WO; ti)

with 75 = 0 and 1; < ; for i <j € N, where N denotes a finite or infinite interval of
integers. For the linear system (2) we have N = Z or (when w¢ Q) exceptionally
N = {0} by Corollary 3. By definition F.(wy) =z;. We occasionally blur the
distinction between wy € II and z, = (wy;0) € IT x R.

Write w; = ¢ (z;) € II and for each i € N let U; be the connected component of
p~'(Uy) NV, containing z;. Let W; = o.(U,).

In the case of (2) if w = p/q € Q then {z; : i € Z} is a finite set modulo 7 = 27qg and
{w; :i € Z} is a finite set modulo 7 = 27/w (see Proposition 3). In general for (1)
where V. is periodic in ¢ with period 7', in counting the points z; we shall count
modulo T, and write z; =z when ¢, — 1 € TZ, and also write w; = w; when
T, — T € (2m/w)Z where w is the frequency of the forcing function g. If z; = z;
then w; = wy. We write Z (or w) to denote the equivalence class of z modulo 7" (or
w modulo 27/w).

The Correspondence Principle
We now list significant geometric features of P, and their counterparts in L, under
the Correspondence Principle. To simplify notation we write F, = F, H, = H and
P, = P with a fixed value of ¢ understood, although we retain the suffix for V, as a
reminder.

We begin with ‘codimension-0’ features, that is, those which occur for an open set
of values of ¢ € R. First, the two features arising from local geometry of H :

(1) A ‘single fold point’ is a point wy, € P* such that p~' (wy) N H = {z;} where z;
is a fold singularity of p., that is z;€ H and X.(z;)# 0. Then
w; = (0,7;;0) € L, satisfies X (w; ) #0, that is a.(7;) #0. It is a point at
Wthh dv, /0t # 0 so the sheet V. of V, passes through L, with non-zero
slope: recall Proposition 1. The only branch of P. passing through w; is L.

We call any such point (0,7;0) € Ly where a.(7) # 0 a ‘simple point’ of L.
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(2) A ‘single cusp pomt is a point wy € P* such that p 1(wo) NH = {z;} with
X.(z) =0 but x¥(x ;) # 0; then w; € Ly has X.(w;) =0, x; S (w ;) # 0, that is
a. (1) =0, a)(r;) # 0 and so w; is a point where a branch of P has quadratic
tangency w1th L, by Proposmon 4. We call (0,7;0) € L, where
a.(t) = 0,a.(1) # 0 a ‘tangency point’ of L.

Next the only codimension-0 feature arising from global geometry of H:

(3) A point wy € P* is a ‘transverse double point’ if p~' (wy) N H = {z;, 2.} where
z;,z; are both fold singularities of p, with arcs H;, H; of H through z;, z,
respectively, such that the arcs P; = p.(H;) for i = j, k intersect transversely at
wy. Then w; € L,, and p71(1¢’ )N H consists of one point mod = T apart
from w; at which X, # 0. Likewise for wy. Since by Proposition 6 the map
@, 1s a local dlffeomorphlsm at z; there is a neighbourhood U; of z; in V, such
that U;Np~ P, is a smooth arc transverse to H; taken by ¢, to an arc of P

transverse to Ly at w;; likewise for wy.. We call w;, wy ‘transverse points’ of L.

Note that for (2) when ¢ = 0 and w = p/q € Q the reduction of the z-periodicity
from 27q to mg means in particular that all single fold points and all single cusp
points of P* become double points (mod 27¢q): this is reflected in the doubling of the
tangency points of Ly at +m/w (Type 1I transition) as ¢ passes through zero.

The three codimension-0 features are nicely illustrated in figures 6 and 7: at a
swallowtail transition an arc of single fold points acquires two cusp points and a pair
of transverse double points. Correspondingly, at a swan transition an arc of simple
points of L, acquires two tangency points and a pair of transverse points.

Now we turn to ‘codimension-1’ features, meaning those which typically occur at
isolated values of ¢. There is only one such local feature.

(4) A ‘swallowtail point® wy, € P* (arising for (2) when c¢=1) has
p Hwy)NH = {z;} where X.(z;) = 3 (z ;) = 0 but W (z z;) # 0; then w; € L,
has () = D) =0 but x@(w wy) # 0, that s a(r;) = al(r) =0,
a.(1;) #0. By Proposition 4 this means V. has cubic tangency with v =0
and generically a lips (swan) transition takes place at w;. We call w; a ‘swan
point’ of L.

There are two global codimension-1 features:

(5) A ‘tangency point’ wy € P* is such that p '(w))NH = {z;,z} with
X.(z;), X.(zx) # 0 and with arcs H;, H; of H through z;, z;, respectively, such
that P; = p(H,) for i = j, k are arcs of P* mutually quadratically tangent at w.
Then L; = ¢ (H;) is an 1nterva1 of Ly containing w;. The quadratic tangency
implies that near z; the set p, Y(P,) is either:

(a) a pair of arcs through z; transverse to each other and to H, or
(b) the single point z;.

In case (a) since ¢, is a local diffeomorphism at z; it follows from Proposition 9 that
P near w; consists of a pair of smooth arcs crossing each other and L, transversely at
w;. If Conjecture 1 holds this must correspond to a Morse point of ¥, at the point
(Wi, tx — 1;) € H® = HN V?. For the linear system (1) (recall Theorem 1) this means
c==c, W1th ¢y = ycoswmm/2 for some m € Z, and |t; — t;| = |m|m. We call w; a
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Figure 8. Tangency point w, € P* and corresponding Morse point w; € L.

‘Morse point’ of Ly. An analogous discussion applies to wy. See figure 8, in which
points of ¥V, are included to emphasize the local geometry.

In general for apparent outlines of surfaces in R® we expect either (a) or (b) to
apply to z; and z; independently. In the context of (2) it is only (a) that occurs. It is
unclear whether (b) can occur for (1); if so it would be necessary to include further
types of Morse point w; on L, including those which are the image under p of an
isolated point of H.

Remark 2. The fact that for (2) all double points of P on L, where a.(7) # 0 are
transverse points or Morse points shows that for this system all tangencies of P* with
itself must indeed be quadratic.

(6)

()

A ‘cusp/fold’ point w, of P* is a coincidence of a cusp point and a fold point:
thus p~'(wo) NH ={z,%} with %.(z)#0 but with %(z)=0 and
x5,3) (zx) # 0. Such points occur generically for apparent outlines and presum-
ably also for (1) but do not occur for (2) by Proposition Al in Whiston (1992).
As ¢ varies the generic local behaviour of P* is again a transition between zero
and two intersections, with corresponding transitions at the ‘double tangency’
point w; and ‘lips’ or ‘beaks’ point wy of L,. We omit the details.

In place of cups/fold points there is a codimension-1 phenomenon special to
the particular system (2) that would be expected to occur in the general system
(1) only in codimension 2, that is at isolated values of ¢ for certain discrete
choices of a further parameter in f or g.

A ‘cusp coincidence point’ wy € P* has p '(wy)NH = {z;,zx} with
X.(z;) = X.(x) = 0 and xE,3)(zj), x3)(x) # 0 : then w; and wy are points of
Ly corresponding to a double degenerate graze as described at the end of
section 4. We call these ‘cusp contact points’ of L. At these points the outline
P, has two branches quadratically tangent to L, and tangent to each other
with order 9/2. We refer to Chillingworth (2003) for further details.
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6.1. Some local geometry of G,
We now turn to study the behaviour of the map G, itself near its points of singularity
and/or discontinuity. These are the points of L, together with the points w, € P* for
which F.(wy) = z; € H. The local geometry of G. needs to be described on a case-
by-case basis, and for reasons of space we shall consider only single fold/simple
points and single cusp/tangency points, as well as transverse double points of P*
and transverse points of L. Further cases are studied in Chillingworth (2003).
For definiteness we focus on w, € P* N1II"; the description for P* N II~ is analo-
gous, with the sign of v reversed.
The following results are useful in keeping track of local geometry.

Proposition 11. Let z=(v,7;t) € H be a fold point for p, with
w=(0,74+1) = @.(z) € Ly. Then the image under Dy .(z) of ker Dp.(z) is spanned
by the vector (a,1) where a = %.(w) = a.(7 + 1).

Proof. Since ker Dp.(z) is spanned by (0, 0; 1) its image under Dy, (z) is spanned by
(¥.(2), 1) by Proposition 6, and X.(z) = X.(w) as ¢, simply re-sets the clock.
Definition 2. For w = (0,7) € L, the ‘distinguished direction’ at w is that spanned
by the vector (a.(7),0).

Proposition 12.  If z = (0,7;¢) € H with a.(1) # 0 then ker Dp.(z) = T.H.

Proof. The tangent space to H is spanned by a vector orthogonal to both grad x.
and grad x. with x, = ¢ and x. = 0. Such a vector is

o _ov ox
or’ 0Ov’ 0Oy

with W given by (31). At singular points of . we have det W = 0, and the first
vector above spans ker Dy,.

) + (0,0,det W)

As with all the figures in this paper, those which illustrate key features of G, below
are qualitative and not intended to be numerically accurate.

(1a) Single fold points

Let wy € P*NIIT be a single fold point, with H N p~'(w,) = {Z;}. Choose a suffi-
ciently small disc neighbourhood U, of w, so that the connected component U; of
p- ' U, containing z, intersects H in a smooth arc H, ; thus U, is folded by p along H,
which is mapped by p diffeomorphically to a smooth arc P, in II". We may assume
P, separates U, into two connected components U, = p(U;) and U, . We say that
Uy lies on the ‘shadow side’ of P, while Uy lies on the ‘free side’.

As z; € H we have wy € L, and F is discontinuous along P;. Assuming 2 € N
there is a neighbourhood U, of z, such that p|U, : U, — Uj is a diffeomorphism, and
K, =U, ﬁp_lPl is an arc through z, separating U, into two open sets U5~ with
p(UY) = Uy. Thus F|U; is the restriction to U, of the diffeomorphism
(p|Us)™" : Uy — U,. If 2¢ N then F|Uy is undefined.

In contrast p|U; : Uy — Uy is a fold. We have G.(Uy) = G.(Uj UP,UUy) =
0 (U UH, U Uy ) = W, UJ,UW; with J; an open interval of L, containing the
simple point w;, with W;" U J; an open neighbourhood of w, in the closed half-plane
II" U Ly, and with W, one of the two components into which O, = ¢.(K,) separates
W,. See figure 9.
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Figure 9. Action of G, near a single fold point w, € P*.

In the linear case with w = p/q € Q and z, = z, the above still holds although now
G,: Uy — W, =W, = U, is the identity map.

Note that G, : Uy — W5 is a diffeomorphism while G, : Uj U P, — W, U J; has
the geometry of what we may call an ‘inverse fold’ at all points of P;. In particular,
any path in Uy U P, transverse to P, at w € P, is taken by G, to a path with tangent
in the distinguished direction at G.(w).

(1b)  Simple points of L
At a simple point wy = (0,7)) € Ly we have (0/0t)v.(19;0) = —4a.(rp) # 0. To fix
matters we take a.(7)) < 0, the other case being completely analogous. The implicit
function theorem allows V. to be expressed locally as a graph t = u,(v,7), where
u.(v,7) here has the same sign as v. If Uy = Uj UJyU Uy is a sufficiently small
connected open neighbourhood of wy in II with Uy NII* = Ui and UyN Ly = J,
then F|UJ is just the restricion to U, of the diffeomorphism
FO= (plUuy)™" : Uy — Ug = (v,7) — (v, 75u,(v,7)) where Uj is a neighbourhood of
zo in V.. However, if 1 € N then F is discontinuous along J, and F|Uy U J, is
(for U, sufficiently small) the restriction to U, UJ, of the diffeomorphism
Fi=(pluy)™: Uy — U,

In the linear case (2) if z; = z, then F = F° on all of U,

We have described the action of F' on U,; we now describe the action of ¢, on
F(Uy). Since F(Uy) C Uy we need in particular to understand the action of ¢, on
Uj. Let W = . (U).

Lemma 2. The restriction ¢ |Uy : Uy — Wy is a diffeomorphism.

Proof. The tangent space to V, at z, is spanned by

{(0, 1;0), <—%a(,(70),0; l)}
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since (v./07)(wy) = 0 as Ly C V!, and
ker D®,.(zy) = span{(0,1; —1)}

as (0x,/01)(wy) = 0 since L, C V,. Therefore, o |V is a local diffeomorphism at z,
if and only if

det| —3ap 0 1 [#0,

where ay = a.(7). The value of the determinant is %ao which is non-zero as wy is a
simple point of L. O

Corollary 6. The map G.|Uy is the restriction to U; of the diffeomorphism
peo FO Uy — WG,

Note that ¢, o F° is the identity on J,. Therefore, to first order the effect of G, on
Uy is a shear in the direction of increasing 7 composed with a reflection in L, ; we
call this a ‘shear-reflection’. From Corollaries 6 and 5.1 we therefore see that G.|U, is
discontinuous along J;, being the restriction of a shear-reflection on Uy and a fold
on U, UJ,. See figure 10.

For (2) when z; = z, we have F|U, = F°|U, and G,|U, — W({ is a shear-reflection,
fixed along J; then (GC)2 =id : Uy — U, because pil(UO) = U, U U; (modulo 2mg-
periodicity in ¢): trajectories leaving x = ¢ with initial state (v,7) =w close to
(vo,79) = wp and with v £ 0 return to w after passing through x = ¢ once with
non-zero speed.

Figure 10. Action of G, near a simple point wy € L.
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This completes the local description of G, at single fold points of P* and simple
points of L. Next we turn to cusp points of P* and corresponding tangency points of
L.

(2a) Single cusp points

Let wy € P* N1II" be a single cusp point, with p~'(wy) N H = {z,}. Choose U, suffi-
ciently small so that the connected component H, of p~! (Uy) N H containing z; is a
smooth arc of fold points of p,. apart from the cusp point at z;.

The projection p. has a cusp singularity at z;, so F is discontinuous along one
branch of the cusp of P* at w, (although not at wy itself). The connected component
U, ofp;l (Uy) containing z; is a neighbourhood of z;, and if Uy is small enough the
set U, ﬂpil(P) is the union of a pair of smooth arcs H; = U; N H and K; with
quadratic tangency at z;. Now ¢, is a local diffeomorphism at z; by Proposition 6,
and o (H,) = J, C Ly; hence ¢.(K,) = J{ is an arcin Il U L, quadratically tangent
to Ly at w;. From the geometry of the cusp we see that F takes the two branches of
U, N P* at w, to two arcs of a C' (but not C?) curve in V, passing through z;: one is
an arc of H; while the other is an arc of K;. Thus G, takes U, to a subset of an open
neighbourhood of w; bounded by two arcs of a C' (but not C?) curve in II passing
through w, € L,: one arc is a subinterval of J; (included) while the other is an arc of
J{ (not included). See figure 11.

(2b) Tangency points of L

Let wy € Ly be a tangency point. At wy, we have x. = 0, X, = 0 and from the corre-
spondence principle we know that wy is a cusp point (unless w; = wy) and that ¢, has
a ‘cusp’ singularity at z;¢ H. We now put together this information on F at wy and ¢,
at z;¢H to describe the action of G, on a neighbourhood of the tangency point
wy = (0,79;0). For definiteness we take x5,3)(w0) > 0 (so v.(7g, ) has a maximum at
t =0) and a/(ry) > 0 (so (9/07)v.(1y,0) < 0), although the geometrical description
would be analogous in other cases.

A

Figure 11. Action of G, near a cusp point w, € P*.
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Choose U, small enough so that the connected component of p_l(Uo) N H con-
taining z, is the union of an interval J, of Ly and a smooth arc H, of H meeting only
at zq ; write Py = p(H,) which is a smooth arc of P quadratically tangent to L, at wy
from the side v > 0. Let P; denote the subarcs of P, with 7 greater than or less than
Ty, respectively.

From the geometry of V. near z, (recall section 2) we see that F is discontinuous
along L, and along P, so we shall consider individually the three connected com-
ponents of the complement of Ly U P, in U,. We have already noted:

(1) G.(wy) = wy is a cusp point of P* NI
and we also have
(2) G.(Py) = Jy, an open interval (7,7, ) of L, for some 7, > 7.

Let D denote the open subset of U, NIIT bounded by P, and the interval
Jo ={r€Jy: 7< 7} Then

(3) G.|D U Py has an inverse fold along Py, and
(4) close to Jy the diffeomorphism G.|D is the restriction of a local shear-reflec-
tion that is the identity on J, , although G, itself is discontinuous along J; .

See figure 12 which indicates the contours 7 = const. and x, = const. in D, as well as
their images under G.. The latter images are of course the straight lines v = const.,
while the former images are curves transverse to J; along the distinguished direc-
tion.

Next we consider the open set E = Uy N 11", which we may take as G.(D).

(5) G.|E is the restriction of a local shear-reflection along Jj , although G, itself is
discontinuous along Ji . In contrast, G, is continuous on £ U J; and is a fold
along J; (compare (1b) above) with G.(Jy ) = Py .

v
//
/
/
y -
N\E& ¢
-D*%b Wo T
\\ 1
N
- N / +
J, ~_E 7
A
AN
d \
’ \
2"‘ o
[C+ !
1 o !
Y c//
Ve

~ -

Figure 12. Action of G, near a tangency point wy € L.
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Finally, it remains to consider the action of G, on the subsets C*,C~ of U,
bounded by P; together with J; , Py, respectively. We may take C* = G.(E). Let
C=Cc"uc.

(6) G.(C) is an open neighbourhood of the cusp point w; with one branch Q; of
the cusp of P* at w; deleted; here C™ = G.(C") lies ‘inside’ the cusp while
C™ = G.(C) lies “outside’.

(7) G.|CUJ; has a fold along J;” with G.(J;) = Q,, and is the restriction of the
diffeomorphism ¢, o (p| Ul)fl on a neighbourhood of P, where U is a neigh-
bourhood of z; in ¥, . The second branch of the cusp at w, is O, = G.(Py).
See figure 12.

(3a) Transverse double points

Let w, be a transverse double point with p~' (wy) N H = {2,,%.} with 1 < k. Choose
a neighbourhood U, of w, small enough so that for i = 1,k the connected com-
ponents of p~' (Uy) N H containing z; are smooth arcs H; that project by p to smooth
arcs P; of P* NII" intersecting transversely at w .

Since j = 1 we have w; € L and (as in (la)(ii) above) the map G.|U, is discontin-
uous along the arc P, through w,. Writing Uy = Uy U P, U Uy asin (1a), the restric-
tion G.|U; U P is an inverse fold along P;, with J, = G.(P;) an open interval of L.
The image of P, N (U; U P,) under G, is P, N (TI_ U L) where Py is an arc of P
through w, transverse to Ly; the shadow side of P, is taken to the shadow side of Py.

The effect of G. on U, will differ according as k =2 or k > 2.

If k > 2 then F|Uy is the restriction of the diffeomorphism (p| Uz)f1 : Uy — U,, so
G.|Uy is the restriction of a diffeomorphism U, — W, = . (U,). Let
Ki=U,np '(P) for I=1k Then G.(P,NUy) is the free side W5 of
Jy = ¢ (K3) in Wy, and G.(P, N Uy) = P, N W5 where Pj is an arc of P* intersect-
ing J3 transversely at w, € II". See figure 13(i).

If k =2 then G.|Uy is discontinuous along the arc P, N Uy, which separates Uy
into two open sets U, " and U, ~ on the shadow and free sides of P, respectively.
Now F|Uj ™ is the restriction to Uy~ of (p|U3)71 : Uy — Us, and G, takes U, ~ to an
open subset W3~ of W3 = .(Us) bounded by two arcs of P* through w; € IT™ and
on the free side of both arcs. (If z3 = z; so w3 = w, then G.|U; ™ is the identity map.)
On the other hand Uy " U (P, N Uy ) is taken to an open subset of W, N (I~ U L)
bounded by an arc of P through w, (transverse to L) and an interval of L, the latter
being included. An inverse fold for G, occurs along (P, N Uy ). See figure 13(ii).

(3b)  Transverse points of L

Let wy € Ly be a transverse point with p~' (wy) N H = {2o,z;}. Assume U, chosen
small enough so that the connected component U; of p! (Up) containing z; meets H
in a smooth arc H; that projects diffeomorphically by p to a smooth arc P; of P
intersecting J,, transversely at wy.

As in case (1b) above, we assume a,(7y) < 0. Then G.|Uj is the restriction of a
diffecomorphism that is to first order a shear-reflection fixed along J,. Hence
G.(P;N Uy) is the intersection of Wy NII~ (which we can take to be Uy ) with an
arc of P through w, and transverse to L ; this arc must therefore be P, N U, as G,
preserves P by Proposition 9.

To see the effect of G. on U, we consider separately the cases j > 1 and j = 1.
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Figure 13. Action of G, near a transverse double point w, € P*: (i) k > 2; (ii) k = 2.

@Hj>1

The restriction of G, to Uy U J; is the restriction of a fold map with singular set J;. A
typical arc through w, and transverse to J, is taken by G. to an arc tangent to P* at
w;. The exceptional arcs are those whose tangent at w, is in the direction
pker Dp.(z;) = ker W(z,), these being taken to arcs transverse to P* at w; (that
is, transverse as l-manifolds: as parametrized curves their speed becomes zero at
wy). Since from the Correspondence Principle (see (5)) self-intersections of P* at fold
points are always transverse unless they correspond to Morse points on L as in (2b)
in which case they are quadratic, it follows that P; must be just such an exceptional
arc. See figure 14. This reflects the geometry already seen in (3a) above, as P; can be
seen as the image under an inverse fold of an arc transverse to P* at w_;. A similar
argument applies at every z; € p~' (wp) with z;¢ H, replacing F. by a local right
inverse to p|V, near z;. Thus we have the following result.

Proposition 13. If w, is a transverse point of Ly then the branch of P through w
transverse to Lq is tangent at wy to pker Dy (z;) = ker W (z;), this direction being the
same for every z; € pil(wo) with z;¢ H.
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@)

)

Figure 14. Action of G, near a transverse point wy € Ly: (1) j > 1; (il) j = 1.

(i)j=1

Both the maps p. and ¢, exhibit fold singularities at z; with their singular sets
mutually transverse. Thus G, near wy is the result of composing an inverse fold
with a fold. We have that G.|U; is discontinuous along P; N U, , which separates
U, into two open subsets U; ~ and U, © with U, * on the shadow side of P;. Then
G, takes U, ~ to an open subset of W, bounded by two transverse arcs of P* through
the transverse double point w, € P* NII". If z, € N and z, # z, then F|U, ~ is the
restriction to U, ~ of the diffeomorphism (p|U2)_1 Uy — Uy if 2 = z5 80 wy = wy
then G, is the identity map on U, . Compare case (1b) above.

The arc P; = P, N U, is taken by G, to an arc J; of J; C L, with an endpoint at
wy ; an arc J; of Jy C Ly with endpoint at w, and on the shadow side of P, is taken
to an arc J{ of PNII* with endpoint at w; which by Proposition 13 is transverse to
Ly. The map G, takes the open set U, " of Uy bounded by Py, J; to an open set in
W = W, N1I" bounded by the arcs J; and J|, exhibiting a fold along J; C L, and
an inverse fold along Pj . See figure 14.

Remark 3. A local model for a pair of folds with transverse singular sets is the pair
of maps R?> — R? given by (x,y)— (x*,y) and (x,y)— (x,»*), and in this case the
inverse of one composed with the other takes the form (u,v)— (v/u,v?) in the
positive quadrant. We cannot, however, assume that G, has exactly this form near
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wy as there may be no coordinate change on V. near z; that takes both folds to their
standard forms simultaneously (Teixeira 1982, Kurokawa 2003).

7. Global considerations

For a system such as (2) with w € Q and for a given choice of clearance ¢ the
apparent outline P. (consisting of the part P; where v > 0 together with the 7-axis
L) separates the plane IT into a finite number of complementary regions. In other
cases this description is still adequate if we bound the time that would be allowed to
elapse under the ‘free” dynamics of (1). The dynamics of G, can then be regarded as a
re-arrangement of these regions with a diffecomorphism on each open region, but
with discontinuities and singularities along L, and along some of the boundary arcs
that comprise P,. In this paper we have discussed some of the geometry of this
decomposition of G,. To construct the dynamics of the impact oscillator it is then
necessary to compose G, with the restitution map R. Certain local features of this
picture have been previously used by other authors (Budd and Dux 1994a,b) to show
mechanisms for interesting dynamical behaviour such as ‘chatter’, and global fea-
tures are used by Dippnall (2003) to detect horseshoes. We propose this overall
geometric description, in which the complementary regions to P, form a kind of
Markov partition (Adler 1998) for the dynamics, with local dynamics near disconti-
nuities as partially described in this paper, as a versatile setting for future study of
impact oscillators (1) and their generalizations.

8. List of notation
¢ x-coordinate of the obstacle
F. first-hit map I, — V,
G(’ ()0(’ © FC
H, {(v,7;t) eV, :x(c,v,7;t) =0}
I, Ro G, : the dynamical system to be studied
Ly {(v,7;0)eR:(v,1)=(0km)}
L, T-axis
p projection (v, 7;t)— (v,7)
p. restriction of p to V,
P. p(H,) = apparent outline of V, in ¢-direction
R restitution map II — II
v initial velocity
v. function of (7,¢) whose graph is ¥ near L,
V. impact surface {(v,7;1) € R* : x(c,v,7;1) = ¢}
V! sheet of V, passing through L, other than II
x(c,v, ;) solution to (1) with intial data (¢, v;7)
x.(v,1i0)  x(e,v, T+ 1)
p. re-setmap V, — II
IT (v,7)-plane
II, subset of II for which future impact exists
T initial phase.
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