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1. Introduction

A group G is said to split over a subgroup K if it admits a non-trivial
decomposition as an amalgamated free product G = A ∗K B or an
HNN extension G = A∗K . In [18], [19] Stallings showed that a finitely
generated group G splits over a finite subgroup if and only if G has
more than one end.

Stallings remarked in [18] that he was led to the proof by considera-
tion of Papakyriokopoulos’s sphere theorem for 3-manifolds which may
be understood in terms of minimal surface theory.

In [5] Dunwoody gave a geometric proof of Stallings’ theorem for
the class of (almost) finitely presented groups, based on a combinatorial
analogue of the least area surface technique. The principle advantage of
combinatorial least area surfaces (or their analogues, least weight tracks
in a 2-complex) is that their existence is trivially guaranteed without
appeal to Meeks - Yau minimal surface theory. On the other hand,
Meeks - Yau theory does guarantee (via the Meeks - Yau rounding trick)
that minimal surfaces cannot intersect transversly which is not true for
combinatorial minimal surfaces. Nonetheless Dunwoody developed a
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2 Graham A. Niblo

“cut and paste” technique for these objects which bypassed the diffi-
culty and allows one to prove the equivariant sphere and loop theorems
in the category of PL 3-manifolds as well as Stallings’ theorem. [3].

In the following statement of Dunwoody’s result H 1
c (X, Z2) denotes

cohomology with compact support and coefficients in Z/2Z. This co-
homology group measures the number of topological ends of the space
X.

THEOREM (Dunwoody) If G is a group acting properly discontinu-
ously on a locally finite 2-complex X with H1(X, Z2) = 0 and H1

c (X, Z2) 6=
0 then X contains a least weight track τ such that the orbit Gτ consists
of a disjoint family of translates of τ .

To obtain Stallings’ theorem one applies this theorem to the presen-
tation complex (the Cayley 2-complex) of the group. Since this complex
is simply connected H1(X, Z2) = 0 and the hypothesis that G has more
than one end translates into the fact that H1

c (X, Z2) 6= 0. There is a
tree dual to the pattern of tracks in the G-orbit of τ on which the group
acts with unbounded orbits and the edge stabilisers are the stabilisers
of the tracks. Since the tracks are finite and G acts properly these
stabilisers are finite and applying Bass-Serre theory one obtains the
required splitting of the G over a finite subgroup.

In order to generalise Dunwoody’s method to the class of finitely
generated groups one needs to construct an appropriate replacement
for the Cayley complex since it is not, in general, locally finite. With
a little more work Dunwoody’s method can be made to apply with
the less restrictive condition that the 2-complex should be locally finite
away from its 0-skeleton, but even this will not be enough to allow us
to use the Cayley complex in the proof.

The key idea in this paper is that we may use the 2-skeleton of
the Sageev complex, a contractible cubical complex which may be
associated to the group G. [14].

THEOREM Let G be a finitely generated group with e(G) ≥ 2. Then
there is a CAT(0) cubical complex X on which G acts, such that G
has one orbit of hyperplanes, each hyperplane is compact, hyperplane
stabilisers are finite, and G has an unbounded orbit.

A cubical complex is a cell complex in which each cell is identified
with a Euclidean cube of the appropriate dimension, and the glueing
maps are taken to be isometries. Such a complex admits a geodesic
metric and it is this metric which satisifes the CAT(0) inequality in the
statement of the theorem above.

In a cubical complex each cube contains a family of codimension-1
subspaces passing through its centre called midplanes; these restrict

Stallingstheorem.tex; 24/05/2002; 10:28; p.2



On groups with more than one end 3

to midplanes in each face. Passing from cube to adjacent cube the
midplanes match up to form immersed codimension-1 subspaces known
as hyperplanes. One can show that in a CAT(0) cubical complex each
hyperplane is a (totally geodesic) separating codimension-1 subspace
[11].

Although the 2-skeleton of the Sageev complex has almost all the
properties we need to apply Dunwoody’s technique directly there is
one technical difficulty introduced by the fact that the complex is
generically not locally finite. In particular one can no longer detect
ends of the complex using cohomology with compact support. However
by analysing the hyperplane structure of the complex one can show
that it is locally finite away from its 0-skeleton, and we will show how
to adapt Dunwoody’s technique to deal with complexes satisfying this
less restrictive condition.

The technique described in this paper can also be applied to obtain
a new proof of the following generalisation of Stallings’ theorem which
was known to Dunwoody and Roller [6]; it plays a key role in the proof
of the algebraic torus theorem [7]. The result was (re)proved in [10]
by appealing to Dunwoody’s result on cuts in graphs [4]. To state the
generalisation we will need the following definitions from [15].

Let G be a finitely generated group and H a subgroup of G. Given a
finite generating set for G define the number of ends of the pair H < G
to be the number of topological ends of the quotient of the correspond-
ing Cayley graph of G by the subgroup H. Scott showed in [15] that
this number, which we will denote by e(G,H), is independant of the
generating set chosen, and that for G to split over H it is necessary for
e(G,H) to be at least 2. Unfortunately it is possible for e(G,H) to be
at least 2 without G splitting over H. There is an obstruction to the
splitting, whose definition depends on a choice (of H-almost invariant
set, see [15]), which is supported on a union of double cosets HFH,
where F is a finite subset if H is finitely generated. We can now state
the generalisation, which is the main theorem in this paper:

THEOREM A Let G be a finitely generated group with a finitely
generated subgroup H such that e(G,H) ≥ 2 and H has non-empty
singularity obstruction HFH for some finite subset F in G. If the
subgroup 〈HFH〉 lies in the commensurator of H in G then G splits
over a subgroup commensurable with H.

In order to prove this generalisation of Stallings’ theorem we will
use the following result from [10]:

FINITE HYPERPLANE THEOREM Let G be a finitely generated
group and H < G be a finitely generated subgroup with e(G,H) ≥ 2. If
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the singularity obstruction HFH (for some choice of H-almost invari-
ant set) lies inside the commensurator {g ∈ G | H g is commensurable with H}
then G acts on a CAT(0) cubical complex X, with the following prop-
erties:

1. There is one orbit of hyperplanes GH,

2. The hyperplanes are compact

3. H is a hyperplane stabiliser

4. There is an unbounded vertex orbit.

Theorem A follows directly from the finite hyperplane theorem to-
gether with Theorem B:

THEOREM B Let G be a finitely generated group which acts on a
CAT(0) cubical complex X, such that G has one orbit of hyperplanes,
each hyperplane is compact, and G has an unbounded orbit. Then G
splits over a subgroup commensurable with a hyperplane stabiliser.

In section 2 of this paper we begin the proof of Theorem B. We will
define the notion of a least weight track in a triangulated 2-complex,
and show that the 2-skeleton of the cube complex under consideration
contains least weight tracks. We also prove that if two least weight
tracks intersect then we can carry out a canonical surgery on the two
tracks to obtain a pair of non-intersecting least weight tracks. There are
two natural ways to complete the proof, Dunwoody’s original method,
adapted to our context, is given in section 4, where we show how to
carry out the surgery on an entire orbit of least weight tracks to obtain
a G-equivariant family of disjoint least weight tracks (a so-called G-
pattern). There is a natural tree, known as the dual tree associated
to this pattern and the action of G on this tree will give rise to the
required splitting of the group. An alternative more geometric method,
is based on ideas of Jaco, Rubinstein and Casson, and that version is
given in section 3. In this approach the notion of a least weight track is
strengthened to that of a minimal track, and one can show that minimal
tracks cannot cross. Once existence of minimal tracks is established it
follows that the orbit of a minimal track is a G-pattern giving rise to
the required splitting. The reader therefore has a choice. Those with a
taste for geometry will find a complete proof in sections 2 and 3, and
those with a preference for combinatorial methods may prefer to read
sections 2 and 4. Finally in section 5 we sketch an example given by
the action of PGL2(Z) on a CAT(0) cube complex associated to its
natural action on the hyperbolic plane. We will show how the natural
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On groups with more than one end 5

decomposition of PGL2(Z) as an amalgamated free product may be
read from the geometry of the cube complex.

2. Tracks in 2-complexes

In this section we will begin the proof of:

THEOREM B Let G be a finitely generated group which acts on a
CAT(0) cubical complex X, such that G has one orbit of hyperplanes,
each hyperplane is compact, hyperplane stabilisers are finite, and G has
an unbounded orbit. Then G splits over a subgroup commensurable with
a hyperplane stabiliser.

In outline we attack the problem by studying the action of G on the
2-skeleton X of the cube complex Z. Since Z is contractible H 1(X, Z2) =
H1(Z, Z2) = 0.

We begin by choosing a G-equivariant triangulation of the 2-complex
X. For technical reasons we would like to choose the triangulation so
that it refines the cubical structure and so that no vertices lie in a
hyperplane. Unfortunately we may not be able to do this if cell sta-
bilisers act non-trivially, since we may be forced to use the centre of
a cube as a vertex. To get round the problem we first barycentrically
subdivide the cube complex which has the effect of duplicating all the
hyperplanes as parallel pairs. Now cell stabilisers act trivially and we
can triangulate in the required manner. Finally we note that the single
orbit of hyperplanes may have been replaced by two orbits, but in this
case every edge of the complex is within a bounded distance of each
orbit and this is sufficient to carry out the proof.

Equip X with the piecewise Euclidean path metric obtained by
identifying each 2-simplex with an equilateral Euclidean triangle. A
subset of X will be said to be unbounded if it is not contained in any
ball of finite diameter in this metric.

A pattern in the 2-complex consists of a closed subset P in the com-
plement of the 0-skeleton of X such that P meets each closed 1-simplex
γ in a finite union of points all lying in the interior of γ, and each closed
2-simplex in a finite union of disjoint closed line segments. Note that
this definition does not quite agree with that given by Dunwoody in
[5], since we allow the line segments to join two points in the same edge
of a 2-simplex.

A track is a connected pattern. A pattern (or track) is said to be
finite if it intersects only finitely many 1-simplices, and in this case we
assign it a weight given by the number of points in the intersection with
the 1-skeleton. The pattern is said to be bounded if it is contained in
a ball of finite diameter in X.

Stallingstheorem.tex; 24/05/2002; 10:28; p.5



6 Graham A. Niblo

A track is said to be essential if it is finite and its complement has
two unbounded components. A pattern is said to be essential if at least
one of its component tracks is essential, and it is said to be a least
weight pattern if it is essential and has least weight among all essential
patterns. Note that a least weight pattern must be a track, since oth-
erwise each of its component tracks must have strictly smaller weight,
and at least one of these must be essential contradicting the minimality
of the weight of the original pattern. By varying the argument given in
[9], (using cohomology with bounded support in place of cohomology
with compact support) we will obtain the following observation.

LEMMA 1. Any least weight pattern on X consists of a single track
which intersects each edge of X in at most one point and each 2-simplex
in at most a single arc joining distinct edges of the simplex.

Proof. Given a pattern P we can define its characteristic function,
which is a function z from X (1) to the positive integers, counting the
number of points on each 1-simplex lying in P. This function defines
P up to reasonable equivalence, and, as Dunwoody observed, if we
reduce its values mod 2, we obtain a 1-cocycle; one can show that
the corresponding class in H1(X, Z2) is zero if and only if the pattern
separates X, [2, section VI, 3]. If P is finite, in that it meets only finitely
many edges, then

Let {τ1, . . . , τn} be the components of P, with characteristic func-
tions z1, . . . , zn. If these are all zero as classes in H1

b (X, Z2) then so is
[z] contradicting the definition of P, hence at least one of the tracks
τi is itself a non-trivial pattern. Its weight is at least ||P|| since P is
minimal, and at most ||P|| since τi∩X(1) is a subset of P∩X (1). Hence
τi = P.

It follows that P is a single track which separates X into two un-
bounded components.

It is a consequence of [2, section VI, theorem 3.2] that any function z
from X(1) to the positive integers, such that the reduction of z mod 2 is
a cocycle (call it w), gives rise to a pattern on X whose characteristic
function is w. Reducing the characteristic function of P mod 2 we
obtain a new function with values 0 and 1, from which we can build a
new pattern Q. If P crossed some edge at least twice then the norm
of Q is strictly less than ||P||, but their characteristic functions give
identical elements of H1

b (X, Z2) by construction, so Q is also a minimal
pattern, contradicting the minimality of P.

Of course we don’t yet know that X admits any essential tracks,
but we may show that it does as follows. Each hyperplane intersects
the triangulation in a track and since the hyperplane is compact each
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of these tracks is finite. Since the hyperplane separates Z into two
unbounded components, this track does the same to X, so it is essential
as required.

Since X is simply connected and contains an essential pattern we
can choose a minimal pattern in X, which as noted above consists of
a single track τ . Two such minimal patterns σ and τ may of course
intersect, but by perturbing them an arbitrarily small amount we can
ensure that all the intersections occur in the interior of 2-cells, and this
perturbation may be chosen so that it does not alter the weights of the
two tracks. We will show how to carry out cut and paste operations
on the tracks at these intersection points to obtain two new minimal
tracks which do not intersect.

THEOREM 2. Let σ and τ be minimal tracks in a simply connected
2-complex X which intersect transversely in the interior of the 2-cells
of X. Then there are disjoint minimal tracks σ ′ and τ ′ in X such that
(σ ∪ τ) ∩X(1) = (σ′ ∪ τ ′) ∩X(1).

Proof. If σ and τ are disjoint there is nothing to prove so assume that
they are not disjoint. Since σ and τ are bounded and each separates
X into two unbounded components the same is true for small regular
neighbourhoods N(σ) of σ and N(τ) of τ . We may choose these neigh-
bourhoods so that their union N is a (compact) regular neighbourhood
of the connected 1-complex σ∪τ which avoids the 0-skeleton of X. Since
N is compact its boundary is a finite pattern P in X which intersects
the 1-skeleton of X in two points for each point in the intersection
(σ ∪ τ) ∩X(1). The weight of P is therefore 2(w(σ) + w(τ)).

Denote the two (unbounded) components of X − N(σ) by S+ and
S−, and the two (unbounded) components of X−N(τ) by T + and T−.
Any two points in a component of the complement of N can be joined
by a path in X which crosses neither σ nor τ , so any such component
is contained entirely in one of the subsets S+∩T+, S+∩T−, S−∩T+,
or S− ∩ T−. Since P is finite its complement has only finitely many
components and it follows that each of the four subsets S± ∩ T± is a
union of finitely many components of X −P.

If the two subsets S+ ∩ T+ and S− ∩ T− are both bounded then
both subsets S+ ∩ T−, S− ∩ T+ must be unbounded to ensure that
both S+ and S− are unbounded. By switching S+ and S− and T+ and
T− if necessary we can assume that both S+ ∩ T+ and S− ∩ T− are
unbounded. It follows that at least one component of X − P (which
we will denote C+) is unbounded and lies inside S+ ∩ T+ and another
(which we will denote C−) is unbounded and lies inside S− ∩ T−. The
boundary of C+ in X is a component σ′ of P which separates the
unbounded set C+ from its complement, which contains the unbounded
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Figure 1. The canonical cut and paste replaces crossing arcs with a disjoint pair.

set C−. Hence σ′ is an essential pattern and must have weight at least
n. Similarly the boundary of C− is also an essential pattern of weight
at least n, and we will denote it by τ ′.

Given an edge e of X which intersects N , the subset N ∩ e cuts
e into two or three regions depending on whether e intersects one or
both of the tracks τ and σ. Notice first that adjacent regions of an edge
cannot both be in C+∪C− since they are separated by only one of the
tracks. Furthermore if e intersects just one of the tracks σ, τ then at
most one of the regions can lie in the subset C+ ∪ C−, since the two
subsets are separated by both tracks. Hence the edge also intersects at
most one of the two tracks σ′, τ ′, and does so in a single point. If e
intersects both σ and τ then either the central region of the edge lies
in C+ ∪ C−, or the two outside ones each lie in one of them. In either
case the two patterns σ′, τ ′ intersect the edge in exactly two points
between them. It follows that the total weight of the two patterns σ ′

and τ ′ is at most w(σ) + w(τ) = 2n. Since each has weight at least
n they both have weight exactly n and are therefore minimal tracks.
It follows from the lemma that neither of them intersects a 2-simplex
in an arc joining an edge to itself. Furthermore if σ ∪ τ intersects a
given edge in k points (k = 1 or 2) then so does σ ′ ∪ τ ′ for otherwise
2n = w(σ′) + w(τ ′) < w(σ) + w(τ) = 2n.

Now define a cut and paste operation as follows. If the tracks σ, τ
cross in a 2-simplex so that they both intersect the edge e then replace
the arcs of σ, τ in the 2-simplex by the two arcs in the boundary of the
regular neighbourhood N which separate the end points of e and join
it to the two other edges of the 2-simplex. The operation is illustrated
in Figure 1.
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The argument above shows that carrying out this cut and paste
operation at every intersection must yield precisely the two tracks which
we have chosen and no other components. Finally we observe that the
pattern σ′ ∪ τ ′ may be isotoped to have the same intersection with the
1-skeleton of X as the pattern σ ∪ τ . We will call it the canonical cut
and paste operation.

3. The geometric method

In this section we will make use of a method initially developed by Jaco
and Rubinstein [13] and Casson which strengthens the notion of a least
weight track to that of a minimal track with the objective of ensuring
that minimal tracks which intersect are coincident. It will follow that
the G orbit of a minimal track is a G-equivariant pattern and the G
action on the dual tree to this pattern will induce a splitting of G over
the stabiliser of the minimal track.

In order to define minimal tracks we will need the notion of an ideal
2-complex.

An ideal 2-simplex is a topological 2-simplex with its vertices re-
moved, which is identified with an ideal hyperbolic triangle in the
Poincaré disc, with vertices at the points e(2π/3), e(4π/3) and 1 on the
circle at infinity. Each edge of the ideal 2-simplex has a midpoint which
is the point on that edge closest to the centre of Poincaré’s disc under
the identification.

Given a 2-dimensional simplicial complex X we obtain an ideal 2-
complex Y by removing the vertices and uniformizing the remains of
each 2-simplex as an ideal 2-simplex. We adjust the glueing maps as
necessary to ensure that they are hyperbolic isometries matching the
midpoints of the corresponding edges; uniformising the 2-cells in this
way we may impose a path metric on Y and the matching condition
ensures that the metric is complete. Since tracks do not intersect the
0-skeleton of X any finite track in X gives rise to a finite track τ in
Y which we can isotop, relative to the intersection of τ with the edges
of Y , to a track in which the intersection with any cell is a union of
hyperbolic geodesics. We assign a length to any finite track τ in Y by
summing the length of all the geodesic arcs thus obtained. We define
the complexity of the track τ to be the ordered pair (w, `) where w is
the total number of points in τ ∩ Y (1) and ` is the length of τ . If a
track lies entirely in the link of a vertex we may isotop it so that its
intersection with any 2-cell is (under the uniformization) the arc of a
horocycle. Such a track will be called a horocyclic track, and has the
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property that its length can be arbitrarily shortened by pushing it off
towards the vertex at infinity in whose link it lies.

We define the complexity of a track τ to be the ordered pair (w, `)
where w is the weight of the track as measured in X and ` is its
length in Y . We order tracks lexicographically by complexity. A track
in Y is ssaid to be minimal if it is a least weight track in X and
achieves the minimum complexity. Our 2-complex X contains a least
weight track τ , and we would like to show that Y contains a minimal
track.Unfortunately as we have already remarked if a least weight track
lies in the link of a vertex then it may be isotoped to least weight
tracks of arbitrarily small length, so the infimum of complexities will
not be achieved. Nonetheless we will show that it is possible to obtain
a splitting of the group even in this case, and that provided there are
no horocyclic essential tracks in Y then Y will contain a minimal track.
The proof of theorem B then depends on a variant of the Meeks-Yau
rounding trick which ensures that tracks of minimal complexity cannot
cross. In fact the two cases break down as follows, either Y contains a
least weight track of length ` < log(1 +

√
2) or every least weight track

has length at least log(1 +
√

2).

Case 1 ` < log(1 +
√

2). Any track which does not lie in the link
of a vertex in X must cross a pair of adjacent triangles joining
disjoint edges. We can embed the union of the two triangles in the
hyperbolic plane so as to preserve the length of paths in the union.
It follows that the arc in τ connecting the two edges must have
(hyperbolic) length greater than log(1+

√
2) (the distance between

the two geodesics in the hyperbolic plane), which contradicts the
fact that ` < log(1 +

√
2).

Since τ has length less than log(1 +
√

2) it must lie in the link of
some vertex v and we may isotop the track so that it consists of
short horocyclic arcs centered at v in the cells it crosses. Since these
horocyclic arcs are determined uniquely by any point they contain,
so is the resulting track. It follows that translates of this horocyclic
track which intersect actually co-incide, so G acts equivariantly on
the orbit of the horocyclic track to produce a G-pattern.

Case 2 Now suppose that any least weight track in Y has length at
least log(1 +

√
2), and let ` be the infimum of lengths of essential

tracks of weight w. Choose a horocyclic neighbourhood N0 of the
ideal vertices of Y such that the distance from any point within
the neighbourhood to a point on the opposite side of the triangle is
at least 2`. Then choose a smaller horocyclic neighbourhood N1 so
that the distance from the original horocycle to any point in this
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sub-neighbourhood is also at least `. It follows that for sufficiently
small ε any essential track of complexity at most (w, ` + ε) which
enters the neighbourhood N1 must remain in the neighbourhood
N0. If it does so then it may be isotoped to a horocyclic track and
its length shortened arbitrarily, which contradicts our assumption
that essential tracks have weight at least log(1 +

√
2). Hence if we

remove the open sub-neighbourhood N1 of the ideal vertices we
obtain a closed subcomplex which contains all the essential tracks
of complexity at most (w, ` + ε).

This sub-complex is locally finite, since all infinite branching in X
occurs at the vertices, which have been removed, and if we choose
an edge e and take the intersection of the subcomplex with the
ball of radius ` + ε around e we obtain a compact subset C of Y
which contains all non-horocyclic essential tracks of complexity at
most (w, ` + ε) intersecting the edge e.

Now any (geodesic) minimal track contained in C may be regarded
as an equicontinuous map of a finite graph, with |w| vertices, into
C. There are, up to homeomorphism, only finitely many such
graphs, so given any infinite sequence of minimal tracks we can
choose an infinite subsequence such that the corresponding graphs
are all homeomorphic.

Choose a sequence of minimal tracks with weight w and length
converging to `. Choose an infinite subsequence for which the
underlying graphs are all homeomorphic to some fixed graph Γ
and the tracks all have length at most ` + ε. We can apply the
the Arzela- Ascoli theorem to the corresponding sequence of maps
τi : Γ −→ C. Without loss of generality we can assume that each
arc of the track τi(Γ) is geodesic.

Arzela- Ascoli Theorem[1] If C is a compact metric space and Γ
is a separable metric space, then every sequence of equicontinuous
maps fn : Γ −→ X has a subsequence that converges uniformly on
compact subsets to a continuous map f : Γ −→ C.

Each edge of the graph Γ is mapped to a geodesic crossing a single
ideal 2-cell at each stage in the sequence, and since the geodesics
are bounded away from the (ideal) vertices by the constraint that
the tracks lie in the subcomplex C, in the limit edges of the graph
are still mapped to geodesics of non-zero length. Hence the limit
yields a pattern of weight w contained in C, and since length
varies continuously the limit is a minimal track of length `. Hence
minimal tracks exist in Y .

Stallingstheorem.tex; 24/05/2002; 10:28; p.11



12 Graham A. Niblo

To complete the argument it remains to show that minimal tracks
never cross one another. This is achieved by a PL version of the
Meeks-Yau rounding trick used by Jaco and Rubinstein [8]. The
details of the method, used in a context similar to the one we
need, can be found in Lemma 2.7 of [16]. We give a brief outline
here. Assume that two minimal tracks σ and τ do have non-empty
intersection. We may isotop the two tracks by an arbitrairly small
amount to ensure that the intersection is transverse and lies away
from the 1-skeleton, by moving the vertices of the tracks slightly.
This will increase the total length, but not the weight, of the two
tracks, but, because length deforms continuously, we can ensure
that the total length change is arbitrarily small. Indeed, to a first
order approximation it is zero as a function of the distance moved
by the vertices of the track. Now that the intersection has been
moved off the 1-skeleton we may cut and paste the two tracks
as in section 2 to obtain two new least weight tracks. Smoothing
the corners introduced by the cut and paste results in a compar-
atively large reduction in the total length of the two new tracks.
Again, regarded as a function of the displacement of the vertices,
we can estimate it to first order and the reduction is linear in
the displacement with a non-zero first order term. It follows that
by choosing a small enough perturbation of the tracks, cutting,
pasting and rounding, we obtain two new least weight tracks with
lengths whose sum is shorter than that of the orginal tracks, and
so at least one of the two new tracks must be shorter than the
original minimal tracks. This is a contradiction. Hence minimal
tracks never intersect and it follows that the orbit of a minimal
track is a G-invariant pattern.

We have shown that either the complex Y contains a horocyclic
track, or it contains a minimal track and in either case the orbit Gτ
of the track consists of a disjoint family of tracks, i.e., we obtain a
G-equivariant pattern in Y .

Associated to this pattern there is a tree (the dual tree) defined
as follows. The vertices of the tree are the components of the
complement of the pattern in X. Two vertice are joined by an
edge if the corresponding regions are adjacent in X, and since
tracks are separating in X every edge in the graph this defines is
also separating. Hence we have defined a tree, and it is clear that
G acts on the tree with edge stabilisers the stabilisers of the tracks
in the pattern.

To see that the action of G on the tree has an unbounded orbit,
we argue as follows. The track τ in Y yields a finite track in
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X which separates X into two unbounded subsets. The complex
also contains the hyperplane track σ which is also bounded, and
since every point of the complex is within a bounded distance
of some hyperplane in a given orbit each point of X is within
a globally bounded distance δ of some translate of this track.
Both unbounded components of the complement of τ contain edges
arbitrarily far from τ and therefore contain translates gi(σ) of σ
arbitrarily far from τ . But then there are translates of τ within
δ of gi(σ), and by choosing the elements gi to ensure that gi(σ)
is far enough from τ we can ensure that these translates of τ are
disjoint from it. Hence the edge corresponding to τ cuts the tree
into two components both of which contain translates of τ under
teh action of G. A standard argument shows that G has no global
fixed point and so, according to the Bass-Serre theorem [17] the
action of G on the tree induces a splitting of the group over any of
the track stabilisers. To complete the proof we need to show that
the stabiliser of any track is commensurable with the stabiliser of
a hyperplane.

If the track does not intersect any 2-cells then it consists of a
single point in an edge adjacent to no 2-cells. In this case the
hyperplane in Y crossing that edge is just the midpoint of the
edge, and coincides with the track. Since G acts transitively on
hyperplanes we see that the cube complex is itself a tree. In this
case the group splits directly over the hyperplane stabiliser.

Otherwise note that since the track is finite its stabiliser has a finite
index subgroup H which fixes each cell which it crosses. Since the
triangulation refines the squaring of the 2-skeleton of Y , if the
track intersects any 2-cell then H fixes a square in the original
cube complex, and therefore preserves the hyperplanes crossing
that square. It follows that H is a subgroup of a hyperplane sta-
biliser. On the other hand, the stabiliser of one of these hyperplanes
has a finite index subgroup which fixes the finite union of 2-cells
containing minimal tracks meeting the cells it crosses. It follows
that the hyperplane stabiliser H has a finite index subgroup which
fixes the minimal track. Hence the track stabiliser and the given
hyperplane stabiliser are commensurable as required.

4. Dunwoody’s pattern summing method

In this section we give an alternative method to complete the proof
of theorem B. As in the proof of Dunwoody’s Theorem 4.1 [5] we will
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14 Graham A. Niblo

construct a G-invariant pattern in X consisting of least weight tracks
by taking the pattern sum of the tracks gτ ranging over the elements
g ∈ G. The proof of Dunwoody’s Theorem 4.1 requires that there are
only finitely many translates of τ meeting any given edge of X, and
Dunwoody’s original argument contains the hidden assumption that
the 2-complex is locally finite. Fortunately the argument can be made
to work provided only that the complex is locally finite away from the
0-skeleton of X, which gives the full strength of Dunwoody’s Theorem
4.1, and allows us to use it to complete the proof of Stallings’ theorem
in that style.

Our approach is to use the local finiteness properties of X to show
that there is a finite set of cells in X such that any least weight track
which intersects the given edge e is contained in the union of these cells.
Consider, as in section 2, the graph Γ dual to the triangulation of X: it
has vertex set V consisting of the union of the 1 and 2-cells in X, and
there is an edge joining an edge e′ of X to a triangle σ in X if and only if
e′ is a face of σ. As noted before the graph Γ is locally finite, so for any
positive integer d the ball of radius d around a vertex v of Γ is finite.
Now any track τ ′ in X defines a connected subgraph of Γ, consisting
of those vertices corresponding to the cells of X which have non-empty
intersection with τ ′. If τ ′ is a finite track then the subgraph is finite,
and if τ ′ has weight d and intersects the edge e′, then the subgraph
is contained in the ball of radius d around e′ in Γ. It follows that the
ball of radius m around an edge e contains every edge and 2-cell of X
which intersects a least weight track crossing e, and that there are only
finitely many such cells. Let K0 denote the union of these cells, so that
K0 is a finite subcomplex of X which contains every least weight track
intersecting e′. A least weight track meets any edge at most once, and
is defined by the edges it does meet, so it follows that a least weight
track is uniquely defined by the subgraph in Γ which corresponds to
it. It follows that there are only finitely many least weight tracks in X
crossing a given edge e′.

Now let τ be a least weight track contained in the subcomplex K0.
Any least weight track τ ′ crossing τ must share at least one edge with
it, and its image in Γ therefore intersects the image of τ . It follows that
the image of τ ′ is contained in the ball of radius m around the image
of K0, which is again a finite subgraph. This gives a finite subcomplex
K1 in X which contains every least weight track τ ′ crossing a least
weight track in K0. Now consider the pattern sum of the orbit of a
least weight track τ under the action of G. The sum may be taken
in two stages. First we take the pattern sum of all the tracks gτ
contained in K1. By Dunwoody’s argument in [5] Theorem 3.3 this
is a pattern consisting of (finitely many disjoint) least weight tracks.
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Now we take the tracks in this new pattern together with the family
{gτ | gτ is not contained in K1}. The intersection of this family of
tracks with the 1-skeleton of X is the same as that of the original
family, so the pattern sum of the new family is the same as the pattern
sum of the original. But now given any of the tracks in the family which
are contained in K0, the only tracks in the family which can cross it
are contained in K1, and these are all nested by the construction in
the previous step. Hence no track in the family intersects any track
contained in K0, therefore the tracks contained in K0 are already nested
and do not change in the next stage of the pattern sum. It follows
that the tracks of the pattern sum contained in K0 are least weight
tracks. Since this argument applies everywhere in X all the tracks in
the pattern sum are least weight tracks.

Repeating the argument given at the end of section 3 we see that
the track stabilisers are again commensurate with the hyperplane sta-
bilisers in the cube complex Z as required.

5. The example of PGL2(Z)

In this section we will examine the action of the Coxeter group PGL2(Z)
on a CAT(0) cube complex defined in [12]. Figure 2 illustrates (part
of) the complex and is intended to hint at the relationship between
the hyperplanes in the cube complex and the mirrors for the natural
action of the group as a group generated by hyperbolic reflections. The
precise relationship is that hyperplanes in the cube complex are in
bijective correspondence with the mirrors in the hyperbolic plane, and
that hyperplanes cross if and only if the corresponding mirrors cross.
The 3-cubes correspond to the triple intersections of mirrors and the
squares which are not face of 3-cubes correspond to double points. The
action of PGL2(Z) on the cube complex is properly discontinuous, since
the action on the plane is proper, and since the cube complex has more
than one end its 2-skeleton contains essential finite tracks. Examples
are given by the intersection of a hyperplane with the 2-skeleton, and
in figure 3 we illustrate one of weight 8. It should be clear from the
diagram that this track crosses translates of itself under the action
of the group. For example the rotation of order 3 generated by the
product of two reflections in mirrors at angle 2π/3 rotates a 3-cube
around a diagonal and carries the hyperplane to cross itself. However
these hyperplanes do not yield least weight tracks. It should be clear
that if we take any square of the complex which is not the face of a
3-cube then we obtain two hyperplanes crossing it, one yielding the
track of weight 8 we have already described, and the other yielding a
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track of weight 2. Since there are no isolated edges in the cubing, there
are no tracks of weight 1, so such a track must have least weight. It
should be clear from inspection that the translates of this track form a
G-pattern and yield a splitting from the action of G on the dual tree.
Unfortunately the action inverts edges of the dual tree (the reflection
in the corresponding mirror acts as an involution switching sides of the
hyperplane) so the vertex stabilisers of the splitting are not quite given
by stabilisers of vertices in the tree. To extract the classical Bass-Serre
splitting of the group one can adjust the cube complex in the following
way.

Collapse any square of the cube complex which is not the face of a
3-cube by collapsing in a direction parallel to its free edges. The effect is
to obtain a cube complex which is still CAT(0) and which is a union of
3-cubes. Each surviving hyperplane contracts to a union of two squares.
The resulting cube complex is the Sageev complex associated to finite
dihedral group D3 stabilising the 3-cube. This is also the stabiliser of
the mirror line associated to one of the reflections.

Each least weight track in the new cube complex is a quadrilateral
parallel to the edge in the intersection of two 3-cubes. This is illustrated
in the right hand picture of Figure 3. If we choose the track sufficiently
close to the edge then its translates under the action of the group are
disjoint, as illustrated, and we obtain a G-equivariant pattern. The dual
tree gives a splitting of the group over the stabiliser of the quadrilateral,
which has index 2 in the stabiliser of the common edge to which it is
parallel. But this is the same as the stabiliser of the square which
contracted onto it, which is, in turn the elliptic subgroup of the Cox-
eter group generated by the 2 reflections in the mirrors corresponding
to the two hyperplanes crossing the square . In fact the dual tree is
the standard Bass-Serre tree for the decomposition of PGL2(Z) as an
amalgamated free product:

PGL2(Z) = D2 ∗
Z2

D3

The dihedral groups D2 and D3 in the splitting are the two finite
special subgroups 〈s1, s3〉 and 〈s1, s2〉 respectively, in the standard Cox-
eter presentation of the group PGL2(Z) = 〈s1, s2, s3 | s2

1 = s2
2 = s2

3 =
(s1s3)

2 = (s1s2)
3 = 1〉.

It is left to the reader to verify that the 2-skeleton of the cube
complex does not admit any essential tracks of weight less than 4 and
to show that the minimal track is indeed given by the quadrilateral
described above.
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Figure 2. The Coxeter complex for the group PGL 2(Z) embedded in the hyperbolic
plane, and the corresponding CAT(0) cube complex.

Figure 3. The hyperplane tracks of weight 2 and 8 in the cube complex and the
pattern of minimal tracks in the contracted cube complex.
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