Geometry of the smooth dual of GL(n)
Geometry of the smooth dual of GL(n)
Let be the smooth dual of the p -adic group G=GL(n). We create on the structure of a complex algebraic variety. There is a morphism of A(n) onto the Bernstein variety ?G which is injective on each component of A(n). The tempered dual of G is a deformation retract of A(n). The periodic cyclic homology of the Hecke algebra of G is isomorphic to the periodised de Rham cohomology supported on finitely many components of A(n).
Soit A(n) le dual lisse du groupe p -adique G=GL(n). Nous donnons a A(n) la structure d'une variete algebrique complexe. Il existe un morphisme canonique de A(n) sur la variete de Bernstein G qui est injectif sur chaque composante de A(n). Il y a une retraction par deformation de A(n) sur le dual tempere de G. L'homologie cyclique periodique HP0(H(G)) (resp. HP1(H(G)) ) est isomorphe a la cohomologie de de Rham paire (resp. impaire) a support un nombre fini de composantes du dual lisse de G.
213-218
Brodzki, J.
b1fe25fd-5451-4fd0-b24b-c59b75710543
Plymen, R.
0dc3050e-ed18-415f-8652-dd630c3ad1f1
2000
Brodzki, J.
b1fe25fd-5451-4fd0-b24b-c59b75710543
Plymen, R.
0dc3050e-ed18-415f-8652-dd630c3ad1f1
Brodzki, J. and Plymen, R.
(2000)
Geometry of the smooth dual of GL(n).
Comptes Rendus de l'Academie des Sciences Series I Mathematics, 331 (3), .
(doi:10.1016/S0764-4442(00)01618-9).
Abstract
Let be the smooth dual of the p -adic group G=GL(n). We create on the structure of a complex algebraic variety. There is a morphism of A(n) onto the Bernstein variety ?G which is injective on each component of A(n). The tempered dual of G is a deformation retract of A(n). The periodic cyclic homology of the Hecke algebra of G is isomorphic to the periodised de Rham cohomology supported on finitely many components of A(n).
Soit A(n) le dual lisse du groupe p -adique G=GL(n). Nous donnons a A(n) la structure d'une variete algebrique complexe. Il existe un morphisme canonique de A(n) sur la variete de Bernstein G qui est injectif sur chaque composante de A(n). Il y a une retraction par deformation de A(n) sur le dual tempere de G. L'homologie cyclique periodique HP0(H(G)) (resp. HP1(H(G)) ) est isomorphe a la cohomologie de de Rham paire (resp. impaire) a support un nombre fini de composantes du dual lisse de G.
This record has no associated files available for download.
More information
Published date: 2000
Identifiers
Local EPrints ID: 29846
URI: http://eprints.soton.ac.uk/id/eprint/29846
ISSN: 0764-4442
PURE UUID: 3f58656b-ea0d-4258-b151-9cc51f9f251a
Catalogue record
Date deposited: 17 May 2007
Last modified: 16 Mar 2024 03:24
Export record
Altmetrics
Contributors
Author:
R. Plymen
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics