The University of Southampton
University of Southampton Institutional Repository

Geometry of the smooth dual of GL(n)

Geometry of the smooth dual of GL(n)
Geometry of the smooth dual of GL(n)
Let be the smooth dual of the p -adic group G=GL(n). We create on the structure of a complex algebraic variety. There is a morphism of A(n) onto the Bernstein variety ?G which is injective on each component of A(n). The tempered dual of G is a deformation retract of A(n). The periodic cyclic homology of the Hecke algebra of G is isomorphic to the periodised de Rham cohomology supported on finitely many components of A(n).
Soit A(n) le dual lisse du groupe p -adique G=GL(n). Nous donnons a A(n) la structure d'une variete algebrique complexe. Il existe un morphisme canonique de A(n) sur la variete de Bernstein G qui est injectif sur chaque composante de A(n). Il y a une retraction par deformation de A(n) sur le dual tempere de G. L'homologie cyclique periodique HP0(H(G)) (resp. HP1(H(G)) ) est isomorphe a la cohomologie de de Rham paire (resp. impaire) a support un nombre fini de composantes du dual lisse de G.
0764-4442
213-218
Brodzki, J.
b1fe25fd-5451-4fd0-b24b-c59b75710543
Plymen, R.
0dc3050e-ed18-415f-8652-dd630c3ad1f1
Brodzki, J.
b1fe25fd-5451-4fd0-b24b-c59b75710543
Plymen, R.
0dc3050e-ed18-415f-8652-dd630c3ad1f1

Brodzki, J. and Plymen, R. (2000) Geometry of the smooth dual of GL(n). Comptes Rendus de l'Academie des Sciences Series I Mathematics, 331 (3), 213-218. (doi:10.1016/S0764-4442(00)01618-9).

Record type: Article

Abstract

Let be the smooth dual of the p -adic group G=GL(n). We create on the structure of a complex algebraic variety. There is a morphism of A(n) onto the Bernstein variety ?G which is injective on each component of A(n). The tempered dual of G is a deformation retract of A(n). The periodic cyclic homology of the Hecke algebra of G is isomorphic to the periodised de Rham cohomology supported on finitely many components of A(n).
Soit A(n) le dual lisse du groupe p -adique G=GL(n). Nous donnons a A(n) la structure d'une variete algebrique complexe. Il existe un morphisme canonique de A(n) sur la variete de Bernstein G qui est injectif sur chaque composante de A(n). Il y a une retraction par deformation de A(n) sur le dual tempere de G. L'homologie cyclique periodique HP0(H(G)) (resp. HP1(H(G)) ) est isomorphe a la cohomologie de de Rham paire (resp. impaire) a support un nombre fini de composantes du dual lisse de G.

Full text not available from this repository.

More information

Published date: 2000

Identifiers

Local EPrints ID: 29846
URI: http://eprints.soton.ac.uk/id/eprint/29846
ISSN: 0764-4442
PURE UUID: 3f58656b-ea0d-4258-b151-9cc51f9f251a

Catalogue record

Date deposited: 17 May 2007
Last modified: 15 Jul 2019 19:08

Export record

Altmetrics

Contributors

Author: J. Brodzki
Author: R. Plymen

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×