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Abstract

We show that a compact hyperbolizable acylindrical 3-manifold with non-empty incompress-
ible boundary, in which every boundary component has genus at least two, necessarily contains
a closed immersed essential surface.

1 Introduction

The purpose of this note is to demonstrate the existence of closed immersed essential surfaces in a
certain class of hyperbolizable 3-manifolds. We state here our main result.

Theorem 4.2: Let M be a compact hyperbolizable acylindrical 3-manifold with non-empty incom-
pressible boundary, in which every boundary component has genus at least two. Then, M contains
a closed immersed essential surface.

The proof uses techniques from both the theory of Kleinian groups and the theory of 3-manifolds.
The connections between these two theories were first noticed by Poincarè, were first exploited by
Marden [12], and were used to great effect by Thurston in his study of the geometrization of 3-
manifolds. We begin in Section 2 by giving a general description of those connections which are
relevant to this work.

In Section 3, we discuss the particular case of Klein-Maskit combination theory which plays a
central role in the proof of Theorem 4.2, and set the discussion of Klein-Maskit combination theory
in the language of the Bass-Serre theory of fundamental groups of graphs of groups. The proof of
Theorem 4.2 then follows in Section 4.

We note here that Cooper, Long, and Reid [7], using different techniques, have recently es-
tablished a stronger result, showing that a compact hyperbolizable 3-manifold M with non-empty
incompressible boundary either is covered by an I-bundle or contains a closed immersed essential
surface, which then lifts to an embedded non-separating surface in a finite cover of M .
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helpful conversations at various points in the life of this work, and the referee for his comments.
This work was partially supported by NSF grant DMS-8505550 at MSRI, and by an NSF-NATO
postdoctoral fellowship at the University of Warwick.
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2 Language

The purpose of this section is to present some of the background material used in this work, and
to take an opportunity to describe the connections between the languages of Kleinian groups and
of 3-manifolds which arise throughout this paper. Many of the results described in this Section are
either implicit or explicit in the literature of the subject. We begin by describing some Kleinian
group basics, using Maskit [15] as our general reference, and some 3-manifold basics, using Hempel
[10] and Jaco [11] as general references. We also state some basic Lemmas which allow us to easily
translate from one language to the other. As is common practice, we suppress the explicit choice
of a basepoint when referring to fundamental groups, assuming that some convenient choice of
basepoint has been made.

2.1 Kleinian group basics

A Kleinian group is a discrete subgroup of PSL2(C), which we view as acting both on hyperbolic
3-space H3 via orientation-preserving isometries and on the Riemann sphere C via Möbius trans-
formations. Unless explicitly noted otherwise, we assume that Kleinian groups are torsion-free; the
extension of Theorem 4.2 to Kleinian groups with torsion is given in Remark 5.1.

The action of a Kleinian group Γ partitions C into the domain of discontinuity Ω(Γ), which is
the largest open subset of C on which Γ acts discontinuously, and the limit set Λ(Γ); when Γ is
infinite, Λ(Γ) is the smallest non-empty closed subset of C invariant under the action of Γ.

If the domain of discontinuity Ω(Γ) of a Kleinian group Γ is non-empty, it contains either one,
two, or countably infinitely many connected components. Two components ∆1 and ∆2 of Ω(Γ) are
inequivalent if there does not exist γ ∈ Γ with γ(∆1) = ∆2.

The limit set Λ(Γ) of Γ either is finite, in which case Γ is elementary, or is perfect and uncount-
able, in which case Γ is non-elementary. A torsion-free Kleinian group is elementary if and only if
it is abelian.

The following Lemma is an immediate consequence of the Ahlfors finiteness theorem [2].

Lemma 2.1 Let Γ be a finitely generated Kleinian group with non-empty domain of discontinuity,
and let Φ be a finitely generated subgroup of Γ. Then, Φ has finite index in Γ if and only if
Λ(Φ) = Λ(Γ).

Given a subset X of H3 ∪C and a Kleinian group Γ, the stabilizer of X in Γ is the subgroup
stΓ(X) = {γ ∈ Γ | γ(X) = X} of Γ. We usually refer to the stabilizer of a component of Ω(Γ) as a
component subgroup. Say that X is precisely invariant under Φ of Γ if stΓ(X) = Φ and if X ∩ γ(X)
is empty for all γ ∈ Γ−Φ. By way of example, a component of the domain of discontinuity of Γ is
always precisely invariant under its stabilizer in Γ.

Given a Jordan curve c and a closed set Z in C, say that c separates Z if both of the components
of C− c contain points of Z. More generally, given a Jordan curve c and a pair W and Z of closed
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sets in C, say that c segregates W from Z if c does not separate either W or Z, and if W and Z lie
in the different closed discs in C determined by c.

The convex hull CHΓ of Γ is the smallest non-empty convex subset of H3 which is invariant
under the action of Γ. The convex core of Γ is the submanifold CΓ = CHΓ/Γ of H3/Γ, and is
the smallest convex submanifold of H3/Γ whose inclusion is a homotopy equivalence. Say that
Γ is convex co-compact if CΓ is compact. We note that convex co-compact Kleinian groups are
necessarily finitely generated and cannot contain parabolic elements.

We make note of the following useful property of convex co-compact Kleinian groups, due to
Thurston; if Γ is a convex co-compact Kleinian group with non-empty domain of discontinuity Ω(Γ)
and if Φ is a finitely generated subgroup of Γ, then Φ is necessarily convex co-compact. A proof of
this can be found in Section 7 of Morgan [20].

2.2 Quasifuchsian groups

A very important class of Kleinian groups are the quasifuchsian groups. A quasifuchsian group is a
finitely generated Kleinian group whose limit set is a Jordan curve and which contains no element
interchanging the two components of its domain of discontinuity. It is known that a quasifuchsian
group without parabolic elements is necessarily convex co-compact (see for example Lemma 3.3 of
Marden [12]); moreover, if Φ is a convex co-compact quasifuchsian group and if ∆ is a component
of Ω(Φ), then ∆/Φ is a closed orientable surface of genus at least two.

The following Lemma gives a useful characterization of quasifuchsian groups.

Lemma 2.2 Let Φ be a convex co-compact Kleinian group. Then, Φ is quasifuchsian if and only
if it is isomorphic to the fundamental group of a closed orientable surface of genus at least two.

Proof Suppose that Φ is isomorphic to the fundamental group of a closed orientable surface
of genus at least two. We begin by noting, since Φ is convex co-compact, that H3/Φ is closed if
and only if Ω(Φ) is empty. Combining this with the fact that the fundamental group of a closed
3-manifold cannot be isomorphic to the fundamental group of a closed surface of positive genus
(see for example Theorem 10.6 of Hempel [10]), we see Ω(Φ) is non-empty. Lemma 1.2 of Anderson
[5] gives that Λ(Φ) is connected, and that either Φ is quasifuchsian or Ω(Φ) is connected. In the
later case, Φ cannot be convex co-compact (see for example Greenberg [9]), and so Φ must be
quasifuchsian. The converse is immediate from the definition of quasifuchsian. 2

Let Φ be a quasifuchsian group and let Θ be a finitely generated infinite index subgroup of Φ.
By Lemma 2.1, Λ(Θ) is a proper closed subset of Λ(Φ), and so each component of Λ(Φ)− Λ(Θ) is
an open arc in the Jordan curve Λ(Φ). Let a be such an arc. Since Θ is finitely generated, there
exists a non-trivial primitive element θa of Θ stabilizing a, that is, so that θa(a) = a; in fact, a is
precisely invariant under 〈θa〉 in Θ. This follows from the discussion in Section V.G of Maskit [15],
particularly Theorem V.G.14. We refer to θa as a boundary loxodromic of Θ in Φ. We note that θa

is necessarily primitive in Φ.
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Using the classical uniformization theorem of Koebe for simply connected Riemann surfaces (see
for example Abikoff [1]), for each component ∆ of Ω(Φ) there exists a conformal homeomorphism
f : ∆ → U , where U is the unit disc in C equipped with the Poincaré metric. Each non-trivial
element f · ϕ · f−1 of f · Φ · f−1 keeps invariant a unique hyperbolic line l in U , and so ϕ keeps
invariant a canonical arc lϕ = f−1(l) in ∆, which is a line in the induced hyperbolic metric on ∆.
We refer to lϕ as the axis of ϕ in ∆.

2.3 Component subgroups

Let Γ be a convex co-compact Kleinian group, let ∆ be a component of Ω(Γ), and let Φ be the
stabilizer of ∆ in Γ. Lemma 2 of Ahlfors [3] implies that Φ is finitely generated, hence convex
co-compact, and that ∂∆ = Λ(Φ). If in addition Γ has connected limit set, then ∆ is necessarily
simply connected, as it is a component of the complement of a closed connected subset of C, and
so by Lemma 2.2 Φ is quasifuchsian. Conversely, suppose that each component subgroup of Γ is
quasifuchsian. The boundary of each component of Ω(Γ) is then connected, hence each component
of Ω(Γ) is simply connected, and so Λ(Γ) is connected. We summarize this discussion in the
following Lemma.

Lemma 2.3 Let Γ be a convex co-compact Kleinian group with non-empty domain of discontinu-
ity. Then, a component of Ω(Γ) is simply connected if and only if its stabilizer is quasifuchsian.
Moreover, each component subgroup of Γ is quasifuchsian if and only if Λ(Γ) is connected, or equiv-
alently, each component subgroup of Γ is quasifuchsian if and only if each component of Ω(Γ) is
simply connected.

It follows from Theorem 3 of Maskit [14] that if Φ1 and Φ2 are component subgroups of a
convex co-compact Kleinian group Γ, stabilizing components ∆1 and ∆2 of Ω(Γ), then ∂∆1∩∂∆2 =
Λ(Φ1)∩Λ(Φ2) = Λ(Φ1 ∩Φ2), and so Λ(Φ1)∩Λ(Φ2) is empty if and only if Φ1 ∩Φ2 is trivial, which
holds if and only if ∂∆1 ∩ ∂∆2 is empty.

Let θ be a boundary loxodromic of Φ1 ∩Φ2; note that θ is a boundary loxodromic of Φ1 ∩Φ2 in
Φ1 if and only if it is a boundary loxodromic of Φ1 ∩Φ2 in Φ2. Let Aθ be the Jordan curve formed
by taking the union of the axes of θ in ∆1 and ∆2, together with the fixed points of θ. We refer to
Aθ as the full axis of θ (with respect to ∆1 and ∆2). Note that since θ is a boundary loxodromic
of Φ1 ∩Φ2, it is primitive in Φk for both k and its axis in ∆k is precisely invariant under 〈θ〉 in Φk.

If θ is a primitive element of Γ, then its full axis Aθ is precisely invariant under 〈θ〉 in Γ.
However, if θ is not primitive in Γ, so that there exist some primitive γ ∈ Γ and some integer m ≥ 2
so that γm = θ, this is not the case. It will always be that Aθ ∩ γ(Aθ) contains the fixed points of
θ, and it may also contain one or both of the components of the complement of the fixed points of
θ. However, Aθ still has the property that its stabilizer in Γ is 〈θ〉, and that it is precisely embedded
under 〈θ〉 in Γ, that is, no translate of Aθ by an element of Γ separates Aθ, even though they may
intersect.
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2.4 3-manifold basics

We do not give here an introduction to the general theory of 3-manifolds, but instead restrict
ourselves to those 3-manifolds which arise in this work. A 3-manifold M is irreducible if every
embedded 2-sphere in M bounds a 3-ball. In particular, if M is an irreducible 3-manifold which is
not the 3-ball, then every component of ∂M has positive genus. A 3-manifold M is hyperbolizable if
there exists a Kleinian group Γ so that M is homeomorphic to MΓ = (H3 ∪Ω(Γ))/Γ; alternatively,
we say that M is uniformized by Γ. As Γ acts freely on the contractible space H3 ∪ Ω(Γ) by
orientation-preserving homeomorphisms, we see that MΓ is necessarily orientable and irreducible.

We note here an equivalent formulation of convex co-compactness, in terms of the quotient 3-
manifold. As MΓ is homeomorphic to CΓ for a convex co-compact Kleinian group Γ (see for example
Epstein and Marden [8]), we have that Γ is convex co-compact if and only if MΓ is compact.

For a compact hyperbolizable 3-manifold M , the choice of a uniformizing Kleinian group Γ
gives a bijection between Γ and π1(M). Under this identification, the set of conjugacy classes of
subgroups of the form π1(S), where S is a component of ∂M , is in 1-1 correspondence with the set
of stabilizers of components of Ω(Γ) which cover S.

2.5 Surfaces in 3-manifolds

A surface S in a compact hyperbolizable 3-manifold M is properly embedded if S is compact and
orientable, and if either S ∩ ∂M = ∂S or S is contained in ∂M . A properly embedded surface S in
M is incompressible if S is not homeomorphic to the 2-sphere and if the inclusion i : S →M induces
a monomorphism i∗ : π1(S) → π1(M) on the level of fundamental groups. A 3-manifold is Haken if
it contains an incompressible surface. It is known that a compact hyperbolizable 3-manifold with
non-empty boundary is Haken (see for example Lemma 6.8 of Hempel [10]).

As a partial converse to this, it follows from Thurston’s uniformization theorem for Haken
3-manifolds that a compact orientable irreducible Haken 3-manifold whose fundamental group
contains no subgroup isomorphic to Z ⊕ Z can be uniformized by a convex co-compact Kleinian
group. For a statement of Thurston’s theorem in its full generality, and a discussion of its proof,
the interested reader is referred to Morgan [20].

A compact hyperbolizable 3-manifold M has incompressible boundary if each component of ∂M
is an incompressible surface in M , and has compressible boundary otherwise. It is an immedi-
ate consequence of the Loop Theorem (see for example Hempel [10]) and the Seifert-van Kampen
Theorem that a compact hyperbolizable 3-manifold with non-abelian fundamental group has in-
compressible boundary if and only if its fundamental group does not admit a non-trivial splitting
as a free product.

A surface S in M is non-peripheral if it is properly embedded and if the inclusion i : S →M is
not homotopic to a map f : S →M for which f(S) ⊂ ∂M ; if π1(S) is non-trivial, this is equivalent
to requiring that the image i∗(π1(S)) in π1(M) is not conjugate to a subgroup of π1(T ) for some
component T of ∂M .
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A surface S in M is essential if it is properly embedded, incompressible, and non-peripheral. We
note that if M is a compact hyperbolizable 3-manifold with non-empty boundary, then M contains
a non-separating essential surface X; this can be obtained by combining Lemmas 6.6 and 6.7 of
Hempel [10]. We sometimes refer to such a surface as an embedded essential surface.

We also need a version of this notion for non-embedded closed surfaces. Say that a closed
surface S of positive genus in a compact hyperbolizable 3-manifold M is an immersed essential
surface if the inclusion i : S → M induces a monomorphism i∗ : π1(S) → π1(M) on the level of
fundamental groups and if the inclusion i : S → M is not homotopic to a map f : S → M with
f(S) ⊂ ∂M ; as above, the second condition is equivalent to requiring that the image i∗(π1(S)) in
π1(M) is not conjugate to a subgroup of π1(T ) for some component T of ∂M .

2.6 Connections between languages

We now give some Lemmas which relate basic properties of a compact hyperbolizable 3-manifold
to properties of its uniformizing convex co-compact Kleinian group. The first follows immediately
from the Loop Theorem and Lemma 2.3.

Lemma 2.4 Let M be a compact hyperbolizable 3-manifold, uniformized by a convex co-compact
Kleinian group Γ, and let S be a component of ∂M covered by a component ∆ of Ω(Γ). Then,
stΓ(∆) is quasifuchsian if and only if S is incompressible.

As an immediate consequence of Lemma 2.4, we see that ∂M is incompressible if and only
if Λ(Γ) is connected. So, if Γ is a non-elementary convex co-compact Kleinian group, then it
admits a non-trivial splitting as a free product if and only if some component subgroup is not
quasifuchsian. Also, if M is a compact hyperbolizable 3-manifold with non-empty incompressible
boundary, uniformized by a convex co-compact Kleinian group, then each component of ∂M has
genus at least two.

The second Lemma gives a way of detecting immersed essential surfaces.

Lemma 2.5 Let M be a compact hyperbolizable 3-manifold with non-empty boundary, uniformized
by a convex co-compact Kleinian group Γ. If S is a closed immersed incompressible surface in M ,
then Φ = π1(S) is a quasifuchsian subgroup of Γ; conversely, if Φ is a quasifuchsian subgroup of
Γ, there exists a closed immersed incompressible surface S in M with π1(S) = Φ. Moreover, S is
essential if and only if Φ is not contained in a component subgroup of Γ.

Proof Since M has non-empty boundary, the domain of discontinuity of Γ is non-empty, and
so Φ is necessarily convex co-compact. The fact that Φ is quasifuchsian follows immediately from
Lemma 2.2 and the assumption that S is incompressible. For the converse, if D is any disc in H3

which is invariant under Φ, then the image of D in M is the desired surface; for example, we may
take D to be one of the two components of the boundary of the convex hull CHΦ of Φ in H3. The
last statement follows from the definition of essential. 2
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2.7 Essential annuli

Let M be a compact hyperbolizable 3-manifold with incompressible boundary, uniformized by a
convex co-compact Kleinian group Γ. We describe here how it is possible to detect an embedded
essential annulus A in M by examining the intersection of the fundamental groups of the boundary
components of M which contain the end curves of A. As the identification of π1(M) with Γ gives
a bijective correspondence between the set of conjugacy classes of the fundamental groups of all
boundary components ofM and the set of component subgroups of Γ, this is equivalent to examining
the intersection of pairs of component subgroups of Γ. This in turn is equivalent to examining the
intersection of the limit sets of the component subgroups of Γ. An explicit description of these
equivalences is given in the following Lemma.

Lemma 2.6 Let M be a compact hyperbolizable 3-manifold with incompressible boundary, uni-
formized by a convex co-compact Kleinian group Γ. Then, there exists an embedded essential an-
nulus A in M if and only if there exist two components ∆1 and ∆2 of Ω(Γ) whose closures have
non-empty intersection.

Proof Let A be an essential annulus A in M and lift to the universal cover H3 ∪ Ω(Γ) of M .
Since A is incompressible and has fundamental group isomorphic to Z, the interior of A lifts to an
open disc D in H3 which is invariant under a loxodromic cyclic subgroup 〈γ〉 of Γ. The boundary
of A lifts to a pair of arcs a1 and a2 in Ω(Γ), both of which are invariant under 〈γ〉. Since A
is essential, these two arcs a1 and a2 necessarily lie in different components ∆1 and ∆2 of Ω(Γ).
The fixed points of γ lie in the closures of both a1 and a2, and so the closures of ∆1 and ∆2 have
non-empty intersection.

Suppose now that there exist two components ∆1 and ∆2 of Ω(Γ) whose closures have non-trivial
intersection. Let Φk be the stabilizer of ∆k in Γ, and note that the assumption of incompressible
boundary implies that both Φ1 and Φ2 are quasifuchsian. By the discussion in Section 2.3, there
exists a boundary loxodromic θ in Φ1 ∩Φ2 whose full axis Aθ is precisely embedded under 〈θ〉 in Γ.
By Theorem VII.B.16 of Maskit [15], there exists an open disc D in H3 which is precisely invariant
under 〈θ〉 in Γ and whose boundary in H3 ∪C is equal to Aθ. Removing the fixed points of θ from
the closed disc D ∪ Aθ and projecting to M , we get an embedded annulus in M . This annulus is
necessarily essential, as Aθ separates Λ(Γ). 2

As is mentioned in Section 2.3, it follows from Theorem 3 of Maskit [14] that there exist two
components ∆1 and ∆2 of Ω(Γ) whose closures have non-empty intersection if and only if there
exist two component subgroups Φ1 and Φ2 in Γ which have non-trivial intersection. Hence, we have
an alternative phrasing of Lemma 2.6, which is that there exists an essential annulus in M if and
only if there exist two component subgroups of Γ whose intersection is non-trivial.
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2.8 Acylindrical 3-manifolds

Let M be a compact hyperbolizable 3-manifold, and let S1, . . . , Sp be a collection of components
of ∂M . The subset S = S1 ∪ · · · ∪ Sp of ∂M is an-annular if each Sj is incompressible and if there
does not exist an embedded essential annulus in M both of whose boundary curves lie in S. A
compact hyperbolizable 3-manifold M is acylindrical if its entire boundary ∂M is an-annular.

The following Lemma follows immediately from Lemma 4.2 of Morgan [20].

Lemma 2.7 Let M be a compact hyperbolizable acylindrical 3-manifold, and let X be a properly
embedded incompressible non-separating surface in M . Suppose that among all such surfaces X has
maximimal Euler characteristic and minimal genus given its Euler characteristic. Then, for each
component S of ∂M , the intersection π1(X) ∩ π1(S) is either trivial or infinite cyclic.

In terms of the uniformizing Kleinian group Γ, Lemma 2.7 can be phrased as follows. Let Θ be
a choice of conjugacy class of the fundamental group of X in Γ, and for each component S of ∂M ,
let Φ be a choice of conjugacy class of the fundamental group of S in Γ. Then, the intersection
Θ ∩ Φ is either trivial or loxodromic cyclic.

The following Lemma follows immediately from Lemma 2.6.

Lemma 2.8 Let M be a compact hyperbolizable 3-manifold with incompressible boundary, uni-
formized by a convex co-compact Kleinian group Γ. Then, M is acylindrical if and only if the
closures of each pair of distinct components of Ω(Γ) are disjoint.

3 Combination theorems and graphs of groups

One of the tools often used to construct Kleinian groups, and to obtain specific information about
the behavior of the Kleinian groups constructed, are the Klein-Maskit combination theorems. We
give in this Section a brief sketch of the particular case of the combination theorems used in
this work, and we also frame its statement in the general language of the Bass-Serre theory of
fundamental groups of graphs of groups. For a detailed discussion of the combination theorems,
the interested reader is referred to Maskit [15], and for a detailed discussion of Bass-Serre theory,
the interested reader is referred to Serre [25] or to Scott and Wall [23].

The first step is to describe the classical Klein-Maskit combination theorem for the amalgamated
free product of two Kleinian groups along a finitely generated subgroup, often referred to in the
literature as the Klein-Maskit combination of type I. In this paper, we are interested in only one
small part of the combination of type I, namely giving topological conditions on a pair of Kleinian
groups Φ1 and Φ2 which imply that the group Γ = 〈Φ1,Φ2〉 is a Kleinian group isomorphic to the
amalgamated free product of Φ1 and Φ2 along Ξ = Φ1 ∩Φ2. These topological conditions are given
in terms of a Jordan curve which behaves well under the action of Φ1, Φ2, and Ξ, and which is then
seen to behave well under the action of Γ.
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Theorem 3.1 Let Φ1 and Φ2 be finitely generated Kleinian groups whose intersection Ξ = Φ1∩Φ2

is finitely generated and has infinite index in both Φ1 and Φ2. Assume there exists a Jordan curve
c determining closed discs E1 and E2 in C so that c segregates Λ(Φ1) from Λ(Φ2), so that Ek is
precisely invariant under Ξ in Φk, and so that Ek ∩ Λ(Φk) = Λ(Ξ) for both k.

Then, the group Γ generated by Φ1 and Φ2 is a Kleinian group isomorphic to Φ1∗ΞΦ2. Moreover,
we have that c ∩ Λ(Γ) = Λ(Ξ) and that c is precisely invariant under Ξ in Γ.

We pause here to note several facts about the relationship between Φ1, Φ2, and Ξ implied by
the hypotheses of Theorem 3.1. Since c segregates Λ(Φ1) from Λ(Φ2), we have that c separates
Λ(Γ). Combining this with the assumption that Ej is precisely invariant under Ξj in Φj , we see
that Λ(Φj) lies in E3−j . Since Ξ is a finitely generated infinite index subgroup of Φk, and since Φk

has non-empty domain of discontinuity, Lemma 2.1 implies that Λ(Ξ) is a proper subset of Λ(Φk).

We now set Theorem 3.1 in the general framework of the Bass-Serre theory of fundamental
groups of graphs of groups. After giving a brief sketch of the Bass-Serre theory sufficient for the
purposes of this work, we describe Theorem 3.1 in this language, and then describe an extension
of Theorem 3.1 which allows combination along a system of several Jordan curves simultaneously.

A graph T consists of a pair (V,E), where V is a finite set consisting of the vertices of T , and
E is a subset of V × V consisting of the (directed) edges of T . Given an edge y = (o(y), t(y)) ∈ E,
let y be the inverse edge (t(y), o(y)); we assume that E is closed under the taking of inverses. A
tree is a graph which contains no cycles.

A graph of groups (G,T ) consists of a graph T and a collection G of groups, together with the
assignment of a group Gp ∈ G to each vertex p ∈ V , a group Hy ∈ G to each edge y ∈ E, subject
to the condition that Hy = Hy, and monomorphisms Hy → Gt(y) for all y ∈ E, which we denote
a 7→ ay.

Define F (G,T ) to be the abstract group generated by the elements of the groups Gp for all
p ∈ V and the elements y of E, subject to the relations y = y−1 and yayy−1 = ay for y ∈ E and
a ∈ Hy. In the case that T is a tree, F (G,T ) is the fundamental group of the graph of groups
(G,T ).

The essential consequence of this construction is that F (G,T ) is built up by independently
taking the amalgamated free products of the vertex groups along their common subgroups, which
are the edge groups. In the case that T is a tree, F (G,T ) splits as an amalgamated free product
along any of the edge groups Hy.

In the case of Theorem 3.1, the graph T consists of two vertices v1 and v2 joined by a single
edge y. The groups Φ1 and Φ2 are the groups associated to the vertices, the group Ξ = Φ1 ∩ Φ2 is
associated to the edge, and the monomorphisms from Ξ to the Φk are the identity. Theorem 3.1
can then be described as giving topological conditions on Φ1, Φ2, and Ξ under which the group
〈Φ1,Φ2〉 is equal to the fundamental group of the graph of groups F (G,T ).

In order to better describe the extension of Theorem 3.1 to more than two groups, we need
an extension of the notion of a precisely invariant set. Given a Kleinian group Γ, a collection
(X1, . . . , Xp) of subsets of H3 ∪ C, and a collection (Φ1, . . . ,Φp) of subgroups of Γ, say that the
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collection (X1, . . . , Xp) is precisely invariant under (Φ1, . . . ,Φp) in Γ if for each γ ∈ Γ, γ(Xj) ∩Xk

is non-empty if and only if j = k and γ ∈ Φj ; that is, each Xj is precisely invariant under Φj in Γ,
and Xj ∩γ(Xk) is empty for all γ ∈ Γ and j 6= k. By way of example, any collection of inequivalent
components of the domain of discontinuity of a Kleinian group Γ is precisely invariant under their
stabilizers in Γ, while if Γ is convex co-compact and uniformizes an acylindrical 3-manifold, any
collection of closures of inequivalent components is precisely invariant under their stabilizers in Γ.

Multiple combination theorems, such as the one described below, have been considered in some
detail by Maskit, see especially [17] and [13]. We are interested only in a special case of multiple
combination. In order to best describe it, we use the language of the Bass-Serre theory.

Let Tn denote the tree which is the cone on n points p1, . . . , pn, with cone point p0, and label
the edges of Tn as e1, . . . , en, where ej joins p0 to pj . Given finitely generated groups Θ,Φ1, . . . ,Φn,
associate Θ with p0, associate Φj with pj , and associate Θ ∩ Φj with the edge ej , where the
monomorphisms from Θ∩Φj to Θ and to Φj are both the identity. We denote this graph of groups
by G(Θ;Φ1, . . . ,Φn).

In the case that Θ,Φ1, . . . ,Φn are Kleinian groups, the multiple combination theorem stated
below gives topological conditions, in terms of a well-behaved collection of Jordan curves, which
guarantee that 〈Θ,Φ1, . . . ,Φn〉 is isomorphic to the fundamental group of the graph of groups
G(Θ;Φ1, . . . ,Φn). The proof of Theorem 3.2 follows immediately by successive applications of
Theorem 3.1.

Theorem 3.2 Let Θ,Φ1, . . . ,Φn be finitely generated Kleinian groups so that each Ξj = Φj ∩Θ is
finitely generated and has infinite index in both Φj and Θ. Let c1, . . . , cn be a collection of disjoint
Jordan curves in C bounding a connected domain D in C, and let Dj and Ej be the closed discs
determined by cj, labelled so that Dj contains D. Suppose that cj segregates Λ(Θ) from Λ(Φj), that
cj ∩Λ(Φj) = cj ∩Λ(Θ) = Λ(Ξj) for each j, that Dj is precisely invariant under Ξj in Φj, and that
the collection (E1, . . . , En) is precisely invariant under (Ξ1, . . . ,Ξn) in Θ.

Then, the group Γ = 〈Θ,Φ1, . . . ,Φn〉 is a Kleinian group isomorphic to the fundamental group
of the graph of groups G(Θ;Φ1, . . . ,Φn). Moreover, cj ∩Λ(Γ) = Λ(Ξj) for each j, and the collection
(c1, . . . , cn) is precisely invariant under (Ξ1, . . . ,Ξn) in Γ.

Note that the hypotheses of Theorem 3.2 are saying that Θ, Φj , and cj satisfy the hypotheses
of Theorem 3.1 for each j, and that cj and ck don’t interfere with each other for j 6= k. Also, as
above, note that the hypotheses of Theorem 3.2 imply that Λ(Θ) lies in the closure D of D and
that Λ(Φj) lies in Ej , and that each cj separates Λ(Γ).

4 The proofs

We are now ready to prove the main results of this paper, namely Proposition 4.1 and Theorem
4.2. Before doing so, we briefly describe the situation. We are given a compact hyperbolizable
acylindrical 3-manifold M whose boundary is incompressible and is the non-empty union of surfaces
each of genus at least two, so that M can be uniformized by a convex co-compact Kleinian group
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Γ = π1(M) with connected limit set. We also have an embedded essential surface X in M . If X is
closed, there is nothing to do.

If not, let Θ be the fundamental group of X in Γ, write ∂X as the union of a collection a1, . . . , an

of simple closed curves, and for each component aj of ∂X, let Φj be the subgroup of Γ which is
the fundamental group of the component Sj of ∂M containing aj ; we note that Φj and Φk will
be conjugate in Γ, though not in Θ, if aj and ak lie in the same component of ∂M . Consider
the subgroup Γo of Γ which is generated by Θ,Φ1, . . . ,Φn. One might hope that Γo would be the
fundamental group of the graph of groups G(Θ;Φ1, . . . ,Φn) as described above, representing the
fundamental group of the regular neighborhood N of the 2-complex constructed from the surfaces
X, S1, . . . , Sn by gluing X to Sj along aj . If so, the fundamental group of N would inject into Γ.
In particular, the boundary components of N , at least one of which is non-peripheral, would be
incompressible.

Unfortunately, this picture does not hold in general. The boundary components of N can be
compressible. However, if we allow ourselves the possibility of passing to finite index subgroups Φo

j

of the Φj , we can arrange for the subgroup generated by Θ and the Φo
j to be a graph of groups as

desired. This is the content of the following Proposition, though the Proposition is proven in slightly
more generality. This subgroup represents the fundamental group of a thickened 2-complex Ñ which
maps π1-injectively to M . Some of the boundary components of Ñ naturally cover components of
∂M , but there is at least one component of ∂Ñ which does not cover a component of ∂M , and so
gives rise to an immersed essential surface in M .

Proposition 4.1 Let M be a compact hyperbolizable 3-manifold with non-empty boundary, uni-
formized by a convex co-compact Kleinian group Γ. Let Θ be a finitely generated subgroup of Γ,
and let ∆1, . . . ,∆n be a collection of components of Ω(Γ) which are inequivalent under Θ and
which cover an an-annular collection of components of ∂M . Set Φj = stΓ(∆j), and assume that
Ξj = Θ ∩ Φj has infinite index in both Φj and Θ for all 1 ≤ j ≤ n.

Then, for each j there exists a finite index subgroup Φo
j of Φj so that Θ ∩ Φo

j = Ξj and so
that the group Γo = 〈Θ,Φo

1, . . . ,Φ
o
n〉 is isomorphic to the fundamental group of the graph of groups

G(Θ;Φo
1, . . . ,Φ

o
n).

Proof We proceed by showing that the hypotheses of Theorem 3.2 hold. By Lemma 2.4,
each Φj is quasifuchsian, as it covers an incompressible component of ∂M ; also, since Ω(Γ) is
non-empty, Θ is convex co-compact. We now apply Theorem 2 of Susskind [27] to conclude that
∂∆j∩Λ(Θ) = Λ(Φj)∩Λ(Θ) = Λ(Ξj) and that Ξj is finitely generated, and hence convex co-compact,
for each 1 ≤ j ≤ n. Let π : Ω(Θ) → S = Ω(Θ)/Θ denote the covering map.

We now proceed to construct the collection c1, . . . , cn of Jordan curves satisfying the hypotheses
of Theorem 3.2. Since ∆1, . . . ,∆n cover an an-annular collection of components of ∂M , we see
that the collection of their closures (∆1, . . . ,∆n) is precisely invariant under (Φ1, . . . ,Φn) in Γ; in
particular, each ∆j is precisely invariant under Φj in Γ, and hence is precisely invariant under
Ξj = Θ ∩ Φj in Θ. The Jordan curve cj will be a perturbation of ∂∆j .

11



Let Ỹj = ∆j −Λ(Ξj). Since Ỹj is contained in Ω(Θ), its image Yj = π(Ỹj) in S is an embedded
subsurface of S. Since Ξj is finitely generated and of infinite index in Φj , Yj is compact and has
non-empty boundary. Note that Ξj may be trivial, in which case Yj is a closed disc in S.

Note that Yj and Yk are disjoint for j 6= k. For if not, there exists some point x ∈ Yj ∩Yk. Since
the interiors of Yj and Yk are covered by components of Ω(Γ) which are inequivalent under Θ, they
are disjoint, and so x must lie in ∂Yj ∩ ∂Yk. Lifting back to Ω(Γ), there are components ∆′

j and
∆′

k, equivalent under the action of Θ to ∆j and ∆k respectively, covering the interiors of Yj and
Yk, so that x lies in ∂∆′

j ∩ ∂∆′
k, contrary to the assumption that ∆1, . . . ,∆n cover an an-annular

collection of components of ∂M .
As Y1, . . . , Yn are disjoint subsets of S, there exists some ε > 0 so that the closed ε-neighborhoods

Y ′
1 , . . . , Y

′
n of Y1, . . . , Yn on S are disjoint and have the property that Y ′

j is homeomorphic to Yj for
each j. The reason for using ε-neighborhoods of the Yj is to push the boundaries of the lifts of the
Yj ’s off of the rest of the limit sets of the Φj . Specifically, let Ej be the closure of the lift of Y ′

j to
C whose interior contains ∆j , and note that Ej is a closed topological disc. The boundary cj of Ej

is a Jordan curve which is invariant under Ξj and which intersects Λ(Θ) exactly in Λ(Ξj). In fact,
cj is a Ξj-equivariant perturbation of ∂∆j which is homotopic to ∂∆j relative to Λ(Ξj). Note that
c1, . . . , cn bound a connected region in C.

Since Λ(Φj) lies in ∆j , which is contained in Ej , we see that cj does not separate Λ(Φj). Also,
since the interior of Ej lies in Ω(Θ), cj does not separate Λ(Θ); in particular, each cj segregates
Λ(Θ) from Λ(Φj). Since E1, . . . , En are constructed from disjoint subsurfaces of S, we see that the
collection (E1, . . . , En) of closed discs is precisely invariant under (Ξ1, . . . ,Ξn) in Θ.

Let Dj be the closed disc determined by cj complementary to Ej ; since Ej is invariant under
Ξj , so is Dj . In order to satisfy the hypotheses of Theorem 3.2, it remains only to show, for each
1 ≤ j ≤ n, that there exists a finite index subgroup Φo

j of Φj containing Ξj , so that Dj is precisely
invariant under Ξj in Φo

j . In order to find such a subgroup, we use the main Theorem of Scott
[22], which states that the fundamental group G of a closed orientable surface is LERF (locally
extended residually finite), which means that given a finitely generated subgroup H of G and an
element g ∈ G −H, there exists a finite index subgroup Go of G containing H and not g. In our
situation, this Theorem can be phrased as saying that if g ∈ Φj − Ξj is any element, then there
exists a finite index subgroup Φo

j of Φj which contains Ξj and does not contain g. Moreover, if we
consider the double coset decomposition Φj =

⋃∞
q=0 Ξj ·ϕq ·Ξj of Φj with respect to Ξj , we see that

some element of the double coset Ξj ·ϕq ·Ξj lies in the subgroup Φo
j if and only if every element of

Ξj · ϕq · Ξj lies in Φo
j . Hence, for each 1 ≤ j ≤ n, it suffices to show that only finitely many double

cosets of Ξj in Φj contain an element ψ for which Dj ∩ ψ(Dj) is non-empty.
So, write Dj = Λ(Ξj) ∪ Z, where Z = Dj − Λ(Ξj). We first consider Z; note that Z/Ξj is

compact, as it is homeomorphic to Yj . Let F be a compact fundamental domain for the action of
Ξj on Z, suppose that there exists some ϕ ∈ Φj for which Z∩ϕ(Z) is non-empty, and let Ξj ·ϕq ·Ξj

be the double coset containing ϕ. Then, there exists some ϕ′ in Ξj · ϕq · Ξj so that F ∩ ϕ′(F ) is
non-empty. To see this, choose a point x ∈ Z ∩ ϕ(Z). Then, there exist ξ ∈ Ξj so that x ∈ ξ(F )
and ξ′ ∈ Ξj so that x ∈ ϕ · ξ′(F ), which implies that F ∩ ξ−1 ·ϕ · ξ′(F ) is non-empty. Since Φj acts
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properly discontinuously on Ω(Φj) and Z lies in Ω(Φj), there can exist only finitely many elements
of ψ of Φj for which F ∩ ψ(F ) is non-empty, and so only finitely many double cosets of Ξj in Φj

can contain an element ϕ for which Z ∩ ϕ(Z) is non-empty. By Scott’s Theorem, there exists a
finite index subgroup Φoo

j of Φj containing Ξj , so that Z is precisely invariant under Ξj in Φoo
j .

We now show that only finitely many double cosets of Ξj in Φoo
j can contain an element ϕ for

which Dj ∩ ϕ(Dj) is non-empty. For each such ϕ, we have that Λ(Ξj) ∩ ϕ(Λ(Ξj)) is non-empty;
since Λ(Ξj) ∩ ϕ(Λ(Ξj)) = Λ(Ξj ∩ ϕ · Ξj · ϕ−1), again by Theorem 2 of Susskind [27], we see that
Ξj ∩ϕ ·Ξj ∩ ·ϕ−1 is non-trivial. If ϕ is not in the same double coset as the identity, then π(Z) and
π(ϕ(Z)) are disjoint subsurfaces on S. Since π(Z) is compact, it has only finitely many boundary
components, and so there can be only finitely many double cosets of Ξj in Φoo

j containing such ϕ.
Hence, again by Scott’s Theorem, there exists a finite index subgroup Φo

j of Φj which contains Ξj ,
so that Dj is precisely invariant under Ξj in Φo

j .
We have now shown that all the hypotheses of Theorem 3.2 are satisfied, and so the group

Γo = 〈Θ,Φo
1, . . . ,Φ

o
n〉 is a Kleinian group isomorphic to the fundamental group of the graph of

groups G(Θ;Φo
1, . . . ,Φ

o
n). 2

The proof of Theorem 4.2 is now an easy application of Proposition 4.1, together with the
discussion of Section 2.

Theorem 4.2 Let M be a compact hyperbolizable acylindrical 3-manifold with non-empty incom-
pressible boundary, in which every boundary component has genus at least two. Then, M contains
a closed immersed essential surface.

Proof Note that the hypotheses imply that M is uniformized by a convex co-compact Kleinian
group Γ. Let X be a surface as in the statement of Lemma 2.7, that is, X is a non-separating
essential surface which maximizes Euler characteristic and minimizes genus among all such surfaces;
set Θ = π1(X). If X is closed, we are done. Suppose not, and let a1, . . . , ap be an enumeration of
the components of ∂X. For each j, let Sj be the component of ∂M containing aj , and note that
Φ1 = π1(S1), . . . ,Φp = π1(Sp) are the component subgroups of a collection of distinct components
of Ω(Γ) which are inequivalent under Θ. By Lemma 2.7, each Ξj = Θ ∩ Φj is loxodromic cyclic.

Proposition 4.1 yields the existence of finite index subgroups Φo
j of Φj containing Ξj for 1 ≤

j ≤ p so that the group Γo = 〈Θ,Φo
1, . . . ,Φ

o
p〉 is the fundamental group of the graph of groups

G(Θ,Φo
1, . . . ,Φ

o
p).

It still remains to show that Γo has infinite index in Γ and that Γo does not split as a free
product. Assuming these, we complete the proof. Since Γo does not split as a free product, Lemma
2.4 implies that every component subgroup of Γo is quasifuchsian. Since Γo has infinite index in Γ,
Lemma 2.1 implies that Λ(Γo) is a proper subset of Λ(Γ), and so there is a quasifuchsian component
subgroup Φ of Γo which is not contained in a component subgroup of Γ. By Lemma 2.5, there exists
a closed immersed essential surface in M associated to Φ, and we are done.

13



To see that Γo does not split as a free product, let So
j be the finite cover of Sj associated to Φo

j ,
and note that Proposition 4.1 implies that aj lifts to a closed curve, which we again call aj , on So

j .
Consider the 2-complex Y formed from the surfaces X, So

1 , . . . , S
o
p by attaching X to So

j along aj ,
and note that Γo is the fundamental group of this 2-complex Y . In order to show that Γo does not
split as a free product, it suffices to show that Γo has one end, which is equivalent to showing that
no compact set separates the universal cover Ỹ of Y ; for a discussion of this equivalence, as well as
the relationship between ends and free product splittings in general, see for example Stallings [26].

That no compact set separates Ỹ follows immediately from the description of Ỹ . Let X̃ be the
universal cover of X, and note that X̃ is homeomorphic to the complement of a union of disjoint
open half spaces in the hyperbolic plane H2; moreover, the boundary components of X̃ cover the
boundary a1∪ · · · ∪an of X. The universal cover S̃j of So

j is homeomorphic to the hyperbolic plane
H2, and the lift of aj to So

j is a collection of disjoint lines in S̃j . We can construct Ỹ by taking
infinitely many copies of each of X̃, S̃1, . . . , S̃n and attaching them appropriately. It is easy to see
that no compact subset of Ỹ can separate Ỹ .

The fact that Γo has infinite index in Γ is now immediate. We use the notation from the
proof of Proposition 4.1. Recall that the Jordan curve c1 associated to the loxodromic cyclic group
Ξ1 = Θ ∩ Φ1 separates Λ(Γo) and satisfies c1 ∩ Λ(Γo) = Λ(Ξ1). Since Λ(Ξ1) contains two points
and since Λ(Γo) is connected, the two arcs of c1 − Λ(Ξ1) necessarily lie in different components of
Ω(Γo), and so Ω(Γo) contains two components whose closures intersect. However, as every finite
index subgroup of Γ has the same limit set as Γ, no finite index subgroup of Γ can contain two such
components, and so Γo must have infinite index in Γ.

We can also describe this essential annulus topologically. On the 2-complex Y , it is a a collar
neighborhood on So

1 of the curve a1. Let N be the 3-manifold obtained by taking a regular neigh-
borhood of the 2-complex Y , and note that N has n + 1 boundary components: n are surfaces
parallel to So

1 , . . . , S
o
n, and there is one other, call it T . The essential annulus corresponding to the

curve c1 has one boundary curve in the component of ∂N parallel to So
1 , and has its other boundary

curve in T . 2

5 Closing remarks

We close with some remarks.

Remark 5.1 Suppose that Γ is a convex co-compact Kleinian group with torsion which has con-
nected limit set and which has the property that any pair of distinct components of Ω(Γ) have
disjoint closures. By Selberg’s Lemma [24], there exists a finite index subgroup Γo of Γ which
is torsion free. Since MΓo is acylindrical, Theorem 4.2 implies that Γo contains a quasifuchsian
subgroup which is not contained in any component subgroup, and hence so does Γ.

Remark 5.2 Note that Theorem 4.2 applies to some non-compact hyperbolic 3-manifolds with
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finitely generated fundamental group, using a standard trick. Let Γ be a finitely generated torsion-
free Kleinian group which has infinite co-volume and which contains no Z⊕ Z subgroups. By the
Core Theorem of Scott [21], there exists a compact submanifold M of H3/Γ whose inclusion is a
homotopy equivalence. Since Γ has infinite co-volume, the boundary of M is non-empty; since Γ
contains no Z ⊕ Z subgroups, M cannot contain an incompressible torus, and so by Thurston’s
uniformization theorem (see for example Morgan [20]), there exists a convex co-compact Kleinian
group Φ uniformizing M . If it happens that M is acylindrical, Theorem 4.2 implies that there exists
a closed immersed essential surface S in M , and hence that there exists a closed essential surface
S in MΓ. Note that this argument works in the presence of parabolics, though the fundamental
group of S in Γ need not be quasifuchsian in this case.

If it happens that Γ contains no parabolic elements, let Θ be a choice of conjugacy class in
Γ of the fundamental group of S. By Canary’s generalization [6] of Thurston’s covering theorem
for hyperbolic 3-manifolds, the assumption that Γ has infinite co-volume forces Θ to be convex
co-compact, and hence quasifuchsian.

Remark 5.3 It follows from work of Thurston [29] and McMullen [19] that, if M satisfies the
hypotheses of Theorem 4.2, there exists a unique uniformizing convex co-compact Kleinian group
Γ for M in which every component of the boundary of the convex core CΓ of Γ is totally geodesic,
and hence every component of Ω(Γ) is a round circular disc. In this situation, it is easy to see
that the immersed essential surface S in M given by Theorem 4.2 cannot to totally geodesic, as
the quasifuchsian subgroup Φ corresponding to S has non-trivial intersection with some component
subgroup.
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