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ABSTRACT. In this note, we consider the minimal entropy problem, namely the
question of whether there exists a smooth metric of minimal (topological) entropy,
for certain classes of closed 3-manifolds. Specifically, we prove the following two
results.

Theorem A. Let M be a closed orientable irreducible 3-manifold whose fundamen-
tal group contains a Z ® 7, subgroup. The following are equivalent:
(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for
M can be solved;
(2) M admits a geometric structure modelled on E® or Nil;
(3) M admits a smooth metric g with hyop(g) = 0.

Theorem B. Let M be a closed orientable geometrizable 3-manifold. The following
are equivalent:
(1) the simplicial volume | M| of M is zero and the minimal entropy problem for
M can be solved;
(2) M admits a geometric structure modelled on S?, S*> x R, E3, or Nil;
(3) M admits a smooth metric g with hyop(g) = 0.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let M™ be a closed orientable n-dimensional manifold. For a smooth Riemannian
metric g on M, let Vol(M, g) denote the volume of M calculated with respect to g.

Let hyop(g) be the topological entropy of the geodesic flow of g, as defined in Section
2.6. Set the minimal entropy of M to be

h(M) = inf{hop(g) | g is a smooth metric on M with Vol(M, g) = 1}.
A smooth metric gy with Vol(M, go) = 1 is entropy minimizing if
hiop(g0) = h(M).

The minimal entropy problem for M is whether or not there exists an entropy
minimizing metric on M. Say that the minimal entropy problem can be solved for
M if there exists an entropy minimizing metric on M. Smooth manifolds are hence
naturally divided into two classes: those for which the minimal entropy problem can
be solved and those for which it cannot.
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There are a number of classes of manifolds for which the minimal entropy problem
can be solved. For instance, the minimal entropy problem can always be solved for
a closed orientable surface M. For the 2-sphere and the 2-torus, this follows from
the fact that both a metric with constant positive curvature and a flat metric have
zero topological entropy. For surfaces of higher genus, A. Katok [11] proved that each
metric of constant negative curvature minimizes topological entropy, and conversely
that any metric that minimizes topological entropy has constant negative curvature.

This result of Katok has been generalized to higher dimensions by Besson, Courtois,
and Gallot [1], as follows. Suppose that M"™ (n > 3) admits a locally symmetric metric
go of negative curvature, normalized so that Vol(M, go) = 1. Then g is the unique
entropy minimizing metric up to isometry. Unlike the case of a surface, a locally
symmetric metric of negative curvature on a closed orientable n-manifold (n > 3) is
unique up to isometry, by the rigidity theorem of Mostow [18].

The result of Besson, Courtois, and Gallot [1] has itself been generalized by Connell
and Farb [4] to n-manifolds that admit a complete, finite-volume metric which is
locally isometric to a product of negatively curved (rank 1) symmetric spaces of
dimension at least 3.

A positive solution to the minimal entropy problem appears to single out manifolds
that have either a high degree of symmetry or a low topological complexity. What
this means in the context of 3-manifolds will become apparent below. A similar
phenomena is observed for closed simply connected manifolds of dimensions 4 and
5: there are essentially only nine manifolds for which the minimal entropy problem
can be solved and they can be explicitly listed. These nine manifolds share the
property that their loop space homology grows polynomially for any coefficient field,
see Paternain and Petean [21].

The goal of this note is to classify those closed orientable geometrizable 3-manifolds
with zero simplicial volume for which the minimal entropy problem can be solved.
Specifically, in Section 4, we prove:

Theorem A. Let M be a closed orientable irreducible 3-manifold whose fundamental
group contains a Z ® Z subgroup. The following are equivalent:

(1) the simplicial volume || M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on 3 or Nil;

(3) M admits a smooth metric g with he,,(g) = 0.

In Section 5 we prove:

Theorem B. Let M be a closed orientable geometrizable 3-manifold. The following
are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on S?, S* x R, E3, or Nil;

(3) M admits a smooth metric g with he,,(g) = 0.
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Recall that the simplicial volume of a closed orientable manifold M is defined as
the infimum of ), |r;| where the r; are the coefficients of a real cycle that represents
the fundamental class of M. For 3-manifolds, the positivity of the simplicial vol-
ume (which is a homotopy invariant) is closely related to the existence of compact
hyperbolizable submanifolds in M. This is described in more detail in Section 2.5.

We close the introduction by describing some of the elements of the proofs of
Theorems A and B, and by describing a conjectural picture. We will see in Section
2 that a closed orientable geometrizable 3-manifold M has zero simplicial volume if
and only if M has zero minimal entropy. Therefore, the minimal entropy problem
can be solved if and only if M admits a smooth metric with zero topological entropy.
This in turn forces the fundamental group of M to have subexponential growth.
We end up showing that this can occur only if M admits one of the four geometric
structures listed in the statement of Theorem B. On the other hand, it is a calculation
that the manifolds in the statement of Theorem B carry a metric of zero entropy.
The proof of Theorem A follows a similar line, and makes use of the remarkable
theorem, due essentially to Thurston, that a manifold satisfying the hypothesis of
the theorem is geometrizable. The precise definition of geometrizable manifold is
given in Subsection 2.4. Thurston’s geometrization conjecture states that every closed
orientable 3-manifold is geometrizable.

From this discussion and the above mentioned result of Besson, Courtois and Gallot
it seems quite reasonable to speculate that the following statement holds:

Let M be a closed orientable geometrizable 3-manifold. Then, the minimal entropy

problem for M can be solved if and only if M admits a geometric structure modelled
on S?, S? x R, E3, Nil, or H3.

Indeed, suppose that the simplicial volume of M were not zero. This would imply that
M contains a disjoint collection Hy,. .., H, of compact submanifolds whose interiors
each admit a complete hyperbolic structure of finite volume. In particular, it should
be that the minimal entropy of M is the maximum of the minimal entropies of the
Hy. It would then seem reasonable that an entropy minimizing metric on M would
try to be as hyperbolic as possible on the interiors of the Hy and would try as much
as possible to be one of the other seven standard 3-dimensional geometries on the
components of M — (H; U ---U H,). However, it would seem that the minimizer
would have to be singular along the 0 Hy, and so there should be no metric of minimal
entropy. Unfortunately, we do not yet know how to make this argument rigorous.
We would like to thank the referees for their careful reading of this note.

2. PRELIMINARIES

The purpose of this Section is to present some of the basic material from 3-manifold
theory that we will need. We refer the interested reader to Hempel [8] for a more
detailed introduction to 3-manifold topology. For a more detailed description of
Seifert fibered spaces, and of the torus decomposition and the geometrization of 3-
manifolds, we also refer the interested reader to the survey articles of Scott [26] and
Bonahon [2], and the references contained therein.
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2.1. 3-manifold basics. We begin with some basic definitions. A 3-manifold is
closed if it is compact with empty boundary.

An embedded 2-sphere S? in a 3-manifold M is essential if M does not bound a
closed 3-ball in M. A 3-manifold is rreducible if it contains no essential 2-sphere.

A 3-manifold is prime if it cannot be decomposed as a non-trivial connected sum.
That is, M is prime if for every decomposition M = M;# M, of M as a connected sum,
one of M; or M, is homeomorphic to the standard 3-sphere S®. Every irreducible 3-
manifold is prime, but the converse does not hold. However, the only closed orientable
3-manifold that is prime but not irreducible is S? x S'.

We note here that if the closed orientable 3-manifold M contains a non-separating
essential 2-sphere, then M can be expressed as the connected sum M = P#(S? x St)
for some 3-manifold P. Hence, in what follows, we need only consider separating
essential 2-spheres in 3-manifolds.

There is an inverse to the operation of connected sum for 3-manifolds, called the
prime decomposition. The following statement is adapted from Bonahon [2], and
follows from work of Kneser [12] and Milnor [16].

Let M be a closed orientable 3-manifold. Then, there exists a compact 2-submanifold
Y2 of M, unique up to isotopy, so that two conditions hold. First, each component of
> is an embedded essential separating 2-sphere, and the 2-spheres in X are pairwise
non-parallel, in that no two 2-spheres in ¥ bound an embedded S? x [0,1] in M.
Second, if My, My, ..., M, are the closures of the components of M — X, then M, is
homeomorphic to the 3-sphere S minus finitely many disjoint open 3-balls; while for
k > 1, each M} contains a unique component of ¥, and every separating essential
2-sphere in M, is parallel to dM,,.

The prime decomposition of M is the collection of 3-manifolds that results by
taking the complements of the 2-submanifold Y in M as just described, and filling
in each 2-sphere boundary component of My, M, ..., M, with a 3-ball. Each of the
resulting 3-manifolds is then prime. (Note that both S* and S* x S! have trivial
prime decompositions, as they do not contain a separating essential 2-sphere.) The
prime decomposition is one of two standard decompositions of a closed orientable
3-manifold, the other being the torus decomposition, which is discussed in detail in
Section 2.3.

In general, a closed orientable embedded surface S in a 3-manifold M is 2-sided if
there exists an embedding f of S x [—1,1] into M so that f(S x {0}) = S. A closed
orientable embedded surface S in a 3-manifold M is incompressible if the fundamental
group of S is infinite and if the inclusion S < M induces an injection on fundamental
groups. An incompressible surface S is essential if S is not homotopic into OM.

A compact orientable irreducible 3-manifold M is sufficiently large if it contains a
2-sided incompressible surface. Sufficiently large 3-manifolds are also known as Haken
3-manifolds.

2.2. Seifert fibered spaces. A Seifert fibration of a 3-manifold M is a decomposi-
tion of M into disjoint simple closed curves, called the fibers of the fibration, so that
each fiber ¢ has a neighborhood U in M of the following form: U is diffeomorphic
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to the quotient of S! x B? by the free action of a finite group respecting the product
structure, where the fibers of the fibration correspond to the curves {z} x B? for
x € S'. (In this note, we only consider Seifert fibrations of closed 3-manifolds and of
3-manifolds without boundary that are homeomorphic to the interior of a compact
3-manifold with 2-torus boundary components.)

Since we are considering only orientable 3-manifolds in this note, the group of
covering transformations of S! x B? in the above definition is generated by 7,, for
some pair (p, q) of relatively prime integers, where

Tpq (€%,7€¢") = (e"(‘/’*%),rei(@*?)) .

A fiber is a regular fiber if it has a neighborhood diffeomorphic to S' x B2, and is
a singular fiber otherwise. Note that the singular fibers of a Seifert fibration are
necessarily isolated.

Let S be the space of fibers of a Seifert fibration of a 3-manifold M, equipped with
the quotient topology coming from the projection map p : M — S. We often refer
to S as the base orbifold of the Seifert fibered space M. Using the neighborhoods of
the fibers in M, we see that S is an orientable surface with one cone point for each
singular fiber.

Let pi,...,ps be the cone points on S, and let n; be the order at the cone point
pj, so that a neighbhorhood of p; is diffeomorphic to the quotient B?/ L, where Zy,,
acts by rotation. The orbifold Euler characteristic x(S) of S is the quantity

(S) = 2 — 2 genus(S) — Z (1 - i) |

n
k=1 J

(This discussion is also valid in the case that M is a 3-manifold without boundary
that is homeomorphic to the interior of a compact 3-manifold with 2-torus boundary
components. In this case, the base orbifold has punctures as well as cone points, and
we view each puncture as a cone point of infinite order.)

There are two cases of particular interest. In the case that x(S) < 0, S has a
hyperbolic structure, so that we can express S as the quotient S = H?/T", where H? is
the hyperbolic plane and T is a discrete subgroup of Isom(H?), where the fixed points
of the action of non-trivial elements of I' descend to the cone points on S. We refer
to I' as the orbifold fundamental group of S. In this case, we have that ' contains a
free subgroup of rank 2, and in particular I contains an element of infinite order.

In the case that x(S) = 0, S has a Euclidean structure, so that we can express S as
the quotient S = E?/T", where E? is the Euclidean plane and T is a discrete subgroup
of Isom([E?), where the fixed points of the action of non-trivial elements of I descend
to the cone points on S. As above, we refer to I' as the orbifold fundamental group of
S. In this case, we have that I' contains an element of infinite order, but not a free
subgroup of rank two.

In both of these cases, the orbifold fundamental group of the base orbifold S of
the Seifert fibered space M is a subgroup of m(M). In fact, there is a short exact
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sequence
1 —=7Z—m(M)—m(S) —1,
where 71(.5) is the orbifold fundamental group of S and where Z is generated by any
regular fiber of the Seifert fibration.
The following follows immediately from this discussion.

Lemma 2.1. Let M be a Seifert fibered space as above with base orbifold S. If
X(S) <0, then (M) contains a Z & Z subgroup.

Proof. The proof of Lemma 2.1 is standard, but we sketch it here for the sake of
completeness. Let p : M — S be the quotient map. Since x(S) < 0, there is a
closed curve ¢, not necessarily simple, on S that represents an infinite order element
of the orbifold fundamental group of S. Let T = p~!(c) in M be the subset of
M that consists of all the fibers in M corresponding to points of ¢. Then, T is
an incompressible 2-torus in M, though not necessarily embedded. However, this
is sufficient to guarantee that there exists a Z @ Z subgroup of m1(M), namely the
fundamental group of 7T'. O

2.3. The torus decomposition. Let M be a closed orientable irreducible 3-manifold
with infinite fundamental group. There is then a canonical decomposition of M along
embedded essential 2-tori, due to Jaco and Shalen [9] and Johannson [10]. (Note that
the restriction to irreducible 3-manifolds causes no loss of generality, as we may first
apply the prime decomposition to M, as described in Section 2.1. Also, we tend to
not take the torus decomposition of S? x S!.) The statement given below is adapted
from Theorem 3.4 of Bonahon [2].

Theorem 2.2. [2] Let M be a closed orientable irreducible 3-manifold. Then, up to
1sotopy, there is a unique compact 2-submanifold T of M such that:

(1) every component of T is a 2-sided essential 2-torus;

(2) every component of M — T either contains no essential embedded 2-torus or
Klein bottle, or else admits a Seifert fibration (or possibly both);

(3) property (2) fails when any component of T is removed.

We refer to this 2-submanifold 7" as the torus decomposition of M. Note that
condition (3) implies that no two of the 2-tori in the torus decomposition are isotopic.

Let M be a compact orientable 3-manifold, and let My, My, ..., M, be the compo-
nents of its prime decomposition. Let T} be the torus decomposition of Mj. Say that
M is a graph manifold if, for each 1 < k < p, every component of M, — T, admits
a Seifert fibration. Clearly, every Seifert fibered space is trivially a graph manifold.
Also, every 2-torus bundle over S! is a graph manifold.

Theorem 2.2 is a small part of the machinary of the characteristic submanifold of a
3-manifold developed by Jaco and Shalen and by Johannson. Note that this discussion
includes the possibility that the torus decomposition 7" is empty, even though m; (M)
may contain a Z & Z subgroup.

A closely related result is the following torus theorem. For a discussion and proof
of this result, see Scott [27].
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Theorem 2.3. [27] Let M be a closed orientable irreducible 3-manifold whose funda-
mental group contains a Z ® 7 subgroup. Then, either M contains an incompressible
embedded 2-torus or M s a Seifert fibered space.

2.4. Geometric structures and geometrization. A 3-dimensional geometry is a
pair (X, G), where X is a simply connected Riemannian 3-manifold with a complete
homogeneous metric and G is a maximal transitive group of orientation-preserving
isometries of X, with the proviso that there exists a subgroup H of G with compact
quotient X/H. Note that since G is a maximal group of isometries, it suffices to
specify X and set G = Isom(X).

It is a result of Thurston that there exist exactly eight 3-dimensional geometries,
namely E3, S?, H?, S? x R, H? x R, SL,, Nil, and Sol, with their respective groups of
(orientation preserving) isometries. (A proof of this result, and a detailed description
of the eight geometries, is given in Scott [26].)

Let M be an orientable 3-manifold that is homeomorphic to the interior of a com-
pact 3-manifold with 2-torus boundary components. (This includes the possibility
that M is closed.) Say that M admits a geometric structure modelled on X if M is
diffeomorphic to the quotient X /T, where X is one of the eight 3-dimensional geome-
tries and I is a fixed point free subgroup of Isom(X). It is known that if a 3-manifold
admits a geometric structure, then it admits a unique geometric structure.

More generally, let M be a closed orientable irreducible 3-manifold with torus
decomposition 1. Say that M is geometrizable if each component of M — T admits
a geometric structure. (Note that we do not require that different components of
M — T admit the same geometric structure.)

Finally, say that a closed orientable 3-manifold is geometrizable if every component
of its prime decomposition is geometrizable. (This causes no difficulties, as S* x S,
which may arise as a component of the prime decomposition but is not irreducible,
admits a geometric structure modelled on S? x R.)

Thurston’s geometrization conjecture states that every closed orientable 3-manifold
is geometrizable. For a more complete discussion of the geometrization conjecture,
see Scott [26], Bonahon [2], or Thurston [30].

There are a number of manifolds for which the geometrization conjecture is known
to be true. If M is a closed orientable irreducible sufficiently large 3-manifold, then
M is geometrizable; this is Thurston’s geometrization theorem; see Morgan [17] or
Otal [19] for a discussion of this theorem.

In particular, if M has a non-empty torus decomposition, then it is geometrizable.
In this case, each component of the complement of the torus decomposition of M
either is a Seifert fibered space or admits a hyperbolic structure, that is the geometric
structure modelled on H3. We encode in the following theorem the parts of this
discussion we make the most use of.

Theorem 2.4. Let M be a closed orientable irreducible sufficiently large 3-manifold.
Then, M admits a torus decompositionT'. Moreover, each component of M —T either
is a Seifert fibered space or admits a hyperbolic structure.
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Additionally, the geometrization of Seifert fibered spaces, and in fact of irreducible
graph manifolds, is completely understood.

Theorem 2.5. [26, Theorem 5.3] Let M be a closed orientable 3-manifold. Then,

(1) M possesses a geometric structure modelled on Sol if and only if M is finitely
covered by a 2-torus bundle over S' with hyperbolic glueing map;
(2) M possesses a geometric structure modelled on one of S*, B3, S? x R, H? x R,

SLs, or Nil if and only if M is a Seifert fibered space.

We note here that the two unresolved cases of the geometrization conjecture are
that the fundamental group of M is finite, in which case M should admit a geometric
structure modelled on S? [the Poincaré conjecture and the spherical space form prob-
lem], and that the fundamental group of M is infinite, does not contain Z & Z, and
does not contain a normal cyclic subgroup, in which case M should admit a geometric
structure modelled on H? [the hyperbolization conjecture].

2.5. Simplicial volume. Let M be a closed manifold. Denote by C, the real chain
complex of M: a chain ¢ € C, is a finite linear combination ), 7,0, of singular sim-
plices o; in M with real coefficients r;. Define the simplicial I*-norm in C, by setting
lc| = >, |rs]. This norm gives rise to a pseudo-norm on the homology H,.(M,R) by
setting
[[a]| = inf{|z| : z € C\ and [z] = [o]}.

When M is orientable, define the simplicial volume of M, denoted || M|, to be the sim-
plicial norm of the fundamental class. The simplicial volume is also called Gromouv’s
invariant, since it was first introduced by Gromov [7].

The following lower bound on || M|| is due to Thurston [29].

Theorem 2.6. [29, Theorem 6.5.5] Suppose that M is a closed orientable 3-manifold
and that H C M s a S-dimensional submanifold whose interior admits a complete
hyperbolic structure of finite volume. Suppose further that H is embedded in M and
that OH s incompressible in M. Then,

Vol(H)

1M >
U3

> 0,

where v3 is the volume of the reqular ideal tetrahedron in H?.
The next theorem follows immediately from Theorems 2.6, 2.4, and 2.5.

Theorem 2.7. Let M be a closed orientable geometrizable 3-manifold. Suppose that
|M|| = 0. Then M is a graph manifold.

Proof. The proof of Theorem 2.7 is essentially contained in Soma [28]; we include it
here solely for the sake of completeness.

We begin by considering the prime decomposition of M. That is, write M as the
connected sum M = My# - - - #M,, where each M; is a prime 3-manifold. (Note that
we are including in this discussion the case that M is itself prime, and so has trivial
prime decomposition.)
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Since simplicial volume behaves additively with respect to connected sums (cf.
Gromov [7]), the hypothesis that M has zero simplicial volume implies that each M;
has zero simplicial volume as well. Since the connected sum of graph manifolds is
again a graph manifold (cf. Soma [28]), it suffices to show that each M; is a graph
manifold. Since each M; is prime, it is either irreducible or diffeomorphic to S? x St,
which is a Seifert fibered space. So, we may assume without loss of generality that
M is irreducible.

Let T be the torus decomposition of M. Recall that M is assumed to be geometriz-
able. If T"is empty, then M admits a geometric structure other than the one modelled
on H? (which is excluded by the assumption on the simplicial volume of M), and so
M is a graph manifold, by Theorem 2.5.

If T" is non-empty, then M is sufficiently large, and so Thurston’s geometrization
conjecture holds for M. Since ||M|| = 0, each component of M — T is a Seifert fibered
space, as no piece can be hyperbolic, by Theorem 2.6. It follows that M must be a
graph manifold. U

2.6. Topological entropy. We recall in this subsection the definition of the topolog-
ical entropy of the geodesic flow of a smooth Riemannian metric g on a closed manifold
M. For a more detailed discussion, we refer the interested reader to Paternain [20].

The geodesic flow of g is a flow ¢; that acts on SM, the unit sphere bundle of M,
which is a closed hypersurface of the tangent bundle of M. Let d be any distance
function compatible with the topology of SM. For each T > 0 we define a new
distance function

dr(z,y) == max d(¢:(z), ¢:(y))-

0<t<T

Since SM is compact, we can consider the minimal number of balls of radius € > 0 in
the metric dr that are necessary to cover SM. Let us denote this number by N(e,T).
We define

1
h(¢, ) := limsup — log N (e, T).
T—o0 T
Observe now that the function € — h(¢, ) is monotone decreasing and therefore the

following limit exists:

hiop(9) = Him b(6.).

The number hi,,(g) thus defined is the topological entropy of the geodesic flow of
g. Intuitively, this number is a measure of the orbit complexity of the flow. The
positivity of hy,(¢) indicates complexity or ‘chaos’ of some kind in the dynamics of
Pt

There is a formula, known as Mané’s formula, that gives a nice alternative descrip-
tion of hp(g). Given points p and ¢ in M and T > 0, define nyp(p, q) to be the
number of geodesic arcs joining p and ¢ with length < 7. Mané [14] showed that

1
hiop(g) = Jlim - log /M MnT(p, q) dpdq.
X
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Finally we note that entropy behaves well under scaling of the metric. Namely, if

c is any positive constant, then h,,(cg) = —hti;ég)-

2.7. Minimal volume and collapsing. The minimal volume MinVol(M) of a Rie-
mannian manifold M is defined to be the infimum of Vol(M, g) over all smooth met-
rics g such that the sectional curvature K, of g satisfies |K ;| < 1. This differential
invariant was introduced by M. Gromov in [7].

We shall need the following result, see Cheeger and Gromov [3, Example 0.2 and
Theorem 3.1] and Rong [23].

Proposition 2.8. Let M be a closed orientable 3-manifold. If M is a graph manifold,
then M admits a polarized F-structure, and hence MinVol(M) = 0.

We will not give here the precise definition of a polarized F-structure, because it
is too technical. Instead we give an informal description, and we refer the interested
reader to Cheeger and Gromov [3] for a more detailed discussion.

An F-structure on a manifold M is a natural generalization of a torus action on
M. Different tori, possibly of different dimensions, act on subsets of M in such a way
that M is partioned into disjoint orbits. The F-structure is said to be polarized if the
local actions are locally free.

Consider the following example of a polarized F-structure on a graph manifold.
Take a compact surface S with non-empty connected boundary, and consider two
copies of S x S!, each of which has a 2-torus boundary. Fixing an identification of
0S with S, glue the boundaries of two copies of S x S' by a map that interchanges
the S! factors, so that (z,2) € 9S x S on one copy is glued to (z,z) € S x S! on
the other copy.

The resulting manifold admits a free circle action on each copy of int(S) x S, but
at their common boundary the actions do not agree. However, they do generate a 2-
torus action which acts locally near their common boundary, thus defining a polarized
F-structure on the whole manifold.

2.8. An important chain of inequalities. Let M be a closed Riemannian manifold
with smooth metric g, and let M be its universal covering endowed with the induced

metric. For each x € M, let V(z,r) be the volume of the ball with center x and
radius r. Set

A(g) :== lim 1log Vix,r).

r—-+oo 1

Manning [13] showed that this limit exists and is independent of x.
Set

A(M) :=inf{A(g) | g is a smooth metric on M with Vol(M,g) = 1}.

It is well known, see Milnor [15], that A(g) is positive if and only if m; (M) has
exponential growth. Manning’s inequality [13] asserts that for any metric g,

(1) AM9) < hiop(g)-
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In particular, it follows that if 71 (A/) has exponential growth, then h.,(g) is positive
for any metric g. (This fact was first observed by Dinaburg [5]). Gromov [7] showed
that if Vol(M, g) = 1, then

1
2
(2) C,n!

where
n n+1
=T (5) VAT .
C=1 () V7 ( ! )
Finally it was observed by Paternain [20] that
(3) [h(M)]" < (n — 1)"MinVol(M).
Combining equations (1), (2), and (3), we obtain the following chain of inequalities:
1

4
(4) C,n!

We note here that the only known 3-manifolds with h(M) > 0 are those with
IM]|| # 0. In fact it follows from Theorem 2.7, Proposition 2.8, and the chain of
inequalities (4) that if M is a closed orientable geometrizable 3-manifold, then the
vanishing of the simplicial volume implies that h(M) = 0.

We encode this information in the following theorem.

M| < [A(9)]",

M < [AM)]" < [0(M)]" < (n = 1)"MinVol(M).

Theorem 2.9. Let M a closed orientable geometrizable 3-manifold. Then the follow-
g are equivalent:

(1) the minimal volume MinVol(M) of M wvanishes;
(2) the minimal entropy h(M) of M wvanishes;

(3) the simplicial volume ||M|| of M vanishes;

(4) M is a graph manifold.

3. GEOMETRIC STRUCTURES AND THE MINIMAL ENTROPY PROBLEM

In this section, we consider the minimal entropy problem for those 3-manifolds that
admit a single geometric structure. Namely, we prove the following.

Proposition 3.1. Let M be a closed orientable 3-manifold. Suppose that M admits
a geometric structure. Then, the minimal entropy problem for M can be solved if
and only if M admits a geometric structure modelled on S?, E?, S? x R, Nil, or H3.
Moreover, if M admits a geometric structure modelled on S?, E3, S* x R, or Nil, then
M admits a smooth metric g with hy,,(g) = 0.

Proof. We start by showing that if M admits a geometric structure modelled on one of
these 5 geometries, then the minimal entropy problem for M can be solved. Observe
first that if M admits a geometric structure modelled on H?, then the minimal entropy
problem can be solved by the results of Besson, Courtois and Gallot [1].

It follows immediately from Theorem 2.5 that if M admits a geometric stucture
modelled on one of the seven geometries S?, E3, S? x R, H? x R, SL,, Nil, or Sol, then
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M is a graph manifold. Hence by Proposition 2.8 and the chain of inequalities (4),
we have that for such an M, the minimal entropy satisfies h(M) = 0.

We now show that if M admits a geometric structure modelled on one of S?, E3,
S? x R, or Nil, then the minimal entropy problem for M can be solved. To do this,
we need to show that M admits a smooth metric g with h.,(g) = 0.

(1) S3 E3, S? x R: All the Jacobi fields in these geometries grow at most linearly
(in the case of S? they are actually bounded), and hence all the Liapunov
exponents of every geodesic in M are zero. It follows from Ruelle’s inequality
[24] that all the measure entropies are zero. Hence, by the variational principle,
the topological entropy of the geodesic flow of M must be zero.

(2) Nil: This geometry can be described as R? with the metric

ds® = dz* + dy* + (dz — xdy)*.

Here, not all the Jacobi fields grow linearly, but they certainly grow polyno-
mially. Again this implies that all the Liapunov exponents of every geodesic
in M are zero and hence the topological entropy of the geodesic flow of M
must be zero.

Since we have assumed that M admits a geometric structure, we complete the
proof by showing that if M admits a geometric structure modelled on one of the
remaining geometries, namely H? x R, SLy, and Sol, then M cannot admit a metric
of zero topological entropy. To do this, we use the next lemma, together with the
fact described in Subsection 2.8, that if 7 (M) grows exponentially, then hi,,(g) > 0
for any smooth metric g on M.

Lemma 3.2. Let M be a closed orientable 5-manifold, and suppose that M admits

a geometric structure modelled on one of H? x R, SLy, or Sol. Then m (M) grows
exponentially.

Proof. In the case that M admits a geometric structure modelled on H? xR or SL,, we
start by recalling from Theorem 2.5 that M is then a Seifert fibered space. The base
orbifold of the Seifert fiber space admits a hyperbolic structure, and so the orbifold
fundamental group of the base orbifold contains a free subgroup of rank 2, and hence
so does m(M). Hence, m (M) grows exponentially.

In the case that M admits a geometric structure modelled on Sol, we have that M
is finitely covered by the mapping torus NV of a hyperbolic automorphism of a 2-torus.
Note that a hyperbolic automorphism of a 2-torus is an Anosov diffeomorphism, and
so the suspension flow on N is an Anosov flow. It is known that the fundamental

group of a 3-manifold with an Anosov flow has exponential growth (see for example
Plante and Thurston [22]). O

This completes the proof of Proposition 3.1. 0
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4. PROOF OF THEOREM A

Up to this point, we have been considering the minimal entropy problem for closed
3-manifolds that admit a single geometric structure. In this section, we consider a
more general geometrizable 3-manifold.

Theorem A. Let M be a closed orientable irreducible 3-manifold whose fundamental
group contains a Z ® Z subgroup. The following are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on E3 or Nil;

(3) M admits a smooth metric g with hi,,(g) = 0.

Proof. Let us show that item 1 implies item 2. Suppose then that M has zero sim-
plicial volume and that the minimal entropy problem for M can be solved. We show
that M must then admit a geometric structure modelled on either E* or Nil. Since
the fundamental group of M contains a Z & Z subgroup, Theorem 2.3 ensures that
either M contains an incompressible embedded 2-torus or M is a Seifert fibered space.
We now split the proof into two cases:

e Suppose first that M contains an incompressible embedded 2-torus, and so is
sufficiently large. Since we have assumed that || M| = 0, Theorem 2.7 yields
that M is a graph manifold. Hence, by Theorem 2.9, we have that h(M) = 0.

However, using work of Evans and Moser [6], specifically Theorem 4.2 and
Corollary 4.10 in [6], we see that either w1 (M) contains a free subgroup of
rank 2 or M is finitely covered by a 2-torus bundle over S. In the former
case, m1 (M) grows exponentially and therefore the minimal entropy problem
cannot be solved for M.

In the latter case, M admits a geometric structure modelled on one of E3,
Nil, or Sol (cf. Theorem 5.5 of Scott [26]). However, in the case that M
admits a geometric structure modelled on Sol, we know from Proposition 3.1
that the minimal entropy problem cannot be solved for M.

Hence, if the minimal entropy problem can be solved for M and if M con-
tains an incompressible embedded 2-torus, then M admits a geometric struc-
ture modelled on either E® or Nil.

e The other case is that M is a Seifert fibered space. Here, Theorem 2.5 ensures
that M possesses a geometric structure modelled on one of S3, E3, S% x R,
H? x R, SLy or Nil.

Since the fundamental group of M admits a Z @ Z subgroup, the geometric
structure on M cannot be modelled on S? or S? x R. Since we have assumed
that the minimal entropy problem can be solved for M, Proposition 3.1 yields
that M must admit a geometric structure modelled on either E3 or Nil, as
desired.

To see that item 2 implies item 3, recall from Proposition 3.1 that if M admits a
geometric structure modelled on E3 or Nil, then M admits a smooth metric g with

htOP(g) =0.
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Finally to prove that item 3 implies item 1, observe that if M admits a smooth
metric g with hy,p(g) = 0 it then follows from inequalities (1) and (2) that M has
zero simplicial volume.

This completes the proof of Theorem A. U

5. PROOF OF THEOREM B

We are now ready to consider the minimal entropy problem for a general geometriz-
able 3-manifold with zero simplicial volume.

Theorem B. Let M be a closed orientable geometrizable 3-manifold. The following
are equivalent:

(1) the simplicial volume || M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on S*, S* x R, E3, or Nil;

(3) M admits a smooth metric g with he,,(g) = 0.

Proof. Let us prove that item 1 implies item 2. Suppose that M has zero simplicial
volume and that the minimal entropy problem for M can be solved. Since M is
geometrizable and its simplicial volume vanishes, Theorem 2.7 tells us that M is a
graph manifold. Hence, by Theorem 2.9, M has zero minimal entropy.

Since we are assuming that the minimal entropy problem can be solved for M, the
fact that M has zero minimal entropy in turn implies there exists a smooth metric on
M with zero topological entropy. This in turn implies, by the discussion in Section
2.8, that m (M) does not have exponential growth.

However, it is a fact from combinatorial group theory (which follows immediately
from the existence of normal forms for free products, for instance) that if A and B are
two finitely generated groups, then the free product A x B contains a free subgroup
of rank two unless A is trivial or B is trivial, or A and B are both of order two. Since
the fundamental group of a connected sum is the free product of the fundamental
groups of the summands, we conclude that either the prime decomposition is trivial
or there are only two summands both of which have fundamental group Z,.

In the former case, it follows that M must be either irreducible or S? x S', while
in the latter case M must be P3#P3, where P? is the 3-dimensional real projective
space. Since S? x S! and P3#P3 both admit a geometric structure modelled on S% x R,
we may assume from now on that M is irreducible.

There are now several cases, depending on 7 (M). Suppose first that m (M) is
finite. Since M is geometrizable, we have that M admits a geometric structure
modelled on S3.

In the case that 71 (M) is infinite and contains a Z @ Z subgroup, the assumption
that the simplicial volume of M is zero, together with the fact that the minimal
entropy problem can be solved for M, allows us to apply Theorem A to see that M
admits a geometric structure modelled on E? or Nil.

The remaining case is that 71 (M) is infinite and does not contain a Z & Z subgroup.
Since M is geometrizable, either M admits a hyperbolic structure or M is Seifert
fibered. (Since 71 (M) does not contain a Z@Z subgroup, M cannot admit a geometric
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structure modelled on Sol, as Sol manifolds are finitely covered by 2-torus bundles
over the circle.) However, since ||[M|| = 0, M cannot admit a hyperbolic structure.
Note though that M cannot admit a geometric structure modelled on H? x R, E3,

SLs, or Nil, as such manifolds always have a Z & Z in their fundamental groups, by
Lemma 2.1. Hence, the only possibilities remaining are that M admits a geometric
structure modelled on either S? x R or S?, as desired.

To see that item 2 implies item 3, recall from Proposition 3.1 that if M admits
a geometric structure modelled on S3, S? x R, E?, or Nil, then M admits a smooth
metric g with hyp(g) = 0.

Finally to prove that item 3 implies item 1, observe that if M admits a smooth
metric g with hiop(g) = 0, it then follows from inequalities (1) and (2) that M has
zero simplicial volume.

This completes the proof of Theorem B. 0
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