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Abstract. We show that a discrete, quasiconformal group preserving H
n has

the property that its exponent of convergence and the Hausdorff dimension of
its limit set detect the existence of a non-empty regular set on the sphere at
infinity to H

n. This generalizes a result due separately to Sullivan and Tukia,
in which it is further assumed that the group act isometrically on H

n, i.e. is
a Kleinian group. From this generalization we are able to extract geometric
information about infinite-index subgroups within certain of these groups.

1. Introduction and Statement of Results

The purpose of this note is to probe whether certain well-known results in
Patterson-Sullivan theory depend on the assumption that the discrete group in
question has an isometric action. In this study we consider the class of discrete K-
quasiconformal groups acting on Rn that preserve hyperbolic n-space H

n; if K > 1,
these groups do not act isometrically on Hn. Patterson-Sullivan theory itself is
revealing of the deep relationship between the conformal and isometric action of
a Kleinian group. In particular, various geometric and conformal invariants (e.g.
the exponent of convergence of the Poincaré series, the Hausdorff dimension of the
limit set, the lowest eigenvalue of the Laplacian) are intertwined by this theory to
give a full description of both the dynamical and geometric properties of a large
class of Kleinian groups.

Recall that a Kleinian group is a discrete group of orientation-preserving isome-
tries of hyperbolic n-space; we use the upper half-space model (Hn, ρ) of hyper-
bolic space, where Hn = {(x1, . . . , xn) ∈ Rn : xn > 0} and where the distance
ρ is induced by the metric ds2 = 1

x2
n

(dx2
1 + · · · + dx2

n). The isometric action of

a Kleinian group on Hn extends to a conformal action on the sphere at infinity
Rn−1 ' (Rn−1 × {0}) ∪ {∞}. This conformal action partitions Rn−1 into two
disjoint sets; the regular set Ω(Γ) is the largest open set on which Γ acts discontin-
uously, and the limit set L(Γ) is its complement. The Hausdorff dimension of the
limit set of a Kleinian group is descriptive of the geometric action of the group, e.g.
see [3], [11], and [12]. Most basically, if Γ is geometrically finite, then the Hausdorff
dimension of the limit set detects whether Γ has a discontinuous action on some
subset of Rn−1. (For the basics in Patterson-Sullivan theory as applied to Kleinian
groups see Nicholls [20].)

Theorem 1.1. (Sullivan [23] and Tukia [25]) Let Γ be a geometrically finite Klein-

ian group acting on Hn. Then dimL(Γ) = n − 1 if and only if L(Γ) = Rn−1.
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If Γ is a geometrically finite Kleinian group, then the Hausdorff dimension of its
limit set is equal to the exponent of convergence of its Poincaré series; thus this
theorem of Sullivan and Tukia could have equivalently been phrased in terms of the
exponent of convergence.

Theorem 1.1, as stated with respect to both Hausdorff dimension and the expo-
nent of convergence, is the theorem we will be generalizing to a class of discrete non-
isometric actions on Hn. Recall that a discrete K-quasiconformal group G acting
on Rn is a discrete group of homeomorphisms, each of which is a K-quasiconformal
mapping. We note that a discrete 1-quasiconformal group is in fact a discrete group
of Möbius transformations, i.e. a Kleinian group. Because we frequently wish to use
geometric arguments involving the hyperbolic metric ρ, we often consider those dis-
crete K-quasiconformal groups acting on Rn that preserve the upper half-space Hn.
We call such groups quasiconformal Fuchsian groups. (We denote such groups with
the initials “QCF”.) Quasiconformal groups, and indeed the more general class of
convergence groups, share many of the basic properties of Kleinian groups, e.g. the
notions of limit set and regular set, the dynamical classification of group elements,
etc. Most importantly, there is a dynamical notion of a geometrically finite action.
See the following section for relevant definitions and facts concerning the analytic
and geometric properties of convergence groups.

As in the Kleinian group setting, there is a well-defined notion of an exponent
of convergence δ(G) of the Poincaré series of a QCF group G ([6]). However, the
sharpest statement one can make concerning its relationship to the limit set for
QCF groups is that the exponent of convergence bounds from above the Hausdorff
dimension of the limit set (see [6]).

We are now prepared to state the central results of this note.

Theorem 1.2. Let G be a discrete quasiconformal Fuchsian group acting on Rn

having non-empty regular set in Rn−1 and having a purely conical limit set. Then
δ(G) < n − 1.

Having a purely conical limit set is a dynamical restriction on the action of the
QCF group; see section 2. We remark that if G is a non-elementary QCF group,
then δ(G) > 0 (see either Gehring-Martin [16] or [6]).

One could use Theorem 1.2 and the results from [6] to show that dim L(G) <
n−1 for discrete QCF groups satisfying the hypotheses of Theorem 1.2. However, it
is possible to prove this bound on the Hausdorff dimension of the limit set directly
for a more general class of discrete quasiconformal groups, that is, for those that
do not necessarily preserve Hn.

Theorem 1.3. Let G be a discrete quasiconformal group acting on Rn having non-
empty regular set and having a purely conical limit set. Then dim L(G) < n.

As an application of these theorems, we are able to show how infinite-index sub-
groups reside measure theoretically within certain classes of discrete quasiconformal
groups, see Section 4.

Acknowledgements : We thank Chris Bishop for the argument showing Example 4.6.
The second author is partially funded via NSF grant 0070335. The first and third
authors were partially funded by grants from EPSRC.
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2. Basics

Recall that a discrete convergence group G acting on a compact perfect metric
space M is a discrete (with respect to the compact-open topology) group of home-
omorphisms acting on M that has the following convergence property: For every
sequence {gj} in G, there is a subsequence {gjk

} and two (not necessarily distinct)

points a, b ∈ M such that gjk
(x) → a and g−1

jk
(y) → b locally uniformly in M −{b}

and M − {a} respectively. The notion of a convergence group was developed by
Gehring and Martin ([15]); in that paper the authors began a program in which
they showed that these groups resemble their conformal counterparts in many es-
sential ways. One defines the limit set L(G), the regular set Ω(G) and the notion
of being non-elementary exactly as in the Kleinian case ([18]). Note that, for a
non-elementary discrete convergence group, the limit set is perfect and closed, as in
the Kleinian case. Gehring and Martin also show that a discrete K-quasiconformal
group is necessarily a convergence group ([15]), and thus a discrete non-elementary
quasiconformal group acts as a convergence group on its limit set.

The analogue of geometric finiteness that is most appropriate for this paper is
dynamical in nature. Recall that a conical limit point of a discrete convergence
group G acting on M is a point x ∈ M for which there exists a sequence {gk} in G
and distinct points a, b ∈ M so that gk(x) → a but gk(y) → b for all y ∈ M−{x}. In

the case of a Kleinian group acting on Rn−1 and naturally extending to hyperbolic
space Hn, this definition is equivalent to the existence of a sequence {gk} in G such
that {gk(j)} converges to x within a bounded hyperbolic distance of the infinite
directed hyperbolic ray from j in the direction of x. A Kleinian group with purely
conical limit set is geometrically finite, that is to say that any epsilon neighborhood
of its convex core has finite (hyperbolic) volume. For a complete discussion of
geometrical finiteness as applied to Kleinian groups see Bowditch [9].

As mentioned previously, we will occasionally wish to use geometric arguments
involving the hyperbolic metric; as such, we will sometimes restrict our considera-
tion to QCF groups. We identify ∂H

n with Rn−1; if G is a quasiconformal group
preserving Hn then ∂Hn is also invariant under G. If one furthermore assumes
that G is discrete then the action of G is discontinuous in Hn and L(G) ⊆ Rn−1

by Corollary 3.8 in [15]. As for Kleinian groups we define the Poincaré series of a
discrete QCF group G to be ∑

g∈G

e−sρ(j,g(j)),

where j = (0, . . . , 1) ∈ Hn. The exponent of convergence δ(G) is

δ(G) = inf{s ≥ 0 :
∑

g∈G

e−sρ(j,g(j)) < ∞};

the exponent of convergence does not depend on the choice of base point j ∈ H
n

(see [6]).
In the geometric study of Kleinian groups, the fact that the conformal action

extends to a properly discontinuous and isometric action on Hn is foundational. No
such nice property exists for convergence groups in general, however there is a space
that serves as a partial substitute for Hn. One can replace “hyperbolic space” by the
triple space of the underlying metric space: A discrete convergence group G acting
on a compact perfect metric space M induces a properly discontinuous action on
the triple space T (M) = {(x, y, z) |x, y, z ∈ M distinct} by the diagonal action of G
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on T (M) given by g((x, y, z)) := (g(x), g(y), g(z)). Here, T (M) inherits the product
topology from M ×M ×M , and can be naturally compactified by adjoining a copy
of M . This can be described by regarding T (M)∪M as a quotient of M ×M ×M ,
where the quotient map is the identity on T (M), and sends a triple (x, y, z) to
a ∈ M if at least two of the entries x, y, z are equal to a. Then a sequence {Xi}
in T (M) converges (in T (M) ∪ M) to a ∈ M if and only if two of its components
converge (in M) to a. For a detailed discussion of the triple space of a convergence
group, see Bowditch [10] and Tukia [26].

The central fact we will use concerning the triple space is that the dynamical
action of a convergence group can be reflected in the topological action of the group
on a triple space.

Theorem 2.1. (Bowditch [10] and Tukia [26]) Let G be a discrete convergence
group acting on a perfect compact metric space M . Then T (M)/G is compact if
and only if every point of M is a conical limit point.

3. Proofs of Theorems 1.2 and 1.3

We begin with the proof of Theorem 1.3. A certain fact which is shown within
this proof (see Corollary 3.2) will later be used in the proof of Theorem 1.2.

Let a n-dimensional cube of arbitrary side length be called a n-cube. Recall that
a bounded set A ⊂ Rn is porous if there exists a constant c > 0 such that for
any open ball B(a, r) centered at a point a ∈ A and of radius r ∈ (0, 1], there is
an open ball B(b, cr) contained in B(a, r) and disjoint from A. It follows from a
standard argument (see for example [19]) that a porous subset of Rn has Hausdorff
dimension strictly less than n.

To prove Theorem 1.3 we adapt an argument of Tukia [25] to the triple space of
a discrete quasiconformal group G.

Proof of Theorem 1.3. If G is elementary then the result is trivially estab-
lished; thus we will assume for the rest of the argument that G is non-elementary.
In particular we then know that L(G) is a compact perfect subset of Rn. Since
Ω(G) 6= ∅ we can assume, by conjugating with a Möbius transformation, that
∞ ∈ Ω(G) so that we now have that L(G) is a perfect, closed and bounded subset
of Rn.

Let K be a bound on the quasiconformal distortion of the elements of G (i.e. G is
a K-quasiconformal group). We will show: There exists an integer q (the so-called
porosity index) such that if we divide any n-cube Q in Rn into qn sub-cubes of equal
side length then at least one of these sub-cubes does not intersect L(G). That is,
we will show that L(G) is porous, and thus it follows that dimL(G) < n.

To show the existence of the integer q, let TG denote the triple space over L(G),
i.e. TG = T (L(G)) = {(x1, x2, x3) |x1, x2, x3 ∈ L(G) distinct}. Since L(G) is purely
conical, we know from Theorem 2.1 that TG/G is compact, and so there exists a
compact subset C ⊂ TG with G(C) = TG. Since C is compact in TG there exists an
ε > 0 such that if (x1, x2, x3) ∈ C then |xi − xj | ≥ ε for i 6= j, i.e. the coordinates
of a point in C are uniformly separated from each other.

Choose a standard (fixed) n-cube Q0 of unit side length in Rn.
Let Q be the collection of all cubes in Rn for which q = 4 does not work, i.e. if

Q ∈ Q and Q is divided into 4n subcubes of equal side length, then each sub-cube
intersects L(G).



CONVERGENCE GROUPS AND HAUSDORFF DIMENSION 5

Fix Q ∈ Q, then there are three points x
(Q)
1 , x

(Q)
2 , x

(Q)
3 ∈ L(G)∩Q such that the

distances |x(Q)
i −x

(Q)
j |, (i 6= j) are all at least sidelength (Q)

2 . In particular, the triple

(x
(Q)
1 , x

(Q)
2 , x

(Q)
3 ) belongs to the triple space TG, and so there exists gQ ∈ G such

that gQ((x
(Q)
1 , x

(Q)
2 , x

(Q)
3 )) = (gQ(x

(Q)
1 ), gQ(x

(Q)
2 ), gQ(x

(Q)
3 )) ∈ C. Let βQ : Rn →

Rn be a similarity with βQ(Q) = Q0 and βQ(∞) = ∞, and define hQ := βQ ◦ g−1
Q :

Rn → Rn. Then hQ is a K-quasiconformal mapping satisfying

hQ(gQ(x
(Q)
i )) = βQ(x

(Q)
i ), i = 1, 2, 3.

Since βQ is a similarity mapping from Q onto Q0, we have that the points βQ(x
(Q)
i )

are a distance of at least 1/2 from each other, and furthermore, by compact-

ness of C in TG, the points gQ(x
(Q)
i ) (which are the coordinates of the point

gQ(x
(Q)
1 , x

(Q)
2 , x

(Q)
3 ) ∈ C) have distance at least ε from each other. Furthermore

gQ(x
(Q)
i ) ∈ L(G), where (by the initial conjugation) L(G) is a compact subset of

Rn.
We have shown that for each Q ∈ Q there exists a K-quasiconformal mapping hQ

and three points in a fixed bounded subset of Rn that are uniformly (independently
of Q) separated from each other, and these three points are mapped under hQ onto
three points in Q0 that again are uniformly (independently of Q) separated from
each other. This implies that the family F := {hQ |Q ∈ Q} is equicontinuous ([27,
Thm. 19.4]), and thus normal ([27, Thm. 20.5]). Observe also that limit functions
of locally uniformly convergent sequences in F are non-constant K-quasiconformal
homeomorphisms.

We will show, by contradiction, that there exists a porosity index q ∈ N (q > 4)
that works for all Q ∈ Q; thus this value for the index will, by the definition of Q,
work for all n-cubes in R

n. Suppose now that no integer q exists that works for all
cubes Q ∈ Q. Then there are hm ∈ F such that Q0 r (Q0 ∩ hm(L(G))) does not
contain a cube of side length 1/m. After passing to a subsequence we may assume
that {hm} converges to a non-constant, K-quasiconformal limit function h. Then
Q0 r (Q0 ∩h(L(G))) does not contain any cube of arbitrarily small side length, i.e.
Q0 ∩h(L(G)) is dense in Q0. But then h−1(Q0)∩L(G) is dense in h−1(Q0); this is
a contradiction since L(G) is nowhere dense in Rn by [15, Thm. 4.9]. Hence there
exists a uniform porosity index q for all cubes, and thus the Hausdorff dimension
of L(G) is strictly less than n. �

Remark 3.1. The assumption that G is a discrete quasiconformal group allows us
to use the necessary normal family argument in the above proof. The result is
not true in the more general setting of discrete convergence groups. Consider a
homeomorphism g : S1 → C ⊂ R

2, where C is a closed Jordan curve of Hausdorff
dimension 2. For example, g can be built from the function f : [0, 1] → R2 satisfying
the following three properties.

(1) The endpoints of the interval are fixed by f , i.e. f(0) = 0 and f(1) = 1.
(2) For each n ∈ N : n ≥ 2 the function f maps the interval [1− 1

n
, 1− 1

n+1 ] to

a snowflake curve Cn so that the endpoints are fixed, i.e. f(1− 1
n
) = 1− 1

n

and f(1 − 1
n+1 ) = 1 − 1

n+1 .

(3) For each such Cn, we have that dimCn ≥ 2 − 1
n
.
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By identifying the endpoints we obtain the desired function g from the function
f . Using the Schoenflies Theorem the function g extends to a homeomorphism of
R2. By construction, the Hausdorff dimension of g(S1) is two.

Let Γ be a finitely generated Fuchsian group acting on R2, having purely conical
limit set and so that L(Γ) = S1. Let G be the convergence group G = g ◦ Γ ◦ g−1;
note that G is a purely conical convergence group, has non-empty regular set, and
its limit set is g(L(Γ)) = g(S1) and thus has dimension 2.

We isolate an artifact of the proof of Theorem 1.3 that will be useful to us in
studying the corresponding fact about the exponent of convergence.

Corollary 3.2. Let G be a discrete quasiconformal group acting on Rn with non-
empty regular set so that ∞ ∈ Ω(G), and suppose that G has purely conical limit
set. Then the limit set of G is porous.

Because the exponent of convergence does not necessarily equal the Hausdorff
dimension of the conical limit set (see Theorem 2.7 and Example 4.1 in [6]), we
cannot conclude that the proof of Theorem 1.2 follows trivially from the above
theorem.

Preliminary results for the proof of Theorem 1.2 are now assembled. Recall that
a quasiconformal mapping g : Hn → Hn can only distort the hyperbolic metric by
a controlled amount.

Theorem 3.3 (Gehring-Martin [16]). For each n ∈ N, n ≥ 2, and all K ≥ 1,
there exists a homeomorphism Φn,K : [0,∞) → [0,∞) with Φn,K(0) = 0, so that
Φn,k depends only on n and K, and such that any K-quasiconformal mapping
g : Hn → Hn satisfies

(3.1) ρ(g(z), g(w)) ≤ Φn,K(ρ(z, w))

for all z, w ∈ Hn.

We show below, for use in a counting argument, that discrete quasiconformal
groups exhibit a point-wise lower bound on the injectivity radius with respect to
the hyperbolic metric. Recall that j = (0, . . . , 1) ∈ Hn.

Proposition 3.4. Let G be a discrete quasiconformal group preserving Hn. Sup-
pose that j is not fixed by any element of G. Then there exists a constant d > 0
such that the orbit of j under G is uniformly separated by d in the hyperbolic metric,
i.e.

ρ(g(j), h(j)) ≥ d

whenever g and h are two distinct elements in G.

Proof of Proposition 3.4. Suppose that the claim is not true. Then we can
find distinct gi and hi in G such that ρ(gi(j), hi(j)) → 0 as i → ∞. By assumption
there exists a K ≥ 1 such that each g ∈ G is K-quasiconformal. Using Theorem 3.3
we then obtain that ρ(j, g−1

i (hi(j))) → 0 as i → ∞, and this contradicts the fact
that G acts discontinuously on Hn (which follows from the assumption that G is
discrete). �

Before we can state the next preparatory result, we need to establish additional
notation. Recall that the boundary of upper half space Hn is identified with Rn−1.
A boundary-cube Q ⊂ Rn−1 is a set of the form I1×I2×· · ·×In−1, where I1, . . . , In−1

are closed intervals of equal length c. We define the extended cube Q̃ to be the cube
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Q × [0, c] ⊂ Hn (so Q̃ is a n-cube). Furthermore, for a positive number M , the
M -boundary-cube M ·Q ⊂ Rn−1 is the boundary cube of side length Mc, centered
at the same point as Q.

The following lemma will allow us to make use of the porosity of the limit set
of a discrete QCF group with non-empty regular set in estimating the exponent of
convergence of such a group.

Lemma 3.5. Let G be a discrete K-quasiconformal group preserving Hn and having
non-empty regular set. Assume that |L(G)| ≥ 2. Then there exists a constant
M > 1 such that the following is true: If Q ⊂ Rn−1 is a boundary-cube whose
M -boundary-cube M ·Q is entirely contained in Ω(G), then the orbit of j under G

does not enter the extended cube Q̃.

Proof of Lemma 3.5. We will first show that each point in the orbit of
j is at a uniformly bounded hyperbolic distance from some hyperbolic geodesic
(varying with the orbit point) whose endpoints lie in L(G). Next we will show
that if Q ⊂ R

n−1 is a boundary cube whose M -boundary-cube M · Q does not

intersect L(G), then the hyperbolic distance between the extended cube Q̃ and
any hyperbolic geodesic whose endpoints lie in L(G) is bounded below by some
positive constant that only depends on M and the dimension n. For large enough
M this constant will be so large that the orbit of j, which stays close to hyperbolic

geodesics with endpoints in L(G), cannot enter the extended cube Q̃.

For a, b ∈ Rn−1 denote by βa,b the bi-infinite hyperbolic geodesic in Hn whose
Euclidean endpoints are a, b. It is a property of quasiconformal mappings preserving
H

n that the image g(βa,b) of βa,b under a K-quasiconformal mapping g preserving
Hn lies in a fixed diameter hyperbolic neighborhood of the geodesic βg(a),g(b), the
size of which only depends on n and K (and not on a, b or g). This means that

there exists a positive constant m(n, K) such that for all a, b ∈ Rn−1, all z ∈ βa,b,
and all K-quasiconformal maps g : Hn → Hn, we have that

(3.2) disthyp(g(z), βg(a),g(b)) ≤ m(n, K).

We are now ready to show that every point in the orbit of j is at a uniformly
bounded hyperbolic distance from some hyperbolic geodesic whose endpoints lie
in L(G). Fix two distinct points a0, b0 ∈ L(G), and furthermore fix some point
w0 ∈ βa0,b0 . Using the triangle inequality, inequality (3.2), and Theorem 3.3, we
obtain that, for any g ∈ G,

disthyp(g(j), βg(a0),g(b0)) ≤ ρ(g(j), g(w0)) + disthyp(g(w0), βg(a0),g(b0))

≤ (Φn,K(ρ(j, w0)) + m(n, K)) =: C.(3.3)

Note that βg(a0),g(b0) is a hyperbolic geodesic whose endpoints lie in L(G) since
L(G) is invariant under G.

Now let Q ⊂ Ω(G) be a boundary-cube with center point ζ = (ζ1, . . . , ζn−1), and
let M > 1 such that M · Q ⊂ Ω(G) as well. Assume that Q has side length c, so

that Q̃ has the form [ζ1 − c
2 , ζ1 + c

2 ] × . . . × [ζn−1 + c
2 , ζn−1 + c

2 ] × [0, c]. It will be
shown, if M is large enough, that for any distinct a, b ∈ L(G) we have

(3.4) disthyp(Q̃, βa,b) ≥ ln
M√
n + 3

.

Since by (3.3) each orbit point of j has a hyperbolic distance at most C from
some hyperbolic geodesic with endpoints in L(G), inequality (3.4) implies that if
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we choose M large enough so that ln
M√
n + 3

> C, then any point in the orbit of j

has a positive distance from Q̃, i.e. the orbit cannot enter Q̃; thus the proof follows
from establishing inequality (3.4).

Figure 1

Let D :=
√

n + 3. Then the (n − 1)-hyperbolic plane P1 in Hn whose boundary

in Rn−1 is the Euclidean sphere {z ∈ Rn−1 : |z − ζ| = Dc/2} circumscribes Q̃;
see Figure 1. Suppose now that M > D, and that the M -boundary-cube M · Q is
entirely contained in the regular set of G. Let P be the (n− 1)-hyperbolic plane in
Hn whose boundary in Rn−1 is the Euclidean sphere {z ∈ Rn−1 : |z− ζ| = Mc/2}.
Then the boundary of P in Rn−1 is contained in M · Q, and furthermore,

disthyp(P1, P ) = ln
M

D
.

Since P1 circumscribes Q̃ we obtain from this that

disthyp(Q̃, P ) ≥ ln
M

D
.

Because {z ∈ Rn−1 | |z−ζ| ≤ Mc/2} is contained in M ·Q which by itself is contained
in the regular set of G, we have that for any two distinct points a, b ∈ L(G) the
hyperbolic geodesic βa,b lies in the hyperbolic half-space whose boundary is P , and

that does not contain Q̃. Hence

disthyp(Q̃, βa,b) ≥ ln
M

D
,

as desired. �

As our final preparation for the proof of Theorem 1.2, we detail a counting
result to aid us in the calculation of the exponent of convergence. Recall that G
is taken to be a discrete QCF group acting on Rn and preserving Hn. In [7] we
developed a localized version of the exponent of convergence by defining, for each
x ∈ Rn−1 = ∂Hn,

δx(G) := lim
r→0

inf{s > 0 |
∑

g∈G:g(j)∈Dchord(x,r)

e−sρ(j,g(j)) < ∞},
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where j = (0, 0, . . . , 0, 1) ∈ Hn and Dchord(x, r) is the chordal n-dimensional ball

of chordal radius r around x ∈ Rn−1 ⊂ Rn. This δx(G) is called the local exponent
of convergence. The value of δx(G) does not depend on the choice of the orbit
point j, and we further show in [7] that δx(G) = 0 for x 6∈ L(G) and δ(G) =
maxx∈L(G) δx(G); in particular the local exponent need not be constant on L(G)
for K-quasiconformal groups G with K > 1. See [7] for a comprehensive discussion
of the local exponent of convergence. (For a Kleinian group Γ it is true that
δ(Γ) = δx(Γ) for all x ∈ L(Γ).)

The exponent of convergence can be calculated by asymptotically counting the
number of points of the orbit of the point j that lie inside a hyperbolic ball of radius
R, centered at j. Let N(R) := #(G(j) ∩ B(j, R)), where B(j, R) is the open ball
of hyperbolic radius R about j. Then (see Proposition 2.2 in [6])

(3.5) δ(G) = lim sup
R→∞

log N(R)

R
.

We will now show how to use (3.5) to localize the analysis around a point x0 ∈ L(G).

By conjugating with a Möbius transformation we may assume that x0 = 0 ∈ Rn−1.
Let I := [−0.5, 0.5]× · · · × [−0.5, 0.5] ⊂ R

n−1 be the unit cube in R
n−1 centered

at 0, and define the layers Ak ⊂ Hn, k ∈ N, by

Ak := {(x, t) ∈ H
n |x ∈ I and 2−k−1 ≤ t < 2−k}.

Then points in the layer Ak have an approximate hyperbolic distance k log 2 from
j. Explicitly, via the triangle inequality, it is immediate that each point in Ak

is at least distance k log 2 from j, and is at most the distance k log 2 plus half the
diameter of the closed set {(x1, . . . , xn−1, 1) ∈ Hn : −1

2 ≤ xi ≤ 1
2 for 1 ≤ i ≤ n−1};

note in particular that this additive constant applied to k log 2 is independent of
the index k. Let #Ak := #(G(j)∩Ak). The next proposition follows directly from
(3.5).

Proposition 3.6. Let G be a discrete QCF group acting on Rn and fix x0 ∈ L(G) ⊂
Rn−1. Normalizing so that x0 = 0, and defining I, Ak, and #Ak as done directly
above, we have that

(3.6) δ0(G) ≤ lim sup
k→∞

log(#Ak)

k log 2
≤ δ(G).

We are finally ready to prove Theorem 1.2. Recall that G is assumed to be a
discrete quasiconformal group that preserves Hn, that has a non-empty regular set,
and that has a purely conical limit set. Our goal is to show that δ(G) < n − 1.

First we provide an overview of the strategy used in establishing the theorem.
The argument is by contradiction. Using the assumption that Ω(G) 6= ∅, we will
show that there is too little hyperbolic space in the layers Ak above a point x0 where
the local exponent is maximized, in order for this local exponent to be equal to n−1.
The key geometric idea is to use the fact that L(G) is porous (see Corollary 3.2). In
particular, we obtain the existence of an integer q, such that if we divide any cube
in Rn−1 into qn−1 sub-cubes of equal side length then at least one of these sub-
cubes is entirely contained in the regular set. Inductively, by further subdivision,
we construct a collection of cubes that do not intersect L(G). By extending these
cubes to cubes in Hn, and possibly increasing q, we will see that the orbit of j
cannot enter these extended cubes. But this means that the part of the orbit of j
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that we are interested in is restricted to being in Ak minus the space taken away
by the extended cubes. We will calculate that the hyperbolic space available in Ak

for orbit points is thus reduced by a factor λk, where λ < 1. From this it will follow
that (3.6) cannot be satisfied with δ0(G) = δ(G) = n − 1. We will now make this
description of the proof precise.

Proof of Theorem 1.2. The proof of the theorem is by contradiction, and
hence we assume that δ(G) = n− 1. Thus we can find a point x0 ∈ L(G) such that
δx0

(G) = n−1, and by conjugating G with a Möbius transformation (which does not

change the exponent of convergence) we may assume that x0 = 0 ∈ Rn−1 = ∂Hn,
and furthermore that ∞ ∈ Ω(G). Defining I, Ak and #Ak as above, we then obtain
from Proposition 3.6 that

(3.7) lim sup
k→∞

log(#Ak)

k log 2
= n − 1.

In order to fill in the details as given in our overview, we first note that the
hyperbolic volume of Ak is

(3.8) volhyp(Ak) =
2n−1 − 1

n − 1

(
2n−1

)k
.

¿From the hyperbolic uniform separation of the orbit of j (see Proposition 3.4) we
obtain that the maximum number of orbit points that could fit into Ak is bounded
above by the volume of Ak times a constant depending only on n and the hyperbolic
separation, but independent of k. That is, (3.8) gives

(3.9) #Ak ≤ C
(
2n−1

)k
,

where C depends on the dimension n and the hyperbolic separation of the orbit of
j, but not on k.

Now we will demonstrate that the porosity of the limit set of G restricts the space
in Ak which is available for the orbit of j. Recall that since L(G) is porous (see
Corollary 3.2), there exists an integer q such that if we divide any cube in R

n−1 into
qn−1 sub-cubes of equal side length then at least one of these sub-cubes is entirely
contained in Ω(G). Dividing the unit cube I defined above into qn−1 sub-cubes of
equal side length we can find (at least) one cube of side length q−1 that does not
intersect L(G). If we divide each of the remaining (qn−1 − 1) sub-cubes into qn−1

sub-sub-cubes then in each sub-cube we can find at least one sub-sub-cube that
does not intersect L(G), i.e. altogether we can find, in addition to the cube found
above, (qn−1 − 1) cubes of side length q−2 that do not intersect L(G). Continuing
inductively in this manner we can find

(qn−1 − 1)i−1 cubes of side length q−i, i = 1, 2, 3, . . . ,

and all these cubes Q have disjoint interiors and are entirely contained in Ω(G).
Using Lemma 3.5 and enlarging the integer q if necessary (so that all M -cubes MQ
are still disjoint from L(G), where M is the value from Lemma 3.5) we furthermore

obtain that the extended cubes Q̃ ⊂ Hn do not contain any points of the orbit of j.
However, this affects the maximum number of orbit points that can lie in the

sets Ak. To be precise, there exists a fixed integer N , depending only on q, such
that for each m ∈ N, the space in AmN gets reduced at least by all (qn−1 − 1)i−1
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extended cubes of side length q−i for all i = 1, . . . , m. The total volume of the
intersection of the boundaries of all these extended cubes with Rn−1 is at least

Vm =

m∑

i=1

(qn−1 − 1)i−1 ·
(
q−i

)n−1
= 1 −

(
qn−1 − 1

qn−1

)m

.

Thus the volume of I minus these cubes is
(

qn−1
−1

qn−1

)m

, and so the hyperbolic

volume that is available inside AmN for the orbit of j is only λm · volhyp(AmN ),

where λ =
(

qn−1
−1

qn−1

)m

< 1. Using (3.9) this implies that the number of orbit points

that fit into AmN is in fact bounded above by

#AmN ≤ Cλm
(
2n−1

)mN
.

Similarly, one obtains the bounds

(3.10) #AmN+i ≤ Cλm
(
2n−1

)mN+i
for i = 0, . . . , N − 1 and each m ∈ N.

But using (3.10) we now finally obtain a contradiction to (3.7), since

log(#AmN+i)

(mN + i) log 2
≤ log(Cλm

(
2n−1

)mN+i
)

(mN + i) log 2

=
log C + m log λ + (n − 1)(mN + i) log 2

(mN + i) log 2

m→∞−→ log λ

N log 2
+ n − 1 < n − 1.

Since this is true for each i = 0, . . . , N − 1 we obtain the desired contradiction to
(3.7). �

As with the Hausdorff dimension result, Theorem 1.3 does not generalize to the
full convergence group setting. Indeed, there is an example (see Example 5.1 in [6])
of a purely conical convergence group preserving Bn, having non-empty regular set,
and so that the exponent of convergence (calculated from the center of the ball) of
the group is infinite.

Tukia extends to convergence groups ([26]), in the presence of parabolic elements,
various of Bowditch’s equivalent definitions([9]) of geometric finiteness for Kleinian
groups. We conjecture that both Theorem 1.3 and Theorem 1.2 are true for cusp
uniform discrete quasiconformal groups:

Conjecture 3.7. Let G be a discrete quasiconformal group preserving Hn with non-
empty regular set. Assume that L(G) consists only of conical limit points and
bounded parabolic points (i.e. G is cusp-uniform in the sense of Bowditch/Tukia).

Then δ(G) < n − 1 and dimL(G) < n − 1.

4. Infinite-Index Subgroups

A surprising amount of information persists when the conditions that a group
action be discrete and isometric are relaxed to the condition that the group action
be merely discrete, see e.g. [15], [4], and [5]. In this spirit, and as an application
of our results, we will consider how infinite-index subgroups reside within discrete
quasiconformal groups. Recall the following:
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Theorem 4.1. (Canary-Taylor [12]) Let Γ be a non-elementary Kleinian group,

and suppose that Γ̂ is an infinite-index, geometrically finite subgroup of Γ. Then

δ(Γ̂) < δ(Γ) and dim L(Γ̂) < dimL(Γ).

We give a brief synopsis of the proof of this fact. First a theorem of Susskind
and Swarup ([22]) is used to assert that the limit set of Γ̂ is properly contained in
the limit set of Γ. Thus we can find a (necessarily) geometrically finite Kleinian

group Γ
′

that is the Klein combination of Γ̂ with a loxodromic element cyclic group
< γ >⊂ Γ r Γ̂. Now we can use a theorem of Furasawa ([13]) asserting, under

these conditions, that δ(Γ̂) < δ(Γ
′

). The result now follows immediately from
Patterson-Sullivan theory.

While we are able to generate analogues for both the Susskind-Swarup theorem
and the Klein combination theorem for discrete quasiconformal groups, the last two
steps do not generalize. Indeed, we are only able to establish a relative version of
Theorem 4.1; an example to be given below ([2]) shows that this theorem in the
quasiconformal setting is not true in its full generality.

We first show:

Theorem 4.2. Let G be a non-elementary discrete convergence group acting on a
compact metric space. Let H be a subgroup of G with purely conical limit set. If
L(G) = L(H), then the index of H in G is finite.

Proof of Theorem 4.2. We first observe that since L(H) is purely conical, so
is L(G), since both these sets are equal and H ⊂ G. Let TG denote the triple space
over M = L(G), i.e. TG = T (L(G)) = {(x1, x2, x3) |x1, x2, x3 ∈ L(G) distinct}.
Then the discrete action of G on the compact, perfect metric space L(G) extends
to a discontinuous action on TG, and by Theorem 2.1, TG/G is compact. Similarly
we define TH to be the triple space over L(H) and obtain that TH/H is compact.
We note that TG = TH by assumption; let T := TG. Since G and H act properly
discontinuously on T , we have that T/H is a cover of T/G, and since both these
spaces are compact, the cover must be finite. This implies that the index of H in
G is finite. �

Remark 4.3. See Susskind and Swarup [22]; it seems likely that this result can be
generalized to allow H to be a cusp-uniform discrete convergence group.

We now have the following analogous versions of Theorem 4.1. By combining
Theorem 1.3 with Theorem 4.2, we have:

Theorem 4.4. Let G be a discrete quasiconformal group acting on Rn with L(G) =
Rn. If H is an infinite-index subgroup of G with purely conical limit set then
dimL(H) < dim L(G) = n.

We say that a QCF group G acting on Hn is of divergence type if its Poincaré
series diverges at n−1. It is a result of Garnett-Gehring-Jones [14] that such groups

have the property that their conical limit set is of full measure in Rn−1. Thus, by
Theorem 2.7 in [6] and a lemma in [16] (see also Lemma 2.3 in [6]), we have that
δ(G) = n − 1. By combining Theorem 1.2 with Theorem 4.2, we can thus assert:

Theorem 4.5. Let G be a discrete QCF group of divergence type. If H is an
infinite-index subgroup of G with purely conical limit set then δ(H) < δ(G).
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One might hope with a different set of arguments that the condition L(G) =
Rn could be removed from Theorem 4.4, thus giving (at least for infinite-index
subgroups with purely conical limit sets) a full analogue to Theorem 4.1. However,
the following example, due to Chris Bishop [2], shows that such an analogue is not
possible.

Example 4.6. Infinite-index geometrically finite subgroups of discrete quasiconfor-
mal groups do not, in general, have limit sets of Hausdorff dimension strictly less
than the Hausdorff dimension of the full group.

Construction. Suppose Γ is a Kleinian Fuchsian group acting on R2 with limit

set the whole circle, and Γ̃ is a finitely generated non-elementary subgroup whose

limit L(Γ̃) set is a Cantor set. Then a standard result say that dim L(Γ̃) > 0

(e.g. see [20]). Furthermore, the dimension of L(Γ̃) can be raised by a conjugation

with a quasiconformal mapping ϕ of the plane so that ϕ(L(Γ̃)) has any dimension

strictly between dim(Γ̃) and 2, see [1]. Moreover, this map ϕ may be chosen to

be smooth off L(Γ̃) and so that dimL(ϕ(Γ)) = dimL(ϕ(circle)) = dim(ϕ(L(Γ̃))).
Thus conjugating Γ by this map gives a discrete quasiconformal group G = ϕΓϕ−1

with an infinite-index non-elementary geometrically finite subgroup G̃ = ϕΓ̃ϕ−1 so
the limit sets of both groups have the same Hausdorff dimension. �

Remark 4.7.
1) As in Conjecture 3.7, we expect that the above results are true under the

presence in G of bounded parabolic elements.
2) The assumption that G be a discrete quasiconformal convergence group in

Theorem 4.4 is probably necessary. There is an example ([6]) of a discrete con-

vergence group G acting on R2 having an infinite-index subgroup G̃, such that
dimL(G̃) = dimL(G). However, in this example the group G has a non-empty
regular set. It can be shown that the groups are not quasiconformal.

We finish this note with the following positive example, and a resulting question.

Example 4.8. There exists a (non-Kleinian) quasiconformal group G acting on R2

that has an infinite-index non-elementary geometrically finite subgroup G̃ so that

dimL(G̃) < dimL(G), and δ(G̃) < δ(G).

Construction. Let Γ̃ be a non-elementary geometrically finite Fuchsian group

acting on the plane (i.e. L(Γ̃) ⊂ ∂D). Let γ be a “handle” to be added to Γ̃ via
the Klein Combination Theorem [18], i.e. γ is a Möbius transformation so that

Γ := 〈Γ̃, γ〉 = Γ̃? 〈γ〉 is a free product. We suppose, furthermore, that the isometric
circles of γ and γ−1 are disjoint and are contained in a fundamental domain in

a component of the regular set of Γ̃. Let D be the finite 2-component Euclidean
disk bounded by the isometric circles of γ. Then D is moved off of itself under all

elements of Γ̃. For each n ∈ N, define a Beltrami coefficient µn : C → C by

µn(z) :=





1

n
if z ∈ D,

g′(z)

g′(z)
µn(g(z)) if g(z) ∈ D for some g ∈ Γ̃

0 otherwise.
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Let ϕn : C → C be the normalized solution to the Beltrami equation, i.e. ϕn is the
quasiconformal mapping that satisfies the Beltrami equation (ϕn)z = µ(ϕn)z and

fixes 0, 1,∞. Then by construction, ϕn is compatible with Γ̃, but not with γ, hence

G̃n := ϕnΓ̃ϕ−1
n is a Möbius group, but ϕnγϕ−1

n is not a Möbius transformation.
Thus

Gn := ϕnΓϕ−1
n = G̃n ? 〈ϕnγϕ−1

n 〉
is a non-Kleinian discrete quasiconformal group that has an infinite-index non-

elementary geometrically finite subgroup G̃n which is Möbius.
By construction we know that the quasiconformal dilatation of µn converges to

1 as n → ∞. From a result in Kleinian groups ([12], Theorem 1) we know that

δ(Γ̃) < δ(Γ) and equivalently dimL(Γ̃) < dimL(Γ).

Using a theorem on the distortion of the exponent of convergence under quasicon-
formal conjugation (see Theorem 1.2 in [8]) we conclude that

δ(G̃n) < δ(Gn)

for large enough n. Using the corresponding distortion bounds for the change in
the Hausdorff dimension under a quasiconformal mapping (see [17]), we also obtain
that

dimL(G̃n) < dim L(Gn)

for large enough n. �

Given the contrasting natures of Bishop’s example (Example 4.6) and Exam-
ple 4.8, we are motivated to ask:

Question 4.9. Let G be a discrete QCF group that preserves Hn, and that has
non-empty regular set in Rn−1. Suppose that H is an infinite index cusp uniform
subgroup of G.

What are the necessary and sufficient conditions, so that δ(H) < δ(G) and/or
dimL(H) < dim L(G)?
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