
The Canadian Journal of Statistics

Vol. 28, No. ?, 2000, Pages ???-???

La revue canadienne de statistique

Likelihood inference for small
variance components

Steven E. STERN and A. H. WELSH

Key words and phrases: boundary, likelihood-based inference, local asymptotics,
maximum likelihood estimation, REML, variance components, Wald test.
AMS 1991 subject classifications: Primary 62F12; secondary 62F30.

ABSTRACT

The authors explore likelihood-based methods for making inferences about the compo-

nents of variance in a general normal mixed linear model. In particular, they use local

asymptotic approximations to construct confidence intervals for the components of vari-

ance when the components are close to the boundary of the parameter space. In the

process, they explore the question of how to profile the restricted likelihood (REML).

Also, they show that general REML estimates are less likely to fall on the boundary of

the parameter space than maximum likelihood estimates and that the likelihood ratio

test based on the local asymptotic approximation has higher power than the likelihood

ratio test based on the usual chi-squared approximation. They examine the finite sample

properties of the proposed intervals by means of a simulation study.

RÉSUMÉ

Les auteurs explorent l’emploi de méthodes fondées sur la vraisemblance pour l’inférence

concernant les composantes de la variance dans le cadre d’un modèle linéaire général mixte

sous le postulat de normalité. Ils utilisent notamment des approximations asymptotiques

locales pour construire des intervalles de confiance pour les composantes de la variance

lorsque celles-ci sont proches de la frontière de l’espace des paramètres. Ce faisant, ils

s’interrogent sur la façon optimale de profiler la vraisemblance restreinte (VRAR). Ainsi

montrent-ils que les estimations VRAR sont généralement moins susceptibles de se trouver

sur la frontière de l’espace que celles obtenues par vraisemblance maximale et que le test

du rapport des vraisemblances fondé sur l’approximation asymptotique locale est plus

puissant que celui qui s’appuie sur l’approximation du khi-deux usuelle. Des simulations

illustrent les propriétés des intervalles proposés dans de petits échantillons.

1. INTRODUCTION

Linear models with multiple components of variance are widely used for modelling
variability in structured data such as arises from sample surveys and designed ex-
periments. The components of variance are often regarded as nuisance parameters
with interest directed towards the form of the mean function in the model. How-
ever, in some applications, such as in genetics, the components of variance are of
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direct interest and it is important to be able to make inference about them. In this
paper, we explore general likelihood-based methods for making such inferences and,
in particular, constructing confidence intervals for the components of variance.

Formally, suppose y = (y1, . . . , yn)′ is an observation on the linear mixed model:

y = Xα +
p∑

r=1

Zrur + e, (1)

where X and Zr are known n×k and n×cr design matrices, α is a k-vector of fixed
effects, the ur are cr-vectors of random effects, and e is an n-vector of unobserved
errors. We assume e and the ur’s are all independent of one another. Moreover,
we assume the elements of each ur are independent and normally distributed with
mean zero and variance σ2

r , while the elements of e are independent and normally
distributed with mean zero and variance σ2

p+1. Thus

E(y) = Xα and Var(y) = V =
p+1∑
r=1

σ2
rJr,

where Jr = ZrZ
′
r for r = 1, . . . , p and Jp+1 is the n × n identity matrix. The

components of the vector σ2 = (σ2
1 , . . . , σ

2
p+1)′ are restricted to the non-negative

half-line and are referred to as components of variance or variance components.
Likelihood-based inferences about the entire variance vector σ2 in model (1)

are commonly made using the profile log-likelihood, Lp:

Lp(σ2) = L{σ2, α̃(σ2)} = −1
2
y′Py − 1

2
log |V |,

where α̃(σ2) = (X ′V −1X)−1X ′V −1y is the constrained maximum likelihood esti-
mator of α for fixed σ2 and P = V −1 − V −1X(X ′V −1X)−1X ′V −1. However, the
profile score function, ∇Lp, has E(∇Lp) = O(1) and Var(∇Lp) + E{∇′(∇Lp)} =
O(1); in other words, Lp(σ2) is score and information biased. An adjusted version
of the profile log-likelihood can be constructed by adding β(σ2) = − 1

2 log |X ′V −1X |
to Lp(σ2). The resulting adjusted profile log-likelihood, known as the restricted or
residual log-likelihood (REML) (Patterson & Thompson 1971, 1974), is given by

LR(σ2) = −1
2
y′Py − 1

2
log |V | − 1

2
log |X ′V −1X |, (2)

which is score and information unbiased. For scale inference in normal mixed
models, this REML log-likelihood coincides with the conditional profile likelihood of
Cox & Reid (1987) and the modified profile likelihood of Barndorff-Nielsen (1983).

In general, the entirety of σ2 is not of interest and inference is desired for only
one or some of its components. In such situations, the REML log-likelihood cannot
be used directly for inference since it depends on nuisance parameters, and a further
profiling must be employed. How we should do this and what, if any, adjustments
should be incorporated into the resulting profile log-likelihood to make it score
and/or information unbiased is explored in Section 2. There we show that profiling
the REML log-likelihood with “constrained REML” estimates rather than the usual
constrained maximum likelihood estimates is the preferred method.

We consider setting confidence intervals for the components of variance them-
selves. The close connection between confidence intervals and tests means that our
results are also relevant to hypothesis testing. Also, our methods can be adapted to
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obtain confidence intervals for various functions of the variance components. How-
ever, it is often possible to construct exact or nearly exact inference procedures
specific to the function of the variance components under study. We focus on the
variance components themselves, where exact inferences are rarely possible.

For the balanced one-way classification model, where p = 1, X is an n-vector
of ones, and J1 is a block-diagonal matrix of nc−1

1 × nc−1
1 matrices of ones, exact

confidence intervals exist for σ2
2 , the intra-class correlation coefficient σ2

1/(σ2
1 + σ2

2)
and certain other functions of the variance components; see Searle et al. (1992).
Exact intervals for σ2

1 are not available in this case, but an approximate interval
was obtained by Williams (1962). For a review of intervals for the unbalanced
one-way classification, see Burdick & Graybill (1988).

More generally, inferences for model (1) are based on a normal approxima-
tion to the distribution of the maximum likelihood or REML estimators. For
convenience, let σ̃2 denote the maximum likelihood estimator, σ̄2 the REML es-
timator, and let σ̂2 denote either estimator as appropriate when we discuss them
together. Similarly, let �(σ2) denote either the profile log-likelihood, LP (σ2), or
the REML log-likelihood, LR(σ2). The Fisher information, I = −E[∇′{∇�(σ2)}],
is the (p + 1)× (p + 1) matrix with (r, s)-th element

Irs =

{
1
2 tr(PJrPJs) for REML;
1
2 tr(V

−1JrV
−1Js) for maximum likelihood.

(3)

Under mild conditions, the REML and maximum likelihood estimators are
asymptotically equivalent (cf. Cressie & Lahiri 1993, Richardson & Welsh 1994)
and the two expressions for I, when scaled by n−1, have the same limit. How-
ever, better finite sample approximations to the distributions of the estimators
are obtained using the appropriate expression from (3). Thus, an approximate
100(1− α)% confidence interval for σ2

1 is given by[
σ̂2

1 − Φ−1(1− α/2)
√

Î11, σ̂2
1 +Φ−1(1 − α/2)

√
Î11

]
, (4)

where Φ denotes the standard normal cumulative distribution function, Îrs denotes
the (r, s)-th component of Î−1, and Î is the matrix I = I(σ2) evaluated at σ̂2.

The coverage accuracy of (4) is often poor in small samples, particularly when
some variance components are near zero. In such situations, (4) often includes
negative values. Truncation of (4) at zero solves the problem of negative values, but
does not improve coverage accuracy. The poor coverage properties of (4) and similar
intervals are, in part, a consequence of the fact that if σ2 lies on the boundary,
the asymptotic distribution of σ̂2

1 is not normal, but rather a mixture of normal
and point mass distributions (Moran 1971). So, for the case of small variance
components, we would like to set confidence intervals based on an asymptotic
approximation to the distribution of maximum likelihood and REML estimators
which “interpolates” between the boundary and non-boundary cases. Such an
approximation should be a mixture distribution which becomes more normal as
σ2 moves away from the boundary. Moran (1971) obtained a result of this type
for evaluating the local power of a Wald test of the hypothesis that one variance
component was equal to zero; see also Self & Liang (1987).

Typically, inferences based on approximations to the distribution of the likeli-
hood ratio prove superior to inferences based on approximations to the distribution
of the parameter estimators. Therefore, we consider constructing confidence inter-
vals by inverting a likelihood ratio test based on a version of the profile REML
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log-likelihood. There has been some recent work on the problem of testing hy-
potheses about the fixed effect parameters α when the variance components have
been estimated by REML (cf., e.g., Richardson & Welsh 1996, Welham & Thomp-
son 1997, Kenward & Roger 1997) but there is little on using REML to make
inferences about the variance components of a general mixed model. The same
boundary issues that arise in obtaining asymptotic approximations for the esti-
mators arise for likelihood ratios as well. Chernoff (1954) showed that when the
parameter is on the boundary, the asymptotic distribution of the likelihood ratio
is a mixture of χ2 distributions. In Section 3, we obtain asymptotic approxima-
tions for the distributions of both estimators and likelihood ratios which apply
when parameters are near the boundary and which therefore interpolate between
the boundary and non-boundary cases. These results apply equally to the case of
REML estimators and REML likelihood ratios.

In Section 4, we discuss the construction of confidence intervals using various
methods based on standard asymptotics as well as the local asymptotics of Sec-
tion 3. Section 5 reports on a small simulation study evaluating the finite sample
properties of these intervals for the one-way classification model.

2. PROFILING THE LOG-LIKELIHOOD

In making likelihood-based inferences about a subset of q of the variance compo-
nents in the model (1), we need to profile the likelihood over both α and the other
p− q+1 variance components. To avoid proliferation of subscripts and to simplify
the presentation, let τ = (τ1, . . . , τp−q+1) denote variance components over which
we need to profile, let θ = (θ1, . . . , θq) = (σ2

1 , . . . , σ
2
q) the remaining variance com-

ponents, and reorder the variance components if necessary, so that σ2 = (θ, τ). We
consider several possible methods of profiling over both α and τ and compare them
on the basis of their score and information biases. We then specialise the methods
to the one-way classification model to gain additional insight into the approaches
and to simplify subsequent implementation in this particular case.

2.1. Profile Log-Likelihood.

The simplest approach is to replace both α and τ in the log-likelihood by their
respective constrained maximum likelihood estimators. In this context, the con-
strained maximum likelihood estimator of α is given by α̃{θ, τ̃ (θ)}, while the con-
strained maximum likelihood estimator τ̃ (θ) of τ satisfies the system

y′P{θ, τ̃ (θ)}JrP{θ, τ̃(θ)}y = tr[V {θ, τ̃ (θ)}−1Jr], r = q + 1, . . . , p + 1. (5)

So, the profile log-likelihood for θ is given by

LP (θ) = Lp{θ, τ̃ (θ)} = −1
2
y′P̃ y − 1

2
log |Ṽ |, (6)

where P̃ and Ṽ are the matrices P = P (θ, τ) and V = V (θ, τ) evaluated at τ̃(θ).
Not surprisingly, this approach is neither score nor information unbiased. This
suggests we adjust the profile log-likelihood to reduce these biases.

2.2. β-Adjusted Profile Log-Likelihood.

If estimation of α is the main source of score and information bias in the profile
log-likelihood for θ, we may be able to reduce these biases by incorporating the
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REML adjustment function, β(θ, τ) = − 1
2 log |X ′V −1X |, evaluated at the con-

strained maximum likelihood estimator, τ̃(θ), into the profile log-likelihood (6);
which amounts to simply evaluating the REML log-likelihood (2) at the constrained
maximum likelihood estimator. Thus, the β-adjusted profile log-likelihood is

LRP (θ) = LR{θ, τ̃(θ)} = −1
2
y′P̃ y − 1

2
log |Ṽ | − 1

2
log |X ′Ṽ −1X |. (7)

The score bias associated with this method is of order O(n−1), since the quantity
tr(P −V −1) is of order O(1), even though tr(V −1) and tr(P ) are generally of order
O(n). However, LRP is not generally information unbiased.

2.3. B-Adjusted Profile Log-Likelihood.

The score bias reduction of the β-adjusted profile log-likelihood is fortuitous be-
cause the adjustment function β{θ, τ̃ (θ)} is not specifically constructed to adjust
for the effect of profiling over both α and τ together. This suggests that we should
be able to construct a better adjustment function.

In quite general circumstances, Stern (1997) showed that a score-unbiased ad-
justed profile log-likelihood can be constructed using an appropriate adjustment of
the profile log-likelihood. In the case that q = p, this adjustment function is:

B(θ) =
1
4
tr(Ṽ −2Jp+1)

p∑
r=1

p∑
s=1

Ĩrs{y′P̃ JrP̃ y − (Ṽ −1Jr)}

× [tr{(X ′Ṽ −1X)−1X ′Ṽ −1Jp+1Ṽ
−1X}tr(Ṽ −2Js)

− tr{(X ′Ṽ −1X)−1X ′Ṽ −JsṼ
−1X}tr(Ṽ −2Jp+1)]

with Ĩrs the (r, s)-th component of the inverse Fisher information matrix for the
maximum likelihood estimator, I−1(σ2) = I−1(θ, τ) given in (3), evaluated at τ̃(θ).
The formula for the general case is easily derived, but unwieldy and thus not pre-
sented here. The adjusted profile log-likelihood is then just LPA(θ) = LP (θ)+B(θ).
Many other authors have worked on adjustments to reduce score bias, including
Bartlett (1955), Barndorff-Nielsen (1983, 1994), Barndorff-Nielsen & Cox (1984),
Cox & Reid (1987, 1992), Liang (1987), Levin & Kong (1990), McCullagh & Tib-
shirani (1990), Barndorff-Nielsen & Chamberlin (1992), DiCiccio & Stern (1993),
and Ghosh & Mukerjee (1994). There has also been some work on bias-reduction
of the estimators themselves, including Firth (1993) and Kuk (1995).

Stern (1997) also showed how to construct an adjustment functions designed
to reduce both score and information biases. Several other authors including Go-
dambe (1960), DiCiccio et al. (1996) and McCullagh & Tibshirani (1990), have
also worked on reducing information bias. However, the effect of adjusting for in-
formation bias after adjusting for score bias is often small in practice, so explicit
additional adjustments to reduce information bias are generally omitted. Nonethe-
less, information bias reduction provides a useful criterion for choosing between
potential score bias adjustment functions and between profiling methods.

2.4. Profiled REML Log-Likelihood.

Rather than employing adjustments to the profile log-likelihood, we might try
profiling over τ in a different way. Since the REML log-likelihood has been adjusted
for the effect of profiling over α, it makes intuitive sense to use the “constrained
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REML” estimate of τ , τ̄ (θ) to profile the REML log-likelihood, rather than using
the constrained maximum likelihood estimate as was done in (7). The constrained
REML estimate τ̄ (θ) satisfies the system

y′P{θ, τ̄(θ)}JrP{θ, τ̄(θ)}y = tr[P{θ, τ̄(θ)}Jr], r = q + 1, . . . , p + 1

and the profiled REML log-likelihood is given by

LRR(θ) = LR{θ, τ̄ (θ)} = −1
2
y′P̄ y − 1

2
log |V̄ | − 1

2
log |X ′V̄ −1X |,

where P̄ and V̄ are the matrices P = P (θ, τ) and V = V (θ, τ) evaluated at τ̄ (θ).
The profiled REML log-likelihood LRR(θ) is both score and information unbi-

ased. This assertion is a consequence of the fact that LRR(θ) can be viewed as the
profile log-likelihood for data from a normal distribution with zero mean vector and
variance matrix P−1. Since θ is a simple function of the canonical parameter, this
profile log-likelihood is score and information unbiased. The fact that LRP is score
but not information unbiased is a consequence of the fact that tr(P −V −1) = O(1)
implies τ̄ (θ)− τ̃ (θ) = O(n−1), meaning the the score functions of LRP and LRR are
equivalent to first order (preserving score unbiasedness) but not to second order.

2.5. The One-way Classification Model.

The one-way classification model corresponds to the case p = 1 and X = 1n.
We write θ = σ2

1 and τ = σ2
2 and suppose we are interested in θ. Furthermore,

we suppose that the matrix Z1 corresponds to a nested design having c1 random
effect levels with mi observations within the i-th level, so that

∑c1
i=1 mi = n. Then,

J = Z1Z
′
1 is a n×n block-diagonal matrix with i-th diagonal matrix Jmi , a mi×mi

matrix of ones and V −1 is a block-diagonal matrix with i-th diagonal component

V −1
i =

1
τ
Imi −

θ

τ(τ + miθ)
Jmi ,

where Imi is the mi ×mi identity matrix. In this case, the profile log-likelihood is:

LP (θ) = −1
2

c1∑
i=1

mi∑
j=1

{
(yij − ȳi)2

τ̃(θ)
− (ȳi − ȳ)2

τ̃ (θ) + miθ

}
− 1
2

c1∑
i=1

log[τ̃(θ)mi−1{τ̃(θ)+miθ}],

where ȳi = m−1
i

∑mi

j=1 yij , ȳ =
∑c1

i=1
miȳi

τ+miθ

/ ∑c1
i=1

mi

τ+miθ
, and τ̃(θ) solves:

0 =
1
τ2

c1∑
i=1

mi∑
j=1

(yij − ȳi)2 +
c1∑

i=1

mi(ȳi − ȳ)2

(τ + miθ)2
−

c1∑
i=1

1
τ + miθ

− n − c1

τ
. (8)

The β-adjusted profile log-likelihood in this case is:

LRP (θ) = LP (θ)− 1
2
log

{
c1∑

i=1

mi

τ̃ (θ) + miθ

}
,

where the constrained maximum likelihood estimator τ̃ (θ) is defined by (8). More-
over, using the fact that − log(x) ≈ 1 − x as x → 1, Stern’s (1997) adjustment
function can be written in the form:

B(θ) = −1
2
log


{

g∑
i=1

mi

τ̃(θ) + miθ

}−1 g∑
i=1

m2
i (ȳi − ȳ)2

{τ̃(θ) + miθ}2


 .
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This form of B(θ) allows for more direct comparison with the REML adjustment
functions. The profiled REML log-likelihood, LRR(θ), is of the same form as
LRP (θ) but replaces τ̃ (θ) by the constrained REML estimator τ̄ (θ), which solves:

1
τ2

c1∑
i=1

mi∑
j=1

(yij−ȳi)2+
c1∑

i=1

mi(ȳi − ȳ)2

(τ + miθ)2
−

c1∑
i=1

1
τ + miθ

−n − c1

τ
+

{∑c1
i=1

mi

(τ+miθ)2∑c1
i=1

mi

τ+miθ

}
.

Calculations for the one-way classification model (not reported) confirm that,
in addition to the theoretical advantages, the τ̄(θ)-profiled REML log-likelihood
generally yields the most accurate intervals of those we have considered.

3. LOCAL ASYMPTOTIC RESULTS

Asymptotic approximations to the distribution of estimators for range-restricted
parameters are available for the case that the parameter of interest is interior to
the parameter space and the case that it is on the boundary. In the latter case, the
probability that the estimator takes a boundary value is important, so we begin
by comparing the frequency of this occurrence for the maximum likelihood and
REML estimators. We then develop local approximations to the distributions of
these estimators similar to those of Moran (1971). These results allow interpolation
between the two cases and provide approximations which can be used for inference.

3.1. The Probability of a Zero Estimate.

Consider first the balanced one-way classification model. In this case, exact calcu-
lation of the probability of a zero estimate is possible, and it is well known that the
REML estimator has lower probability of equalling zero than the maximum likeli-
hood estimator; see Searle (1992). The difference between the two probabilities is
most marked for small c1, since the estimators are asymptotically equivalent and
limc1→∞ Pr(θ̃ = 0)− Pr(θ̄ = 0) = 0.

In general, exact calculation of the probability of a zero estimate is not possible.
Nonetheless, a general result is possible. Here, we must distinguish between the two
forms of I given in (3), so let λrs = 1

2 tr(PJrPJs) denote the Fisher information for
the REML estimator, and νrs = 1

2 tr(V
−1JrV

−1Js) denote the Fisher information
for the maximum likelihood estimator.

Lemma 1. Provided the REML adjustment function β(σ2) = − 1
2 log |X ′V (σ2)−1X |

is concave, λrs and νrs are of order O(n) and βrs = ∂2

∂σ2
r∂σ2

s
β(σ2) = O(1) for

r, s = 1, . . . , p + 1, then Pr(σ̄2
r = 0) < Pr(σ̃2

r = 0){1 + O(n−1/2)}.

The proof relies on the standard result that Pr(σ̂2
r = 0) = Φ{−(Irr)−1/2σ2

r}{1 +
O(n−1/2)}. Since LR(σ2) = LP (σ2) + β(σ2), it is clear that λrs = νrs − βrs, and
thus λrr = νrr + 1

2

∑p+1
s=1

∑p+1
t=1 νrsνrtβst + O(n−3). The matrix βrs is positive

semi-definite because β(σ2) is assumed concave. Thus, νrr < λrr +O(n−3), which
implies that (λrr)−1/2 < (νrr)−1/2 + O(n−3/2) and the result then follows.

3.2. Asymptotic Distribution of the Maximum Likelihood and REML Estimators.

Suppose that σ2 is partitioned (and reordered, if necessary) as σ2 = (φ1, φ2), where
φ1 is the single component of σ2 which is close to the boundary and φ2 denotes

7



the remaining p components of σ2. The asymptotic distribution of either the max-
imum likelihood or REML estimators when φ1 is near the boundary is given in the
following theorem, which is essentially Theorem IV of Moran (1971).

Theorem 1. Let σ2 = (φ1, φ2) with φ1 = n−1/2a, a ∈ [0, a0) and the components
of φ2 interior to the parameter space. Also let C = limn→∞ n−1I. Then, for all
t = (t1, t2), with t1 ≥ −a and t2 ∈ IRp, uniformly in a ∈ [0, a0), Pr{n1/2(σ̂2−σ2) ≤
t} → δF1(t1, t2) + (1− δ)F2(t1, t2), where

a) 1− δ = Φ
{ − a√

C11

}
, with C11 the (1, 1)-th component of the matrix C−1;

b) F1(t1, t2) is the (p+ 1)-variate distribution of (z1, z2) on {t1 > −a, t2 ∈ IRp}
which has the density of a N(0, C−1) distribution conditional on z1 > −a;
and

c) F2(t1, t2) is the (p+ 1)-variate distribution of (z1, z2) on {t1 = −a, t2 ∈ IRp}
which has the joint density of the distribution of z1 = −a, and z2 = C−1

22 (y2+
C21a) where C11, C21 = C′

12 and C22 are the 1 × 1, p × 1 and p × p sub-
matrices of C corresponding to the partitioning of σ2 = (φ1, φ2), and (y1, y2)
has a N(0, C) distribution conditional on y1+C11a−C12C

−1
22 (y2+C21a) ≤ 0.

The proof parallels that of Moran (1971) and is omitted.

3.3. Marginal Distribution When the Parameter of Interest is Near the Boundary.

Suppose that θ = φ1 so that the parameter of interest is near the boundary. Then,

δF1(t1, t2) =
|C|1/2

(2π)(p+1)/2

∫ t1

−a

∫ t21

−∞
· · ·

∫ t2p

−∞
exp (z′Cz/2)dz1dz21 · · ·dz2p,

where we have used the notation t2 = (t21, . . . , t2p)′ and z2 = (z21, . . . , z2p)′. Thus,
the marginal cumulative distribution function of z1 = n1/2(θ̂ − θ) is

δF1(t1,∞) + 1− δ = Φ{(C11)−1/2t1} − Φ{(C11)−1/2a}+ 1− δ

= Φ{(C11)−1/2t1}, (9)

for t1 > −a. In other words, the approximation provided by Theorem 1 is a mixture
of a point mass at the origin and a normal distribution. Moreover, the weighting
in this mixture associated with the point mass is 0.5 when a = 0 and decreases
as a increases, until, with a >> 3

√
C11, we essentially obtain the usual normal

approximation. The approximation (9) is used as a basis for inference in Section 4.

3.4. Marginal Distribution When a Nuisance Parameter is Near the Boundary.

It is not surprising that the marginal asymptotic distribution of the estimator of the
parameter of interest is affected by the proximity of the parameter of interest to the
boundary. However, it is not as widely appreciated that the marginal asymptotic
distribution of the estimator of the parameter of interest is also affected by the
proximity of nuisance parameters to the boundary.

As an example of this phenomenon, suppose that p = q = 1, that θ = φ2 is
the parameter of interest and the nuisance parameter τ = φ1 is near the boundary.
For the first component of the limiting mixture distribution, we have

δF1(∞, t2) =
1√

2πC22)1/2

∫ t2

−∞
exp

(
z2
2

2C22

)
[1−Φ{(C11)1/2(C12z2/C11 − a)}]dz2.

8



and letting a → ∞ yields z2 ∼ N(0, C22), the usual Gaussian marginal distribution.
For the second component of the limiting mixture distribution, we have

(1− δ)f2(z2) =
(1− δ)(C22)1/2

(2π)1/2ρ
exp

{
− C22

2C22
(z2 − aC12/C22)2

}

×Φ
[{

C12C22√
C11

+ C12

√
C11

}
(z2 − aC12/C22)− a√

C11

]
.

So, integrating over −∞ < z2 ≤ t2 yields the distribution function of the second
component of the limiting mixture distribution.

This limiting distribution is quite awkward to use. Moreover, in the general
multivariate case, the marginal distribution of the estimator of the parameter of
interest depends on the number of nuisance parameters on or near the boundary
in a very complicated way. Specifically, if p components allowed to be near the
boundary, any subset of the p estimators of these components can equal zero, so
there are 2p components in the limiting mixture distribution.

3.5. Asymptotic Distribution of the Likelihood Ratio Statistic.

We again write σ2 = (θ, τ) with θ a single variance component. Let m(θ) =
�{θ, τ̂(θ)} denote either the profile log-likelihood, in which case τ̂(θ) = τ̃ (θ), or
the REML log-likelihood, in which case τ̂(θ) = τ̄ (θ). Also, let θ̆ solve the score
equation m′(θ) = 0. Thus θ̂ maximises m(θ) over the parameter space while θ̆

maximises m(θ) over IR, even if θ̆ turns out to be negative. Then ηn1/2(θ̆ − θ) is
asymptotically standard normal, where η2 = − limn→∞ n−1E{m′′(θ)}. Note that
η accounts for the variation associated with estimation of the nuisance parameters,
as it is defined in terms of the profiled objective function. Standard results show
η = (C11)−1/2, with C11 as defined in Theorem 1.

Theorem 2. Let θ = n−1/2a, a ∈ [0, a0) with the remaining components interior to
the parameter space. Also let η2 = − limn→∞ n−1E{m′′(θ)} and W (θ) = 2{m(θ̂)−
m(θ)}. Then for all t > 0,

P{W (θ) ≤ t} ≈
{
Φ(t1/2), θ = 0
Φ(t1/2)− Φ(−t1/2)1{t<η2a2} − Φ(− t

2ηa − ηa
2 )1{t≥η2a2}, θ > 0.

We provide a heuristic outline of the proof. Expanding m(θ) and m(θ̂) about θ̆

yields m(θ) ≈ m(θ̆) − 1
2η2n(θ̆ − θ)2 and m(θ̂) ≈ m(θ̆) − 1

2η2n(θ̆ − θ̂)2, so we can
write the likelihood ratio statistic as

W (θ) = 2{m(θ̂)−m(θ)} ≈ η2n{(θ̆−θ)2−(θ̆−θ̂)2} =
{

η2n(θ̆ − θ)2 if θ̂ > 0
η2nθ2 − 2η2nθθ̆ if θ̂ = 0.

Next note that

Pr(θ̆ ≤ t|θ̆ > 0) = P (θ̆ ≤ t|θ̂ > 0) = δ−1[Φ{ηn1/2(t − θ)} − (1− δ)], for t > 0,

P (θ̆ ≥ t|θ̆ ≤ 0) = P (θ̆ ≥ t|θ̂ = 0) = 1− (1− δ)−1Φ{ηn1/2(t − θ)}, for t ≤ 0.

Hence, recalling δ = P (θ̂ > 0), we have P{W (0) ≤ t} = Φ(t1/2), while for θ > 0,

P{W (θ) ≤ t} ≈ δP{η2n(θ̆ − θ)2 ≤ t|θ̂ > 0}
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+(1− δ)P{η2nθ2 − 2η2nθθ̆ ≤ t|θ̂ = 0}
≈ Φ(t1/2)− (1− δ)− {Φ(−t1/2)− (1− δ)}1{t<η2a2}

+
{
1− δ − Φ

(
− t

2ηa
− ηa

2

)}
1{t≥η2a2}

= Φ(t1/2)− Φ(−t1/2)1{t<η2a2} − Φ
(
− t

2ηa
− ηa

2

)
1{t≥η2a2}.

Remarks.

1. The cumulative distribution function of W (θ) is continuous even though the
distribution of θ̂ has a jump. To see this, note that when t = η2a2, we have
Φ(−t1/2) = Φ(−ηa) and Φ(− t

2ηa − ηa
2 ) = Φ(− ηa

2 − ηa
2 ) = Φ(−ηa).

2. The test of H0 : θ = 0 based on the local asymptotic approximation has
higher power for local alternatives than the test based on the chi-squared
approximation. If c is the (1−α)-quantile of a χ2

1 distribution, then Φ(c1/2)−
Φ(−c1/2) = 1 − α which implies that Φ(c1/2) = 1 − α/2. On the other
hand, using the asymptotic distribution from Theorem 2, the critical value,
c′, satisfies P (c′) = Pr{W (0) ≤ c′} = 1 − α. Since P (·) is monotonically
increasing, P (c) = Φ(c1/2) = 1 − α

2 > 1 − α = P (c′) implies that c′ < c and
hence Pra{W (0) ≥ c} < Pra{W (0) ≥ c′}, where Pra denotes probabilities
calculated under a local alternative, θ = n−1/2a, a > 0.

3. Theorem 2 continues to hold for any adjusted profile log-likelihood func-
tion m(θ) = Lp{θ, τ̂ (θ)} + b(θ), provided the adjustment function b(θ) has
derivatives which are of order Op(1). This condition is satisfied for all of the
adjusted profile log-likelihoods mentioned in Section 2.

4. CONFIDENDE INTERVALS FOR NEAR BOUNDARY PARAMETERS

The simplest approximate 100(1 − α)% confidence interval for a variance com-
ponent is the interval (4) based on the normal approximation. We now use the
approximations derived in Section 3 to construct alternative confidence intervals.

4.1. Central Confidence Intervals.

The first method we consider is based on the estimators themselves and we assume
that only the component of interest can be near the boundary. This is not an
assumption we would be prepared to make in general, but it is reasonable for the
two-component model and helps to show how the local asymptotic approximations
generate alternatives to (4).

Suppose initially that we treat C11 ≈ nI11 as known. We see that n1/2(θ̂ − θ)
is not a pivotal quantity because its distribution depends on a = n1/2θ. However,
we can still construct a confidence interval by inverting appropriate probability
statements. Doing so, we obtain the confidence interval (θ̂L, θ̂U ), where θ̂U =
θ̂ + (I11)1/2Φ−1(1− α/2) and

θ̂L =



0 for θ̂ ≤ (I11)1/2Φ−1(1− α)
θ̂ − (I11)1/2Φ−1(1 − α/2) for θ̂ > (I11)1/2{Φ−1(1− α)− Φ−1(α/2)}
θ̂ − (I11)1/2Φ−1(1 − α) otherwise.

(10)

Of course, I is not known so we replace it by Î to obtain a usable interval. We
recover the approximate confidence interval (4) when θ̂ is sufficiently large.
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4.2. Wald-test Confidence Intervals.

Implementing interval (10) by replacing the unknown σ2 in I11 by σ̂2 = (θ̂, τ̂)
ignores the fact that the quantity

√
n(θ̂ − θ) is not truly pivotal. In particular,

its standard error depends on both θ and τ . Therefore, we may be able to obtain
better intervals by “studentising” the quantity

√
n(θ̂−θ) using a more appropriate

estimate of its standard error. One such approach is to obtain a confidence interval
by inverting an appropriate Wald test.

Formally, an approximate 100(1− α)% Wald-test confidence interval is

{θ ≥ 0 : nη̂2(θ̂ − θ)2 ≤ cα(θ)}, (11)

where cα(θ) is an approximate (1−α)-quantile of the random quantity nη̂2(θ̂− θ)2

and η̂−2 = nI11{θ, τ̂(θ)} is an estimate of the variance of
√

nθ̂ which is allowed to
depend on the value of θ. Typical choices for τ̂(θ), the estimate of the nuisance
parameters, would be τ̃ (θ) or τ̄ (θ). The critical value, cα(θ), can be obtained from
the relationship: P{nη̂2(θ̂−θ)2 ≤ t} ≈ Φ(t1/2)−Φ(−t1/2)1{t≤nη̂2θ2}. Note that the
cumulative distribution function of the Wald-type test statistic in not continuous
at t = n1/2η̂θ, unlike the cumulative distribution function of W (θ).

To avoid the implicit truncation at zero in (11), we can construct intervals on the
logarithmic scale and exponentiate the resultant endpoints. To construct Wald-test
intervals similar to (11) for ψ = log θ, all that is required is an appropriate change
in the Fisher information to account for the reparameterisation. However, in the
present case, such an approach is complicated by the fact that the distribution
of the estimator ψ̂ = log θ̂ has a point mass at negative infinity (which means
that such a transformation approach cannot by used to modify the interval of
Section 4.1). Moreover, our focus on local asymptotics means that we must let
ψ approach negative infinity, and it is not clear what the most appropriate rate
for this convergence is. Nonetheless, this approach can be implemented, and the
results (not reported) are no better, and often worse, than those for interval (11).

4.3. Likelihood-based Confidence Intervals.

An approximate 100(1− α)% likelihood-based confidence interval is

{θ ≥ 0 : W (θ) ≤ cα(θ)}, (12)

where cα(θ) is an approximate (1 − α)-quantile of the distribution of W (θ), and
can be obtained using the approximation of Theorem 2.

An alternative interval is the set:

{θ ≥ 0 : w(θ) ≤ χ2
1(1− α)}, (13)

where χ2
1(1 − α) is the (1 − α)-quantile of the chi-squared distribution with one

degree of freedom and w(θ) = 2{m(θ̆) − m(θ)} is the likelihood ratio statistic
calculated without restricting the estimator θ̆ to be positive. Such intervals were
discussed in general by Feng & McCulloch (1992). The increased “regularity” of
w(θ) may lead to better small sample coverage accuracy. One drawback of this
method, however, is its lack of intuitive appeal, since it allows negative values for θ̆
(though negative values are not allowed in the confidence interval itself). This fact
leads us to suspect that properties other than coverage accuracy (e.g., “shape”) of
such intervals may be less than admirable. Moreover, (13) may yield the null set.
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5. SIMULATION RESULTS

A simulation study to explore the finite sample properties of the confidence intervals
presented in the previous section was carried out. For simplicity, all simulations
were carried out in the context of the one-way classification model, y = 1nα +
Zu + e, described in Section 2.5. As the notation there suggests, θ = σ2

1 , the
variance of the elements of u, is the parameter of interest. None of the intervals
performed particularly well, though it was generally the case that the coverage
accuracy was best for the likelihood-based intervals (12) and (13) and worst for
the central intervals (4) and (10). In addition, the coverage of intervals based on
the adjusted profile log-likelihoods tended to be more accurate than those based
on the usual profile log-likelihood, though not exclusively so. Among the adjusted
profile log-likelihoods discussed in Section 2, the profiled REML log-likelihood was
generally the most accurate and so we present results only for this adjustment
of the profile log-likelihood here. Finally, the coverage of intervals based on the
local asymptotics tended to be more accurate than those based on the standard
asymptotics, though again not exclusively so.

Table 1: Coverage accuracy of likelihood-based intervals (100,000 simulations).

Standard Local
No. of Obs./ Nominal Asymptotics Asymptotics
Groups Group (θ, τ ) Coverage ML REML ML REML

5 10 (0.1,1) 90% 92.1 96.0 85.6 91.4
95% 98.9 98.5 95.9 97.2
99% 99.9 99.7 99.7 99.5

10a (0.1,1) 90% 92.3 96.1 85.2 91.7
95% 99.0 98.5 96.0 97.1
99% 99.9 99.7 99.7 99.4

10b (0.1,1) 90% 92.4 96.4 84.1 92.4
95% 99.0 98.4 96.3 97.0
99% 99.9 99.7 99.7 99.4

20 (0.1,1) 90% 83.1 90.2 81.1 87.4
95% 92.7 97.4 89.2 94.3
99% 99.9 99.7 99.6 99.4

10 20 (0.1,1) 90% 86.6 89.3 86.5 89.1
95% 92.6 94.5 92.2 94.0
99% 98.6 99.3 97.8 98.7

20 (0.1,3) 90% 91.3 93.2 87.6 89.8
95% 98.1 98.0 95.1 95.9
99% 99.8 99.7 99.6 99.3

20c (0.1,3) 90% 91.1 93.5 87.1 90.0
95% 98.1 98.1 95.1 96.0
99% 99.8 99.6 99.6 99.3

200 200 (0.1,1) 90% 89.8 90.0 89.8 90.0
95% 94.9 95.0 94.9 95.0
99% 99.0 99.0 99.0 99.0

a Group Sizes = (6,6,10,14,14); b Group Sizes = (2,6,10,14,18);
c Group Sizes = (10,10,15,15,20,20,25,25,30,30).

Some selected results on the coverage accuracy of the likelihood-based confi-
dence intervals (12) are presented in Table 1, with the likelihood ratio statistic,
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W (θ), based on either the unadjusted profile log-likelihood (ML) or the profiled
REML log-likelihood (REML). The intervals based on local asymptotics tend to
have lower coverage than the corresponding intervals based on the standard asymp-
totics, indicating that the local asymptotic approximation generally will not im-
prove the coverage accuracy if the standard approximation produces undercoverage.
Typically, however, in cases with small variance components, methods based on the
standard asymptotics are seen to overcover, so that local asymptotic methods offer
an improvement in coverage accuracy. For instance, at the nominal 90% level the
ML intervals typically perform quite well with the standard asymptotics. On the
other hand, both the likelihood and REML intervals are typically conservative at
the nominal 95% and 99% levels so the coverage is improved by using the local
asymptotic approximation. Generally, however, the differences in performance are
not substantial. Furthermore, we note that results (not reported here) on the cov-
erage accuracy of interval (13) based on the profiled REML log-likelihood show that
its coverage accuracy is typically slightly superior to the more intuitively appealing
intervals derived from (12). However, interval (13) does not perform substantially
better, and does occasionally perform worse, than interval (12). Moreover, for the
smaller sample sizes, (13) led to null intervals in an appreciable number of samples.
In particular, for the balanced case of c1 = 5 and m = 10 with (θ, τ) = (0.1, 1),
there were about 3% of samples which led to empty 95% confidence intervals, and
nearly 5% of samples which led to empty 90% confidence intervals.

Table 2: Upper and lower non-coverage probability of central intervals
(100,000 simulations).

Standard Local
No. of Obs./ Nom. Asymptotics Asymptotics
Groups Group (θ, τ ) Cov. Tail ML REML ML REML

5 10 (0.1,1) 90% Upper 13.0 4.8 13.0 4.8
Lower 0.0 0.0 0.0 0.0

95% Upper 4.1 1.2 4.1 1.2
Lower 0.0 0.0 0.0 0.0

10a (0.1,1) 90% Upper 19.1 5.8 19.1 5.8
Lower 0.0 0.0 0.0 0.0

95% Upper 7.1 1.5 7.1 1.5
Lower 0.0 0.0 0.0 0.0

10 20 (0.1,1) 90% Upper 23.4 17.0 23.4 17.0
Lower 0.0 0.0 0.6 0.7

95% Upper 19.2 13.7 19.2 13.7
Lower 0.0 0.0 0.0 0.0

20b (0.1,3) 90% Upper 7.3 1.9 7.3 1.9
Lower 0.0 0.0 0.6 0.8

95% Upper 0.3 0.0 0.3 0.0
Lower 0.0 0.0 0.0 0.0

200 200 (0.1,1) 90% Upper 8.0 7.3 8.0 7.3
Lower 2.7 2.7 3.0 3.0

95% Upper 4.9 4.4 4.9 4.4
Lower 1.0 1.1 1.0 1.1

a Group Sizes = (6,6,10,14,14), b Group Sizes = (10,10,15,15,20,20,25,25,30,30).

The upper and lower tail coverage accuracy of central confidence intervals is
presented in Table 2. The standard asymptotic approximation leads to the use of
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the usual interval (4) while the local asymptotic approximation leads to the interval
(10). These intervals exhibit extremely poor, and decidedly asymmetric, coverage
accuracy, even for the “large sample” case of c1 = 200 and m = 200. Moreover, the
use of local asymptotic approximations has little impact on the coverage accuracy.
This outcome is not altogether surprising. When the probability associated with
point mass at the origin in the local asymptotic approximation exceeds 0.025,
symmetric non-coverage is impossible and the only non-coverage occurs in the
upper tail. In general, extremely large samples are needed before the asymptotics
apply for these intervals. This is largely due to treating the standard error as
constant in θ. Confidence intervals based on the Wald test use essentially the same
construction but treat the standard error as a function of θ and, although we do
not present the results here, generally perform nearly as well as the likelihood-
based intervals presented in Table 1. The general conclusion from Table 2 is that
straightforward application of asymptotics associated with parameter estimators is
not a very reliable or accurate method for constructing confidence intervals.

Finally, the power of likelihood ratio and REML tests against the null hypoth-
esis that θ = 0 using the two asymptotic approximations is explored in Table 3.

Table 3: Power against H0 : θ = 0 of likelihood-based tests (100,000
simulations).

Standard Local
No. of Obs./ Nominal Asymptotics Asymptotics
Groups Group (θ, τ ) Coverage ML REML ML REML

5 10 (0.1,1) 90% 17.9 23.9 26.3 33.9
95% 12.1 16.6 17.9 23.9
99% 4.7 7.0 7.2 10.3

10a (0.1,1) 90% 17.6 23.6 25.5 33.3
95% 12.0 16.6 17.6 23.6
99% 4.9 7.2 7.2 10.3

10b (0.1,1) 90% 17.4 23.9 25.1 33.2
95% 12.1 17.0 17.4 23.9
99% 5.2 7.6 7.5 10.7

20 (0.1,1) 90% 38.7 46.0 48.4 56.1
95% 30.9 37.5 38.7 46.0
99% 17.9 22.7 22.7 28.3

10 20 (0.1,1) 90% 68.0 73.8 76.5 80.7
95% 59.9 64.9 68.0 72.8
99% 42.8 47.9 49.7 55.0

20 (0.1,3) 90% 23.2 28.5 33.4 39.7
95% 16.0 20.1 23.2 28.5
99% 6.6 8.8 9.7 12.7

20c (0.1,3) 90% 23.3 28.8 33.3 39.8
95% 16.3 20.6 23.3 28.8
99% 6.8 9.1 9.9 13.0

a Group Sizes = (6,6,10,14,14), b Group Sizes = (2,6,10,14,18),
c Group Sizes = (10,10,15,15,20,20,25,25,30,30)

As noted in the remarks following Theorem 2, the tests based on the local asymp-
totic approximation have higher power than their analogues based on the standard
asymptotic approximation. Also, the REML tests have higher power than the
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likelihood ratio tests, so that the REML test based on the local asymptotic ap-
proximation has the highest power in these comparisons. The power is related to
the length of the confidence intervals presented in Table 1 with higher power being
associated with shorter intervals. Of course, there are other aspects of the interval
methods which affect the power, but Table 3 does provide an indirect exploration
of the lengths of the intervals.

The above results show that further research on the problem of setting con-
fidence intervals for small components of variance is needed. In the meanwhile,
our tentative suggestion is that intervals be constructed from the REML version of
the likelihood ratio test with the local asymptotic approximation to its sampling
distribution, as this method seems to have the best overall combination of coverage
and power properties.

REFERENCES

O. E. Barndorff-Nielsen (1983). On a formula for the distribution of the maximum
likelihood estimator. Biometrika, 70, 343–365.

O. E. Barndorff-Nielsen (1994). Adjusted versions of profile likelihood and directed
likelihood, and extended likelihood. Journal of the Royal Statistical Society Series
B, 56, 125–140.

O. E. Barndorff-Nielsen & S. R. Chamberlin (1992). Stable and invariant adjusted
likelihood roots. Technical Report. Department of Theoretical Statistics, Aarhus
University, Aarhus, Denmark.

R. K. Burdick & F. A. Graybill (1988). The present status of confidence interval estima-
tion on variance components in balanced and unbalanced random models. Commu-
nications in Statistics: Theory and Methods (Special Issue on the Analysis of the
Unbalanced Mixed Model), 17, 1165–1195.

H. Chernoff (1954). On the distribution of the likelihood ratio. The Annals of Mathe-
matical Statistics, 25, 573–578.

D. R. Cox & N. Reid (1987). Parameter orthogonality and approximate conditional
inference (with discussion). Journal of the Royal Statistical Society Series B, 49,
1–39.

N. Cressie & S. N. Lahiri (1993). The asymptotic distribution of REML estimators.
Journal of Multivariate Analysis, 45, 217–233.

T. J. DiCiccio, M. A. Martin, S. E. Stern & G. A. Young (1996). Information bias and
adjusted profile likelihoods. Journal of the Royal Statistical Society Series B, 58,
198–203.

T. J. DiCiccio & S. E. Stern (1993). An adjustment to profile likelihood based on
observed information. Technical Report. Department of Statistics, Stanford Uni-
versity, Stanford, CA.

Z. Feng & C. E. McCulloch (1992). Statistical inference using maximum likelihood
estimation and the generalized likelihood ratio when the true parameter is on the
boundary of the parameter space. Statistics and Probability Letters, 13, 325–332.

D. Firth (1993). Bias reduction of maximum likelihood estimators. Biometrika, 80,
27–38.

J. K. Ghosh & R. Mukerjee (1994). Adjusted versus conditional likelihood: power
properties and Bartlett-type adjustments. Journal of the Royal Statistical Society
Series B, 56, 185–188.

V. P. Godambe (1960). An optimum property of regular maximum likelihood estimation.
The Annals of Mathematical Statistics, 31, 1208–1211.

15



M. G. Kenward & J. H. Roger (1997). Small sample inference for fixed effects from
restricted maximum likelihood. Biometrics, 53, 983–997.

A. Y. C. Kuk (1995). Asymptotically unbiased estimation in generalized linear models
with random effects. Journal of the Royal Statistical Society Series B, 57, 395–407.

B. Levin & F. Kong (1990). Bartlett’s bias correction to the profile score function is a
saddlepoint correction. Biometrika, 77, 219–221.

K.-Y. Liang (1987). Estimating functions and approximate conditional likelihood. Bio-
metrika, 74, 695–702.

P. McCullagh & R. J. Tibshirani (1990). A simple method for the adjustment of profile
likelihoods. Journal of the Royal Statistical Society Series B, 52, 325–344.

P. A. P. Moran (1971). Maximum likelihood estimation in non-standard conditions.
Proceedings of the Cambridge Philosophical Society, 70, 441–450.

H. D. Patterson & R. Thompson (1971). Recovery of inter-block information when block
sizes are unequal. Biometrika, 58, 545–554.

H. D. Patterson & R. Thompson (1974). Maximum likelihood estimation of components
of variance. Proceedings of the 8th International Biometric Conference, 197–207.

A. M. Richardson & A. H. Welsh (1994). Asymptotic properties of restricted maximum
likelihood (REML) estimates for hierarchical mixed linear models. The Australian
Journal of Statistics, 36, 31–43.

A. M. Richardson & A. H. Welsh (1996). Covariate screening in mixed linear models.
Journal of Multivariate Analysis, 58, 27–54.

S. R. Searle, G. Casella & C. E. McCulloch (1992). Variance Components. Wiley, New
York.

S. G. Self & K.-Y. Liang (1987). Asymptotic properties of maximum likelihood ratio tests
under non-standard conditions. Journal of the American Statistical Association, 82,
605–610.

S. E. Stern (1997). A second-order adjustment to the profile likelihood in the case of
a multidimensional parameter of interest. Journal of the Royal Statistical Society
Series B, 59, 653–665.

S. J. Welham & R. Thompson (1997). A likelihood ratio test for fixed model terms using
residual maximum likelihood. Journal of the Royal Statistical Society Series B, 59,
701–714.

J. S. Williams (1962). A confidence interval for variance components. Biometrika, 49,
278–281.

Received 28 January 1999 Steven E. Stern
Accepted 28 October 1999 Steven.Stern@anu.edu.au

Department of Statistics and Econometrics
The Australian National University

Canberra, ACT
Australia, 0200

A. H. Welsh
Alan.Welsh@anu.edu.au

Centre for Mathematics and its Applications
The Australian National University

Canberra, ACT
Australia, 0200

16


