
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

Optoelectronics Research Centre

QPM GRATING DESIGN FOR NOVEL PPLN STRUCTURES

by

Huw E. Major

A thesis submitted for the degree of

Doctor of Philosophy

August 2009



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE, ENGINEERING AND MATHEMATICS

OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

QPM GRATING DESIGN FOR NOVEL PPLN STRUCTURES

by Huw E. Major

This thesis describes a series of theoretical and experimental studies into modifying the phase-

matching characteristics of nonlinear parametric interactions, specifically second harmonic gener-

ation, using quasi-phase-matched structures. The use of quasi-phase-matching by periodic poling

affords a flexibility in designing tailored phase-matching characteristics not offered by alterna-

tive techniques. In this work phase matching characteristics are modified to provide enhanced

acceptance bandwidths, compensation for focusing effects and high power operation.

The first result of this work describes the design and manufacture of 20 mm long LiNbO3

aperiodic quasi-phase-matched devices for the generation of stable second harmonic power across

wide temperature ranges. Theoretical simulations have demonstrated constant power output over

a range of 9 ◦C. Providing over 35 times the bandwidth of equivalent length periodic structures,

whilst offering almost an order of magnitude efficiency enhancement over periodic devices with

the same bandwidth. Experimental verification of these devices has shown that stable power can

be obtained across wide temperature ranges with only slight deviation from theory.

Additionally, an investigation into the effects of focusing on second harmonic generation is

undertaken. In this work the Gouy phase of a focused beam has been analytically identified as

the source of dephasing in bulk nonlinear interactions, causing such effects as back conversion,

reduced efficiency and errors in the phase matching condition. A method to negate these effects,

using a modified QPM structure has been proposed and experimentally demonstrated.

Finally, simultaneous compensation of both the Gouy phase and focused intensity variation

has been applied to aperiodic, wide temperature bandwidth devices. Removal of these deleterious

effects has been shown theoretically to correct the experimentally observed bandwidth errors,

resulting in the focused interactions performing identically to plane-wave simulations.
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Chapter 1

Introduction

1.1 Motivations and Aims

The concept of harmonic frequency generation using nonlinear materials is now well established.

One of the earliest reported examples of electromagnetic harmonic generation was observed

in electrical coil modulators at Bell Telephone Labs in 1916 [1], with such structures being

studied for possible use in long distance telephony communication systems. With a new found

understanding gained from these early observations a classical interpretation of the recently

encountered nonlinear Raman effect [2] was proposed by Hartley in 1929 [3]. Although further

developments were made in the field of nonlinear harmonic generation in electrical systems it

was not until the advent of the ruby laser in 1960 [4, 5], however, that significant harmonic

generation was encountered at optical frequencies [6]. Here, the intense optical fields generated

by the ruby laser were sufficient to cause a small nonlinear polarisation response within a sample

of nonlinear crystaline quartz, generating an optical second harmonic at a wavelength of 347 nm.

Since this initial foray into optical harmonic generation significant enhancements have been

made, with large gains in optical efficiencies being achieved. These increased efficiencies have

been brought about through advances in laser technology, the discovery of high quality, highly

nonlinear optical materials and efficient methods of phase matching. Arguably the most im-

portant of these factors is the availability of high nonlearity optical materials, such as LiNbO3

and LiTaO3 which provide up to a 60 fold increase in nonlinearity compared with the crystaline

quartz used for the earliest optical experiments [7, 8]. However, even with the availability of

improved nonlinear optical materials it was demonstrated by Maker [9] that in order to obtain

useful amounts of harmonic power careful phase-matching of the traveling fundamental and har-

monic waves was essential. Using the material potassium dihydrogen phosphate (KDP), which

1



1.1 Motivations and Aims 2

has a nonlinearity 30 times that of quartz, it was shown that through angle tuning of the crys-

tal optic axis relative to the polarised input it is possible to balance out the negative effects

of dispersion using the material birefringence. This first demonstration of optical birefringent

phase-matching resulted in a 300 fold increase in harmonic power compared with the on axis

power, and clearly demonstrated the huge benefits phase-matching can provide.

Following on from the initial experimental verification of the importance of phase-matching

considerable effort was made to fully understand its effects. This lead to the publication of

the seminal paper by Armstrong et. al. [10] which details, in depth, the importance of phase-

matching in achieving high optical efficiencies and perhaps more importantly introduces the

concept of quasi-phase-matching. Combined with the important material types of LiNbO3 and

LiTaO3 it is this concept of quasi-phase-matching that helped harmonic generation to gain

widespread adoption as an efficient, versatile method of laser light production.

Concurrently with his investigation into the effects of phase-matching Maker also highlighted

the relationship between tight focusing and high conversion efficiency, showing a 3000 fold in-

crease in efficiency with a tightly focused beam in KDP compared with a confocal beam in

quartz [9]. Again numerous groups proceeded to generate theoretical papers detailing the effects

of focusing on optical efficiency [11, 12, 13] but it was not until 1968 that the definitive paper on

the subject was published [14]. This important paper provided the universal optimum focusing

conditions for maximal conversion efficiency for many second order nonlinear parametric interac-

tions. Although originally calculated for birefringently phase-matched interactions these results

were found to equally apply to quasi-phase-matched interactions and are still being utilised 40

years later.

The research described in this thesis is based on improving the efficiency of nonlinear inter-

actions, specifically second harmonic generation, with the expressed aim of investigating devices

suitable for commercial visible light generation. Nonlinear generation of high intensity visible

light is especially interesting in the commercial fields of display and projection as there are cur-

rently no alternative means of generating a high brightness, pure green source, as is required to

fully saturate the colour gamut.

Despite the many advantages modern nonlinear sources can offer there are still several limi-

tations which must be overcome before rugged and cheap solutions can be offered. Of particular

importance is the reduction of the sensitivity of quasi-phase matched devices to fluctuations

in operating temperature and fundamental input wavelength. Current devices struggle in real

world applications, with extremely precise control of these two parameters essential for contin-

uous, efficient operation. Existing solutions to this problem have thus far been unsatisfactory,
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with enhanced stability gained at considerable cost to the optical conversion efficiency. As such

a large portion of this work is devoted to improving on these existing techniques, aiming to

provide high efficiency solutions suitable for a mass production market.

In addition to producing devices stable to environmental fluctuations in order to achieve

widespread adoption of harmonic generation light sources advances must be made in the conver-

sion efficiencies of such devices. To this end the remainder of the work in this thesis concentrates

on methods for providing the highest levels of conversion efficiency from nonlinear interactions,

in particular bulk focused interactions. With these being the most suited to high power, high

efficiency operation. As a result of this investigation a new optimum focusing condition has been

identified, for a suitably modified quasi-phase-matched structure, that improves upon the condi-

tions proposed by Boyd and Kleinman 40 years previously, providing amongst other attributes

improved conversion efficiencies.

1.2 Thesis Synopsis

Beginning with a brief introduction to optical nonlinearity, in particular second order nonlinear-

ity, Chapter 2 introduces many of the theoretical principles required to understand the nature

of parametric interactions in nonlinear optical materials. Particular attention is paid to the

techniques required for efficient phase matching of second harmonic process, with this being

a central theme for the work in the thesis. Following on from this the nonlinear optical ma-

terial Lithium Niobate is introduced, with methods for achieving quasi-phase-matching in this

material discussed. Chapter 3 describes techniques for improving the acceptance bandwidth of

QPM devices through engineering of the periodic grating structure. A new analytic simulation

technique is developed for analysing complex grating structures, with the resulting structures

fabricated in Lithium Niobate and optically tested. In Chapter 4 a thorough investigation into

the effects of focused Gaussian beams on the conversion efficiency of second harmonic generation

is undertaken, with the initial aim of this work being to explain an unexpected focus induced

feature in the wide bandwidth QPM devices of Chapter 3. In performing this analysis a new

optimum QPM grating structure has been developed that improves on the previous maximum

theoretical conversion efficiency obtainable in focused nonlinear interactions. Building on the

work in Chapters 3 and 4, further examples of increased acceptance banwidth QPM devices

have been given in Chapter 5, with these new designs theoretically able to compensate fully

for the deleterious effects of focused Gaussian beams. Chapter 6 returns to the earlier work on

increased efficiency focused SHG interactions. This Chapter adds to the work by considering

the case of high power, high efficiency focused operation and examines the advantages offered
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by the modified grating structures of Chapter 4. Finally, conclusions and a brief description of

further future experiments on high power focused interactions are given. Additional device types

for high power, high efficiency SHG are also briefly introduced, making use of the simulation

techniques of Chapter 6.
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Chapter 2

Harmonic generation in nonlinear

media

2.1 Introduction

Since the demonstration of the first laser systems in 1960 [1, 2] the introduction of coherent,

high intensity light has paved the way for novel physical phenomena previously impossible to

observe. One such phenomena is the field of nonlinear optics, the primary use being to generate

sources of tuneable light at wavelengths previously unattainable by standard lasers.

Nonlinear optics was first realised in 1961 by Franken et al [3] shortly after the production of

the first laser. The high light intensities provided by the laser were essential for the observation

of this subtle effect. Their initial work concentrated on the generation of the second harmonic

of a ruby laser with the use of the nonlinearity occurring in quartz crystals. However, this work

was rapidly extended to include other nonlinear effects such as difference frequency generation

(DFG) [4] and optical parametric oscillation (OPO) [5]. It was shown later in 1962 [6] that the

efficiency of the initial experiments was limited by the effects of dispersion, but that this effect

could be much reduced with the use of birefringent phase-matching. An number of alternative

schemes for phase-matching were proposed in 1962 by Armstrong et al. [7]. Arguably the most

important of which was the scheme of quasi-phase matching (QPM) which, unlike alternative

techniques that prevent the phase slippage of the fundamental and harmonic waves, allows a

phase offset to occur. But, with a suitable modification to the properties of the material, QPM

can counteract the effects.

In this chapter an analysis of the fundamental equations governing electromagnetic wave

7



2.2 Induced polarisation 8

propagation in a nonlinear media is undertaken. This standard analysis starts from Maxwell’s

equations and derives coupled first-order equations by using the slowly varying envelope plane

wave approximation for the parametric process of harmonic generation. From these coupled

equations expressions for the harmonic field growth are obtained for both the simplistic case

assuming no depletion of the pump wave and then further extended to derive exact solutions

for the case of pump depletion. A brief overview of the standard treatment of utilising focussed

Gaussian beams on the conversion efficiency is discussed, with more detailed analysis occurring

in Chapter 4.

Additionally, the concepts of phase matching, essential for efficient harmonic growth, are

introduced; including some of the physical techniques employed to ensure efficient phase match-

ing. Finally, a technique for fabrication of periodically-poled lithium niobate (PPLN) structures

using high voltage electric field poling is presented.

2.2 Induced polarisation

When an electro-magnetic field passes through a medium the electric field, and to a much lesser

extent the magnetic field, interacts with the charged particles within the medium, which for

optical materials constitute mostly the ion cores and their bound electrons. This interaction

results in a movement of the positively charged particles in the direction of the field whilst the

negative electrons move in opposition. The resulting separation of charges induces an electric

dipole moment or an induced polarisation. As a result of the high frequencies of optical fields

the more massive ion cores are less able to respond to rapidly varying electric fields and as such

the dipoles created are almost entirely due to a distortion of electron clouds about their mostly

stationary ion cores.

With optical electric fields being oscillatory in nature the induced dipoles are forced to os-

cillate at the frequency of the driving field, which in turn creates a radiated electric field at the

same frequency. The motion of the dipoles can be likened with the simple model of a mass on

a spring, where the electron is bound to the parent ion core by the spring, the motion of which

is governed by the rules of harmonic oscillation. For mechanical oscillations when a small force

acts on the system the response is almost entirely linear to the applied force, the same is also

true for the response of the induced dipoles to a small optical field giving rise to the following

definition of small signal polarisation

P (t) = ε0χ
(1)E (t) , (2.1)

where χ(1) = n2−1 is the linear susceptibility of the material, with n being the refractive index.
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However, analogously to that of the mechanical spring model an increase in the applied os-

cillatory force can, if sufficiently large, alter the linear response becoming nonlinear in nature. It

is evident that Equation 2.1 is insufficient to account for any anharmonic terms in the equation

of oscillatory motion and must therefore be extended to account for this. Providing that the

nonlinearities are small compared with the linear polarisation an approximate solution to the

oscillator response can be achieved by replacing the linear polarisation with a power series expan-

sion, where increasing accuracy can be obtained with the inclusion of higher order coefficients.

Thus, for an intense optical field the induced polarisation can be approximated by

P (t) = ε0

(
χ(1)E (t) + χ(2)E2 (t) + χ(3)E3 (t) + · · ·+ χ(n)En (t)

)
, (2.2)

where for simplicity the vectorial aspects of E (t) and P (t) as well as the tensorial nature and

frequency dependence of χ have been neglected.
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Figure 2.1: A numerical simulation of the effects of a non zero second-order nonlinear component in the

polarisability of an optical medium and the effect this has on the radiated field of an incident optical

plane-wave at both low (a) and high (b) field intensities.

The effects of the medium nonlinearity on an applied field are demonstrated in Figures 2.1(a)

and 2.1(b) which show the variation in induced polarisation of a hypothetical optical material for

both low and high intensity optical fields respectively. Here, these results have been generated by

defining E (t) in Equation 2.2 as a sinusoidally varying function and setting χ(2) to be non-zero.

In Figure 2.1(a) the input field is small and thus the induced polarisation responds in an almost

perfectly linear way, as shown by the top right plot. This linearity is further emphasised by the

results of the lower right plot, which is a plot of the Fourier transform of the induced polarisation,

showing negligible harmonic components. However, in Figure 2.1(b) a much larger optical field
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is applied resulting in significant distortions to the sinusoidally varying induced polarisation.

Comparing the frequency components of 2.1(a) and 2.1(b) a marked increase in the magnitude

of the frequency 2ω is observed for the higher intensity plot.

This frequency component at 2ω arises through the process of second harmonic generation

(SHG) [8] which is just one of the many processes that can occur due to the influence of 2nd order

nonlinearity χ(2). Other second order processes include three wave mixing (which can be further

expanded to include difference frequency generation (DFG) [9], sum frequency generation (SFG)

[10], optical parametric amplification (OPA) [11] and optical parametric oscillation (OPO) [12]),

optical d.c. rectification [13] and the linear electro-optic effects [14]. Additionally, other familiar

nonlinear effects such as third harmonic generation [15], the optical Kerr effect [16], Raman [17],

Rayleigh [18] and Brillouin scattering [19] and two photon absorption [20] are a result of the 3rd

order nonlinearity χ(3).

In order to fully understand the physical mechanisms for these numerous nonlinear effects

it can be necessary to consider the quantum mechanical effects of applied fields on the induced

dipoles. However, a good understanding of the macroscopic interactions can be obtained from

the solutions of Maxwell’s equations assuming a nonlinear material polarisation.

2.3 Electro-magnetic wave theory

Before formulating expressions for the nonlinear interactions of an electromagnetic wave it is first

necessary to obtain the general expression for a wave in a transparent material, (note that here

the material need only be transparent for the frequencies of interest). Starting with Maxwell’s

equations governing electric and magnetic fields E (t) and B (t):

∇×E (t) = − ∂

∂t
B (t) (2.3)

∇×H (t) =
∂

∂t
D (t) + J (t) (2.4)

Here D (t) = ε0E (t) + P (t), and J (t) is the current density or the conduction current. By

assuming that the media of interest has no free charges, as is common for optical materials

which constitute mostly bound charges, J (t) can be ignored. Furthermore, optical materials are

generally non-magnetic media simplifying H (t) to:

H (t) =
1
µ0

B (t) (2.5)
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This simplifies the subset of Maxwell’s equations to,

∇×E (t) = − ∂

∂t
B (t) (2.6)

∇×B (t) = µ0ε0
∂

∂t
E (t) + µ0

∂

∂t
P (t) . (2.7)

These two equations can be further combined to give an expression for the electric field in the

media in terms of the material polarisation. By taking the curl of Equation 2.6 and differentiating

Equation 2.7 with respect to t the following is obtained.

∇×∇×E (t) = −∇× ∂

∂t
B (t) = − ∂

∂t
[∇×B (t)] (2.8)

∂

∂t
[∇×B (t)] = ∇× ∂

∂t
B (t) = µ0ε0

∂2

∂t2
E (t) + µ0

∂2

∂t2
P (t) (2.9)

with a further substitution resulting in the following expression for the electric field,

∇×∇×E (t) = −µ0ε0
∂2

∂t2
E (t)− µ0

∂2

∂t2
P (t) . (2.10)

At this point it is convenient to convert from the time domain into the frequency domain

via the Fourier transform. By continuing the calculations in the frequency domain many of the

requisite steps become quite intuitive, with results such as sum-frequency generation (SFG) and

difference frequency generation (DFG) becoming a simple addition or subtraction of the input

fields. Using the following definition of the Fourier transform,

f (t) =
∫ ∞

−∞
f (ω) e−iωtδω (2.11)

f̂ (ω) =
1

2π

∫ ∞

−∞
f (t) eiωtδt (2.12)

E (t) and P (t) can be expressed in terms of the frequency components E (ω) and P (ω), resulting

in the following definition for the electric field:

∇×∇×E (ω) = −εµ0ω
2E (w)− µ0ω

2P (w) (2.13)

The above solution of the wave equation is a general solution for use within most common

optical media (with the above assumptions of no free charge and no magnetism), this result is

now further extend for use in nonlinear media. Initially, the polarisation term P(ω) is separated

out into its linear and nonlinear parts

P (ω) = ε0χ
(1) (−ω;ω) ·E (ω) + PNL (ω) (2.14)

where χ(1) (−ω;ω) is the linear optic susceptibility second rank tensor, which is function of

the frequencies −ω and ω, and PNL (ω) =
∑∞
n=2 P(n) (ω), with P(n) (ω) being the nth order

polarisation. Substituting this into 2.13 gives

∇×∇×E (ω) = −ω
2

c2
ε (ω) E (ω)− µoω2PNL (ω) (2.15)
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where here ε (ω) is the linear dielectric tensor defined as

ε (ω) = 1 + χ(1) (−ω;ω) (2.16)

2.3.1 Superposition of plane-waves

Now, investigating the solutions of the wave equation for travelling waves it is assumed these

travelling waves can be expressed as a superposition, which may be written as

E (ω) = Ê (ω) eik·r. (2.17)

Substituting this into 2.15 results in

∇×∇×
[
Ê (ω) eik·r

]
=
ω2

c2
ε (ω) Ê (ω) eik·r + µoω

2PNL (ω) (2.18)

This analysis is simplified by the assumption that the wave envelope Ê (ω) is comprised of

a superposition of infinite plane waves. Defining that these waves are propagating along an

arbitrary axis denoted by z it is possible to stipulate that Ê (ω) is now solely a function of z,

additionally making the substitution k · r = ±kz, here + references the forward travelling wave

along the z direction and vice versa for −. Using these two assumptions the left hand side of

Eq. 2.18 can be simplified to −∂2Ê (ω) /∂z2 resulting in the new reduced form

∂2

∂z2

[
Ê (ω) e±ikz

]
=
ω2

c2
ε (ω) · Ê (ω) e±ikz + µoω

2PNL (ω) (2.19)

Now, by performing the differentiation of the LHS of the above the following result is obtained

∂2

∂z2
Ê (ω) + 2ikeikz

∂

∂z
Ê (ω) = µ0ω

2PNL (ω) (2.20)

In obtaining this result significant simplifications have been made by noting that the wave vector

(k) and the field vector are orthogonal to one another, thus equating their product to zero.

2.3.2 Slowly-varying envelope approximation

Previously the wave-envelope has been defined as a superposition of waves containing information

on both the amplitude and phase of the field E (ω), by further defining the envelope to be

slowly varying in the z direction additional simplifications to Equation 2.20 can be made. This

proposition of a slowly varying envelope is valid for many nonlinear interactions as significant

power transfer between interacting waves is usually only achieved over lengths much longer than

their wavelengths. With this assumption it is now possible to assume
∣∣∣∣
∂2

∂z2
Ê (ω)

∣∣∣∣�
∣∣∣∣k
∂

∂z
Ê (ω)

∣∣∣∣ . (2.21)
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Utilising this statement in Eq. 2.20 a first order differential equation relating electric field and

induced polarisation is obtained,

∂

∂z
Ê (ω) ' −iµ0ω

2

2k
PNL (ω) e±kz (2.22)

This simplification is known as the slowly-varying envelope approximation. It should be noted

that the justification given above for ignoring the second-order derivative term is common in

literature. However, it has been shown via Green’s function analysis [21] that the physical

interpretation of this simplification is in fact equivalent to neglecting the backward propagating

wave in the analysis.

2.3.3 Monochromatic wave propagation

Leading on from the general solution given by Equation 2.22 the analysis of monochromatic

plane-waves is now considered. This is achieved by assuming that E (ω) is a superposition of

monochromatic plane waves, each with identical polarisation.

E (ω) =
1
2

∑

ωj≥0

[
Êωje

ikjzδ (ω − ωj) + Ê∗ωje
−ikjzδ (ω + ωj)

]
(2.23)

Here, the wave-vector kj = ωjn (ωj) /c and δ (ω − ωj) is the Dirac-delta function centred at

frequency ωj . On choosing a frequency of interest, ωρ, an expression for the variation in its

associated electric field is readily obtained,

∂

∂z
Êωρ = i

µ0ω
2
ρ

2kρ
PNL
ωρ e

ikρz, (2.24)

where PNL
ωρ =

∑∞
n=2 P(n)

ωρ , with P(n)
ωρ being the nth order susceptibility at frequency ωρ given as

P(n)
ωρ = ε0

∑

ω

K (−ωρ ;ω1, · · · , ωn)χ(n) (−ωρ ;ω1, · · · , ωn) Eω1 · · ·Eωne
ikρz. (2.25)

Here, the summation over ω accounts for all the possible distinct sets of ω1, · · · , ωn that can mix

to give rise to ωρ, with kρ = k1 + · · ·+ kn. Finally, K is simply a numerical factor that is used

to track the 1/2 factors introduced by the substitutions of Equation 2.23 and is defined as

K (−ωρ ;ω1, · · · , ωn) = 2l+m−np (2.26)

where p is the number of distinct permutations of the frequencies ω1, · · · , ωn, m is the set of

frequencies containing zero frequency or d.c. fields, n is the nonlinearity order, and l = 1 if the

frequency of interest, ωρ 6= 0. As an example considering the simple case of second harmonic

generation (SHG) n = 2, p = 1, m = 0 and l = 1 giving a K factor of 1/2. For the slightly more

complex cases of sum frequency generation (SFG) or difference frequency generation (DFG) by
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invoking Kleinman symmetry [6] it is noted that (−ωρ ;ω1,±ω2) = (−ωρ ;±ω2, ω1), however

the two are still strictly distinguishable and therefore both sets must be included producing a K

factor of 1.

Finally, substituting 2.25 into 2.24 the following general solution for the variation in electric

field due to an induced polarisation of order n is obtained,

∂

∂z
Êρ = i

ω2
ρ

2kρc2
K (−ωρ ;ω1, · · · , ωn)χ(n) (−ωρ ;ω1, · · · , ωn) Ê1 · · · Ênei∆kz. (2.27)

Here, ∆k = kρ is the phase mismatch describing the propagating phase error between the

interacting waves.

2.4 Harmonic generation

Having reviewed the general case the above analysis is now be clarified for the specific example

of second harmonic generation, which is the main focus of this work.

Using Equation 2.27 the two coupled equations linking the fundamental (ω) and harmonic

fields (2ω) have been determined,

∂

∂z
Ê2ω = i

(2ω)2

2k2ωc2

[
1
2
χ(2) (−2ω ;ω, ω) Ê2

ω

]
ei∆kz (2.28)

∂

∂z
Êω = i

ω2

2kωc2
[
χ(2) (−2ω ;ω, ω) Ê2ωÊ

∗
ω

]
ei∆kz (2.29)

where, ∆k = 2kω − k2ω and the K values have been evaluated according to Equation 2.26. Here,

it is noted that the electric fields are necessarily real and thus E−ω = E∗ω. Note also that the

coefficients in the χ(2) tensor of the fundamental field have been altered in accordance with

Kleinman symmetry.

At this point it is prudent to introduce the Manley-Rowe relation [22] governing power transfer

between the two waves. Assuming zero absorption at either frequency this relation can be written

as (1/2ω) δI2ω/δz = −1/2 (1/ω) δIω/δz. In the case of SHG this relation simply implies photon

conservation, with two pump photons joining to form one harmonic with twice the energy.

2.4.1 Low-conversion efficiency

In the low conversion limit it is assumed that the fundamental field is undepleted and thus

dEω/dz = 0, Eω(z) = Eω(0). Using this assumption it is possible to integrate directly Equa-

tion 2.28, pulling Eω outside the integral, obtaining an expression for the growth of the harmonic
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electric field through a nonlinear medium of length L:

E2ω (L) =
i (2ω)
4n2ωc

χ(2) (−2ω ;ω, ω) Ê2
ω

∫ L/2

−L/2
ei∆kzdz (2.30)

=
(2ω)

4n2ωc
χ(2) (−2ω ;ω, ω) Ê2

ωL
sin (∆kL/2)

∆kL/2
. (2.31)

Expressing this in terms of intensity,

I2ω (L) =
(2ω)2

8n2
ωn2ωc3ε0

∣∣∣χ(2) (−2ω ;ω, ω)
∣∣∣
2

I2
ω L

2 sinc2 (∆kL/2) . (2.32)

From this it is noted that the final harmonic efficiency is proportional to the fundamental in-

tensity, leading to ever higher conversion efficiencies with increasing fundamental input. Addi-

tionally, it is clear that the output power is highly dependent on the length of the nonlinear

interaction, displaying a quadratic proportionality. It should be noted at this point that the

length squared dependence of the conversion efficiency only applies to infinite plane-wave inter-

actions, as is discussed shortly for the more common focussed interactions this dependency falls

back to a linear proportionality for optimally focused SHG.
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Figure 2.2: A plot of the sinc2 harmonic conversion efficiency for variations in the phase-matching param-

eter ∆kL/2. Note here the phase-matching parameter has been scaled to be device length independent

One final observation regards sinc2 (∆kL/2), from this term it is evident that the harmonic

conversion efficiency has a single maximum when ∆kL/2 = 0 and has minima at ∆kL = ±2nπ,

where n is any integer value. This is shown explicitly in Figure. 2.2. To achieve efficient power

transfer from the fundamental to the harmonic ∆k must be close to zero. This implies that the

harmonic and the fundamental fields are propagating in phase-lock with one another allowing

continuous positive power transfer, giving rise to the term phase-matching. However, due to

material dispersion ∆k 6= 0 in general. It can thus be inferred from Equation 2.32 that the
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harmonic growth is oscillatory in nature, initially increasing with interaction length before de-

pleting back to the fundamental. The length over which this oscillation occurs is known as the

coherence length and is defined as Lc = |π/∆k| which is simply the length over which the two

fields become 180◦ out of phase.

With ∆k being highly dependent on material dispersion it is often found that it is physically

impossible to achieve efficient conversion for many harmonic interactions. However, by utilising

phase-matching techniques, which are discussed shortly, it is possible to mitigate the effects

allowing for substantial conversion efficiencies.

2.4.2 High-conversion efficiency

If it is assumed that the harmonic process is well phase matched, i.e. ∆k → 0, it follows that

Lc → ∞ and that large harmonic fields can be generated given sufficiently high fundamental

intensity and long interaction lengths.

With appreciable conversion efficiency it is no longer possible to neglect the effects of pump

depletion, thus the coupled equations of 2.28 and 2.29 must now be solved explicitly to obtain a

true representation of the harmonic process. The analysis required to solve these equations with

phase mismatch is complex [7] but, with perfect phase-matching results in a simple definition

for the coupled intensities given as1

I2ω (L) = Iω (0) tanh2 (ΓL) (2.33)

Iω (L) = Iω (0) sech2 (ΓL) , (2.34)

with

Γ2 =
(2ω)2

n2
ωn2ωc3ε0

∣∣∣χ(2) (−2ω ;ω, ω)
∣∣∣
2

Iω (0) (2.35)

From the above expression it is clear that with a large fundamental intensity or long interaction

length, L, the produced second harmonic can obtain intensities approaching that of the funda-

mental. However, this equation clearly demonstrates that as the harmonic intensity increases

it is at the expense of the fundamental intensity resulting in the harmonic conversion efficiency

asymptotically approaching 100% as shown in Fig. 2.3.

Although in theory it is possible to achieve nominally 100% efficiency there are many factors

that reduce this value in practice. These can include non-perfect phase-matching, where a

small amount of phase error can allow significant back-conversion of the second harmonic to

the fundamental. Aligned to this effect is power dependent de-phasing [23], here the ∆k tuning

1A complete derivation of this result is given in Appendix A, with this analysis being an integral part of the

work in Chapter 3
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Figure 2.3: A numerical simulation of the growth of the second harmonic intensity (blue), and subsequent

reduction in the fundamental intensity (green), with increasing ΓL, with this factor relating fundamental

frequency, material nonlinearity, fundamental plane-wave field intensity and material length.

response of the harmonic process becomes more sensitive to phase errors at high power leading to

a narrowing of the sinc2 profile, see Fig. 2.4. The cause of this narrowing is explained analytical

in Chapter 3.

Additionally, in practice the output of a laser source is not an infinite plane-wave but instead

usually a Gaussian mode. With a non-uniform spatial power distribution across the beam profile

complex depletion mechanisms occur which result in the high intensity at the centre of the beam

converting to the harmonic frequency before the low intensity wings. With a small phase-

matching error, to which the high intensity centre of the harmonic beam is more sensitive,

back conversion of the harmonic beam centre can commence before complete conversion of the

wings is achieved. This, in practice, has placed a limit of ∼85% on the experimental SHG

conversion efficiency in bulk interactions [24]. However, this limitation is not present in waveguide

interactions, where the mode can be thought of as converting as a whole thus satisfying the

boundary conditions of the wave equation; as such efficiencies close to 100% can be achieved

[25]. These limitations in the bulk interactions are reviewed in Chapter 6 and possible routes to

overcome the deleterious effects are offered.

2.5 Focussed beams

In many bulk interactions the fundamental input light intensity is insufficient to create such

extreme depletion mechanisms as mentioned above. In fact, to achieve even moderate levels

of conversion efficiency it is often necessary to focus tightly the interacting waves providing
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Figure 2.4: A numerical simulation of generated harmonic intensity for a range of length normalised

phase-matching values at high peak conversion efficiency, highlighting the narrowing of the phase match-

ing response at high efficiencies. Here the simulations are performed by numerical integration of the

coupled equations given in Equation 2.28 and 2.29. Also shown overlayed (dotted curve) is the low

efficiency sinc2 ∆k dependency.

strong spatial confinement, which in turn increases the magnitude of the electric fields and the

induced polarisation. For focussed interactions effects such as diffraction invalidate the equations

for plane-wave conversion efficiency. Thus, most turn to the analysis undertaken by Boyd and

Kleinman [26] to obtain an expression for the conversion efficiency assuming no pump depletion.

This analysis took into account such effects as diffraction and transverse variations in electric

field culminating in the following definition,

P2ω =
(2ω)2

πn2
ωn2ωε0c3

∣∣∣χ(2) (−2ω ;ω, ω)
∣∣∣
2

P 2
ωkωLh (β, ξ) . (2.36)

Here, h (β, ξ) is commonly referred to as the Boyd and Kleinman focussing factor where β =

ρb/ (2w0) is a measure of Poynting vector walk-off, [ρ is the double refraction direction, b = 2zR

with zR being the Rayleigh range and w0 the focussed spot size] and ξ = L/b is a definition for

the degree of focussing relating device length and focussed Rayleigh range. Subsequently, unlike

ideal plane-wave interactions the focussed conversion efficiency is proportional to the length of

the nonlinear material (not the length squared). But, as in plane wave interactions the conversion

efficiency is proportional to the power or intensity resulting in high efficiencies with intense pump

inputs.

Boyd and Kleinman further analysed the optimal conditions for focussed conversion efficiency

and discovered that assuming no Poynting vector walk-off, i.e. β = 0, a maximum efficiency2

2It is shown in Chapter 4 that this result is in fact not the optimum, with higher efficiencies achievable at
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Figure 2.5: The theoretical variation in the Boyd and Kleinman focusing factor h (B, ξ) for a range of

focused spot sizes, characterised by the scaled dimensionless parameter ξ. Peak conversion efficiency is

achieved at the maximum of h (B, ξ), obtained at ξ = 2.84. Figure taken from [26]

could be obtained when ξ = 2.84. What is perhaps surprising about this result is that this

condition holds true for all lengths of nonlinear material. This may not at first be obvious, as

with increasing length this ratio implies that the spot size is progressively enlarged resulting in a

reduction in the peak electric fields at the focussed waist which, in turn, would result in reduced

conversion efficiency. However, at this particular ratio the reduction in focussed intensity is

exactly balanced by the increase in interaction length of the beam and the nonlinear material.

For the more complex case of non-zero spatial walk-off the interaction length of significant

power overlap, or aperture length, between fundamental and harmonic waves can for some inter-

actions be considerably shorter than the phase-matching coherence length. As such the focussing

parameter ξ must be varied to attempt to maximise the field intensities whilst overlap occurs.

By choosing a small focussed spot the high intensities occur over short lengths which would seem

to help minimise the effects of Poynting vector walk-off. However, tighter focus creates larger

diffraction angles which in turn accelerate this effect, as such Boyd and Kleinman proved that

to obtain efficient harmonic generation in birefringent materials the focussing parameter ξ has

to be reduced becoming progressively lower with increasing walk-off, as shown in Figure 2.5.

2.6 Phase matching techniques

Aside from tight spatial confinement, to obtain efficient harmonic generation the deleterious

effects of wavelength dispersion must be negated. Wavelength dispersion generally causes the

tighter focusing using carefully structured nonlinear devices.
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phase velocity of the fundamental and harmonic waves to be unequal. The result of this is a

dephasing of the two waves over the length of the material. If this mismatch is significant it can

result in the two waves becoming π radians out of phase with one-another leading to complete

back-conversion of any generated harmonic field, as shown in Figure 2.6. This behaviour is

oscillatory with the period of the oscillation being known as the coherence length given as:

Lc =
π

∆k
=

λω
4 (n2ω − nω)

. (2.37)

For some materials such as LiNbO3 or LiTaO3 this length can be as short as a few microns,

depending on the frequencies of interest. In such circumstances the maximum conversion effi-

ciency is obtained in just a few microns before reducing. However, if the device length is an odd

multiple of the coherence lengths limited quantities of second harmonic can still be generated.
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Figure 2.6: A simulation of the effects of phase-matching parameter, ∆k, on the growth of the sec-

ond harmonic signal along a nonlinear material of length 5Lc. Here perfect phase matching (blue) is

contrasted with an imperfect phase-matching of ∆kL/2 = 5π/4, (green)

To overcome the effects of wavelength dispersion there are three main techniques that can be

employed, with each technique offering distinct advantages and disadvantages over the others.

These techniques include, birefringent phase matching, waveguide dispersion compensation and

quasi-phase-matching. Using any one of these techniques may lead to large increases in conversion

efficiency, for example, extending the coherence length to 1cm from a few microns results in

approximately a 106 increase in efficiency for plane wave interactions.

2.6.1 Birefringent phase-maching

The technique of birefringent phase-matching makes use of the differing values of refractive index

for orthogonally polarised light in birefringent materials. For the case of SHG the condition for

perfect phase matching is simply nω = n2ω, in a material with suitably large birefringence
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this may be accomplished if one wave is ordinarily polarised and the other frequency is extra-

ordinarily polarised. For a negatively birefringent material such as LiNbO3 [27] this is achieved

with an ordinarily polarised fundamental wave, noω, and an extra-ordinarily polarised generated

harmonic wave, ne2ω, with the polarisation states reversed for positively birefringent materials.

Such an interaction is known as type-I phase-matching; an alternative technique known as type-

II phase matching requires a fundamental wave comprising of both ordinary and extra-ordinary

waves which in turn generate an extra-ordinary second harmonic wave. The technique of type-II

phase-matching can be thought of as birefringence averaging, with the indices for phase matching

given as ne2ω = 1/2 (neω + noω).

At this point it is prudent to note that it is rarely the case that phase-matching can be

achieved when propagating directly along the optical axis of the nonlinear material as is implied

by the notation neω. Instead it is usually the case that phase-matching can only occur when

propagating at an angle, θ, to the optic axis which allows for a variation in the extra-ordinary

refractive index given as

ne (θ) =
1

[
sin2 θ
n2
e

+ cos2 θ
n2
o

]1/2 (2.38)

In this way it is possible to adjust the refractive indices by careful alignment of the material with

the input waves such that noω = ne2ω (θ). An example of the variation of index with propagation

angle is given in Fig. 2.7 . For the special case of θ = π/2 the above expression reduces to the

refractive index along the optic axis, with this scenario known as non-critical phase-matching.
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for both the fundamental and second harmonic fields in the negative birefringent material LiNbO3,

highlighting a possible birefringent phase matching angle. Taken from [27]
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Propagation at an angle to the optic axis allows for continuous phase-matching of the non-

linear process; however, this propagation may also be at an angle to the nonlinear coefficients

resulting in a reduction in the effective nonlinearity. The amount of reduction is material de-

pendent but for LiNbO3, for example, the effective nonlinearity, deff , is given as

deff = d15 sin θ − d22 cos θ sin 3ψ, (2.39)

where d15 and d22 are contracted notations for the components of the nonlinear coefficient tensor

where Kleinman symmetry has been applied [6] and ψ is the propagation angle relative to

the optical axis. A significant problem with the technique of angle tuning the phase-matching

condition can be the complete reduction of nonlinearity at certain angles, in such circumstances

the optimal angle for phase-matching may not equate to the angle for optimum efficiency.

Additionally, birefringent phase-matching suffers from an effect known as Poynting vector

walk-off. As the extra-ordinary wave propagates through the nonlinear medium the direction of

power flow, or Poynting vector, differs from the k-vector direction by the double refraction angle,

ρ. This results in the walk-off of the high power centres of the interacting beams which in turn

leads to significant reduction in conversion efficiency. The double refraction angle is given by

ρ ≈ tan ρ =
noω
2

[
1

(ne2ω)2 −
1

(no2ω)2

]
sin 2θ (2.40)

For theoretical infinite plane-waves this is not a problem but for the real world case of focussed

beams the problem leads to a separation of the extra-ordinary and ordinary beams after a

distance

La =
√
πwo
ρ

(2.41)

known as the aperture length. Here wo is the focussed spot size. It is quite often a problem that

the aperture length of the nonlinear interaction is significantly less than that of the coherence

length for efficient power transfer, leading to large reductions in attainable power. For example,

with a walk-off angle of only 2◦ and a spot size of 30µm the aperture length is only 1.5mm which

may well be less than the phase-matched coherence length. However, if θ = π/2 i.e. non-critical

phase-matching ρ = 0 resulting in an infinite aperture length.

2.6.2 Waveguide dispersion compensation

With confinement of the nonlinear interaction in a waveguide structure it is possible to tailor

the phase-matching conditions by mode dispersion. By careful adjustment of the waveguide

dimensions it is possible to control the mode index, which lies between that of the core and

the cladding, for both the fundamental and harmonic waves. An example of the variation in
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mode index for varying core size is shown in Fig. 2.8. As is shown in this figure by adjusting

the physical size of the core it is possible to match the indices of the harmonic and fundamental

modes, in this case the first order fundamental mode has equal index to that of a higher order

harmonic mode. Using this technique can additionally allow use of any waveguide birefringence

such that phase-matching can occur between different polarisation states.

Figure 2.8: A plot of the refractive index variations of numerous spatial modes of both fundamental

and harmonic fields for changes in waveguide core dimensions. In this instance phase-matching can

be achieved through using the zeroth order fundamental mode mixing with the first higher order SHG

mode. Taken from [28]

However, this technique does have the significant disadvantage of poor modal coupling. The

spatial power variations between a zeroth order mode with a single Gaussian peak and the

oscillatory behaviour of higher order modes reduces the coupling coefficient and so the conversion

efficiency.

2.6.3 Quasi-phase-matching

Quasi-phase-matching (QPM) was first proposed in 1962 [7] as an alternative to the already

established birefringence phase-matching technique. The premise of QPM is to remove the dif-

ficulties in overcoming dispersion to obtain matched phase velocities of the interacting waves.

This is accomplished by intentionally allowing phase slippage between the waves along one co-

herence length but correcting for this phase before back conversion can occur. The required

phase correction can be achieved by a sign change in the value of the nonlinearity. Inverting

the nonlinearity counteracts the π phase shift accumulated over the coherence length due to

dispersion resulting in continued growth of the harmonic field.

This effect is clearly demonstrated in Figure 2.9, which shows a representation of the phase

addition for un-matched and QPM processes. The period of this inverted nonlinearity for second
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Figure 2.9: A phasor representation of the k-vector variation in un-phase-matched, perfectly phase-

matched and quasi-phase-matched interactions. Here it is clear for un-phase matched interactions zero

net harmonic contribution is obtained. For quasi-phase matched interactions an inversion in the device

nonlinearity leads to continued growth of the harmonic signal.

harmonic generation is defined as

Λ = 2Lc =
λ

2 (n2ω − nω)
. (2.42)

Although perfect phase matching is not achieved the distance of efficient energy transfer can

be extended from the order of a few microns, depending on the material, to an infinitely long

interaction only limited by the maximum physical sample sizes attainable. An example of the

increase in efficiency that can be obtained from only a few coherence lengths of quasi-phase-

matched material is show in Figure 2.10.

There are numerous techniques to achieving an inversion in nonlinearity, the first such tech-

nique proposed [7] made use of many identical samples of nonlinear material cut to exactly

the coherence length of the desired interaction. By stacking these samples end to end whilst

alternately rotating the crystals 180◦ about the nonlinear axis a periodic structure of inverted

nonlinearity can be obtained. However, this technique is for many processes impracticable as

the lengths of each sample is generally between 10µm to 100µm long resulting in significant

fabrication issues.
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Figure 2.10: A theoretical plot of the variation in harmonic intensity with propagation distance for phase-

matched (blue), un-phase-matched (green) and quasi-phase-matched interactions (red). Also shown is

the effective average conversion efficiency of a QPM interaction (black), this is equivalent to a phase-

matched interaction with a nonlinearity value reduced by a factor of 2/π.

An alternative technique of nonlinearity inversion, which is the basis of all the results pre-

sented in this work, is that of domain inversion. This process alters the domain structure of

ferroelectric nonlinear materials, such as LiNbO3, to produce a periodic reversal in the in-built

spontaneous polarisation. As the sign of nonlinearity is related to the orientation of the sponta-

neous polarisation, it is clear that such a technique allows for correction of the dispersion induced

phase slippage. Although this technique is not dissimilar from that previously mentioned it does

have the significant advantage of being a single sample of material thus reducing many of the

fabrication issues.

There are certainly other techniques to achieve inversion, such as controlled periodic growth

of non-ferroelectric nonlinear semiconductors [29], however these are not discussed here as they

do not directly pertain to this work.

As can be seen in Figure 2.10 the growth of the second harmonic wave in a QPM device is

not a smoothly increasing function, containing sections at the start and end of each inverted

region where growth is nearly flat. As a result the conversion efficiency per unit length is

smaller than that of birefringence phase matching, assuming a birefringent material with the

same nonlinearity. In fact in QPM the nonlinear coupling coefficient is effectively reduced to a

factor of 2/π [30] of the bulk nonlinearity.

However, despite this reduction in effective nonlinear coefficient the process of QPM can

still be substantially more efficient than birefringence techniques. As previously detailed under

birefringence phase-matching it is common to have to propagate at an angle to the optical axis,
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which as stated results in a reduction in the effective nonlinear coefficient. Additionally, in

birefringent devices the choice of the component of the tensoral nonlinear coefficient is restricted

by the phase matching characteristics. In contrast, QPM devices have greater flexibility in choice

of nonlinear coefficients, limited only by the fabrication techniques for nonlinearity inversion. As

an example, in the ferroelectric material LiNbO3 QPM can access the largest nonlinear coefficient,

d33 with a nonlinearity of ∼ 30pmV −1, but by using non-critical birefringence techniques in the

same material the largest coefficient is d31 at ∼ 5pmV −1 [27]. Clearly, even with a factor of 2/π

reduction the effective nonlinearity in the QPM interaction is higher.

Further advantages to QPM include no Poynting vector walk-off and a much larger phase-

matching range. By not requiring independent polarisations to achieve phase matching QPM

is inherently free from the effects of walk-off. It is however still possible to achieve phase-

matching of orthogonal polarisations, but as propagation is generally chosen to be along the

material optic axis walk-off is not present. Finally, QPM is able to phase-match a much wider

range of frequencies than other techniques, being able to phase-match interactions across the

entire transparency band of the material. In comparison, even with angle and temperature

tuning birefringence phase-matching is generally only able to efficiently convert a small subset

of the wavelengths to which the material is transparent. Again using LiNbO3 as an example,

for QPM the nonlinear process can operate for any wavelengths in the transparency range of

350nm - 4800nm [27]. In contrast, birefringent phase-matching in LiNbO3 is limited to harmonic

processes with fundamental frequencies above 1µm [31].

2.7 Periodically-poled lithium niobate

Lithium niobate (LiNbO3) has long been popular as a nonlinear material, being used in early

harmonic experiments [5] which utilised its birefringence to achieve phase matching. This mate-

rial has many properties that facilitate its widespread use as a nonlinear material, but perhaps

the most important of the properties is the large nonlinear coefficients, with the d33 coefficient

being ∼ 30 pmV −1 and d31 ∼ 5 pmV −1 [27]. Although other nonlinear materials in the same

family, such as lithium tantalate (LiTaO3) and to a lesser extent lithium iodate (LiIO3) have

nonlinear coefficients [32] approaching that of LiNbO3 these materials have historically been

scarce at the qualities required for optical use. With one reason for the widespread availability

of high quality LiNbO3 being it’s use as surface acoustic wave (SAW) filters, which themselves

are essential parts of all mobile telecommunications devices.

Aside from high nonlinearity, LiNbO3 has the advantage of a large transparency range, span-

ning the complete visible spectrum (from ∼ 350nm) all the way to the near-mid infra-red
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(∼ 4800nm [27]), allowing its use as a material for SFG and DFG of visible light as well as

an optical parametric amplifier/oscillator for tuneable laser light in the infra-red.

Finally, perhaps the property that has ensured this materials commercial dominance is its

ability to be domain reversed, providing it as an ideal candidate for quasi-phase-matching.

Lithium niobate is a ferroelectric material with 3m crystal class composed of distorted octahe-

drons of oxygen ions, the arrangement of the oxygen ions is triangular in the plane perpendicular

to the z-axis of the material. Between the oxygen planes, at the interstitial sites, lie the lithium

and niobium ions, with the sequence of ions arranged as lithium, niobium followed by a vacancy

before repeating. It is the positions of these ions that determine the magnitude and sign of the

nonlinearity.
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Figure 2.11: (a) A diagram of the paraelectric phase of lithium niobate as obtained at the Curie tem-

perature. (b) The ferroelectric crystal structure of LiNbO3.

As shown in Figure 2.11(a) at the Curie temperature, ∼ 1120◦ [33], the lithium ions are situ-

ated in the plane of the oxygen lattice, with the niobium ions centred in the oxygen octahedra. At

this temperature there is a centre of symmetry in the material, resulting in zero net polarisation,
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preventing the formation of a χ(2) nonlinearity. At the Curie point the crystal is said to be in its

para-electric phase, below the Curie point the metallic ions are displaced from the oxygen planes

creating a material polarisation and resultant nonlinearity. The relative position of the displaced

ions defines the direction of the spontaneous polarisation and thus the sign of the nonlinearity.

It is readily seen from Figure 2.11(b) that if a lithium ion is forced through the oxygen plane,

in turn repelling a niobium core, the effect is to rotate the spontaneous polarisation about the

optic axis. It is this poling of the crystal structure that allows for the required change in the

sign of the material nonlinearity.

2.7.1 Methods of periodic poling

Poling of the lithium niobate structure can be performed via many techniques, with perhaps

the simplest technique being the application of a static electric field as the material is cooled

through its Curie temperature. However, for efficient harmonic generation via QPM it is nec-

essary for the nonlinearity to be sign inverted on the order of every few microns, thus making

this high temperature technique impracticable for all but the initial bulk poling of the crystal.

Further techniques have used an out-diffusion process to distort chemically the polarisation of

the material, however such methods usually result in a reduction of the material nonlinearity and

produce only very shallow regions of domain inversion [34], and as such are not widely used in

bulk interactions. Additional procedures include direct e-beam writing of the grating structure

[35], although this technique is not suitable for mass production due to the slow write times

and poor domain wall quality, and light assisted poling [36]. Where light is used in situ with an

applied electric field allowing localised poling with reduced electric fields [36, 37] or alternatively

uses higher intensity light that enables a lowering of the coercive field even after removal of the

applied light [38], although neither mechanism is yet fully understood.

At room temperature LiNbO3 is in its ferroelectric phase with the material having an in-

built polarisation, to achieve QPM this polarisation must be reversed. Inversion of the domain

structure can be achieved with the application of an electric field across the optic axis, with this

field exceeding the strength of the coercive field (Ec =∼ 21 kV mm−1 at 25◦C [27]). Application

of a field approaching this magnitude squeezes the position of the lithium ions towards the

oxygen plane, temporarily reducing the material polarisation towards that of the paraelectric

phase. Additional field strength, (> Ec), is sufficient to force the lithium ions through the

oxygen plane resulting in a permanent re-orientation of the polarisation. Using a structured

electrode it is possible to create localised domain inversions on the order of a few microns in

width and many 100’s of microns in length.
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The poling technique utilised in this work was pioneered at the Optoelectronics Research

Centre circa 1998 and is markedly different from alternative techniques more commonly used.

Using this proprietary technique the structured electrode is defined on the -z face of the crystal

using standard photolithography techniques (in contrast the more widespread technique applies

the structured electrode to the +z face), with the patterned photoresist material acting as a

dielectric barrier to the applied field and the subsequent un-patterned regions allowing electrical

contact to the crystal surface, as shown in Figure 2.12. Contact to the crystal is made using a

conductive gel, which allows for electrode application without further cleanroom steps as required

for deposited metal electrodes [39] or the potentially hazardous use of liquid electrodes [40] used

in alternative techniques.
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Figure 2.12: Experimental arrangement for room temperature electric field poling of LiNbO3.

Surprisingly the small layer of photoresist, nominally 1µm thick, is sufficient to inhibit un-

wanted domain inversion, however application of the poling field must be carefully controlled to

prevent poling under the masked regions or even the catastrophic failure of the crystal structure.

During the poling procedure the applied electric field is controlled via current feedback, which in-

turn allows precise control of the applied voltage. Current control is chosen over voltage control

due to the close link between the poling current and the amount of domain inverted material.

Due to the inbuilt spontaneous polarisation a single crystal sample of LiNbO3 has a surface

charge on both the positive and negative z faces of the material, with a value of 0.72 Cm−2 [41].

Thus, it can be seen that by constraining both the magnitude and duration of the supplied

poling current exacting control of the quantity of domain inverted material is achieved. This is

in contrast to the more simplistic approach of voltage control, which to an extent requires an

amount of guess work to obtain the optimum poling voltage to achieve the same quality domain
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structures, having no in-situ feedback of the progress of domain growth. For the case of current

control this ambiguity of poling voltage is removed by the self regulating nature of the poling

current, too much current flow leads to a reduction in applied voltage preventing overgrowth of

the domains. By careful optimisation of the magnitude of the supplied poling current and its

temporal profile it is possible to achieve excellent domain nucleation and subsequent growth in

a controlled and highly repeatable manner.
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Figure 2.13: A characteristic poling curve showing the demanded poling current and resulting high

voltage required to achieve high quality poling of a 6.5µm period, 0.5 mm thick PPLN device, for

frequency doubling 1064 nm infra-red light to green at 532 nm, using current controlled feedback.

An example of a typical poling curve is shown in Figure 2.13, here a large jump in supplied

voltage, to a value matching that of the coercive field, is clearly evident before any current

can flow. Additionally, it is apparent from the initial overshoot in voltage that this process

automatically optimises the applied voltage to achieve good domain nucleation before reducing

to maintain steady domain growth. Finally, towards the end of the poling curve a rise in applied

voltage can be attributed to the final lateral expansion of the domains under the insulating

photoresist to achieve the desired 50:50 mark to space ratio.

Using this versatile technique, PPLN samples have been created that are capable of phase

matching numerous nonlinear interactions including infra-red OPOs with a period of ∼ 30µm,

all the way down to blue generation from doubled 920 nm sources using a 4.1µm grating pitch.

An example of the domain quality that is routinely achievable is shown in Figure 2.14, which is

a microscope image of an HF acid etched, 6.5µm period device for green light generation. Here,

the HF etching allows clear differentiation of the poled domains due to the differing etch rates
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of the +z and -z faces of the crystal [42].

Figure 2.14: A microscope image of anE-Field poled PPLN structure with 6.5µm period for frequency

doubling 1064 nm infra-red light to green at 532 nm. Here, the darker structures are the inverted domains

whilst the lighter colour is that of the bulk un-poled material, (the visibility of the domains has been

enhanced through acid etching).

Despite its many advantages PPLN does suffer from effects that limit its usefulness in prac-

tical situations. One such problem is the photorefractive effect, an optical phenomenon whereby

the interaction of light and a material creates a refractive index change along the gradients of

the light intensity [43]. To exhibit the photorefractive effect a material must be either photo-

conductive or photovoltaic in nature in addition to having electro-optic properties. Here, the

photoconduction creates an optically induced electric field within the material and the electro-

optic effect creates a resulting index change in proportion to this field. Such a phenomenon

can prove detrimental to nonlinear interactions causing such effects as de-focussing of the inci-

dent fundamental beam and variation in phase-matching conditions resulting in a reduction in

harmonic conversion efficiency.

In the material LiNbO3 photoconduction is attributed to iron impurities present in the crystal

melt prior to fabrication, which under illumination are able to release charges into the conduction

band. With the effect usually described by the relation

Fe2+ + hv → Fe3+ + e−

where h is Planck’s constant and v is the frequency of incident light. Thus with constant illumi-

nation it has been proposed [44, 45] that Fe2+ ions release electrons into the conduction band,

which are unable to recombine with the Fe3+ traps due to the laser excitation. However, by

diffusion processes or built in fields these electrons can migrate away from the intense laser focus

towards the extremities of beam where they are able to recombine with available Fe3+ traps,
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resulting in a charge distribution and thus an electric field leading to a change in refractive index

through the electro-optic or Pockels effect. It is however possible to negate these charge effects

by operating PPLN devices at temperatures close to 180 ◦C. With the elevated temperature cre-

ating charge diffusion processes, considerably stronger than the optical field induced diffusion,

preventing regions of localised charge building up. However, this comes at the expense of flexi-

bility in deployment with many temperature sensitive applications unable to accommodate such

extreme temperatures.

As an alternative to high temperature operation it has been shown that by artificially increas-

ing the electrical conductivity of LiNbO3, with the inclusion of certain metallic impurities [46],

charge build up can be prevented thus ameliorating the effects of photorefraction. Of particular

interest is the inclusion of Mg2+ ions in the crystal lattice, with a value of 5% mol−1 showing the

best results for limiting the photorefractive effect whilst maintaining high optical nonlinearities

[47]. Further advantages to the use of magnesium doped PPLN (MgO:PPLN) include a reduc-

tion in the coercive field, to approximately 3kVmm−1, allowing larger thicknesses of material to

be poled at relatively low temperatures [48], a moderately expanded transparency range towards

the UV [49] and higher power handling capabilities [50].

However, due to the changes in the material conductivity and coercive field the standard

technique employed for poling PPLN is not suitable for high yield production of MgO:PPLN, and

as such a new technique has been developed. The fabrication difficulties stem from a reduction

in the nucleation sites on the application of electric field when compared with standard LiNbO3,

resulting in the formation of small numbers of large over-poled domains. To counter this a new

patent applied two step poling process has been developed as part of the work described in

this thesis [51] which initially forces numerous nucleation sites using short duration high voltage

pulses considerably larger than the coercive field followed by a much longer duration voltage just

above the coercive field value to spread the domains from the nucleation points. The importance

of encouraging additional nucleation prior to steady domain growth was identified by the author

during poling trials. The use of sets of high voltage pulses of approximately 10ms duration

is an important step which encourages complete domain nucleation across the device without

allowing significant spreading, only once every period in the device is nucleated is a sustained

voltage applied. Doing this two step process helps ensure that all domains have the ability to

grow at the same rate preventing the formation of a single runaway domain reversal.

Finally, an additional limitation of LiNbO3, which MgO doping can partly rectify, is the

inability to generate UV light due to its low end transparency cut-off at 350nm. As an alternative

LiTaO3 may be used, this material is very similar to LiNbO3 being a ferroelectric material in



2.8 Conclusions 33

the same family with a large nonlinearity value of d33 = 26 pmV−1 [52] and high resistance to

photorefractive damage (approximately 30 times that of LiNbO3 [53, 52]). However, importantly

where these two materials differ is in their transparency bandwidths, with LiTaO3 having a lower

bound of 280nm [54] and an upper bound of 4.5µm, and their birefringence, with LiTaO3 having

insufficient birefringence for standard phase matching leaving QPM as the only viable option for

harmonic generation.

In spite of the advantages that LiTaO3 offers it is only now becoming an important material

for commercial applications with one of the likely causes of the slow uptake being the issues of

high quality periodic poling of this material (PPLT). Poling techniques have proven to be similar

to LiNbO3, with room temperature electric field poling being the primary choice. However, due

to subtle differences in the formation of poled domains the resulting device quality is often inferior

to PPLN. In LiNbO3 domains form as hexagons aligned with the crystal axis, but for LiTaO3,

despite the almost identical crystal structure, poled domains grow preferentially as triangles.

This triangular growth prevents the formation of high quality straight domain walls on both

faces of the crystal, thus reducing the finesse of the poled device. Additionally, it was reported

that LT has a much lower domain nucleation density than LN [55] and as a result was believed

to only pole with the use of metal electrodes.

Notwithstanding, it has since been shown [56, 57] that by careful optimisation of the poling

technique it is indeed possible to achieve good quality PPLT devices using current-controlled

room temperature poling techniques with the use of gel electrodes, culminating in a patent to

this effect [57]. The basis of this technique is the application of a sustained high voltage bias, a

few tens of volts below the coercive field, to the crystal surface prior to the application of the

current-controlled voltage pulse. The application of this high bias has been seen to dramatically

increase the overall uniformity of the poled domain structures, overcoming the nucleation issues

observed by others when using non-metallic electrodes. Using this technique it has so far been

possible to fabricate PPLT with a period of 4.5µm, as shown in Figure 2.15, which is suitable

for the frequency doubling of a 920nm laser source for blue generation.

2.8 Conclusions

In this chapter a thorough analysis of nonlinear optical interactions has been undertaken, with

particular attention paid to the process of second harmonic generation. With this being the

main focus of the work detailed in this thesis. Starting from Maxwells equations a theoretical

background is given for the formation of higher order optical frequencies through the second

order nonlinearity coefficient. From these fundamental equations expressions for both the low
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(a) (b)

Figure 2.15: Microscope images of E-Field poled PPLT device with 4.5µm period for frequency doubling

920 nm near infra-red source to blue at 460 nm. (a) -z crystal surface with mostly straight domain growth,

(b) the unpatterned +z surface showing triangular poled domains.

efficiency and more complex high efficiency interactions are given with the slowly varying envelope

approximation applied. In later chapters, Chapter 3 and Appendix A, these often quoted results

are fully derived and the complex analysis utilised as the basis for a novel simulation tool.

Further, the effects of phase-matching on the efficiency of SHG processes is discussed along

with methods for achieving phase-matching, such as birefringent or quasi-phase-matching and

waveguide dispersion compensation. Additionally, a brief introduction into the effects of focused

Gaussian beams on the efficiency of second harmonic generation is given. Here, the results

presented are those of Boyd and Klienman [26], which are generally considered to be the definitive

results for any focused interaction. However, in Chapter 4 improvements on these results, arising

through the work detailed in this thesis, are given.

Finally, the materials lithium niobate and to a lesser extent lithium tantalate and magne-

sium doped lithium niobate are introduced, with their benefits and limitations briefly discussed.

Methods for achieving phase-matching in these materials are additionally covered, with particu-

lar attention paid to quasi-phase-matching through periodic poling. Periodically poled materials

are extensively utilised throughout this work, with their high degree of flexibility allowing new

and novel phase-matching processes which are discussed in the proceeding chapters. As a result

of this work patents co-authored by this author, detailing methods for the formation of poled,

periodic domains in lithium niobate and lithium tantalate [57] and magnesium oxide doped

lithium niobate [51], have been generated. The techniques described in these patents have been

extensively utilised by this author in the fabrication of all the physical devices investigated.
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Chapter 3

Increasing the phase-matching

tolerances of QPM devices

3.1 Introduction

Miniaturised high power visible laser components are becoming increasingly interesting for com-

mercial display applications, such as laser projectors and televisions. Laser based sources have the

potential to replace traditional lamp-based white-light sources with improved colour gamut Red-

Green-Blue (RGB), packaged, frequency converted, laser diode modules. Such devices promise

to overcome the short working lifetimes and non-optimal wavelengths currently offered by the

alternative visible diode technology. Here, the nonlinear process of Second Harmonic Generation

(SHG) [1] offers an ideal route towards generating high quality visible light from existing infrared

laser diodes. However, the route of packaging nonlinear materials with semiconductor lasers re-

quires investigation of several important operational effects, the most important of which are

conversion efficiency and stability.

Of the nonlinear materials currently available, the family of periodically-poled lithium niobate

(PPLN) (and its various compositions and dopants) remains among the most popular due to its

high nonlinear coefficient, ready availability, and widely tunable phase-matching range. However,

in order to promote wider acceptance of this material platform several inherent operational issues

that arise while generating visible wavelengths must be resolved. These include photorefractive

damage, long term degradation, and, of relevance to this thesis, a narrow temperature accep-

tance bandwidth that requires stringent thermal packaging for use in mass-market applications.

Generally, the SHG conversion efficiency temperature tuning response of a PPLN crystal grating

40
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shows a sinc squared dependency, resulting in a relatively narrow range of temperatures over

which efficient harmonic conversion can occur. Typically this means that to maintain maximum

conversion efficiency the crystal temperature must be stabilised to within 0.1 ◦C, a range that

becomes progressively narrower as longer devices are used to obtain higher efficiencies.

To overcome these practical limitations a method for converting the narrow sinc squared har-

monic temperature tuning response of a standard PPLN grating into a broad, flat-top tempera-

ture tuning response by mathematical design and selective reallocation of poled grating domains

is proposed. Based on this process the output power of poled nonlinear devices has been shown

to be substantially more robust to fluctuations in crystal temperature and simultaneously more

stable to pump laser wavelength drift.

3.2 An overview of techniques for modifying the band-

width of QPM devices

It had long been known from the fields of linear optical gratings that it is possible to modify

significantly the response of a grating structure to tailor it to one’s needs. For example in the

field of linear electro-optic modulators it was shown that with the use of a pseudo-random binary

pattern in the structure of an applied electric field, as opposed to the more common periodic

structures, it was possible to alter the velocity matching of the devices to significantly expand

their working bandwidth [2]. Still earlier work on broad band grating filters sputtered onto thin

film waveguides showed that a linear chirp could be used to provide a wide range of working

wavelengths with high efficiencies [3].

However, it was not until the technique of QPM had been sufficiently advanced in practice

that applications of modified bandwidth nonlinear devices started to appear in any number.

Where before this technique changes to the phase-matching characteristics of a material were

generally limited to refractive index variations via impurity diffusion, the creation of periodic

cladding structures on nonlinear waveguides [4], or by ion implantation to reduce the local

nonlinearity [5]. With the advent of high quality periodic QPM structures in nonlinear materials

such as lithium tantalate and lithium niobate many theoretical and experimental papers began

to be published providing routes to significantly alter the phase-matching bandwidths for a range

of applications.

The scope of the applications of modified nonlinear grating structures is vast including ap-

plications such as pulse shaping in short pulse harmonic generation [6, 7], the generation of

multiple harmonics simultaneously [8, 9, 10], the reduction of side lobes in the phase-matching
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response [11] and, of interest to this work, the enhancement of the standard sinc like bandwidth

to a more broad bandwidth constant power output. Within these areas the device types can be

further separated into three main modification techniques, these are: chirped grating structures,

aperiodic grating structures and phase shifted gratings, however recent advancements have seen

the merging of some of these techniques in the hope of producing more desirable responses. The

merits of these device types and some of the applications and results are now be presented.

3.2.1 Chirped gratings

Chirped grating designs, where the period of the grating is varied either linearly or otherwise

along the length of the device, have long been proposed as methods for increasing the bandwidth

of nonlinear interactions. By utilising a spatially varying quasi-phase matching period it is

possible to approximately phase-match numerous optical frequencies simultaneously providing a

relatively constant power output for a range of parametric interactions. A detailed theoretical

analysis of the effects of chirping the grating period was undertaken by Suhara et. al [12], where

parameters such as grating length, fundamental input power and chirp rate were analytically

analysed for both low and high power regimes. Despite this detailed analysis little experimental

research has been performed on chirped grating structures designed specifically for the purpose

of expanding their bandwidth, perhaps due to the non-ideal frequency response obtained. It

was shown in the original analysis by Suhara that although chirping can lead to significantly

broadened bandwidths the power stability obtained is far from optimal, where depending on

the degree of chirp applied and the length of the grating it is common to produce unwanted

oscillations along the otherwise flat-top bandwidth with magnitudes approaching 25% of the

peak power output.

A further complication with chirped grating structures is the small variation in domain place-

ment required to achieve the desired bandwidth. For example for a linearly chirped grating struc-

ture designed with a nominal 28.4µm period, suitable for generating the difference frequency

between a 1064 nm pump and a 1550 nm signal in a LiNbO3 waveguide, and a device length of

38mm it was found that to provide seven times the standard bandwidth a chirp in the period

from 28.489µm to 28.311µm is required [13]. If this chirp is considered in terms of the relative

shift in domain positions it is found to be approximately 0.06 nm per period, this resolution is of

course considerably below that which can be achieved with mask technologies and photolithogra-

phy. Although the exact placement of each domain is not essential, as long as the overall average

period is correct, with mask manufacturers usually working with a minimum of a nm grid it is

clear that the manufactured chirp can quickly become highly nonlinear, resulting in significant
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changes in theorised performance.

To overcome the fabrication difficulties of linearly chirped devices recent work has attempted

to limit the minimum domain position variation in the chirped devices by using a step chirp

grating (SCG) [14, 15]. Here instead of constantly varying the chirp along the length of the

grating the device is now made up of discrete segments of continuous period gratings, the period

of which is chirped from section to section. If the grating is considered as a whole the average

period variation can reasonably well represent a continuously varying period structure, this

approximation can, of course, be improved by increasing the number of sections in a given length

with a corresponding decrease in the period change. This technique again has its limitations in

that it can only realistically be applied when large bandwidths are required. By limiting the

change in period between sections to a 1 nm accuracy it is clear that the overall level of chirp

for say a 10 section device is at a minimum of 0.01µm, but with so few sections the average

period does not accurately represent a continuously varying structure producing artefacts in

the phase-matching response. As a result of this the work in [15] utilised over 300 sections of

constant period changing by 1 nm, resulting in an equivalent linear chirp of 0.3µm which for

generating the second harmonic of 1064 nm in LiNbO3 for example results in approximately a

20 nm bandwidth.

Finally, there has been a recent further advancement in chirped QPM grating devices that

eliminates the unwanted oscillation in their flat-top response. As shown by Suhara and further

demonstrated in [13] and [15] the oscillation of the harmonic power along the otherwise flat-top

∆k response can be significant, preventing the use of either linearly chirped gratings (LCG) or

SCG in many applications, especially the proposed temperature stable generation of the second

harmonic. The cause of the oscillation is relatively simple in nature and can be explained through

basic Fourier analysis, where the discontinuous nonlinearity of the grating and the truncated

periods of the quasi-phase matched structure give rise to unwanted frequency components that

increase the efficiency for some frequencies along the flat-top. Thankfully, Fourier analysis is

able to provide a mechanism to minimise these effects. By applying an apodisation to the

grating structure, so as to reduce the strength of the nonlinearity at the device extremities, it is

possible to eliminate its discontinuous nature and reduce any unwanted frequency components

in the Fourier transform. Unfortunately it is not readily feasible to reduce the nonlinearity

of a QPM device without causing unwanted damage to the material which can prevent the

formation of polarisation reversed domains [16] or introduce index changes which alter the phase

matching characteristics. Despite this limitation it is, however, possible to reduce the effective

nonlinearity of the device such that at the extremities the relative conversion efficiency from
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the pump wavelength to the harmonic is reduced compared with the unaltered central region.

There are numerous techniques for reducing the effective nonlinearity of a QPM device [11]

however one of the simplest in concept, taken from the work on linear gratings, is the technique

of duty cycle variation. Here the duty cycle is the ratio of the size of the poled domain to the

remaining material in the phase-matching period. By deliberately reducing the duty cycle from

the ideal 50:50 ratio continuous harmonic growth along the phase-matching period is prevented,

with larger variations in the duty cycle ratio leading to greater reductions in the local conversion

efficiency and thus effective nonlinearity.

The technique of duty cycle variation has recently been theoretically applied to both LCG

[13] and SCG [14] structures and experimentally verified in the LCG devices, where the measured

ripple is reduced from 1.5 dB in the un-apodised device to ±0.5 dB (or approximately ±12%), this

compares with ±0.2 dB for the theoretical analysis. However, this technique itself has limitations

in that to achieve small non-zero effective nonlinearities the size of the poled domains must be

significantly reduced from the normal dimensions leading to difficulties in fabrication. To further

overcome this difficulty work has been undertaken to model the effects of setting a minimum

domain size in the duty-cycle apodised SCG devices [15], here the domain size was limited to

a minimum of 1µm, increased from the optimal 100 nm, to help with fabrication issues. It was

theoretically shown that even with this non-optimal domain sizes the flat-top ripple could be

reduced to ±0.15 dB, up from an ideal value of ±0.05 dB with 100 nm sized domains. However,

even with this increased minimum domain size the fabrication of such a device is non-trivial,

with only a handful of examples of such small domains being fabricated [17, 18, 19].

3.2.2 Aperiodic gratings

As for chirped grating structures the first examples of aperiodic gratings appeared in linear

optical systems with many such examples appearing in electro-optic modulator designs [2, 20, 21],

where the aperiodic structures allowed much greater velocity matching bandwidths. The first

examples of aperiodic QPM grating structures in nonlinear systems occurred shortly after the

first experimental demonstration of aperiodically poled electro-optic modulators [20], where not

only the fabrication techniques but also the aperiodic designs themselves had great similarity.

For both the electro-optic modulator and the aperiodic QPM grating the aperiodicity of the

structure was defined by a Barker sequence [22] of constant domain size polarisation reversals,

such a sequence is used for its excellent spread spectrum properties which ensures a wide range of

phase-matching conditions. With the maximum length of a Barker sequence being limited to 13

bits [23] it proved necessary to utilise multiple sets of such polarisation blocks within the QPM
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grating to achieve long nonlinear interaction lengths thus increasing conversion efficiency [24]. To

further increase the acceptance bandwidth of the final structure block level phase reversals were

periodically introduced, where the polarisations in of the sequence were reversed. Using such a

phase reversed Barker sequence structure it proved possible to create devices with bandwidths 10

times that of an equivalent length periodic device. This work was further extended and improved

upon by Bortz et. al [25] where they expanded the length of the Barker sequence, from the 11

bits of the previous work to the maximum 13, and introduced variably placed phase shifted

blocks of the code. It was found that using a 13 bit code with periodically placed blocks an

unacceptable level of ripple occurred along the flat-top, in this case almost 7 dB of variation. By

utilising variably placed phase shifted sections it proved possible to reduce this oscillation level

to less than 3 dB.

A further technique proposed is that of using numerous sections of constant length ‘building

blocks’, with the length chosen to be an even integer multiple of the coherence length of the

chosen parametric interaction. Within each block there is both a positive and negative polarity

domain, with the length of the inverted domain chosen so as to alter the effective nonlinearity

[26]. Here an inverted domain length exactly half the length of the building block would produce

the highest effective nonlinearity, with this value decreasing towards zero as the inverted domain

length is reduced. With this technique it is possible to build a digitised representation of an

arbitrary spatially varying effective nonlinearity, which in the paper was chosen to be that

of a sinc function the Fourier transform of which is an ideal flat-top structure. To obtain

the negative effective nonlinearity as is required to accurately represent the sinc function it

was suggested that the order of the negative and positive domains within the building blocks

be reversed. This technique proved somewhat successful in theory, producing flat-top tuning

responses approximately 3 times the bandwidth of an equivalent length device, however along

this bandwidth the theoretical ripple is of the order of 13%. Further, this technique also suffers

from the issues of difficult manufacturing, where the small poled domain sizes required to achieve

the lower effective nonlinearities could prove difficult to reliably fabricate. This of course can be

minimised by using a ‘building block’ that is a higher multiple of the coherence length, but this

leads to more pronounced discretisation of the desired effective nonlinearity which introduces

further oscillations on the ∆k tuning response.

The final example of an aperiodic grating discussed here is relatively similar to that of the

last design, in that it is formed of discrete blocks of nonlinearity. However, in contrast the blocks

within this particular example are now an integer fractions of the coherence length, in this case

the block length is Lc/3 with Lc being the coherence length, and each block is only a single domain
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of nonlinearity [27]. Using a simulated annealing algorithm the orientation of each nonlinearity

block was optimised to achieve the desired response. With this technique excellent theoretical

results have been achieved with almost ripple free flat-top bandwidths of 2, 3 and 5 nm being

theorised in an 11.22 mm long sample of LiNbO3 phase matching SHG from a 1550 nm source.

For comparison the lower of these bandwidths is 6.5 times that of the full-width 95% maximum

bandwidth of a standard QPM grating phase-matching the same interaction. Further at the

lower bandwidth of 2 nm the reduction in the effective nonlinearity is only 25%, or alternatively

a 50% reduction in conversion efficiency. From this it is clear that this technique combines a

high degree of flexibility, being able to produce almost perfectly flat-top response devices, and

very high efficiencies. Despite the excellent advantages this design technique can provide it does

have a considerable limitation for the proposed use of flat-top devices in this chapter, where it is

requirement for flat-top temperature stable devices providing visible wavelengths. In particular

green generation at 532 nm and blue generation at approximately 460 nm, with corresponding

6.52µm and 4.05µm phase-matching periods in LiNbO3 respectively. In the paper the minimum

domain size was a third of the coherence length, which for the 1550 nm doubler interaction is a

relatively large 3.4µm domain. However, for blue and green generation the equivalent domain

sizes would be 0.68µm and 1.08µm respectively, both of which are at the limits of electric field

poling-technology. As such this technique is not currently viable for the mass production of

temperature stable visible wavelength sources.

3.2.3 Phase-shifted gratings

To conclude this brief overview of bandwidth broadening techniques the merits of devices with

phase shifted grating structures are now discussed. In these device types the use of a phase

shift can cause the back conversion of generated harmonic signals within a particular range of

frequencies whilst allowing further growth of other harmonic frequencies that may have been

starting to back convert to the harmonic frequency. With the appropriate positioning and

magnitude these phase shifts can be applied to alter dramatically the phase-matching response.

To some extent these device types can be considered as purely aperiodic structures, where if the

position of a phase shift is in suitably close proximity to the preceding phase shift it can lead

to the formation of domains smaller than those determined by the the standard phase matching

condition, further with a high density of phase shifts all long range periodicity may be removed.

However, the device types considered here are limited to structures containing large regions of

periodic or near periodically poled nonlinearity, where devices with more numerous phase shifts

have effectively been covered above.
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One of the earliest works on phase shifted gratings was by Mizuuchi et. al [28], where the

explicit aim was to create a high efficiency second harmonic device that could be made robust

to changes in phase-matching conditions, caused by laser drift or poorly stabilised nonlinear

crystal temperature, maintaining a constant power output. In this work two distinct examples

of phase shifted gratings were proposed as suitable structures to achieve the above aims, the

first of these structures was a simple device with two segments of equal lengths of periodic

poling and a single phase shift. In this structure the segments had differing grating periods,

with the difference in the k-vector values of the two gratings being one of the free parameters

for optimisation. It was unsurprisingly found that the greater the difference in grating k-vectors

the broader the bandwidth, further the broader the bandwidth the greater the oscillation along

the flat-top response. In an attempt to correct this high degree of oscillation the secondary

parameter of the phase-difference between the sections was adjusted. However, for this simple

structure it was found that constant phase provided the least oscillations. As the alternative, it

was proposed that the phase-shifted structure be made of up 4 segments of equal length linearly

chirped nonlinear gratings [28], where the difference in the average k-vectors between sections

was a fixed parameter. Again the difference in grating k-vectors was optimised with constant

phase, before allowing the phase to become an optimisable parameter. However, even by moving

to a higher segmentation number and chirped gratings it was found impossible to reduce the

flat-top ripple below the 3 dB level.

The final structure that is discussed is by far the most promising, achieving excellent efficiency,

having a moderate bandwidth suitable for stabilising to a few ◦C and importantly it is based

on a physically realisable grating layout [29]. The concept of this structure is not markedly

different from the previous two segment single phase shift device above, where now there are 3

segments with two independent phase shifts that can be optimised. The important differences

between these structures are the relative lengths and periods of the segmented regions, with

the lengths being variable and the periods of all sections being equal. Despite these relatively

minor adjustments, which would at first appear to offer no greater control of the device response,

the obtained grating structures provide high efficiency flat-top bandwidth with no ringing along

the flat-top. Remarkably such designs are independent of the grating period or grating length,

where if the ratio of segment lengths and phase-shift are kept constant an efficiency of 30% can be

obtained producing a bandwidth almost 6 times broader than an equivalent length of standard

QPM. However, in obtaining the flat-top response it is clear from the high efficiency in the side

lobes, > 30% of the peak efficiency, that some compromises have been made. Where having

high powers in the side lobes indicates that the available nonlinearity of the device has not been
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effectively distributed to the phase-matching values of interest and as such higher efficiencies

should be possible using a more flexible design technique.

In summary it is evident that there are numerous techniques for modifying the phase-

matching responses of QPM gratings, with some more practical than others. Yet despite the

huge variety of techniques there is no one clear winner that provides all the favourable charac-

teristics required for complete control of the phase-matching conditions whilst producing designs

feasible for fabrication. Where simple easily fabricated phase-shifted gratings, although able to

provide good efficiencies with flat-top responses of the correct bandwidth, are ultimately un-

able to match the overall efficiency and fine control afforded by truly aperiodic gratings. But

here the best aperiodic designs are generally unsuitable for use in visible SHG devices due to

the extreme tolerances on the poled domain size, with domains widths for wide-bandwidth blue

generation reducing to almost 600 nm. Finally, chirped devices, which lie between aperiodic and

phase-shifted in terms of the flexibility and design constraints have thus far proven unsuitable

for the relatively narrow-band flat-top response required for temperature stability. Where in

order to obtain flat-top devices that have realistic minimum domain sizes and period chirps a

compromise has been made resulting in overly wide bandwidth responses.

As a result of these limitations a new approach has been taken to achieve flat-top designs

that borrows concepts from many of the previously mentioned device types, with the resulting

structures consisting of phase-shifted regions of constant period yet with a domain flexibility ap-

proaching that of aperiodic devices all whilst maintaining a minimum domain size that is readily

fabricated for all visible wavelengths. Having a large degree of freedom in the nonlinear polarity

of the many thousands of domains in a such a structure does however produce considerable

difficulties in verifying the performance of a design. Traditionally the phase-matching responses

of complex gratings have been approximated via the spatial Fourier transform of the structures,

however this technique although rapid is not suitable for modelling high power high efficiency

interactions. Of course for the intended application of temperature stable generation of visible

laser light high efficiency is of utmost importance if such devices are to become widely useful.

Alternatively, simple numerical integration techniques can be used to approximately solve the

coupled equations of the interacting fields, such methods can lead to accurate simulations of grat-

ing performance under all power conditions. But, to achieve these high levels of accuracy such

calculations can prove time consuming and computationally inefficient. Thus before introducing

the new design type an alternative simulation technique, based on the analytic solutions of the

coupled wave equations, is discussed. This technique offers the advantages of high accuracy at

all harmonic power levels coupled with high computational efficiency.
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3.3 High speed modelling of second harmonic generation

with pump depletion

With existing simulation techniques being incapable of the high speed, accurate analysis of

coupled nonlinear parametric systems an alternative technique has been developed. In 1962

the seminal paper on the interactions of plane-waves in a nonlinear media was published by

Armstrong and Bloembergen [30], providing an analytical analysis of the complex parametric

processes. Importantly this work included the analysis of power transfer between generated

waves within the nonlinear medium, allowing for the first time a full understanding of the pro-

cesses involved. By analytically solving the coupled equations of the generated harmonic and

fundamental beams a simulation technique based on this analysis can offer the benefits of speed

and high precision.

The key advantage of this technique over the more familiar Rung-Kutta [31] split-step nu-

merical integration approach to solving the coupled equations is that the generated harmonic

power can be explicitly calculated after the interacting waves have travelled arbitrary distances

through a medium of constant nonlinearity. In comparison split-step techniques approximately

solve the coupled parametric equations by simple numerical integration, requiring calculations

of the nonlinear coupling many times every coherence length to obtain an accurate represen-

tation of the interacting electric fields. Obviously for near phase-matched interactions, such as

for birefringently matched systems, the penalty for solving the coupled equations many times

along the coherence length is negligible. With the coherence length being considerably longer

than the physical device length for some interactions. However, for the QPM structures that

are the focus of this work the coherence length can be orders of magnitude shorter than the

total device length, resulting in many tens of thousands of calculations for a typical length de-

vice. For example in a 20 mm long QPM device of periodically-poled lithium niobate (PPLN)

approximately 6000 regions of polarisation inversion (or 3000 coherence lengths) are required

to efficiently phase-match the generation of the second harmonic from a 1064 nm infra-red laser

source.

From this it can be seen that the Armstrong technique can provide significant computa-

tional efficiency enhancements over more standard simulation techniques in QPM materials,

where now only a single calculation must be performed to provide the nonlinear contribution for

each polarisation inverted region. The suitability of this analysis for QPM structures was later

further emphasised by Rustagi et. al [32] who provided a subtle modification to the Armstrong-

Bloembergen theory, which was more suited to analysing propagation through isolated singular



3.3 High speed modelling of SHG with pump depletion 50

regions of nonlinearity, to account for the discontinuities of the nonlinear coefficient at polarisa-

tion inversion boundaries.

3.3.1 Armstrong-Bloembergen Analysis

A brief overview of the key steps in solving the coupled system via the Armstrong method is

now given, with a further explanation of the application of this technique to solving the coupled

equations for parametric interactions in complex QPM structures. A more detailed analysis of

the Armstrong paper is given in Appendix A, which explicitly defines all the required steps to

provide the complete analysis.

The analysis starts from the definition of the coupled equations of the second harmonic

process, although this can equally be extended to account for more complex three wave mixing

processes.
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here ω is the fundamental frequency, ∆k = k2ω − 2kω is the k-vector mismatch of the complex

fundamental and harmonic fields, Eω and E2ω respectively. Writing the complex amplitudes of

Eω and E2ω in terms of their real amplitudes and phase: Eω = ρωe
−iφω and E2ω = ρ2ωe

−iφ2ω ,

Equations 3.1 & 3.2 can be written as three real coupled equations,
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where θ = 2φω − φ2ω + ∆kz is the phase difference between the two propagating waves and

K = χ(2) (−2ω ;ω, ω) /
(
2c2
)
.

Further, from Equations 3.3 and 3.4 and the Manley-Rowe relationship [33], which states

that the total energy in a parametric interaction must be maintained and thus the rate of change

of energy of the fundamental and harmonic field must be exactly equal and opposite, a constant

of integration may be obtained:

W = kωρ
2
ω +

k2ω

2
ρ2

2ω (3.6)
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With this integration constant and the following substitutions
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Equations 3.3 - 3.5 can be simplified to:

du
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= −uv sin θ (3.11)
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= u2 sin θ (3.12)
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From these simplifications the conservation of energy is now succinctly described as

1 = u2 + v2 (3.14)

with u2 and v2 being the scaled fundamental and harmonic powers respectively.

Here it is worth noting that the units basis has been updated from the original Armstrong

paper, resulting in a clearer progression to the above equations. However due to normalisa-

tion these final equations are identical regardless of the original unit system. By integrating

Equation 3.13 for the case of ∆S = ∆k = 0 a further constant of integration can be obtained as:

Γ = u2v cos θ (3.15)

which can be extended to the more general case of ∆S 6= 0, as is encountered for QPM, using

integration via variational methods to give

Γ∆S = u2v cos θ +
1
2

∆Sv2 (3.16)

which is itself related back to the original definition of Γ as

Γ = Γ∆S +
1
2

∆Sv2
0

where v2
0 is the initial normalised harmonic power prior to propagation through the nonlinear

medium.

Now from Equations 3.12 and 3.16 an expression for the variation of the scaled harmonic

power, v2, with propagation distance, ζ, can be obtained in the form of an elliptic integral:

ζ = ±1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

[
(1− v2)2

v2 −
{

Γ− 1
2∆S [v2 − v2 (0)]

}2
]1/2 (3.17)
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Here, the above integral can be significantly simplified and made to match the form of an

elliptic integral of the first kind by re-writing the denominator in terms of the roots, v2
c≥v2

b≥v2
a ≥

0, of the cubic equation:

(
1− v2

)2
v2 −

[
Γ− 1

2
∆S

[
v2 − v2 (0)

]]2

(3.18)

Resulting in a new expression relating the harmonic power and normalised nonlinear path length,

ζ, that can be directly compared with the standard form of a Jacobi elliptic function of the first

kind.

ζ =
±1

(v2
c − v2

a)1/2

∫ y(ζ)

y(0)

dy

[(1− y2) (1− γ2y2)]1/2
(3.19)

Where the following substitutions have been applied:

y2 =
v2 − v2

a

v2
b − v2

a

γ2 =
v2
b − v2

a

v2
c − v2

a

Re-arranging Equation 3.19 in terms of the normalised power, v2, gives:

v2 (ζ) = v2
a +

(
v2
b − v2

a

)
sn2
[
(ζ + ζ0)

(
v2
c − v2

a

)1/2
, γ
]

(3.20)

u2 (ζ) = 1− v2 = 1− v2
a +

(
v2
b − v2

a

)
sn2
[
(ζ + ζ0)

(
v2
c − v2

a

)1/2
, γ
]

(3.21)

where sn (u, γ) is the Jacobi elliptic function with modulus γ, or alternatively, with parameter

γ2 and ζ0 is the initial normalised path length. From this it is clear that on solving the Jacobi

function an analytic definition of the harmonic power generated over the normalised path length,

ζ, is readily obtained.

However, prior to solving the above Jacobian the parameter ζ0 must first be calculated from

the initial conditions, satisfying the following:

v2
0 = v2

a +
(
v2
b − v2

a

)
sn2
[
ζ0
(
v2
c − v2

a

)1/2
, γ
]

(3.22)

By considering the initial condition of v2
0 = 0, the common condition for SHG, the integration

constant Γ = 0. From this the lowest roots of the cubic Equation 3.18, between which the

harmonic power is constrained to oscillate, are defined as v2
a = 0, v2

b = 1. Applying this set of

conditions to the above formula it is readily found that with no input harmonic power the initial

normalised path length ζ0 = 0.

Further, with the substitution of these initial values into Equation 3.17 it can be shown that

the normalised harmonic amplitude, v, varies according to

vΓ=0 = tanh (ζ) (3.23)
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Figure 3.1: The tanh2 growth of harmonic field intensity (blue) along the scaled device length, ζ, for

∆k = 0 and zero initial harmonic field intensity. Also shown is the corresponding sech2 variation in the

fundamental intensity (green).

with the corresponding normalised fundamental amplitude given as

uΓ=0 = sech (ζ) (3.24)

These results are represented graphically in Figure 3.1 showing the growth of the harmonic

amplitude, at the expense of the fundamental, towards 100% conversion as the scaled nonlinear

interaction length ζ → ∞. Here an increasing value for ζ implies either the physical device

length has been extended or the initial fundamental power is increasing.

3.3.2 Generalisation of the Armstrong analysis to QPM structures

In the previous section it was shown how for the most simplistic case of perfect phase-matching

and zero initial harmonic power the Jacobian function of Equation 3.19 can readily be trans-

formed into the familiar result of continuous growth of the harmonic power like tanh2 (ζ). How-

ever, the application of this analysis is intended for QPM structures where apart from the very

first section of material, it cannot be assumed that the initial harmonic power is zero. With the

calculation of the Jacobi function being performed for each section of nonlinear polarisation re-

versal it is clear that the initial normalised harmonic path length ζ0 must be recalculated taking

into account the new values of harmonic and fundamental powers.

This is achieved using the same method as for the simplistic case but here it is found that

in calculating the initial path length information of the direction of ζ0 is lost, with only its

magnitude being known. Here the direction of ζ0 is essential to determine whether the initial

harmonic power is depleted by the fundamental or grows at its expense, of course for the first
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domain with no initial harmonic this is irrelevant. Despite this loss of information the direction

of power flow can be independently calculated from the initial phases of the two waves, with

power flowing from the fundamental wave if sin θ0 > 0

A further complication with the original Armstrong analysis is that all the units have been

scaled by the value of the nonlinearity, taking into account its orientation. Of course for a

bulk material with a constant nonlinearity orientation this is of no significane, but as Rustagi

et. al highlighted [32] this significantly complicates the analysis for QPM structures where the

nonlinearity periodically alternates direction. It is possible to overcome this limitation by com-

pletely redefining all the initial conditions for each new domain orientation, however, this adds

unnecessary steps and can result in inaccuracy due to compounded rounding errors.

Alternatively, Rustagi redefined the analysis by scaling all the interactions by |ζ|, instead of

ζ, thus making the scaled distance travelled in the nonlinear medium directly proportional to the

physical dimensions irrespective of nonlinearity orientation. This leads to the following modified

Jacobian function linking harmonic power and propagation length:

v2 (|ζ|) = v2
a +

(
v2
b − v2

a

)
sn2
[
(|ζ| ± |ζ0|)

(
v2
c − v2

a

)1/2
, γ
]

(3.25)

Here the polarity of ζ0 is again chosen according the relative phase of the propagating waves,

but now with the additional constraint that it be linked with the direction of the nonlinearity.

Where a positive value is chosen if the harmonic power is to increase and a negative value for

harmonic depletion. This power flow direction can be determined from Equation 3.25 as:

dv2

d|ζ| =
(
v2
b − v2

a

) (
v2
c − v2

a

)1/2
sn
[(
v2
c − v2

a

)1/2
(|ζ| ± |ζ0|) , γ

]
(3.26)

×cn
[(
v2
c − v2

a

)1/2
(|ζ| ± |ζ0|) , γ

]

×dn
[(
v2
c − v2

a

)1/2
(|ζ| ± |ζ0|) , γ

]

Here, cn (u, k) and dn (u, k) are simply the further two basic Jacobi elliptic functions with mod-

ulus k, which arise from the following definition:

dsn (u)
du

= cn (u) dn (u) (3.27)

3.3.3 Application of the Armstrong-Rustagi modelling technique

Having presented the theory for solving exactly the coupled nonlinear equations of SHG in a

QPM structure a brief example application of this theory is given for a basic periodic structure.

The results of this technique are compared to those obtained via both Fourier and Runge-Kutta

analysis. For this example a PPLN based QPM device 1 mm in length is modelled for phase-

matching SHG with a fundamental laser source at 1550 nm.
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Calculate ∆S and Γ
Solve for the roots of the cubic equation

v2
(
1− v2

)2 −
[
Γ−

(
∆S
2

)
v2
]2

= 0

Set v2 = 0, θ = 0.
Define u2 and W in terms of initial fields.

Set sign of |ζ0| = +

Calculate |ζ0|
Solve Jacobian function

v2 = v2
a +

(
v2

b − v2
a

)
sn2
[
(|ζ| ± |ζ0|)

(
v2

c − v2
a

)1/2
, γ
]

with |ζ| being the scaled domain length

Change nonlinearity direction
on entering next domain

Calculate θ
Set sign |ζ0| = −sgn

(
dv2

d|ζ|

)

Figure 3.2: The programmatic steps required to analytically solve the nonlinear coupled equations arising

through second harmonic generation using the analysis of Armstrong and Bloembergen [30], which has

been further simplified using the later adaptation to QPM by Rustagi et. al [32].



3.3 High speed modelling of SHG with pump depletion 56

With this being a parametric interaction to generate the second harmonic it is reasonable

to assume that initially there is negligible harmonic power, other than random background

fluctuations. With this assumption it is now trivial to define the fundamental laser amplitude

in terms of the scaled units giving u = 1, v = 0 with W = kωρ
2
ω. Further, with there being

no initial harmonic field it is impossible to define the phase difference of the two propagating

fields, so it is reasonable to set the initial phase to θ = 0, although as can be seen for the first

calculation the phase is irrelevant. Finally it is necessary to define the scaled k-vector mismatch

∆S and calculate the integration constant Γ, again for the first calculation with no harmonic

field Γ = 0.

Now, from these initial values the roots of Equation 3.18 can be readily solved giving

v2
a = 0, v2

b = v2
c = 1. With these roots it is now possible to solve the Jacobian function

given in Equation 3.25 to obtain the harmonic power generated over the scaled length of the first

polarisation inverted region |ζ|. To achieve this it is important to note that for the first calcula-

tion significant simplifications are obtained with |ζ0| = 0 and as such there is no requirement to

calculate the direction of power flow to determine the sign of |ζ0|.
Before propagating to the next region it is first necessary to calculate the phase between

the two fields, using Equation 3.16, and determine the direction that power was flowing at the

furthest extent of the current region. With this knowledge of the power flow it is now possible

to define the sign of the variable |ζ0| for the next region, which is, by virtue of the rotation in

nonlinearity, the negative of the current direction of power flow, where a positive direction of

power flow indicates an increasing harmonic signal.

On calculating the response of subsequent nonlinear regions the process remains the same,

but now the fields from the previous region become the initial fields. However, with a non-

zero harmonic signal the calculations are slightly more involved with the roots of the cubic now

dependent on ∆S and Γ, where Γ has been calculated using the new value for θ determined

at the end of the last region. Additionally, |ζ0| must now be explicitly determined by solving

Equation 3.22. This process is further explained through the flow chart in Figure 3.2.

By repeating this process for all regions of nonlinearity within the QPM structure the response

of the device to various input parameters can be rapidly determined to almost arbitrary precision,

limited only by the machine resolution of the calculation. This is in contrast to the more familiar

technique of solving the coupled equations by Runge-Kutta integration methods, where to achieve

the same level of precision the integration step size must be reduced to small fractions of the

coherence length resulting in significantly longer calculation times. Further, by reducing the

step size of the Runge-Kutta calculation, in an effort to increase accuracy, the total error for the
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harmonic power generated over a single domain can actually increase due to compounded errors.

Some examples of the results obtained using the Armstrong (red), Runge-Kutta (green) and

Fourier (blue) techniques are given in Figure 3.3, showing the variation in harmonic conversion

efficiency with changing ∆k for a 1 mm long PPLN device phase-matching a SHG interaction

from a 1550 nm laser source for increasing fundamental input powers.
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Figure 3.3: Length normalised ∆k tuning curves for a 1 mm long PPLN crystal generating the second

harmonic of a theoretical 1064 nm laser with 10 W (a), 200 W (b) and 5 kW (c) of fundamental input

power. For each plot the tuning curves have been calculated using Fourier analysis (blue), RK4(5) Runge-

Kutta anlysis (green) and Armstrong-Bloemberg analysis (red). Note due to the excellent agreement

between the high power modelling techniques it is difficult to discern the plot of the Runge-Kutta

analysis.

Figure 3.3(a) is a plot of the harmonic conversion efficiency variation for a range of ∆k values

when operating in the low power regime, where it has been specified that the fundamental input
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field be 800 kVm−1 (approximately equivalent to a 10 W source with a 30µm 1/e2 spot size),

giving an efficiency of ∼2%. Here it can be seen that good agreement can be obtained between all

techniques, although to ensure accuracy of the Runge-Kutta technique the calculation has been

performed numerous times with increasing samples per domain length. For this simulation the

standard Runge-Kutta 4(5) technique has been used, which from 4 calculations of the derivatives

of the coupled equations provides a fifth order accuracy for the generated harmonic power. Here

it should be noted that although the Fourier technique is perfectly capable of generating the

correct ∆k tuning response it is however unable to give any information on the conversion

efficiency of the interaction. As such the efficiency for the Fourier analysis has been scaled to

match that of the analytic analysis to allow direct comparison of the phase-matching curves.

For higher input powers the simple Fourier analysis techniques becomes incapable of accu-

rately determining the phase-matching characteristics. The cause of this inaccuracy is two fold.

Looking at Figure 3.3(b) it can be seen that there is only a slight discrepancy in the response,

where the efficiencies of the secondary phase-matching peaks are slightly lower in the Fourier

analysis than either of the other two techniques. This difference can be attributed to reduced

nonlinear drive, where at the optimal phase-matching conditions the fundamental has become

depleted to such an extent by the nonlinear interaction that the rate of transfer to the harmonic

becomes reduced. However, at some degree of de-tuning the depletion does not occur as rapidly

which results in a higher nonlinear drive at this de-tuned ∆k value and thus a higher relative

conversion efficiency. For higher peak powers the effects of reduced nonlinear drive of course

become more severe, resulting in significantly higher conversion efficiency in the side lobes as

can be seen in Figure 3.3(c). Further, at this higher power level a second more complex mech-

anism referred to as dephasing [34, 35] occurs. Here dephasing is the cause of the narrowing

of the central peak and movement in the zero positions at higher power and is a result of the

power dependence of the phases of the interacting waves, as seen in Equation 3.13. Where at

higher powers small variations in the phase-matching condition are amplified resulting in a more

rapidly varying response.

It is further clear from the plots of Figure 3.3 that the new Armstrong-Bloembergen sim-

ulation technique utilised throughout this chapter is fully capable of analysing both low and

high power systems, with the obtained tuning responses matching that of the RK4(5) technique.

Here the slight discrepancy between the two techniques is as a result of insufficient sampling

along the domain lengths for the RK4(5) analysis. Where for each iteration of the Runge-kutta

analysis the step size was decreased by a factor of two until the variation between the current

and previous calculation became less that 1% on average. Thus it is clear that one of the main
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advantages of analytically solving the coupled equations is the unambiguous answer obtained,

where in contrast the results obtained with RK4(5) analysis can vary significantly if care is not

taken over the choice of step size (although this problem can be somewhat alleviated through

the use of adaptive step size algorithms [31]).

An additional advantage of the Armstrong-Bloembergen method not obvious from above

analysis of standard QPM structures is that large computational efficiency gains can be obtained

for aperiodic grating structures, where some nonlinearity regions may be much longer than the

coherence length for normal phase-matching. Using a standard Runge-Kutta technique it is

necessary to integrate the coupled equations at step size a fraction of the coherence length not

the domain length, as such for large regions of constant nonlinearity relatively more calculations

are required. Whereas, using the Armstrong technique it is possible to calculate directly the

contribution of this extended region of constant nonlinearity in one step providing a significant

computational efficiency increase.

Having verified the performance of the new Armstrong-Bloembergen simulation technique

it is now possible to apply this high speed analysis procedure to predicting the temperature

tuning responses of complex non-uniform grating structures designed for their enhanced flat-top

bandwidth and stability.

3.4 Deleted reversal flat-top temperature tuning response

QPM devices

It was earlier discussed that to design a QPM like grating device capable of efficiently generating

harmonic power output over a wide range of operating temperatures or fundamental input wave-

lengths that the periodicity of the grating must be significantly altered. Examples were given

of chirped grating devices [12, 15], phase-shifted devices [28, 29] and truly aperiodic devices

[26, 27], all of which are to some extent capable of generating flat-top power stable responses,

at least in theory. The problem common to the majority of these device types was found to

be the excessively stringent tolerances on the fabrication process, where often the size of the

polarisation inverted regions or their relative positions required for visible SHG are beyond the

resolutions of even the most advanced poling techniques. Here an alternative technique, that

maintains a minimum poled domain size well within the limits of standard high yield electric

field poling methods, is theoretically and experimentally examined.

First it is necessary to define the final phase-matching characteristics that an ideal grating

structure should possess. It was shown in Chapter 2 that for parametric second harmonic genera-



3.4 Deleted reversal flat-top temperature tuning response QPM devices 60

tion the variation in harmonic power output with changing phase-matching parameter, ∆k, takes

the form of a sinc squared function for low power interactions. For birefringent phase-matching

materials this sinc squared function can be relatively broad, providing a corresponding large

range of working temperatures or fundamental frequencies over which almost constant power

output can be obtained. However, in the vast majority of materials used for QPM interactions

this power stable bandwidth reduces rapidly with temperature or wavelength variations making

stable operation of such devices difficult especially as longer lengths and higher input powers are

used to improve the conversion efficiency.
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Figure 3.4: (a) The standard sinc2 temperature tuning response of a uniform 20mm long PPLN sample

with 0.255 ◦C 95% stability bandwidth. (b) A plot of the idealised 1 ◦C flat-top bandwidth required for

stable operation.

A typical power verses temperature tuning curve for the QPM material LiNbO3 is shown

in Figure 3.4(a). Also shown in this plot (green dashed line) is the temperature bandwidth

across which the harmonic power output varies by less than 5% of its peak value at the optimum

operating temperature. This particular plot is for a SHG interaction generating 532 nm light

in a 20 mm long PPLN crystal and has a 95% stability bandwidth of only ±0.13 ◦C. For longer

lengths, which provide higher efficiencies proportional to the length squared, the bandwidth

reduces proportionally as the inverse of the length. So assuming negligible depletion it is found

that the 95% stability bandwidth of a 40 mm long device falls to only ±0.06 ◦C, a range too

small to reasonably control over a 40 mm sample.

For many applications such as stable laser sources for experimental work or visual display

systems, which require a known output power for faithful colour representation, a variation of

more than 5% in output power may be unacceptable. Further, it is often a requirement that
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the final system, be it for research, display purposes etc., be miniaturised and as such the large

insulating structures that would be required to achieve this stable operation may not be desirable.

Thus for the broad-bandwidth devices proposed in this Chapter the dominant characteristics is

for a wide flat-top temperature tuning response that varies by less than 5% of the peak value,

where the bandwidth can be tailored to the final application but optimally of the order of 1-2 ◦C.

An example of the temperature tuning response of such a structure is shown in Figure 3.4(b),

here the flat-top bandwidth is four times that of the standard QPM device.

3.4.1 Altering the QPM grating structure for flat-top temperature

tuning response

It is known that the sinc like nature of the ∆k tuning response of nonlinear devices at low

power has a Fourier transform relationship with the nonlinear coefficient. Where the sudden

discontinuity of the nonlinear coefficient at the ends of the device causes the Fourier space

representation to be a sinc like distribution of frequency components. For QPM devices the

added periodicity of the grating structure merely leads to an offset in the dominant frequency

component of the sinc profile. It is thus reasonable to assume that the inverse relationship also

holds, in that the Fourier transform of the desired spectral response produces the appropriate

variation in the nonlinearity coefficient. In this case the desired spectral response is that of

a top-hat function, the transform of which results in a sinc like variation in the nonlinearity

coefficient.

Thus in principle to obtain a wide-bandwidth flat-top temperature stable harmonic output it

is a simple matter of spatially altering the nonlinear coefficient of a material along its length to

correspond with a sinc function. However, as discussed earlier, there is no practical method of

altering the local nonlinearity of a material other than with implanted impurities [16], although

such techniques alter the phase matching characteristics and can further lead to loss in the

material. An alternative technique that has been utilised with some success is to reduce the

effective nonlinear coefficient by reducing the nonlinear coupling in a parametric process through

a deliberate phase mismatch. Previous work [26] achieved this phase mismatch by varying the

duty-cycle of the poled grating structure, where the greater the variation from a 50:50 ratio the

lower the nonlinear coupling. Although this technique can produce good results in theory it is

impractical in real devices due to the small domain sizes required.

A further technique for modifying the nonlinear coefficient that has been experimentally

demonstrated for reducing the side-lobes of the standard sinc squared tuning reponse, thus

preventing cross talk between communications channels when used as an optical filter, is that
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of deliberately disrupting the periodicity of a grating by selectively removing domains [11]. By

deliberately removing poled domains from the otherwise periodic structure the local effective

nonlinearity can be reduced by allowing a small amount of the harmonic signal to back convert

to the fundamental. Such a technique, where now the local effective nonlinearity can only

take the two values of deff= 2χ(2)/π or 0, is not as flexible as varying the duty cycle which in

theory allows a continuously varying effective nonlinearity. It is however possible to achieve an

average effective nonlinearity of almost any value, where by utilising more periods and selectively

removing or deleting a polarisation reversal the long range average can be made to approximate

any value. The considerable advantage of this technique over all others comes in fabrication,

where by having all poled domains fixed at a constant size and on a pre-defined spatial grid

defined by the standard QPM phase-matching conditions the fabrication yield can equal that of

standard periodic QPM structures.

Λ︷︸︸︷

Figure 3.5: The grating patterns of a constant period, Λ = 2π/(k2ω − 2kω), 10 level quantised deleted

reversal QPM structure showing an average deff of 100% (top), 80% (middle) and -50% (bottom). Note

that the lower diagram has been π phase shifted to provide a negative effective nonlinearity. Further it

can be see there are no adjacent inverted domains (black), which maintains a constant inverted domains

size.

Examples of the possible grating structures required to obtain a range of average deff are

shown in Figure 3.5. Here for all the grating sections shown the number of quantisation levels is

set at 10, resulting in sections of grating 10 periods long defining the quantisation values. The

uppermost diagram depicts a grating section with 100% deff , where all periods have received a

domain inversion. In contrast, the central diagram has two poled domains deliberately deleted or
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left un-poled, with the deletion such that the remaining poled domains are as uniformly spaced

in the structure as possible, this results in an effective nonlinearity of only 80% on average.

Finally, the lower of the three grating sections has an effective nonlinearity of only 50%. Here

however, it can be seen that the positions of the poled domains have been shifted relative to the

two previous structures resulting in a π phase shift. As an individual element this phase-shifted

grating would behave identically to an equivalent deleted reversal grating without a phase-shift,

but when combined with sections of say the upper structure it can be seen that by being phase-

shifted it provides a net reduction on the harmonic signal. As such this phase-shifted structure

provides the equivalent of a negative deff , in this case −50%.

Using this technique it is now possible to represent quantised versions of arbitrary real mathe-

matical functions, in particular it is now possible to represent a sinc function to obtain the desired

flat-top temperature tuning response. Although similar to the previous work on duty-cyle deff

control it is clear that this alternative technique is not restricted by the limits of fabrication

processes, where as long as a process exist for fabricating the first-order standard QPM grating

for phase-matching the same interaction devices designed with this technique can in principle be

fabricated with no greater difficulty.

An example of the desired nonlinearity (green) and the achievable effective nonlinearity vari-

ation (blue) through deleted-reversals to obtain an approximate flat-top response are shown in

Figure 3.6(a). Here the effective nonlinearity is shown normalised to the maximum effective

nonlinearity which for a first order QPM structure is given as 2χ(2)/π. As can be seen in the

plot the desired nonlinearity has been chosen to be that of a sinc function ranging from ±3π, it

is shown later that in general the greater the width of the sinc function the greater the flat-top

bandwidth. Further, by careful choice of the number of quantisation levels, in this case 20 levels,

a good compromise between the precision of the quantisation values and the number of domains

required to represent each value can be reached. Where going to higher quantisation numbers

leads to higher precision but also a longer length over which each value must be averaged, thus

decreasing the spatial resolution of the desired function.

Shown in Figure 3.6(b) is the corresponding grating pattern that such a quantised deff pro-

duces. In this diagram each black bar represents an individual poled domain, with regions of high

deff and thus fewer missing domains becoming much more densely packed, eventually leading to

their representation as almost solid regions of poling. This is simply an artefact of representing

domains on the order of a few microns as relatively large printed lines, and is not indicative of one

large poled region. In this diagram it is clear to see the 5 regions of relatively dense poling which

correspond to the peaks of the individual sinc oscillations, with the density of poled domains
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Figure 3.6: (a) the sinc like normalised effective nonlinearity variation required for achieving a flat top

tuing response (green) and the approximated, quantised effective nonlinearity attainable through quasi-

periodic domain reversals (blue). (b) A representation of the inverted domain pattern as required to

match the effective nonlinearity. Here, each black band is a poled domain.

increasing towards the centre of each peak. Finally, by comparing the diagrams in Figure 3.5 it

can be seen that upon a phase reversal it is theoretically possible for two adjacent poled domains

to occur, with each domain residing in a separate quantised structure. However this only occurs

if there is a relatively high concentration of poled domains in each section of quantised periods.

By virtue of the sinc structure phase reversals are only required for low deff values and as such

no adjacent poled domains can occur, further easing fabrication issues.

It is now clear that the two main parameters to be optimised for optimal harmonic power

temperature stability are the number of quantisations levels, with in general more quantisation

levels providing a greater correlation between desired and attainable nonlinearity variations, and

the width of the sinc function nonlinearity, where as is now demonstrated the greater the range

of the sinc function the wider the flat-top bandwidth.
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3.4.2 Theoretical performance of sinc like deff QPM grating structures

Having established a robust, practical technique for modifying the local nonlinear coupling effi-

ciency in a QPM grating and identified a suitable pattern with which to modify it to provide a

flat-top temperature tuning response it is now possible to explore the effects of varying such pa-

rameters as the quantisation levels, the width of the sinc range and physical device length. This

analysis has been performed using the analytic Armstrong-Bloembergen technique introduced

earlier. The use of this technique affords considerable simplification in the analysis of complex

grating structures, where exact solutions to the grating characteristics can be obtained with no

concerns over calculation accuracy, even at high power. Further in the structures proposed above

for regions of low nonlinear coupling, as required for large sections of a sinc like variation, as

shown in Figure 3.5 that there can be relatively long regions of constant polarity nonlinearity.

Here, the Armstrong-Bloembergen technique is able to provide the exact solution for these large

unpoled regions in one step. In contrast, despite the lack of adequate phase-matching for these

regions and thus limited power coupling, numerical integration methods must still calculate the

solutions to the coupled equations at distances fractions of the coherence length. Thus use of

the analytic technique can offer significant improvements in computational efficiency.

From Figure 3.6(a) it is clear that the greater the number of sinc oscillations the lower the

proportion of the device with a high effective nonlinearity coefficient. From this it is reasonable

to assume that with greater numbers of oscillations the bandwidth increases, due to a reduced

effective device length, and further that this increased bandwidth leads to decreased efficiency.

Prior to investigating the effects of altering the sinc oscillation number it is necessary to verify

the predicted bandwidth increase and flat-top response such gratings provide. For this the device

highlighted in Figure 3.6(b) is used as a test case.

The theoretical results of generating a stable 532 nm harmonic power output from a 20 mm

PPLN device patterned as Figure 3.6(b) are shown in Figure 3.7(a) (blue). Here it was assumed

that a low power laser of approximately 100 mW was input into the device. Using a plane-wave

model it was further assumed that the input electric field amplitude is equivalent to that at the

waist of an optimally focused laser with the same power, at this power level there is negligible

fundamental depletion or bandwidth narrowing. Additionally, shown on the same plot is the

theoretical plane-wave bandwidth of a standard 20 mm PPLN based QPM device (green), the

bandwidth over which the power varies by less than 5% for such a device is approximately

0.255 ◦C. As can be seen a significant bandwidth increase has been achieved, with the new 95%

flat-top bandwidth being approximately 4.5 ◦C or 18 times that of the standard device. However,

along with this bandwidth increase is a significant reduction in efficiency, with the sinc structured
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Figure 3.7: (a) Harmonic power output of a standard 20 mm long, 6.5µm period PPLN based QPM

structure for varying operating temperature (green) and the output of the sinc structured 20 mm long

PPLN device (blue) shown in Fig. 3.6(b). (b), The effect of raised cosine windowing on flat-top band-

width, no windowing (blue), windowing with period equal to device length (red) and with period 1.6x

the device length (green).

device being only 3% as efficient as the standard device.

Further, it is clear that using such a sinc structured device the obtained temperature tuning

bandwidth is highly oscillatory, with the power variation along the ‘flat-top’ being greater than

15% and thus considerably outside the acceptable range of ±2.5%. This oscillation can be at-

tributed to the poor representation of a sinc function by the grating structure, where a true sinc

structure should be infinitely long. By truncating the sinc function to a finite length it is impos-

sible to obtain a smoothly varying response due to the discontinuous nature of the nonlinearity.

This same effect is prevalent in fields such as digital signal processing, where here continuous

signals become truncated and discretised, and is commonly referred to as ‘Gibbs’ phenomenon.

Thankfully, using standard signal processing techniques it is possible to significantly reduce the

undesired oscillations. By applying a windowing or apodisation to the structure to remove the

harsh discontinuity caused by truncating the sinc function it is possible to obtain a smoothly

varying response.

Figure 3.7(b) shows the effect of applying a raised cosine windowing function to the effective

nonlinearity variation of Figure 3.6(a). The use of a raised cosine window creates a smooth

reduction in the effective nonlinearity at the extremes of the device and thus significantly reduces

the flat-top oscillations. As can be seen the new response (green) maintains its wide bandwidth

whilst having a power variation of less than 1%. To obtain this response a raised cosine window
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with a period 1.6 times the length of the total device has been utilised. Initially a window with

a period equal to the device length was modelled (red dashed), however, as can be seen although

the response remained smooth a significant reduction in bandwidth was observed. Thus to obtain

optimal results from such devices it is clear that a further optimisation of the applied windowing

function is required.

Bandwidth variation with increasing sinc width

The analysis now focuses on the effects of increasing the range of the sinc function that the

gratings are based on, i.e. increasing x in sinc(x). To simplify the analysis the problem is

reduced from three to two free variables by maintaining a constant device length, leaving free

the number of quantisation levels and the windowing width. Here a 20 mm long device has been

selected for its compromise between a large number of periods, which provides flexibility in the

design, and its compact size.
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Figure 3.8: A plot of the theoretical flat-top bandwidths of 20 mm long sinc structured deff PPLN devices

for generating a 532 nm harmonic signal (blue) and best linear fit (green). Here the width of the sinc

function has been increased to provide a wider bandwidth response, the windowing and quantisations

of each device has been individually optimised to achieve maximum bandwidth.

Figure 3.8 shows the effect of increasing the range of the sinc function, where the width of

the function has been increased in multiples of π. Here it can be seen that there is an approx-

imate linear relationship between the flat-top bandwidth and the sinc width, with bandwidth

increasing with the number of sinc oscillations. This increased bandwidth can of course be at-

tributed to the reduction in the length of device with high density poling, where at greater sinc

oscillations the central high density peak becomes narrowed. This reduction in the length of high
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effective nonlinearity can be considered equivalent to a shorter length of standard QPM, with

a correspondingly greater bandwidth. However, it must be stressed that for each sinc function

width the flat-top bandwidth was maximised, through changes in the quantisation levels and

windowing function, with no regard for overall efficiency. As such although the bandwidth has

increased greatly it may be more beneficial in terms of conversion efficiency to utilise a shorter

length of standard QPM material to achieve the same bandwidth broadening. The validity of

this statement is now theoretically examined.

Device efficiency verses flat-top bandwidth

Here, a comparison is made between the relative conversion efficiencies of sinc structured PPLN

devices, again based on a 20 mm long sample, and lengths of standard PPLN QPM material

with equivalent flat-top bandwidths. Here all device efficiencies are given as a percentage of the

peak efficiency of a standard periodic 20 mm QPM device when operating at low fundamental

power, i.e. negligible pump depletion.
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Figure 3.9: SHG efficiency (relative to a 20mm QPM device) vs 95% stability flat-top bandwidth for a

range of Sinc like deff devices (blue), where the range of the sinc function, the quantisation levels and the

windowing function have been varied to provide greater bandwidth. Also shown is the relative efficiency

for lengths of standard QPM material that provide the equivalent flat-top bandwidth (green).

Unlike the previous simulation on the effects of increasing the range of the sinc like deff , the

flat-top bandwidths have now been optimised to provide wide bandwidth whilst maintaining a

relatively high efficiency, with sinc range, quantisation and windowing all being free parameters.

The results of this is shown in Figure 3.9. Here it can be seen that even for the narrowest

bandwidth device designed, with a 95% stability bandwidth of ∼0.5 ◦C achieved using a 1.25π
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sinc range, a large drop in efficiency to only 20% that of a standard uniform QPM device

occurs. However, it is clear that when comparing this narrow bandwidth sinc structured device

(blue) with a length of uniform QPM PPLN providing the same 95% stability bandwidth (green),

approximately 9 mm long, that the reduction in efficiency is equivalent. As such although offering

no benefit over a shorter length of uniform material, equally it is not detrimental to use such a

structured device to obtain a wider bandwidth.

Now by increasing the range of the sinc like deff it is expected from Figure 3.8 that significant

bandwidth improvements can be obtained. Further, it is now evident from Figure 3.9 that at

these greater bandwidths, despite the overall large efficiency reduction compared with standard

20 mm long narrow bandwidth QPM devices, the sinc structured devices begin to realise signifi-

cant efficiency enhancements relative to equivalent bandwidth QPM samples. For the more wide

bandwidth devices, 95% stability bandwidth > 3.5 ◦C, a relative efficiency of almost an order

of magnitude greater than equivalent bandwidth uniform QPM devices is routinely achieved.

For some special cases, for example a device with the sinc deff ranging between ±3.5π giving a

bandwidth of 5.5 ◦C, this relative efficiency can be over an order of magnitude greater, although

this appears to be an isolated case. For the less dramatic bandwidth increases the efficiency

gains are more modest, with the efficiency breaking even with standard QPM for approximately

twice the bandwidth of the reference 20 mm long uniform QPM device. Attempting to generate

devices with even narrower bandwidths can be achieved by allowing the quantisation values to

reduce to a two level system, resulting regions of 100% or 0% poling density. By using higher

range sinc functions as the basis of such a structure the ratio of the lengths of poled and un-poled

sections decreases, in effect becoming shorter lengths of uniform QPM.

Constant bandwidth with increasing length for higher efficiency

Having demonstrated theoretically that sinc like deff devices can achieve large efficiency gains over

uniform QPM devices providing the same wide bandwidth it is now necessary to investigate the

performance of such sinc structured devices whilst providing a flat-top bandwidth of 1-2 ◦C. With

this range being the initial design aim set out earlier. For this investigation three temperature

stability ranges are considered, 1 ◦C, 1.5 ◦C and 2 ◦C, with these bandwidths being maintained

whilst device length is increased in an attempt to provide high efficiency stable harmonic power.

Here as above the bandwidths are adjusted through variations in quantisation levels, win-

dowing functions and the range of the sinc function. Due to the vast set of parameters to be

investigated for each device length of interest the minimum step change in values for the free

parameters has been significantly increased. This offers considerable reductions in computation
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Figure 3.10: Plot of the relative harmonic efficiencies for a range of sinc structured devices of varying

physical length designed to maintain 1 ◦C (blue), 1.5 ◦C (green) and 2.0 ◦C (red) flat-top bandwidth.

Here the efficiencies have been scaled relative to those of 5 mm, 3.3 mm and 2.5 mm QPM devices

respectively, with these material lengths offering equivalent bandwidths.

time but at the expense of the simulation being far from exhaustive. However, the results ob-

tained are likely to be indicative of the general trend with a higher resolution investigation only

improving on the obtained efficiencies. For this investigation the sample lengths have been lim-

ited to a maximum of 40 mm and a minimum set by the device length of uniform QPM providing

equal bandwidth. In this case this is 2.5 mm, 3.33 mm and 5 mm for bandwidths of 2 ◦C, 1.5 ◦C

and 1 ◦C respectively.

The results of these final set of simulations are shown in Figure 3.10. Here it is clear to see

that for all three device bandwidths there is a threshold device length below which no efficiency

advantages over short lengths of uniform QPM material are obtained. To provide comparable

bandwidths to such uniform devices the sinc like structures have adopted a very simple quantised

pattern, with the number of quantisation levels reduced to two and a single oscillation of the

sinc function utilised. The result of this is simply a small section of uniform material, centrally

located, equal in length to the standard uniform devices.

However, above a certain device length, which is dependent on the desired flat-top band-

width, significant optical conversion efficiencies can be gained over the uniform devices. At these

extended device lengths the number of available domains has increased to the point that rela-

tively complex sinc like nonlinearity structures can be formed without overly compromising on

device efficiency. It is clear from these results quite how significant an efficiency enhancement

can be obtained using these complex structures, with efficiency gains of between 400 and 800%

over uniform devices achievable with 40 mm long devices. As indicated earlier, in Figure 3.9,
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the greater the desired bandwidth the more dramatic the efficiency enhancements that can be

obtained.

3.5 Experimental Results

It has been theoretically demonstrated that deleted domain sinc like deff based QPM devices can

provide considerable bandwidth increases over standard QPM devices whilst maintaining greater

efficiency, with bandwidths more than 35 times as wide as equivalent length uniform devices and

associated efficiencies 8 times that of equivalent bandwidth uniform devices. In order to verify

both the flat-top bandwidth grating design procedure of deleted domains and phase-shifts and

the new analytical modelling technique devices have been fabricated and optically tested.

0

5

10

15

20

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Temperature, ∆°C

S
H

G
 C

on
ve

rs
io

n 
E

ffi
ci

en
cy

, %

Figure 3.11: Theoretical harmonic conversion efficiency plots for the fabricated 20 mm long sinc struc-

tured PPLN based devices, for generating 532 nm harmonic radiation, with changing operating tempera-

ture. Flat-top bandwidths of 1.7 ◦C (blue), 2.8 ◦C (green) and 4.3 ◦C (red) are achieved, which compare

with a 0.26 ◦C 95% stability bandwidth for a standard 20 mm uniform PPLN device.

The fabricated devices are based on a 20 mm long section of nonlinear material, in this case

LiNbO3, and have been designed to provide temperature stable visible harmonic power at a wave-

length of 532 nm, with this wavelength being of considerable interest in display applications. In

this material and at this wavelength the QPM period is 6.53µm providing over 6000 polarisation

inversion domains with which to design suitable sinc like grating structures. Three structures

have been designed providing progressively wider flat-top bandwidths, the temperature tuning

responses of which are shown in Figure 3.11. Also shown in this figure is the temperature tuning

bandwidth of a standard 20 mm PPLN based structure, it must be noted that the sinc structured
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and uniform devices are not plotted on the same vertical axis providing greater clarity of the

bandwidth enhancement. For comparison the 95% stability bandwidth of a 20 mm section of

uniform PPLN (black dotted) is 0.255 ◦C and for the sinc structured devices the flat-top band-

widths are 1.7 ◦C (blue), 2.8 ◦C (green) and 4.3 ◦C (red). These grating designs were fabricated

early on in the course of this work and as such have considerably lower efficiencies for their

given bandwidths compared to the results of Figure 3.9 which were obtained through a more

exhaustive investigation of parameters. Despite the low efficiencies such designs are still useful

for validating the simulation and design techniques.

3.5.1 Device Fabrication

As stated above the complex devices are manufactured in LiNbO3 and have been fabricated

using standard E-field poling techniques highlighted in Chapter 2. At the wavelengths specified

the individual poled domain size is only 3.26µm, a relatively small size for high yield, large scale

devices. As such it becomes clear that the bandwidth broadening technique utilised for these

devices is essential for maintaining high quality fabricated devices. Unlike alternative techniques

which have varying poled domains which can be fractions of the ideal phase-matching domain

size [26, 27], the technique utilised in this work sets the poled domain size as constant. This

greatly simplifies photolithography mask design, the photolithography steps and the electric field

fabrication process, where no special care must be taken to ensure a uniform growth rate of the

poled domains.

An image of the narrowest bandwidth fabricated device is shown in Figure 3.12. Here

the device was fabricated using standard electric field poling techniques where a high voltage,

∼ 21 kVmm−1, is applied to a photolithography defined electrode pattern to achieve domain

inversion in 500µm thick LiNbO3. Prior to imaging the poled structure has been etched in 48%

HF acid which highlights the poled domains due to a preferential etch rate between poled and

un-poled regions. This image is a composite of 32 separate microscope images showing all the

poled domains within the device (grey background), here the banding across the final image is

due to uneven lighting in the microscope’s field of view and is not a physical effect. Also shown

in this image are the ideal domain positions as determined by the photolithographic mask (white

background). As can be seen almost perfect poling is achieved, with only a few domains merging

due to the application of an overly long duration high voltage pulse. Where the pulse duration

determines the area of inverted crystal.

This particular grating is based on a 10 level quantised sinc function with a width of ±2π.

For clarity the grating image has been truncated to include only the poled domains, where at the
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500um

Figure 3.12: Composite microscope image (grey background) of a single electrically poled, acid etched

PPLN grating designed for flat-top temperature tuning power output. Here the grating is structured

such that the variation of deff corresponds to a sinc function quantised into 10 levels. The nominal

period is 6.51µm suitable for the harmonic generation of green laser light at 532 nm. Also shown is the

ideal theoretical position and size of the poled domains (white background). Note the four images are

different sections of one physical grating, with the single grating reformed by stacking the images end

to end from left to right.
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extents of the device large regions of bulk un-poled material occur. By stacking the four images

end on end, working from left to right, the domain density can be seen to represent the function

sinc (x) for x = −2π . . . 2π. Where a low domain density occurs at the two ends representing the

low negative value of the first sinc side lobe, here there is of course a π phase shift in the domain

positions although this cannot readily be verified through visual inspection. Additionally, at

the device centre it is clear that the poling density is greatly increased becoming like that of

standard uniform QPM. It should be noted that in this early design a slight error was made

converting the desired deff into grating density, where due to a rounding error at the peak of

the sinc function a domain density of only 90% not the optimal 100% is achieved. This error

however was carried through to the device modelling and as such does not change the expected

flat-top temperature tuning response.

3.5.2 Optical testing

With the flat-top bandwidth devices fabricated optical testing was undertaken to characterise the

temperature tuning harmonic power variation. For this characterisation the fabricated devices

were mounted in a temperature controlled oven capable of controlling the temperature to within

0.1 ◦C at an elevated temperature of approximately 180 ◦C. Here the high temperature ensures

low loss operation of the devices, where at lower temperatures effects such as photorefractive

damage can reduce harmonic output power over time [36, 37]. Further, a 1064 nm Nd:YAG laser

was polarised and focused into the centre of the device with the resulting harmonic and residual

fundamental beams collimated on exit. To separate the two beams and allow accurate readings

of the harmonic power variation a dispersive prism was used providing physical separation, with

this separation enhanced through a large propagation distance prior to measurement. The mea-

surement is performed using a low-pass filtered amplified silicon photodetector in conjunction

with a lock-in amplifier. Here the lock-in amplifier provides a large dynamic range of measure-

ments which is essential for detecting both the large peak harmonic signal from a reference 20 mm

PPLN grating and the much lower signal of the wide bandwidth device. Measurements of both

harmonic power and device temperature are recorded using data acquisition software whilst the

oven temperature was allowed to gradually reduce from a steady state at approximately 200 ◦C

down to 160 ◦C, with the optimal phase-matching temperature at 180 ◦C.

Multi longitudinal mode laser results

For the initial characterisation a 100 mW Nd:YAG laser was used as the fundamental pump

source. However, this particular laser had no active control of the laser cavity and as such
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operated with multiple longitudinal modes spread across a relatively wide wavelength range.

The effect of these multiple modes can be seen in Figure 3.13 which shows the temperature

tuning response of both a uniform 20 mm PPLN device (blue) and that of sinc structured wide

bandwidth device (green).
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Figure 3.13: The measured harmonic output power for variations in operating temperature for both

a uniform 20 mm long PPLN device (blue) and a sinc structured flat-top bandwidth device (green).

Here the tuning curves exhibit significant asymmetry as the result of the pump laser having multiple

longitudinal modes, where the modes undergo sum frequency generation and phase-match efficiently at

temperatures offset from the central peak.

It is clear from the plot of the harmonic power of the uniform device that a significant

additional mode at a lower wavelength exists, which phase-matches at a lower temperature than

the dominant mode of the laser cavity. This additional wavelength has minimal effect on the

central bandwidth of the sinc squared tuning response of the uniform device and as such is usually

of little concern. However, if mode hopping occurs the harmonic power can fluctuate wildly as

the fundamental power alternates between phase-matched and un-phase-matched wavelengths.

In addition to the harmonic power fluctuations a further effect caused by multiple longitudinal

modes that is detrimental to the performance of the wide bandwidth devices, and evident in

Figure 3.13, is sum frequency generation. Here, if the spectral modes of the pump laser fall

within the bandwidth of the flat-top devices complex parametric processes can occur between

the modes, where the resulting conversion efficiency at temperature offsets can be higher than

that of the main spectral mode due to a more favourable phase-matching condition. This is clear

in the above figure, where for temperatures below the central phase-matching temperature a large

efficiency increase can be seen which in turn leads to a reduction in the ‘flat-top’ bandwidth. As

such it is clear that multi-longitudinal mode lasers are unsuitable both for testing purposes and
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of course real applications of flat-top bandwidth devices, although further analysis of multi-mode

sources is undertaken in Chapter 6.

Single longitudinal mode laser results

With simple multi-longitudinal mode lasers proving unsuitable for accurately testing the tem-

perature tuning bandwidth of the flat-top devices an alternative single longitudinal mode (SLM)

laser was utilised. The laser was a purpose built grating stabilised ytterbium fibre-laser, kindly

provided by Dr. Carl Farrell. The laser had an output power of approximately 60 mW with a

linewidth below the measurable limits of the available equipment, but no greater than 0.01 nm,

at a wavelength of 1063.7nm. As above the fundamental beam was focused into the crystal, with

a spot size of approximately 30µm, with the harmonic output further collimated and separated

from the fundamental using a dispersive prism prior to detection on a silicon photodiode and

lock-in amplifier. The measurement technique is as for the multi-mode laser, aside from the

additional collimation of the fibre output.

The results of the harmonic power measurements of all three wide bandwidth grating struc-

tures are shown in Figure 3.14. By directly comparing the results of the flat-top device in

Figure 3.13 with that of Figure 3.14(c), which show the measurements for the same physical

device but with differing fundamental sources, it is clear to see that a significant reduction in

asymmetry has been achieved by using a SLM fundamental laser source. Further by comparing

the measured results with those predicted by the plane wave model it is clear that good agree-

ment has been achieved, with the measured bandwidth matching well. This result is especially

noticeable for the widest bandwidth device which demonstrates a flat-top bandwidth agreeing

almost exactly with theory.

However, it is very noticeable in the results for the lower bandwidth device that despite

using a SLM laser considerable asymmetry and variation along the flat-top still occurs, with

the measured bandwidth deviating markedly from the theoretical plot. What is further clear

from the measurements of all the devices is that the variation from the modelling is consistent

with an increase in efficiency at temperatures below the central phase-matching temperature

(alternatively this could be interpreted as a reduction in efficiency at temperatures above the

central temperature but this is later shown to be incorrect). By now examining the temperature

tuning power output of the reference uniform PPLN device, which has been measured using

the exact same optical setup, it is clear that an asymmetry in the response is also present.

Here as for the flat-top devices this asymmetry and deviation from plane-wave theory occurs at

temperatures below the central phase-matching temperature.
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(d)

Figure 3.14: The measured harmonic power (blue), using a single longitudinal mode laser, for variations

in device temperature for uniform 20 mm long PPLN (a) and deleted-domain flat-top bandwidth devices

with 1.7 ◦C (b), 2.8 ◦C (c) and 4.3 ◦C (d) bandwidths. Also shown are the theoretical plane-wave tuning

curves (green).

It has long been known that in focused parametric interactions the second harmonic power

variation with changes of ∆k does not exactly match the sinc squared tuning curve predicted by

plane-wave theory, even assuming negligible pump depletion. It has been shown both theoreti-

cally [38] and experimentally [39] that with focusing an asymmetry occurs in the sinc squared

∆k tuning curve, with the deviation from plane wave theory occurring for values below central

phase-matching (where ∆k = k2ω−2kω). This corresponds with the plot of Figure 3.14(a). This

increased phase-matching efficiency at lower values of ∆k is commonly attributed to the angled

k-vectors within the focused beam. Where the resultant sum of angled fundamental k-vectors is

too short to efficiently phase-match with the grating at the peak operating temperature, with
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these shortened resultant k-vectors only able to efficiently phase match with the grating as the

temperature of the device is reduced.
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(b)

Figure 3.15: Measured harmonic power (blue) for variations in operating temperature for both a 20 mm

uniform PPLN device and a flat-top device with 4.3 ◦C bandwidth. Here the measurements are performed

with a loosely focused fundamental beam, leading to symmetrical tuning responses, and have been

compared with plane-wave theory (green).

By now applying this same reasoning to the flat-top bandwidth devices explanations for the

measured asymmetry can be offered. Unlike for uniform PPLN devices, flat-top devices have

sufficient bandwidth that the optimal phase-matching condition of the angled fundamental k-

vectors falls within a region where high conversion efficiency can be obtained. Thus over a

certain temperature range not only do the less angled k-vectors phase match efficiently, as they

do for all temperatures across the flat-top, but now additional harmonic power is provided by the

efficient phase matching of the angled beams. Of course this increased harmonic power provides

a distortion to the flat-top temperature tuning response as is seen in the measured results.

A simple experiment can prove or disprove this assertion. By simply focusing the laser beam

more loosely, with a larger spot size, the angular components of the beam reduce becoming

more like that of simple plane-waves. Figure 3.15 shows the measured harmonic power of a

uniform PPLN device and the widest bandwidth flat-top device using a loose focus fundamental

beam. Here the fundamental spot size was increased until no asymmetry could be observed

on the temperature tuning response of the uniform PPLN device. It is clear from the plot of

Figure 3.15(b) that no asymmetry can be observed in the response of the flat-top bandwidth

device, thus proving that the asymmetry seen earlier is an effect of focusing and not an inherent

flaw within the device design or fabrication.
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This asymmetry effect has not been previously reported in other wide bandwidth devices, this

can be attributed to the vast majority of the experimental work on such devices being performed

in waveguide structures in an effort to maintain high conversion efficiencies [11, 29]. Of course

in waveguides, assuming single mode operation, the fundamental beam can be considered to be

plane-wave and thus does not suffer from the same effects as these focused interactions. The

devices shown here would equally prove suitable for use in waveguides, allowing them to achieve

higher efficiencies than focused interactions for the same fundamental power.

Despite the high conversion efficiencies offered by waveguide based devices, the power han-

dling capabilities of such structures are considerably lower than for bulk interactions where,

due to the tightly confined mode, damage occurs at lower input powers. Thus for high power

operation bulk devices are essential, with tight focusing essential to achieve efficient operation.

However, as demonstrated focusing has a detrimental effect on the power stability of wide band-

width devices designed using plane-wave simulation techniques. As such in the following chapters

a thorough investigation into the effects of focused interactions on both standard uniform QPM

structures and complex wide bandwidth sinc structured devices is undertaken with the aim of

designing wide bandwidth devices suitable for high power, high efficiency harmonic generation.

3.6 Conclusions

In conclusion, in this chapter a novel analytic simulation technique for analysing second harmonic

generation in quasi-phase matched structures has been presented. With this technique providing

advantages over more common numerical integration techniques in terms of the accuracy of the

simulations, the computational efficiency of the calculations and its simple application, with no

additional complexity even as conversion efficiency approaches 100%.

Further, using this analysis technique a new type of temperature stable, constant power out-

put QPM device has been designed and simulated, with these new devices providing a 35 fold

increase in temperature acceptance bandwidth compared to equivalent length uniform QPM.

At these wide bandwidths efficiencies almost an order of magnitude greater than comparable

bandwidth uniform QPM devices can be obtained. These characteristic make such structures

ideally suited for packaged frequency conversion modules, with the usually strict temperature

stabilisation requirements for efficient operation significantly reduced. Here, the increased device

stability can lead to simplifications in packaging, with less consideration to thermal insulation

required to maintain a constant power output. Additionally, these wide bandwidths can be well

matched to the linewidths of cheap laser diode sources, which tend to have wide spectral band-

widths, allowing higher conversion efficiencies to be obtained than with uniform QPM devices.
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These devices also benefit from constant poled domain sizes, offering high yield upon fabrication.

Finally, these simulated devices have been fabricated and optically tested and have been

shown to offer wide flat-top temperature bandwidths in line with those predicted by theory.

Although some deviation in performance from the plane-wave model is evident a likely cause for

this has been presented and has been further investigated in the following chapters.



References

[1] S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer. Quasiphase-matched second har-

monic generation of blue light in electrically periodically-poled lithium tantalate waveguides.

Electron. Lett., 27(22):2040–2042, 1991.
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Chapter 4

Improved SHG Efficiency from

Focussed Gaussian Beams

4.1 Introduction

High conversion efficiency is an essential requirement if the widespread deployment of nonlinear

laser sources is to be achieved, with nonlinear interactions being the only viable route towards the

generation of some highly desired laser wavelengths. For example the generation of high intensity

pure green laser light for display purposes is impossible to directly achieve with known semi-

conductor materials [1], with second harmonic conversion being the only viable alternative. As

was discussed in Chapter 2, many factors determine the conversion efficiency of a harmonic pro-

cess, such as the magnitude of the nonlinear coefficients, interaction lengths, phase-matching and

fundamental input intensity. In this chapter attention shall be given to the focused confinement

of laser beams, specifically Gaussian beams, to increase laser intensity and thus the harmonic

conversion efficiency. Although the alternative technique of nonlinear waveguide interactions can

offer tighter confinement, and thus higher efficiency for a given power, bulk focussed interactions

provide a large device aperture, which in contrast to the tight confinement in waveguides allow

much greater power handling capabilities before intensity dependent damage occurs.

Studies into the effects of focussing on nonlinear interactions were carried out shortly after the

initial experimental evidence for optical harmonic processes. The first theoretical work comprised

of the study of finite parallel beams under the effects of double refraction in the near field [2],

which followed on from the prior experimental works showing a link between focussed spot size

and SHG conversion efficiency [3, 4]. Further work considered the situation of very tight focus,
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where the nonlinear device length (L) is significantly greater than the confocal parameter (b),

noting that at such extreme focus the ∆k phase-matching parameter for optimum efficiency does

not correspond to the condition of ∆k = 0 [5].

However, neither the work on very tight or loose focussing can suitably predict the conditions

required for optimal focused efficiency. Not until 1968 would a rigourous analysis, by Boyd and

Kleinman [6], provide expressions for the harmonic conversion process for the general case of

arbitrary focussing, which would show that there is an optimum focusing ratio between the

confocal parameter and nonlinear device length. This work further went on to show that in the

case of extreme tight or loose focussing the analysis could be reduced to that of the previous

studies.

In this seminal paper it was shown that for the case of second harmonic conversion assum-

ing no walk-off, as is the case for non-critical birefringently phase-matched or standard QPM

processes, an optimum focussing ratio of ξ = L/b = 2.84 gave peak conversion efficiency for any

device length. This ratio can be thought of a compromise between the high intensities gener-

ated at tight focussing and the corresponding reduction in effective interaction length due to a

short confocal parameter. Further, through their extensive analysis they were able to show that

as the focus is tightened significant asymmetry can be observed on the sinc profile ∆k phase-

matching tuning curve and, like in the previous works, that this was accompanied by a shift in

the phase-matching conditions for optimal conversion efficiency.

In this chapter a rigourous analysis of focussed SHG interactions is undertaken, following

the notation in [6], showing that the optimal focussing conditions determined by Boyd and

Kleinman are only valid for linearly invariant nonlinear materials. By extending the analysis it

shall be shown that improvements on the theoretical conversion efficiency can be achieved with

the use of a nonlinear phase-matching condition. Here, the improvements are obtained through

the compensation of a spatially varying phase advancement, known as the Gouy phase which is

inherent to all focused waves, that acts to de-phase the interacting waves and thus prevent perfect

phase-matching. Further, an expression defining the domain position for a suitably modified

QPM structure is given. It shall also be shown, in addition to improvements in conversion

efficiency, that compensation of the Gouy phase leads to a return to the symmetrical phase-

matching tuning response and a shift in the peak phase-matching ∆k back to that of plane wave

interactions.

This theoretical endeavour shall further be verified through experimental measurements on

the temperature tuning characteristics of suitably modified QPM grating structures, designed

for second harmonic generation under a range of focussing conditions, showing the return to
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symmetry and a shift in phase-matching temperature, equating to a shift in peak ∆k.

4.2 Gaussian beam interactions in a nonlinear media

In this analysis a complete mathematical representation of the process of second harmonic gen-

eration with Gaussian beams is undertaken building on and updating the work of Boyd and

Kleinman. However, for brevity the effects of double refraction are ignored, having no role to

play in the process of quasi-phase-matching, in addition absorption is also neglected. Starting

with the assumption of a single mode TEM00 Gaussian beam the fundamental spatially varying

electric field can be defined as

Eω (r, z, t) =
E0ω

2
wo
w (z)

e
−r2

w2(z) eiΨ(z)e−iΦ(z)ei(kωz−ωt) + c.c. (4.1)

with the following further definitions,

w (z) = w0

[
1 +

(
λz

πw2
0nω

)2
]1/2

(4.2)

Ψ (z) =
kr2

2z
[
1 +

(
πw2

0nω
λz

)2
] (4.3)

Here, E0ω is the peak electric field amplitude, w (z) is an expression for the beam radius at a

distance z from the focus, w0 is the focused spot size, λ is the fundamental wavelength, Ψ (z)

defines the phase curvature of the wave-fronts and Φ (z) is an expression for the variation in

phase front position along the length of the focussed beam known as the Gouy phase.

Before proceeding with the analysis it is useful at this point to clarify the role of the Gouy

phase and the physical mechanisms for its existence. The Gouy phase shift is an inevitable

consequence of any focused wave interaction, resulting in an advancement of the position of the

fronts of constant phase in the wave. The Gouy phase has been experimentally observed in many

situations from the initial studies in 1890 [7], to more modern techniques such as observations

of carrier wave phase slippage in femto-second pulses [8] and the use of interferometers, with a

focusing lens in one arm, to observe interference fringe variation upon focussing [9]. Additionally,

the Gouy phase shift has a bearing on laser operation, with the phase advancement responsible

for different resonant frequencies for various modes of oscillation [10], with the Gouy phase of

higher order modes advancing more rapidly and further than lower order modes.

For a spherically focussed single mode wave the phase advancement has a value of π radians,

for a cylindrically focussed wave this value reduces to π/2, with the advancement occurring as

the wave propagates from −∞ to ∞ through a focused waist. For the case of Gausian beams,
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as is seen most commonly in laser systems, the phase advancement can be described as

Φ (z) = (m+ n+ 1) arctan
(

λz

πw2
0n

)
(4.4)

where m,n reference the Hermite-Gaussian mode order.

Many theories have been presented for the origin of this phase advancement, such theories

include simple geometrical properties of Gaussian beams [11], although this theory is incomplete

being unable to account for the reduced phase shift seen in cylindrically focused beams, quantum

geometric theories have also been proposed [12]. However, the Gouy phase shift is observable

in all waves, including mechanical waves, so it would seem a quantum theory is not necessary.

A recent proposal put forward considers the effect of transverse confinement and the influence

of the uncertainty principle on the spread of transverse momenta within the wave [13], this

relatively simple mechanism is valid for both spherical and cylindrically focussed waves and is

equally applicable to quantum or classical waves.

Returning now to the nonlinear analysis significant simplifications can be made to Equa-

tion 4.1 with the following definitions;

ζ =
z

zR
=

λz

πw2
0nω

(4.5)

e−iΦ(z) =
1− iζ√
1 + ζ2

(4.6)

here zR is the Rayleigh range and Equation 4.6 is obtained from the substitution of Equation 4.4.

With the above substitutions Equation 4.1 can be re-written, with some rearranging, as

Eω (r, z) =
E0ω

2

(
1

1 + iζ

)
e

−r2

w2
0(1+iζ) eikωz (4.7)

To provide complete generality ζ is further replaced by τ to allow freedom in the positioning of

the focused waist within the nonlinear device, with τ defined as

τ =
2 (z − f)

b
(4.8)

Where b = 2zR is the confocal parameter and f is the position of the focus. However, it was

shown in [6] that for the case of zero loss it is always optimal to locate the focal position at the

centre of the nonlinear device.

From the compact definition of the fundamental electric field in Equation 4.7 it is now pos-

sible to generate an expression for the induced polarisation. Using the same notation as in

Equation 2.25 the following definition is obtained,

P
(2)
2ω (r, z) =

ε0
2
χ(2) (2ω;ω, ω) |Eω (r, z)|2 (4.9)

=
ε0
2
χ(2) (2ω;ω, ω)E0

2
ω

[
1

(1 + iτ)

]2

e
−2r2

w2
0(1+iτ) ei2kωz (4.10)
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Now, to determine the generated harmonic wave in the far-field it is necessary to account for

all point sources within the crystal and propagate their generated waves to the observation

point (x′, y′, z′). By considering the nonlinear device as segments of infinitesimal length, dz, it

is possible to derive expressions for the incremental harmonic field from each of them, which

can further result in the expression for total radiated harmonic field. The incremental field is

described as

dE2ω (r, z) = i
µ0 (2ω)2

2k2ω
P

(2)
2ω (r, z) e−ik2ωzdz (4.11)

= i
(2ω)2

4k2ωc2
χ(2) (2ω;ω, ω)E0

2
ω

(
1

1 + iτ

)
ei2kωz

×
{(

1
1 + iτ

)
e
−2r2

w2
0(1+iτ) e−ik2ωz

}
dz. (4.12)

Here, it is noted that the bracketed expression in Equation 4.12 is in the form of a Gaussian wave,

thus it can be assumed that it is this component of the field that propagates to the observer-

ation point. This assumption has been proven valid with the use of Green’s function analysis

[5], furthermore for the more complex case of DFG and parametric amplification/oscillation

Green’s function analysis is an essential procedure with these modes of operation not enjoying

the simplifications provided in SHG.

The simplification that makes the above assumption valid is that the focused spot size of

the induced polarisation is, by nature of the SHG process, exactly
√

2 smaller than that of

the fundamental. When this is combined with the generated harmonic field having twice the

frequency of the fundamental it is found that both incident and generated waves have equal

Rayleigh ranges. Thus, power will always flow from the fundamental to the harmonic in such

a way as to preserve the Gaussian nature of the beams. However, it should be noted that if

power transfers back from the generated harmonic field to the fundamental, through a phase-

mismatch, distortions will occur to the Gaussian nature of the fundamental. This is due to the

back-conversion process being DFG and therefore a mismatch in the mode overlap of the induced

polarisation and the fundamental field arises, although at low powers this effect is insignificant

resulting in negligible change to the Gaussian nature of the beams.

To obtain the final far-field harmonic power it is necessary to integrate over all the sources

within the nonlinear material. Before the integration is carried out a change of co-ordinate

system is required to ensure that only the Gaussian field expression in Equation 4.12 propagates

to the observer. To achieve this τ is substituted, within the bracketed expression, for

τ ′ =
2 (z′ − f)

b
(4.13)
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resulting in a new expression for the incremental harmonic field outside the nonlinear material

dE2ω (r′, z′) = i
(2ω)2

4k2ωc2
χ(2) (2ω;ω, ω)E0

2
ω

(
1

1 + iτ

)
ei2kωz

×
{(

1
1 + iτ ′

)
e
−2r′2

w2
0(1+iτ′) e−ik2ωz

}
dz (4.14)

Now, integrating over all sources within the material the following expression for the total gen-

erated harmonic field is obtained,

E2ω (r′, z′) = i
(2ω)2

4k2ωc2
χ(2) (2ω;ω, ω)E0

2
ω

(
1

1 + iτ ′

)
e

−2r2

w2
0(1+iτ′)

·
∫ L

0

ei∆kz

1 + iτ
dz (4.15)

The final expression for the harmonic field in the far-field can be determined with the introduction

of the limit

τ ′ →∞. (4.16)

With this assumption the Equation 4.15 can be greatly simplified by noting the following ap-

proximation,

1
w2

0 (1 + iτ ′)
=

(1− iτ ′)
w2

0

(
1 + τ ′2

)

=
[

1− iτ ′
w2

0τ
′2

](
1− τ ′−2 + τ ′

−4 + · · ·
)

lim
τ ′→∞

→ 1− iτ ′
w2

0τ
′2 (4.17)

Further, with the following definitions,

s =
x

w0τ ′
, s′ =

y

w0τ ′
(4.18)

it is possible to re-write the Gaussian power variation part of Equation 4.15 as

−2r′2

w2
0 (1 + iτ ′)

→ −2s2 (1− iτ ′)− 2s′2 (1− iτ ′) (4.19)

Thus, the expression for the far-field harmonic field can be given as

E2ω (r′, z′) → (2ω)2

4k2ωc2τ ′
χ(2) (2ω;ω, ω)E0

2
ω

·e−2(s2+s′2)(1−iτ ′)
∫ L

0

ei∆kz

1 + iτ
dz (4.20)

Now, with a change of variable in the integral in Equation 4.20, using τ = 2 (z − f) /b it is

possible to obtain the following

∫ L

0

ei∆kz

1 + iτ
dz =

∫ 2(L−f)
b

−2f
b

b

2
ei

∆kbτ
2 ei∆kf

1 + iτ
dτ (4.21)
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With the introduction of the following variables,

σ = ∆kb/2 (4.22)

ξ = L/b (4.23)

µ = (L− 2f)/L (4.24)

this new integral can be simplified to

b

2
ei∆kf

∫ ξ(1+µ)

−ξ(1−µ)

eiστ

1 + iτ
dτ (4.25)

Further, following the procedure of Boyd and Kleinman an optimizable function H (σ, ξ, µ) is

defined,

H (σ, ξ, µ) =
1

2π

∫ ξ(1+µ)

−ξ(1−µ)

eiστ

1 + iτ
dτ (4.26)

with this function providing a contraction in the notation of the far-field harmonic electric field:

E2ω (r′, z′)→ πb (2ω)2

4k2ωc2τ ′
χ(2) (2ω;ω, ω)E0

2
ωe
−2(s2+s′2)(1−iτ ′)ei∆kfH (σ, ξ, µ) (4.27)

Note that the function H (σ, ξ, µ) has fewer degrees of freedom than that defined in [6], this is due

to omitting the effects of absorption and double refraction. From these expressions a definition

for the harmonic intensity distribution can be obtained.

I2ω (r′, z′) =
n2ωcε0

2
|E2ω (r′, z′)|2

=
n2ωcε0

2
π2b2 (2ω)4

16k2
2ωc

4τ ′2
χ(2)2

E0
4
ω

∣∣∣e−2(1−iτ)(s2+s′2)ei∆kfH (σ, ξ, µ)
∣∣∣
2

=
(2ω)2

32n2
ωn2ωc3ε0τ ′

2χ
(2)2

P 2
ωk

2
ωe
−4(s2+s′2) |H (σ, ξ, µ)|2 (4.28)

Here, to obtain Equation 4.28, significant simplifications have been made with use of the following

definitions,

Pω =
(nωcε0

2

)(πw2
0

2

)
|E0ω|2 , w2

0kω = b (4.29)

Finally, from this, an expression for the generated far-field harmonic power can be obtained by

integrating over the intensity distribution

P2ω =
∫ ∫ ∞

−∞
I2ωdxdy (4.30)

But, first, it is important to note the change of variables introduced in Equation 4.18 resulting

in a change of limits and integral variable

dx = w0τ
′dτ ′, dy = w0τ

′dτ ′ (4.31)
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P2ω =
(2ω)2

32n2
ωn2ωc3ε0τ ′

2χ
(2)2

P 2
ωk

2
ωw

2
0τ
′2
∫ ∫ ∞

−∞
e−4(s2+s′2) |H (σ, ξ, µ)|2 dsds′ (4.32)

=
(2ω)2

32n2
ωn2ωc3ε0

χ(2)2
P 2
ωkωb

∫ ∫ ∞

−∞
e−4(s2+s′2) |H (σ, ξ, µ)|2 dsds′ (4.33)

To achieve the standard result, as given in [14], it is necessary to introduce a final function,

h (σ, ξ, µ), which is commonly known as the Boyd and Kleinman focussing factor as discussed in

Chapter 2. With this function defined as,

h (σ, ξ, µ) =
π2

ξ

∫ ∫ ∞

−∞
e−4(s2+s′2) |H (σ, ξ, µ)|2 dsds′ (4.34)

which, when substituted into Equation 4.33, provides the familiar result for total generated

harmonic power as given in Equation 2.36

P2ω =
(2ω)2

32π2n2
ωn2ωc3ε0

∣∣∣χ(2) (2ω;ω, ω)
∣∣∣
2

P 2
ωkωLh (σ, ξ, µ) (4.35)

Where here it is again noted that the generated harmonic power is proportional to the nonlinear

device length, not the quadratic length as is the case for plane wave interactions.

In their work, Boyd and Kleinman chose to optimise the focusing conditions for SHG through

variation of the parameter h (σ, ξ, µ), which allows control of the phase matching conditions

through the variable σ and the focus waist position and size through µ and ξ respectively.

However, the assumption was made that the linear and nonlinear properties of the material were

constant over the sample, resulting in the optimum focusing factor of ξ = L/b = 2.84 in the case

of zero birefringence as is shown in Figure 4.1. It this this assumption that prevented the full

optimisation of the focusing conditions, with a device of constant dispersion and nonlinearity

unable to compensate for the phase slippage introduced by the Gouy phase.

Despite being unable to compensate for the deleterious effects of the Gouy phase Boyd and

Kleinman did pursue studies into some of its more obvious effects, although never attributing

these effects to it directly. In their studies it was shown that for increasingly tight focus the

tuning response of a nonlinear device becomes increasingly asymmetric. For a loose focusing

ratio of ξ = 0.5 it was shown that the response is almost that of a perfect sinc structure 4.2(a),

but as the focus is tightened to a ratio of 2.84 significant asymmetries are observed along with

a shift in the peak phase-matching condition, see Figure 4.2(b).

For weak focussing, ξ � 1, these results were obtained via a series expansion of the denom-

inator in Equation 4.26. In the following analysis it will be shown that by spatially varying

this denominator by using a carefully designed modified QPM grating structure, it is possible to

completely negate the effects of the Gouy phase, achieving higher conversion efficiency at tighter

focus in addition to a return to the symmetric sinc tuning response.
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Figure 4.1: A plot of the magnitude of the focusing parameter h(B, ξ), which is directly proportional

to harmonic power, against the focusing ratio ξ. For the case of a linearly invariant material operating

with non-critical birefringent phase-matching an optimum focus ratio of ξ = 2.84 is obtained. Figure

from [6]

4.3 Compensating for the Gouy phase shift

In the proceeding analysis it was stated that the limiting factor on the conversion efficiency is

the Gouy phase, which causes a phase slippage between the fundamental wave and the generated

harmonic causing back conversion. However, without some minor modifications to the analysis

it is difficult to see where the effects of the Gouy phase arise. To clarify this role it is necessary to

re-write Equation 4.26 explicitly separating out the effects of the spatial phase variation, which

can be achieved as follows

H (σ, ξ, µ) =
1

2π

∫ ξ(1+µ)

−ξ(1−µ)

dτ
eiστ

1 + iτ

= · · · e
iστ

1 + iτ
· 1− iτ

1− iτ

= · · · eiστ√
1 + τ2

1− iτ√
1 + τ2

(4.36)

Here, it is clear to see, when compared with Equation 4.6, that the function H(σ, ξ, µ) has been

separated into a term relating generated harmonic field with the scaled interaction length and a

secondary term representing the Gouy phase. Explicitly solving this integral, for the simplistic

case of ∆k = 0, it is found that the function asymptotically approaches a value of π for the case

of ξ →∞. Where ξ can approach infinity either through a reduction in spot size or an increase

in the length of nonlinear media, although a lower limit on the value of b is enforced through the

paraxial approximation.
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(b)

Figure 4.2: (a) The ∆k tuning response, scaled with the focusing ratio, for loose focusing showing the

sinc like structure observed under plane wave interactions. (b) Here, at optimal focusing conditions,

significant asymmetry and peak phase-matching shift can be observed, both these effects are a result of

the focused Gouy phase. Figure from [6]

It must be noted that although the function H(0, ξ, µ) becomes constant for sufficiently tight

focus, implying a conversion efficiency independent of increasingly tight focusing, this is counter-

acted by the reduction in Rayleigh range, the origins of which are clearly shown in Equation 4.25

and further emphasised in Equation 4.34. It is this scaling term that ultimately introduces a

limit on the optimum focusing conditions. A plot of the variation in the magnitude of H with

focusing parameter ξ is shown in Figure 4.3 along with a plot of the resulting harmonic efficiency.

Here, it is clear to see the asymptotic behaviour of the function H with increasing ξ, approaching

a value of π. The reducing efficiency with tightening focus can be thought of physically as a

shortening of the effective interaction length of the the high intensity focus, with the peak effi-

ciency at ξ = 1.4 being a balance between the high intensities at the focused waist and a long

interaction length.

However, as noted in the expansion of H (σ, ξ, µ) in Equation 4.36 the integral is highly

dependent on the Gouy phase and as such it can be expected that removal of this term would

lead to differing phase-matching conditions. When explicitly solving the integral above the

simplification of constant ∆k = 0 was made, it is this assumption that leads to the incorrect

optimisation of the integral. To achieve the results outlined by Boyd and Kleinman it is necessary

to optimise ∆k for each focus value, with this optimisation leading to the famous result of ξ = 2.84
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Figure 4.3: (a) The theoretical variation in the magnitude of H (0, ξ, µ) for varying degrees of focusing

at ∆k = 0. (b) For constant phase-matching conditions, in this case fixed at ∆k = 0, an optimum

theoretical focused efficiency is obtained at ξ ≈ 1.4

In their analysis Boyd and Kleinman took both the linear and nonlinear properties of the

optical medium as fixed parameters with the only freedom allowed being the tuning of the total

material dispersion, either by the application of heat, electric field or angle tuning. Using such

a linear technique it is impossible to completely negate the phase advancement caused by the

nonlinearly varying Gouy shift, with only a best fit correction being possible. Despite being only

a partial compensation the results of this linear dispersion, and thus ∆k shift, are significant.

Shown in Figure 4.4 are the curves of H (σ, ξ, µ) and harmonic power variation, as was plotted

for the case ∆k = 0, but here at each focus value ∆k has been optimised. As can be seen a

large increase in power has been achieved, with the peak power now obtained at a tighter focus

of ξ = 2.84.

An example of the Gouy phase and compensating linear dispersion phase required to achieve

this peak efficiency is shown in Figure 4.5(a). It is necessary at this point to clarify what is

meant by the dispersion phase, this is simply defined as the position advancement of a point

on the coherence length of the dispersion tuned material compared with the same point on

the coherence length of a perfect plane-wave interaction in the same material. Additionally,

Figure 4.5(b) shows the phase errors that are still present for a range of focusing values despite

best fit correction of the dispersion. As can be seen in plot (i) at very loose focus, here with

a focus ratio of ξ = 0.01, their is negligible phase error after correction as at such loose focus

the Gouy phase is to good approximation entirely linear and thus easily compensated for by

a slight shift in operating conditions. However, as the focus is tightened to the optimal value
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Figure 4.4: (a) The theoretical variation in the magnitude of H (σ, ξ, µ) with focusing, here ∆k has been

adjusted at each point for optimal efficiency. (b) With phase-matching optimised by a linear change in

material dispersion peak harmonic power is obtained at ξ ≈ 2.84.

of ξ = 2.84, as shown in plot (ii), significant phase errors are present with large regions of the

focused interaction being far from phase-matched.

Physically, these phase errors are manifested in many ways that alter the expected response

of focused parametric interactions. One of these effects highlighted by Boyd and Kleinman,

and shown in Figure 4.2(b), is the asymmetric ∆k tuning response. Traditionally this effect

has been attributed to a range of k-vector angles within the focused fundamental beam, with

the z-direction resultant of two angled fundamental k-vectors matching with a shorter harmonic

k-vector than in the non-focused case. This effect is explained diagrammatically in Figure 4.6,

demonstrating the impossibility of the angled k-vectors combining to form a resultant longer than

the unfocused vectors and thus preventing any variation from the sinc structure for ∆k > 0.

However, the alternative explanation given in this work can be expressed purely through the

effects of the Gouy phase, although the Gouy phase and k-vector angle are intimately linked

making either approach valid.

So, it is clear to see that to achieve perfect phase-matching for focused interactions it is

necessary to compensate completely for the nonlinear Gouy phase shift. There are currently

two known techniques to achieving such a result. One such method proposed concurrently

but independently to the work detailed in this chapter is that of the formation of a spatially

varying material dispersion, via application of localised temperature gradients [15], or via local

application of electric fields to an electro-optic material. By carefully tuning the local dispersion

to compensate for the Gouy phase shift perfect phase-matching should be achieved. However,
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Figure 4.5: (a) The theoretical plot of the Gouy phase of a focused beam (green) with a focus ratio of

ξ = 2.84 and the best linear correcting phase achievable through adjustment of ∆k. (b) A plot of the

residual Gouy phase, after linear dispersion compensation, for focusing ratios of ξ = 0.01, 2.84 and 5.0

( blue, green and red respectively).

∆kz = 0 ∆kz < 0
Figure 4.6: A representation of the k-vector angles in a QPM interaction for both plane-wave on axis

propagation and for focused interactions where the k-vectors can be at an angle to the propagation

direction, resulting in a shorter resultant k-vector. Here the grating k-vector must be enlarged in the

focused case to allow adequate phase-matching.

this technique is for all intensive purposes impractical as controlling the temperature gradient

through any useful thickness of material is highly challenging. Where, for example, in a sample

of MgO(7%):LiNbO3 variable control over a range of 0.5 ◦C is required along the length of the

material with highly localised control to less than 0.1 ◦C necessary, which as is shown in Chapter 3

proves difficult to maintain in practical situations.

An alternative technique proposed in this work is the use of spatially modified effective

nonlinearity, instead of a modified dispersion. Again, this process could be achieved through

application of a localised electric field, this time interacting with a ferro-electric material. How-

ever, this technique is equally, if not more, difficult to implement with changes to both index and

nonlinearity likely occurring. Instead, a much more robust technique is proposed that utilises
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the power and flexibility of quasi-phase-matched (QPM) grating structures. Here it is proposed

that by careful placement of the sections of re-oriented nonlinear polarisation, the positions of

which traditionally only compensate for the phase mismatched caused by material dispersion,

it should be possible to compensate for the Gouy phase allowing continuous addition of the

generated harmonic wave.

This procedure can be expressed mathematically by returning to Equation 4.27 where here

the nonlinearity, χ(2) (−2ω, ω, ω), is independent of τ and thus outside the optimisible function

H (σ, ξ, µ). If however, the nonlinearity is now defined to be spatially varying with τ it can be

taken inside the integral in H (σ, ξ, µ) and thus allows an extra term with which to negate the

deleterious phase. From this a new function H ′ (σ, ξ, µ) is defined,

H ′ (σ, ξ, µ) =
1

2π

∫ ξ(1+µ)

−ξ(1−µ)

κ (τ) eiστ

1 + iτ
dτ (4.37)

with κ (τ) = ±χ(2) (τ). Note that κ (τ) is a binary function, having only two values of nonlinearity

relating to the direction of the local polarisation.

If initially the case of a plane-wave interaction is analysed, by allowing ξ → 0, Equation 4.37

simplifies to the integral of the sinusoidally varying harmonic field along the crystal length. Using

standard QPM this integral can be maximised by inverting the material nonlinearity at a period

defined by the material dispersion to provide continuous growth of the second harmonic. This

can be expressed mathematically as

κ (τ) =
cos (στ)
|cos (στ)| (4.38)

This expression simply describes the standard form of a first-order QPM grating, where the

nonlinearity is inverted with a frequency of ∆k corresponding to a period of 2π/∆k.

For the more complex case of focused interactions, where ξ is of the order 1.0 or greater, the

Gouy phase is a significant factor that must be negated. This is achieved by adding a further

term to the spatially varying nonlinearity which exactly cancels the Gouy term in Equation 4.37,

this can be written as

κ (τ) =
cos (στ)
|cos (στ)|e

i tan−1(τ) (4.39)

Here, the spatially varying nonlinearity is simultaneously compensating for both the material

dispersion and the nonlinear Gouy phase promoting continuous growth of the harmonic field. Of

note here is that although the Gouy phase has been fully compensated it is however impossible

to effectively compensate for the remaining term in the denominator of Equation 4.36. It is this

term that accounts for the spatial variation in electric field along the axis of the focused beam

due to diffraction, with a maximum value at τ = 0 corresponding to the focused waist. Although
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it is possible to further define the nonlinearity, κ (τ), to increase accordingly to compensate for

this effect it is both counter productive, with best efficiency obtained by maximising the value of

nonlinearity in all locations, and further impossible to achieve with standard QPM techniques.
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Figure 4.7: Inverted domain sizes for a 500µm long, PPLN based, GQPM device (solid line), at a focus

ratio of ξ = 3.32, compared with a standard QPM device (dashed line) for phase-matching the same

interaction under plane-wave conditions with a phase-matching period of 6.548µm.

Finally, by considering the complex conjugate of Equation 4.1 throughout the analysis, which

for brevity has been ignored, a compact expression for the spatially varying nonlinearity can be

defined as

κ (τ) =
cos
(
στ + tan−1 [τ ]

)
∣∣cos

(
στ + tan−1 [τ ]

)∣∣ (4.40)

Here, it is clear to see that for loose focusing values, where τ is large, the arctangent term has

negligible effect simply offering a near linear phase offset in the QPM period. For tighter focusing

the arctangent expression becomes highly nonlinear offering a more pronounced variation from

the linear QPM grating structure. By directly comparing the dimensions of the inverted nonlinear

polarisation sections of both QPM and Gouy adjusted QPM (GQPM) it is found that the period

of the GQPM grating almost exactly matches that of standard QPM at either end of the device,

only experiencing significant period alterations towards the centre.

For lengths of nonlinear material over 1mm in length and practical focusing conditions it

is found that the variation in inverted section size and position is only of the order of a few

nanometers compared with a standard QPM phase-matching the same nonlinear process. For

more extreme focussing or very short device lengths the variation in inverted nonlinearity size

becomes both large and rapid, an example of this is demonstrated in Figure 4.7 where the sizes of

inverted nonlinearity have been calculated for a 500µm long PPLN device and shown contrasted

to the domain sizes in regular QPM.
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Figure 4.8: (a) The variation in the magnitude of H (σ, ξ, µ) with focusing when the device nonlinearity

is spatially varied to compensate for the Gouy phase. (b) With a Gouy compensated device (blue) peak

harmonic power is obtained at the tighter focusing value of ξ = 3.32 providing 3.5% higher output power

than linearly compensated devices (dashed green).

4.3.1 The advantages of Gouy compensated quasi-phase-matching

With a device structure suitable for compensating the deleterious effects of the Gouy phase it

is now appropriate to analyse the theoretical benefits provided. Following on from the analysis

of the harmonic efficiency verses focusing for a linearly Gouy compensated device the initial

observation of a GQPM device is the higher efficiency that can be obtained. This result is

perhaps unsurprising, with the corrected device providing a continuous forward transfer of power

from the fundamental to the harmonic fields. As can be seen in Figure 4.8 for any focusing value

a GQPM device will outperform a linearly compensated device, here it should be noted that at

each focusing value a new GQPM device has been designed using Equation 4.40 to best match

the resulting Gouy phase, with the linear QPM device ∆k tuned for optimum efficiency.

By analysing the response of the function H (σ, ξ, µ) for the GQPM structure, as shown in

Figure 4.8(a), it is found that unlike for standard QPM devices the response is continuously

increasing for tightening focus conditions. From this it is clear to see, when compared with Fig-

ure 4.3(a), the detrimental effect the Gouy phase has in uncompensated interactions. However,

despite this continuous increase the final output power, Figure 4.8(b), is still limited to a peak

conversion efficiency, this is due to the relatively slow increase in H (σ, ξ, µ) being surpassed by

the more rapid reduction in Rayleigh range and thus lower average optical intensity as the focus

is tightened.

Although the harmonic power has a peak focus efficiency, as is the case for standard QPM,
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it is found that this peak is not at the famous ξ = 2.84 but at a tighter value of ∼ 3.32. This

result implies that the peak efficiency obtained for standard QPM and birefringent devices is not

achieved at optimum power density along the length of the device but is in fact a compromise

between the average power density and the detrimental effects of the Gouy phase shift de-phasing

the fundamental and harmonic waves. Under such conditions the efficiency gain provided by

tighter focusing, resulting from the higher electrical fields, is offset by the ever more nonlinear

phase error creating a route for back conversion. In contrast, for a GQPM device the only

limiting factor dictating optimal focusing conditions is the average power density. Further, at

this tighter focusing value a gain in conversion efficiency over standard QPM devices is achieved,

with the efficiency of a GQPM device at ξ = 3.32 being 3.5% greater than the efficiency of a

standard QPM device at its peak at ξ = 2.84.
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Figure 4.9: A plot of the normalised harmonic intensity for a sweep of ∆k values for both a GQPM

device (solid line) and a plane-wave QPM interaction (dashed line). Unlike focused QPM the GQPM

response is symmetric about ∆k = 0, additionally the magnitude of the side lobes is reduced through

an effective apodisation of the nonlinearity caused by the varying intensity along the focused beam axis.

An additional benefit of compensating the Gouy phase is the removal of any asymmetry in

the ∆k tuning response, with this result being of particular use in synthesised response devices

such as the wide-bandwidth flat-top temperature stable devices discussed in Chapter 3. Here, the

Gouy phase introduced an unwanted asymmetry leading to power fluctuations on the otherwise

flat-top tuning response. Figure 4.9 shows the ∆k tuning response of a GQPM device compared

to that of a plane-wave device, with the normalised responses plotted on a logarithmic scale

to highlight the excellent symmetry obtained. Note that any slight asymmetry observed in

the depth of the sinc zeros is purely an artifact of rounding error and insufficient precision in

performing the numerical integration of H (σ, ξ, µ). Here, it should be stressed that for such
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figures of the calculated efficiency and phase-matching characteristics have been performed by

numerical integration of the exact, low power, analytic expressions. In later chapters, Chapter 6,

a fully numerical BPM model is applied to the case of high power analysis.

However, despite the excellent symmetry presented one obvious difference between the two

plots is the wider bandwidth and partial suppression of the side lobes in the GQPM response.

This change in bandwidth is purely related to the spatial variation in the fundamental power

along the axis of the beam creating an effective interaction length shorter than that for the plane-

wave interaction, with bandwidth being inversely proportional to device length [16]. Further,

the side lobe suppression arises from the apodisation of the induced polarisation, caused again

by the low intensity fundamental at the extremities of the device, which from standard Fourier

analysis is well known to lead to a reduction in the frequency components in a signal and thus

the magnitude of any side lobes.
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Figure 4.10: Theoretical plots of the shift in phase-matching conditions for a uniform QPM device

(green) operating at ξ = 2.84 relative to a GQPM device operating at ξ = 3.32 (blue), with the GQPM

device phase-matching optimally at the plane-wave ∆k value. Also shown are the same data plotted on a

logarithmic power scale highlighting the symmetric response in addition to the shifting phase-matching

conditions.

Finally, the last observation after the removal of the Gouy phase influence is the return to

plane-wave phase-matching conditions. As was discussed previously for standard QPM devices

to achieve maximum efficiency the ∆k value of the nonlinear interaction must be carefully tuned,

reaching maximum conversion efficiency when the difference between the nonlinear Gouy phase

and the linear dispersive phase is minimised. The shift in the ∆k value is highly dependent on

the focusing ratio, with tighter focusing or longer interaction lengths providing the larger shifts.
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However, for the case of a GQPM device, when operating with a well matched focused beam, it

is found that there is no offset in the ∆k value for peak focusing compared to that of a perfect

plane-wave interaction. Figure 4.10 shows this effect clearly, here the standard QPM device

operating at peak focusing of ξ = 2.84 has significant shift in the phase-matching position from

the value predicted using plane-wave analysis. This is in contrast to the tuning response of the

GQPM device, operating at its peak of ξ = 3.32, which has no shift in optimal phase-matching

conditions from that of plane-wave devices. This lack of shift can of course be attributed to the

complete compensation of the Gouy phase within the quasi-periodic grating structure, requiring

no further adjustment through a change in the linear dispersion phase.

4.3.2 High order spatial modes and 3rd harmonic processes

At this point it is prudent to mention higher order spatial mode Gaussian beams and their effect

on Gouy phase compensation. As noted in Equation 4.4 the Gouy phase of a Gaussian beam

is highly dependent on the spatial mode-order, with multi-mode beams obtaining both a larger

and more rapidly varying Gouy phase. Although not explicitly verified in this work, it can be

readily extrapolated that by compensating for such additional phase advancements considerable

performance gains can be made in the conversion of higher order modes, thus opening up the

field of second harmonic generation to a wider range of laser sources.

Similar performance increases can be expected for higher order parametric mixing processes.

For third harmonic generation, for example, it is readily accepted that high conversion efficiencies

are prevented through a mismatch in the phases of the fundamental, second and third harmonic

modes [17, 18]. This mismatch is of course attributable to the Gouy phase of the beams and

with suitable compensation, through similar techniques as for SHG, it is expected that significant

performance advancements can be accomplished.

4.4 Operational considerations for Gouy compensated QPM

Having described a procedure for effectively compensating the effects of the Gouy phase shift

and highlighted some of the benefits gained through such a process it is useful to analyse the

effectiveness of such a device in a real-world situation. This shall be achieved first by studying

the effects of a non-optimal launch into the device followed by a study on the effects of errors

in the size and position of the reversed nonlinear polarisation. For a basis of comparison these

results shall be compared throughout with the results for standard QPM.
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4.4.1 Sensitivity to non-optimal launch

There are two main factors that determine an optimal launch, these are position of the focused

waist within the device and the focused spot size. If either of these two parameters do not match

those used when fabricating a GQPM device the Gouy phase will not be perfectly compensated

and may, in some cases, lead to a worsening of the very effects that such a device is meant to

alleviate.

The first of these two parameters that shall be investigated is that of spot size as this is

perhaps the more difficult of the two to achieve in practical experiments, with a change in spot

size invariably leading to an unwanted shift in the position of the focused waist resulting in

further optimisation steps. In contrast, positioning of the device centre relative to a known

focused waist simply requires translation along the axis of the focused beam whilst tuning the

∆k value, by temperature or wavelength dispersion compensation, to achieve optimal efficiency.

To analyse the effects of a non-optimal spot size it is necessary to return to Equation 4.37

and again solve for varying focus values with the substitution of Equation 4.40. However, unlike

previous calculations it is a requirement that the spatially varying nonlinearity function κ(τ) be

fixed at a given focus value, thus emulating the effect of a fabricated GQPM device. Furthermore,

it is now necessary to analyse the effects of a variation in the value of ∆k, as it is no longer

reasonable to assume that peak harmonic power will be generated at the plane-wave ∆k value

due to the incorrectly compensated Gouy phase. Additionally, it should be noted that for this

calculation it is initially assumed that despite the incorrect spot size the focal point is nevertheless

centred within the GQPM device.

Figure 4.11(a) shows the theoretical power output for a GQPM device with a ξ value fixed

at the optimum of 3.32 plotted against both a standard uncompensated QPM structure and a

GQPM device recalculated at each focus value. As can be seen at very loose focus the effect of

incorrectly compensating the Gouy phase is negligible, with the variation in total power output

between a GQPM device and that of a standard QPM device being insignificant compared

with the peak power output obtained at optimal focus. Although the variation in power output

between GQPM and QPM devices is small at such loose focus values the relative power variation

can be of the order of a few percent in the favour of standard QPM. This is emphasised in

Figure 4.11(b) which shows the percentage power variation for fixed GQPM and variable GQPM

against a reference QPM structure for a range of realistic focus values.

This reduction in GQPM efficiency at loose focus can of course be attributed to the phase

correction that has been fabricated within the GQPM device. At loose focus the Gouy phase

of the fundamental beam is almost entirely linear with the result that the phase of the GQPM
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Figure 4.11: (a) A plot of the variation in harmonic power output for QPM (green curve), GQPM

recalculated for each focus (red curve) and GQPM fixed at ξ = 3.32 (blue) due to changes in spot size.

(b) The percentage power difference of the same devices compared to standard QPM, here it can be

seen above ξ = 1.9 GQPM will always outperform standard QPM.

device structure no longer reduces an existing phase error but instead creates an error equivalent

to an inverted Gouy phase. This inverted phase can only be partially compensated for by a

linear tuning of the grating k-vector, as is the case for compensating a genuine Gouy phase with

a standard QPM device, leading to a reduction in efficiency.

However, as the focused spot size approaches the optimum value a complex interplay between

the Gouy phase of the fundamental beam, the inverted Gouy phase of the grating and the linear

dispersion phase occurs. At a focus value of approximately ξ = 1.9 it is found that by tuning the

linear dispersion phase it is possible to overcome the residual error between the Gouy phase of

the non-optimal fundamental beam and the inverted GQPM phase such that the overall power

output is greater than that of an uncompensated QPM device.

This behaviour remains with tightening focusing, although the amount of linear dispersion

compensation required reduces as is shown in Figure 4.12, up until the point that the optimum

focus is achieved. Beyond this point the inverse Gouy phase of the GQPM grating is now

insufficient to completely compensate the ever increasing nonlinearity of the focused Gouy phase

and as such a linear dispersion is required to attempt to further reduce the error. Although at

tight focus there is now a residual phase error, which cannot be compensated with linear tuning,

the total error is still less than that of an uncompensated QPM device. The result of this is that

a GQPM device, designed for optimal efficiency at ξ = 3.32, is more efficient than a standard

QPM device for all focusing ratios in the range ξ ≥ 1.9.
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Figure 4.12: A plot of the variation in the peak phase-matching ∆k, from the QPM plane-wave value,

for varying degrees of focussing for both standard QPM (green curve) and a GQPM device optimised for

ξ = 3.32 (blue curve). Here it can be seen the positive ∆k, required to combat the inverted Gouy phase

of the GQPM device at low focusing, reduces to zero at the optimal spot size before asymptotically

decreasing for overly tight focusing.

Having shown that GQPM is relatively intolerant to the effects of an incorrectly sized focused

waist, in terms of the power output compared to a QPM device, it is also necessary to investigate

the effect of this spot size error on the symmetry of the phase-matching tuning curve, as this is

perhaps a more desirable feature of such a focus compensated structure for many applications.

Where, for example, the phase-matching tuning response is an essential component in determin-

ing the optical bandwidth, and distribution of frequencies within the bandwidth, of a frequency

doubled laser system. This is especially true if long nonlinear samples are used to provide high

conversion efficiencies, where the resulting narrow nonlinear bandwidth can closely match the

bandwidth of the pump laser.

The effects of spot size variation on the symmetry of the ∆k tuning response is highlighted

in Figure 4.13 which shows the normalised harmonic power output with ∆k for a range of focus

ratios for both GQPM and QPM devices. Here, the error in focusing ratio has been set at ±25%

from the optimal value, with the optimum values being ξ = 3.32 and ξ = 2.84 respectively. From

these plots it can be seen that over such a large variation in spot size the symmetry of the GQPM

device shown in Figure 4.13(a) is broken, with significant asymmetry returning for higher values

of ∆k offset. In contrast the response of the standard QPM device in Figure 4.13(b), remains

largely unaltered, with only a relatively minor increase in asymmetry for tighter focusing and,

of course, a return towards symmetry for looser focusing.

However, despite this increase in asymmetry it can be seen that the GQPM device operating
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Figure 4.13: Normalised power plots for GQPM (a) and QPM (b) devices showing the effects of an

incorrect spot size on the ∆k tuning symmetry. For both plots optimal focusing is shown (blue dashed

curve), which for GQPM is at ξ = 3.32 and for QPM at ξ = 2.84, along with plots for a 25% increase in

focus ratio (red curve) and a 25% decrease in focus ratio (green curve)

with a focus ratio 25% too tight still maintains a more symmetric tuning response than that of

a standard QPM device with equivalent focussing error. This is true despite the actual focusing

ratio for the GQPM device being larger than for the QPM, which in itself would normally lead to

greater asymmetry. Perhaps more surprising is that at this focusing value the GQPM device has

a marginally higher degree of symmetry than that of even optimally focused QPM at ξ = 2.84.

Further, by comparing the power levels of the side lobes for both GQPM and QPM structures

it is clear to see that at equivalent focusing errors the GQPM device outperforms QPM, with

much lower peaks and deeper zeros, resulting in a more efficient harmonic process with a cleaner

frequency response.

From the results of these simulations it is clear that GQPM structures are remarkably in-

sensitive to the focused spot size, maintaining both higher efficiency and better symmetry than

standard QPM devices for quite large errors in the focusing ratio. Additionally, throughout these

comparisons both the GQPM and QPM structures have been simulated for optimal harmonic

power output, which for GQPM occurs at a smaller spot size resulting in a larger and faster

varying Gouy phase than is the case for optimal QPM. If however, the proposed application re-

quires a more symmetric response and not necessarily maximum efficiency it may be desirable to

utilise a GQPM device designed for say ξ = 2.84, at this focusing ratio the device would be even

less sensitive to focusing errors whilst still providing slightly higher efficiency and significantly

better symmetry than a QPM device.
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Having proven the merits of a GQPM device with a non-optimal spot size the analysis is

now adapted to provide quantitative results for the performance characteristics of such a device

when an optimally focused spot is launched into the device but with the waist offset from the

centre. As is the case for standard QPM, and non-critically phase matched birefringent devices,

it is reasonable to assume that the harmonic output power will reduce as the focused waist is

translated from the centre. Here the main cause of the harmonic power reduction is due to a

reduction in the average fundamental intensity along the crystal length. However, in a GQPM

device this process is further complicated by the built in spatially varying phase compensation,

which if misaligned with the phase of the fundamental beam can be expected to further reduce

the conversion efficiency via back conversion. Thus it is necessary to explore at what degree of

focus offset the advantages of a GQPM are negated, to give an efficiency equivalent to that of

standard QPM, helping to determine the suitability of a such a device in a real world application.

The theoretical simulations of harmonic power output variation with focused waist location

are shown in Figure 4.14. For this simulation it was chosen that both GQPM and QPM devices

be analysed at their respective optimal focus conditions of ξ = 2.84 and ξ = 3.32. However,

under such focusing conditions, even if there were no Gouy phase compensation, the GQPM

device would be more sensitive to offset errors than the QPM device purely due to power density

constraints. Where the more rapid diffraction provided by the tighter focus at ξ = 3.32 would

directly lead to a lower average intensity when offset from the centre of the device.
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Figure 4.14: (a) Theoretical plots of harmonic power for a GQPM device at ξ = 3.32 (blue) and a QPM

device at ξ = 2.84 (green dashed) for varying degrees of waist offset from the device centres, (b) A

plot of the percentage harmonic power difference of a GQPM device relative to a standard QPM device

highlighting the gains of GQPM for well aligned systems.



4.4 Operational considerations for Gouy compensated QPM 109

As an be seen in Figure 4.14(a) when operating with a perfectly aligned launch the efficiency

of GQPM outperforms standard QPM as was previously predicted. However, it is clear that the

efficiency is more dependent on focus location in GQPM than QPM, with the rate of change

of harmonic power being more rapid with small waist offsets. As a result of this more rapid

variation it is found that any advantage in the output power of GQPM is quickly lost with

offset error, with the efficiency dropping below that of standard QPM for waist positioning

errors grater than approximately ±L/8. This relative sensitivity to waist position is further

emphasised in Figure 4.14(b) which re-plots the data of Figure 4.14(a) but now shown as the

percentage difference in output power of the two devices. From this plot it is evident that at

significant waist offset the power difference between the two devices can become quite severe,

with GQPM performing almost 10% less efficiently than QPM. However, at this focus condition

the overall power output is almost 50% down on the optimum of either GQPM or QPM and so

this small loss in relative efficiency is likely of no significance if such a large output reduction

can be tolerated. Further, for an actual device working with a low power CW laser source, the

regime for which this simplistic no-depletion modelling is valid, to achieve reasonable efficiency

it is common for the nonlinear device lengths to be in the region of a few centimetres in length.

As such for a 20 mm long GQPM device to be less efficient than QPM the position error in the

location of the focused waist must be approximately ±2/3 mm from the centre of the device,

which is orders of magnitudes larger than the tolerances achievable with modern positioning

systems or that of packaged devices.

The analysis now returns to bandwidth symmetry and any detrimental effects focus offset

may have on it. Intuitively it would be expected that with an offset the GQPM response becomes

asymmetric, with the response becoming more like that of QPM, as the Gouy phase of the focused

fundamental beam and the inverted phase of the grating structure become misaligned allowing

some level of back conversion. In such a scenario it is of course again necessary for a linear phase

adjustment, created by dispersion tuning, to help minimise any residual phase error and thus

maximise efficiency.

For more severe offset it would be expected that as the phase of the focused beam and the

grating become ever more misaligned that the bandwidth response of GQPM becomes signifi-

cantly more asymmetric than standard QPM. With this effect caused by a complex phase profile

within the device as the near linear section of the grating phase, towards the extremities of the

device, is combined with the highly nonlinear phase at the offset focused waist. However, such

an offset is unlikely to occur in practical applications due to the significant power reduction

associated with it.
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Figure 4.15: Simulations of the effects of waist offset on the ∆k bandwidth of both GQPM (a) and QPM

(b) devices with the following waist offsets from a central focus, 0% (dashed blue) 2% (green) 5% (red)

10% (light blue)

Instead the analysis shall consider only the more likely scenario of modest offset, such as

was outlined above, where the output power is approaching its peak. Figure 4.15(a) shows the

changing bandwidth response of an optimal GQPM device for varying degrees of waist offset, up

to a maximum offset of 10% of the device length. The same set of simulations are also shown

for QPM in Figure 4.15(b).

From these plots it is clear to see the high sensitivity of the bandwidth symmetry of GQPM

devices to even slight changes in waist offset, with the sinc like symmetry quickly becoming more

like that of standard focused QPM for offsets as small as 2% of the crystal length. As the offset

approaches 10%, which is approximately the point at which the power output of GQPM reduces

below that of QPM, the bandwidth becomes considerably worse than for QPM, with no sign of

the initial minima of the sinc response. Thus significant care must be taken to achieve proper

alignment of the device with the focused waist if bandwidth symmetry is of great importance,

but again, this is a relatively trivial optimisation requiring simple translation of the device whilst

optimising output power.

Finally, to complete the review of focus offset and spot size error these two effects shall be

combined, as this is the most likely scenario in real applications. Here the parameter that shall

be examined is the peak output power, although it is possible to analyse the change in bandwidth

symmetry it is much harder to quantify what constitutes good symmetry and thus makes drawing

conclusions difficult. To simplify the analysis both the spot size and waist offset are restricted

to a small subset of realisable values, with the spot size limited to ensure it will physically fit
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within the end apertures of a typical device without clipping and beam distortion. Of course

depending on device length and operating wavelength this parameter can vary significantly.
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Figure 4.16: Plots of normalised harmonic power output for errors in both the focused spot size and

waist offset from the centre of the device for GQPM (a) and QPM (b) showing the greater sensitivity

to waist position errors in GQPM devices. Note the power is normalised for each focus value.

The variation in harmonic power output with changing focus conditions are shown in Fig-

ure 4.16 for both GQPM and QPM devices. Here it should be noted that the plots have been

normalised at each focus value; this normalisation was performed to aid in observing the varia-

tion in efficiency with offset, which without normalisation would be impossible to examine for all

but the close to optimally focused conditions. When comparing the response of GQPM 4.16(a)

with that of QPM 4.16(b) it is clear to see the higher sensitivity of GQPM to an offset. This

result was predicted earlier for an optimal spot size with offset but it is now clear to see that

the effect becomes more pronounced for over tight focusing. However, it must not be forgotten

that for over tight focussing it was previously calculated that GQPM can offer substantial gains

in output power when compared with QPM operating under the same conditions and thus may

compensate for this sensitivity to offset errors.

A direct comparison of the output powers for GQPM and QPM for a range of spot sizes

and waist locations is shown in Figure 4.17. Here the output power of GQPM is presented

as a percentage of the output power obtained using standard QPM, showing the familiar 3.5%

increase in efficiency at a focus of ξ = 3.2 under optimal alignment. Further it is clear to see

that below approximately ξ = 1.9 GQPM is always less efficient than QPM irrespective of the

alignment and that for offsets larger than ±L/8 at the optimal spot size QPM again becomes

more efficient. Both of these limiting cases were previously predicted. However, what is perhaps
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Figure 4.17: A plot of the percentage power difference of a GQPM device designed for ξ = 3.32 relative

to a standard QPM device simulating the effects of both incorrect spot size and waist offset. Here it can

be seen that if ξ ≥ 1.9 and the waist offset is within the range of approximately ±L/8 a GQPM 3.32

device will always outperform QPM.

surprising is that the constraint on the acceptable offset in waist position holds true for all

focusing values. Despite the greater sensitivity GQPM has to offset errors at tighter focus this is

almost exactly compensated by the greatly increasing efficiency of such a device in comparison

with QPM.

In summary, this analysis has demonstrated the remarkable resilience of Gouy compensated

QPM structures to errors in the optical launch. With such devices when operating with an incor-

rectly sized centrally located focus showing no worse than a 4% reduction in output power when

compared to standard QPM at the same focus, with such a condition only occurring when the

focus ratio is orders of magnitude too small. This modest reduction however is insignificant when

compared with the loss in output power resulting from operating at such a loose focus compared

to optimal focus, where for example a 1% reduction in power relative to QPM corresponds to a

15% reduction from the peak power obtainable at correct focus.

Further, it has been shown that only moderate care must be taken to align GQPM with

the focused waist, with output powers higher than that achieved by QPM for the same offset

obtainable when the focused waist is centrally located within a range of approximately 25% of

the entire device length. However, if nonlinear bandwidth symmetry is of concern then more

exacting care must be taken in alignment, with significant asymmetry returning to the bandwidth

for offsets greater than approximately ±5% of the device length.



4.4 Operational considerations for Gouy compensated QPM 113

4.4.2 Sensitivity to fabrication errors

Having fully investigated the effects of a non-optimal optical launch the preceding analysis is now

applied to investigate the effects of incorrectly fabricated GQPM devices on both the efficiency

and bandwidth symmetry. For simplicity it is assumed that these poor quality grating structures

are operating with a perfectly aligned optical system. The three effects that shall be modelled

here are the effects of domain boundary position rounding error created by the minimum resolu-

tion of the photolithography mask, the effect of overgrowth of the polarisation inverted domains

and finally the susceptibility of the device performance to random errors in the size and position

of domains.

Previous work [16] has shown that QPM structures are relatively insensitive to such fab-

rication errors, showing only slight drops in efficiency for moderate errors. Additionally, it is

quite possible to achieve nonlinear bandwidths in line with that predicted by QPM theory [19]

demonstrating that, even with the inevitable fabrication errors, the overall periodicity of the

QPM grating is the dominant factor in determining the response. Thus it can be expected

that GQPM devices are equally as insensitive to fabrication errors, with the changing grating

periodicity being the dominant factor in defining such a structure.

To enable this analysis the optimal positions of the domain boundaries have been calculated

using Equation 4.40 and the midpoint of each domain determined. From this it is possible to

simulate over or under sized domains as well as displace the centre of domains from the calculated

midpoint in addition to varying the domain size. For this analysis a device length of 20 mm and

a nominal period of 6.5µm has been chosen to simulate the harmonic generation of 532 nm

radiation from a 1064 nm Nd:YAG laser using the nonlinear material lithium niobate. With this

length of device random position errors should have minimal effect on the functionality, with

small errors being averaged out along the length. For short lengths this is not possible and such

errors have a much larger influence on the device characteristics.

The results of the simulations for both over sized domains and random errors in the placement

of the domain boundaries, from the calculated centre, are shown in Figure 4.18. For the over-sized

domains all positively polarised domains have been set to be 20% larger than the optimal value

and vice versa for negatively polarised sections. The situation of having all inverted domains

over sized can be a common problem when fabricating a QPM structure in lithium niobate using

electric field poling techniques. In simulating the random domain boundary positions the error

has been allowed to randomly vary in an uniform distribution between ±20% of the nominal

domain size, with the variation changing per domain. This technique can lead to conditions

where the phase of an otherwise standard domain is offset or alternatively just create over or
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Figure 4.18: Simulation of the effects of 20% overgrowth of domain size (red) and domain boundary

placement errors (green), using a random distribution of positioning errors of up to ±20% of the domain

size, on the efficiency and symmetry of both GQPM (a)(c) and QPM (b)(d) devices compared with

perfect GQPM and QPM (blue).

under-sized domains or even a combination of the two. As can be clearly seen from the linear

plots of the GQPM bandwidth 4.18(a) there is no great penalty for either the over sized domains

(red) or the randomly distributed domains (green), with the only noticeable effect being the slight

reduction in efficiency. When this reduction is compared with the same simulations for standard

QPM 4.18(b) it is found that the efficiency drop is indistinguishable, with this result confirming

the earlier statement that the grating periodicity and not individual domains determine the

device characteristics. What is also encouraging from these plots is the apparent lack of shift in

the phase matching conditions, implying that the Gouy phase is still being correctly compensated

despite the errors. This effect is further apparent in the logarithmic plots of the bandwidth where

it can be seen that there is no discernible difference between the response of the over-sized domain

simulation and that of perfect GQPM 4.18(c), with the same holding true for standard QPM
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4.18(d).
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Figure 4.19: Simulation of the effects of overpoling (a), and random domain placement errors (b), on

the efficiency of both GQPM (blue) and QPM (green dashed) devices. Here both the over poling and

random errors are as a percentage of the nominal domain size.

Finally, the analysis shall now look solely at the change in harmonic power of both GQPM

and QPM for varying degrees of the two parameters from above. The plots in Figure 4.19

show the variation in harmonic power for both over-sized domains 4.19(a) and random domain

positions 4.19(b), where the simulation has been performed for progressively more severe errors.

As would be expected it is clear at 100% error in the domain size and position the output power

for both devices is negligible as the grating structure has become a uniform domain and thus

provides no phase-matching. Surprisingly however, GQPM is able to maintain the advantage in

output power for both error types and for all degrees of error, never dropping below the peak

power of standard QPM.

Thus, as is the case for standard grating structures, fabrication errors have relatively negligi-

ble effect on the behaviour of GQPM devices with any detrimental effects of these errors being

common to both device types.

4.5 Experimental results

To test the real world performance of the theorised GQPM structures devices have been fabri-

cated in the nonlinear material lithium niobate. This material was chosen as it provides excellent

domain quality when fabricated using our electric field poling process as outlined in Chapter 2.

For these experiments devices with a nominal grating period of approximately 6.5µm, allowing

frequency doubling of a 1064 nm Nd:YAG laser at a device temperature of 160 ◦C, were fabri-
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cated. Further, these devices are based on a standard format of 20 mm in length and 0.5 mm in

thickness, with such dimensions providing efficient harmonic signal generation and large aper-

tures to accommodate the focused fundamental beam. Here, however, a compromise is made

between longer device lengths, which provide stronger harmonic signals and crucially less strin-

gent tolerances on alignment, and shorter lengths which help ensure high quality fabricated

devices with a good yield. For ease of testing samples were manufactured to have numerous

GQPM grating designs on a single lithium niobate device, with gratings capable of fully com-

pensating the Gouy phase for focusing values of ξ = 1.0, 2.84, 3.32 and 5.0 and additionally, for

comparison, a standard constant period QPM device.

Prior to testing accurate measurements of focused spot size and waist location and subsequent

adjustment must be made. Spot size adjustments are made with the use of a adjustable afocal

beam expander, comprising a pair of converging lenses and a single diverging lens providing

approximately 1-2x magnification. With the first converging lens and the diverging lens providing

the magnification and the final converging lens acting as a collimator, with the final focusing

provided by an additional fixed converging lens close to the nonlinear sample.

4.5.1 Spot size measurement

Numerous measurement techniques were attempted to obtain accurate measurements of the

focused spot size the first of which was the use of transmitting ruled gratings or Ronchi rulings.

Such grating structures can be used to determine the spot size by observing the modulation depth

of the transmitted laser power as a known period grating is translated perpendicularly through

the beam [20]. Using a simple look-up table of the modulation depth between maximum and

minimum transmittance for a given ruled grating period it is possible to readily obtain accurate

values for the focused beam size. Here, maximum power is obtained when the focused spot is

central to an opening on the grating structure and the minimum occurs when the centre of the

beam is occluded by the high reflectivity grating. The advantage of this method compared with

say the simple knife-edge technique is that there is no requirement to correlate the measured

power with a translation position, which for the knife edge is essential to provided a scaling

of the recorded power trace. Instead using the ruled grating technique all scaling is provided

by the known period of the grating and as such these measurements can be performed without

specialised precision translation stages. An example of the variation in modulation depth for a

ruled grating, with a period of 20 lines per mm, for a range of spot sizes is given in Figure 4.20.

Despite the advantages such a rapid measurement technique provides it proved unsuitable for

use in measuring the focused spot size. For the spot sizes required to provide optimal focusing for
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Figure 4.20: The theoretical variation in normalised transmitted power through a transmission ruled

grating of 20 lines per mm for varying spot sizes. Here power is normalised to total laser power without

a grating structure.

the lengths of material described above, approximately 23.4µm at 1/e2 for ξ = 2.84 and 21.7µm

at ξ = 3.32, a ruled grating period of 20 lines per mm proves ideal. With a 25µm spot equating

to approximately a 50% modulation from full laser power. However, with such a fine period the

ruled grating acts as a diffraction grating causing the very rapid divergence of the transmitted

beam and thus preventing complete collection of the power at a detector. Although this prevents

accurate determination of the actual spot size it does still allow for approximate positioning of

the focused waist, by maximising the modulation depth of the zeroth order diffracted beam.

The technique finally used in this work for characterising the focused beam dimensions is that

of the simple knife-edge. Here by translating a sharp, non-transmitting, straight edge through

the beam and recording the power reaching the detector for known translation distances an

error function curve is obtained. From simple analysis of the Gaussian distribution function

this error function curve can readily be attributed to a spot size. Further to obtain an accurate

measurement of the size and position of the focused waist it is necessary to take numerous

readings of the beam radius along the axis of the focused beam, which by subsequent analysis

can be correlated with the diffraction properties of Gaussian beams and a good estimate of spot

size and location may be obtained. An example of the recorded error function curves for a focus

spot size of approximately 23µm corresponding to a focus ratio of ξ = 2.84 along with best fit

theoretical plots is shown in Figure 4.21. These results are further correlated with the known

variation in spot size due to diffraction in Figure 4.22 and thus give a good estimate of the

focused spot parameters.

This technique, although simple and quite accurate, is labour intensive with many readings

required for each spot size measurement. In this case, to maximise accuracy, power recordings
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(d)

Figure 4.21: Measurements of transmitted power (dots) and best fit theoretical error function curves

(green) for movements in the location of a knife edge through the focused beam at positions along the

focus axis.

were taken over a 350µm range in 10µm increments through the beam, with this measurement

repeated a further 25 times at 1 mm increments along the axis of the beam producing over 900

data points per spot size measurement. Despite this large number of data points it proved difficult

to achieve reliable measurements without further steps to minimise errors. These included tightly

aperturing the beam along the optical path to prevent stray back reflections from all the un-

coated focusing optics reaching the detector and further aperturing of the knife-edge to prevent

stray reflections from the knife blade.

Even with all the steps taken to achieve good quality beam measurements it is still clear

from Figure 4.21(a) that discrepancies between the measurements and theory exist. Further,

examining the variation in spot size with distance, as shown in Figure 4.22, it is found that

although good agreement with theory can be obtained for the larger diffracted measurements

the analysis breaks down close to the focus, with measured spot sizes being considerably tighter
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Figure 4.22: Measured spot size for positions along the focused beam (blue) and best fit Gaussian beam

diffraction (green) corresponding to a focus of ξ = 2.48, also shown is the ideal spot size variation for a

focus of ξ = 2.84 (red).

than predicted by the theoretical fitting. The reasons for this are likely two fold, the first and

most influential being the insufficient number of data points on the most rapidly varying part

of the recorded error functions, which allows for somewhat arbitrary fitting to theoretical plots.

Secondly is non-uniformities in the straightness of the knife-edge, either through an unintended

mounting angle from vertical or through possible fluctuations on the edge surface, both of which

only need to be slight to have an impact with a 25µm beam radius.

Finally, before characterisation of the GQPM samples can begin an adjustment must be made

to the position of the focused spot to take into account the movement of the waist due to the

changing of the beams radius of curvature as a result of the transition from the low refractive

index of air into the much higher index of lithium niobate. This movement can be readily

calculated by, among other methods, ray matrix analysis and shows a shift of approximately

4 mm for a 20 mm length sample of LiNbO3. To facilitate in the alignment of the system this

adjustment was accounted for in the spot size measurements by offsetting the knife edge from the

ideal focal plane. This was achieved by modifying a mounting device, usually used to accurately

locate the QPM samples, to hold a knife edge at the required offset distance. Thus once the

focused waist is located a direct replacement of the modified mount with the mounted GQPM

sample to be tested results in a near perfectly centred focus.
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4.5.2 Harmonic power variations with temperature tuning

Finally, with the dimensions and location of the focused spot size determined temperature-tuned

harmonic power output curves were recorded to verify the theorised characteristics of the GQPM

samples, in particular the shifting peak phase-matching temperature and returning temperature-

tuning symmetry.

Figure 4.23: A long exposure photograph of the optical set-up used to measure the performance of the

GQPM samples. Shown in this picture are the Nd:YAG laser (a), Beam expander telescope (b), focusing

lens (c), Oven and GQPM sample (d), dispersive prism (e) and detector/lock-in amplifier (f). Note, the

IR beam has been superimposed on the image to emphasise the optical path.

As stated previously the devices were designed to phase-match with a 1064nm Nd:YAG laser

at an operating temperature of approximately 160 ◦C, with this high temperature operation

essential to combat the effects of photorefractive damage [21]. For these experiments a single-

longitudinal mode YAG laser, with a bandwidth of < 10−5 nm and a power output of 100mW

was used as the fundamental pump source. Although, due to the Fresnel reflections from the

un-coated optics and other losses in the system the available power at the nonlinear device drops

to approximately 65mW. Due to this relatively low optical power, which is reduced by a further

14% by the Fresnel reflection on entering the high index lithium niobate sample, and the desire to
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observe the characteristics of the low power phase-matched side lobes, a lock-in amplifier is used

to record the harmonic power. Control of the device temperature is performed using a standard

resistive element PPLN oven attached to a computer controlled current source and custom PID

control algorithm. A photograph of this optical setup is shown in Figure 4.23

Prior to the temperature tuning measurements the output power and output beam quality

of both the fundamental and harmonic are optimised, by adjusting lateral grating position and

tilt and rotation of the samples with the device temperature held close to the optimum value.

However, it is found as a direct consequence of this precise alignment strong back reflections

of both the fundamental and the harmonic beams, from the un-coated device facets, propagate

back through the focusing optics into the laser cavity causing significant laser instability. In

an attempt to overcome this fluctuating laser power, with these power spikes causing variations

in the harmonic power of the order of the 3 times the steady state peak, isolation of the laser

is provided through the use of a Faraday isolator. Despite this isolation, of the order of 40dB

suppression of the back propagating fundamental, sporadic power fluctuations are still observed

and thus in a further attempt to minimise these effects the nonlinear device is mounted so the

end facet is at an angle from perpendicular to the beam.

With a relatively stable harmonic output power obtained temperature tuning curves were

recorded for both QPM and GQPM devices, with the specific GQPM grating chosen to best

match the current spot size. In an effort to obtain useful comparisons of the peak phase-matching

temperature for both grating types the device temperature was held at a temperature 1 ◦C above

the highest temperature point of interest for a minimum of 2 minutes, with the further constraint

that the average temperature for this period vary by less than 0.05 ◦C from the set point, ensuring

an uniform temperature across the sample. On reaching this steady state temperature the

voltage applied to the resistive oven element is gradually reduced providing a temperature fall of

approximately 0.6 ◦C/min. Measurement of the harmonic power was achieved first by collimating

the output of the crystal and subsequently passing the collimated beam through a dispersive

prism and separating out the fundamental and harmonic beams by propagating over a length

of some meters. Finally, the now spatially isolated harmonic beam is passed through an optical

chopper and onto a silicon photodiode, which to further increase the signal to noise ratio is

isolated from room light and stray fundamental signal with the use of band pass filters and black

out tubes.

The first recorded data for a GQPM device is shown in Figure 4.24, with this measurement

taken using a close to optimal focus of approximately ξ = 2.67 and the GQPM2.84 grating struc-

ture. As can be seen in Figure 4.24(a) the recorded temperature tuning response is significantly
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Figure 4.24: (a) the initial measured ∆k tuning response of a GQPM sample, here the sample has been

placed at the optimum focus as determined by the spot size measurements. (b) Improvements in the

measured symmetry for successive 100µm shifts along the beam axis.

asymmetric, although less so than would be expected from a standard QPM device under the

same conditions. Here some asymmetry can be expected from the incorrect spot size but further

from possible misalignment of the focus with the device centre. The cause of this asymmetry

was experimentally explored through slight movement of the GQPM sample relative to the ex-

pected waist position, with the results of this shown in Figure 4.24(b). Each plot in this figure

represents a movement of 100µm along the beam axis, with the movement in the direction of

the laser propagation. What is evident is the reducing asymmetry with each successive move-

ment, culminating in the highly symmetrical plot (shown red), giving credence to the original

belief of a slight offset in the waist position leading to the significant asymmetry. If these results

are compared with those predicted in Figures 4.13(a) and 4.15(a) it is clear that the changing

asymmetry does indeed more closely resemble that for an incorrect waist position, although it

should be stressed that these particular theoretical plots are for a focus of ξ = 3.32.

With the most symmetrical response obtained, via movement of the focus position, it is

appropriate to compare the recorded response with that theorised from earlier calculations.

Figure 4.25 shows the same measured response as above along with the theoretical response for

both GQPM2.84 with a centrally located ideal focus of ξ = 2.84 and GQPM2.84 with a focus of

ξ = 2.67, as was used for the measurements. Here it is evident that compared with the optimally

focused device the response is remarkably symmetric, with the only slight asymmetry being the

magnitude of the side lobes. However, with the theorised side lobes almost 2 orders of magnitude

lower than the main peak this slight error in the second side lobe is perfectly acceptable. The
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only significant deviation from theory is the missing first zero of the sinc oscillation, but with this

zero being over 4 orders of magnitude lower than the peak it is perhaps not surprising. When

compared with the theory for a ξ = 2.67 focus with GQPM2.84 it can be seen that it should be

expected that the first zero of the response for lower temperatures become less defined. However,

this is not true for higher temperatures so another mechanism must be affecting the measured

response.
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Figure 4.25: Log plots of the measured temperature tuning response of a 20mm GQPM2.84 sample

(blue) and theoretical response of GQPM2.84 for focusing at ξ = 2.67.

One possible explanation for the poor definition of the first zero may be the non-Gaussian

nature of the fundamental laser beam. It is likely that there are higher order spatial modes

within the focussed beam which cannot be correctly phase matched by this structure, with the

high order spatial modes having a more rapidly varying and larger Gouy phase. Further, it

is unlikely that the poled structure is perfect and without domain flaws. Although it has been

shown that poling errors have little effect on the overall device performance, when combined with

the non-ideal mode of a real laser it is likely that strong zeros cannot in practice be obtained.

It should be stressed that it is at present unclear why the theoretical response for GQPM2.84

is so different from the plane wave response of QPM, with a much deeper first zero and varying

period for the side lobes. Although the response of standard windowing techniques from Fourier

analysis, which are similar to the Gaussian windowing applied to QPM structure by virtue of

the focused intensity, can produce almost identical features.

Having demonstrated the generally good agreement of the measured temperature tuning

response of GQPM2.84 with that predicted by theory it is now useful to compare this response

with that of a measured standard QPM response under the same conditions. Figure 4.26(a)
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shows the recorded temperature tuning profile of both these devices, here shown on a linear

scale to highlight the significant shift in peak phase-matching temperature. Also shown in this

plot are the theoretical plots of the expected shift in temperature for both devices, although these

plots are difficult to differentiate from the measured data due to the very close agreement. To

ensure accurate temperature readings for this measurement both device types are within the same

physical sample, requiring only a sideways translation of the sample to change grating structure,

thus maintaining the focal position. Further, as mentioned above, for both measurements the

device temperature was stabilised to within 0.05 ◦C for a minimum of 2 minutes before beginning

the temperature scan ensuring accurate temperature readings. From this temperature shift, in

addition to the near symmetric tuning response, it can readily be inferred that the GQPM

structure is indeed fully compensating for the Gouy phase of the focussed beam.
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Figure 4.26: (a) Measured temperature tuning responses for QPM (green) and GQPM2.84 (blue) and

corresponding theoretical responses (black) for a focus ratio of ξ = 2.84. (b) Comparison of the measured

responses of 20mm long samples of GQPM2.84 (blue) and QPM (green) at a focus of ξ =2.84. Note

QPM shifted to allow direct comparison of the asymmetry.

To highlight the detrimental effects that the Gouy phase has on standard focused QPM

interactions Figure 4.26(b) re-plots the recorded data for both device types, but now on a log-

arithmic scale and with both curves overlaid, detailing the significant asymmetry in the tuning

curve normally obtained for standard QPM interactions and the much narrower bandwidth that

is achievable by compensating for the Gouy phase.

Although it has been shown that at the focus ratio of ξ = 2.84 all the detrimental effects of the

Gouy phase variation can be negated it has so far not been possible to verify the performance

enhancements offered by utilising the tighter focus compensated devices at ξ = 3.3198. On



4.6 Conclusions 125

attempting the characterisation of these devices significant feedback into the single mode laser

cavity caused extensive power fluctuations in both the fundamental and harmonic power, with

the SHG signal experiencing fluctuations of the order 300% above the steady state value. In

an attempt to rectify this will be necessary to anti-reflection coat the samples thus preventing

excessive optical feedback.

4.6 Conclusions

This chapter describes the interactions of focused Gaussian beams in nonlinear materials, partic-

ularly the parametric interaction of second harmonic generation. Building on the work carried

out by Boyd and Kleinman in 1968 [6] this work extends their analysis to explicitly consider the

detrimental effects of the Gouy phase, an inherent property of focused waves, on the nonlinear

interaction. It is theoretically shown that the focusing condition of ξ = 2.84, proposed by Boyd

and Kleinman and long regarded as the optimal for second harmonic power generation, is in

fact a compromise with the Gouy phase shift offsetting the useful aspects of higher intensities at

tighter focusing. It is further shown that by negating the effects of the Gouy phase it is possible

to obtain higher output powers than standard uncompensated interactions for any focus value,

with the optimal focusing conditions now occurring at a tighter value of ξ = 3.3198, providing a

3.5% increase in efficiency. Additionally by removing the effects of the Gouy phase it is possible

to achieve fully symmetric ∆k tuning responses and a shift in the phase matching conditions

back to that of plane wave interactions, with possible applications including creating narrow

line frequency doubled laser sources. This work has also described how, by means of a simple

modification to the periodicity of a standard QPM device, the Gouy phase can be counteracted.

Further, using such a device the theoretical results of returning symmetry and shifting phase

matching conditions have been experimentally verified.
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Chapter 5

Focus compensated Synthesised

Gratings

5.1 Introduction

In Chapter 3 a study was undertaken to modify standard QPM devices to provide flat-top and

wide bandwidth second harmonic temperature tuning responses, the purpose being for packaging

with sources where either the operating temperature or fundamental pump wavelength are poorly

constrained. Where a high degree of stability of these parameters is essential for the efficient

operation of standard nonlinear devices. It was shown that by deliberately reducing the number

of polarisation inverted regions over a given length of quasi-phase matched structure it is possible

to create a predictable reduction in the effective nonlinearity for that region. Further with the

introduction of π phase shifts in the periodicity it is possible to create an effective negative

nonlinearity.

Using a combination of these two techniques the effective nonlinearity of a QPM device

could be altered to match arbitrary real mathematical functions, however with the one caveat

that due to the limited number of possible sites of polarisation inversion for a given length

of device the mathematical function could only be represented by quantised values. Despite

this it proved possible to alter a QPM devices effective nonlinearity to broadly correspond to

that of the mathematical function sinc. Here the sinc function is of particular importance as

its frequency domain response is that of a perfect top-hat or flat-top, with the temperature

or wavelength tuning response of device with a mathematically equivalent nonlinearity in turn

becoming flat-top.

128
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Throughout the design of such devices a high speed simulation technique was utilised to pre-

dict their conversion efficiency and temperature tuning response. However, such a technique was

only ever intended to provide accurate simulations for plane-wave waveguide interactions. As a

result, on the subsequent free-space focused beam experimental verification of the performance

of these structures it was found that the tuning response although broadly similar to theory

contained unexpected features. The most detrimental of which being the asymmetric tuning re-

sponse which causes relatively large power fluctuations, above the acceptable design constraints,

for variations in operating temperature. Here, a focused interaction is considered both for its

reduced fabrication steps when compared with waveguide based devices and, additionally, as

bulk focused interactions are of considerable interest for high power harmonic generation. With

waveguide based devices severely power limited in comparison.

In this chapter a study into the effects of focused Gaussian beams on the temperature tuning

response and efficiency of synthesised flat-top bandwidth quasi-phase matched structures is un-

dertaken. This follows on from the work in Chapter 3, which demonstrated experimentally the

detrimental effects of a focused fundamental beam on the symmetry of the temperature tuning

response of a synthesised structure, and the work of Chapter 4 which highlights the cause of

such an asymmetry, in standard nonlinear devices, as the Gouy phase [1, 2]. It shall be shown

here that by compensating for the Gouy phase, using the technique detailed in Chapter 4, the

asymmetry of the flat-top bandwidth can be removed and further that the shifted peak phase

matching temperature that is associated with this effect can also be eliminated.

Additionally, this work proposes a method to overcome a narrowing of the phase-matching

bandwidth of the synthesised structures which arises as a result of the non-uniform parametric

interaction of the fundamental wave with the device nonlinearity, caused by the spatially varying

Gaussian beam intensity. Where the higher intensities at the the focus waist interact with the

near uniform high domain density at the crystal centre resulting in too large a response to be

adequately compensated by the phase reversed sections of the synthesised devcie. The technique

put forward to overcome this effect is fully compatible with both the initial design procedure

proposed in Chapter 3 and importantly the Gouy phase compensation technique.

Finally, an investigation into the optimal focusing conditions of these complex structures is

undertaken. Where due to the irregular distribution of the effective nonlinearity throughout

the length of these synthesised devices it is not possible to assume that the standard focusing

conditions, as used for uniform QPM structures, will provide optimal efficiency.
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5.2 The effects of focusing on flat-top temperature tuning

bandwidth

In Chapter 3 a thorough investigation of synthesised QPM devices for wide bandwidth, flat-top

temperature stable second harmonic generation was undertaken. Throughout this work the de-

sign of such devices considered the case of plane wave parametric interactions, such as can be

achieved with single-mode nonlinear waveguides. However, upon experimental testing of the syn-

thesised devices using a loosely focused laser beam it was found that the measured temperature

tuning response becomes asymmetric, creating an unacceptable variation in harmonic output

power with changing temperature. With this power variation across the ideal flat-top severely

reducing the bandwidth, defined as the temperature range over which power varies by less than

5% of the peak. This effect is further emphasised when operating close to the optimal focusing

conditions for standard QPM devices of the same physical length, as shown in Figure 5.1. Here,

the experimental data was taken using the optical launch described in the previous chapter, with

the focus ratio measured as ξ = 2.67 corresponding to a spot size of 24.2µm.
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Figure 5.1: Measured temperature tuning response of synthesised grating structures with sinc function

effective nonlinearity ranging over ±2π (a) and ±6π (b) using a focused interaction (blue) showing

asymmetric power output and the expected theoretical plane wave tuning response (green). The 95%

flat-top bandwidth of both plane-wave and focused interactions are highlighted.

Figure 5.1(a) shows the measured temperature tuning response of a synthesised device, de-

signed to provide approximately 1.81 ◦C of flat-top stability (as highlighted with the green dashed

lines) when operating under plane wave conditions. As can be seen from the plot the 95% sta-

bility bandwidth of such a device when operating with a focused fundamental beam (highlighted
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with blue dashed lines) is severely reduced, down to a bandwidth of only 0.74 ◦C, effectively

negating the bandwidth advantages of such a device for focused interactions. However, as can

be seen in Figure 5.1(b), which shows a synthesised device with a 4.23 ◦C flat-top plane wave

bandwidth, the effect of focusing is less detrimental than for the more narrow bandwidth device

with the bandwidth only dropping by 28% compared with 59% for the more narrow device.
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Figure 5.2: Measured temperature tuning response of synthesised grating structures with an effective

nonlinearity sinc function ranging over ±2π (a) and ±6π (b) using a focused interaction (blue) and the

corresponding theoretical focused tuning response (green) for ξ = 2.84.

To investigate the cause of these effects the focus modelling technique developed in Chapter 4

is applied to these complex synthesised structures. The results of these simulations are shown

in Figure 5.2, where initially the simulations are performed with a focus of ξ = 2.84. The

theoretical results show strong asymmetry with an excellent agreement to the measured data,

clearly showing that the asymmetry observed is indeed an artefact of the focused interaction

and not an unexpected response due to say imperfect device fabrication or poor optical launch.

Further, these results show an offset in the central operating temperature from that predicted

by plane wave analysis, although due to the chosen temperature scaling this is not evident in the

plots, with this offset moving the peak to lower temperatures indicating that these structures

suffer strongly from the effects of the Gouy phase. Having identified the likely cause for the

severe asymmetry it is now possible to provide a explanation for this and the resulting bandwidth

reduction for the narrower bandwidth device.

The key physical difference between the two manufactured device types is the active nonlinear

length, as shown in Figure 5.3, with the shorter active length device offering a greater flat-top

bandwidth. Here the active length is the distance between the furthest polarisation inverted
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Figure 5.3: A graphical representation of the Gouy phase shift in 20 mm long synthesised grating struc-

tures. Here it is clear that for the narrower bandwidth device, (a), the Gouy phase is larger in value

and less linear over the active grating region than in the wide bandwidth device (b).

periods, with any bulk material beyond these periods offering near zero net harmonic power due

to the interactions cancelling out over multiples of the coherence length.

By superimposing the theoretical Gouy phase of a perfect Gaussian beam with a focus ratio of

2.84, matching that of the experimental and theoretical results, onto the grating patterns above

it is clear that for the narrower bandwidth, longer active length device the variation of the Gouy

phase is both much greater and more nonlinear than for the wider bandwidth device. The effect

of this is twofold, firstly due to the larger phase variation a more pronounced linear dispersion

compensation, provided by temperature offset, is required for efficient operation of the narrower

devices. Secondly, and more importantly, due to the more nonlinear nature of the Gouy phase

over the length of the longer active length device a linear ∆k compensation, as can be provided by

temperature tuning, is unable to adequately counteract this phase advancement. This, as seen in

Chapter 4, provides a route for raised efficiency operation at a temperature de-tuning below the

central optimum. However, unlike for standard QPM devices where this raised efficiency occurs

close to a zero on the sinc tuning profile and thus not altering the response significantly, the

flat-top nature of these synthesised devices amplifies the effects of this raised efficiency resulting

in a significantly asymmetric temperature tuning response and reduced flat-top bandwidth.
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5.3 Compensating for the Gouy phase

Having demonstrated how the Gouy phase of a focused beam interacts with complex synthesised

structures, producing an undesirable highly asymmetric, relatively narrow bandwidth temper-

ature tuning response, the analysis now turns to mitigating these effects using the techniques

pioneered in Chapter 4 with the aim of returning the response to that of plane-wave interactions.

Due to the deliberate design criteria that the domain size and period of the synthesised struc-

tures be unaltered compared with a standard QPM device phase matching the same nonlinear

interaction the technique of compensating the Gouy phase, by subtly moving the position of the

domains to maintain a phase lock between the grating and the propagating wave, is trivial to

apply. This is made further apparent when it is considered that on designing the synthesised

grating structure there is no concept of the phase-matching requirements of the proposed har-

monic interaction other than a knowledge of the number of periods that can physically reside in

the given device length. With instead the design simply consisting of a binary data set stating

the existence or lack of polarisation inverted domains to match the required effective nonlinear-

ity, with the exact positions of these domains only calculated later as needed for modelling or

fabrication purposes. Here, as for compensating standard focused interactions, the position of

each domain is calculated according to the position of zero crossings of the following

κ (τ) = cos (στ + arctan [τ ]) , (5.1)

with σ = ∆kb/2, b is the confocal parameter and τ = 2 (z − f) /2 with f the focal position

within the device which is assumed to be central.

Now, by applying this technique to the designed synthesised gratings the following temper-

ature tuning responses are obtained upon theoretical modelling with a focus ratio of ξ = 2.84,

see Figure 5.4. As can be seen the theoretical responses have regained their symmetry and

additionally, not shown, the central phase-matching temperature now corresponds exactly to

the plane-wave value. Thus it is clear that the effects of the Gouy phase have been completely

negated.

However, despite complete compensation of the deleterious effects of the Gouy phase the

obtained flat-top bandwidth is still reduced compared with plane-wave theory. With a reduction

of 40% for the narrowest bandwidth device and 17.1% for the larger bandwidth. Also evident

from these simulations is a smoothing of the flat-top bandwidth, which from Fourier analysis can

be attributed to a windowing or apodisation of the nonlinearity. With this windowing removing

any discontinuity in the nonlinearity, resulting in a reduction of the oscillations across the flat-top

which are caused by the finite nature of the sinc like nonlinearity.
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Figure 5.4: Theoretical plots of Gouy compensated wide bandwidth structures under focused conditions

(blue) demonstrating a return to temperature tuning symmetry. Note the Gouy compensated bandwidth

is reduced compared with plane-wave (green), with this effect more pronounced for the less wide device.

Here the cause of both the reduced bandwidth and the smoothed flat-top response can be

attributed to the spatially varying power density of the focused fundamental beam. With the

focusing producing a weighting on the efficiency of the nonlinear interaction that is highest at

the centre of the focus and rapidly reducing towards the device extremities. The effect of this

weighting on the bandwidth is to reduce the influence of the phase inverted sinc side lobes, the

function of which is to turn an otherwise simple apodisation of the nonlinearity which would not

provide any useful bandwidth gain into the more broadband flat-top. This weighting has the

effect of further reducing what little nonlinearity is available at the extremities of the device,

which has already been intentionally reduced by a raised cosine apodisation in an effort to stop

excessive ripple along the flat-top. In reducing this nonlinearity further all ripple along the flat-

top is now removed, this proves detrimental for the particular devices under test as they have

been carefully designed with some deliberate ripple, but below a 5% variation, with the intention

of increasing the bandwidth.

5.4 Compensating for spatially varying focused fundamen-

tal power

To further improve the temperature tuning response of the synthesised structures under the

effects of focusing, returning to the response achieved using plane wave simulations, a compensa-

tion for the spatially varying intensity of the focused Gaussian beam must be made. To correctly
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compensate for this variation the exact properties of the focused beam must be known, specifi-

cally the Rayleigh range of the focused beam must be known so that an accurate mapping of the

intensity within the synthesised device can be achieved. For this initial demonstration it shall be

assumed that the focused beam has a Rayleigh range such that the focusing ratio is the familiar

ξ = 2.84.

With knowledge of the focus ratio it is trivial to calculate the peak electric field of the

focused mode at any point along its focus axis. Using this data it is possible to almost completely

compensate for the effects of its variation by pre-biasing the strength of the effective nonlinearity

such that the nonlinear regions with lowest applied electric field receive the highest value of

effective nonlinearity. Of course with it being impossible to actively increase the nonlinearity

of a QPM structure the procedure instead reduces the nonlinearity of sections of the grating

that would otherwise have a high nonlinear efficiency due to the large focused intensity of the

fundamental. This is achieved by deliberately removing regions of polarisation inversion. This

technique is of course fully compatible with the previous technique of converting the nonlinearity

to match the profile of a truncated sinc function, requiring only a simple multiplication of the

desired sinc function, the windowing function required to achieve flat-top operation under plane-

wave conditions and finally the scaled inverted variation of electric field.

In order to verify the validity of this technique an attempt has been made to compensate

for all the effects of focusing present in a standard QPM interaction. As before, the simulations

undertaken here utilise the non-depletion analysis tool decribed in Chapter 4 which is based on

the analytic model developed by Boyd and Kleinman [3]. The plots of Figure 5.5(a) detail the

negative impact focusing has on the temperature tuning response. In this figure are plots of an

ideal plane wave interaction, shown in blue, a focused interaction at ξ = 2.84 shown in green

and finally a Gouy phase compensated interaction also at ξ = 2.84 shown in red. Here it is clear

to see the large shift in peak phase matching temperature and the asymmetry in the response

of the standard QPM interaction as a result of the focused Gouy phase and the further removal

of the negative features upon correct Gouy phase compensation. However, despite the Gouy

compensation the tuning response of the GQPM device does not exactly match that of plane

wave analysis, having a wider bandwidth and reduced side lobes. Here the reduced side lobes

are as a result of the effective apodisation of the nonlinearity by the focused intensity, an effect

identical to the smoothing of the ripple of flat-top synthesised structures. Further, the increased

bandwidth can be attributed to an effective shortening of the device length with only a relatively

short section of the grating gaining from the high intensity focused waist.

Thus, to reduce the bandwidth of a standard QPM device under focusing, back to that
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Figure 5.5: (a) The theorised variation in temperature tuning bandwidth for a plane wave 8 mm PPLN

device (blue), 8 mm device under focusing at ξ = 2.84 (green) and 20 mm GQPM (red). (b) temperature

tuning bandwidth for plane-wave (blue), GQPM (red) and Gouy and spatial intensity compensated

devices (green).

obtained under plane-wave, it is necessary to increase the effective length of the nonlinear inter-

action. This of course can be achieved by physically extending the length of the device, however

doing so will change the focus ratio which will need further compensation. Instead using the

technique detailed above a weighting is applied to the uniform QPM structure that is propor-

tional to the inverse of the electric field thus increasing the length of equivalent nonlinear drive.

This weighting is normalised such that the maximum weighting corresponds to a section of QPM

with the highest domain density attainable, i.e. no missing polarisation inverted domains. Fig-

ure 5.6 shows the normalised weighting, or effective nonlinearity (blue plot), and the resulting

domain structure that would be suitable for compensating for the focused electric field variation

produced by a focus ratio of ξ = 2.84 in an 8 mm long QPM structure. Here the sample has been

limited to 8 mm thus reducing the total domain number so that the slight variation in domain

density can be visualised.

From this plot it is clear to see that a large reduction in domain density is required at the

point of peak focused intensity, with the average domain number for a given length reducing by

over 50% compared with standard uniform QPM. Of course, as a result, this technique would not

be used for reducing the bandwidth of QPM under focused conditions due to the corresponding

loss in efficiency. However, this is not a problem for synthesised devices as will be discussed

briefly. Further, from this plot it is possible to identify why this technique was stated earlier as

not being able to completely compensate for the intensity variation. Due to the limited periods
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Figure 5.6: Domain density and normalised Deff of QPM that can compensate for the effects of non-

uniform power density provided by a focused beam

within the QPM structure for a given length the variation in domain density must be quantised

resulting in a non-ideal compensation. In this particular example 40 quantisation levels were

found to provide a good compromise, with greater quantisation levels reducing the number of

samples available along the length of the device thus preventing a good fit with the ideal value.

With an appropriately compensated structure the analysis now returns to the temperature

tuning bandwidth performance, with the results shown in Figure 5.5(b). In this figure are the

plots of a plane-wave interaction in an 8 mm long uniform QPM device (blue) the focused but

Gouy compensated interaction through the same device (red) and finally the Gouy compensated,

spatially varying intensity compensated focused interaction of the 8 mm long device of Figure 5.6

(green). Here, it can be seen that the temperature bandwidth of the fully compensated struc-

ture has almost completely returned to that of the standard 8 mm long uniform QPM plane-wave

structure, with only the smallest of variation in the magnitude of the sinc side lobes. This minute

variation can be attributed to the quantisation of the normalised effective nonlinearity and thus

can be expected to be further improved with a longer device length or shorter wavelength inter-

action, both of which would provide more periods allowing finer quantisation control. From this

result it is now clear that it is possible to almost completely compensate for all the detrimen-

tal effects of focused Gaussian beams and that such techniques should perform equally well for

achieving the maximum flat-top bandwidth and efficiency of synthesised structures in focused

beam interactions.

The techniques verified above shall now be applied to flat-top bandwidth structures in an

effort to return the bandwidth back to that simulated under plane-wave conditions. However, at

this point it is prudent to mention that for designing an optimal device for focused interactions,

rather than attempt to design an optimal device under plane wave conditions and later adjust for

the effects of focusing, a more efficient technique is to perform all the initial optimisations using

focused interactions. This is evident from the results above on returning to plane-wave uniform

bandwidth, where great care was taken to optimise the quantisation levels to ensure minimal
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error. This freedom is not however available if the synthesised device has been pre-optimised

for plane-wave, where a small change in the quantisation levels to achieve good control over the

varying intensity can lead to drastic changes in the flat-top response.
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Figure 5.7: (a) The theorised variation in temperature tuning bandwidth for a wide bandwidth device

under plane-wave (blue), under focusing at ξ = 2.84 (green) and GQPM (red). (b) temperature tuning

bandwidth for plane-wave (blue), GQPM (red) and Gouy and spatial intensity compensated devices

(green).

Despite the difficulties in balancing the quantisation levels excellent results can still be

achieved as will now be shown. Figure 5.7(a) shows a flat-top bandwidth device, designed under

plane-wave conditions, providing a 95% bandwidth of 3.09 ◦C when operating with a theoretical

plane-wave (blue). As for the uniform QPM device above also shown is the uncompensated

response under a focus of ξ = 2.84 with a resulting bandwidth of 1.54 ◦C (green) and finally the

Gouy compensated response with an improved bandwidth of 2.35 ◦C (red).
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Figure 5.8: Graphic detailing the effective nonlinearity for an uncompensated wide bandwidth device

(green) and the Gouy and spatial intensity compensated device (blue). Also shown is the grating pattern

such an effective nonlinearity generates.

Now on compensating for the varying intensity, by applying a scaled windowing proportional
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to the inverted focused electric field variation, the following synthesised QPM structure is ob-

tained, see Figure 5.8. Also shown in this figure is the resulting normalised effective nonlinearity

(blue). To highlight the slight change in the effective nonlinearity caused by the intensity com-

pensation the plot of the fully compensated structure is contrasted with that of the optimal

plane wave device (green).

As can be seen the overall change to the shape of the sinc like structure is minimal, with only

a slight change in nonlinearity for all but the extremities of the device where the change is com-

paratively much larger. This of course is to be expected, with the inverted electric field weighting

being strongest at the far limits of the device. One point of interest is that unlike for the fully

compensated QPM structure of Figure 5.6 the overall efficiency of this fully compensated device

should increase slightly over that of the same device with simple Gouy phase compensation. In

the standard QPM device the compensation required an increase in the nonlinearity of the device

at its extremities, with this impossible to achieve instead a reduction to the nonlinearity is made

at the centre. Of course by reducing the nonlinearity the efficiency inevitably drops. However,

due to the complex structure of the synthesised devices the nonlinearity at the extremities can

be raised significantly without becoming greater than the nonlinearity required at the device

centre, thus the overall average nonlinearity of such a device will be higher.

The temperature tuning results of this new structure are shown in Figure 5.7(b), where again

the plane-wave results prior to any compensation are shown in blue, the bandwidth of the Gouy

compensated focused interaction shown in red and the fully compensated focused interaction

is shown in green. As can be seen the variation between the plane-wave result and the fully

compensated result is again minute, with the 95% flat-top bandwidth increasing to 3.09 ◦C from

2.35 ◦C for the simple Gouy adjusted device, with this bandwidth exactly matching that of the

plane-wave device. From this it is clear to see that even for a non-optimal device, with the initial

optimisation performed assuming a plane-wave interaction, the detrimental effects of focusing

can be compensated.

With this simple technique it is now possible to fully realise the potential of flat-top syn-

thesised devices for non-waveguide applications, where the bulk focusing method may be more

suitable due to high fundamental power levels that may lead to damage of the nonlinear material

in a tightly confined waveguide structure. However, for these structures to achieve their ultimate

performance, and become a viable substitute for waveguide based devices, a final optimisation

of the focusing conditions must be made to maximise harmonic conversion efficiency.
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5.5 Optimising focusing conditions for efficient operation

Throughout the analysis of focused interactions in these synthesised devices it has been assumed

that good harmonic generation efficiency can be achieved with a focusing value at or close

to that which is optimal for uniform QPM structures. However, it is clear from the plots

of domain density and distribution in Figure 5.3 that the effective lengths of these complex

structures are considerably shorter than the total device length and as such tighter focus is

likely required to achieve optimal efficiency, this is especially true for the wider bandwidth

devices with the correspondingly shorter active lengths. From this it is clear that there will be

no one focusing condition that allows efficient operation in all synthesised structures of varying

flat-top bandwidth and as such a dedicated study into the optimal focusing condition for each

device of interest must be undertaken.

In an attempt to quantify the optimal focusing conditions a theoretical analysis of four flat-top

devices has been undertaken, with the plane-wave flat-top bandwidths of these devices ranging

from 2 ◦C up to a maximum of 7 ◦C. These four devices have been preselected for low level

of flat-top oscillation in the hope that the temperature tuning responses remain stable under

the various focusing conditions. The preliminary results of these uncompensated gratings are

shown in Figure 5.9 where both the peak harmonic output power and the 95% stability flat-top

bandwidth are presented. From the plot of harmonic power in Figure 5.9(a) it is clear to see

that for all devices the uniform QPM optimal focusing condition of ξ = 2.84 is far from ideal,

being at maximum only 60% as efficient as at the focus providing optimal power, with this

value rapidly decreasing for the higher bandwidth devices. From this plot it is evident that the

prior assumption of a tighter focus being required to achieve efficient operation as the flat-top

bandwidth is increased is indeed correct. With a focus ratio of ξ = 10 and ξ = 29 being required

for optimal efficiency of the narrowest and widest bandwidth devices respectively.

However, at these tighter focus values a significant compromise is encountered, with the

95% flat-top bandwidth of the devices reducing by over 50% from the plane wave maximum,

as shown in Figure 5.9(b). This effect was of course highlighted earlier with both experimental

and theoretical results obtained at a focus of ξ = 2.84 and can be attributed, at least partially,

to the focused fundamental Gouy phase. What is perhaps surprising is that as the focus is

further tightened it is found that the bandwidths of all devices begin returning to the plane wave

value. This can be explained as the reduction in effective length leading to a general increase

in bandwidth. Where the effective length is reduced by the now rapidly diffracting fundamental

intensity only interacting efficiently with a very short section of the device.

The same analysis is now applied to the gratings after compensating for the Gouy phase shift,
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Figure 5.9: (a) Theoretical plots of the power variation with focusing for un-compensated wide bandwidth

devices, (b) flat-top bandwidth variation for changing focus value. For both plots device types are sinc

like effective nonlinearity with range ±2π (blue), ±3π (blue), ±4π (blue), ±5π (blue).

where the shift is fully compensated at each focus point with the results shown in Figure 5.10(a).

The results of these simulations are broadly in line with what is expected from the results on

uniform gratings in Chapter 4. The most obvious such result being the tighter focus value

required to achieve peak efficiency, this of course compares with the slight increase in optimal

focussing achieved in uniform gratings.

Further, after compensating the Gouy phase it is clear from Figure 5.10(b) that the reduction

in the flat-top bandwidth is less severe, where now the reduction is due solely to the effects of

focused intensity. It is again seen that after an initial reduction, caused by the tighter focus only

interacting strongly with the near uniform central grating region, the bandwidth again increases

due to the previously mentioned reduced effective length.

Finally, the optimum focusing conditions for fully compensated structures are now investi-

gated, where full compensation refers to simultaneously counteracting the effects of both the

Gouy phase and spatially varying intensity. The first observation of these results is the drastic

shift in optimum focus condition, with all device types operating at maximum efficiency at a

much looser focus value. Where for example the narrowest bandwidth device has had its optimal

focusing shift from ξ = 10 down to a much less severe value of ξ = 5.5. This effect is considerably

more pronounced for the wider bandwidth devices with the 7 ◦C bandwidth device moving from

ξ = 37 to a much more attainable value of ξ = 16, with the 1/e2 beam diameter at the device

aperture dropping from 480µm to a smaller 316µm and the focused spot size increasing from

6.49µm to 9.88µm (assuming LiNbO3 as the nonlinear material). Here these spot sizes can
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Figure 5.10: (a) Theoretical plots of the power variation with focusing for Gouy compensated wide

bandwidth devices, (b) flat-top bandwidth variation for changing focus value. For both plots device

types are sinc like effective nonlinearity with range ±2π (blue), ±3π (blue), ±4π (blue), ±5π (blue).

Here, Gouy compensation is recalculated at each focus value.

becoming quite limiting due to the limited aperture sizes of most QPM materials, with 500µm

being a common material thickness.

In addition to the reduction in the focus ratio it is also seen that these devices are more

sensitive to variations in this ratio, than either uncompensated or Gouy compensated devices,

with a small shift in focus conditions leading to a relatively large drop in harmonic output power.

Before analysing the flat-top bandwidth characteristics of these devices the cause of this shift

and increased sensitivity to focus ratio shall be investigated. On compensating for the spatial

variation in fundamental intensity a weighting has been applied to the grating structure that

is proportional to the inverse of the electric field strength. This weighting is of course more

significant as the focus is tightened, with the effect on the grating structure being an increase

in effective nonlinearity at the extremities which in turns creates an increase in effective device

length. Thus it can be seen that the process is self enforcing with a tighter focus leading to

higher peak electric fields and an increase in effective device length, both of which help drive the

efficiency of the nonlinear process higher.

This explanation can explain the higher sensitivity to focus ratio below the peak but cannot

account for the rolling over of efficiency with tightening focus and the subsequent rapid efficiency

drop. Where it would be expected that the combination of increased electric field and longer

effective interaction lengths would result in an ever increasing efficiency with tighter focus. This

process would in fact be the correct result if it were possible to indefinitely increase the effective
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Figure 5.11: (a) Theoretical plots of the power variation with focusing for Gouy and spatial intensity

compensated wide bandwidth devices, (b) flat-top bandwidth variation for changing focus value. For

both plots device types are sinc like effective nonlinearity with range ±2π (blue), ±3π (blue), ±4π (blue),

±5π (blue). Here, Gouy and spatial intensity compensation is recalculated at each focus value.

nonlinearity at the extremities of the device and thus increase the effective interaction length.

However, as explained earlier the increase in nonlinearity is only an effective increase, with it

being impossible to actively increase the nonlinearity of a QPM device above the natural nonlin-

earity. Instead the nonlinearity is effectively increased at the device extremities in proportion to

the nonlinearity at the centre, examples of this redistribution of nonlinearity for various focusing

values are given in Figure 5.12.

Here, for both figures - with Figure 5.12(a) being that of the 2 ◦C and Figure 5.12(b) being

the 7 ◦C flat-top bandwidth device - effective nonlinearities are shown for a plane wave interac-

tion (blue) and focusing values just above and below the optimum focusing condition (red and

green respectively). From these plots it is clear that as the optimum focusing conditions are

approached (green) the central region of the nominally sinc like strucure itself becomes broad-

ened and flattened, with a large proportion of the device having close to maximum effective

nonlinearity i.e. no missing domains. But, as can be seen for the tighter focusing condition

(red) the weighting compensation for the focused intensity can increase more rapidly than the

sinc function naturally decreases. This leads to the situation where the very centre of the sinc

structure is no longer the region with highest effective nonlinearity and as such domains must

be removed. Of course the very centre of the sinc is also the region with the highest focused

intensity, so as domains are removed from this section the efficiency rapidly decreases.

Having explained the unexpected efficiency behaviour of the devices with focusing the analysis
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Figure 5.12: The variation in the sinc like effective nonlinearity for 2 ◦C (a) and 7 ◦C (b) flat-top

bandwidth devices for plane wave conditions (blue), optimal focusing with spatial intensity compensation

applied (green) and for over tight focusing with intensity compensation.

now returns to Figure 5.11(b) and the effects of focusing on the flat-top bandwidth of these

completely compensated devices. With the full compensation of the effects of focusing it should

be expected that the bandwidth of these devices is unchanged no matter the level of focusing, with

only the efficiency being of concern when choosing the optimum focusing conditions. Although

this proposition holds true for some device types, in particular the lowest bandwidth devices

(blue) which has a maximum of 5% deviation in bandwidth, it is not the case for all devices. Of

particular note is the bandwidth variation of the most broadband device where it can be seen

that for focusing over ξ = 0.8 the 95% bandwidth is 0 ◦C. Here a 0 ◦C bandwidth implies that

an unacceptable variation in output power is achieved along the flat-top and as such the design

must be rejected.

The reason for this breakdown in the compensation technique can again be explained by the

limitation of using quantised values to represent the effective nonlinearity, where the number of

quantisation levels has been predetermined to optimise the plane-wave response. The problem

lies in that the optimisation of quantisation levels giving the best representation of the apodised

plane-wave sinc structure does not always translate to the best representation of the inverted

Gaussian intensity compensation. As such, although the effects of focusing can in principle

be negated the compensation techniques must be utilised throughout the design procedure and

not added as an afterthought to a plane-wave design. This however raises further difficulties

in optimising the domain structures, with now four variables requiring adjustment to obtain

the desired bandwidth response (sinc oscillations, quantisation levels, windowing function and
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focusing value). Despite this, and as shown by the plots of Figure 5.12, an upper limit on focus

ratio can be readily obtained by ensuring that the focus ratio is only increased for each design

until the point that the centre of the sinc function is no longer at maximum effective nonlinearity.

However, this technique will likely not hold for structures more complex than that of the simple

apodised sinc, such as devices designed by simulated annealing or other self optimising methods.

5.6 Conclusion

In conclusion in this chapter an analysis of the effects of focusing on the symmetry of the

temperature tuning response of synthesised QPM devices, designed for constant power operation

across large temperature fluctuations, has been performed. It has been experimentally shown

that when performing at close to optimum focusing conditions the flat-top temperature tuning

response of a synthesised device becomes highly asymmetric, resulting in a significant drop in

the temperature bandwidth over which constant power can be maintained. Using a simple low

power analytic model of focused Gaussian beams these measured asymmetries have been shown

to be entirely attributable to the Gouy phase shift of the focused beam. Further, using the

Gouy compensation technique highlighted in Chapter 4 it has been theoretically demonstrated

that this asymmetric response can be completely negated, with the compensation technique fully

compatible with the complex grating design.

Despite compensation of the focused Gouy phase it was found that the response of the devices

under focused interactions differed from the theoretical plane-wave simulations, with a reduction

in temperature bandwidth observed for all device types. This effect was theoretically shown to

be a consequence of the non-uniform power density along the axis of the focused beam, with the

extremities of the devices contributing less than the device centre due to the reduced focused

intensity. A correction for this effect has been proposed that pre-compensates for the spatial

power variation through an increase in the effective nonlinearity of the device extremities to

match the power variation of a focused Gaussian beam. This compensation has been shown,

through simulation, to completely counteract the spatial power variation and, when combined

with Gouy phase compensation, provides a tuning response almost exactly comparable to the

plane-wave case.

Finally, an investigation has been undertaken to determine the optimum focusing conditions

for these complex grating structures. With such gratings it is no longer reasonable to assume that

the optimum focusing conditions for bulk and uniform QPM gratings apply due to the complex

grating layout. It has been found that optimum focusing conditions for fully compensated

devices, both Gouy phase and spatial power compensated, are considerably less tight than for
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the uncompensated devices. Although, the optimum focusing is still considerably tighter in

the compensated devices compared with the uniform or bulk devices due to the much shorter

effective interaction length, with this being especially true for the greatest bandwidth devices.
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Chapter 6

Towards 100% focused efficiency

in QPM structures

6.1 Introduction

For the creation of laser sources by means of nonlinear parametric interactions to become viable

as an alternative to direct generation using solid-state or semi-conductor diode lasers many

inherent limitations must be overcome. Many of these limitations, which in the common materials

of lithium nobate and lithium tantalate include effects such as photorefractive damage, green

induced infra-red absorption (GRIIRA) and relatively low power handling, have been somewhat

negated with novel new material types. Where materials such as magnesium doped congruent

lithium niobate (MgO:LiNbO3) and lithium tantalate (MgO:LiTaO3) have shown great promise

in reducing the significance of these effects [1] and can result in improved working lifetimes under

more favourable working conditions [2]. However, these factors aside a greater concern is the

conversion efficiency of such a device for a given fundamental input power, where high efficiency

at all input power levels is desirable. Here many factors determine the overall device efficiency

and include the magnitude of the nonlinear coefficient, the phase-matching condition, device

length and fundamental input intensity. Of course the nonlinear coefficient is dependent on the

material type and cannot readily be improved upon. Instead, in this chapter attention shall

be given to understanding the effects of fundamental input intensity, device length and phase-

matching (specifically quasi-phase-matching) on the efficiency of the parametric interaction.

Many studies have previously been undertaken to determine the role of increased fundamental

intensity in nonlinear interactions, with particular attention paid to understanding the processes

148
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involved as 100% conversion efficiency is approached [3, 4, 5]. In these studies many differing

regimes are often considered these include; the guided wave regime, where high intensities can

be obtained even from relatively low input powers through tight modal confinement, focused

bulk interactions where intensity enhancement is provided by constraining the power through

tight focusing [6, 7] and intra-cavity regimes where the high intensity is provided by the large

oscillated field [8]. A further regime encountered is that of unfocused bulk interactions, where

the high power density provided by focussing is not desired as it can lead to optical damage

in the nonlinear device with sufficiently high fundamental powers [9]. To date none of the

theoretical analysises have been all encompassing, with some only treating focused beams as

simple superpositions of plane-waves [10], whilst others although accounting for diffraction do

not perform rigourous analysis of k-vector mismatch [7] and thus misinterpret the high power

behaviour. Still more simulations are only valid for materials with constant nonlinearity, where

more of the complex phase-matching conditions such as the Gouy phase [11, 12] and Rustagi

phase-shift [13, 14] cannot be readily compensated. Although some of these works acknowledge

the detrimental effect such sources of dephasing can have none have provided possible methods

to correct for them.

In this chapter the majority of the analysis shall be aimed at focused parametric interactions,

a regime more suited to high average fundamental power than waveguide devices. Further, it has

been shown experimentally that 99% pump depletion has been achieved in waveguide based in-

teractions [15] and as such it would appear that further theoretical investigation is not required.

Despite this, some of the concepts discussed for high power focused interactions can equally be

applied to waveguide interactions and provide possible explanations for some of the effects ob-

served through experimentation as input power is increased. Using a modified beam propagation

method (BPM), where parametric interactions have been included, a thorough analysis of the

limiting effects of focused efficiency at high powers shall be undertaken. Here factors such as

parametric dephasing [3, 5], fundamental bandwidth broadening by back conversion [16], the

Gouy phase shift [11, 12], spatially non-uniform pump depletion and the intensity dependent

Rustagi phase shift [13, 14] shall be considered.

Using BPM it shall be shown by modelling the complex parametric interactions occurring

in realistic bandwidth fundamental beams that at higher conversion efficiencies compensating

for the Gouy phase can result in reduced bandwidth broadening of both the fundamental and

subsequently the harmonic beams. It shall further be shown that at very high pump depletion

compensating for the standard Gaussian Gouy phase does not completely prevent back conver-

sion, although it does allow higher efficiency and greater output powers before back conversion
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occurs. Here a limit is placed on conversion efficiency, where due to complex effects such as

non-uniform fundamental depletion the Gouy phase of an input Gaussian beam deviates from

its low power value and thus requires a modified phase-matching structure. Further, the effects

of diffractive ‘healing’ of the Gaussian beam shall be considered with the implications for higher

efficiency parametric interactions discussed. Finally, the effects of the intensity dependent phase

variation between fundamental and harmonic waves shall be investigated, where in very high

power regimes such as created by femtosecond duration pulses the phase matching condition of

even plane wave interactions varies along the device length and must be suitably compensated

to prevent back conversion.

6.2 Beam Propagation Method with nonlinear coupling

In Chapter 4 a simple analysis technique was utilised to predict the behaviour of low power

focused parametric interactions. However, this technique is limited to power regimes where the

conversion efficiency of the nonlinear interactions is negligible and therefore cannot be utilised

for investigating the effects of high power focused interactions. As such an alternative technique

based on the split-step beam propagation method (BPM) has been developed to analyse the

high power regime. Where by considering the spatial Gaussian profile of a focused beam and

how this profile varies due to the effects of diffraction a more complete model of the harmonic

processes can be developed.

Here a brief outline of the BPM technique shall be given. Returning to Equation 2.15 and

re-writing in a form more readily applicable to BPM a description of the spatial variation of the

optical electric field is given as

∇2E (x, y, z) = −k2n2 (x, y, z) E (x, y, z)− µ0ω
2PNL (x, y, z) (6.1)

Now by separating the electric field E (x, y, z) into two parts, the axially slowly varying

envelope Ê (x, y, z) and the rapidly varying term e−iknoz, a new expression for the electric field

is given as

E (x, y, z) = Ê (x, y, z) e−iknoz (6.2)

Substituting this expression into Equation 6.1 a further expression can be obtained

∇2Ê− i2kn0
∂Ê
∂z

+ k2
(
n2 − n2

0

)
Ê + µ0ω

2PNL = 0 (6.3)

Here simplifications have been made through application of the slowly varying envelope function

and further re-defining ∇2 = ∂2

∂x2 + ∂2

∂y2 . Now by considering the weakly guiding condition
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(
n2 − n2

0

)
' 2n0 (n− n0), Equation 4.26 can be written as

∂Ê
∂z

= − i

2kn0
∇2Ê− ik (n− n0) Ê − iµ0ω

2

2kn0
PNL (6.4)

Here, the weakly guiding approximation has been applied for consistency with the majority of

literature on BPM although this is not necessary for the bulk interactions to be investigated

here. When n = n0 it is clear that only the first term on the right hand side governs the

free space propagation of the electric field, with the second term defining guiding and the final

term being an expression for the nonlinear polarisation. All these terms affect the electric field

propagation simultaneously, however, the fundamental premise of the BPM technique is that on

sufficiently small scales all these terms can be considered independent. Physically, this can be

thought of as propagating the electric field over a small distance, h, and subsequently correcting

for the spatial phase retardation caused by the refractive index variations. For the simulations

employed here it is also necessary to calculate the nonlinear contributions over the step size.

Here, a slight complication lies in that the step sizes required for high accuracy modeling of

the nonlinear interactions is considerably shorter than that required for accurate free space

propagation analysis.

For the case of a homogeneous optical medium, as is relevant to this work, Equation 6.4 can

be expressed as
∂Ê
∂z

= − i

2kn0
∇2Ê− iµ0ω

2

2kn0
PNL (6.5)

By considering the nonlinear term as independent from the propagation this expression can be

further spatially Fourier transformed, with respect to x and y, to give

∂Ψ
∂z

= −k
2
x + k2

y

2jk
Ψ (6.6)

where F
{

Ê (x, y, z)
}

= Ψ (kx, ky, z). Solving this equation for an initial field, Ê(x, y, 0) provides

the paraxial transfer function H(kx, ky; z):

H(kx, ky; z) =
Ψ(kx,ky; z)
Ψ(kx, ky; 0)

= exp

[
i
(
k2
x + k2

y

)
z

2k

]
(6.7)

By now expressing the full nonlinear interaction in terms of separable operators an understanding

of the important BPM functions can be inferred. Defining

∂Ê
∂z

= (D + S) Ê (6.8)

where D = 1
2ik0
∇2 is the operator that accounts for free space propagation and S is the non-

linear contribution term (for waveguide interactions S would also contain the phase corrections
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accounting for index variations). In reality these two operators act simultaneously, with the

operator form of the solution to the above equation given as

Ê (x, y, z + ∆z) = exp [(D + S) ∆z] Ê (6.9)

if D and S are considered independent of z. This assumption can be considered valid as the

incremental steps in the z direction are sufficiently small that any change in these operators over

a propagation step is negligible. Using the Baker-Hausdorff formula [17] the two independent,

noncommuting operators exp [(D + S) ∆z] can be re-written as

exp (D∆z) exp (S∆z) = exp

[
D∆z + S∆z +

1
2

(DS − SD) (∆z)2 + . . .

]
(6.10)

which for first order accuracy can be simplified to

exp [(D + S) ∆z] ' exp (D∆z) exp (S∆z) (6.11)

This now implies that the operator form of the equation governing the propagation of the

electric field can be expressed to first order accuracy as

Ê (x, y, z + ∆z) = exp (D∆z) exp (S∆z) Ê (6.12)

with the free-space propagation now acting separately from the nonlinear coupling term (or even

the refractive index induced phase correction, as would be encountered in non-homogeneous

materials).

Now, with this separable form of the propagation equation it becomes possible to readily

simulate the interacting fields in a nonlinear material. Noting that Equation 6.6, which is the

free space propagator transfer function, is defined in the spatial frequency domain it is clear that

performing the propagation step in the same domain is advantageous. However, the nonlinear

coupling term is more readily solved in the spatial domain. As such the analysis must be per-

formed as a two part process. Firstly, spatially Fourier transform the electric fields (numerically

this is best performed using the discrete fast Fourier transform technique) and propagate the

fields using the transfer function of Equation 6.6, with z replaced by the desired propagation

distance. Now, perform the inverse spatial Fourier transform to return to a coordinate system

within which the nonlinear coupling between the fields can readily be calculated. Here, numer-

ical integration offers the most straightforward approach. In this work the Runge-Kutta4(5)

numerical integration technique has been applied, with the integration step performed over the

same physical length as the earlier beam propagation step. A graphical representation of the

required steps is shown in Figure 6.1.
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E′
ω (x, y ; z + ∆z) = F−1 {ψω (kx, ky ; z + ∆z)}

E′
2ω (x, y ; z + ∆z) = F−1 {ψ2ω (kx, ky ; z + ∆z)}

E′
ω (x, y, z) = Eω (x, y, z)

+
∫ z+∆z

z

i
ω2

2kωc2
χ(2)E∗

ω (x, y, z) E2ω (x, y, z) dz

E′
2ω (x, y, z) = E2ω (x, y, z)

+
∫ z+∆z

z

i
(2ω)2

2k2ωc2
χ(2)E2

ω (x, y, z) dz

Define Initial Fields

Eω (x, y ; z) ,E2ω (x, y ; z)

ψω (kx, ky ; z) = F {E′
ω (x, y ; z)}

ψ2ω (kx, ky ; z) = F {E′
2ω (x, y ; z)}

ψω (kx, ky ; z + ∆z) = ψω (kx, ky ; z) exp
[
i
(
k2

x + k2
y

)
∆z/2k0

]

ψ2ω (kx, ky ; z + ∆z) = ψ2ω (kx, ky ; z) exp
[
i
(
k2

x + k2
y

)
∆z/2k0

]

Eω (x, y ; z + ∆z) = E′
ω (x, y ; z + ∆z) exp

(
Ŝ∆z

)

E2ω (x, y ; z + ∆z) = E′
2ω (x, y ; z + ∆z) exp

(
Ŝ∆z

)

Figure 6.1: Flow chart of the steps for BPM with nonlinear coupling

A further enhancement to this technique is often utilised. Where, by performing a half

step in the z direction, using the free space propagator, then correcting the phases of the fields

and performing the nonlinear coupling for a full step and finally propagating the final half step

provides higher accuracy in the simulation. This accuracy is obtained through a higher order

expansion of Equation 6.10. In this work however, this enhancement has not been utilised.

Due to the small steps required to correctly simulate the harmonic processes, steps which are

considerably shorter than those required for beam propagation, performing the extra half steps
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offer no tangible accuracy enhancement.

6.3 Limiting back conversion through Gouy Phase com-

pensation

Achieving a highly efficient parametric process requires a high degree of phase matching, where

even a small phase error between the interacting waves can result in significant back conversion

of the generated harmonic field [3], with this requirement becoming even more essential as the

nonlinear coupling between the waves increases. This is readily observed in the ∆k tuning

curves for high power interactions, where as shown in Figure 6.2 a clear narrowing of the central

phase-matching peak occurs as higher powers are utilised.
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Figure 6.2: A numerical simulation of high efficiency second harmonic generation, showing the narrowing

of the acceptance bandwidth and saturation of nonlinear drive resulting in high efficiency side lobes

(blue). Also shown is the low power acceptance bandwidth (black).

Aside from the narrowed tuning response increasing the tolerances required for stable phase-

matching, dephasing between the propagating waves and the compensating grating structure

can have the undesired effect of broadening the bandwidth of the fundamental and, in turn,

the harmonic waves. Here through small errors in the phase matching condition an interaction

between the relatively high powers at the centre of the second harmonic bandwidth and the

low power extremities of the spectral bandwidth of the fundamental wave can become efficiently

phase-matched. At high fundamental power, and thus high second harmonic power, this inter-

action can lead to significant amounts of the harmonic beam being depleted into the side lobes

of the fundamental, resulting in a reduced conversion efficiency. The sources of the dephasing
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are numerous and include temperature offsets, wavelength drift, angled grating alignment and

for focused interactions as discussed in Chapter 4 the Gouy phase shift. Here it was shown that

the spatially varying phase of the fundamental beam at optimum focusing can only be approxi-

mately matched by the phase of uniform grating structures. As a result over large lengths of the

nonlinear material a significant phase error exists providing a route for back conversion of the

generated harmonic field.

As higher powers and greater efficiencies are demanded the effects of back conversion becomes

more significant, where with a more intense second harmonic signal the efficiency of detrimental

back conversion to new frequencies increases. Due to the high powers required to see this back

conversion the simplistic non-depletion model developed in an earlier chapter was unable to

model the effect. As such conclusions as to the effectiveness of compensating for the Gouy phase

to prevent back conversion could not be made. Now however, using the modified nonlinear BPM

analysis it is feasible to model the advantages Gouy phase compensation can provide.

6.3.1 Single longitudinal mode simulations

To investigate the effect of dephasing and back conversion it is useful to consider the most sim-

plistic case of a theoretical single frequency or single-longitudinal mode (SLM) laser. Although

using such a theoretical model it is impossible to simulate the effects of back conversion to new

frequencies useful information can still be obtained on the general behaviour of nonlinear de-

vices as fundamental input power is increased. Here two nonlinear QPM devices are simulated

under the effects of focusing using the split-step BPM method, a standard PPLN based QPM

device and a Gouy phase compensated QPM (GQPM) device. To provide maximum conversion

efficiency both devices are simulated with focused Gaussian beams with the spot size chosen to

provide the optimum focusing ratios of ξ = 2.84 and ξ = 3.3198 respectively. Here the focusing

parameter ξ is simply the ratio of the device length (L), which for both devices is 20 mm, to

twice the Rayleigh range (zR) of the focussed beams, i.e. ξ = L/ (2zR).

For these calculations care must be taken in defining the spatial Gaussian properties of the

interacting waves, with particular attention paid to the size of the spatial co-ordinate grids such

that the furthest extent of significant power in the Gaussian mode is considerably smaller. Here,

if too small a spatial grid is utilised, upon application of the Fourier transform ‘reflections’ from

the spatial boundaries can occur leading to distorted mode propagation. In general defining

the spatial boundaries to be approximately 5 times greater than that of the largest expected

1/e2 mode radius is sufficient to prevent distortions. A further consideration that must be made

is that of the spatial resolution of the Gaussian mode, here it is essential that high resolution
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is utilised to correctly model the full effects of focusing. Although at low spatial resolution

the Gaussian mode can be seen to focus and subsequently diffract, after passing through the

waist, the Gouy phase gained through focusing is incorrect. For a phase-matched interaction

the exact phase of the propagating mode is important to provide accurate simulations, as such

it is important to ensure the phase of the diffracted beam matches that of the analytic Gouy

phase before attempting to model parametric processes. This problem becomes more severe

for short device lengths where the optimal spot size is smaller and thus the diffraction rate is

faster, here to ensure accurate representations of the focused beams very high spatial resolution

is required. In general if the spatial co-ordinate system is set to be 5 times the maximum spot

size a minimum axis resolution of 26 data points is required. Here, the grid size is limited to

powers of 2 as this provides the most computationally efficient fast Fourier transform. For shorter

device lengths < 2 mm this figure needs increasing to 27, giving rise to over 16,000 data points

for which the Fourier transform, free space propagator, inverse transform and final Runge-Kutta

integration must be performed. From this it is clear that a huge number of calculations must

be performed to simulate the conversion efficiency of real devices, where this process is repeated

multiple times per coherence length to achieve accurate results. As an example, to provide the

conversion efficiency of a 20 mm long device phase-matching the SHG of 532 nm light at a single

∆k value over 550 million calculations must be performed, where here for simplicity it is assumed

that the Fourier, free space propagator and Runge-Kutta steps are a single calculation.

The effects of back conversion in focused interactions have been investigated for a range

of fundamental input powers, where the power has been raised to the point that maximum

conversion efficiency occurs. At the point of maximum conversion efficiency further harmonic

power increases are limited by back conversion, where even small errors in phase matching become

a source of significant power loss. It is expected that a Gouy compensated device is capable of

providing useful harmonic output at higher input powers than standard uniform QPM devices,

where through the perfect compensation of the propagating phases back conversion is prevented.

The results of the BPM simulations are given in Figure 6.3(a) which shows the harmonic

conversion efficiency for 20 mm long QPM (green) and GQPM (blue) PPLN based devices for

increasing fundamental input powers. Also shown, Figure 6.3(b), is the percentage difference

in output power for the two device types. Here it is clear that GQPM is able to provide a

higher conversion efficiency for the majority of input powers when compared with standard

QPM, as would be expected from the non-depletion analysis of Chapter 4. However, despite the

compensation of the Gouy phase it is evident that even a GQPM device is incapable of completely

preventing back conversion, with the conversion efficiency reducing at high nonlinear drive. It is
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Figure 6.3: (a) A theoretical plot of the conversion efficiency of both standard QPM (green) and Gouy

compensated GQPM devices (blue) with increasing fundamental input power of a focused single longi-

tudinal mode laser generated using split-step BPM. (b) The percentage increase in conversion efficiency

of a GQPM device over standard uniform QPM. For both devices the focus was set to optimal i.e.

ξ = 2.84 and 3.3198 for QPM and GQPM respectively with a device length of 20 mm. Further, to ensure

maximum conversion efficiency the ∆k values were optimised at each power level.

further clear from Figure 6.3(b) that at very high nonlinear drive, where the conversion efficiency

approaches 95%, that there is no advantage in utilising a Gouy compensated structure compared

to a standard uniform QPM device and in fact such a device may prove detrimental for powers

higher still. The cause for this limit on maximum input power is non-uniform pump depletion,

an effect that modifies the Gaussian nature of the fundamental beam thus altering the Gouy

phase [7]. The effect of non-uniform pump depletion shall be further investigated and possible

remedies shall be offered that overcome its deleterious effects providing a route to 100% pump

depletion even at high nonlinear drive.

6.3.2 Multi-longitudinal mode simulations

Having shown that for a single frequency laser a GQPM sample can provide moderate gains,

of the order of 3.5%, over standard QPM for all but the highest nonlinear drives the effect

of back-conversion on a real bandwidth, multi-longitudinal mode (MLM) laser input shall now

be theoretically examined. Here it is expected that GQPM with its perfect low power phase-

matching should limit the routes of back-conversion compared with uniform QPM, which due

to the Gouy phase of the focused fundamental beam has significant phase mis-match along its

length. By removing the source of de-phasing between the propagating waves and the grating
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there is no longer a route for parametric back-conversion of the generated high power harmonic

field into the tails of the fundamental bandwidth and as such the conversion efficiency of the

GQPM based device should remain higher.

The effect of back-conversion has been simulated by defining the input harmonic field as a

Lorentzian distribution of power across a range of wavelengths, centred at the wavelength of

interest. To perform the split-step BPM analysis each frequency is defined as a Gaussian mode

such that its focussed beam waist matches that of the ideal single frequency value, by propa-

gating each mode individually it is possible to simulate a real bandwidth interaction. However,

although the spatial propagation step is no more involved that for a single frequency simulation,

apart from a greater number of modes to propagate using the Fourier transform technique, the

complexity of the nonlinear coupling step is vastly increased. To fully simulate the effects of

the nonlinear interaction and to allow all possible routes of back-conversion every mode must be

allowed to interact with all other modes, this results in an huge increase in computation. In fact,

if modelled fully, through nonlinear coupling an infinite number of frequencies will be generated.

Where each new frequency mixes with existing frequencies, through SHG, SFG and DFG in-

teractions, to generate yet more frequencies. To reduce this effect some constraints are placed

on the modelling simulations, these include limiting the generated frequencies to lie within the

transparency bandwidth of the material to be simulated, rounding of the generated frequencies

(to a frequency resolution of 3.3 GHz or alternatively a wavelength resolution of 2 pm) such that

only a small subset of new frequencies may be generated and finally limiting the data points in

the fundamental bandwidth.

For the purpose of these simulations a 1064 nm wavelength multi-longitudinal mode laser has

been simulated, with a FWHM Lorentzian bandwidth of 20 pm, the total fundamental frequency

spread investigated is 160 pm. It must be noted at this stage that, for simplicity, all of the

fundamental modes have been defined in-phase. That is, at the start of the crystal the electric

fields of every mode is aligned, an effect analogous to a mode-locked laser pulse. The alternative

is to assign an arbitrary phase to each frequency. However, in doing so for some sets of input

phase the conversion efficiency would be considerably lower than the average. As such, to

provide a realistic representation of the parametric interaction the calculation must be performed

numerous times, each time with a random distribution of input phases, and the results averaged.

This technique however is currently impractical with the simulation being too computationally

intensive. Here, for example, in using the laser characteristics defined above 81 fundamental

frequencies are generated, with these frequencies able to mix in over 3000 combinations. For

the entire device this results in over 330 billion calculations of the coupled equations for a single
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∆k value. Here the maximum split-step resolution is determined by the criteria of total energy

conservation, where overly large steps can result in a gain in the total system energy through

numerical error. With current computing power a single calculation of the multi wavelength

conversion efficiency takes approximately one month of continuous processing. From this it is

clear that repeating the calculation for random input phases is not currently feasible.

In Figure 6.3(a) it was shown that at very high nonlinear drive the performance of GQPM

suffered, with its efficiency gains over uniform QPM lost. However, for more modest input

powers, resulting in approximately 60-70% conversion efficiency, it was clear that GQPM was

still able to provide an advantage over QPM due the reduction in phase errors through Gouy

phase compensation. From this it can be expected that the higher degree of phase matching

along the entire length of the GQPM device, in contrast to the best fit average phase-matching of

QPM, will limit the effects of back conversion. This has been tested using the multi-longitudinal

mode laser model described above, where initially an input power of 1.25 W has been used with a

10 mm long device. Although the total fundamental power used for this calculation is low when

compared with the results of Figure 6.3(a), producing only 20% efficiency for a device twice as

long, due to the ‘mode-locked’ nature of this simulation the effective single frequency power is

considerably higher. Here by having all input fields in phase the fundamental electric can be

considered as the sum of all the separate fields, which provides an efficiency greater than any

individual mode. If the total power is defined as P , and the number of separate frequency modes

m the difference in nonlinear drive between a SLM and a MLM calculation can be represented

algebraically as:

Eslm ∝
√
P

Emlm ∝
√

(P/m)

where Eslm and Emlm are the electric fields of each mode of the single longitudinal and multi-

longitudinal mode sources respectively. Here it is assumed that the power is evenly distributed

between all frequencies and that all modes are perfectly in-phase. From this it is clear that when

coupling through the second order nonlinearity the effective nonlinear drive of the multi-mode

mode-locked source is considerably larger and can be represented as:

Peffs ∝ |Eslm|2

∝ P

Peffm ∝
∣∣∣
∑

Emlm

∣∣∣
2

∝ mP

Where, Peffs is the single mode effective power and Peffm the multi-mode. This would imply
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that for the 81 mode simulation above the 1.25 W input power is in fact approximately equivalent

to a 100 W source. However, the distribution of power between the modes of the simulation is

not uniform and as such is likely much lower than this maximum value.

The results of the split-step BPM back conversion calculation for the multi-mode source

using the 81 modes described above are given in Figure 6.4. Here back-conversion is determined

through observation of the gain of the fundamental power at each frequency component and also

the conversion efficiency of the total power at the end of the devices. For these simulations the

device ∆k has been held constant at the low power peak value determined through the SLM

simulations. Although this value may not provide the peak conversion efficiency, as described

above it is computationally unfeasible to sweep ∆k. Further, it was found that for moderate

conversion efficiency, ∼60%, under SLM simulations the peak ∆k value is almost unchanged

from the lower power value for both GQPM and QPM.
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Figure 6.4: (a) Theoretical plots of a 1.25 W mode-locked fundamental beam with a FWHM bandwidth of

0.02 nm prior to parametric conversion (red) and the resulting bandwidth at the end of 10 mm of uniform

QPM (green) and GQPM (blue). (b) The resulting parametric gain of the fundamental bandwidth due

to back conversion. Here it is clear that the GQPM device (blue) almost completely prevents back

conversion giving 69.8% efficiency, in contrast at this power level the standard QPM sample allows

considerable back conversion giving a lower efficiency of 56.9%.

Figure 6.4(a) shows the fundamental, Lorentzian distribution, wavelength bandwidth of the

multi-mode source prior to propagation and parametric interactions (red). For comparison the

total simulated bandwidth is 160 pm with a FWHM of 20 pm, and the FWHM bandwidths of

the 10 mm long PPLN based devices are approximately 190 pm at this fundamental wavelength

of 1064 nm. It is clear that the simulated multi-mode source fits completely within the device
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bandwidth and as such the major source of dephasing is limited to the spatially varying Gouy

phase. The resulting final fundamental power distributions at the exit of the devices for QPM

(green) and GQPM (blue) are also shown, here it is evident that significant power has been

converted from the fundamental frequency to the harmonic, with the conversion efficiency of the

QPM and GQPM devices being approximately 57% and 70% respectively.

The favourable conversion efficiency of the GQPM device indicates that back-conversion

has been suppressed, providing significantly higher performance enhancements than the 3.5%

increase predicted using the low power non-depletion or even high power single frequency simu-

lations. Now by comparing the parametric gain of each frequency component, Figure 6.4(b), the

significance of the spatial Gouy compensation is clear. For the standard uniform QPM device

(green), which has a considerable amount of phase error along its length, there are many routes

for relatively efficient back conversion to the extremities of the fundamental bandwidth resulting

in large spectral regions of net gain. In contrast the gain plot of the GQPM device (blue) shows

that back-conversion has been almost completely suppressed with only a very small spectral

bandwidth providing any net power gain.
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Figure 6.5: (a) A theoretical plot of the Gouy phase variation of focused, 20 pm uniform bandwidth,

multi-longitudinal mode fundamental source with a focus ratio of ξ = 2.84 and the corresponding best

linear grating phase to provide maximum conversion efficiency. (b) The Gouy phase variation of the

same theoretical source focused to give ξ = 3.3198 and the corresponding best non-linear grating phase

with which to compensate.

By considering the phase of the propagating fundamental field and the corresponding phases

of both the uniform QPM and the spatially varying GQPM devices an insight into the causes of

back conversion can be obtained. With further consideration of the dispersion of the nonlinear
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material the effects multi-longitudinal mode bandwidth can further be observed. The plots of

Figure 6.5 show the phase variation of the focused multi-longitudinal modes of a theoretical

20 pm bandwidth laser source. Where here for simplicity it is assumed that the power within

each mode is equal, resulting in a uniform top-hat power bandwidth distribution, additionally

it is assumed that the phase of each mode is aligned at the start of the nonlinear device. From

Figure 6.5(a), which shows the fundamental phase variation under a focus ratio of ξ = 2.84

in a uniform QPM device, it is clear that significant phase errors exist along the length of the

device, with only very short regions of perfect phase-matching. In contrast, the plot of the

GQPM sample, Figure 6.5(b), shows that only at the very far extent of the device is there any

significant phase mismatch between the grating structure and the propagating waves. Here,

dispersion is the sole cause of the mis-match and cannot be compensated for other than by

using a narrower line laser or alternatively a wider bandwidth shorter physical device with less

stringent phase-matching requirements. It is these regions of phase mis-match along the length

of both devices that lead to back conversion of the harmonic signal at higher power levels.
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Figure 6.6: A plot of the average absolute phase error along the length of a 10 mm long QPM (green) and

GQPM (blue) device for a focused multimode laser with a total bandwidth of 20 pm. Here it is assumed

that the laser bandwidth has a uniform power distribution. It is clear that, although not perfectly phase

matched with all longitudinal-modes, the GQPM sample has significantly lower phase-mismatch which

results in reduced back-conversion.

Further, if one is to analyse the average absolute phase error of the numerous modes at each

position along the length of both devices the advantages of GQPM in multi-longitudinal mode

interactions becomes ever more clear, Figure 6.6(a) shows this result for both QPM (green) and

GQPM (blue) devices. Here it is clear to see that the phase error of the Gouy compensated

device is entirely linear and rate of growth of this error is solely determined by the dispersion

properties of the material. Where if the total phase error becomes too large it merely indicates



6.3 Limiting back conversion through Gouy Phase compensation 163

that the device length is too long for the laser bandwidth. In contrast, although the phase error

of the uncompensated device also has this linear dispersive offset, the dominating characteristics

are the large oscillations occurring either side of the device centre and at the furthest extents of

the device. The phase errors at the far limits of the device can largely be ignored for all but the

highest fundamental input powers due to the low focused power density of the harmonic beam

at these locations. However, the large oscillations either side of the device centre cannot be

ignored due to the high harmonic intensities at these locations, in particular the oscillation after

the focus where the harmonic field is likely to be the highest. It is this combination of relatively

large phase error and very high harmonic intensity that create the conditions for the significant

back conversion seen in Figure 6.4(a) and help to explain the 13% efficiency advantage of the

GQPM device.
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Figure 6.7: (a) Theoretical plots of a 2 W mode-locked fundamental beam with a FWHM bandwidth of

0.02 nm prior to parametric conversion (red) and the resulting bandwidth at the end of 10 mm of PPLN

based QPM (green) and GQPM (blue). (b) The resulting parametric gain of the fundamental bandwidth

due to back conversion. Here the GQPM device (blue) largely prevents back conversion giving 65.3%

efficiency. Although reduced when compared with the 1.25 W simulation in contrast at this power level

the standard QPM sample allows considerable back conversion giving a significantly lower efficiency of

29.8%.

Finally to examine the performance of GQPM devices at very high depletion levels the

fundamental input power of the multi-longitudinal mode laser source described above is increased

to a total of 2 W. Again due to the multi-mode nature of the source the effective input power

is considerably greater. Of course the 1.25 W source modelled previously, which was said to

be equivalent a 100 W single frequency source assuming uniform power distribution within the
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bandwidth, proved to provide efficiencies in line with a 10 W source; as such it is expected

that a 2 W multi-mode source is likely equivalent to a 20 W single frequency source providing

approximately 85-90% efficiency.

The fundamental power distribution across the bandwidth after propagation through both

standard QPM and GQPM devices at this elevated power level are given in Figure 6.7(a). Here,

it is clear as before that significant fundamental depletion has been achieved in both devices.

However, the efficiencies of the device types are now markedly different with the QPM sample

only providing 30% efficiency or 600 mW of harmonic output whilst the GQPM device provides

over 65% efficiency or 1.3 W of harmonic power. Compared with the generated harmonic power

at the earlier lower input power simulations for a 60% increase in input power the QPM sample

provides a 16% reduction in output power whereas for the GQPM sample the same 60% increase

in fundamental power results in a 48% increase in harmonic output. Further, on comparing both

the plots of Figure 6.7(a) and 6.7(b) it is clear that significant amounts of back conversion into the

sides of the fundamental bandwidth peak occurs for the uniform QPM device with significant net

gain being present for a large range of wavelengths. This effect is almost completely suppressed in

the GQPM device, although the back conversion gain at some wavelengths is higher than at the

lower power level simulation. This increase in back conversion levels for the GQPM device may

have two origins, the first is simply back conversion due dispersion which could be compensated

for by reducing the device length. The second more complex mechanism is a variation in the

Gouy phase of the focused fundamental beam from that of a standard Gaussian propagation

such that the phase of the grating no longer provides correct compensation. Here, non uniform

depletion of the fundamental Gaussian mode through the nonlinear interaction causes a variation

in the propagation characteristics, with this effect being more pronounced at higher input powers.

6.4 Non-uniform pump depletion and diffractive healing

It has now been shown using a split-step BPM model that when operating at relatively low

fundamental input powers Gouy phase compensated QPM structures can achieve the efficiency

gains predicted by the non-depletion simulations of Chapter 4. Where by providing correct

phase-matching between the propagating fields and the QPM grating an increase in efficiency

of 3.5% over that of standard uniform QPM can be obtained for single frequency interactions.

However, for both the single frequency and multi-longitudinal mode simulations it has been

shown that as the fundamental input power is increased the performance advantages of Gouy

compensation become reduced. Eventually resulting in lower efficiencies at high fundamental

powers than with uniform QPM for SLM laser sources and further allowing back conversion to
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the fundamental frequencies in the MLM simulations.

(a) (b)

Figure 6.8: Theoretical plots of the mode profile of a loosely focused Gaussian fundamental beam (a) as

it propagates through a QPM device under the effects of high harmonic conversion efficiency, achieving

over 80% conversion efficiency. Here the resulting ‘doughnut’ beam at the device output face (b) is

created by non-uniform depletion of the initial Gaussian mode.

The cause of such effects can be attributed to the non-uniform depletion of the fundamental

field. Through the nonlinear coupling, which is proportional to the magnitude of the funda-

mental field intensity, the high intensity centre of a Gaussian beam experiences a more rapid

depletion than the lower intensity wings. Through this non-uniform depletion mechanism sig-

nificant variations to the Gaussian mode profile can occur, with this effect becoming of much

greater significance at higher fundamental powers. If left unchecked this depletion can lead to

extensive distortions of the fundamental intensity profile, eventually resulting in the formation

of ‘doughnut’ modes and further more complex structures as unphase-matched back conversion

occurs, see Figure 6.8(b). This distortion of the Gaussian spatial properties of the fundamen-

tal mode of course has significant effects on the diffracting nature of the beam, with perhaps

the most detrimental effect for the GQPM samples being the modification of the Gouy phase.

Where, due to the depletion dependent Gouy phase variation a fixed GQPM device cannot be

expected to provide correct compensation of the Gouy phase for all power levels.

Additionally, the formation of ‘doughnut’ modes significantly complicates the parametric

process, where to achieve continued transfer of power from the remaining fundamental field to

the harmonic the depleted mode centre must stay perfectly phase-matched else significant back-

conversion in the mode centre can occur. Under such conditions there is a greater tendency for
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out of phase power to convert back into the centre of the fundamental mode than forward power

transfer from the remaining modal wings if any phase mismatch exists. This is as a result of the

relatively high nonlinear drive at the centre of the fundamental mode, created by the now high

intensity second harmonic mode which has maintained a more Gaussian like mode profile than

the fundamental even at very high conversion efficiencies.

Despite the tendency for the formation of doughnut modes at extreme levels of nonlinear

drive, either through very high pump power or a high nonlinear coefficient, the effect is some-

what suppressed for less severe regimes. For low input powers, where fundamental depletion is

negligible, diffraction effects counteract the non-uniform depletion mechanism and redistribute

power across the mode profile such that the M2 value of the fundamental beam can stay almost

unchanged. The same effect equally occurs as the nonlinear drive is increased, although the

ability of the diffraction mechanism to completely ‘heal’ the beam is diminished.
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Figure 6.9: Under focusing conditions, here at a focus of ξ = 2.84, diffraction counteracts the effects

of non-uniform pump depletion acting so as to ‘heal’ the mode. At this high conversion efficiency of

80%, however, this level of diffraction is insufficient to fully heal the mode, with the Gaussian profile

becoming more like a Lorentzian mode.

Although unable to maintain a perfect Gaussian mode the effects of diffraction can be seen

to prevent the formation of the doughnut mode, instead maintaining a modal distribution more

similar to a Lorentz function. This effect is shown in Figure 6.9 where a focused Gaussian

fundamental beam of focus ratio ξ = 2.84 has been distorted by the parametric processes resulting

in this Lorentzian like mode profile at the end of the 20 mm device. The advantage of this

diffractive healing is that the highest fundamental field is kept in the centre of the mode profile,

maintaining a good mode overlap with the near Gaussian harmonic mode and thus providing
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greater nonlinear coupling. However, although diffraction can help maintain a good overlap

between the interacting fields, due to its inability to conserve the Gaussian mode profile the

resulting Gouy phase variation differs from the standard single mode Gaussian model. It is of

course this non-standard phase variation that prevents continuous phase matching with GQPM

samples designed for low power use and explains the reduced efficiency and back-conversion

characteristics seen at high input powers.

6.4.1 Variation in spot size and Gouy phase due to non gaussian mode

From the above theoretical plots of mode deformation due to non-uniform pump depletion it is

clear that significant variations in the beam diameter can occur, with output beams significantly

larger than would be expected through Gaussian beam propagation. In an attempt to demon-

strate the adverse effect non-uniform depletion can have on the propagation characteristics of

the fundamental beam at high power a brief outline of spot size and Gouy phase variation is

now given.
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Figure 6.10: (a) The simulated variation in the focused fundamental spot size in a GQPM device at

moderate power (blue curve) and when generating the second harmonic at high efficiency ∼85% (green

curve) compared with theoretical propagation. (b) As a result of the non-Gaussian nature the Gouy phase

of the high power fundamental (green) significantly differs from the theoretical Gaussian propagation

(dashed). Further, even the moderate power beam (blue), which shows very little spot size discrepancy,

shows quite considerable Gouy phase variation from the theoretical case.

As demonstrated in Figures 6.8(b) and 6.9 at high nonlinear drive the spot size of the focused

fundamental beam can vary quite significantly from the theoretical Gaussian mode by the end

of the nonlinear interaction. To analyse how this distortion to the beam evolves it is useful to
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obtain a numerical figure of merit of the beam shape throughout the parametric interaction, one

possible figure of merit is to measure the beam radius. Figure 6.10(a) shows the evolution of

the theoretical spot size throughout the nonlinear material calculated by measuring the second

moment of the beam intensity [18]. This theoretical plot details the spot size variation with

propagation distance for a focused beam with an initial radius of curvature chosen such that a

focus ratio of ξ = 2.84 is achieved with the focused spot centred in the nonlinear material. The

variation of a fundamental beam spot size achieved under minimal nonlinear drive conditions is

given by the dashed curve. Here it should be noted that the spot size is characterised not by the

1/e2 radius, ω0, but alternatively by the sigma value of the second moment of the beam, with

w0 = 2σ. The further two plots shown in this figure are those of the spot size variation at a final

conversion efficiency of 60% (blue plot) and 85% (green plot). Here it can be seen that at the

lower of the two fundamental powers there is little variation in the overall spot dimensions from

that of the low power values, although a slightly tighter focus is obtained offset from the centre

of the device. For the higher power fundamental interaction it is clear that significant spot size

variation is encountered, with a considerably larger focused spot size occurring, albeit with a

much larger rate of diffraction. This contradiction of a large spot size with a rapid diffraction rate

indicates the formation of a highly non Gaussian mode structure, with an M2 value considerably

greater than 1.0. Similar effects have been observed in OPA systems, where with increasing

pump power it has been found that gain induced diffraction effects lead to a reduction in the

system gain [19].

A further measure of beam propagation that is more sensitive to the modal properties of

the fundamental beam is that of the Gouy phase. Measuring the phase gained at the centre

of the fundamental mode can give an insight into the modal structure, with the Gouy phase

being defined by the squeezing of the modal k-vectors during focusing. By now comparing the

plots of Figure 6.10(b), which show the Gouy phase variation at the power levels mentioned

above, it is clear that even for low distortion of the measured spot size significant variations in

the Gouy phase are observed. It is this deviation in the Gouy phase, from the low power case

(shown dashed), that causes the reduced efficiency for the Gouy phase adjusted devices in both

SLM and MLM simulations. At these higher power levels the phase compensation defined in the

grating structure is unable to adequately adjust for the power dependent Gouy phase introducing

sources of dephasing which can lead to back conversion and reduced efficiency. In fact at the

highest power level shown here it can be seen that a linear phase adjustment, offered by a simple

uniform QPM grating, would provide significantly reduced overall phase error compared with a

GQPM sample.
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A final observation of nonlinear spot size variation that is prudent to mention here is that

of the self trapping or soliton mode propagation. Here, with the correct coupling between the

fundamental and harmonic modes, through phase-matching and power adjustment, it is possible

to completely counteract the effects of diffraction, obtaining constant size mode propagation.

Such second order nonlinearity induced soliton propagation has been both theoretically predicted

[20] and experimentally observed in PPLN based QPM devices [21]. At first thought it would

seem advantageous to have a non-diffracting beam for harmonic conversion, with the soliton

gaining from a spatial confinement not dissimilar to waveguide structures. Here however, to

obtain the soliton modes it is in fact necessary to detune the phase-matching characteristics of the

nonlinear interaction to obtain balanced power transfer between the harmonic and fundamental

modes. The effect of which is, of course, zero net gain in the conversion efficiency. One possible

use however for such nonlinear soliton formation could be in obtaining mode locking of a laser

cavity, where a spatial filter could be utilised to only accept the non-diffracting high intensity

mode of a soliton. This however is outside the scope of this work and is not considered further.

6.5 Self optimised grating structure

Having predicted an alteration to the Gouy phase of the propagating fundamental beam caused

by parametric depletion it is clear that a standard Gouy compensated grating, with a grating

structure defined by Equation 4.40, is unsuitable for efficient operation. As such in an effort

to produce the most efficient QPM device for high power operation a self-optimised structure

has been developed. Here self-optimised refers to the automatic positioning of polarisation re-

versed domains such that maximum conversion efficiency is obtained every coherence length.

This process is achieved by stepping the BPM analysis through the nonlinear device using in-

tervals considerably shorter than the plane-wave coherence length and monitoring the generated

harmonic power. At the point in the device where destructive interference of the harmonic

waves is encountered, with subsequent steps leading to the reduction of the harmonic power, a

polarisation inversion is applied ensuring the continued growth of the harmonic field.

At low power/depletion levels in a focused interaction such a self optimised structure will

simply revert back to the GQPM description of Equation 4.40, with such a structure of course

providing the optimal phase-matching conditions. However, at higher powers the designed grat-

ing structure will now automatically place the polarisation reversals such that the compensating

grating phase correlates with the now non-Gaussian Gouy phase variation. By ensuring con-

tinuous phase matching between the propagating waves and the grating structure it would be

expected that higher efficiencies can be achieved for a given power input than for either uniform
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QPM or GQPM. Further at these high power levels the removal of phase-mismatch should almost

completely eliminate sources of back conversion to new wavelengths and as such offer significant

efficiency enhancements for MLM laser sources.
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Figure 6.11: (a) A theoretical plot of the conversion efficiency of a self optimised QPM structure for a

range of fundamental input powers at a fixed focus of ξ = 3.3198. Where the position of the polarisation

rotated domains have been determined to provide constant power transfer. (b) Also shown are the

theoretical efficiency increases of the self optimised device (green) and a standard GQPM 3.3198 device

(blue) relative to uniform QPM.

An example of the self-optimised conversion efficiencies predicted for a range of power levels

in a focused interaction is given in Figure 6.11(a) (blue). Here a device length of 20 mm has

been chosen and a focusing ratio of ξ = 3.3198, the optimal low power ratio, has been applied

to the input fundamental beam. For each fundamental power value a new self optimised grating

structure is generated ensuring optimal conversion efficiency. Also shown in this plot is the

theorised conversion efficiencies of a uniform QPM (blue) sample as reported earlier. Due to

the relatively small changes in overall conversion efficiency between the optimal device and the

uniform QPM device Figure 6.11(b) shows the percentage differences in efficiency at each power

level.

At low powers it is clear from Figure 6.11(b) that the self-optimsied grating structure offers

no advantage over the standard GQPM device, providing the expected 3.5% conversion efficiency

advantage over QPM. As the fundamental power is increased the self optimised grating structure

is able to provide a slight performance improvement over both QPM and GQPM devices, as

would be expected by its ability to maintain correct phase matching despite non-uniform beam

deformation. However, as the input power is increased further, with conversion efficiencies
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approaching 60%, the self-optimised devices unexpectedly result in reduced conversion efficiencies

compared with either the uniform QPM or GQPM devices.

At first the reduction in efficiency for the self optimised structures at high nonlinear drive

appears counter intuitive. However, this unexpected result can be simply explained. For the

uniform QPM and GQPM devices when operating at high power the peak theoretical conversion

efficiency is calculated by sweeping the grating response across a range of ∆k values - either

through temperature or wavelength tuning. Here by allowing a shift from the plane wave phase

matching conditions the rate of depletion of the fundamental field can be reduced, through a

phase mismatch, such that the remaining un-depleted fundamental field propagates in a more

Gaussian manner. As such at the expense of local conversion efficiency, on the order of a

single coherence length, overall device efficiency can be increased. In contrast, the self-optimsed

structure does not have the freedom to optimise to the long range efficiency. Thus, by being

too locally efficient significant distortions to the propagating mode occur resulting in reduced

nonlinear coupling.

Despite this slightly reduced conversion efficiency at higher power levels it must be remem-

bered that the self-optimised grating structure is now correctly phase-matching the nonlinear

interaction along the entire device length. As discussed before, this continuous phase-matching

removes possible routes of back-conversion and thus can be expected to provide higher conversion

efficiencies with real bandwidth laser sources.

6.5.1 Optimal high power focussing conditions

Throughout the analysis of high power second harmonic generation in this chapter it has been

assumed that the optimal focusing conditions parallel that of low power interactions, with an

optimal focusing ratio of ξ = 2.84 for uniform gratings and the tighter ξ = 3.32 for Gouy com-

pensated gratings. However, as just demonstrated, the very behaviour of perfect phase matching

and tighter confinement offered by Gouy compensated devices can become detrimental to the

overall high power performance. Thus, it is reasonable to assume that by altering the focusing

conditions to reduce the average spatial confinement along the length of the nonlinear device,

thus reducing the local conversion efficiency, that higher overall efficiencies may be obtained.

It was shown in Chapter 4 that a focus ratio of ξ = 3.3198 provides the greatest power

density along the length of the nonlinear device, with tighter focussing offering higher peak

intensities at the focused waist but at the expense of reduced interaction lengths through the

rapidly diffracting mode diameter. It is therefore reasonable to assume that at the higher power

levels of interest in this chapter utilising either a more loosely or more tightly focused beam than
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the optimal ξ = 3.3198 should provide enhancements to the overall efficiency by reducing the

local efficiency and allowing the fundamental beam to maintain its Gaussian profile.
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Figure 6.12: The theoretical change in conversion efficiency for a 20 mm long self optimised PPLN based

grating at a range of focusing values. Here, for a 90 W fundamental mode it can be seen that higher

efficiencies can be obtained by moving to a more tightly focused regime, where diffractive healing and a

more gradual mode depletion allow greater overall efficiency.

At first thought it may be assumed that using a loosely focused beam is the preferred choice for

high efficiency operation due to its lower power densities at any point along the device. However

as was shown in Section 6.4 at looser focus the effect of diffraction is unable to adequately ‘heal’

the Gaussian mode resulting in the formation of doughnut modes. To overcome such an effect

the mode diameter must be must be significantly increased to the point that the non-uniform

mode depletion mechanisms are suppressed. Here the suppression is only ensured by the reduced

power density and thus significantly reduced conversion efficiency for a given fundamental power.

Alternatively, by moving to a tighter focus regime the benefits of reduced average power density

and a high peak intensity are coupled with a strong diffractive healing mechanism and should

result in a more Gaussian like mode and higher conversion efficiencies.

The verification of this is given in Figure 6.12 and further emphasised in Figure 6.13. Here

a 20 mm long PPLN based device is modelled using the BPM simulation technique with a

fundamental input power of 90 W. To investigate the effects of the focused spot size on the high

power efficiency a range of focusing ratios have been examined, from a low value of ξ = 3 up to

a value of ξ = 5, using the self-optimising grating technique. The initial input power has been

chosen to correspond to approximately 95% conversion efficiency, the maximum value achieved

with previous self optimised device at a focus ratio of ξ = 3.3198.
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Figure 6.13: (a), (b) Theoretical plots of the phase of the fundamental mode centre for focus ratios of

ξ = 3 and ξ = 5 respectively for low power interactions (green) and 95% fundamental power depletion

(blue) in a 20 mm long PPLN based device. (c), (d) the resulting fundamental mode profiles at the

device exit face for loose and tight focusing respectively, showing significant mode deformation through

non-uniform depletion mechanisms

From Figure 6.12 it is clear that for a more loosely focused fundamental beam the final

conversion efficiency is indeed lower than the earlier simulations performed at the low power

optimal focusing condition of ξ = 3.3198. This agrees with the prior assumption that at looser

focus the diffractive healing mechanism is less efficient resulting in significant distortions to the

propagating mode. This is further clarified in Figures 6.13(a) and 6.13(c), which respectively

show the focused Gouy phase throughout the device and mode intensity of the fundamental

beam at the exit face of the device for a focus of ξ = 3. Here it is clear that at such extreme

power levels diffraction is unable to heal the beam and a doughnut mode has been formed, this
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has then further experienced back conversion into the depleted centre. By comparing the Gouy

phase at the centre of the propagating beam (blue) with the theoretical Gaussian Gouy phase

(green) it is clear that significant variation to the modal propagation has occurred.

In contrast, at tighter focusing Figure 6.12 clearly shows that higher conversion efficiencies

can be obtained indicating that diffractive healing is able to somewhat limit the detrimental

effects of non-uniform pump depletion. Now, by comparing the Gouy phase of the propagated

beam at the tighter focus of ξ = 5, as shown in Figure 6.13(b), it is clear that the actual

phase (blue) much more closely follows that of the theoretical Gaussian phase indicating a more

Gaussian like modal propagation. Further, comparing the intensity distribution of the tighter

focused mode in Figure 6.13(d) with its loose focus counterpart it is evident that, although by

no means Gaussian in nature, the transfer of power from the Gaussian side lobes has been more

significant before back conversion occurs. However, it must be noted that due to the tighter

focusing, and thus more rapid diffraction, that the intensity of the fundamental mode at the

device exit face is reduced compared with the looser focus and thus contributes to the lower

intensity side lobes in the device profile.

Finally, it is clear from Figure 6.12 that there is no sign of roll-off in the conversion efficiency

with increasing focus ratio, indicating that still higher conversion efficiencies may be obtained

by going to yet tighter focusing conditions. The effects of increased power and tighter focusing

shall now be fully examined, using the self optimised grating structures, again assuming a PPLN

based device. It is important to note that by utilising a different material type, operating

wavelength, or device length in these calculations that the peak focusing conditions may be

greatly varying. With the rates of diffraction, and thus the efficiency of diffractive healing,

varying with wavelength and material. Further, the nonlinear drive will of course vary between

materials, greatly changing the powers at which non-uniform depletion mechanisms become

important.

In an effort to determine the optimal focussing conditions under a high pump depletion regime

an investigation into the maximum focused conversion efficiency for a 20 mm length of LiNbO3

based QPM material has been undertaken. Here it is assumed that a fundamental Gaussian

beam with a 1064 nm wavelength is input into the device, the power and focusing of which

are freely varying parameters. Again for simplicity the QPM structure has been chosen to be

self-optimising. With this allowing a rapid investigation into the maximum conversion efficiency

without having to sweep ∆k space to find the peak phase matching conditions at each focus and

power value.

The results of this investigation are shown in Figure 6.14. Here it is clear to see that the
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Figure 6.14: A theoretical plot of conversion efficiency, with darker colours indicating high efficiency,

for a sweep of both fundamental input power and focusing ratio. Here it is clear that at high power

optimum focusing is achieved at a significantly higher value than classically predicted at low power,

optimum conversion efficiency occurs at a focus ratio considerably tighter than that of low power

interactions, with the peak focus ratio being approximately ξ = 8.25, corresponding to a focused

spot size of 14µm. Further, the peak conversion efficiency of over 99% is achieved with an

input fundamental power of 45 W which corresponds to a peak power density of approximately

14.5 MWcm−2. Although this power density is high, such values can readily be obtained using

picosecond duration pulses, or even pulses in the low nanosecond regime, whilst maintaining a

energy density well below the accepted limit of 2 Jcm−2 for optical damage in LiNbO3 [22]. A

further limitation which may be necessary to consider to fully model the effects of high power

CW interactions is that of thermal lensing. Here, due to effects such as two photon absorption

[23], not insignificant optical power can be absorbed by the crystal lattice and result in regions

of localised heating and consequently refractive index variation. Such localised index changes

will of course vary the propagation characteristics of the focused beam and thus require different

compensating grating structures. This effect will further be more prevalent at tight focus, where

the high power density will of course result in greater heating. As such the results offered in

Figure 6.14 should be considered as appropriate only for quasi-CW pulses in the low nano-second

or pico-second regimes where heating effects are less of a concern.

This result clearly highlights the ability for diffractive healing of the fundamental beam to play

a significant role in achieving high levels of conversion efficiency. Perhaps of more importance

is that this work refutes the common held belief that it is impossible to achieve efficiencies

approaching 100% in bulk interactions. With many works [15] incorrectly citing the papers by
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Eimerl on high power bulk interactions as proof of this [9, 5]. However, these papers specifically

address the highly unusual case of frequency converting laser beams with energies of 100 kJ and

above. Here, the object of the work is not solely set on reaching high efficiencies (although this

is indeed important) but is instead aimed at obtaining huge laser powers, > 100 TW, at UV

wavelengths for the purpose of laser confinement nuclear fusion. At such extreme input powers

it is clear that nonlinear depletion effects will become severe and ultimately place an artificial

limit on conversion efficiency as a result of driving the interaction too hard.

This work has highlighted that for the particular case of producing green second harmonic

light in a 20 mm long LiNbO3 crystal an optimum efficiency can be obtained with a 40 W in-

put source focused to a ratio of ξ = 8.25. However, this result is by no means universal and

as such cannot be taken as the definitive operating conditions for all nonlinear interactions,

even for interactions with identical fundamental power. This is in stark contrast to previous

works on optimising the conversion efficiency of focused beams [24], where a single universal

optimum focusing condition has been provided for any second harmonic interaction, regardless

of wavelength, material type or length.

Here, at high powers, no single optimal result can be provided due to the differing rates of

diffraction and the associated ability to heal the fundamental beam. For example, at shorter

wavelengths in LiNbO3 the rate of diffraction is higher than at longer wavelength and as such

a looser focus ratio can provide the same degree of beam healing as a much tighter focus at

longer wavelengths. Similar conditions arise for variations in device length, where a focus ratio

of ξ = 3 in a 40 mm long crystal has a much lower rate of diffraction than an equal focus ratio

in a 10 mm long crystal and as such a reduced ability to heal the Gaussian profile. Of course,

with the greater interaction lengths provided by a 40 mm long device lower fundamental powers

can be used to obtain high levels of pump depletion. With the lower powers and reduced rate of

conversion efficiency somewhat negating the effects of nonlinear depletion.

6.6 Intensity dependent phase shifts

Thus far, throughout the analysis of high power parametric interactions the detrimental effects

observed, such as the Gouy phase and beam deformation, have been common to all types of bulk

phase-matching, be it QPM or birefringent. Although, the compensating techniques discussed

have only been applicable to grating based structures, with their greater flexibility allowing

a higher degree of control over the nonlinear interactions. Now however, having highlighted

the benefits nonlinear grating based structures can provide at high power operation a further

detrimental effect shall be discussed that is only of significant concern in quasi-phase-matched
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interactions.

Returning to Equation 3.5 from the earlier work on an analytic solution to the coupled plane-

wave equations of second harmonic generation (repeated here as Equation 6.13) it can be seen

that there is an intensity dependent phase-shift between the two interacting waves along the

direction of propagation.

dθ
dz

= ∆k − cos θ
sin θ

d
dz

ln
(
ρ2
ωρ2ω

)
(6.13)

Here ρω and ρ2ω are the real magnitudes of the fundamental and harmonic fields respectively and

θ is the phase difference between the two propagating waves. At low powers it is clear that the

rate of change of the phase of the two propagating fields is dominated by dispersion. However,

as the fundamental input field is increased in magnitude it becomes evident that a significantly

more complex variation in the phase of the two waves occurs, with the rate of phase change

becoming linked to both the current phase and the field magnitudes.

Using the technique of quasi-phase matching it is clear that at low fundamental drive de-

termining the optimum position of nonlinearity reversals to maintain a phase lock between the

two waves is trivial. For high nonlinear drive however, the process becomes significantly more

involved, with no one correct domain position satisfying all power levels. To aid in the analysis

Equation 6.13 can be re-written as

dθ
dz

= ∆k − 4ω2K

(
ρ2

k1
− ρ2

1

ρ2k2

)
cos θ (6.14)

where K is a definition of the second order nonlinearity coefficient and k1 and k2 are the fun-

damental and harmonic k-vectors respectively, this expression is fully derived in Appendix A.

From the above expression it can be seen that the rate of change of phase between the two waves

is strongly tied to the field of the fundamental wave, the consequence of which is an increase in

the rate at which the two interacting waves lose phase lock at higher fundamental power levels.

This can simply be thought of a shortening of the coherence length of the nonlinear interaction

as fundamental power is increased. This effect was first highlighted in QPM interactions by

Rustagi et. al [13] in 1982, although no efforts were made to compensate for its effects.

This shortening of the coherence length can of course be accounted for with a simple adjust-

ment of the phase-matching period, through wavelength or temperature tuning, thus providing

continuous growth of the fundamental field. However, at higher levels of nonlinear drive, through

higher fundamental field or through larger nonlinear coefficient, it cannot be assumed that the

phase variation generated over each coherence length is equal. At higher nonlinear drive the

magnitude of ρ1 is of course no longer constant, due to depletion of the fundamental through

the nonlinear interaction. As such the magnitude of the phase addition is not constant along
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Figure 6.15: A representation of the effects of high power dephasing. Here it can be seen that at high

power significant depletion of the fundamental beam results in an effective shortening of the k-vector as

the harmonic is generated, this in turn results in a reduced coherence length which must be compensated

for with a spatially varying QPM period.

the device length resulting in an expansion of the coherence length back towards that of the low

power value. At extreme electric field magnitudes, as may be encountered in femtosecond pulsed

interactions, the variation in the phase can become so rapid that the effects can become apparent

over single coherence lengths. In such a regime it is possible to achieve not insignificant depletion

of the fundamental over a single coherence length leading to significantly nonlinear variations

in phase from QPM period to period. This effect can be visualised with the use of k-vector

diagrams of the phase matching process as shown in Figure 6.15. As can be seen from the figure,

due to depletion of the fundamental beam, a phase error is introduced whereby later parametric

contributions are insufficient to counteract the phase of the earlier, higher power interactions.

This nonlinear variation in coherence length is remarkably similar in nature to the Gouy

phase shift encountered in earlier chapters, although this new effect is much more subtle with

considerably smaller shifts in the phase-matching characteristics. The result of this intensity

dependent phase shift of course has similar consequences to that of the Gouy phase, resulting in

dephasing of the propagating fields and subsequent back conversion of the generated harmonic

field. Here however, as fundamental power is increased, in an effort to gain greater conversion

efficiency, the phase variation becomes more severe. As for the Gouy phase shift, at higher

fundamental and harmonic powers, this phase error may lead to the generation of new unwanted

frequencies causing bandwidth broadening and reduced conversion efficiency.

Figure 6.16 is a theoretical plot of the conversion efficiency of a plane-wave SHG interaction
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Figure 6.16: A plot of the conversion efficiency of a plane wave interaction for variation in the phase

matching condition, shown here as a temperature offset, and the fundamental power density. Here it

can be seen that at high intensities the phase-matching peak becomes significantly narrowed. But, also,

as the intensity is pushed still higher it is clear that the peak phase-matching condition shifts, with this

being a result of the intensity dependent phase-shift.

for varying fundamental power and phase-matching parameters in a uniform QPM structure

which highlights some of the effects this phase shift may have. By taking a horizontal slice

through this plot, at the lowest power level, the familiar sinc squared phase matching curve can

be obtained. However, with increasing fundamental power it is clear to see that this sinc squared

curve becomes severely narrowed, with this effect being a direct consequence of the intensity

dependent phase shift. At still higher input powers the central phase matching lobe becomes so

narrowed that it becomes impractical to operate efficiently at this value, with minute variations

in operating temperature or fundamental wavelength resulting in large reductions in generated

harmonic power. However, it is clear that at these higher drive levels the side lobe efficiency has

raised significantly such that high harmonic powers can be obtained through deliberate detuning

of the phase-matching characteristics. It is quite likely that experimentally at high powers the

optimum efficiency is obtained from one of these side lobes and not the central lobe as would be

expected.

Aside from the narrowed phase-matching response at the highest input powers, as can rou-

tinely be achieved with femtosecond pulsed lasers, it is evident that a shift in the peak phase

matching condition to lower temperature values occurs. This shifting phase matching condition

is as a result of tuning the grating to provide the best average phase-matching to compensate for

the spatially varying coherence length of the nonlinear interaction. Although this shift appears
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somewhat insignificant it has been shown, independently from this work, that such a phase er-

ror can have detrimental effects on pulsed light, leading to frequency chirps, wavefront tilt and

focusing distortions [14].

As for the case of Gouy phase compensated gratings it should in theory be perfectly possible

to create QPM gating structures that can compensate for the effects of intensity dependent

phase shifts, resulting in reduced back conversion, lessened frequency distortion of the harmonic

temporal pulses and overall higher conversion efficiencies. Here however, no single device will

be able to adequately compensate a range of interactions. With instead each laser source, with

a known output power, requiring an individually tailored grating structure to provide optimum

performance.

As for high power Gouy compensation it should be possible to generate a suitable grating

structure using a self optimising BPM algorithm, although the simulations used in this chapter

would likely need extending to account for temporal effects of short pulse interactions including

group velocity mismatch (GVM) and non-uniform depletion of the temporal profile. Finally,

with such a bespoke design it now becomes essential to include in the simulations the effects

of absorption and local heating, green induced infra-red absorption (GRIIRA) and the changes

these factors will have on the local characteristics of the nonlinear material.

6.7 Conclusions

In this chapter a purely theoretical analysis of high efficiency second harmonic generation has

been undertaken. Using a modified split-step beam propagation method, which takes into ac-

count nonlinear coupling of propagating fields through the second order nonlinearity, an investi-

gation into the effects of the Gouy phase of focused Gaussian beams on the conversion efficiency

has been undertaken. It has been shown that, for moderate fundamental depletion and single

frequency operation, the Gouy phase shift can reduce the conversion efficiency of harmonic in-

teractions and that compensating for this phase error with a modified QPM structure can result

in improvements in efficiencies of up to 3.5%.

Further, using a more complicated BPM simulation, which can concurrently model the effects

of many hundreds of coupled propagating fields in a grating structure, it has been shown that

compensating for the Gouy phase of focused beams can lead to significant performance enhance-

ments. Simulating a 20 pm Lorentzian bandwidth laser source it has been shown that using a

Gouy compensated QPM device efficiencies a factor of two greater than a comparable uniform

QPM device can readily be achieved through limiting back conversion at high input powers.

Using this extended BPM simulation tool it has been demonstrated that at higher funda-
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mental power levels it is insufficient to compensate for the theoretical Gouy phase of a Gaussian

beam, with non-uniform beam deformation causing a modification in the propagation character-

istics of the fundamental mode. This deformation has been identified as the source of unexpected

back-conversion of Gouy compensated devices at higher fundamental powers. From this a fur-

ther simulation tool was developed to create self optimised grating structures that could actively

maintain perfect phase lock between the propagating fields and the grating. However, it was

found that for single frequency simulations at very high power levels such a grating structure

resulted in a reduced conversion efficiency than either uniform QPM or standard GQPM de-

vices. Here, it is believed that the more efficient phase matching provided by this structure led

to a more rapid spatial depletion of the fundamental beam which cannot be compensated for

with simple 1 dimensional grating structures. Due to computational limitations a self optimised

multiple frequency simulation has not been performed although it is believed that it would show

considerable efficiency gains over either QPM or GQPM at higher power levels.

Additionally, an investigation was undertaken into the optimal SLM focusing conditions

at high fundamental power. It has been found that unlike for low power negligible depletion

interactions the optimum focusing condition is not at the famous Boyd and Kleinman ξ = 2.84

[24] or even at the improved ξ = 3.3198, proposed by this author for low power interactions

[11], but is found to be a much tighter value. Here operating at tighter focusing enables an

effect termed ‘diffractive healing’ to occur, with this process actively repairing the depleted

fundamental mode through diffraction. The result of this healing is a mode with a greater

modal overlap with the near perfect Gaussian distribution second harmonic mode, providing a

higher degree of nonlinear coupling and thus greater efficiency.

By compensating for these numerous effects it has been shown theoretically that there are

no restrictions preventing nominally 100% fundamental depletion. This is in contrast to often

quoted articles that claim efficiencies over 90% are impossible to obtain without the use of

multiple orthogonal nonlinear devices [5].
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Chapter 7

Conclusions and Future Work

7.1 Increased temperature bandwidth QPM devices

Synthesised response QPM grating structures have shown considerable promise as systems for

stable, relatively efficient, production of optical harmonics. Such devices have proven effective in

providing highly temperature and wavelength stable constant optical power output. With this

stability extending up to 35 times greater than standard uniform QPM devices. Unfortunately, at

such extremes of stability the relative conversion efficiency of such devices, when compared with

unmodified periodic structures, is considerably lower. This of course is an unavoidable physical

effect of the nonlinear interaction and cannot readily be improved on. Notwithstanding, although

a significant reduction in optical efficiency is encountered with such devices, the reduction is

considerably lower than the alternative method of utilising shorter periodic devices. For uniform

devices an increase in temperature or wavelength bandwidth can be accomplished with shorter

device lengths, with the bandwidth varying proportionally with the inverse of device length. This

however is matched with a corresponding loss in conversion efficiency which is proportional to

the inverse of the square of the device length. In contrast, the devices designed and fabricated as

part of this research have been able to maintain an almost linear relationship between bandwidth

and efficiency, resulting in almost an order of magnitude greater efficiency at some bandwidths.

As a technique for the large scale production of temperature stable QPM devices the method

demonstrated in Chapter 3 has proven to be highly successful in LiNbO3. By ensuring uni-

formly sized poled domains in the quasi-periodic structure a very high fabrication yield has been

achieved, rivalling that of uniform QPM structures. It is this advantage in high yield fabrication

that sets such a bandwidth enhancement technique apart from the numerous others, many of

which have been shown to provide efficiencies rivalling the devices detailed here.
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With initial experimental verification of such a device type being based on early, un-optimised

designs there is considerable scope for improving the performance of such devices. Future work

on these devices will likely lead to much greater efficiencies than currently achieved. Using

more complex design tools, such as simulated annealing [1], whilst maintaining a constant poled

domain size should result in considerable efficiency enhancements.

7.2 Analytic simulations of nonlinear interactions

The modelling technique utilised throughout Chapter 3, which is based on analytic solutions to

the coupled parametric equations, has proven to be a highly effective tool. Capable of providing

exact analytic answers to the most complex of plane-wave interactions such a tool has proven

invaluable. In particular, for the wide bandwidth devices detailed such a modelling technique

has allowed very rapid yet highly accurate analysis. Taking advantage of the relatively large

regions of constant nonlinearity within such structures the Armstrong [2] based simulation tool,

which is able to determine the contribution of such regions in a single calculation, has proven

many times faster than alternative methods such as Runge-Kutta.

However, although precise and relatively rapid in use, the underlying computer coding of this

tool is far from optimised. Currently the simulation times are limited by the large number of

computations required to solve the Jacobi elliptic function of Equation 3.25. By reducing this

time, through optimisation of the Jacobi solver, further performance gains can likely be achieved

making this tool the standard modelling technique of choice for plane-wave SHG interactions.

This technique can further be readily adapted for the more complex three wave mixing pro-

cesses, allowing for more detailed analysis of effects such as difference frequency mixing and the

associated back conversion of the SHG signal.

7.3 Compensation of the Gouy phase with domain engi-

neering

The work of Chapter 3 highlighted an often overlooked phenomenon of parametric interactions.

Specifically, under focused Gaussian beam interactions the operation of nonlinear devices differ

quite markedly from the more readily analysed plane-wave interactions, as are produced in

single mode waveguide devices for example. The more obvious of such differences being a shifted

phase-matching parameter and asymmetric power output for changes in this parameter. For

the majority of applications these effects are of little significance and as such are generally
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considered of no interest and thus ignored. However, as shown in the tuning characteristics of

the wide bandwidth devices discussed above, these effects, in particular the asymmetric tuning

response, can have dramatic unwanted consequences.

The effects of focussed Gaussian beam interactions in nonlinear devices have previously been

considered, with a thorough analysis of SHG, SFG and DFG undertaken [3]. For SHG this

analysis verified the observed asymmetries and phase-shifts as effects of the focused beams and

further went on to provide an analytically derived optimum operating condition for maximum

optical conversion efficiency. However, throughout this analysis, and ever since, there have been

no real efforts undertaken to fully explain the causes of these effects and thus there has been no

possible routes to overcome them.

In Chapter 4, in an effort to explain the unwanted effects observed in the flat-top temperature

stable devices of Chapter 3 the analysis of Boyd and Kleinman has been revisited. Subsequently

it has been found that a spatially varying phase advancement, along the optical axis, occurs in

focused interactions. This non-uniform phase, first identified by Gouy in 1890 [4], is directly

responsible for the deleterious effects of focusing, specifically the phase-shift and asymmetric

tuning response. Further it has been shown theoretically that by negating this spatially varying

Gouy phase both these effects can be fully suppressed, returning the device performance back

to that of a plane-wave interaction.

A further, unexpected consequence of removing this phase advancement is an increase in

optical conversion efficiency. By providing constant phase-matching between the interacting

fundamental and harmonic fields it has been shown that at any focused spot size higher effi-

ciencies could be obtained through compensating for the Gouy phase. Additionally, it has been

demonstrated that the optimum focusing condition provided by Boyd and Klienman over 40

years ago is in fact too loose, with higher efficiencies obtainable at tighter focusing.

Finally, a route to achieve Gouy phase compensation through domain engineered QPM has

been both theoretically demonstrated and experimentally verified. By compensating for the

phase advancement, through subtle shifts in the grating period, devices have been fabricated in

LiNbO3 and optically tested and have shown a return to a symmetric phase-matching tuning

response and a shift in peak phase-matching condition back to that of plane-wave.

7.3.1 Focus compensated Flat-top devices

Using the technique of Gouy phase compensation new temperature stable QPM devices have been

simulated, with such devices now providing perfectly symmetric phase-matching characteristics.

Despite this compensation, however, it has been shown that the response under focusing is still
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not directly comparable to plane-wave interactions, with the obtained bandwidths being reduced

and the flat-top response becoming softened. Both of these effects have subsequently been shown

to be entirely attributable to the spatially varying optical intensity in a focused beam, with such

variation leading to an apodisation of the spatial structure which in turn causes a smoothing of

the spectral response. Further, by pre-compensating for this effect in the effective nonlinearity

of the wide bandwidth devices it has been shown that all of the deleterious effects of focused

interactions can be completely overcome, resulting in optical characteristics indistinguishable

from waveguide interactions.

Such focus compensation techniques may now allow for complex phase-matching charac-

teristics in bulk focused devices, where previously they may have been restricted to the more

controllable waveguide interactions. Utilising such structures in bulk focused interactions would

allow significantly higher power handling than in waveguide devices.

7.4 High power SHG

Following on from the work on Gouy phase compensation at low power and negligible pump

depletion a further study on the effects of focus induced phase mismatch under intense optical

fields has been undertaken. Using a split-step beam propagation technique simulations of 3-D

coupled wave equations defining SHG interactions have been performed. Through these simu-

lations it has been shown that for narrow line width lasers, such as single longitudinal mode

sources, there is unfortunately no greater benefit to utilising Gouy compensated QPM samples

than at low power. With only a 3.5% increase in efficiency being achieved over the uniform QPM

devices.

Further, it has been shown that at very high nonlinear drives, where fundamental pump

depletion approaches 90%, GQPM samples are no longer able to compensate adequately the

Gouy phase shift, resulting in a reduced efficiency compared with standard QPM. This reduction

can been attributed to a variation in the propagation characteristics of the fundamental mode

through a process known as non-linear depletion. Here, the high intensity centre of the Gaussian

mode depletes more rapidly than the lower intensities wings, resulting in significantly altered

propagation for which the GQPM grating cannot compensate.

However, for multi-longitudinal mode lasers, with bandwidths approaching that of the non-

linear devices, GQPM structures have shown considerable performance enhancements over QPM

devices. Using a more complex BPM simulation, which models the interactions of hundreds of

coupled modes, it has been shown that GQPM samples can limit back-conversion of the high in-

tensity SHG signal to fundamental frequencies by removing possible phase-matching conditions.
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Preliminary theoretical results have predicted an almost 100% enhancement in harmonic output

power using GQPM samples for some high power interactions.

In an effort to produce GQPM designs suitable for the most intense parametric interactions

a further self optimising BPM simulation tool has been developed. With the ability to optimise

domain positions within the GQPM structure such a tool offers the promise of near perfectly

phase-matched interactions even at the highest levels of nonlinear drive. Such a design has be

used in conjunction with the effect of diffractive healing to maximise the conversion efficiency

for a given fundamental power, providing theoretical conversion efficiencies of over 99%.

Thus far there has been no experimental verification of these concepts, with experimental

testing of Gouy compensated devices limited to low fundamental powers. However, it is useful

to highlight possible experiments that can be undertaken to verify the claims of this work. The

simulations in this work suggest that the majority of high power SHG experiments performed

in PPLN are performed in a regime significantly too energetic for high fundamental depletion

to occur, with femtosecond and even picosecond regimes producing too high a nonlinear drive.

Instead, utilising long pulse or cw laser sources it is possible to use long QPM devices, with the

laser bandwidth now being considerably reduced compared with short pulse systems, allowing a

slow growth of the harmonic field thus overcoming the nonlinear mode depletion mechanisms. To

achieve conversion efficiencies approaching 100% in bulk interactions theory suggests peak powers

no higher than 500 W in as long a self optimised QPM structure as physically possible. Such a

regime reduces the detrimental effects of non-uniform deformation, both spatial and temporal,

and will of course prevent back conversion to parasitic frequencies as observed in many high

power experiments to date [5].

7.5 Future Work - Massively multimode waveguides

The demand for high power harmonic generation, particularly for producing visible green light,

is high. However, as shown in Chapter 6, to obtain efficient harmonic conversion considerable

optical intensities are required. There are numerous routes to obtaining high optical intensities,

with one of the most common being the use of waveguide structures. With the use of single mode

nonlinear waveguides it is routinely possible to achieve power conversion of over 50% [6], with

the non depletion figure for conversion efficiency for a given length of LiNbO3 being of the order

of 150 %W−1cm−1 [7, 8, 9]. In contrast, in unguided devices of the same material the accepted

conversion efficiency is given as 4 %W−1cm−1. From this it is clear that for efficient generation

of harmonic light sources it is highly desirable to utilise waveguide structures, especially when

the fundamental pump source is low power and CW.
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However, there comes a problem with waveguide devices as attempts are made to scale the

harmonic power to greater levels. Due to the very large optical intensities, which are necessary

for the high conversion efficiency, waveguide based parametric conversion devices are prone to

optical damage mechanisms. These damage effects, such as photo-refractive [10, 11, 12], GRIIRA

[13] and BLIIRA [14] restrict the fundamental input power, with higher power levels leading to

significant degradation of the nonlinear material. Single mode nonlinear waveguide experiments

to date have shown a limited harmonic power output of the order 100 mW CW, with the greater

number reporting values significantly lower [15, 16].

An obvious route to overcome such damage effects is to increase the mode area of the waveg-

uide such that the optical field intensities are reduced. This technique however has highly

undesirable effects that can lead to a significantly reduced conversion efficiency. By utilising a

physically larger waveguide core, whilst maintaining the same index contrast, the nature of the

guiding region can quickly become multi-mode. This multi-mode nature has significant impli-

cations for the harmonic generation process, with poor modal overlap reducing the nonlinear

coupling [17] or even preventing any harmonic generation if the fundamental mode is even and

the harmonic mode is odd [18]. Further, the propagation k-vector of each mode differs and leads

to phase-matching errors, which can result in back conversion and parasitic depletion effects.

From this it can be seen that there is no simple method for efficiently generating moderate

power harmonic light sources. With single mode waveguides providing no more than 100 mW CW

power, albeit at very high efficiency, and bulk devices requiring significantly greater fundamental

power to achieve 100 mW output. At this power level bulk devices are very inefficient resulting

in significant power wastage which may be of considerable importance in compact, miniaturised

systems for example.

An alternative concept that is proposed here, and an area of ongoing research, is the use of

massively multimode large area waveguide structures. Here by deliberately utilising highly multi-

mode structures, where there are 100’s of spatial modes, many of the deleterious effects observed

in multimode waveguides can be suppressed. Firstly, with sufficiently numerous fundamental

and harmonic modes the issues of modal overlap are significantly reduced, with the high mode

numbers providing a near uniform distribution of harmonic and fundamental power. Secondly,

with many 100’s of modes the standard deviation of k-vector values is reduced, with the conse-

quence that phase-mismatch is minimised and back-conversion at higher powers is suppressed. A

further practical advantage of multimode waveguides is the relative ease with which they can be

fabricated, here air clad ridge waveguides in lithium niobate are considered as possible devices.

Traditionally, air clad ridge waveguides in LiNbO3 are not often utilised due to the extremely
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(a) (b)

(c) (d)

Figure 7.1: A schematic representation of the main steps of direct bonded PPLN ridge waveguides.

(a) Poled LiNbO3 wafer and substrate LiTaO3 prior to direct bonding. (b) Samples combined using

direct bonding. (c) PPLN layer polished back to 10’sµm thickness. (d) Ridge waveguides formed using

precision dicing saw.

high number of modes supported by the large step index contrast, with LiNbO3 having an index

of ∼2.15 at 633 nm. However, for this particular application this feature is highly desirable.

There have been numerous proposed methods for fabricating ridge waveguides in this material,

including utilising the differing etch rates for poled and unpoled domains [19]. In this work the

robust technique of polishing and dicing is assumed as the basis for the devices. The process for

the fabrication of such devices is outlined in Figure 7.1. Initially a sample of standard LiNbO3

or MgO:LiNbO3 is periodically poled for the desired phase-matching interaction using electric

field poling techniques, as detailed in Chapter 2. This substrate is then bonded to a second

lower index material, in this case LiTaO3, using an adhesive free bonding technique. Here,

with sufficiently flat and defect free optical surfaces two substrates can be permanently bonded

together through only atomic forces [20]. Subsequently, the bonded poled layer is polished back

to the desired thickness, nominally 10’s of microns, to provide a degree of vertical confinement

before a high precision dicing saw is used to machine a free-standing ridge structure.

A investigation into the expected conversion efficiency for a given waveguide core dimension
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Figure 7.2: (a) A theoretical plot of conversion efficiency against waveguide dimensions calculated using

BPM, (b) The change in predicted phase-matching period for changing guide dimensions, here the

effective index begins to alter the phase-matching characteristics.

has been undertaken numerically. Using a modified version of the nonlinear beam propagation

technique developed in Chapter 6 approximate conversion efficiency measurements have been

made. Here, the BPM software has been enhanced to account for the effects of the 2-D spa-

tially varying index of the guide structure. It must be stressed that the simulation is by no

means rigourous, with BPM generally considered unsuitable for high index contrast waveguides.

Further, being a non-vectorial simulation technique, ignoring polarisation effects, exact mode

propagation characteristics cannot be determined.

Despite the limitations of the BPM simulation it is still possible to obtain information on

the expected conversion efficiency for a given core dimension. The results of these simulations

are provided in Figure 7.2. For these results an input power of 1 W at 1064 nm wavelength is

assumed with a device length of 10 mm, the core dimensions are defined to be square. From

Figure 7.2(a) it is clear that considerable gains over bulk interactions can be obtained, with a 50

x 50µm core being the maximum size before bulk interactions begin to become comparable in

efficiency. It should be noted that for a bulk interaction in a 10 mm long device a focused beam

diameter of ∼33µm provides optimal conversion efficiency at 4% W−1 cm−1. Using the same

focusing optics a 30µm waveguide would accept the majority of the focused spot but provide

a conversion efficiency of 14% W−1 cm−1. Shown in Figure 7.2(b) is the expected variation in

phase matching period with changing core dimensions. Here, as the core dimension is reduced

the effective index for the fundamental modes reduces more rapidly than for the harmonic modes

resulting in a shift to shorter phase matching periods.
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In conclusion, massively multimode waveguides show promise for obtaining relatively efficient

harmonic output, being over 3.5 times as efficient as bulk devices, whilst maintaining high power

handling capabilities. Such devices may prove useful in spanning the current divide between high

efficiency single mode waveguide and high efficiency bulk devices. With single mode waveguides

providing high efficiency but limited power output and bulk devices only providing high efficiency

at the highest power levels. Future work would be the production and test of these devices with

the aim of integration with inexpensive multi-watt level diode bars resulting in compact high

power sources of visible laser light.
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Appendix A

Armstrong Derivation

E1 = <
[
A1 (z) ei(k1z−ω1t)

]

= ρ1 (z) cos [k1z − ω1t+ φ1 (z)]

dA1

dz
= −i

(
2ω2K

k1

)
A2A

∗
1e
−i(2k1−k2)z (A.1)

dA2

dz
= −i

(
4ω2K

k2

)
A2

1e
i(2k1−k2)z (A.2)

Here K = 2πχ(2)

c2 is the device nonlinearity. Using A1 = ρ1e
iφ1 and A2 = ρ2e

iφ2 the above

equations can be re-written as:

A.1⇒

d
dz
(
ρ1e

iφ
)

= −i
(

2ω2K

k1

)
ρ2e

iφ2ρ1e
−iφ1e−i(2k1−k2)z

dρ1

dz
eiφ1 + iρ1

dφ1

dz
eiφ1 = −i

(
2ω2K

k1

)
ρ2ρ1e

−i((2k1−k2)z+φ1−φ2)

= −i
(

2ω2K

k1

)
ρ2ρ1 [cos θ − i sin θ]

Real part
dρ1

dz
= −

(
2ω2K

k1

)
ρ2ρ1 sin θ (A.3)

Imaginary part

ρ1
dφ1

dz
= −

(
2ω2K

k1

)
ρ2ρ1 cos θ (A.4)
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A.2⇒

d
dz
(
ρ2e

iφ2
)

= −i
(

4ω2K

k2

)
ρ2

1e
i2φ1ei(2k1−k2)z

dρ2

dz
eiφ2 + iρ2

dφ2

dz
eiφ2 = −i

(
4ω2K

k2

)
ρ2

1e
i((2k1−k2)z+2φ1)

= −i
(

4ω2K

k2

)
ρ2

1 [cos θ + i sin θ]

Real part
dρ2

dz
=
(

4ω2K

k2

)
ρ2

1 sin θ (A.5)

Imaginary part

ρ2
dφ2

dz
= −

(
4ω2K

k2

)
ρ2

1 cos θ (A.6)

combining A.4 and A.6 a single equation for the imaginary terms can be obtained:

2× A.4
ρ1
− A.6

ρ2

⇒

2
dφ1

dz
− dφ2

dz
= −

(
4ω2K

k1

)
ρ2 cos θ +

(
4ω2K

k2

)
ρ2

1

ρ2
cos θ

= −
(
4ω2K

)(ρ2

k1
− ρ2

1

ρ2k2

)
cos θ

d
dz

(2φ1 − φ2) + ∆k = ∆k −
(
4ω2K

)(ρ2

k1
− ρ2

1

ρ2k2

)
cos θ

using
d
dz

(2φ1 − φ2 + 2k1z − k2z) =
dθ
dz

the following real equations can further be obtained.

dρ1

dz
= −

(
2ω2K

k1

)
ρ1ρ2 sin θ (A.7)

dρ2

dz
=

(
4ω2K

k2

)
ρ2

1 sin θ (A.8)

dθ
dz

= ∆k − 4ω2K

(
ρ2

k1
− ρ2

1

ρ2k2

)
cos θ (A.9)

Rearranging A.7 and A.8

A.7⇒ ρ2

k1
=

−1
2ω2K sin θρ1

dρ1

dz

A.8
ρ2
⇒ ρ2

1

ρ2k2
=

1
4ω2K sin θρ2

dρ2

dz
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⇒

dθ
dz

= ∆k − 4ω2K

( −1
2ω2Kρ1

dρ1

dz
− 1

4ω2Kρ2

dρ2

dz

)
cos θ
sin θ

(A.10)

= ∆k +
(

2
ρ1

dρ1

dz
+

1
ρ2

dρ2

dz

)
cos θ
sin θ

(A.11)

= ∆k +
d
dz

ln
(
ρ2

1ρ2

) cos θ
sin θ

(A.12)

dρ1

dz
= −

(
2ω2K

k1

)
ρ1ρ2 sin θ (A.13)

dρ2

dz
=

(
4ω2K

k2

)
ρ2

1 sin θ (A.14)

dθ
dz

= ∆k +
d
dz

ln
(
ρ2

1ρ2

) cos θ
sin θ

(A.15)

Using the Manely-Rowe relations:

k1

ω1
|E1|2 +

k2

ω2
|E2|2 = constant

k1

ω
ρ2

1 +
k2

2ω
ρ2

2 = constant

⇒
W =

c2

8πω

(
k1ρ

2
1 +

k2

2
ρ2

2

)
(A.16)

To obtain Eq.(5.5) in Armstrong-Bloembergen use the following substitutions:

u =
(

c2k1

8πωW

)1/2

ρ1 ⇒ ρ1 =
(

8πωW
c2k1

)1/2

u

v =
(

c2k2

16πωW

)1/2

ρ2 ⇒ ρ2 =
(

16πωW
c2k2

)1/2

v

ζ =
(

2ω2K

k1

)(
16πωW
c2k2

)1/2

z⇒z =
(

k1

2ω2K

)(
c2k2

16πωW

)1/2

ζ

dρ1

dz
=
(

8πωW
c2k1

)1/2 du
dz

dρ2

dz
=
(

16πωW
c2k2

)1/2 dv
dz

dz
dζ

=
(

k1

2ω2K

)(
c2k2

16πωW

)1/2

⇒

dρ1

dz
⇒
(

8πωW
c2k1

)1/2 du
dz

= −
(

2ω2K

k1

)(
8πωW
c2k1

)1/2(16πωW
c2k2

)1/2

uv sin θ

du
dz

= −
(

2ω2K

k1

)(
16πωW
c2k2

)1/2

uv sin θ
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du
dζ

=
du
dz

dz
dζ

= −
(

2ω2K

k1

)(
16πωW
c2k2

)1/2

uv sin θ
(

k1

2ω2K

)(
c2k2

16πωW

)1/2

du
dζ

= −uv sin θ

dρ2

dz
⇒
(

16πωW
c2k2

)1/2 dv
dz

=
(

4ω2K

k2

)(
8πωW
c2k1

)
u2 sin θ

dv
dz

=
(

4ω2K

k2

)(
8πωW
c2k1

)(
c2k2

16πωW

)1/2

u2 sin θ

dv
dζ

=
dv
dz

dz
dζ

=
(

4ω2K

k2

)(
8πωW
c2k1

)(
c2k2

16πωW

)1/2

u2 sin θ
(

k1

2ω2K

)(
c2k2

16πωW

)1/2

= 2
k1

k2

(
8πωW
c2k1

)(
c2k2

16πωW

)
u2 sin θ

dv
dζ

= u2 sin θ

dθ
dz

= ∆k +
cos θ
sin θ

(
2
ρ1

dρ1

dz
+

1
ρ2

dρ2

dz

)

= ∆k +
cos θ
sin θ


 2
(

8πωW
c2k1

)1/2

u

(
8πωW
c2k1

)1/2 du
dz

+
1

(
16πωW
c2k2

)1/2

v

(
16πωW
c2k2

)1/2 dv
dz




= ∆k +
cos θ
sin θ

(
2
u

du
dz

+
1
v

dv
dz

)

= ∆k +
cos θ
sin θ

d
dz

ln
(
u2v
)

dθ
dζ

=
dθ
dz

dz
dζ

= ∆k
(

k1

2ω2K

)(
c2k2

16πωW

)1/2

+
cos θ
sin θ

d
dz

ln
(
u2v
) dz

dζ

= ∆S +
cos θ
sin θ

d
dζ

ln
(
u2v
)

where

∆S =
∆k

(
2ω2K
k1

)(
16πωW
c2k2

)1/2
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Rearranging W in terms of u and v

W =
C2

8πω

(
k1ρ

2
1 +

k2

2
ρ2

2

)

=
C2

8πω

[
k1

(
8πωW
c2k1

)
u2 +

k2

2

(
16πωW
c2k2

)
v2

]

=
(
c2

8πω

)(
8πωW
c2

)[
u2 + v2

]

W = W
[
u2 + v2

]

thus u2 + v2 = 1.

So finally the three equations from Armstrong-Bloembergen are:

du
dζ

= −uv sin θ (A.17)

dv
dζ

= u2 sin θ (A.18)

dθ
dζ

= ∆S +
cos θ
sin θ

d
dζ

ln
(
u2v
)

(A.19)

First it is necessary to consider the case of perfect phase matching. Integrating Eq. A.19

whilst setting ∆S = 0 gives,
∫

sin θ
cos θ

dθ
dζ
dζ =

∫
d
dζ

ln
(
u2v
)
dζ

∫
tan θdθ =

∫
d ln

(
u2v
)

− ln | cos θ|+ c1 = ln
(
u2v
)

+ c2

ln
(
u2v
)

+ ln | cos θ| = c3

ln
(
u2v cos θ

)
= ln (Γ)

u2v cos θ = Γ

Now evaluating Γ at z = ζ = 0

Γ =
(

c2k1

8πωW

)(
c2k2

16πωW

)1/2

ρ2
1 (0) ρ2 (0) cos [2φ1 (0)− φ2 (0)]

= 2k1k
1/2
2

(
c2

16πωW

)(
c2

16πωW

)1/2

ρ2
1 (0) ρ2 (0) cos [2φ1 (0)− φ2 (0)]

=
2k1

k2

(
c2k2

16πωW

)3/2

ρ2
1 (0) ρ2 (0) cos [2φ1 (0)− φ2 (0)]

giving the same as Eq 5.8 in Armstrong-Bloembergen.
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Now to obtain an expression for ζ as in Eq 5.9 utilise both the facts u2 + v2 = 1 and

Γ = u2v cos θ

dv
dζ

= u2 sin θ

v
dv
dζ

= u2v sin θ

1
2

d
(
v2
)

dζ
= u2v sin θ

(
d
(
v2
)

dζ

)2

= 4u4v2 sin2 θ

= 4u4v2
(
1− cos2 θ

)

= 4
(
u4v2 − u4v2 cos2 θ

)

= 4
(
u4v2 − Γ2

)

d
(
v2
)

dζ
= ±2

[(
1− v2

)2
v2 − Γ2

]1/2
(A.20)

dζ = ±1
2

[(
1− v2

)2
v2 − Γ2

]−1/2

dv2

ζ = ±1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

[
(1− v2)2

v2 − Γ2
]1/2 (A.21)

At this point notation is introduced to allow the denominator of Eqn. A.21 to be written as an

expression of its roots. To clarify, the roots of the denominator are the roots of Eqn. A.20 which

are, of course, the ζ positions at which the gradient of v2 is zero, i.e a maxima, minima or point

of inflection. Physically v2 is constrained to only exist between 0 and 1, therefore there must be

both a minimum and a maximum to prevent v2 escaping its bounds. The third root can be an

unphysical solution, the variation of v is periodic and such requires the last maxima/minimum

to feed into the first, e.g if there is no harmonic initially Γ = 0 and the roots of v2(1− v2)2 −Γ2

are 0 & 1 twice. If however the third root is not a repeated root it is unphysical and thus ignored.

With this in mind define the roots of the cubic as v2
c≥v2

b≥v2
a, from this an expression for the

period at which v2 oscillates between its lowest roots, also known as the coherence length, can

be generated.

Πζ =
∫ v2

b

v2
a

d
(
v2
)

[v2(1− v2)2 − Γ2]1/2
.

Now consider the situation that only a fundamental beam is input i.e Γ = 0 this as above implies
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v2
a = 0 and v2

b = 1 giving:

ζ =
1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

[v2 (v2 − v2
a) (v2 − v2

b )]1/2

=
1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

[v2 (v2 − 1) (v2 − 1)]1/2

Now, let v2 − 1 = p, ⇒ d
(
v2
)

= dp

ζ =
1
2

∫ v2(ζ)−1

v2(0)−1

dp

[(p+ 1) p2]1/2

=
1
2

∫ v2(ζ)−1

v2(0)−1

dp
p
√
p+ 1

Substituting back with p = v2 − 1 and dp = 2vdv

ζ =
1
2

∫ v2(ζ)

v2(0)

2vdv
(v2 − 1) v

=
∫ v2(ζ)

v2(0)

dv
(v2 − 1)

(A.22)

=
∫ v2(ζ)

0

dv
(v2 − 1)

−
∫ v2(0)

0

dv
(v2 − 1)

(A.23)

Defining

ζ1 =
∫ v2(ζ)

0

dv
(v2 − 1)

and

ζ0 =
∫ v2(0)

0

dv
(v2 − 1)

it is possible to write

ζ + ζ0 = ζ1.

Now, from the definition of tanh−1 (x) in log form the following is obtained,

d
dx

tanh−1 (x) =
d

dx

(
1
2

ln
[

1 + x

1− x

])

=
1
2

(
1− x
1 + x

)(
(1) (1− x)− (−1) (1 + x)

(1− x)2

)

=
1
2

(
1

1 + x

)(
(1− x) + (x− 1)

1− x

)

=
1

(1 + x) (1− x)

=
−1

x2 − 1
(A.24)
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Comparing Eqn. A.23 and Eq. A.24 it can thus be seen

ζ + ζ0 = −tanh−1

(√
v2

Γ=0 (ζ)
)
.

Therefore,

vΓ=0 (ζ) = tanh (ζ + ζ0) (A.25)

uΓ=0 (ζ) =
√

1− tanh2 (ζ + ζ0)

= sech (ζ + ζ0) (A.26)

From this it is clear that as device length (ζ) tends towards∞ the harmonic power tends towards

100%.

Now it is necessary to re-write Eqn. A.21 in a form directly comparable with that of a Jacobi

elliptic function. Starting from, Eq. A.21 the denominator can be written in terms of its roots

ζ =
1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

[
v2 (1− v2)2 − Γ2

]1/2

ζ =
1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

[(v2 − v2
a) (v2 − v2

b ) (v2 − v2
c )]1/2

× v2
b − v2

a√
v2
b − v2

a

√
v2
b − v2

a

ζ =
1
2

∫ v2(ζ)

v2(0)

d
(
v2
)

√
v2−v2

a

v2
b−v2

a
(v2
b − v2

a)

√
(v2−v2

b)(v2−v2
c)

v2
b−v2

a

Now, making the substitutions

y2 =
v2 − v2

a

v2
b − v2

a
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v2 = y2
(
v2
b − v2

a

)
− v2

a

d
(
v2
)

= 2
(
v2
b − v2

a

)
y dy

= 2
(
v2
b − v2

a

)
√
v2 − v2

a

v2
b − v2

a

dy

giving,

ζ =
1
2

∫ v2(ζ)

v2(0)

2
√

v2−v2
a

v2
b−v2

a

(
v2
b − v2

a

)
dy

√
v2−v2

a

v2
b−v2

a
(v2
b − v2

a)

√
(v2−v2

b)(v2−v2
c)

v2
b−v2

a

=
∫ y(ζ)

y(0)

dy
[

(v2−v2
b)(v2−v2

c)

v2
b−v2

a

]1/2

For ease of reading only the denominator of the integrand is written out fully. Now, split the

fraction,

[(
v2 − v2

b

) (
v2 − v2

c

)

v2
b − v2

a

]1/2

=
[(−v2 + v2

b

v2
b − v2

a

)(
−v2 + v2

c

)]1/2

=
[(

v2
a − v2 + v2

b − v2
a

v2
b − v2

a

)(
−v2 + v2

c

)]1/2

=
[(

1− v2 − v2
a

v2
b − v2

a

)(
−v2 + v2

c

)]1/2

×v
2
c − v2

a

v2
c − v2

a

=
[(

1− v2 − v2
a

v2
b − v2

a

)(−v2 + v2
c

v2
c − v2

a

)(
v2
c − v2

a

)]1/2

=
[(

1− v2 − v2
a

v2
b − v2

a

)(
v2
a − v2 + v2

c − v2
a

v2
c − v2

a

)(
v2
c − v2

a

)]1/2

=
[(

1− v2 − v2
a

v2
b − v2

a

)(
1− v2 − v2

a

v2
c − v2

a

)(
v2
c − v2

a

)]1/2

=
[(

1− v2 − v2
a

v2
b − v2

a

)(
1− v2 − v2

a

v2
b − v2

a

(
v2
b − v2

a

v2
c − v2

a

))(
v2
c − v2

a

)]1/2

Finally, define:

γ2 =
v2
b − v2

a

v2
c − v2

a

giving,

[(
v2 − v2

b

) (
v2 − v2

c

)

v2
b − v2

a

]1/2

=
[(

1− y2
) (

1− γ2y2
) (
v2
c − v2

a

)]1/2
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Putting this result back in as the denominator of the integrand the following is obtained,

ζ =
±1

(v2
c − v2

a)1/2

∫ y(ζ)

y(0)

dy

[(1− y2) (1− γ2y2)]1/2

Noting that the definition of an elliptic integral of the first kind is

u =
∫ x

0

dx√
1− x2

√
1− k2x2

= sn−1 (x, k)

x = sn (u, k)

and that
∫ x1

x0

dx√
1− x2

√
1− k2x2

=
∫ x1

0

dx√
1− x2

√
1− k2x2

−
∫ x0

0

dx√
1− x2

√
1− k2x2

letting

u1 =
∫ x1

0

dx√
1− x2

√
1− k2x2

and

u0 =
∫ x0

0

dx√
1− x2

√
1− k2x2

it is possible to write

u+ u0 = u1,

which provides the following definition:

ζ + ζ0 =
±1

(v2
c − v2

a)1/2

∫ y(ζ)

0)

dy

[(1− y2) (1− γ2y2)]1/2
(A.27)

(ζ + ζ0)
(
v2
c − v2

a

)1/2
=

∫ y(ζ)

0

dy

[(1− y2) (1− γ2y2)]1/2
(A.28)

(ζ + ζ0)
(
v2
c − v2

a

)1/2
= sn−1 (y (ζ) , γ) (A.29)

y (ζ) = sn
[
(ζ + ζ0)

(
v2
c − v2

a

)1/2
, γ
]

(A.30)

y2 (ζ) = sn2
[
(ζ + ζ0)

(
v2
c − v2

a

)1/2
, γ
]

(A.31)

v2 (ζ) = v2
a +

(
v2
b − v2

a

)
sn2
[
(ζ + ζ0)

(
v2
c − v2

a

)1/2
, γ
]

(A.32)

A.1 Non-phase-matched case

Now consider the situation where phase-matching is imperfect, for example when efficient har-

monic generation is achieved via quasi-phase-matching (QPM). In this situation the only dif-

ference in the analysis is in the definition of Γ, as can be inferred from Eq. A.19. As ∆k is no
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longer zero, and thus ∆S 6= 0 the integration of Eq. A.19 is no longer trivial, in the Armstrong-

Bloembergen paper it is suggested that this integration can be performed via the method of

variation of the parameter. However, it has proved difficult to replicate the method described,

so instead, working backwards from the final solution (ABDP Eq. 5.15) Eq. A.19 shall be obtained

thus proving the validity.

Starting with

u2v cos θ +
1
2

∆S
(
v2 − v2

(0)

)
= Γ

differentiate with respect to ζ.

d
dζ
(
u2v cos θ

)
+

1
2

∆S
d
dζ

(
v2 − v2

(0)

)
=

d
dζ

(Γ)

d
dζ
(
u2v cos θ

)
+

1
2

∆S
d
dζ

(
v2 − v2

(0)

)
= 0

(
2uv cos θ

du
dζ

+ u2 cos θ
dv
dζ
− u2v sin θ

dθ
dζ

)
+

1
2

∆S
d
dζ
v2 = 0

(
2uv cos θ

du
dζ

+ u2 cos θ
dv
dζ
− u2v sin θ

dθ
dζ

)
+ ∆Sv

dv
dζ

= 0

note from Eq. A.18 that

v
dv
dζ

= u2v sin θ

giving

2uv cos θ
du
dζ

+ u2 cos θ
dv
dζ

+ u2v sin θ
(

∆S − dθ
dζ

)
= 0

Further, substitute in for Eq. A.17 and Eq. A.18 and divide through by sin θ

−2u2v2 cos θ + u4 cos θ + u2v

(
∆S − dθ

dζ

)
= 0

re-arranging gives

u2v
dθ
dζ

= u4 cos θ + u2v∆S − 2u2v2 cos θ

dθ
dζ

=
u2 cos θ

v
+ ∆S − 2v cos θ

= ∆S + cos θ
(
u2

v
− 2v

)

Now compare this result with the following,

d
dζ

ln
(
u2v
)

=
1
u2v

(
2uv

du
dζ

+ u2 dv
dζ

)

=
1
uv

(
2v

du
dζ

+ u
dv
dζ

)

=
−2v2 sin θ + u2 sin θ

v
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Therefore,

u2 − 2v2

v
=

d
dζ

ln
(
u2v
) 1

sin θ

Substituting this result the original definition of Eq. A.19 is obtained, thus proving that

u2v cos θ +
1
2

∆S
(
v2 − v2

(0)

)
= Γ

is indeed a more general solution for the integration constant.
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