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Abstract

Nearly-degenerate four-wave mixing (FWM) in anisotropic magneto-optic
media is theoretically investigated. It is shown that the anisotropic nature of
the nonlinear ¥® tensor is responsible for the appearance of a novel FWM
instability branch for which phase matching can be conveniently controlled

by the application of an axial static magnetic field.
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Four-wave-mixing (FWM) is a fundamental form of nonlinear wave interaction in nonlinear x(®)
media which represents a well-known technique for the generation of new frequencies in nonlinear
optics [1]. Despite FWM is a rather old topic in nonlinear optics, the continuous interest, both
theoretical and experimental, toward the study of parametric wave mixing phenomena is motivated
by their enormous and widespread applications in different fields of nonlinear optics, including fre-
quency conversion, phase conjugation and parametric amplification, and by their importance in
the technologically-important field of optical fiber communications [2], where FWM may be useful
for, e.g., all-optical switching, demultiplexing, frequency conversion and spectral inversion [3]. In
case of a partially degenerate interaction, FWM manifests as the conversion of two pump photons
at frequency wy iﬂto signal and idler sideband photons at frequencies ws and w; satisfying the
energy-conservation relation 2w, = wy + w;. In the small-signal interaction limit, efficient conver-
sion of pump photons occurs when the phase matching condition 2k, = &, 4 k; is realized, where
the wave numbers entering in this equation account for both material dispersion and nonlinear
pump-induced cross- and self-phase modulation terms. In absence of any signal seeding, FWM
manifestsr as an instability of the propagating pump wave with the growth from noise of sideband
frequencies (modulational instability), with a maximum growth rate for frequencies satisfying the
phase matching condition. When FWMF is used for frequency conversion or for parametric am-
plification, a signal wave is seeded into the nonlinear medium, and the conversion efficiency and
gain-bandwidth are determined again by phase-matching arguments {2,4]. In both cases, phase
matching techniques are of major importance for the achievement of tunability and broad-band
conditions in the frequency conversion process. Circular birefringence due to the Faraday effect
has been proposed as a means for continuous control of phase-matching in nonlinear wave inter-
actions occurring in x(® media [5,6]. However, in case of second-order nonlinear interactions, the
phase mismatch due to material dispersion is usually relatively large and the magneto-optic effects
achievable with externally-applied magnetic fields are, comparatively, weak and not enough to
compensate for dispersion mismatch [5]. In case of nearly degenerate FWM in third-order nonlin-
ear media, the phase mismatch among nearly degenerate pump, signal and idler fields is relatively

weak, and it is thus expected that magneto-optic effects may become of some experimental rele-
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vance in the control of phase matching [7]. Nevertheless, since in tsotropic third-order nonlinear
media the spin angular momentum of interacting waves associated to their polarization state is
conserved in the nonlinear process, it is envisaged that a significant magneto-optic contribution to
the phase matching should occur solely in a medium with an enisotropic x® nonlinear tensor.

In this Letter we present the theory of nearly-degenerate FWM interaction in anisotropic magneto-
optic x!* media, and we reveal the existence of a novel FWM instability branch, closely related
to the anisotropic nature of the tensorial x{3) nonlinearity, for which phase-matching can be con-
veniently and continuously controlled by the application of a longitudinal static magnetic field
exploiting the magneto-optic properties of the medium. We illustrate this by considering in de-
tails the case of cubic crystals of classes 432, 43m and m3m [l], and assume plane-wave fields
copropagating along the z axis of the crystal. The present analysis covers, as a particular case,
thatvcorresponding to FWM in an isotropic x®® medium; furthermore, it could be extended to
other anisotropic crystal classes, such as hexagonal and trigonal classes. We assume a cartesian
reference frame (r,y, z) coincident with the crystal axes z, y and z, and consider a plane-wave
quasi-monocromatic field £(z,t) propagating along the z-axis with a static magnetic field H, ap-
plied along the same direction, i.e. we set £(z,t) = 3, Re[E(w)exp(—iwt)], where the sum is
extended over a band of frequencies close to that of the pump field wp. The positive-frequency

parts E(w) of the field satisfy the coupled wave equations [1]:
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where ¢g is the speed of light in vacuum and P(w) is the positive-frequency part of polariza-
tion, which accounts for both linear polarization P (w) = eoxﬁe)E;(w) — 1€ nglim) (w;w,0)Ey(w)H,

due to linear material dispersion and magneto-optic effect, and nonlinear one PMNL(w) =

€0 Doton +ugFuwy=w ga,ﬂ,qxﬁffﬁz)(w;wa,wg,ww)E,(wa)Em(wﬁ)En(w,,). In these equations, x}f‘) is the
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linear electric susceptibility tensor, x;i; (eem) ___ \feem)y

the magneto-optic susceptibility ( x;;. = - Xk,

xﬁf,‘:;) the tensorial third-order electric susceptibility, g, g, the degeneracy factor due to intrinsic
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permutation symmetry of xjir

and the indices k,!,m,n vary over z,y,z. In case of a cubic

medium, the linear tensorial electric susceptibility xf;e)(w) reduces to a scalar x(¢(w), whereas
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kimn has 21 nonzero elements, of which only 4 are independent [1]. It is worth introducing a circu-

lar polarization basis for the electric field and polarization vectors by setting By = (E; +iE,)/V2,

Py = (P, £iP,)/V/2, so that Egs.(1) assume the form:

9’Fy(w)

32 T k2 () Bx(w) = —pow® P (w) (2)

In Eqgs.(2), the wave-numbers k4 for right- and left-circularly polarized field components,
which account for linear dispersion and magneto-optic effect, are given by ki(w) =
{w/co)? [n2(w) F Xgie;n) (w; w, O)Hz] , where n(w) = 1/1 + x{¢®) (w) is the refractive index of the crys-
tal. Notice that, in absence of nonlinear terms introduced by P{~, the left- and right-circularly
polarized field components are decoupled and propagate with different phase velocities in pres-
ence of the applied magnetic field H,. Let us now consider the case where an intense circularly-
polarized pump field at frequency w, is incident upon the nonlinear crystal. For the sake of def-
initeness, let us assume that the pump field has a left circular polarization. In this éase, the
evolution equation for the pump field E_(wp) is given by Eq.(2) with w = wp, the ﬁonlinea.r driving
polarization term at leading order being given by PY*(w,) = (3/8)eoalE_(wp)|[>E_(wp), where
a = X(szfg)(wp;'wp,wp, —wp) + 2X:(J;;Te;§)(wp;w;;,w;;, —wp) — x;(,f;f;;)(wp;wp,wp, —wp). The solution to
the pump wave equation; assuming a forward wave, is tﬁus E_(wp,2) = \/Tp exp(iky_z), where I,
is proportional to the constant pump field intensity and k,_ is the nonlinear pump wave number,
given by k2_ = k2 (wp) +(3/8)a(wp/co)?Ip. A linear stability analysis of this solution can be carried
out by considering the evolution of small field perturbations E+(w) # E_(wy), as ruled by Eqs.(2),

with the polarization driving terms given by:

P (w) = (3/8)eo [bE2 (wp) B} (2wp — w) + 2¢| B (wp)2E ()] (3)
PN (w) = (3/8)co [aB2 (wp) B (2wp — w) + 20| B (wp) B ()] (4)
In Eqgs.(3,4) we have set b ~ ngf:f;)(wp;wp,wp,—wp) - 2x£?;§)(wp;wp,wp,—wp) -
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Xxyyz (Wp; Wp, Wy, —wp) and ¢ ~ X(xxmz (wp; Wy, Wp, —wp) + Xzyyz’ (Wp; wWp, wp, —wp). Furthermore,

in deriving the above equations, we used the intrinsic permutation symmetry and the Kleinmann

symmetry of the x(® tensor, valid for a purely reactive medium and neglecting the dispersion of
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the x® tensor by assuming w close to the pump frequency wp. An analysis of Eqgs.(2-4) reveals
that there exist, in general, three distinct sources of instabilities. The first one is a parametric
instability for the right circular polarization of pump field F;{w,}, whereas the second and the
third one correspond to a modulational (FWM) instability for sideband signal (w; = w # wp) and
idler (w; = 2w, — w;) frequency generation of left (type-I FWM) and right (type-I1 FWM)} circular
polarizations, respectively. Two of these instability branches, namely the polarization instability
for the pump field and type-II FWM instability, vanish whenever b = 0, a situation that occurs in
an isotropic medium, where xg(fffze) = x&?;;)-i— x&f:;’ + x(zi,e;f) [1]. In the following, we will be mainly
concerned with the FWM instabilities, which correspond to frequency conversion, and will not con-
sider further the polarization instability of the pump field. After ntroduction of the slowly-varying
field amplitudes by the ansatz Ei(w,;) = AS'(z)exp(iki’z), with the nonlinear wave numbers
k%' defined by (k)2 = k2 (w,:) + (3/8)(wsifco)?cly, (K52 = k2 (wss) + (3/4)(wsi/co)2aly, the
equations that govern type-I and type-Il FWM instabilities are readily obtained feom Egs.(2-4)

and read explicitly:

aAS,i .
8: = idy L,(AY)* exp(iAky 2) (5)

In Egs.(5), we have set dy ~ 3bw,/(16con), d— ~ 3awp/(16¢con), and the phase mismatch terms

Aky can be cast in the form:

Aky = Akgisy — v+l + 4V H, (6)

Ak_ = Akgisp —7-1p (7)

where 71 = (3/8)wp(2c — a)/(con), 7— = (3/8)wpaf(con), V = (wp/2com)x ™ is the Verdet
constant at frequency ~ wp, and Akgsy = 2(wp/co)n(wp) — (ws/co)n(ws) — (wifco)n(ws) is the
phase mismatch due to material dispersion [8]. Notice that, for both type-I and type-Il FWM,
Egs.(5) have the standard form of parametric interaction encountered in scalar wave field mod-
els [2}; however, these two processes differ basically for tile appearance, in FWM of type-1I, of the
magneto-optic effect in the phase mismatch (see Eq.(6)). This is ascribable to the circumstance that

type-1I FWM corresponds to the annihilation of two left circularly-polarized pump photons and to



the creation of signal and idler photons with right-circular polarization, i.e. it does not conserve the
angular photon momentum (see Eq.(3)). Notice also that, in case of an isotropic x(®) medium, type-
II FWM vanishes and solely the instability branch associated to type-I FWM remains, for which
the phase matching is largely independent (at least close to degeneracy) of the applied magnetic
field. The parametric gain for the four-wave interaction is given by g+ = [dilg — (Aks /2)2] 1/2,
and a parametric instability takes place for Re(gs) > 0, with a maximum gain at phase matching
Ak, = 0. Notice that, close to degeneracy, we may write Akgisp ~ —Ba(ws; —wp)?, where B, is the
second-order material dispersion {8}, so that the peak of parametric gain, in case of type-Il FWM,
is attained at the sideband frequencies 02, 4 v = (wp — ws;)? ~ (—v+1p +4V H,)/B,. If we neglect

the cross-phase modulation term. 4 I,, we thus have Qpax ~ (4V H,/B)'/?

, and the parametric
gain peak can be conveniently tuned by the application of the axial magnetic field H,. Notice that,
since H, can be either positive or negative, phase matching tuning by magnetic field application
is effective regardless of the sign of material dispersion. In Fig.1 the behavior of the parametric
gain Re(gy) versus Akgsp for type-Il FWM is plotted for a few values of V H,, showing magnetic-
field-induced shift of the peak gain. As a practical example of tunability, let us consider Terbium
Gallium Garnet (TGG) as a anisotropic cubic x(3) medium, which exhibits a high Verdet constant
and is transparent in the visible and infrared spectral regions. Owing to these qualities, TGG is
generally used for constructing Farady effect devices, such as rotators and opticaJ isolators, and it
is also an appropriate material for optical waveguides and substrates [9]. At the pump wavelength
Ap = 1.5 pm the values of dispersion and Verdet constants are, respectively, Bo ~ 92 ps?/km [10]
and V ~ 25 rad/Tm [11]. Notice that, since the material dispersion is positive, no phase matching
may occur for TGG in absence of an applied magnetic field. Assuming v4I, ~ 1 m~1, one obtains
vmax ~ 0 for an applied magnetic field H, ~ 10 mT, and vprax ~ 3.67 THz for H, ~ 500 mT,
corresponding to a shift of the parametric peak gain of more than 3 THz.

In conclusion, nearly-degenerate FWM in magneto-optic media with anisotropic x® nonlinearity
has béen investigated, and phase matching control of parametric gain exploiting the magneto-optic
effect has been proposed and associated to the existence of a FWM instability branch which does

not conserve the spin angular momentum of interacting waves. In this paper we have considered
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an example referring to rare earth garnets (including TGG). However this research may be im-
portant for any anisotropic medium which combines high values of third-order nonlinearity and
Verdet constant, e.g. glass ceramics optical fibers and waveguides {12] where a suitable dispersed
nanocrystalline structure in glass could provide the functionality of an anisotropic x(®) magneto-

optic medium over considerable lengths and under tight light confinement.

V. Pruneri is the Pirelli Research Fellow of Southampton University.
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Figure Captions.

Fig.1. Behavior of parametric gain Re(gy) versus dispersion mismatch Akg,p in case of type-II
FWM instability for a few values of VH,: (1) VH,=0; (2) VH,=5 m™}; (3) VH, =-5 m~!. Pa-

rameter values are: dyJ, =3 m~! and v, /d; = 3.



V. Pruneri and S. Longhi, "Modulational instability and ..."

Fig. 1
:l—g, | I2 I I1 | |
= 30 2) (1) (3) _
5 N
o 2T i
"6‘) .
e 1r i
©
© O i | |
O Z40 20 0 20 40
Ak [m 1

disp



