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Abstract

This paper presents an efficient method for the design of optical dévices based on
codirectional grating-assisted mode-coupling. A low complexity algorithm is
developed to calculate the coupling function of a grating that accurately matches an
arbitrarily given target spectral responsé. The method relies on the synthesis of Ehf

grating impulse response by means of an exact differential layer-peeling algorithm.



1. Introduction

The principle of operation of many practical optical filters rely on grating assisted coupling
between two different modes of an optical waveguide [1-3]. These optical devices can be
classified attending to the nature of both the interacting optical modes and the grating. Two
broad groups can be distinguished accordmg to the direction of propagation of the optical
modes: contradirectional couplers, if the modes propagate in opposite directions; and
codirectional couplers, if they copropagate along the waveguide. The field of fibre optics
provides examples for both types of devices. Fibre Bragg gratings, for instance, couple
forward and backward propagating modes of the fibre, and have become key components for
many optical communication systems [4]. Examples of Grating A551sted Codirectional
Couplers (GACC) include long period gratings, which couple guided modes to cladding and
radiation modes [5]; polarisation couplers, which couple light between two orthogonal
polarisation modes [6]; and spatial mode convertors, that couple light between different

spatial modes of the optical waveguide [7].

A problem of great practical importance is that of designing the appropriate grating to
achieve a desired filter spectral response. Electromagnetic inverse scattering techniques have
been extensively used for this purpose [8]. The simplest approach exploits the approximate
Fourier transform relation that exists between the filter spectral response and the grating
coupling function [9-11]. However, this synthesis procedure is not reliable for the design of
filters with strong mode-coupling. A second group of inverse scattering methods is that of
exact solutions expressed in terms of the Gelfand-Levitan-Marchenko (GLM) integral
equations [12]. The main drawback of this approach is the difficulty involved in solving the
GLM equations in the general case. If the spectral response is approximated by rational
functions, then analytical solutions can be obtained [13-15]. This requirement is, however,
too restrictive in practice and alternative iterative solutions to the GLM equations have been
proposed to overcome it [16]. The two main weaknesses of these iterative solutions are their
slow convergence for strongly coupled filters and also their low algorithm efﬁc1ency, with a

complexity that scales as O(N?), where N is the number of points in the grating.

Other synthesis methods are based on optimisation algorithms that attempt to minimise the
error between the target spectral response and that of the designed grating. Strategies that rely
on variational optimisation [17] and genetic algorithms [18] have been described in the
literature. These techniques suffer in a more pronounced way of slow convergence and low

algorithmic efficiency when applied to the design of complex gratings. This is a natural



consequence of the great number of degrees of freedom involved in the grating design

optimisation problem.

There exists a third group of exact inverse scattering algorithms called differential or direct
methods [19.20]. These techniques exploit fully the physical properties and structure of the
layered media in which the waves propagate. The methods are based on causality arguments,
and identify the medium recursively layer by layer. The main advantage of these layer-
peeling methods is their low algorithmic complexity, which grows only as ON?). Recently
we have presented a differential algorithm for the synthesis of complex contradirectional
gratings [21]. The purpose of this paper is to develop a parallel methodology to design optical
filters based on codirectional grating-assistéd coupling. We will show that this case exhibits
certain differences with respect to the contradirectional one, but that the same algorithm can
be applied if it is properly extended and modified. The paper is structured as follows: Section
2 studies the properties of the transfer functions of grating assisted codirectional couplers
(GACC); Section 3 will describe the design methodology; and Section 4 will finally present

some results of grating reconstruction and synthesis.
2. Transfer functions for codirectional grating-assisted couplers

In this section we study the properties of the spectral response of GACCs. We will first
introduce the coupled-mode formalism as a tool to analyse this type of devices. Then we will
discretise the propagation problem and discuss the properties of the GACC transfer functions
in the light of digital signal processing techniques. This study is neéessary to define a well-
posed inverse scattering problem that guarantees the existence and uniqueness of the sought

grating coupling function.
2.1 Coupled-mode formalism

GACCs rely on the resonant exchange of power between two different modes of an optical
waveguide that interact through a periodic grating. The electromagnetic properties of lossless
GACCs are usually described by a reference period for the grating A (with K, =21/A), and a
slowly z-varying complex function q(z) that modulates the amplitude and phase of the mode-

coupling.



* Space-frequency (z-ff) coupled-mode formulation:

The propagation equations that describe the interaction of the modes with the grating can be
written in terms of the coupling function q(z) for the grating and the amplitudes of the two

~ interacting modes: the slow mode bs(z,0), and the fast mode bg(z,8) [22,1-3].
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and the following variables have been introduced: o is the optical angular frequency; Bs(w)
and Be(w) are the propagation constants for the slow (S) and fast (F) modes; @, is the
resonance angular frequency (Bs(w,)-B®,)=K,); An.s is an effective refractive index
difference between the S and F modes; c is the speed of light in vacuum; and f is the optical

frequency. ’( -t \

The actual electric fields ( es(z,f) and ex(z,f) ) are related to the waves bs(z,8) and be(z,5)

through the expressions:
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e Space-time (z-7) coupled-mode formulation:

The equations (1) and (2) describe the scattering problem in the space-frequency (z-f)
domain. The propagation system can be Fourier transformed (Be<>7) to yield the following

space-time (z-t) partial differential equation system:
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The system of equations (4) describes the propagation problem in a reference frame moving
with a speed equal to the average group velocity between both interacting modes. The
variable 7 measures time-delay in spatial units, and can be converted into real time through

the expression:
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¢ Transfer matrix

The solution of the coupled-mode equations (1) yields the spectral transfer functions that
describe the GACC filter. They can be written in the space-frequency domain as elements of

the following transfer matrix:
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The elements of this transfer matrix satisfy the following properties:
Tee(B) = Tis(B) ay
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The last property (7.3) is a consequence of the power conservation principle. If we assume
that the GACC in Figure 1 is excited through port 1 (fast mode), then the element Ts(B) will

give the filter’s spectral response when the output signal is monitored at port 4 (slow mode).

* Performing a Fourier transform (B«>t) on equation (6), we can express the solution for the
< space-time propagation problem (4) as a convolution integral of the time-transformed transfer

;I matrix T;(z) with the input waves bsm(0.7). The inverse scattering methodology that we are



going to develop will enable us to obtain the coupling function q(z) required to obtain a target

spectral response for Tsg(3).
2.2 Discretisation of the propagation problem

We will discretise the propagation problem by dividing the grating into a number of sections
of uniform coupling constant q and fixed length A. The transfer matrix (6) for each of these

sections is expressed through the well known matrix M(A,B):

*
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where &’ = ,ql2 + B*. We can approximately factor My(A,B) as the product of a localised and

instantaneous mode-coupling matrix Mc(A,q) and two propagation matrices Mp(A/2,B):
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The error involved in the approximation (9) is of the order O(A®), and has been shown to be

negligible if a small enough value for the grid size A is selected [21].

The transfer matrix corresponding to the whole grating will be written as the product of
mode-coupling Mc and propagation matrices Mp. The propagation matrices account for the
relative time-delay between the two interacting modes due to their different groups velocities.
We can visualise the propagation through the grating by means of the space-time (z-t)
diagram that appears in Figure 2a. This figure also shows a digital lattice-filter with a
response equivalent to the discrete GACC (Figure 2b). This lattice filter consists of the

concatenation of coupling-matrices (Mc) and time-delays T of value A (Mp).



In order to study the analytical properties of the transfer matrices it is useful to change the
moving reference frame, and measure delays with respect to the propagation time of the fast
mode. In this case the space-time characteristics for the fast mode are horizontal lines as
illustrated in Figure 3a. Consequently, the digital lattice realisation of the filter will exhibit
time-delays (T = 2A) only along the path of the slow mode (Figure 3b). Now we are ready to
‘analyse the GACC using standard techniques of digital signal processing liké, for instance,
the Z-transform [23,24].

2.3 Properties of the GACC transfer functions

The discretisation procedure introduced in the last section permits us to study GACCs by
means of the Z-transformed transfer functions TsgZ) and Te(Z) of their equivalent lattice
filter [23]. Digital filters are completely characterised by specifying the position of the poles
and zeros of their transfer functions together with their region of convergence in the complex
plane. As the lattice filter in Figure 3 belongs to the Finite Impulse Response (FIR) type,
neither of the transfer functions Tsg(Z) or Te(Z) will contain any poles, except possibly at
Z=0. With regard to their zeros, there is in principle no restriction for the position of the
zeros for the transfer function Tsg(Z). Some of them could be outside the unit circle, others
on the same circle, and the rest inside it. The zeros of the Te(Z) transfer function, on the
contrary, have to obey certain restrictions in the limiting case of very weak coupling, i.e.
when € = max{|q(z)|}—0. In this case all the zeros of Ts(Z) must be within the unit circle,
and Tr(Z) is a causal and minimum-phase function. We can easily prove this by noticing that

in this limit Te(Z) tends to:

N
Te(Z) > 1+€6° Y a, 27 | (10)

a=0

where N and a, are ﬁmte numbers that depend on the structure discretisation. The e
dependence in the sumatory term is due to the fact that at least two scattering events are
necessary for a propagation path to contribute to this term of the Te(Z) transfer function. We
observe that the zeros of Te(Z) tend to Z=0 in this limit, and that most of the light is directly

transmitted to the output port 3 without suffering any scattering.



If the modulus of the coupling function q(z) is gradually increased, some of the zeros of
Te(Z) will move towards the unit circle, and eventually one of them will cross it. At this
point there is a frequency for which the GACC couples all the power from the fast mode to
the slow mode. Attending to the position of the zeros of Te(Z), we can classify GACCs in
several different types. We will say that the coupler is undercoupled if Te(Z) has no zeros
outside the unit circle, and overcoupled in the opposite case. We can also define a degree of

overcoupling as the number of zeros that Te(Z) has outside the unit circle.

To illustrate these properties let us consider a uniform GACC of constant length L, and
increase gradually its coupling coefficient q. In this particular example, we have discretised
the grating in 63 sections and, consequently Tg«(Z) will also have 63 zeros. Figure 4 show§
the zero-diagram in the complex plane for the following values of the product gL:

107 (2 /2), 0.5(2), 1-(W2), 2:(w/2), 3-(2), and 8-(w2). We observe that for qL less

than (172) the filter is undercoupled; for (w/2)<qL< 3-(/2), the filter is overcoupled of degree

1; and, in general, for (2n-1)-(/2) < qL<(2n+1)-(1/2) the degree of overcoupling is n.
3. Inverse scattering method

In this section we will describe a procedure to calculate the coupling function g(z) that
corresponds to an arbitrarily specified spectral response Tse(f). This inverse scattering
problem has not a unique solution and the sought grating profile will depend on the selected
function for Tee(). We will present an algorithm that yields an optimum grating design in
the sense that achieves the desired Tsg(8) with an undercoupled filter, this is, minimising the

value of the coupling function |q(z)|.
3.1 The equivalent contradirectional problem

By inspecting Figure 2 we observe that the codirectional coupling problem is equivalent to a
contradirectional scattering problem in which the grating is excited from port 3 and the
response monitored at port 4 (Figure 1). The main difference between the two cases is in the
nature of the elements of the coupling matrix Mc(A,q), where the hyperbolic functions are
now replaced by trigonometric functions. The coupling function q(z) can be calculated ina
unique way if either the spectral response He(f) or, altematively, the impulse response
heq(7), Of this equivalent contradirectional problem are specified. As the spectral response

Hey(B) is expressed in terms of the transfer functions Tse(B) and Te(B):
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in order to determine the grating q(z) in a unique manner we must know both Ts{f) and
Te(B). Once a target spectral response Tse(f3) has been specified, then the modulus [Te(8)|
can be calculated from the power conservation principle (7.3). However, ihere is certain
freedom in the selection of its phase and, depending on this choice, several coupling
functions q(z) that correspond to the same Ts(f) could be obtained. If we impose the
additional constraint that the synthesised filter has to be undercoupled, then the phase of
Tex(f) is uniquely determined by the minimum phase property of this function. This filter
will be optimum in the sense that it gives the desired spéctral response with a minimum value
for |q(z)|- The calculation of the phase for Tes(f) from previous knowledge of its modulus and
the assumption that it is a causal minimum-phase function is a well known mathematical
problem, and its solution can easily be calculated to within an unimportant additive constant

by means of the Hilbert transform [25,26].
3.2 The algorithm

We will present now a layer peeling algorithm that calculates the coupling function q(z) for
an undercoupled GACC with an specified spectral response Tse(B). The first step will always
be to obtain the modulus of the associated transfer function Te«(f3) by means of the power
conservation principle. Then, using the minimum phase property of Te(f), we perform a
Hilbert transform on log([T=+(B)|) to calculate its phase. Once we have both Ts«(B) and
Te(B), we determine the spectral response of the equivalent contradirectional problem Heq(8)
(11) and, subsequently, calculate the corresponding impulse time response heq(7) by means of

a Fourier transform.

The principle of the inverse scattering algorithm for the equivalent contradirectional problem
relies on the synthesis of the impulse response he(7) in the time domain 7. In general, the
impulse response he(7) can be calculated as a sum of the contributions of all the possible
space-time (z,7) propagation paths between the points (0,0) and (0,7) (Figure 5). Notice that,
for simplicity, we noW measure distances (z) from the output port of the grating. Path #1 in

this figure represents those paths with only one scattering event. Analogously, path #n



represents those with 2n-1 scattering events. When the discretisation step A is very small

(A—0) . the impulse response at time 7 can be written as:
_ 1 o7 ”
h,q(f)--aq Py +h(7) (12)

where q(1/2) is the coupling function of the grating at z= 1/2, and hr(7) is the impulse
response at time 7 for the same grating when is truncated at z=(72)". hr(7) accounts for light
that has suffered multiple reflections within the grating, while q (1/2) is the contribution of
the direct propagation path #1. Equation (12) allows us to reconstruct the value of the
coupling function q(Z) at each space point Z from knowledge of both the impulse response
heq(7) at 7=2Z and the value of the coupling function q(2) at previous z <Z (i.e. h(7) ). We
have to stress that if the impulse response ht(7) of the truncated grating is calculated taking

into account all the multiple reflections, then the reconstruction process is exact.

The grating coupling function g(z) will be calculated following an analogous procedure to

that developed in [21]. Let us assume that the first N layers of the grating {q(0)...., q(Na)}
have been obtained and, consequently, the accumulated transfer matrix M7 (NA,ﬁ) is known
(Figure 6). As the reconstruction process starts from the end of the grating, we will work with
the inverse of the coupling, propagation and transfer matrices: ME‘ (A.q(NA)), M;1 (A,B) and
M7 (NA.fB) respectively. The impulse response hr(7) corresponding to M7 (NA,B) will theh :
match accurately the target impulse response heq(7) for the time interval {0, 2NA]. The steps

to calculate the next coupling coefficient q((N + l)A) are as follows:

e From M7 (NA,B) calculate the impulse response hr(7) of the truncated grating [0, NA]
at T=2(N+DA.
e Compute the difference Ah(7) between the target impulse response he(7) and the

truncated impulse response hr(7) at 7=2(N+1)A.
o Calculate the adequate q((N+1)A) so as to match the impulse response he(7) at

7=2(N +1)A with the desired degree of accuracy. This involves solving the equation:
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which is the discrete counterpart of (12).

¢ Finally we should compute the new accﬁmulated transfer function M7' ((N + l)A,B):
M7 ((N+DA,B)=MZ (4,q((N+DA))- M;'(a, 8)- M7 (N +DA,B)  (14)
and carry out the same sequence of steps to identify the next layer.

The complexity of the described algorithm scales as O( N2, ), where Ny is the maximum
number of layers in the grating. The difference between the ideal target spectral response
Ts(B) and that of the synthesised discrete grating is of the order O(A”), where A is the step

size of the discretisation grid. This error is negligible for small enough values of A.

From the discussion.in Section 2.3 about the properties of the Z-transformed transfer function
Te(Z), we know that when the first of its zeros crosses the unit circle, the spectral response
of the equivalent contradirectional problem Heq(B) (11) becomes infinite at the corresponding
detuning . The algorithm will not be able to converge in this limiting case. For this reason,
the maximum coupled power between the two modes |[Tse(S)|" has to be kept below 1 in order
to avoid convergence problems. The maximum permissible value for [Tsg(B)|* will depend on
each case but, in general, can be very close to 1 (>0.95). If the spectral response of the filter

is smooth enough, |[Ts{(B)° can be higher than 0.99.
4. Examples

We now illustrate the reconstruction and design of GACCs with several examples. Initially
we will reconstruct a uniform grating from its analytical solution, proving the robustness of
the method. Then we will design two filters with practical utility. Firstly, a band-pass filter
with a top-flat transfer function; and secondly, a triangular filter for wavelength measurement

of narrow-band optical signals.

4.1 Reconstruction of a uniform grating



In order to test the algorithm we will reconstruct the coupling function of a uniform grating
from the analytical solution of its spectral response Ts#(f) (8). Two diffgrent cases will be
considered. First we will reconstruct an undercoupled uniform grating. As discussed in
Section 3, our algorithm will be able to reconstruct accurately this undercoupled filter. Then,
we will feed the inverse scattering algorithm with the spectral response Tse(8) of an
overcoupled uniform grating. Now the algorithm will synthesise a grating wifh a nonuniform
coupling function q(z) that corresponds to the same spectral response Tse(8), but yields an

undercoupled realisation of the filter.
e Undercoupled uniform GACC

We will start by reconstructing an undercoupled uniform GACC from its analytical solution.
' The effective refractive index difference between the two interacting modes An.g will be
3-10° for all our examples. We consider a grating with a coupling constant q of 0.0283cm’
and a length of 50cm. The transfer of power between the two modes at resonance [Tse(B)|’ is
0.975. Figure 7 shows the reconstructed couplmg function, which matches very accurately
that of the original uniform grating. S9xf1e Gibbs oscillations can be observed at the vicinity

of the beginning and end of the grating.
e Overcoupled uniform GACC and its undercoupled realisation

Now we consider an overcoupled uniform grating with a coupling constant q of 0.0471cm™
and a length of 50cm. The degree of overcoupling is 1, and its spectral response Tsg(f) has a
power coupling at resonance of 0.5 as can be observed in Figure 8a. Feeding this transfer
function in our algorithm we find the coupling function q(z) of a nonuniform undercoupled
GACC with identical response Tsg() (Figure 8b). The original uniform overcoupled GACC
also appears in Figure 8b for comparison purposes..The transfer functions of both gratings

will only differ in the phase of Te=(B).
4.2 Design of a top-flat band-pass filter
To show the filter-design capability of the algorithm we will synthesise a grating with a top-

flat spectral response, sharp band-edge transitions, and extremely low side lobes. The target

filter has a flat band-pass of 1400GHz, with a raisedcosine shaped band edges that extended



for 600GHz. These values are arbitrary, and the inverse scattering method could design
sharper transitions at the expense of increasing the length of the grating. The power coupled
between the two modes within the flat pass-band was 0.95, and the filter was designed to

exhibit no dispersion within it.

The spectral response of the synthesised filter can be observed in Figure 9 together with the
target spectral response. The side-lobes of the synthesised filter were below -80dB. The
synthesised grating had a total length of 100cm and resembled very closely to a sinc functioﬁ
(Figure 10). In this figure we also observe that the coupling function is real and symmetric, in
contrast to the corresponding case for contradirectional gratings, where the grating is

asymmetric [21].
4.3 Design of a triangular filter

Finally, we will design a filter with a power-coupling spectral response that increases linearly
with frequency. This filter could be useful to measure the wavelength of narrow band optical
signals by monitoring the power distribution between the two output ports. The spectral band
of the filter that exhibits linear dependence between frequency and coupling-ratio will extend
for 2000GHz; and its high coupling efficiency edge was smoothed by a raised cosine function
that extended for 300GHz (Figure 11). The maximum power coupling efficiency for the filter

will be 0.95, and it was designed again to have no dispersion along the whole spectral band.

Figure 11 shows the spectral response of the synthesised filter and compares it with the ideal
target. We observe again very low side-lobes (<-80dB) and good agreement between both
sets of curves. The coupling function of the designed grating q(z) can be observed in Figure
12. Due to the asymmetric spectral response of the filter, q(z) is a complex function, with its
real part being symmetric, and its imaginary part antisymmetric. In order to fabricate this
GACC, an accurate control of both the modulus and phase of the coupling coefficient q(z)

will be necessary.
5. Conclusions

This paper has presented an efficient inverse scattering algorithm for the design of grating
assisted codirectional couplers with a specified spectral response Tse(f) for the coupling
between the two interacting modes. We have shown that the transfer function Tge(B) for the

uncoupled light does not satisfy in general the minimum-phase property and, in consequence,



the inverse scattering solution can be non-unique. The different solutions will differ on the
phase of the Tex() transfer function. The solution of the inverse scattering problem can be
uniquely determined if we add the requirement of minimum-phase for the transfer function
Tex(B). The gratings designed with this constraint will be optimum in the sense that they are
undercoupled realisations of the target filter, yielding minimum values for the coupling
function q(z). Once both TsHB) and Tee(f) are known, the calculation of q(z) can be carried
out in an analogous way as in the case of contradirectional inverse scattering. We have
defined an equivalent contradirectional problem and applied a fast layer peeling method for
its solution. The method has been illustrated by reconstructing uniform gratings, and by
designing top-flat filters and filters with linear frequency dependence. For all the cases, the

agreement between the target and synthesised spectral responses was very satisfactory.
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Figure Captions
Figure 1. Grating-Assisted Codirectional Coupler. F: Fast mode, S: Slow Mode.

Figure 2. Space-time paths corresponding to the propagation of two coupled modes through a

grating as described by equation (4) and lattice digital-filter model for the discrete GACC.

Figure 3. Space-time paths corresponding to the propagation through the grating of two
coupled modes when time-delays are measured with respect to the fast mode and the

corresponding lattice digital-filter model for the discrete GACC.

Figure 4. Zero-diagram in the complex plane for the TeH(Z) transfer function of a uniform
GACC for the following values of the product gL: 107 .(/2), 0.5-(w2), 1-(2), 2(/2),
3.(1/2), and 8-(1W2). '

Figure 5. Space-time diagram for the equivalent contradirectional problem. #n represents

~ those paths with 2n-1 scattering events.

Figure 6. Space-time diagram that illustrates the reconstruction process of the equivalent

contradirectional problem for the discretised GACC.

Figure 7. Reconstruction of a uniform grating With_a q of 0.0283cm’ and a length of 50cm:

—, reconstructed grating; -, original grating.
Figure 8. Undercoupled realisation of a uniform overcoupled grating with a q of 0.0471lcm’
and a length of 50cm. (a) Spectral responée |Tss(ﬁ)|2. (b) Coupling function q(z): —

undercoupled grating; ----, overcoupled grating.

Figure 9. Spectral response [Tse(B)[ of the synthesised top-flat filter in linear and logarithmic

scales.
Figure 10. Coupling function q(z) of the synthesised top-flat filter.

Figure 9. Spectral response [Tse(B)[* of the synthesised triangular filter in linear and

logarithmic scales.



Figure 10. Real and imaginary part of the coupling function q(z) that corresponds to the

synthesised triangular filter.
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