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ABSTRACT
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Doctor of Philosophy

Frequency-Resolved Optical Gating

in Periodically-Poled Lithium Niobate Waveguide Devices

by Jerry Prawiharjo

Frequency-Resolved Optical Gating (FROG) is a well-established and widely-employed
technique for the intensity and phase characterisation of ultrashort optical pulses. Essen-
tially, FROG involves mixing an ultrashort optical pulse with its time-delayed replica,
or another pulse, in a nonlinear material or device to yield a two dimensional data
set called a spectrogram, from which the electric field of the ultrashort pulse can be
retrieved by an iterative algorithm. The most commonly used configuration is based
on second-order nonlinear interactions in bulk materials, mainly because of its high
efficiency compared to other schemes based on third-order nonlinear interactions.

Although the FROG technique itself is extremely versatile, its sensitivity is limited
by the efficiency of the nonlinear optical interactions it relies upon. This restricts its
suitability for certain applications, such as optical telecommunications, in which the
durations of the pulses used might be of the order a few picoseconds and the powers re-
quired are relatively low (milliwatt regime). Periodically-poled Lithium Niobate (PPLN)
waveguides are attractive for the implementation of FROG devices. The guided-wave
geometry provides higher efficiency due to tight optical confinements and long interac-
tion lengths, whilst the PPLN structure gives access to the Lithium Niobate highest
nonlinear coefficient and guarantees a wider wavelength operation range by proper en-
gineering of the grating period.

The research work in this thesis led to the first successful implementation of an
integrated Lithium Niobate for the FROG device, based on sum-frequency generation.
We demonstrated simultaneous complete characterisation of two ultrashort pulses of
durations 4-25 ps in the 1.55µm-band with a coupled energy of 430 fJ in a 26 mm long
PPLN waveguide device. The temporal walk-off between the interacting pulses in this
interaction resulted in an acceptance bandwidth of 0.75 nm, limiting the measurable
pulse duration to ∼ 4.5 ps. In order to overcome this limitation, we proposed and
demonstrated a novel FROG configuration based on cascaded second-harmonic and
difference-frequency generations. Theoretical and numerical analyses of this configura-
tion revealed its robustness against the temporal walk-off effect, resulting in improved
temporal resolutions. This was experimentally verified by characterising a 2.1 ps pulse
train with a coupled average power (energy) of 72µW (29 fJ) in the PPLN waveguide
device previously mentioned.
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Chapter 1

Introduction

1.1 Motivation

The rapid advance and tremendous progress of ultrafast optics over the past three

decades has had a significant impact in both fundamental and applied studies. The typ-

ical time scale of ultrashort optical pulses makes them an ideal tool for the investigation

of various processes with similar time scales (picoseconds to femtoseconds), e.g. ultra-

fast spectroscopy. Ultrafast spectroscopy has been used to study diverse processes, such

as the motion of electrons, molecular vibrations, chemical reactions, phase changes in

condensed matter, excitation across bandgaps, phonon dynamics in solid-state mate-

rials, photosynthesis, and human vision.1 The uses of ultrafast optical pulses are not

limited to the studies of ultrafast events in basic research. There have also been nu-

merous practical applications, such as ultrafast imaging to provide non-invasive in vivo

data,2,3 quantum control of a material state,4 coherent control for selective stimulation

of chemical reactions,5 and the realisation of femtosecond

Perhaps the most important use of ultrashort optical pulses in this multimedia era is

in the realisation of ultrahigh capacity optical telecommunications systems by permit-

ting faster data transfer. Optical time-division multiplexing (TDM)7,8 is not the only

system that heavily utilises ultrashort optical pulses, since recently wavelength-division

multiplexing (WDM)9 systems have also started to move toward higher bit rates.10,11

The ability to concentrate the light energy into a very short temporal span can

yield an extremely high intensity at the centre of an ultrashort laser pulse. Such a high

intensity gives access to a variety of nonlinear interactions, which can be used for micro-

machining,12 writing waveguides13 for three-dimensional integrated optics structures,14

surgical applications,15 as well as many others.

1



Introduction 2

This tremendous progress in ultrafast optics has been driven by the maturing tech-

nology of ultrashort optical pulse generation. Essential to this are the ultrafast pulsed

laser sources which, may or may not be accompanied by a subsequent pulse compres-

sion stage. The vast majority of such sources rely on a mode-locking mechanism,1,16,17

whilst alternative approaches include both gain-switching18,19 and external modulations

of a continuous wave laser source.20 Shorter pulses can be readily obtained from these

sources by means of compression schemes.21–23 These technologies have made the gen-

eration of ultrashort pulses in laboratories routine.

The sole ability to generate ultrashort optical pulses is not sufficient. The precise

knowledge of the amplitude and phase distributions across an ultrashort pulse is crucial

for several reasons. First and foremost, the detailed knowledge of the pulse properties

is necessary to understand and optimise its source. Secondly, ultrafast spectroscopy

experiments depend on the ability to precisely characterise the pulses.24 Thirdly, some

applications, such as quantum control of a material state4 and coherent control for

selective stimulations of chemical reactions,5 rely on the ability to tailor the shape of

the ultrashort pulses. Finally, in optical telecommunications systems, the pulse duration

determines the upper limit of the bit rate, whilst the spectral content determines the

maximum transmission length before the fibre dispersion distorts the pulse. Therefore,

knowledge of both is necessary for designing a system.

The characterisation of ultrashort optical pulses, that is, the measurement of their

instantaneous electric field is nontrivial. The difficulties in measuring the field distri-

bution are, ironically, mainly caused by their duration which is much lower than the

temporal resolution of standard electronic equipment. Furthermore, the direct mea-

surement of their phase seemed beyond reach, since detectors at optical frequencies are

only sensitive to the photon flux, i.e. intensity, such detectors are known as square-law

detectors. The main tool for measuring the field distribution in the time domain has,

for almost four decades, been the second-order intensity autocorrelator,25 mainly due

to the lack of better methods. In the frequency domain, the spectrometer measures the

spectral density of ultrashort optical pulses but, unfortunately, not the instantaneous

frequency across the pulse.

A great deal of effort was spent on solving the problem of ultrashort optical pulse

characterisation resulting in three well-known approaches for the complete characterisa-

tion of ultrashort optical pulses: spectrographic, tomographic, and interferometric.26,27

1.1 Motivation
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Tomographic techniques28 are the least appealing among the three, because of difficulties

in creating the apparatus and the numerous two-dimensional data sets that must be col-

lected. Nevertheless, simplified versions with some restrictions were demonstrated.29,30

Interferometric techniques, such as spectral phase interferometry for direct electric field

reconstruction (SPIDER)31,32 and, more generally, spectral shearing interferometry,33

measure the phase difference between a pulse and its spectrally sheared replica, result-

ing in a one-dimensional data set, which can be directly inverted to yield the electric

field of an ultrashort optical pulse. The simple and direct inversion routine offered by

interferometric techniques is at the expense of the experimental setup simplicity. Spec-

trographic techniques are the most promising approach for the complete characterisation

of ultrashort optical pulses. Spectrographic techniques measure a set of two-dimensional

data and employ an iterative algorithm to retrieve the ultrashort optical pulse electric

fields. Several variants have been demonstrated, such as frequency-domain phase mea-

surements (FDPM),34 frequency-resolved optical gating (FROG),35–37 spectrally and

temporally resolved upconversion technique (STRUT),38 and temporal analysis of spec-

tral components (TASC).39 The attractiveness of spectrographic techniques lies in the

simplicity of their practical implementation. In addition, currently developed algo-

rithms40 and greater available computational power have overcome the drawback of the

iterative algorithm, making real-time inversion possible.

The most popular among spectrographic techniques is FROG. The versatility, exper-

imental simplicity, reliability, and robustness of FROG have made it a well-established

and widely-employed ultrashort pulse characterisation technique. For example, FROG

has been used to characterise ultrashort pulses in the near single-cycle limit,41 to char-

acterise complex supercontinuum pulses from a microstructure-fibre,42 and to verify a

theoretical model of ultrashort pulses creation.43 In the recent years, the use of FROG

in optical telecommunications research has increased quite significantly, including char-

acterisation of ultrafast laser sources,44–47 characterisation and optimisation of external

modulators,48,49 studies of pulse propagation in optical fibres,50,51 and measurements of

fibre properties.52

More precisely, FROG essentially involves spatially mixing an ultrashort pulse with

its time-delayed replica, or another pulse, in a (usually) instantaneous nonlinear material

or device, to yield a two-dimensional data set called a spectrogram, from which the

electric-field of the ultrashort pulse can be retrieved with an iterative algorithm, as in

1.1 Motivation
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any other spectrographic techniques. Hence, the FROG performance is governed by

the nonlinear interactions it relies on. In particular, FROG sensitivity is limited by the

efficiency of nonlinear interactions, whilst its temporal resolution is determined by the

acceptance bandwidth of the device.

Various nonlinear interactions have been used for FROG measurements, including

second-order nonlinear interactions, such as second-harmonic generation (SHG),53,54

and third-order nonlinear interactions such as polarisation gate,35 self-diffraction,36

transient grating,55 and third-harmonic generation.56 Since second-order nonlinear in-

teractions are more efficient than third-order ones, SHG FROG is the most sensitive

compared to the other standard configurations previously mentioned.

Nevertheless, high sensitivity FROG configurations in optical fibres57,58 and in semi-

conductor optical amplifiers (SOA)59 have been reported recently. Although these con-

figurations are based on third-order nonlinear interactions, efficiency enhancement pro-

vided by the guided-wave geometries results in a higher efficiency compared to the

second-order interactions in bulk materials. Guided-wave geometries such as fibres

and waveguides prevent beam diffraction by providing tight optical confinement over a

long interaction length. This fact suggests that higher sensitivity could be achieved by

implementing a guided-wave geometry in second-order nonlinear materials. It is worth

noting that an extremely sensitive characterisation technique in a linear device has been

demonstrated recently.60 Since this techniques requires the availability of synchronised

short electrical pulses, its application is thus quite restricted.

Periodically-poled LiNbO3 (PPLN) waveguide devices are of particular interest since

they exhibit extremely high efficiencies for second-order nonlinear interactions.61 Peri-

odic poling of LiNbO3 gives access to the highest nonlinear coefficient of LiNbO3, and

allows a broad tunable range by proper design of the structure, as described in detail

in Chapter 3. Moreover, waveguides in this structure provide efficiency enhancement

up to two orders of magnitude compared to bulk devices . Such high efficiency has

been used to realise highly efficient optical frequency mixers in telecommunications sys-

tems.62,63 In addition, sensitive intensity autocorrelations have been performed using

such devices.64

The work in this thesis led to the first demonstration of the implementation of FROG

technique in a QPM LiNbO3 waveguide.65 Efficiency improvement achieved by using

guided-wave geometries instead of bulk materials is only significant in long devices.

1.1 Motivation
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Unfortunately, as the interaction length is increased, the acceptance bandwidth of the

nonlinear interaction decreases, hence limiting the temporal resolution. Therefore, a

trade-off between sensitivity and temporal resolution needs to be established. Engi-

neering the poling structure to produce aperiodic gratings66,67 can be used to broaden

the acceptance bandwidth, providing a means to improve this trade-off. However, the

complexities in designing and fabricating aperiodic gratings are significant, resulting

in a more difficult implementation for the FROG technique.67 A novel configuration

based on cascaded second-order nonlinear interactions, offering better sensitivity and

temporal resolution, is also a result of the work in this thesis. This novel configuration

is theoretically and numerically analysed,68 as well as demonstrated experimentally.69

1.2 Outline of This Thesis

This thesis is organised as follows. Chapter 2 reviews the fundamentals of FROG. A

fundamental problem for the characterisation of ultrashort optical pulses is presented,

along with the general concept of the FROG technique as a solution. Specific configura-

tions based on second-order nonlinear interactions such as SHG FROG, cross-correlation

FROG (XFROG) and blind-FROG will be discussed.

Chapter 3 reviews the basic theoretical framework of SHG, the simplest second-

order nonlinear interaction. Differences and similarities between SHG interactions in

bulk materials and waveguide devices will be highlighted here. This theoretical frame-

work should serve as a foundation to understand more complex second-order nonlinear

interactions and the experimental results presented in the subsequent chapters.

Chapter 4 presents the properties of the QPM LiNbO3 waveguide device used

throughout this thesis. The characterisation of its linear properties, including trans-

verse mode profiles and propagation losses, is presented. Nonlinear properties define

the working region in terms of wavelength and also the efficiency of the device. Char-

acterisations of nonlinear properties were done via second-harmonic and sum-frequency

generations. A brief overview of the fabrication is also presented in this chapter.

Chapter 5 presents the theory of parametric interactions of ultrashort optical pulses.

The propagation of ultrashort pulses in a LiNbO3 waveguide is described here, and ultra-

short pulse SHG is theoretically and numerically analysed. These analyses are extended

to sum- and difference-frequency generation (SFG and DFG), as well as the more com-

plex cascaded second-order nonlinear interactions. The analyses in this chapter will be

1.2 Outline of This Thesis
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used to understand the basics of the FROG technique.

Chapter 6 reports the first implementation of FROG technique in a QPM LiNbO3

waveguide device. Description of the experiments along with the results will be given.

Limitations of this technique will also be reported.

Chapter 7 proposes a novel FROG configuration based on cascaded second-order

interactions. Theoretical and numerical analyses of this configuration are provided, as

well as a report on the experimental realisation of this configuration.

Finally, the work of this thesis will be concluded in Chapter 8 along with a discussion

on the direction of future work.
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Chapter 2

Frequency-Resolved Optical Gating

The time scale of ultrashort optical pulses is much shorter than the resolution of available

standard electronic instruments, making it difficult to measure their temporal intensity

profile. In addition, their instantaneous frequency is often more important than the

temporal intensity profile, but it is more difficult to obtain. These essentially have

been the problems in the characterisation of ultrashort optical pulses for decades. In

principle, frequency-resolved optical gating (FROG)1–4 solves this problem by making

measurements in the time-frequency domain. Its accuracy and reliability have made it a

well-established and widely-employed technique for the complete (intensity and phase)

characterisation of ultrashort optical pulses.

In this chapter, a review of the fundamentals of the FROG technique will be given,

with particular attention to the configurations based on χ(2) interactions. The review

starts with the problems concerning the characterisation of ultrashort optical pulses in

section 2.1. These problems were solved with the introduction of FROG, whose general

concepts are given in section 2.2. In section 2.3, SHG FROG,5,6 the most widely used

FROG configuration, is presented. Next, Cross-correlation FROG (XFROG) and blind-

FROG, variations of the FROG configuration based on χ(2) interactions, are described

in section 2.4. Finally, an algorithm to retrieve the complex amplitudes of ultrashort

optical pulses from FROG measurements is given in section 2.5.

2.1 Characterisation of Ultrashort Optical Pulses

An ultrashort pulse is described by its electric field, which can be a complicated vectorial

function of space and time (see Section 5.1). In this chapter, we are only interested in

the temporal features of the pulse, and thus we can write the temporal dependence of

12
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the electric field as follows:

E(t) = A(t) exp (−iω0t) + c.c., (2.1)

where A(t) is the slowly varying complex amplitude, and ω0 is the carrier frequency of

the pulse. The complex amplitude A(t) can be written as:

A(t) = Ψ(t) exp [iφ(t)], (2.2)

where Ψ(t) ∈ R, Ψ(t) > 0 is the temporal profile, and φ(t) ∈ R is the phase. The spectral

envelope counterpart of the above slowly-varying amplitude in the time-domain, which

comprises the spectral profile ψ(Ω) and spectral phase ϕ(Ω), is given by the Fourier

transform of Eq. (2.2) as follows:

F [A(t)] = Â(Ω) = ψ(Ω) exp [iϕ(Ω)], (2.3)

with Ω = ω−ω0 being the frequency detuning coordinate from the central frequency ω0

of an ultrashort optical pulse. The instantaneous frequency of the pulse, which describes

the frequency distribution across the pulse, is given by:

ω(t) = ω0 + Ωc(t) = ω0 −
∂φ(t)

∂t
, (2.4)

and the quantity

f(t) =
1

2π
Ωc(t) = − 1

2π

∂φ(t)

∂t
(2.5)

is known as the chirp. An ultrashort optical pulse is said to be completely characterised

if one knows its profile [Ψ(t) or ψ(Ω)] and phase [φ(t) or ϕ(Ω)] in either domains,

as they are related by a Fourier transform. In general, the knowledge of profiles in

both temporal [Ψ(t)] and spectral domains [ψ(Ω)] is sufficient to uniquely determine

the phases in either domains using Gerchberg-Saxton algorithm,7 apart from occasional

ambiguities as discussed more fully in Ref. 4.

Let us examine the detection of these four quantities one-by-one. In principle, in

the time domain, the power distribution of an optical pulse [P(t) = |A(t)|2 = Ψ2(t)]

could be measured by a photodetector (provided its response would be faster than the

time-scale of the optical pulse). Its phase [φ(t)], however, is difficult to measure, since

photodetectors at optical frequencies, known as the square-law detectors, are responsive

only to the photon flux. Nevertheless, it is possible to measure the complex amplitude

A(t) of an optical pulse by interfering it with a local oscillator, that is, another coherent

2.1 Characterisation of Ultrashort Optical Pulses
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Figure 2.1: Schematic illustration of an intensity autocorrelator.

reference pulse of known stable phase, and detecting it using a photodetector. This

technique is known as heterodyne detection.8 However, as the time scale of ultrashort

optical pulses is much shorter than the response of currently available photodetectors,

the measurement of its power distribution and phase become almost impossible. In

frequency domain, the spectral profile ψ(Ω) of ultrashort optical pulses can be trivially

measured by a spectrometer due to its broad nature. Again, square-law detectors pre-

vent one from measuring the spectral phase ϕ(Ω). In addition, one cannot determine

the phase [φ(t) or ϕ(Ω)] from the sole knowledge of its profile [Ψ(t) or ψ(Ω)], i.e. the

so-called one-dimensional phase-retrieval problem.9,10 In short, of these four quantities,

only the knowledge of the spectral profile ψ(Ω) can be easily obtained, which is not

sufficient to completely characterise an optical pulse.

The lack of shorter events gave rise to the notion of using the ultrashort pulse to

measure itself. Intensity autocorrelation11 is an attempt to measure the temporal profile

of ultrashort pulses. It became the standard measurement technique for decades, mainly

due to the lack of better techniques. Figure 2.1 shows an illustration of this technique. It

involves creating a replica of the pulse, introducing a variable time-delay τ to one of the

pulses, and finally spatially mixing them in an instantaneous nonlinear material, such

as a χ(2) material. In a sufficiently short χ(2) material such that the temporal walk-off

is negligible, and using a sufficiently low input power such that the pump depletion is

negligible, the output SH pulse envelope Asig is given by:

Asig(t, τ) ∝ A(t)A(t− τ). (2.6)

Since the detectors are slow compared to the time-scale of the pulse, an autocorrelator

2.1 Characterisation of Ultrashort Optical Pulses
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yields the so-called autocorrelation trace:

PAC(τ) =

∫ ∞

−∞
|A(t)A(t− τ)|2 dt

=

∫ ∞

−∞
P(t)P(t − τ)dt,

(2.7)

This SHG based autocorrelation is often called the second-order intensity autocorre-

lation. Unfortunately, there is no way to obtain precise information about Ψ(t) from

the above expression, even with additional information concerning the temporal profile,

such as Ψ(t) > 0 and Ψ(t) → 0, as t→ ∞, and spectral measurements.12

The inadequacies of second-order autocorrelation prompted a search for other more

advanced techniques to completely characterise optical pulses, such as third-order au-

tocorrelation13 and fringe-resolved autocorrelation (FRAC).14 A third-order autocorre-

lation is similar to the second-order one, but it involves mixing the test pulse and its

replica in χ(3) materials. Fringe-resolved autocorrelation involves performing a second-

order autocorrelation with a collinear geometry, such that the trace is given by:

PFRAC(τ) =

∫ ∞

−∞

∣

∣[A(t) +A(t− τ)]2
∣

∣

2
dt, (2.8)

which can be expanded into:

PFRAC(τ) = 2

∫ ∞

−∞
P(t)P(t − τ)dt+

∫ ∞

−∞
P2(t)dt +

∫ ∞

−∞
P2(t− τ)dt

+ 4

∫ ∞

−∞
[P(t) + P(t− τ)] Re [A(t)A∗(t− τ)] dt

+ 2

∫ ∞

−∞
Re

{

A2(t)[A∗(t− τ)]2
}

dt.

(2.9)

One can readily identify the first term as the standard autocorrelation trace, whilst the

second and the third terms are constant and delay-dependent backgrounds, respectively.

The last two terms, on the other hand, can be identified as rapidly varying interfero-

metric terms, which create difficulties in the interpretation of the measurement results.

Since none of these techniques managed to obtain the phase information of the pulses,

they cannot completely solve the ultrashort pulse characterisations problem.

2.2 Time-Frequency Distribution and FROG

Whilst the broad extent of an ultrashort pulse spectrum makes it easy to be measured,

we have seen that the measurement of its temporal profile is difficult. Autocorrelation

2.2 Time-Frequency Distribution and FROG
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Figure 2.2: Example of a spectrogram [Eq. (2.12)] with its time and frequency marginals
[Eq. (2.15)].

and other measurement techniques worked purely in the time-domain in an attempt to

extract the temporal profile of an ultrashort pulse. Since the temporal and spectral do-

mains are not independent, the broad spectrum of an ultrashort pulse can be utilised for

its characterisation. Hence, instead of purely working in one domain, the time-frequency

distribution of such pulses should be considered. The concept of time-frequency distri-

bution is simple and powerful. The spectrum of an ultrashort pulse only identifies its

spectral density, but not its instantaneous frequency [ω(t)]. In order to ascertain the

instantaneous frequency, one can break the pulse into segments and Fourier transform

them.

In order to study the property of an ultrashort pulse A(t) around time τ , one can

window it with a complex gate function

G(t) = g(t) exp [iς(t)], (2.10)

which is similarly defined as Eq. (2.2), and |G(t)| → 0 as t → ∞, to produce the

following signal field:

Asig(t, τ) = A(t)G(t− τ). (2.11)

Fourier transform of the signal field yields the distribution of frequency around time τ ,

i.e. the so-called spectrogram:15

Γ(Ω, τ) =
∣

∣

∣
F [Asig(t, τ)]

∣

∣

∣

2
=

∣

∣

∣
Âsig(Ω, τ)

∣

∣

∣

2
. (2.12)

2.2 Time-Frequency Distribution and FROG
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Figure 2.2 shows a typical example of a spectrogram constructed from a self-phase-

modulated (SPM) Gaussian test pulse and a transform-limited (TL) Gaussian gate

pulse. One can intuitively observe the phase modulation in the spectrogram.

Spectrogram measurements of ultrashort optical pulses essentially make up half of

the frequency-resolved optical gating (FROG) technique. Obviously, the final goal of

the FROG technique is to retrieve the complex amplitude A(t) from the measured

spectrogram. If the phase information of the signal field Fourier transform Âsig(Ω, τ) is

available, the complex amplitude A(t) can be easily obtained by choosing τ = t, such

that:

F−1
[

Âsig(Ω, τ = t)
]

= Asig(t, τ = t) = A(t)G(0). (2.13)

In other words, the complex amplitude A(t) has been completely determined up to a

constant multiplicative factor G(0) from the knowledge of Âsig(Ω, τ). However, the mea-

sured spectrogram Γ(Ω, τ) only yields the magnitude of Âsig(Ω, τ), its phase is yet to be

found. Hence, the problem is to find arg
[

Âsig(Ω, τ)
]

from
∣

∣

∣
Âsig(Ω, τ)

∣

∣

∣
, i.e. the so-called

two-dimensional phase retrieval problem.16–19 In contrast to the one-dimensional phase

retrieval problem which has infinitely many solutions, the two-dimensional one essen-

tially has a unique solution, apart from trivial ambiguities.16 These trivial ambiguities

mean that the FROG technique is not to be able to distinguish between A(t) and:

A(t)e(ic0) (constant phase factor), (2.14a)

A(t)e(ic1t) (linear phase shift), (2.14b)

A(t− t0) (absolute time reference), (2.14c)

where c0, c1 ∈ R are arbitrary constants. The two-dimensional phase retrieval is usually

done by an iterative algorithm,20 whose implementation for retrieving ultrashort pulse

complex amplitudes is given in section 2.5.

It is easy to reduce the time-frequency distribution to a distribution in either domain,

by performing an integration with respect to the other domain:

MΓ
Ω(τ) =

∫ ∞

−∞
Γ(Ω, τ)dΩ, and MΓ

τ (Ω) =

∫ ∞

−∞
Γ(Ω, τ)dτ. (2.15)

These quantities are called the time and frequency marginals,15,21 respectively. For a

spectrogram, the time marginal yields the cross-correlation between the test pulse and

the gate function magnitudes:

MΓ
Ω(τ) =

∫ ∞

−∞
Ψ2(t)g2(t− τ)dt, (2.16)

2.2 Time-Frequency Distribution and FROG
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whilst the frequency marginal yields the convolution between the test pulse and the gate

function spectra:

MΓ
τ (Ω) =

∫ ∞

−∞
ψ2(Ω′)

∣

∣

∣
Ĝ(Ω − Ω′)

∣

∣

∣

2
dΩ′. (2.17)

Figure 2.2 also shows the temporal and and frequency marginals of a spectrogram.

These marginals will later prove to be powerful tools for self-consistency error checks in

the FROG technique.

Apart from the spectrogram, there are other classes of time-frequency distribution:15

Wigner, Choi-Williams, Rihaczek, and Born-Jordan distributions, to name a few. Some

of these distributions are considered to be better and more elegant than the spectrogram.

The Wigner distribution is of particular importance and is worth mentioning briefly here.

Given a complex amplitude A(t) of an ultrashort pulse, its Wigner distribution is given

by:

W (Ω, τ) =

∫ ∞

−∞
A∗

(

τ +
t

2

)

A

(

τ − t

2

)

exp(−iΩt)dt. (2.18)

The Wigner distribution is always real, but, unlike a spectrogram, it can have negative

values. Compared to the spectrogram, a Wigner distribution gives a clearer picture of

an ultrashort pulse. Its time marginal yields the power, MW
Ω (τ) = Ψ2(t) = P(t), whilst

its frequency marginal yields its spectrum, MW
τ (Ω) = ψ2(Ω). A Wigner distribution

can also be easily inverted to obtain the complex amplitude A(t):15

A(τ = t) ∝
∫ ∞

−∞
W

(

Ω,
τ

2

)

exp(iΩτ)dΩ. (2.19)

However, the elegance of a Wigner distribution is not accompanied with practicality, as

it involves the creation of time-reversed replica of the test pulse and the measurement

of negative values. What FROG lacks in mathematical elegance, it makes up for in

practical experimental elegance.

2.3 SHG FROG

Experimentally, a spectrogram is a spectrally-resolved autocorrelation measurement

[Eq. (2.12)], as the gate function is usually chosen to be the test pulse itself. A spec-

trogram can therefore be easily produced by spectrally-resolving the signal field of any

autocorrelation type measurements. As different autocorrelation type measurements

rely on different nonlinear interactions to achieve the mixing between the test pulse and

its replica, the general form of their signal field [Eq. (2.11)], and thus their spectrogram

2.3 SHG FROG
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Table 2.1: Several FROG configurations, the nonlinear interactions they used, the math-
ematical form of their generated signal fields, and the frequency of the signal fields.

FROG configuration Nonlinearity Signal Field Signal
Frequency

Polarisation gate (PG)1 χ(3) A(t) |A(t− τ)|2 ω

Self diffraction (SD)2 χ(3) A2(t)A(t− τ) ω

Transient grating (TG)22 χ(3) A2(t)A∗(t− τ) ω

Second-harmonic generation (SHG)5,6 χ(2) A(t)A(t− τ) 2ω

Third-harmonic generation (THG)23 χ(3) A(t)A2(t− τ) 3ω
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Figure 2.3: SHG FROG spectrograms [Eq. (2.20)] for several common pulses: a) a TL
Gaussian, b) a linearly-chirped Gaussian, b) a Gaussian with a cubic spectral phase, and d) a
self-phase-modulated Gaussian. Note that open circles in b) correspond to nondifferentiable
π phase jumps.

[Eq. (2.12)], also varies. Table 2.1 shows several common FROG configurations and the

mathematical form of their generated signal fields.

Since most of the common FROG configurations rely on, generally weak, χ(3) in-

teractions, SHG FROG, which relies on a χ(2) interaction, offers the best sensitivity.

Moreover, SHG FROG (and THG FROG) achieves the best signal-to-noise ratio (SNR),

as the generated signal field is at a different frequency, making scattered light easier to

filter out. In addition, a SHG FROG device can be easily made from a second-order

intensity autocorrelation setup, by replacing the detector with a spectrometer (Fig. 2.1).

The SHG FROG spectrogram is given by:

Γ(SHG)(Ω, τ) ∝
∣

∣

∣

∣

∫ ∞

−∞
A(t)A(t− τ) exp (−iΩt)dt

∣

∣

∣

∣

2

. (2.20)

From the above expression, it can be directly seen that the expected frequency marginal

2.3 SHG FROG
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is equivalent to the autoconvolution of the test pulse spectrum. Figure 2.3 shows SHG

FROG spectrograms for several common pulses: a TL Gaussian, a linearly-chirped

Gaussian, a Gaussian with a cubic spectral phase, and a SPM Gaussian.

It can be easily shown, that the time-reversal and complex-conjugate of the complex

amplitude A(t), i.e. A∗(−t), also yields the same spectrogram. A simple way to get

around this ambiguity is to perform another characterisation after introducing some

known distortion to the test pulse, such as a leading satellite pulse from a surface

reflection.24

The accuracy and validity of Eq. (2.20) is an important consideration for the exper-

iments. Equation (2.20) was written with the assumptions that the input pulse powers

are sufficiently low, i.e. no-pump-depletion limit, to guarantee its linearity, and that

the χ(2) material is sufficiently short to avoid the temporal walk-off effect. In order to

maintain the linear relationship in Eq. (2.20) to within 1%, the peak (energy) conver-

sion efficiency must be kept below 3% (2.1%).6 This, however, is not a very restrictive

constraint. A more restrictive constraint comes from the interaction length of the χ(2)

material, which causes the spectrogram to be corrupted by the SHG transfer function

[discussed in detail in Chapter 5] due to the temporal walk-off effect. Fortunately, the

distortion in the spectrogram arising from the temporal walk-off effect can be corrected

by forcing the agreement between the measured and the expected frequency marginals

[Eq. (2.17)], that is, by multiplying the spectrogram by the ratio between the expected

and measured frequency marginals.21 This procedure does not only correct the distor-

tion due to the acceptance bandwidth insufficiency, but also corrects for other unknown

effects. Obviously, since this procedure involves multiplication, it only works if there

are no zeros in the frequency-dependent transfer functions. Since there are zeros in

the SHG transfer function, as explained in Section 5.2, this method cannot be used to

completely lift the interaction length restriction. Correction of the frequency marginals

has been used to aid the characterisations of several femtoseconds long pulses.25,26 An-

other way to circumvent this acceptance bandwidth restriction is to angle-dither the

χ(2) material.27

The noncollinear geometry in SHG FROG limits its application in a number of cases

where a collinear geometry is imposed, such as in the focus planes of microscope ob-

jectives28–30 or in guided-wave geometries. Similar to the FRAC [Eq. (2.9)], a collinear

SHG FROG configuration yields an interferometric term.31,32 As this interferometric

2.3 SHG FROG
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term is highly sensitive to phase changes, it is experimentally more complex than stan-

dard SHG FROG. The simplest approach to avoid these terms is to use a type-II SHG

interaction,28–30 in which there is a π
2 -difference between the polarisations of the test

pulse and its replica. This configuration is not interferometric, and its spectrogram is

exactly the same as that of standard SHG FROG [Eq. (2.20)].

2.4 XFROG and Blind-FROG

Although the standard SHG FROG configuration works extremely well for a wide range

of test pulses and proves to be more sensitive than other common FROG configurations,

it is still limited in some ways. Since SHG FROG still relies on a nonlinear interaction,

its sensitivity is still limited to pulse energies of the order of picojoules. Furthermore, its

implementation in the near UV or the mid-IR is restricted, due to the unavailability of

sensitive detectors at the SH wavelength and/or the limited transparency range of the

nonlinear material used in the configuration. In addition, type-II SHG FROG configu-

rations cannot be implemented in a number of cases, such as in waveguides that support

only one polarisation. Finally, the characterisation of relatively long pulses, which have

a very narrow spectral bandwidth, is restricted by the resolution of a spectrometer.

These limitations can be overcome by gating the unknown test pulse with an intense

well-characterised reference pulse, i.e. the so-called cross-correlation FROG (XFROG)

technique.33,34 Using this technique, characterisations of weak ultrashort pulses have

been demonstrated using both sum-frequency33,35 and difference-frequency34,36 genera-

tion (SFG and DFG). For example, it was used to characterise ultrashort pulses in the

mid-IR by sum-frequency mixing with near-IR pulses.35 Characterisations of relatively

long pulses is also possible, by mixing them with shorter ones, and thus mapping their

spectra onto the broader one of the reference pulse.

The generated XFROG spectrogram is given by:

Γ(XFROG)(Ω, τ) ∝























∣

∣

∣

∫ ∞
−∞A(t)G(t− τ) exp (−iΩt)dt

∣

∣

∣

2
(for SFG)

∣

∣

∣

∫ ∞
−∞A∗(t)G(t − τ) exp (−iΩt)dt

∣

∣

∣

2
(for DFG with ωT < ωR)

∣

∣

∣

∫ ∞
−∞A(t)G∗(t− τ) exp (−iΩt)dt

∣

∣

∣

2
(for DFG with ωT > ωR).

(2.21)

In the above expressions, A(t) is the complex amplitude of the test pulse at a central

frequency ωT, and G(t) is the complex amplitude of the reference pulse at a central

2.4 XFROG and Blind-FROG
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Figure 2.4: SFG XFROG/blind-FROG spectrograms [Eq. (2.21)] for a TL Gaussian pulse
mixed with several other common pulses: a) a linearly-chirped Gaussian, b) a Gaussian with
a cubic spectral phase, and c) a self-phase-modulated Gaussian. Note that open circles in
b) correspond to nondifferentiable π phase jumps.

frequency ωR. The complex amplitude of the test pulse A(t) can be retrieved from the

measured spectrogram by incorporating the well-characterised reference pulse into the

numerical (iterative) algorithm. Figure 2.4 shows SFG XFROG spectrograms generated

from a TL Gaussian pulse mixed with several other common pulses: a linearly chirped

Gaussian pulse, a Gaussian with a cubic spectral phase, and a self-phase-modulated

Gaussian pulse. It can be easily observed, that XFROG yields asymmetric spectrograms,

which are more intuitive than SHG FROG ones (Fig. 2.3).

Similar to SHG FROG, the experimental considerations for XFROG configurations

also concern the accuracy of Eq. (2.21). The power level of the reference pulse must be

sufficiently low such that the linear relationships in Eq. (2.21) are maintained. Temporal

walk-off effects arising in sufficiently long crystals have different implications on the SFG

and DFG XFROG configurations, as discussed in Chapter 5. The effect of temporal

walk-off on SFG XFROG is similar to that on SHG FROG, i.e. a distorted spectrogram

due to the insufficiency of acceptance bandwidth. This distortion can be corrected by

forcing the agreement between the measured and the expected frequency marginals,

provided that there are no zeros in the transfer functions, as previously described. For

DFG XFROG, the temporal walk-off effect yields a filter function for the pulse at a

higher frequency [Eq. (5.25)], causing incorrect pulse retrieval. The distortion in the

spectrogram cannot be rectified by simply forcing the agreement between the measured

and the expected frequency marginals. Hence, the use of a sufficiently short (less than

one walk-off length) χ(2) material is imperative in XFROG configurations.

2.4 XFROG and Blind-FROG
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The requirement for G(t) to be a well-characterised pulse is not necessary to retrieve

the test pulse complex amplitude A(t) from the XFROG spectrograms [Eq. (2.21)].

Without a priori knowledge of both A(t) and G(t), their retrieval is still possible with

the use of a blind-deconvolution type algorithm,37,38 which will be described in detail

in the next section. This technique, called blind-FROG, is a more general form of the

XFROG and SHG FROG configurations. The experimental considerations for blind-

FROG are the same as those for XFROG, with the exception of crystal length restriction

for DFG blind-FROG. The use of long χ(2) material allows only the pulse at a lower

frequency to be correctly retrieved due to the filtering from the temporal walk-off effect

[Eq. (5.25)], whilst the pulse at a higher frequency cannot be correctly retrieved. In

general, unless the temporal walk-off effect is negligible, the gate pulse is not equal to

the input reference pulse, as the latter is modified during its propagation, as described

in Section 5.4.

The generality of blind-FROG is actually accompanied by more ambiguities.39 In

addition to the trivial ambiguities of the FROG technique, the exchange of the A(t)

and G(t) pair with G∗(−t) and A∗(−t) pair yields the same spectrogram. For the spe-

cial case of a symmetric spectrogram, i.e. Γ(XFROG)(Ω, τ) = Γ(XFROG)(Ω,−τ), the ex-

change between A(t) and G(t), or the pulses with their time-reverse complex-conjugate,

also yields the same spectrogram. In addition to these trivial ambiguities, there exist

nontrivial ambiguities, i.e. there exist other pulse pairs which yield exactly identical

spectrograms to the original pair A(t) and G(t). Siefert, et al.39 showed the existence

of a pair of linearly chirped Gaussian pulses which generate an identical spectrogram

with a different pair of linearly chirped Gaussian pulses. The spectra of those pairs are

identical. They also show the existence of approximate nontrivial ambiguities, i.e. there

exist other pulse pairs which yield nearly identical spectrograms to the original pair

A(t) and G(t). Therefore, additional constraints in the retrieval algorithm, such as

spectra of both pulses, are usually necessary. Siefert, et al. also found that asymmetric

spectrograms are more likely to yield unique solutions without additional constraints.

2.5 Retrieval Algorithm

The measurement of a spectrogram only makes up half of the FROG technique, whilst

the retrieval of the complex amplitudes A(t) and G(t) from the spectrogram makes up

the other half. Since there is no known analytical expression to directly recover these

2.5 Retrieval Algorithm
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amplitudes from a spectrogram, an iterative algorithm is necessary. The simplest re-

trieval algorithm is based on the iterative Fourier transforms.1 As this algorithm was

unstable, some modifications were introduced40 at the expense of computational time.

A more reliable and faster algorithm, whose convergence is guaranteed, is based on the

generalised projection method.41 Yet, this algorithm was still considered slow, largely

due to the line minimisation step in the algorithm. Fortunately, there exists a powerful

method that eliminates the need for minimisation called the principal component gen-

eralised projection (PCGP) algorithm.42,43 This algorithm converts the minimisation

problem into an eigenvector problem, solved via singular value decomposition (SVD),

and thus significantly reduces the computational time such that real-time pulse retrieval

is made possible. We discuss the PCGP algorithm below in more detail.

Practically, the data acquisition and processing rely on the discretisation of the time

t, delay τ , and frequency Ω. Hence, the amplitudes A(t) and G(t) are represented as

complex vectors of size N , i.e.

|A〉 = [A1, A2, . . . , AN ], and |G〉 = [G1, G2, . . . , GN ], (2.22)

where the components Aj , Gj ∈ C, whilst the measured spectrogram Γ(Ω, τ) is repre-

sented numerically as an N ×N real-valued matrix, i.e.

Γ ≡













Γ11 Γ12 . . . Γ1N

Γ21
. . . Γ2N

...
. . .

...
ΓN1 . . . . . . . . ΓNN













, (2.23)

in the so-called Fourier grid, that is, a grid where the product of the frequency span

and the temporal spacing equals unity. The objective of the retrieval process is to find

|A〉 and |G〉 which generate a spectrogram Γc
ij that matches the measured spectrogram

Γm
ij . In other words, this is a minimisation problem with respect to the following metric

function:

Z =





1

N2

N
∑

ij

∣

∣

∣
Γ

(m)
ij − Γ

(c)
ij

∣

∣

∣

2





1
2

. (2.24)

The constraint in this problem is that the peaks of both the amplitudes [|A〉 , |G〉] and

the spectrogram (Γ) are unity. This problem can also be considered as a deconvolution

problem.

It is worth noting that there is an inherent redundancy in this problem, which can

be described as follows. The spectrogram matrix Γ contains N2 real variables, and yet
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Figure 2.5: Illustration of the construction of a numerical spectrogram.

one wants to determine 2N real variables from it, N for each amplitude and phase of

vector |A〉, for a standard FROG problem, where the pulse is gated by itself. This

redundancy also makes possible the retrieval of an additional 2N real variables for the

gate vector |G〉 in the blind-FROG configuration.

Figure 2.5 illustrates a numerical spectrogram construction from the complex vectors

|A〉 and |G〉, where |A〉 = |G〉 is an SPM Gaussian pulse [Fig. 2.5(a)]. The spectrogram

construction starts with the outer product

H = |A〉∗ 〈G| , (2.25)

of the amplitudes |A〉 and |G〉, where |A〉∗ is the complex conjugate of |A〉 [Fig. 2.5(b)].

Next, the signal field matrix Asig(t, τ) [Fig. 2.5(c)] can be obtained by shifting row j

above the central row of matrix H by the following procedure:

[Hj1,Hj2, . . . ,HjN ] → [0, . . . , 0,Hj1,Hj2, . . . ,Hj(N−j)], (2.26)

and row j below the central row of matrix H by the following procedure:

[Hj1,Hj2, . . . ,HjN ] → [Hj(1+j),Hj(2+j), . . . ,HjN , 0, . . . , 0]. (2.27)

Finally, the sought after spectrogram Γ can be obtained by taking the magnitude-

squared of the Fourier transform of the signal field matrix rows [Fig. 2.5(d)].
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Figure 2.6: Flowchart of the principal component generalised projection algorithm.

Figure 2.6 shows an illustration of the PCGP algorithm. An iteration of the algo-

rithm starts with the amplitudes |A〉(q) , |G〉(q), followed by the generation of the FT of

the signal field from the outer product of these amplitudes. The next step is to replace

the intensity of the FT of the signal field by the measured spectrogram:

Â
(q+1)
sig (Ω, τ) =

√

Γ(m) arg
[

Â
(q)
sig(Ω, τ)

]

. (2.28)

Afterwards, the new outer product H must be generated from the FT of the signal field.

The application of SVD to the outer product H results in several sets of eigenvalues

and eigenvectors. Keeping the pair of eigenvectors with the largest eigenvalue, i.e. the

principal component, gives us the next guesses for the amplitudes |A〉(q+1) , |G〉(q+1).

These steps are repeated until a convergence is achieved, which is defined as when there

is no significant change to the error [Eq. (2.24)].

Crucial to the PCGP algorithm is the SVD step. Given a complex matrix H, its

singular value decomposition (SVD) takes the following form:44

H = U
†
DV, (2.29)

where U and V are orthogonal matrices which contain the so-called left and right singular

vectors of H, |u〉j and |v〉j, respectively, U
† is the Hermitian adjoint of U, and D is a

diagonal matrix whose components ζj are the singular values of matrix H. For our matrix

H, given by Eq. (2.25), this decomposition should yield only one nonzero singular value

ζp,
42 which corresponds to one left eigenvector |u〉p = |A〉∗ and one right eigenvector

|v〉p = |G〉.
The direct application of SVD to H to obtain the left and right eigenvectors is

computationally expensive . The fact that the matrix H has only one eigenvalue, can
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be exploited to obtain the eigenvectors pair. The eigenvalue problem for the left and

right eigenvectors can be written as:

HH
† |u〉j = ζj |u〉j , and H

†
H |v〉j = ζj |v〉j . (2.30)

Suppose one takes an arbitrary vector constructed from the orthogonal basis:

|w〉 =

N
∑

j

cj |u〉j , (2.31)

where cj is an arbitrary constant. Multiplication by HH
† yields

HH
† |w〉 =

N
∑

j

cjζj |u〉j . (2.32)

Performing this operation several times directly yields

(

HH
†
)n

|w〉 =

N
∑

j

cjζ
n
j |u〉j . (2.33)

Obviously, as n becomes large, the largest eigenvalue dominates the summation, i.e.

(

HH
†
)n

|w〉 ≈ cpζ
n
p |u〉p , (2.34)

allowing |u〉p to be easily found. Similarly, the same procedure applies to the right

eigenvector |v〉, and thus the principal left and right eigenvector can be easily obtained

using this so-called power method. In the algorithm, the next guesses for the amplitudes

|A〉 and |G〉 are obtained by applying the power-method as:

(

|A〉(q+1)
)∗

=
(

HH
†
)n(

|A〉(q)
)∗
, and |G〉(q+1) =

(

H
†
H

)n

|G〉(q) . (2.35)

While a better result for the eigenvectors can be obtained by applying the operators

HH
† or H

†
H several times, once per iteration is adequate in practice.

Because the presence of noise cannot be avoided in practice, analysing its effect on

the retrieval algorithm is essential. The effect of noise on the retrieval algorithm has

been discussed in great detail.38,45 In general, it was found that the presence of some

noise can actually improve the retrieval quality, due to the inherent redundancy in the

spectrogram.45 However, in the presence of somewhat larger amounts of noise, the

algorithm does not return a satisfying solution. Therefore, the noise in the measured

spectrogram must be reduced. Common sources of noise, such as stray light and biases

2.5 Retrieval Algorithm



Frequency-Resolved Optical Gating 28

in dark current, are additive and can be easily removed by simple subtraction with a

background spectrum. Corner suppression, that is, multiplication of the spectrogram

with a radially symmetric super-Gaussian, may also improve the retrieval quality from

additive noise. Fourier low-pass filtering of the two-dimensional Fourier transform of the

measured spectrogram is also another common technique to suppress both additive and

multiplicative noise.45 The low-pass filtering must be done with great care such that high

spatial frequencies corresponding to the actual phase fluctuations are not filtered out.

Other more sophisticated image processing techniques, e.g. Wiener filtering, wavelet

noise reduction, etc., may prove to be useful for noise suppression in the spectrogram.

2.6 Summary

The characterisation of ultrashort optical pulses is limited by the temporal resolution

of currently available measurement devices. The broad nature of their spectrum cannot

be directly used to retrieve their complex temporal amplitudes, due to the unsolv-

able one-dimensional phase retrieval problem. Attempts to solve this problem failed,

mainly because they worked purely in either the temporal or spectral domain, creating

an unsolvable one-dimensional phase retrieval problem. FROG solves this problem by

measuring a time-frequency distribution, i.e. a spectrogram. Unlike previous attempts,

this creates a solvable two-dimensional phase-retrieval problem. The complex ampli-

tude of ultrashort pulses can be retrieved from a spectrogram by means of an iterative

algorithm. A detailed description of this algorithm, which is based on the generalised

projection method, has been given.

Due to the sensitivity it offers, SHG FROG has become a standard in laborato-

ries worldwide. Sensitivity improvement can still be made possible by gating a weak

ultrashort pulse with an intense well-characterised reference pulse, i.e. XFROG config-

urations. The cross-correlation between the pulses is still achieved by χ(2) interactions,

either SFG and DFG. A more general form of XFROG is blind-FROG, which does not

require the reference pulse to be well-characterised. Instead, a blind-deconvolution algo-

rithm can be used to retrieve the test pulse and the gate pulse simultaneously without

a priori knowledge.

2.6 Summary
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“Measurement of 10-fs Laser Pulses,” IEEE Journal of Selected Topics in Quantum
Electronics 2(3), 575–585 (1996).
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Chapter 3

Second-Harmonic Generation in

Quasi-Phase-Matched Waveguides

As discussed in the previous chapter, FROG relies on nonlinear interactions to achieve

the mixing between the test and the gate pulses. We are particularly interested in

second-order nonlinear interactions, whose theoretical framework, with the emphasis on

second-harmonic generation (SHG, the simplest among all) using continuous-wave (CW)

sources, is briefly presented in this chapter. The framework starts with the description

of Maxwell’s equations, and the nonlinear polarisation, which are the fundamentals

of this work, in Section 3.1. Qualitative descriptions of several second-order nonlinear

interactions, including SHG, sum- and difference-frequency generation (SFG and DFG),

are given in Section 3.2. Section 3.3 develops a more detailed analysis of CW SHG

in bulk materials based on the coupled mode equations. Second-harmonic generation

in waveguide is addressed in Section 3.4. Phase-matching, an important concept for

second-order nonlinear interactions, is discussed in Section 3.5.

3.1 Maxwell’s Equations and the Nonlinear Polarisation

The most fundamental equations which govern all of macroscopic electromagnetism,

including the propagation of light, are the four macroscopic Maxwell’s equations:1

∇ · D = ρf , (3.1a)

∇× E = −∂B
∂t
, (3.1b)

∇ ·B = 0, (3.1c)

∇× H = J +
∂D

∂t
. (3.1d)

33
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In this set of equations, E and H are the macroscopic electric and the magnetic field

vectors, D and B are the electric displacement and the magnetic induction, and the

quantities ρf and J are the free electric charge and the current density, which may be

considered as the sources of the fields E and H. Most dielectric materials have no free

electric charge, and hence we can set ρf = 0. We shall further assume that there is no

external current such that J = 0.

For a particular set of boundary conditions, Maxwell’s equations [Eq. (3.1)] cannot

be solved uniquely unless the relationship between B and H and that between E and D

are known. To obtain a unique determination of the field vectors, Maxwell’s equations

must be supplemented by the constitutive equations,

D = ε0E + P, (3.2a)

B = µ0H + M, (3.2b)

where P and M are the electric and the magnetic polarisations. We can set M =

0 since the material we used is nonmagnetic. The origin of electric polarisation P

lies at the microscopic level. When an electromagnetic field is present in matter, the

electric field perturbs the motion of electrons and produces a polarisation P per unit

volume. Assuming an instantaneous response of the material, the components Pα of the

polarisation field P can be related to the components Eβ of the electric field E via a

power series:1,2

Pα(r, t) = ε0χ
(1)
αβ(r, t)Eβ(r, t) + ε0χ

(2)
αβγ(r, t)Eβ(r, t)Eγ(r, t)

+ ε0χ
(3)
αβγδ(r, t)Eβ(r, t)Eγ(r, t)Eδ(r, t) + · · · , (3.3)

where the quantities χ(n), known as susceptibilities, arise from the material’s atomic

structure. As in any power series expansion, the susceptibility χ(n) eventually decreases

with successive terms, so that we need only to consider the highest order terms. The

first term depends linearly on the electric field and defines the refractive index of the

material, i.e. nαβ =
√

1 + χ
(1)
αβ . The rest of the terms can then be identified as the

nonlinear polarisation field. Hence the polarisation field can be split into:

P = PL + PNL, (3.4)

where PL is the linearly dependent polarisation field, and PNL contains the nonlinear

polarisation field. We next look more closely into the nonlinear polarisation field PNL

and the nonlinear susceptibility χ(n).

3.1 Maxwell’s Equations and the Nonlinear Polarisation
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3.2 Second-Order Nonlinear Interactions

Since the susceptibilities χ(n) are intrinsic properties of a material, their tensorial forms

reflect the structural symmetry of the material. In all materials with inversion sym-

metry, such as liquids, gases, amorphous solids, and many crystals, i.e. the so-called

centrosymmetric materials, the χ(2n) tensor components must vanish. This vanishing

χ(2n) tensor results from the odd inversion symmetry of the electric field vector E and

the electric polarisation vector P. However, there exists an important class of materials

known as ferroelectrics, of which Lithium Niobate is a member. These materials possess

a spontaneous electric dipole moment Ps in zero external field,1 which originates from

the shift of an ion from a symmetrical site.3 This symmetry-breaking results in nonzero

χ(2) tensor components,4 which are responsible for the nonlinear interactions we are

interested in.

Several second-order nonlinear interactions which result from χ(2) are qualitatively

described in this section. For linearly polarised light, which we restrict ourselves to, the

scalar form of the nonlinear polarisation [Eq. (3.3)] for second-order nonlinear interac-

tions is given by:

P (r, t) = ε0χ
(2)E2(r, t). (3.5)

Let us consider an electric field that consists of two distinct frequency components, ω1

and ω2, which is represented in scalar form by:

E(r, t) = E1 exp [i(k1 · r − ω1t)] + E2 exp [i(k2 · r− ω2t)] + c.c., (3.6)

where |kj | =
ωj

c
ε(ωj) =

ωj

c
n2(ωj). With the above electric field, the second-order

nonlinear polarisation [Eq. (3.5)] can be rewritten as follows:

P (r, t) = ε0χ
(2)

{

E2
1 exp [2i(k1 · r − ω1t)] + E2

2 exp [2i(k2 · r− ω2t)]

+ 2E1E2 exp [i(k1 + k2) · r − i(ω1 + ω2)t]

+ 2E1E
∗
2 exp [i(k1 − k2) · r− i(ω1 − ω2)t] + c.c.

}

+ 2ε0χ
(2)

[

|E1|2 + |E2|2
]

. (3.7)

One readily identifies the different frequency components of the nonlinear polarisation

3.2 Second-Order Nonlinear Interactions
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Figure 3.1: Illustration of geometries and energy-level descriptions for two different
second-order nonlinear interactions.

as being due to the following interactions:

E2
1 exp (−i2ω1t), E

2
2 exp (−i2ω2t) second-harmonic generation, (3.8a)

E1E2 exp [−i(ω1 + ω2)t] sum-frequency generation, (3.8b)

E1E
∗
2 exp [−i(ω1 − ω2)t] difference-frequency generation, (3.8c)

|E1|2 + |E2|2 optical rectification. (3.8d)

We are only interested in the first three interactions, collectively known as parametric

interactions. These interactions produce electromagnetic radiations at a new frequency,

whilst the last one, optical rectification, does not. Instead, it creates a static electric

field inside the nonlinear material.4 Although the three parametric interactions occur

simultaneously (see Section 3.5), generally only one is preferred by the phase-matching

condition in the nonlinear material to efficiently produce an output signal. Hence, we

can consider them separately.

Let us first consider sum-frequency generation (SFG), whose geometry is illustrated

in Fig. 3.1(a). The input electromagnetic field has two distinct frequencies ω1 and ω2

which interact with each other through the nonlinear material to produce an output

wave at a frequency ω3 = ω1 + ω2. This interaction can be visualised in terms of

photon virtual energy levels, as depicted in Fig. 3.1(a). In this process, photons with

energy ~ω1 and ~ω2 are destroyed in the material to generate another one. The energy

3.2 Second-Order Nonlinear Interactions
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conservation dictates that the produced photon has an energy ~ω3 = ~ω1 + ~ω2. In

addition, the total momentum in the interaction must be conserved, i.e. k3 = k1 + k2.

This requirement for conservation of momentum is also known as the phase-matching

condition. For a collinear interaction, the conservation of momentum translates into

ω3n(ω3) = ω1n(ω1) + ω2n(ω2). However, this condition is generally prevented from

happening due to chromatic dispersion of the device, resulting in a phase-mismatch

∆k = k3 − k1 − k2. The phase-mismatch causes an alternation of power flow between

the three waves, reducing the conversion efficiency. Ways to achieve phase-matching

condition is given in Section 3.5. When the input waves are at a degenerate frequen-

cies ω1 = ω2, this interaction simply reduces to SHG. Second-harmonic generation is

analysed in more detail in the next sections. Both interactions are commonly used to

generate electromagnetic waves at higher frequencies that are inaccessible by standard

quantum transitions of atoms and/or molecules, such as frequencies in the ultraviolet.

The geometry of difference-frequency generation (DFG) is depicted in Fig. 3.1(b).

The two input electromagnetic waves have distinct frequencies ω1 and ω2 which interact

to produce an output wave at a frequency ω3 = ω1 − ω2. Both energy and momentum

must be conserved in this interaction, i.e. ~ω3 = ~ω1 − ~ω2 and k3 = k1 − k2. Super-

ficially, DFG looks similar to SFG. However, upon close inspection of the energy level

diagrams in Fig. 3.1(b), not both input photons are destroyed. Only the photon at a

higher frequency (ω1) is destroyed, whilst a second photon at the lower frequency (ω2) is

created in the interaction. Therefore, the input wave at a lower frequency is amplified.

For this reason, this process is also known as optical parametric amplification (OPA).5

In the energy level diagram for DFG depicted in Fig. 3.1(b), the emission of a photon

with energy ~ω3 after the excitation by a ~ω1 photon is stimulated by the presence of

a ~ω2 photon. However, spontaneous two photon emission (~ω2 and ~ω3) that follows

from the destruction of the ~ω1 photon can occur without the presence of the ~ω2

photon. This process is known as optical parametric fluorescence.6 If the nonlinear

material is put inside a resonator such that the device is being used multiple times, the

electromagnetic waves at ω2 and/or ω3 can build up to an extremely high value. This

device is known as an optical parametric oscillator (OPO).7

3.2 Second-Order Nonlinear Interactions
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3.3 Continuous-Wave Second-Harmonic Generation

Having discussed second-order nonlinear interactions qualitatively in the previous sec-

tion, we now provide a more formal mathematical treatment. The treatment is done

through the formulation of coupled-mode equations for SHG, since it is the simplest

among second-order nonlinear interactions, and is easily generalise to SFG. The formu-

lation of coupled-mode equations starts with the electromagnetic waves, an important

consequence of Maxwell’s equations. Straightforward algebra from Maxwell’s equations

[Eq. (3.1)] and the constitutive relations [Eq. (3.2)] yields the following wave equation

with an additional driving term originating from the nonlinear polarisation field:

∇×∇× E +
n2

c2
∂2E

∂t2
= −µ0

∂2PNL

∂t2
. (3.9)

Note that a similar wave equation can be derived for the magnetic field vector H. The

nonlinear driving term in the right-hand-side (RHS) of the above equation can be treated

as a small perturbation to the linear differential equation on the left-hand-side (LHS),

which has the effect of coupling light at different frequencies. This nonlinear coupling

leads to an energy transfer between the different frequencies along the propagation

direction. We write the solution to the above nonlinear wave equation as a sum of their

various frequency components:

E(r, t) =
∑

j

Fj(x, y)Aj(z) exp [i(kj · r− ωjt)] + c.c., (3.10)

where Fj(x, y) is the transverse field profile∗, and Aj(z) is the slowly varying amplitude

of the electromagnetic wave at frequency ωj. The angular frequency ωj and the prop-

agation wavevector kj determine the phase velocity of the wave vp =
ωj

|kj |
. The above

solution can be normalised in the following way:

1

2

∫

x,y

Re [(E × H∗) · ẑ] dxdy =
∑

j

|Aj(z)|2 =
∑

j

Pj(z), (3.11)

where Pj(z) is the total power of the electric field at a frequency ωj.

We need to find equations for the Aj(z), which describes the evolution of each

frequency component ωj due to the nonlinear effects. Let us consider an electromagnetic

wave at the fundamental-frequency (FF) ωFF which interacts with itself and the χ(2)

∗We have assumed that the transverse mode-profile does not change significantly during propagation
along the interaction length, so that F is independent of z, i.e. F 6= F(z).

3.3 Continuous-Wave Second-Harmonic Generation
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material producing the following nonlinear polarisation wave at its second-harmonic

frequency (ωSH = 2ωFF):

PNL
α (r, t;ωSH) = ε0χ

(2)
αβγEβ(r, t;ωFF)Eγ(r, t;ωFF). (3.12)

For the sake of simplicity, we consider a FF wave with parallel or perpendicular polarisa-

tions to the optic axis of the crystal, such that only a single component of χ
(2)
αβγ , typically

χ
(2)
333, is being utilised. Substitution of Eq. (3.12) and Eq. (3.10) into Eq. (3.9), and utili-

sation of the slowly-varying amplitude approximation, yield the following coupled-mode

equations that govern the evolution of the FF and SH amplitudes in the χ(2) medium:8

dAFF(z)

dz
= 2iωFFκA

∗
FF(z)ASH(z) exp (i∆kz), (3.13a)

dASH(z)

dz
= iωSHκA

2
FF(z) exp (−i∆kz), (3.13b)

where ∆k = k(ωSH) − 2k(ωFF) is the wavevector mismatch. The nonlinear coupling

coefficients κ is given by

κ = d

√

2µ0

n2
FFnSHc

√

1

Sovl
(3.14)

where nj = n(ωj) is the refractive index of the material, d = 1
2χ

(2)
αβγ , and

Sovl =

∫

|FSH|2 dxdy
(∫

|FFF|2 dxdy
)2

(∫

|FFF|2 |FSH| dxdy
)2 (3.15)

is called the effective overlap area between the transverse field profiles of the FF and

the SH waves.

Although Eq. (3.13) can be solved analytically,9 their solution is far from simple. A

simple solution would be beneficial as it would provide physical understanding of the

process. If the FF wave has sufficiently low input power, such that the change in its

power level is less than 20% throughout the interaction length, it can then be considered

undepleted, i.e. AFF(z) ≈ AFF. Hence, the generated SH power in a material of length

L can be obtained by direct integration of Eq. (3.13b):

PSH(L) =

∣

∣

∣

∣

∫ L

0

dASH(z)

dz
dz

∣

∣

∣

∣

2

= (ωSHκSH)2 P 2
FFL

2 sinc2

[

∆k
L

2

]

, (3.16)

where P2
FF = |AFF(0)|2. Characterisation of a χ(2) material usually involves the gener-

ation of the tuning curve, which is the measured SH power as a function of the phase-

mismatch, as plotted in Fig. 3.2. For the ideal case, the phase-mismatch variation can

3.3 Continuous-Wave Second-Harmonic Generation
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Figure 3.2: Second-Harmonic Generation tuning curve.

be achieved by tuning the temperature of the material or the input FF wavelength.

Note that the maximum generated SH power occurs when phase-matching (∆k = 0) is

achieved, as expected. Methods to achieve this will be discussed in details in Section 3.5.

As is apparent from Eq. (3.16), for ∆k = 0, the resulting power scales quadratically

with the interaction length. We define a nonlinear conversion efficiency as follows:

ηNL =
PSH(L)

P2
FF

= ηnorL
2 sinc2

[

∆k
L

2

]

, (3.17)

where the normalised conversion efficiency ηnor, a measure of the intrinsic quality of the

χ(2) material which is independent of the input FF power and the interaction length, is

given by:

ηnor = [ωSHκSH]2 . (3.18)

Its units are usually given as %[W cm2]−1.

The full-width at half-maximum (FWHM) bandwidth of the SHG tuning curve

[Eq. (3.16)] is given by:

∆[∆k] =
5.57

L
, (3.19)

as sinc2(1.39) ≈ 0.5. Note that it scales inversely with the interaction length. Similarly,

the wavelength bandwidth is given by:

∆λ =
5.57

L

∣

∣

∣

∣

∂∆k

∂λ

∣

∣

∣

∣

−1

λ=λ0

. (3.20)

It can be easily seen that the generated SH power [Eq. (3.16)] is inversely propor-

tional to the beam spot size [Eq. (3.14)]. Therefore, a high conversion efficiency can be

3.3 Continuous-Wave Second-Harmonic Generation
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(a) (b)

Figure 3.3: Illustration of the laser beam propagation with Gaussian intensity profile in
a) bulk material and b) guided-wave configuration.

theoretically achieved by using a laser beam with a spot size as small as possible. In

reality, however, the spot size of the beam cannot be chosen arbitrarily due to the wave

nature of light. As the beam spot size is focused to a spot as small as possible near

the centre of the nonlinear material, diffraction results in a much larger beam spot size

at the end of the material, and thus the whole length of the material is not optimally

used for the nonlinear interaction [see Fig. 3.3(a)]. Boyd and Kleinman8 showed that

the optimum focusing condition is tighter than the confocal focusing, i.e. a focusing

condition where the spot size at the end of the material is
√

2 times that at the centre.

For this focusing, the beam spot size is given by Sbulk ≈ λL
2n

, causing the maximum SH

power to only scale linearly with the interaction length.

3.4 Guided-Wave Configurations

The Gaussian beam diffraction problem can be overcome by guided-wave configura-

tions. In guided-wave configurations, a small beam size can be maintained for a long

interaction length, since the electromagnetic radiation is confined in a waveguide, as il-

lustrated in Fig. 3.3(b). The efficiency improvement gained by resorting to guided-wave

configurations can be estimated as follows:

ηwaveguide

ηbulk
=

Sbulk

Swaveguide
=

λL

2nSwaveguide
. (3.21)

Using a typical LiNbO3 waveguide mode size of ∼ 40µm2 at wavelengths in the 1.55µm-

band, an estimated improvement ratio of 102L is obtained, where L is in cm. A 1 cm-long

3.4 Guided-Wave Configurations
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interaction length should therefore provide an efficiency improvement by two orders of

magnitude over bulk materials.

Waveguides are obtained by creating a localised perturbation of higher refractive

index than the surroundings. Such structures do not allow electromagnetic radiation to

propagate freely. Instead, the electromagnetic radiation propagates as discrete modes

inside the waveguide. The solution to the wave equation for electric field E(r, t) in such

a structure is given by

E(r, t) =
∑

q

∑

j

F
(q)
j (x, y)A

(q)
j (z) exp

[

i(ωjt− β
(q)
j z)

]

+ c.c, (3.22)

where q denotes the mode indices, and β
(q)
j =

ωj

c
N q is the propagation wavevector of

mode q with frequency ωj inside the waveguide, with N being the effective refractive

index of the propagating mode.

The coupled-mode equations describing the evolution of the FF and the SH waves

inside the waveguide are formally identical to Eq. (3.13), and are given by:

dAFF(z)

dz
= 2iωFFκA

∗
FF(z)ASH(z) exp (i∆βz), (3.23a)

dASH(z)

dz
= iωSHκA

2
FF(z) exp (−i∆βz). (3.23b)

In deriving the above equations, we consider only the interactions between fundamental

modes, since these give the highest conversion efficiency, and thus have omitted the mode

indices. There are two main differences in the above equations compared to Eq. (3.13):

The bulk material wavevector mismatch ∆k is replaced by the waveguide wave vector

mismatch ∆β = β(ωSH) − 2β(ωFF), and the nonlinear coupling coefficient, similar to

Eq. (3.14), is given by:

κ = d

√

2µ0

N 2
FFNSHc

√

1

Sovl
, (3.24)

where N is the effective index of the fundamental modes of the waveguide, and the

effective overlap area Sovl is given by Eq. (3.15). Note also that the effective overlap

area in waveguide can be optimised to improve the conversion efficiency by proper design

of the waveguide structure.

3.5 Achieving Phase-Matching

As described before, the interaction between the FF wave and the material produces a

polarisation wave at its SH [see Eq. (3.12)]. The polarisation wave travels with the same

3.5 Achieving Phase-Matching
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Figure 3.4: Power of the SH wave as a function of the propagation length in the units of
coherence length for non-phase-matching (blue), phase-matching (green) and quasi-phase-
matching (red) conditions.

phase velocity as the FF wave, determined by NFF, which is the effective refractive index

of the waveguide at ωFF. The polarisation wave then radiates the SH wave which travels

at phase velocities determined by NSH, the effective refractive index of the waveguide at

ωSH. When the phase velocities of both the FF and SH wave are equal, then the power

flows unidirectionally from the FF wave to the SH wave. Therefore, the amplitude of the

SH wave grows monotonically along the interaction length as illustrated by the green

curve in Fig. 3.4. As previously mentioned, this condition is called phase-matching, and

corresponds to ∆β = 4ωFF

c
(NSH −NFF) = 0 or NFF = NSH.

In general, however, NSH 6= NFF due to chromatic dispersion in most materials and

waveguides, including Lithium Niobate (see Fig. 3.5, for example). Hence, the FF and

the SH waves travel at different phase-velocities, so that there is a continuous phase slip

between both waves. This phase slip leads to the alternation of power flow between the

FF and the SH waves, as illustrated by the blue curve in Fig. 3.4. The alternation of

the power flows yields a growth and decay cycle of the SH wave along the interaction

length. The length over which the FF and the SH waves accumulate a π phase difference

is called the coherence length:

lc =
π

∆β
=

λ

4 [N (ωSH) −N (ωFF)]
, (3.25)

which is a half-period of the growth and decay cycle of the SH wave.

A simple and common way to achieve phase-matching is by utilising the mater-

3.5 Achieving Phase-Matching
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Figure 3.5: The ordinary (green) and extraordinary (blue) refractive index of Lithium
Niobate at a temperature T = 100 0C as calculated from the Sellmeier equations in Refs.
10 and 11, respectively.

ial birefringence.12,13 Different refractive indices experienced by interacting waves of

different polarisations in birefringent material can result in phase-matching, ∆β = 0.

However, this method restricts the choice of the χ(2) tensor component that can be used.

In addition, birefringence phase-matching usually involves some angle of propagation

θ relative to the optic axis, resulting in spatial and Poynting-vector walk-offs. These

walk-offs limit the effective interaction length, reducing the conversion efficiency. The

so-called ordinary and extraordinary refractive indices of Lithium Niobate are shown in

Fig. 3.5. For birefringent phase-matching in Lithium Niobate, the FF wave is polarised

perpendicular to the z-axis of the crystal [nFF = no(ωFF)], whereas the SH wave is

polarised parallel to the z-axis of the crystal [nSH = ne(ωSH, θ)]. Unfortunately, due to

chromatic dispersion, the phase-matching condition no(ωFF) = ne(ωSH, θ) is only pos-

sible at certain wavelengths. In this case, the effective nonlinear coefficient is given by

dB = 1
2χ

(2)
311.

An alternative scheme, called quasi-phase-matching (QPM), to compensate the

continuous phase slip was proposed by Armstrong et al.9 The scheme involves a repeated

inversion of the relative phase between the FF and the SH waves after an odd number of

coherence lengths, in order to maintain the growth of the SH wave along the interaction

length. The repeated inversion can be achieved by changing the sign of the nonlinear

3.5 Achieving Phase-Matching
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Figure 3.6: Illustration of periodic inversion of the spontaneous polarisation Ps in ferro-
electrics.
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Figure 3.7: The required QPM period for SHG as a function of the phase-matching wave-
length, as calculated from the Sellmeier equation for the extraordinary refractive index11

at temperature T = 100 0C. C and L telecommunications bands are highlighted in blue and
green, respectively.

coefficient. In ferroelectrics, this can be done by reversing the spontaneous polarisation

Ps periodically along the interaction length as illustrated in Fig. 3.6. This, for example,

can be achieved by applying a spatially periodic external electric field onto a ferroelectric

material, i.e. electric-field poling. The most rapid conversion, of course, is achieved

by reversing Ps every coherence length lc. The evolution of the SH wave along the

interaction length is shown by the red curve in Fig. 3.4.

In a Fourier space picture, it can be easily recognised that the compensation is

achieved by a periodic structure whose reciprocal lattice vector is equivalent to the

phase-mismatch between the FF and the SH waves. Periodic inversion of the nonlinear

3.5 Achieving Phase-Matching
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coefficient along the interaction length can be represented by the following Fourier series:

d(z) = d
∞
∑

q=−∞

2

qπ
eiKqz, (3.26)

where Kq = 2πq
Λ is a reciprocal lattice vector of the periodic structure with periodicity

Λ. In the QPM case, the wavevector mismatch ∆β in Eq. (3.23) must then be replaced

with

∆βQPM = ∆β −Kq. (3.27)

It follows then that only the Fourier component of the nonlinear coefficient [Eq. (3.26)]

that is phase-matched (∆βQPM = 0) contributes significantly to the nonlinear interac-

tion, so that the nonlinear coefficient in Eq. (3.24) has to be replaced with

d→ dQPM =
2d

qπ
. (3.28)

As expected, maximum nonlinear interaction efficiency is achieved from the first order

Fourier component (q = 1). The tuning curve for SHG with QPM is identical to that

without QPM as shown in Fig. 3.2.

The QPM scheme allows one to access χ
(2)
333, the highest χ(2) tensor component of

Lithium Niobate, when both the FF and SH waves are polarised parallel to the z-axis

of the crystal. Although the QPM scheme only allows 64%
(

2
π

)

of χ
(2)
333, it still provides

a significant improvement of about 16 times over the birefringent phase-matching, con-

sidering dB = 1
2χ

(2)
311 = 2.1 pm/V and dQPM = 1

π
χ

(2)
333 = 8.6 pm/V. More importantly,

in contrast to birefringent phase-matching, QPM can be achieved at any frequencies

by appropriate choice of the gratings period. For example, Fig. 3.7 shows the required

QPM period for the second-harmonic conversion from the C and L telecommunications

bands, periods which are easily achieved using standard electric-field poling techniques.

We have so far assumed that we have a perfectly periodic QPM structure and a

homogeneous waveguide. However, in practice, such conditions cannot be easily met.

Imperfections in fabrications yield randomly varying QPM structures and inhomoge-

neous waveguides. In addition, spatially varying temperature during experiments also

affects the homogeneity of the waveguides. These result in a position-dependent phase-

mismatch along the length of the devices.14–16 In such conditions, the solution given by

Eq. (3.16) no longer holds, instead, the tuning curve is distorted. This distortion can

be viewed as a redistribution of the area under the tuning curve as a function of 1
2∆βL,

resulting from the spatially dependent phase-matching condition along the interaction

3.5 Achieving Phase-Matching
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Figure 3.8: Nonideal SHG tuning curve (red lines) normalised to the peak conversion
efficiency of an ideal SHG tuning curve (blue lines).

length. In other words, the imperfections in QPM waveguide devices result in a reduc-

tion of the conversion efficiency and a broadening of the SHG tuning curve. This fact

implies that the total device length is not effectively used in the nonlinear interaction.

Therefore, the FWHM bandwidth [Eq. (3.19)] is often used as a measure of the effective

interaction length.14 Figure 3.8 shows a comparison between a nonideal QPM wave-

guide device and an ideal one with identical interaction lengths. Here the broadening

of the nonideal QPM waveguide device can be easily seen. Unfortunately, little can be

done to suppress the effect of the imperfections on the QPM structure. However, in

waveguides, their dimensions can be optimised in such a way to yield a greater toler-

ance on the spatially varying phase-matching conditions arising from their fabrication

imperfections and experimental conditions (spatially varying temperature).17,18

3.6 Summary

General qualitative descriptions of second-order nonlinear interactions are presented in

this chapter. Among second-order nonlinear interactions, SHG is the simplest, and its

theoretical framework was developed in this chapter. The analysis revealed that the

efficiency of the nonlinear interaction reaches maximum when the phase-matching con-

dition is achieved. Quasi-phase-matching technique is an elegant scheme to achieve this

condition by introducing an artificial periodic structure. The phase-matching wave-

length can be chosen by engineering the structure period. The efficiency can be further

3.6 Summary
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enhanced by using guided-wave configuration in order to avoid the Gaussian beam dif-

fraction, providing tight optical confinements and long interaction lengths.
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Chapter 4

Quasi-Phase-Matched Lithium

Niobate Waveguide Devices

The devices used throughout my research work consists of buried waveguides on

periodically-poled Lithium Niobate (PPLN). Their description, fabrication, and prop-

erties are described in this chapter. Section 4.1 describes the structure and presents a

short description of its fabrication. The device fabrication was done by Dr. Katia Gallo

with help from Dr. Corin Gawith in Prof. Peter Smith’s group. A more detailed overview

of the fabrication technique for the creation of buried waveguide is given in Section 4.2.

Since this fabrication technique was not established at the ORC, some work was spent

on its characterisation, which is presented in Section 4.3.

A large portion of this research work was spent on setting up characterisation tools

and using them on the fabricated device. These enabled us to gain knowledge of the

device properties in order to optimise the device performance in the future. The charac-

terisation was done by myself and Dr. Katia Gallo. The linear properties of the device

are associated with the waveguide structure. These properties comprise transverse field

profiles and propagation losses, and are presented in section 4.4. In section 4.5 that

follows, second-order nonlinear properties of the device are being assessed through non-

linear interactions, such as SHG (see Chapter 3) and sum-frequency generation (SFG).

4.1 Device Overview

As mentioned above, the device used throughout this research work consists of uniform

QPM structures and buried waveguides. Figure 4.1 shows a three-dimensional model of

our device, while a microscopic photograph of its top surface is shown in Fig. 4.2. The

fabrication of QPM structures began by defining the gratings pattern on the −z-face of
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Figure 4.1: Three-dimensional model of the device. The QPM structure of period Λ and
the waveguides of nominal width w are shown. The crystal axes are shown in red, whilst
the electromagnetic wave axes are in black.
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Figure 4.2: Top microscopic photograph of the device. The QPM structure and the
waveguides are clearly visible. The crystal axes direction is also shown.

4.1 Device Overview
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the crystal using a standard photolithographic technique, followed by the application of

an external electric field at room temperature using a conductive gel as the electrode,1

resulting in periodic inversions along the x-axis of the crystal with periods ranging from

14.5 to 16.5µm with a 0.5µm step. The poling was performed by Dr. Katia Gallo with

help from Dr. Corin Gawith in Prof. Peter Smith’s group. Afterward, buried channel

waveguides perpendicular to the QPM structures on the −z-face of the crystal were

fabricated by Dr. Katia Gallo using a selective proton exchange process, followed by

annealing and reverse proton exchange processes following the work of Parameswaran,

et al.,2 as described in Section 4.2. The precise fabrication parameters are given below,

whilst a detailed description of the process is given in the next section. The periodically-

poled LiNbO3 (PPLN) was first immersed in a Benzoic acid melt for 31 hours at 160 0C,

resulting in a proton-rich layer of ∼ 1.2µm thick. The sample was subsequently an-

nealed in air for 8 hours at 328 0C, followed by a reverse exchange in an eutectic melt of

LiNO3:KNO3:NaNO3 with a mole ratio of 37.5:44.5:18.0 for 10 hours at 3280 C, resulting

in the realisation of buried waveguides. These buried waveguides only support electro-

magnetic wave polarised parallel to the crystal optic axis, i.e. the so-called transverse

magnetic (TM) polarisation. Each of the fabricated waveguides have nominal widths,

defined by the mask widths used during the selective proton exchange, ranging from 4

to 10µm with a 1µm step. One set of these 7 waveguides with the same QPM period

are clearly shown in Fig. 4.2. These combination of QPM structures and waveguides

were repeated three times on the sample, such that there were 7 × 5 × 3 waveguides in

total. This redundancy was made due to the uncertainties in the fabrication process

in order to ensure that at least one device is suitable for our experiments. Finally, the

end-faces of the device (x-faces of the crystal) were polished, resulting in a device with

a total length of 2.6 cm.

4.2 Waveguide Fabrication Overview

As described in the previous section, the fabrication technique to produce buried wave-

guides on LiNbO3 adopted by our group in the ORC consists of three steps: proton

exchange, annealing and reverse exchange, as summarised in Fig. 4.3. This technique

has advantages over others, such as titanium indiffusion,3 heavy-ion exchange (silver4

and thallium,5 for example), direct writing,6 and proton exchange. The advantages can

be listed as follows: (1) It is consistently reproducible, and the optical properties of

4.2 Waveguide Fabrication Overview
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Figure 4.3: Summary of the waveguide fabrication process, involving proton exchange,
annealing, and reverse exchange. Corresponding refractive index profile evolutions are also
shown.

the resulting waveguides can be tailored by varying the fabrication parameters, (2) it

is done at a relatively low temperature, and (3) it gives relatively high refractive index

changes (≈ 0.02) with low propagation losses (< 1 dB/cm). The fabrication steps will

be briefly reviewed here.

4.2.1 Proton Exchange

Waveguide fabrication on LiNbO3 using proton-exchange (see Fig. 4.3, left-most pic-

ture) was firstly demonstrated by Jackel et.al.7 The process involves the immersion of

the LiNbO3 substrate into an acid bath which acts as the proton source at 150 0−300 0C.

Immersion of the substrate into weak acids yields in incomplete exchange of the LiNbO3,

resulting in a proton rich (HxLi1−xNbO3) layer on the surface. The proton rich layer

results in an increase of extraordinary refractive index and a decrease of ordinary re-

fractive index.7,8 Waveguides can be made in both x-cut and z-cut crystals, while the

y-faces are strongly etched by the acid and thus cannot guide any light. Benzoic acid

(C6H5COOH, Kα = 6.46 × 10−5) is a well established proton source and has been

widely used. The acid is solid at room temperature, stable throughout its liquid phase,

and its acidity can be easily controlled by the addition of lithium benzoate. The low

melting point of 122 0C also enables an exchange to be performed at a relatively low

temperature.

Proton-exchanged (PE) waveguides are known to be unstable at room temperature,

i.e. the refractive index profile changes as a function of time at room temperature.9 The

metastable nature at room temperature is associated to the presence of a high-proton

4.2 Waveguide Fabrication Overview
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concentration phase (the so-called β-phase) of HxLi1−xNbO3.
10 This crystallographic

phase exhibits relatively high propagation losses, and an almost complete erasure of

the nonlinear coefficient, thus forming a dead layer on the surface.11,12 Hence, such

waveguides are unsuitable for nonlinear interactions, and thus further treatment must

be done.

4.2.2 Annealing

Post-exchange annealing of the proton exchanged samples (see Fig. 4.3, middle picture)

is necessary to produce stable and efficient waveguides. The annealing is usually done

by heating the sample at 250 0 −450 0C,13 in an oxygen-rich environment to prevent the

evaporation of Li2O and/or H2O from the surface, as it was found that evaporation of

certain species from the surface during annealing13,14 can have a detrimental effect on

the kinetics and properties of APE waveguides. Annealing leads to the diffusion of the

protons into the substrate from the proton-rich layer, shifting from the β-phase to the

κ-phase and finally to the stress-free phase (the so-called α-phase).10 This diffusion of

protons yields waveguides with a graded-profile and a reduction of the peak refractive

index ∆ne (see Fig. 4.3).15 The process is accompanied by a recovery of the nonlinearity

within the initial exchange layer,16,17 enabling higher conversion efficiency for nonlinear

interactions within the waveguide. The optical properties of the waveguide can be

manipulated by varying the temperature and the time of annealing.18,19

4.2.3 Reverse Exchange

The final step in the process is the reverse exchange. Reverse proton exchange of

PE or APE waveguides (see Fig. 4.3, right-most picture) leads to the realisation of

buried waveguides. In addition to the creation of a buried waveguide, an ordinary index

waveguide is created at the surface by using the PE region as an index barrier. Buried

waveguides in PE:LiNbO3 by reverse-exchange were firstly demonstrated by Ganshin et

al.20 In order to reintroduce lithium at the surface, the PE or APE sample is immersed

in a lithium rich melt. For this purpose, lithium nitrate is chosen for the melt due to

its stability for long-duration usage, but reverse-exchange in LiNO3 alone damages the

surface of the crystal. It was discovered that mixtures of nitrates containing LiNO3 do

not damage the surface of LiNbO3. A mixture of KNO3 and NaNO3 has been used as

an inert carrier for LiNO3 since both substances do not result in measurable changes in
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the waveguide.

Reverse-exchange is carried out by immersing the PE:LiNbO3 sample in an eutectic

melt of nitrate mixtures LiNO3:KNO3:NaNO3 with a mole percent ratio of 37.5:44.5:18.0

(the melting point of this eutectic mixture is 1200 C) at temperatures varying from 2500

to 3300 C.21 After the reverse exchange, a buried waveguide with a graded index profile

near the surface is created but with a reduced refractive index compared to the PE

waveguide. Note that at the same time, a layer of pure LiNbO3 is restored on the

surface, and thus restoring the nonlinearity. Reverse-exchange can be applied to both

PE and annealed waveguides. The latter is preferred since the additional annealing step

allows better tailoring of the refractive index profile.

4.3 Characterisation of Proton Exchange and Annealing

Characterisation of the device used throughout this research work, presented in Sec-

tion 4.4 and 4.5, revealed that its quality is still lower than that of the best state-of-the-

art devices.2 Therefore, improving the quality of the device would yield more sensitive

results than the ones described in Chapter 6 and 7. Complete knowledge of the fab-

rication processes would allow one to tailor the waveguide properties at will, in order

to produce highly efficient devices.22 In my research work, much work was spent on

characterising the diffusion process in the proton exchange and the subsequent anneal-

ing processes. Unfortunately, the characterisation of reverse proton exchange process

were not completed, mainly due to the lack of time. The characterisation aimed to

obtain the refractive index profile evolution of the waveguide during each process, as

it is associated with the evolution of proton concentration in the substrate by either a

linear or a nonlinear relationship. It was found17,23,24 that there is essentially a linear

relationship between these quantities, i.e.

∆n(x) ∝ C(x), (4.1)

where ∆n(x) is the refractive index profile of the waveguide, and C(x) is the position

dependent proton concentration. Since the refractive index profile evolution is based

on the diffusion of the protons into the substrate, the characterisations was simpler if

done on slab waveguides. Generalisation into channel waveguides can be readily done

by assuming an isotropic diffusion.
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Figure 4.4: Illustration of prism coupling principle.

4.3.1 Prism Coupling

The main characterisation technique of the fabrication processes was the prism coupling

technique,25 done using a commercial instrument ”Metricon”. Figure 4.4 gives an illus-

tration of the basic principle of prism coupling technique. A slab waveguide is put in

contact with a prism whose refractive index is higher than the waveguide. When light is

shone into the prism, it undergoes total internal reflection at the prism base, unless the

waves in the prism and in the waveguide are coupled through their evanescent fields.

This occurs when the propagation wavevector of the reflected light and the waveguide

are equal. Changing the incident angle of the light allows a specific propagating mode

to be preferentially excited in the waveguide. Therefore, placing a detector at the other

side of the prism allows one to measure the angle θ at which this coupling occurs. The

effective refractive index of propagating mode q of the waveguide is given by:

N (q) = np sin

[

ς + arcsin

(

sin θ

np

)]

, (4.2)

where ϕ is the base-angle of the prism, θ is the incident angle of the beam with respect

to the normal of the prism, and np is the refractive index of the prism. If the refractive

index analytical profile is known, the indices can be used to calculate the parameters

of the profile, as shown in Fig. 4.5. Otherwise, an inverse-Wentzel-Kramers-Brillouin

(IWKB) method can be used to reconstruct the profile, as discussed later.

A rutile (TiO2) prism with a base angle of 60 0 was used in the experiment. A

Helium-Neon laser with a wavelength of 632.8 nm was used as the source. The extraor-

dinary and ordinary refractive indices for rutile at this wavelength were ne = 2.865 and
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Figure 4.5: Measured effective refractive indices of proton-exchanged waveguides (blue
dots) and theoretically fitted dispersion curves (solid lines) of a slab LiNbO3 waveguide
with a simple step index profile with a refractive index increase of ∆ne = 0.128. The
exchange time is shown by the bottom abscissa, whilst the estimated proton exchanged
layer thickness by the top abscissa.

no = 2.584, respectively. The prism and the waveguide were configured in such a way

that the optic axis of the prism is perpendicular to the optic axis of the waveguide, so

that the ordinary (extraordinary) refractive index of the prism was used for measuring

the transverse magnetic (transverse electric) effective refractive indices.

4.3.2 Characterisation of Proton Exchange Process

The aim of the proton-exchange process characterisation was to determine the proton

diffusion coefficient into the LiNbO3 substrate. The resulting proton-rich layer has a

step-like refractive index, whose thickness can be assumed to vary with time according

to the standard diffusion law:7

de = 2
√

De(T )t, (4.3)

where De(T ) is the diffusion coefficient, T is the absolute temperature of the diffusion,

and t is the exchange time. Note that we expect the proton-exchanged depth de to

depend on
√

(t).

For the characterisations, several slab waveguides were prepared by exchanging
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Figure 4.6: Estimated proton-exchanged waveguide thickness as a function of the exchange
time (blue dots) in a squared-root scale, with its linear fit (solid line) and the uncertainty
of the fit (dashed lines).

LiNbO3 substrates at 160 0C, for times ranging from 5 to 49 hours. Characterisations

via the prism coupling technique (Subsection 4.3.1) revealed that the waveguides only

support a polarisation that is parallel to the optic axis of the crystal, i.e. transverse

magnetic polarisation. Figure 4.5 shows the measured effective refractive indices of the

waveguides, as a function of the exchange time.

We made a theoretical model of the waveguide using a step refractive index pro-

file, and found that a refractive index increase ∆ne = 0.128 gave the best fit to the

measured effective refractive indices. Calculated effective refractive indices for the first

four propagating modes (q = 0, 1, 2, 3) of a waveguide with a step index profile of

∆ne = 0.128 as a function of depth are also shown in Fig. 4.5. The excellent agreement

confirms the reported results in literatures.7,8,14 This allows us to estimate the thick-

ness of the waveguide, which has a roughly linear relationship with the squared-root

of the exchange time [Eq. (4.3)], as shown in Fig. 4.6. Assuming that the concentra-

tion of the proton source did not vary during the exchange, the diffusion coefficient

De(Te) = (0.0113 ± 0.0010)µm2/hour can be deduced from the linear fit gradient.
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Figure 4.7: Reconstructed refractive index using IWKB method with piecewise-linear (red
dots) and continuous (blue curves) functions. Calculated refractive index profile from the
nonlinear diffusion equation (black curves), as described in the text, is also shown.

4.3.3 Kinetics of Annealing Process

The characterisation of the annealing process aims to understand the kinetics of the

proton diffusion, which defines the refractive index profile. Tailoring this refractive

index profile should enable one to produce efficient waveguides. Two PE waveguides of

thickness 0.69 and 0.95µm were annealed at 330 0C with an O2 flow of 200 cm3/min for

times ranging from 1 to 200 hours. In order to avoid thermal shocks, the temperature

was increased at a rate of 10 0C/min before the annealing, and decreased slowly to room

temperature afterward.

After each annealing step, the refractive index profiles were reconstructed using

the IWKB method from the effective refractive indices obtained via prism coupling

(Subsection 4.3.1) in order to gather the information of the refractive index at the surface

[∆na(0)] and the 1/e depth (da). The reconstruction used either piecewise-linear26,27

or continuous28 functions. I wrote a computer program to perform this reconstruction,

and the reconstructed profiles for a sample with an initial proton-rich layer thickness

of 0.95µm after being a 57 hours annealing are shown in Fig. 4.7. As can be seen in

the picture, the piecewise-linear and continuous functions differ only slightly near the

surface of the waveguide. Hence, we took the average of both for the value of surface
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shown.

refractive index [∆na(0)].

Analysis of the diffusion kinetics during annealing was done using the idea of a

similarity transformation.17,29 The surface index [∆na(0)] and the 1/e depth (da) of

the annealed waveguides were normalised to the PE waveguides values (∆ne and de,

respectively), whilst the annealing time ta was normalised to t′a = ta/d
2
e. Figure 4.8

shows the normalised surface index and normalised depth obtained from our annealed

waveguides with different initial PE layer thicknesses. The fact that the normalised

depth (da/de) and normalised surface refractive index (∆na(0)/∆ne) for waveguides

with different initial proton rich layer thicknesses (de) in Figure 4.8 follow the same

trend against normalised time t′a implies that the evolution of the refractive index profile

only depends on normalised time t′a for a given annealing temperature Ta. Although

this analysis does not make any assumptions on the physical processes that take place

during the fabrication, the fact that the data points follow the same trend shows that

the evolution of the refractive index profile can be modelled by a differential equation

obeying the similarity transformation described above, such as the diffusion equation.

4.3 Characterisation of Proton Exchange and Annealing



Quasi-Phase-Matched Lithium Niobate Waveguide Devices 61

The general diffusion equation used to modelled the evolution of proton concentra-

tion is given by:
∂C ′(r′a, t

′
a)

∂t′a
= ∇ ·

[

D(C ′)∇C ′(r′a, t
′
a)

]

, (4.4)

where C ′(r′a, t
′
a) is the normalised proton concentration, r′a is the normalised coordinate,

t′a is the normalised timescale, and D(C ′) is the nonlinear diffusion coefficient. When

D(C ′) is constant, the above equation reduces to a standard linear diffusion equation.

The above diffusion equation was solved using a linearised three-level implicit finite

difference scheme.30

The normalised depth data in Fig. 4.8 suggest that the diffusion kinetics is asymp-

totically linear when the timescale is sufficiently large. A linear diffusion coefficient

D0 = 0.344µm2/hour can therefore be determined from the slope of the curve as the

annealing time becomes large. Solving Eq. (4.4) using this linear diffusion coefficient

results in the dashed line in Fig. 4.8. However, it can easily be seen that the linear

diffusion results do not match the experimental data. Instead, we use the following

expression for the nonlinear diffusion coefficient:17

D(C ′) = D0[a+ (1 − a) exp(−bC ′)], (4.5)

where a and b are free parameters, whilst D0 is the linear diffusion coefficient. We found

that the parameters a = 0.23 and b = 20 yielded a good fit to the data, as shown in

Fig. 4.8. A calculated refractive index profile is plotted in Fig. 4.7 for comparison with

the IWKB reconstructions, showing a good agreement. Unfortunately, optimisation

of the refractive index profile for buried channel waveguides cannot be done without

knowledge of the reverse exchange process, which was not completed due to the lack of

time.

4.4 Linear Properties of the Device

The linear properties of the device are a result of the buried waveguide structure, and

of particular interest are their transverse field profiles and propagation losses. Pref-

erentially exciting the fundamental mode of a waveguide that support several modes

is well-known to be difficult. Therefore, to be of practical use, it is essential that the

waveguides support one and only one propagating mode at the desired fundamental

frequency. Furthermore, the ease of integration with other optical components, such

as standard single-mode fibre (SMF) in telecommunications systems, is determined by
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Figure 4.9: Schematic illustration of experimental setup for measuring transverse field
profile of a waveguide.

their transverse field profile matching. In addition, in order to achieve high nonlinear

performance, tight optical confinements and low propagation losses (< 1 dB/cm) in the

device are required. The lowest propagation loss coefficient reported to date for a buried

channel waveguide fabricated using the same method as ours is 0.3 dB/cm.2 Therefore,

characterisation of these properties is necessary, especially since we have limited knowl-

edge of the fabrication processes to predict them. Moreover, this knowledge will help

the improvement of the device in the future.

4.4.1 Waveguide Transverse Field Profiles

The waveguide transverse field profile |F(x, y)|2 [see Eq. (3.22)] can be easily measured

by imaging the near-field of the waveguide onto a commercial instrument (”Coherent

BeamMaster”) that employs a scanning knife-edge technique.31,32 Figure 4.9 shows a

schematic illustration of the experimental setup used to measure the transverse mode

profile of the waveguides in our device. A CW laser at 1540 nm was coupled into the

waveguide via a standard single-mode fibre. Since our waveguide only supports TM

polarised modes, a fibre polarisation controller (FPC) was necessary to maximise the

amount of power coupled into the waveguide. The near-field of the waveguide was

then imaged onto the ”Coherent BeamMaster” using a 20× microscope objective. A

further calibration step was necessary to accurately determine the size of the transverse

field profile. This was achieved by replacing the waveguide in the setup with another

object of known size, such as another waveguide, a fibre, or transmission gratings. As a

representative sample, Figure 4.10(a) shows a measured transverse field profile contour

plot of a waveguide of nominal width 6µm measured at a wavelength of 1540.0 nm. For

a comparison, the transverse field profile image recorded by an infrared camera is shown

in Fig. 4.10(b).

Figure 4.11 shows the 1/e2 width of the horizontal and the vertical slices of the
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Figure 4.10: Measured transverse field profile of a waveguide with a nominal width 6µm at
a wavelength of 1540.0nm. a) Linear contour plot of the measurement from the ”Coherent
BeamMaster.” The contour plot was normalised to unity with an equidistant spacing of 0.1.
b) Image from an infrared camera with arbitrary scales.
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Figure 4.11: Horizontal (blue) and vertical (green) transverse field profile 1/e2 width as
a function of the waveguide nominal width measured at a wavelength of 1540.0nm.

measured transverse field profile as a function of the waveguide nominal widths. It can

be observed that the vertical slice widths do not vary as much as the horizontal slice

widths. This can be understood since the vertical dimensions are mainly determined by

the diffusion process during their fabrication, but the horizontal ones depend strongly

on the waveguide nominal widths. If the waveguide dimension is too small, it will not be

able to support a propagating mode. This condition is called the cut-off point. When

the waveguide dimension increases, it will be able to support a propagating mode with

loose optical confinement, resulting in a relatively large transverse mode profile size.

As the waveguide dimension continues to increase, the optical confinement improves,

and thus the transverse field profile size decreases. This continues until it reaches a

minimum and then increases monotonically, as the waveguide dimension dominates the

transverse field profile size. In addition, at some point the waveguide will also be able

to support more propagating modes (multi-mode). We can see a clear minimum in

Fig. 4.11 for the waveguide nominal width of 8µm. We also note that the waveguides

becomes multi-mode at nominal width larger than 7µm.

Knowing the transverse field profile dimension, we can calculate its coupling effi-

ciency to a standard SMF, due to the overlap between the two different transverse field

profiles. The coupling efficiency (in dB) is given by:

ηc = −10 log Sovl, (4.6)
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Figure 4.12: Calculated coupling efficiency [Eq. (4.6)] between the waveguide and a stan-
dard single-mode fibre as a function of the waveguide nominal width.

where the area overlap is defined as:

Sovl =

∫

|FSMF|2 dxdy
∫

|FWG|2 dxdy
(∫

|FSMF| |FWG| dxdy
)2 , (4.7)

with FSMF and FWG being the transverse field profiles for the standard SMF and wave-

guide, respectively. Figure 4.12 shows the calculated coupling efficiency ηc as a function

of the waveguide nominal widths. Since the 1/e2 transverse field diameter of a standard

SMF that we used was 10.5µm, waveguides with large transverse mode profile areas

have the best coupling efficiencies, explaining the shape of the curve in Fig. 4.12. This

work shows that waveguides with a nominal width of 6µm is our preferred choice, since

they support only a single propagating mode with the tightest optical confinement.

4.4.2 Propagation Losses

We characterised the propagation loss of the waveguide using the Fabry-Perot (FP)

resonator method, following the work of Regener and Sohler.33 This method is non-

destructive, and does not require the fabrication of additional structures, such as ring

resonators, on the substrate. A FP resonator consists of a pair of parallel reflective

surfaces, separated by a length L. A waveguide (see Fig. 4.1) naturally forms a FP res-

onator, with the polished end-faces as the pair of reflective surfaces, having a reflectivity

R =
(

N−1
N+1

)2
, where N is the effective refractive index of a propagating mode. Since

4.4 Linear Properties of the Device



Quasi-Phase-Matched Lithium Niobate Waveguide Devices 66

0 1 2 3 4
Phase φ (in π)

P
max

P
min

T
ra

n
sm

i 
ed

 P
o
w

er
 (

a.
u
.)

Figure 4.13: Theoretical Fabry-Perot fringes as a function of the phase φ = 2βL.

different propagating modes have different propagation losses and effective refractive

indices, the analysis of waveguides that support a single propagating mode is the sim-

plest, and thus is much preferred. When the internal phase φ = 2βL of a FP resonator

is varied, resonances of the transmitted power, such as those shown in Fig. 4.13 can be

observed. The FP fringes are analytically given by:33

Pt(φ) =
T 2 exp (−αL)

[1 −R exp (−αL)]2 + 4R exp (−αL) sin2
(

φ
2

)P0ηc, (4.8)

where T = 1 − R is the transmissivity of the end-faces, P0 is the input power to

the waveguide, ηc is the coupling efficiency [Eq. (4.6)], and α is the propagation loss

coefficient of the waveguide. By measuring the contrast of the resonance curve, which

is defined as:

K =
Pmax − Pmin

Pmax + Pmin
, (4.9)

the propagation loss coefficient in the resonator, or more specifically, the waveguide, in

dB/length unit, can be deduced by straightforward algebra from Eq. (4.8):

α =
4.34

L
ln

[

RK

1 −
√

1 −K2

]

. (4.10)

Importantly, it can be seen from the above formula that the propagation loss coefficient

is independent of the coupling efficiency ηc, provided ηc does not depend on φ.

Variation of the FP resonator internal phase φ = 2βL in the waveguide was com-

monly achieved by heating the sample, causing changes in the optical path NL in the

waveguide.33,34 We attempted to adopt this method and met with difficulties, mainly
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Figure 4.14: Schematic illustration of the experimental setup used in the characterisation
of the waveguide propagation loss via a FP resonator method.

because the thermal expansion affects the coupling efficiency, which needs to be con-

stant during the measurement. Hence this approach is not very reliable, and we chose to

vary the wavelength of the source instead. Figure 4.14 shows a schematic illustration of

the experimental setup used for the propagation loss measurement via a FP resonator

method. A tunable external cavity source, ”NetTest Tunics-Plus,” was used as the

source in this experiment. It had a stable longitudinal mode with a linewidth of 2 fm,

corresponding to a coherence length of 1.5 km, much longer than the waveguide length.

The light from the source was out-coupled in free-space via a microscope objective, and

injected into the waveguide via a 10× microscope objective. The appropriate polari-

sation was selected by a polarising beam-splitter (PBS), and thus a fibre polarisation

controller (FPC) was necessary prior to out-coupling. The light at the device output

was focused onto a photodetector by a 10× microscope objective. Spatial filtering by a

pinhole was employed to suppress background noise. In addition, we employed a differ-

ent experimental setup employing fibre butt-coupling at the waveguide input/output,

and found similar results to this setup.

Figure 4.15 shows measured FP resonances of a waveguide of nominal width 6µm.

The period of the resonances is 0.023 nm, in agreement with the theoretically predicted

one. The contrast was evaluated to be K = 0.123, leading to a propagation loss coeffi-

cient α = 1.3 dB/cm. We assumed that the effective refractive index of the waveguide

was N ≈ ne +∆ne/2 = 2.149 at ∼ 1550 nm, resulting in a reflectivity R = 13.32%. The

actual reflectivity may be less than this value, because of imperfections of the end-face

polishing quality and/or inclinations of the end-faces from the normal. Therefore, the
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Figure 4.15: Measured FP resonances of a waveguide of nominal width 6µm.

measured value above is the upper limit of the actual propagation loss. We note that the

end-faces inclinations of our waveguide were less than 0.10, such that the reduction of

the propagation loss coefficient should be less than 0.05 dB/cm. We performed numer-

ous propagation loss measurements on this waveguide, and found that the propagation

loss coefficient estimate varied between ∼ 0.8 and ∼ 1.8 dB/cm.

We also performed additional characterisation of the propagation loss coefficient

by measuring the fibre-waveguide-fibre throughput. Losses in such system are due to

the reflection at the waveguide-air and fibre-air interfaces, the waveguide-fibre mode-

mismatch, and the propagation loss. Since the first two factors can be calculated the-

oretically from the Fresnel formula and Eq. (4.6), respectively, we can readily estimate

the last. Proper and meticulous alignment of the fibre to the waveguide using a nanopo-

sitioning system should readily yield a coupling efficiency that is closed to the theoretical

calculation. Compiling numerous data from the FP resonator method described above

and from this method, we finally estimated that the actual propagation loss coefficient

to be α ≈ 1 dB/cm.

4.5 Nonlinear Properties of the Device

Having characterised the linear properties of the device, we then characterised the non-

linear ones. Nonlinear properties of the device are associated with the properties of
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second-order nonlinear interactions. The two main pieces of information, that we are

interested in, are the working regime in terms of wavelength and the performance of

the device. The working regime is determined by the phase-matching wavelengths for

the SHG and SFG interactions, whilst the performance is measured by the normalised

conversion efficiency ηnor [Eq. (3.18)].

4.5.1 Second-Harmonic Generation

Second-harmonic generation (SHG) is the simplest second-order nonlinear interaction,

and thus the most convenient way to perform a nonlinear characterisation. As previ-

ously reviewed in Chapter 3, SHG involves the upconversion of an input FF wave at

ωFF to its SH frequency at ωSH = 2ωFF. By tuning the frequency of the FF wave,

the phase-mismatch between the FF and the SH waves is varied. This results in the

generation of a SHG tuning curve (see Fig. 3.8), which shows the quality of the de-

vice (see section 3.5). The normalised conversion efficiency can be obtained from the

peak of the curve, the effective interaction length can be deduced from the bandwidth

at full-width-half-maximum (FWHM), the dispersion of the waveguide is given by the

phase-matching wavelength, whilst the uniformity of the device is reflected in the shape

of the curve.

Figure 4.16 shows a schematic illustration of the experimental setup used in this

nonlinear characterisation via SHG. The source for generating the tunable FF wave for

our SHG experiment was an all-fibre amplified tunable diode laser. A CW tunable diode

laser ”HP 8168C” operating at a constant power of 1.5 mW was externally modulated

by an electro-optics modulator (EOM), and then amplified by an erbium-doped fibre

amplifier (EDFA). The source produced a train of 200 ns pulses with a repetition rate

of 100 kHz, and an average (peak) power of ∼ 68mW (∼ 2W). The source was tunable

from 1528 to 1565 nm in steps of 0.02 nm. This tunability is within the C-band, the

region of interest of this research work. Since the pulses are extremely long, i.e. much

longer than the waveguide, we can consider them as CW during the experiment, enabling

the use of analysis presented in Chapter 3.

Next, the FF pulse train was out-coupled into free-space using a microscope objec-

tive, and the appropriate input polarisation was selected by a polarising beam-splitter

(PBS). A fibre polarisation controller (FPC) was necessary prior to the out-coupling

to maximise the appropriate polarisation component. Afterward, the FF pulse train
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Figure 4.16: Schematic illustration of the experimental setup for the nonlinear character-
isation via SHG.

was injected into the waveguide using a 10× microscope objective. The FF and the

SH waves at the waveguide output were collected by another 10× microscope objective,

before being separated by a dichroic mirror and measured by InGaAs and Si PIN de-

tectors, respectively. The tunable source and the detectors were computer controlled to

perform the wavelength scan and the data acquisition.

It is well-known that LiNbO3 is sensitive to photorefractive effects at room temper-

ature, where charge migration (by photovoltaic effect) followed by electro-optic effect

induce refractive index changes.35 Photorefractive effects shift the phase-matching wave-

length, degrade the conversion efficiency by altering the phase-matching condition, and

cause instabilities due to variation of effective index value. The effects can be severe

at visible wavelengths and are enhanced in waveguide devices due to the high optical

intensity. Photorefractive effects can be significantly reduced by heating the devices. In

our experiment, the sample was heated by placing it in a copper block connected to a

thin resistor operated at a constant electrical current. According to our measurements,

the time required for the temperature to shift by 0.5 0C was much longer than the time

required to complete the wavelength scan. Hence, we may consider the temperature
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was constant in each characterisation.

From all of the QPM structures and waveguides in our device, we are interested

in the ones that had a QPM period of Λ = 15µm and a waveguide nominal width

of w = 6µm. We found that such devices supported single propagating mode and

had a phase-matching wavelength in the region of interest. There were three such

waveguides on the sample, but one was accidentally damaged and thus could not be

used. Second-harmonic generation tuning curves for the remaining two, measured at a

temperature of ∼ 94 0C, are shown in Fig. 4.17. The phase-matching wavelength of both

PPLN waveguides, as observed from Fig. 3.2, was 1537.7 nm. Note that these tuning

curves should be identical. The bandwidth [Eq. (3.20)] of Figs. 4.17(a) and 4.17(b)

were 0.56 and 0.75 nm, respectively. The theoretical bandwidth of a 2.6 cm long bulk

PPLN, as calculated using the Sellmeier equation,36 was ∆λ = 0.42 nm, from which

we can deduce the effective interaction lengths for Figs. 4.17(a) and 4.17(b) to be 1.9

and 1.5 cm, respectively. The discrepancy between calculated and measured bandwidths

implies that the whole length of the device is not efficiently used in the interaction due

to the nonuniformities in the device, which can be further verified from the distorted

shape of the SHG tuning curves. Although the latter device whose SHG tuning curve is

depicted in Fig. 4.17(a) had a shorter effective interaction length than the one depicted

in Fig. 4.17(b), the fact that Fig. 4.17(b) is more distorted than Fig. 4.17(a) makes us

to prefer working with the latter.

In addition, we can infer from this characterisation, that the device had a higher

dispersion than bulk PPLN, because of the waveguide dispersion. For bulk PPLN,

the theoretical gratings period for phase-matching the same wavelength at the same

condition (1537.7 nm at ∼ 940 C) is 18.4µm, which is longer than the gratings period

used in the experiment. This fact implies that the wave vector mismatch ∆β = β2−2β1

of our device is greater than the bulk PPLN, and thus a larger reciprocal lattice vector

K, or equivalently, a shorter QPM period, is needed.

4.5.2 Normalised Efficiency Measurement

The figure-of-merit of the device is determined by the normalised conversion efficiency

ηnor [Eq. (3.18)], which can be measured when the phase-matching condition occurs

(∆βQPM = 0). In a device of negligible losses, the normalised conversion efficiency

can be determined from the peak of the nonlinear conversion efficiency [Eq. (3.17)].

4.5 Nonlinear Properties of the Device



Quasi-Phase-Matched Lithium Niobate Waveguide Devices 72

1530 1535 1540 1545 1550
0

100

200

300

400

500

600

700

Fundamental Wavelength (nm)

S
H

 P
o

w
er

 (
µ

W
)

(a)

1530 1535 1540 1545 1550
0

100

200

300

400

Fundamental Wavelength (nm)

S
H

 P
o

w
er

 (
µ

W
)

(b)

Figure 4.17: Measured SHG tuning curves of two waveguides in our device at a tempera-
ture of ∼ 94 0C. The two waveguides had a QPM period of Λ = 15µm and a waveguide of
nominal width of w = 6µm.
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However, in real devices, losses cannot be neglected, and thus the nonlinear conversion

efficiency becomes more complicated:2

ηlossy = ηnor
exp (−4αFFL) + exp (−4αSHL) − 2 cos(∆βL) exp (−4[αSH + 2αFF]L)

(αSH − αFF)2 + ∆β2
,

(4.11)

where αFF and αSH are the propagation losses of the waveguides at ωFF and ωSH,

respectively. Since it is often easier to measure the FF and the SH powers at the device

output, we define a measured conversion efficiency as

ηmeas =
PSH(L)

P 2
FF(L)

, (4.12)

which can be expanded into

ηmeas = ηnor
exp (−4αFFL) + exp (−4αSHL) − 2 cos(∆βL) exp (−4[αSH + 2αFF]L)

exp (−4αFFL)
[

(αSH − αFF)2 + ∆β2
] .

(4.13)

In the special case of αSH = 2αFF, which is often true in many real devices, including

waveguides on Lithium Niobates,2 the above expression reduces nicely to

ηmeas = ηnorL
2 sinc2

[

∆β
L

2

]

. (4.14)

The above expression is the same as the nonlinear conversion efficiency in the lossless

case ηNL [Eq. (3.17)].

The simplest way to measure of ηnor is when the phase-matching condition occurs

(∆β = 0), such that the measured nonlinear conversion efficiency becomes:

ηmeas =
PSH(L)

P 2
FF(L)

= ηnorL
2. (4.15)

By measuring the SH power as a function of the FF power, at the phase-matching wave-

length, the above measured nonlinear conversion efficiency value ηmeas can be obtained,

from which ηnor can be easily deduced.

The experimental setup for the SHG characterisation (Fig. 4.16) was used to measure

the normalised conversion efficiency. The tunable laser diode was operated at the phase-

matching wavelength of 1537.7 nm at a sample temperature of ∼ 94 0C. An optical band-

pass filter with a 0.5 nm spectral FWHM was placed after the EDFA to suppress the

amplified spontaneous emission (ASE). Figure 4.18 shows the SH power as a function

of the FF power, which was varied by changing the EDFA gain, after correcting for the

transmittance of the microscope objective and the waveguide-air interface. A quadratic
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Figure 4.18: SH power [PSH(L)] as a function of the output FF power [PFF(L)] (blue
filled circles), with its quadratic fit (green line)

fit to the experimental data results in a normalised conversion efficiency of ηnor =

(30 ± 2)%[W cm2]−1, if the whole length of the device L = 2.6 cm was used in the

calculation, or ηnor = (91 ± 2)%[W cm2]−1, if the effective interaction length of the

device Leff = 1.5 cm was used. Since the measured normalised conversion efficiency

of our device is still less than the highest reported so far,2 ηnor = 150%[W cm2]−1,

improvements can be expected for future devices.

4.5.3 Sum-Frequency Generation

For many applications, such as the characterisation of ultrashort optical pulses using

the frequency-resolved optical gating (FROG) technique (see Chapter 6), more general

three-wave mixing processes are often employed rather than SHG. We therefore also

performed nonlinear characterisations via a non-degenerate three-wave mixing process,

specifically, via a sum-frequency generation (SFG). Sum-frequency generation involves

the mixing of two electromagnetic waves, a pump at ωP and a signal at ωS in a χ(2)

device to produce a sum-frequency wave at ωSF = ωP + ωS. Of course, SFG is a more

general case to SHG, whose input waves are at the degenerate frequency ωFF = ωP =

4.5 Nonlinear Properties of the Device



Quasi-Phase-Matched Lithium Niobate Waveguide Devices 75

HP 8186C 
Tunable laser diode

PBS10X
QPM waveguide

EDFA FPC

EOM

FPC

Si PIN detector

Computer

10X

Santec TSL-80
Tunable laser diode

IRVis

IR

Figure 4.19: Schematic illustration of the experimental setup for the nonlinear character-
isation via SFG.

ωS. Nonlinear characterisation via SFG can be achieved by generating a tuning curve

similar to that of SHG, by varying the input signal frequency. The nonlinear conversion

efficiency, similar to that of SHG [Eq. (3.17)], is given by:

ηNL =
PSF(L)

PS(0)PP(0)
= 4ηnorL

2 sinc2

[

∆β
L

2

]

, (4.16)

where the SFG wavevector mismatch is defined as:

∆β = β(ωSF) − β(ωP) − β(ωS) −K. (4.17)

Figure 4.19 shows a schematic of the experimental setup used in this nonlinear char-

acterisation via SFG. Two CW tunable laser diode, ”HP 8168C” and ”Santec TSL-80”,

which acted as signal and pump, respectively, were combined together via a 50:50 cou-

pler, before being carved by an EOM and amplified by an EDFA. The experimental

setup afterward followed the one used in previous characterisation via SHG (Fig. 4.16).

The light at the device output was finally collected by a Si PIN detector. Characterisa-

tion via SFG was performed by selecting a specific pump wavelength, and then scanning

the signal wavelength to find the phase-matching condition. An example of a charac-

terisation performed at a temperature of ∼ 105 0C with a fixed pump wavelength of

1531.6 nm, is shown in Fig. 4.20. As the signal wavelength was scanned from 1535 nm, a

peak which corresponds to the SHG phase-matching wavelength at 1539 nm was encoun-

tered, before the second peak which corresponds to the SFG phase-matching wavelength

pair at 1546.5 nm was found. The SFG peak had a FWHM of 1.5 nm, twice of the SHG
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Figure 4.20: Measured power at the visible regime at the device output.
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Figure 4.21: Phase-matched signal wavelength for SFG interaction as a function of the
pump wavelength.
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peak FWHM (0.75 nm), as expected.∗ Figure 4.21 shows a plot of the phase-matched

signal wavelength for the SFG interaction as a function of the pump wavelength.

4.6 Summary

A brief overview on the fabrication of the device was presented early in this chapter.

Characterisations on the first two steps of the waveguide fabrication were presented as

well. The description of the device was given, and we are interested in a device, which

was used throughout this research work, with a QPM structure of period Λ = 15µm and

a buried waveguide of nominal width w = 6µm. The coupling efficiency with a standard

SMF was calculated to be ∼ 2.2 dB, with an estimated propagation loss coefficient of

α ≈ 1 dB/cm. The phase-matching wavelength was 1537.7 nm at a temperature of

94 0C, with a tuning curve bandwidth of 0.75 nm. The measured normalised conversion

efficiency was ηnor = 30%[W cm2]−1, with L = 26mm.
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Chapter 5

Ultrashort Pulse Parametric

Interactions

In contrast to nonlinear interaction with monochromatic continuous-waves, parametric

interactions of ultrashort pulses are more complicated due to their broad spectrum.

Chromatic dispersion causes the envelopes of the ultrashort pulses at different wave-

lengths to propagate at different group velocities. This group-velocity-mismatch (GVM)

leads to the temporal walk-off effect which manifests prominently in SHG owing to the

large gradient of the refractive index toward the lower wavelengths regime. Therefore,

one needs to establish a characteristic length, called the walk-off length, after which the

SH pulse is substantially broadened compared to the input FF pulse. In the frequency-

domain, the temporal walk-off effect translates into a finite conversion bandwidth for

the SHG interaction. When the spectral bandwidth of the FF pulse is less than the

conversion bandwidth of the SHG interaction, the SH pulse temporal width equals to

the temporal width of the FF pulse squared. However, if the input FF pulse has a

large spectral bandwidth, the SHG bandwidth is insufficient to convert its spectrum,

resulting in a broader SH pulse. Whilst the temporal walk-off effect on ultrashort pulse

SHG had been recognised since the early days of nonlinear optics1,2 and there had been

extensive research on the subject,3–8 its effect on other parametric interactions has not

been thoroughly investigated.

In this chapter, we present theoretical analyses and numerical simulations of

ultrashort-pulse parametric interactions which serve as the fundamentals to understand

the basics and experimental results of the frequency-resolved optical gating (FROG)

techniques discussed in the next chapters. This chapter is organised as follows; it

will begin with the general description of pulse propagation in LiNbO3 in section 5.1.
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Figure 5.1: The group velocity vg (blue) and the GVD parameter β (green) for electric-
field polarised parallel to the z-axis of the bulk Lithium Niobate crystal as calculated for the
extraordinary refractive index from the Sellmeier equation10 at a temperature T = 100 0C.

In section 5.2, the theoretical analysis on the ultrashort pulse SHG in the frequency-

domain, based on the work of Ref. 8, shall be reviewed briefly. This theoretical analysis

will be complemented by numerical simulations in the time-domain, based on the full

coupled-mode equations, in order to gain deeper physical understanding. This analysis

of ultrashort pulse SHG can be trivially extended to sum-frequency and difference-

frequency generations (SFG and DFG) which will be presented in Sections 5.3 and 5.4,

respectively. We shall then further extend these results to analyse the ultrashort pulse

cascaded χ(2) : χ(2) SHG:DFG interaction9 in section 5.5 in order to understand a novel

FROG configuration proposed and demonstrated in Chapter 7.

5.1 Ultrashort Pulse Propagation in LiNbO3 Waveguides

The propagation of an ultrashort optical pulse with a central frequency ω0 in a single-

mode waveguide can be described by the following electric-field [cf. Eq. (3.22)]:

E(r, t) = F(x, y)A(z, t) exp [i(βz − ω0t)] + c.c, (5.1)

where A(z, t) ∈ C is a slowly-varying amplitude both in time and space [see Eq. (2.2)].

We shall now introduce a frequency-domain envelope Â(z,Ωj), instead of the standard

Â(z, ω), to simplify the subsequent analysis. Hence, the Fourier transform of Eq. (5.1)
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in the frequency detuning coordinate, Ωj = ω − ωj, is given by:

F [E(r, t)] = Ê(r,Ωj) =
1

2π

∫ ∞

−∞
E(r, t) exp (iΩjt)dt, (5.2)

can be written as follows

Ê(r,Ωj) = F(x, y)Â(z,Ω0) exp [iβ(ω0 + Ω0)z)] + c.c. (5.3)

Importantly, the chromatic dispersion of the waveguide device causes the spectral

components of the pulse to travel with different phase velocities vp = ω
β(ω) . Hence, the

propagation of an ultrashort pulse is governed by its range of wavevectors β(ω0 + Ω0),

which can be expanded in Taylor series as follows:

β(ω0 + Ω0) = β(ω0) + Ω0
dβ(ω)

dω

∣

∣

∣

∣

ω=ω0

+
1

2
Ω2

0

d2β(ω)

dω2

∣

∣

∣

∣

ω=ω0

+
1

6
Ω3

0

d3β(ω)

dω3

∣

∣

∣

∣

ω=ω0

+ . . . .

(5.4)

The first term simply describes the effective refractive index experienced by the elec-

tromagnetic wave. The second term describes the speed u0 at which the envelope of an

ultrashort pulse propagates, called the group velocity:

u0 =

[

dβ(ω)

dω

]−1

ω=ω0

= c

[

N (ω) + ω0
dN (ω)

dω

]−1

ω=ω0

. (5.5)

Consequently, the third term determines how the group velocity changes as a function

of the frequency, referred to as the group velocity dispersion (GVD) parameter:

b0 =
d2β(ω)

dω2

∣

∣

∣

∣

ω=ω0

=
1

c

[

2
dN (ω)

dω
+ ω

d2N (ω)

dω2

]

ω=ω0

. (5.6)

This GVD parameter, which measures the dispersion rate of the pulse spectral compo-

nents, is responsible for the broadening of a transform-limited ultrashort pulse.11 The

higher-order terms are usually neglected, except near the zero-dispersion wavelength, at

which the GVD parameter vanishes, i.e. b0 = 0. Figure 5.1 shows the group velocity u

and the GVD parameter β as a function of wavelength, as calculated from the Sellmeier

equation for the extraordinary refractive index of Lithium Niobate.10 As can be seen,

at around 1.5µm b 6= 0, and thus we do not need to consider higher order dispersion

than GVD. The length over which the GVD parameter becomes important is called the

dispersion length, and is defined as follows:

Ld =
τ2

|b| . (5.7)
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1
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Figure 5.2: Illustration of the GVM and GVD effects on two pulses of different frequencies,
ω1 and ω2, in bulk LiNbO3. Given ω1 < ω2, it follows from Fig. 5.1 that u1 > u2. Whilst
GVM is responsible for separating the two pulses after propagating in the material, GVD
is responsible for the pulse broadening.

When two pulses of different central frequencies co-propagate with each other in

a waveguide device, the waveguide’s chromatic dispersion causes them to move with

different group velocities. This group-velocity-mismatch (GVM) yields the temporal

walk-off effect. The length over which the pulses walk through each other is called the

walk-off length. The walk-off length is defined as

Lw =
τ

|δν| , (5.8)

where τ is the width of the widest pulse, while δν = 1
u1

− 1
u2

is the GVM parameter

between the two pulses. As previously mentioned, after one walk-off length, the gen-

erated SH pulse in SHG interaction experiences substantial broadening compared to

the input FF pulse. In general, the dispersion length is much longer than the walk-off

length, i.e. Ld ≫ Lw, and thus the GVD parameter is often neglected in short devices.

Figure 5.2 shows an illustration of these GVM and GVD effects.

The fabrication of waveguide structures in LiNbO3 introduces a small localised per-

turbation to the refractive index profile, changing the chromatic dispersion of the mate-

rial, and thus resulting in the shift of the required QPM period to phase-match a certain

wavelength of about 2-3µm. This dispersion change, nevertheless, causes only a slight

change in the GVM and GVD parameter. For instance, the GVM for SHG from 1.55µm

is 0.31 ps/mm in bulk LiNbO3 and increases to 0.36 ps/mm in an annealed proton ex-

changed waveguide.12 Furthermore, the exact waveguide dispersion will vary depending

on the fabrication condition. Therefore, the dispersion of bulk Lithium Niobate is a

good approximation to the waveguide dispersion for the parameters in the numerical

simulations.

5.1 Ultrashort Pulse Propagation in LiNbO3 Waveguides
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5.2 Second-Harmonic Generation

In this section, we shall present the theoretical analysis of ultrashort pulse SHG in the

frequency-domain based on the work of Ref. 8. Numerical simulations in the time-

domain will also be provided to give a deeper physical understanding of the interaction.

5.2.1 Frequency-Domain Treatment

The nonlinear polarisation for SHG [Eq. (3.12)] in the frequency-domain is given by a

convolution:

PNL
α (r,ΩSH) = ε0

∫ ∞

−∞
χ

(2)
αβγEβ(r,ΩFF)Eγ(r,ΩSH − ΩFF)dΩFF. (5.9)

Substituting the above equation and Eq. (5.3) into the Fourier transform of Eq. (3.9),

utilising the slowly-varying amplitude approximation, and assuming an undepleted FF

pulse yield the following solution for the SH wave envelope after propagation through

an interaction length L:

Â(L,ΩSH) = −i
√

η
(SHG)
nor

∫ L

0
dz

∫ ∞

−∞
Â(ΩFF)Â(ΩSH − ΩFF)

× exp [−i∆βSHG(ΩFF,ΩSH)z]dΩFF, (5.10)

where η
(SHG)
nor is the normalised efficiency as defined by Eq. (3.18), and the SHG wavevec-

tor mismatch is given by

∆βSHG(ΩFF,ΩSH) = β(ωSH+ΩSH)−β(ωFF+ΩFF)−β(ωFF+ΩSH−ΩFF)−KQPM. (5.11)

Assuming that the frequency detunings are negligible compared to the central frequen-

cies, i.e. ΩFF,ΩSH ≪ ωFF, ωSH, Eq. (5.11) can then be expanded in Taylor series as:

∆βSHG(ΩFF,ΩSH) = ∆β
(0)
SHG + δνSHGΩSH + δbΩ2

SH

+ bFF(ΩFFΩSH − Ω2
FF) + O

(

Ω3
FF,Ω

3
SH

)

, (5.12)

where ∆β
(0)
SHG = β(ωSH)− 2β(ωFF)−KQPM is the QPM central frequencies wavevector

mismatch for SHG (see section 3.5), whereas δνSHG = 1
uSH

− 1
uFF

is the GVM parameter

and δb = bSH − bFF is the GVD mismatch between the FF and the SH pulses. Since the

GVD and higher order dispersions are negligible compared to the GVM (as discussed

in previous section) Eq. (5.12) is left with the ΩSH-dependent term only. Hence, the

5.2 Second-Harmonic Generation
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exponential term in Eq. (5.10) can be factored out of the convolution integral to yield

the following relation:

ÂSH(L,ΩSH) = DSHG(ΩSH)
[

ÂP(ΩSH) ∗ ÂP(ΩSH)
]

, (5.13)

where ∗ denotes convolution, and DSHG(ΩSH) is the SHG transfer function given by:

DSHG(ΩSH) = −i
√

η
(SHG)
nor

∫ L

0
exp

[

−i
(

∆β
(0)
SHG + δνSHGΩSH

)

z
]

dz,

= −i
√

η
(SHG)
nor L sinc

[

(

∆β
(0)
SHG + δνSHGΩSH

) L

2

]

× exp

[

−i
(

∆β
(0)
SHG + δνSHGΩSH

) L

2

]

.

(5.14)

The transfer function DSHG(ΩSH), which relates the spectrum of the output SH

pulse to the autoconvolution of the FF spectrum, only depends on the waveguide dis-

persion and is independent of the input FF pulse parameters. Therefore, the quantity

|DSHG(ΩSH)|2 can be considered as a spectral filter function, which has the the same

functional form as the CW SHG tuning curve [see Eq. (3.16), and Fig. 3.2]. Physically

speaking, the presence of this particular transfer function is expected, since we know

that in the CW case the device has a finite bandwidth, and thus the same would be

expected in the pulse interactions. It is noteworthy that the bandwidth (FWHM) of

the transfer function, given by δΩ = 5.56
δνL

, is exactly the same as that of the wavelength

tuning in the CW case [Eq. (3.19)]. Hence, the temporal envelope of the output SH

wave described by Eq. (5.13) is a square-like pulse whose width scales linearly with the

interaction length, and acquires a time-shift of δνSHG
L
2 with respect to the FF pulse, if

its spectral width is larger than the bandwidth of the transfer function.

5.2.2 Numerical Simulations

In order to gain deeper understanding of the physics of ultrashort pulse SHG, we supple-

ment the frequency-domain treatment presented in the previous section, with numerical

simulations based on the following coupled-mode equations in the time-domain:

∂AFF

∂z
+

1

uFF

∂AFF

∂t
+ i

bFF

2

∂2AFF

∂t2
= 2iωFFκFFA

∗
FFASH exp

[

i∆β
(0)
SHGz

]

,

∂ASH

∂z
+

1

uSH

∂ASH

∂t
+ i

bSH

2

∂2ASH

∂t2
= iωFFκSHA

2
SH exp

[

−i∆β(0)
SHGz

]

.

(5.15)

Since SHG is a special case of three-wave mixing, the above coupled-mode equations

can be readily obtained from the coupled-mode equations for the more general three-

wave mixing case derived in Appendix A. These coupled-mode equations go beyond the

5.2 Second-Harmonic Generation
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Figure 5.3: Results of numerical simulations for ultrashort pulse SHG. The figure shows
the propagation of the FF and SH pulses. The input FF pulse is a transform-limited
Gaussian of width 1 ps with peak power of a) 1mW, and b) 5W. The device had a normalised
efficiency of ηnor ≈ 75%[Wcm2]−1. The wavelength of the FF pulse is λFF = 1.540µm.
The QPM period was chosen such that the phase-matching condition is met.
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approximations used in the frequency domain treatment, including both pump depletion

and GVD. The coupled-mode equations were solved using the symmetric split-step

Fourier method11 with a Runge-Kutta integrator in the FF pulse frame of reference.

We considered an SHG interaction starting with a single input FF pulse at λFF =

1.540µm. The required QPM period to phase-match this wavelength in bulk material

is Λ = 18.44µm at T = 100 0C. The waveguide linear dispersion properties in the

simulations are approximated by the bulk Lithium Niobate parameters, whereas the

normalised conversion efficiency [Eq. (3.18)] is chosen to be ηnor ≈ 75%[W cm2]−1, a

typical value for annealed proton-exchange waveguides.12,13

Figure 5.3(a) shows the propagation of FF and SH pulses as obtained by solving

Eq. (5.15) using a 1 ps wide transform-limited (TL) Gaussian FF pulse with a peak

power of 1mW. The FF pulse power level is sufficiently low to be considered undepleted

for direct comparison with the frequency-domain treatment. The propagation lengths

against which the pulses are plotted have been normalised to the walk-off length, i.e. z′ =

z
Lw

. The walk-off length is defined as Lw = τFF

|δνSHG| , where τFF is the temporal FWHM

of the FF pulse. The device length used in the simulation was 10Lw, which corresponds

to a bandwidth of δΩ = 5.56
10τFF

= 0.556THz. The numerical simulation results are in

excellent agreement with the frequency-domain treatment. The temporal walk-off effect

causes the SH pulse component generated in a certain position z in the device to be

time-shifted by δνSHGz with respect to the FF pulse. This results in a total time-shift

of δνSHG
z
2 after propagating through a length z with respect to the FF pulse and in the

broadening of the SH pulse. Therefore, when the interaction length exceeds the one-

walk-off length limit, the SH pulsewidth increases linearly with L with a rate determined

by the GVM parameter δνSHG.

Figure 5.3(b) again shows the propagation of the FF and the SH pulses, but for an

FF pulse peak power of 5W. As observed in the plots, such a high peak power leads

to the depletion of the FF pulse. This depletion causes the SH pulse components to

be generated with different efficiencies at different positions in the device. Hence, the

interplay between the temporal walk-off effect and the depletion of the FF pulse results

in the distortion of the SH pulse as apparent in the plot.

5.3 Sum-Frequency Generation
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Figure 5.4: Illustrations of the ultrashort pulse SFG in the QPM waveguide device. A
test pulse with a central frequency ωT and a pump pulse with central-frequency ωP, which
are slightly different from the degenerate frequency ωFF in the telecommunications-band,
interact in the χ(2) device generating an output pulse at the sum-frequency ωSF = ωT +ωP.

5.3 Sum-Frequency Generation

Moving from SHG, we now discuss sum-frequency generation (SFG), which has two

input pulses at distinct frequencies, and is more general case of three-wave mixing than

SHG. We consider SFG input pulses which are only slightly different from the degenerate

frequency ωFF, namely test and pump pulses with central frequencies at ωT and ωP,

respectively. These input pulses interact with each other in the χ(2) device to generate

an output sum-frequency (SF) pulse with a central-frequency ωSF = ωT + ωP in the

visible regime, as illustrated in Fig. 5.4. Although the analysis of ultrashort pulse SHG

in the previous section can be trivially extended to SFG, the results have not been

presented in previous publications, to the best of our knowledge.

5.3.1 Frequency-Domain Treatment

The generalisation of the previous frequency-domain treatment for SHG to SFG is

straightforward. Assuming undepleted pump and test pulses, the solution for the SF

pulse envelope after propagation through an interaction length L is given by:

Â(z,ΩSF) = −i2
√

η
(SFG)
nor

∫ L

0
dz

∫ ∞

−∞
ÂP(ΩP)ÂS(ΩSF − ΩP)

exp [−i∆βSFG(ΩP,ΩSF)z]dΩP, (5.16)

where η
(SFG)
nor = [ωSFκ]

2 is the normalised conversion efficiency, and κ is the nonlinear

coupling coefficient for three-wave mixing given by Eq. (A.29). Hence, η
(SFG)
nor can be

rewritten as:

η(SFG)
nor = [ωSFκ]

2 = ω2
SFd

2 2µ0

NPNTNSFc

1

Sovl
. (5.17)
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Since ωSF ≈ ωSH, and the SHG [Eq. (3.24)] and the three-wave mixing [Eq. (A.29)] non-

linear coupling coefficients are similar, it follows that η
(SFG)
nor ≈ η

(SHG)
nor . The wavevector

mismatch for SFG is given by

∆βSFG(ΩP,ΩSF) = β(ωSF + ΩSF) − β(ωP + ΩP) − β(ωT + ΩSF − ΩP) −KQPM, (5.18)

which after expansion in Taylor series can be recast as follows:

∆βSFG(ΩP,ΩSF) = ∆β
(0)
SFG + δνSF,TΩSF + δνT,PΩP + O(Ω2

P,Ω
2
SF), (5.19)

where ∆β
(0)
SFG = β(ωSF)−β(ωT)−β(ωP)−KQPM is the QPM central frequencies wave-

vector mismatch for SFG, δνSF,T = 1
uSF

− 1
uT

is the GVM between the SF and the test

pulses, and δνT,P = 1
uT

− 1
uP

is the GVM between the test and the pump pulse. Since

the test and pump pulses are only slightly different in frequency, their GVM is negligible

compared to that between the SF and the test pulses, i.e. δνT,P ≈ 0, and thus Eq. (5.18)

is left with ΩSF-dependent terms only. Hence, the exponential term in Eq. (5.16) can

be factored out of the convolution, resulting in the following relation:

ÂSF(L,Ω) = DSFG(Ω)
[

ÂP(Ω) ∗ ÂT(Ω)
]

. (5.20)

At this point, the similarity between ultrashort pulse SHG and SFG is apparent [cf.

Eq. (5.13)]. The SFG transfer function DSFG(Ω) takes the same form as the SHG one

[Eq. (5.14)], but with the GVM parameter being δνSF,T and the central frequencies

wavevector mismatch being ∆β
(0)
SFG. Since δνSF,T ≈ δνSHG, the bandwidth of this in-

teraction is also approximately the same as that of SHG∗. It can be directly deduced

that the ultrashort pulse SFG is affected by temporal walk-off in the same way as the

ultrashort pulse SHG.

5.3.2 Numerical Simulations

The frequency-domain treatment is supplemented with numerical simulations in time-

domain based on the following coupled-mode equations (see appendix A):

∂AP

∂z
+

1

uP

∂AP

∂t
+ i

bP
2

∂2AP

∂t2
= 2iωPκSFGA

∗
TASF exp

[

i∆β
(0)
SFGz

]

,

∂AT

∂z
+

1

uT

∂AT

∂t
+ i

bT
2

∂2AT

∂t2
= 2iωTκSFGA

∗
PASF exp

[

i∆β
(0)
SFGz

]

,

∂ASF

∂z
+

1

uSF

∂ASF

∂t
+ i

bSF

2

∂2ASF

∂t2
= 2iωSFκSFGAPAT exp

[

−i∆β(0)
SFGz

]

,

(5.21)

∗It is worth noting here that the bandwidth mentioned here is the acceptance bandwidth for the FF
or the T pulses at their respective frequencies. This bandwidth is not the same as the tuning bandwidth
described in Section 4.5.3, which is measured at the SH or SF frequencies.
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Figure 5.5: Results of numerical simulations for ultrashort pulse SFG. The figure shows
the propagation of the test (T), pump (P) and sum-frequency (SF) pulses. The input T
and P pulses are transform-limited Gaussians of widths 1 ps. The T pulse has a peak power
of 1 mW, whereas the P pulse has a peak power of a) 1mW, or b) 1W. The device had a
normalised efficiency of ηnor ≈ 75%[Wcm2]−1. The wavelength of the input T and P pulses
are λT = 1.536µm and λP = 1.544µm, respectively. The QPM period was chosen such
that the phase-matching condition is met.
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Figure 5.6: Illustrations of the ultrashort pulse DFG in the QPM waveguide device. A
test pulse with a central frequency ωT in the telecommunications-band interacts with a
pump pulse with central-frequency ωP in the visible region generating an output pulse at
the difference-frequency ωO = ωP − ωT back in the telecommunications-band.

where κSFG ≈ κSHG is given by Eq. (A.29). Solving the above equations by the sym-

metric split-step Fourier method in the T pulse frame of reference results in Fig. 5.5,

which shows the propagation of the three pulses involved (P, T and SF). The propaga-

tion lengths have been normalised against the walk-off length, defined as Lw = τP

|δνSF,T| ,
where τP is the temporal FWHM of the pump pulse. The wavelengths of the input

pulses, which meet the phase-matching condition for the QPM period Λ = 18.44µm

used in Fig. 5.3, are λT = 1.536µm and λP = 1.544µm. The input pump and test

pulses are TL Gaussians of widths 1 ps. The T pulse peak power is 1mW, whereas the

P pulse peak powers are 1 mW and 1 W which correspond to Figs. 5.5(a) and 5.5(b),

respectively. It is easy to see the striking resemblance between Figs. 5.5(a) and 5.3(a),

and between Figs. 5.5(b) and 5.3(b). As the frequency-domain treatment shows, the

physical interpretation of this process is the same as that of ultrashort pulse SHG.

5.4 Difference-Frequency Generation

In a simple difference-frequency generation (DFG) experiment, a test pulse with a cen-

tral frequency ωT in the telecommunications-band and a pump signal with central-

frequency ωP in the visible region interact with each other in the χ(2) device generating

an output difference-frequency pulse at ωO = ωP − ωT back in the telecommunications-

band, as illustrated in Fig. 5.6. Again, the analysis of ultrashort pulse DFG can be

trivially from the SHG and the SFG analyses, but the results have not been presented

in previous publications, to the best of our knowledge.

5.4 Difference-Frequency Generation
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5.4.1 Frequency-Domain Treatment

Following a similar derivation to the previous sections, and assuming undepleted pump

and unamplified test pulses, the envelope of the difference-frequency pulse after propa-

gation through an interaction length L is given by:

ÂO(L,ΩO) = −i
√

η
(DFG)
nor

∫ L

0
dz

∫ ∞

−∞
ÂP(ΩP)Â∗

T(ΩP − ΩO)

× exp [−i∆βDFG(ΩO,ΩP)z]dΩP, (5.22)

where η
(DFG)
nor = [ωOκ]

2 is the normalised conversion efficiency, and κ is the nonlinear

coupling coefficient for three-wave mixing given by Eq. (A.29). Hence, η
(DFG)
nor can be

rewritten as:

η(DFG)
nor = [ωOκ]

2 = ω2
Od

2 2µ0

NPNTNOc

1

Sovl
. (5.23)

Since ωSH ≈ 2ωO, and the SHG [Eq. (3.24)] and the three-wave mixing [Eq. (A.29)] non-

linear coupling coefficients are similar, it follows that η
(DFG)
nor ≈ 4η

(SHG)
nor . The expansion

of the DFG wavevector mismatch in Taylor series can be written as follows:

∆βDFG(ΩO,ΩP) = ∆β
(0)
DFG + δνT,OΩO + δνP,TΩP + O(Ω2

O,Ω
2
P), (5.24)

where ∆β
(0)
DFG is the QPM central frequencies wavevector mismatch for DFG, while

δνT,O and δνP,T are the GVMs between the test and the output pulse and between the

test and the pump pulses, respectively. Since the output and test pulses are only slightly

different in frequency, their GVM is negligible with respect to the GVM between the

signal and the pump. Hence, the ΩO-dependent term in Eq. (5.24) which primarily

determines the width of the output pulse spectrum can be neglected and Eq. (5.22) can

be recast as:

ÂO(L,Ω) = Â′
P(L,Ω) ∗ Â∗

T(−Ω), (5.25)

having introduced an effective pump pulse

Â′
P(L,Ω) = GDFG(Ω)ÂP(Ω) (5.26)

with the transfer function given by:

GDFG(Ω) = −i
√

η
(DFG)
nor

∫ L

0
exp [−i(∆β(0)

DFG + δνP,TΩ)z]dz. (5.27)

Notice the striking similarity of the above expression with Eq. (5.14), the SHG transfer

function. The above equations imply that the effective pump pulse Â′
P(L,Ω) acquires

5.4 Difference-Frequency Generation
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a δνP,T
z
2 time-shift with respect to the test pulse during propagation and progressively

broadens owing to the temporal walk-off between the test and the pump pulses. When

the test and the pump pulses completely walk through each other, the nonlinear inter-

action ceases and the output pulse does not continue to build up. Since δνP,T ≈ δνSHG,

the DFG transfer function GDFG(Ω) [Eq. (5.27)] is approximately the same as the SHG

one (or, equivalently, SFG) DSHG(Ω) [Eq. (5.14)], i.e. DSHG(Ω) ≈ GDFG(Ω). Their

filtering actions, however, are different. The SHG (SFG) transfer function acts on the

convolution of the input pulses, and thus the temporal walk-off effect yields a broad

output pulse. The DFG transfer function, on the other hand, only acts on the pump

pulse [Eq. (5.26)]. Therefore, the temporal walk-off effect has a less dramatic effect on

the output difference-frequency pulse.

5.4.2 Numerical Simulations

The numerical simulation for DFG in the time-domain is based on the same coupled-

mode equations as that of SFG [Eq. (5.21), and appendix A], except for the initial

conditions:

∂AT

∂z
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uT

∂AT

∂t
+ i

bT
2

∂2AT

∂t2
= 2iωTκDFGA

∗
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i∆β
(0)
DFGz

]

,

∂AP

∂z
+

1

uP

∂AP

∂t
+ i

bP
2

∂2AP

∂t2
= 2iωPκDFGAOAT exp

[

−i∆β(0)
DFGz

]

,

∂AO

∂z
+

1

uO

∂AO

∂t
+ i

bP
2

∂2AO

∂t2
= 2iωOκDFGA

∗
TAP exp

[

i∆β
(0)
DFGz

]

,

(5.28)

where κDFG = κSFG ≈ κSHG is the DFG nonlinear coupling coefficient. Solving the

above equations by the symmetric split-step Fourier method in the T pulse frame of

reference results in Fig. 5.7, which shows the propagation of the three pulses involved

in the interaction (P, T, and O). The propagation lengths have been normalised against

the walk-off length, defined as Lw = τP

|δνP,T| . The wavelengths of the input pulses, which

meet the phase-matching condition for the QPM period Λ = 18.44µm used in Fig. 5.3,

are λT = 1.536µm and λP = 770 nm. The input pump and test pulses are TL Gaussians

of widths 1 ps. The test pulse peak power is 1 mW, whereas the pump pulse peak powers

are 1mW and 5W which correspond to Figs. 5.7(a) and 5.7(b), respectively.

The power level of the pump pulse in Fig. 5.7(a) is sufficiently low, corresponding

to the assumptions used in the frequency-domain treatment, i.e. there is no pump pulse

depletion and no test pulse amplification. It can be easily seen that the temporal walk-

off effect does not cause the broadening of the output DF pulse, but limits the conversion

5.4 Difference-Frequency Generation
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Figure 5.7: Results of numerical simulations for ultrashort pulse DFG. The figure shows
the propagation of the test (T), pump (P) and output (O) pulses. The input T and P
pulses are transform-limited Gaussians of widths 1 ps. The T pulse has a peak power of
1mW, whereas the P pulse has a peak power of a) 1 mW, or b) 5W. The device had a
normalised efficiency of ηnor ≈ 75%[Wcm2]−1. The wavelength of the input T and P pulses
are λT = 1.536µm and λP = 0.770µm, respectively. The QPM period had been chosen
such that the phase-matching condition is met.
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Figure 5.8: Illustrations of ultrashort pulse cascaded SHG:DFG in the QPM waveguide de-
vice. A test pulse with a central frequency ωT and a pump pulse with central-frequency ωP,
which are slightly different from the degenerated frequency ωFF in the telecommunications-
band, are injected into the χ(2) device. The pump is up-converted to its SH, which then
generates an output pulse at ωO = 2ωP − ωT via DFG with the test pulse.

efficiency. As soon as the pump pulse is time-shifted with respect to the test and output

DF pulses, which happens around one-walk-off length, the power transfer to the output

DF pulse in the nonlinear interaction ceases to happen. On the other hand, the power

level of the pump pulse in Fig. 5.7(b) causes some small amplification of the test pulse.

Even so, the output DF pulse is undistorted by the temporal walk-off effect.

5.5 Cascaded SHG and DFG

Having analysed the SHG and DFG interactions separately, we can now consider the

case when both interactions occur simultaneously, as depicted in Fig. 5.8. A pump pulse

(at ωP) and a test pulse (at ωT), both in the telecommunications-band, are injected into

the χ(2) device. The pump is up-converted to its SH, which then generates an output

pulse at ωO = 2ωP − ωT via DFG with the test pulse. To the best of our knowledge,

detailed theoretical and numerical analyses of this interaction have not been the subject

of any previous research work.

5.5.1 Frequency-Domain Treatment

The envelope of the output pulse in this interaction, after propagation over a length L,

is similar to that of DFG interaction:

ÂO(L,ΩO) = −i
√

η
(DFG)
nor

∫ L

0
dz

∫ ∞

−∞
ÂSH(ΩSH, z)Â

∗
T(ΩSH − ΩO)

× exp
[

−i
(

∆β
(0)
DFG + δνT,OΩO

)

z
]

dΩSH, (5.29)
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Figure 5.9: The cascaded [Eq. (5.33), solid blue line] and DFG [Eq. (5.27), dashed red
line] transfer function. Compare with Fig. 3 in Ref. 14.

where ÂSH(ΩSH, z) is the spatially dependent SH of the pump pulse. It is obtain by

performing the integration over z instead of L in Eq. (5.10), resulting in a similar

expression to Eq. (5.13):

ÂSH(z,ΩSH) = DSHG(z,ΩSH)
[

ÂP(ΩSH) ∗ ÂP(ΩSH)
]

, (5.30)

where DSHG(ΩSH, z) is obtained by replacing L with z as the upper integration limit

in Eq. (5.14). Substituting the above expression into Eq. (5.29) yields the following

expression:

ÂO(L,Ω) = Â′
SH(L,Ω) ∗ Â∗

T(−Ω), (5.31)

where Â′
SH, the effective pump for the DFG process (at 2ωP), is related to the envelope

of the fundamental pulse (at ωP) by:

Â′
SH = GC(Ω)

[

ÂP(Ω) ∗ ÂP(Ω)
]

. (5.32)

The SHG:DFG transfer function GC(Ω) takes the following form:

GC(Ω) = −i
√

η
(DFG)
nor

∫ L

0
DSHG(z,Ω) exp [−i(∆β(0)

DFG + δνSH,TΩ)z]dz. (5.33)

The above equation shows the distributed nature of the cascaded SHG:DFG interactions

and the interplay between the temporal walk-off effects. Equation (5.33) also shows that

the effective SH pulse acquires a (δνSH,T + δνP,SH/2)
z
2 time-shift during its propagation.

The cascaded interaction inherits most of its properties from the DFG interaction,

as suggested by the striking similarity between Eqs. (5.25) and (5.31). The important

5.5 Cascaded SHG and DFG
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difference concerns the effective DFG pump pulses as given by Eqs. (5.26) and (5.32).

The effective pump pulse for the simple DFG interaction is the filtered input pump,

whereas for the SHG:DFG cascaded interaction, it is the filtered autoconvolution of the

pump pulse. For a comparison of the DFG and cascaded SHG:DFG filter functions,

we have plotted in Fig. 5.9 the modulus-squared of the closed form of the transfer

functions obtained by direct integration of Eqs. (5.27) and (5.33). It can be easily

seen that |GC(Ω)|2 is broader than |GDFG(Ω)|2, and thus the effective SH pump pulse

[Eq. (5.32)] is always narrower than the effective pump for the simple DFG [Eq. (5.26)].

Furthermore, since DSHG(Ω) ≈ GDFG(Ω), the effective SH pulse can be expected to

be narrower than the SH pulse itself but still broader than the original pump pulse.

Even so, the output pulse [Eq. (5.31)] is not broadened significantly owing to its small

group velocity difference with the input signal pulse. This feature is at the origin of

the robustness of the SHG:DFG FROG scheme, with respect to walk-off effects, that

is to be discussed in the following chapter. In addition, the broadening of the effective

SH pulse helps in extending the distance over which its nonlinear mixing with the test

pulse can still efficiently take place.

5.5.2 Numerical Simulations

We again supplemented the frequency-domain treatment with numerical simulations

based on the following full coupled-mode equations for the simultaneous SHG and DFG

interactions in the time domain:
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−i∆β(0)
DFGz
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.

(5.34)

Solving the above set of coupled-mode equations as before yields Fig. 5.10, which shows

the propagation of the four pulses (T, P, SH, O) involved in the cascaded SHG:DFG

interactions. The propagation lengths have been normalised to the walk-off length,

defined as Lw = τP

|δνSH,T| . Note that |δνSH,T| ≈ |δνSH,O| ≈ |δνSH,P|. The wavelengths

5.5 Cascaded SHG and DFG
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Figure 5.10: Results of numerical simulations for ultrashort pulse cascaded SHG:DFG.
The figure shows the propagation of the pump (P), test (T), SH of pump (SH) and output
(O) pulses. The input T and P pulses are transform-limited Gaussians of widths 1 ps. The
T pulse has a peak power of 1mW, whereas the P pulse has a peak power of a) 50mW, or b)
1W. The device had a normalised efficiency of ηnor ≈ 75%[Wcm2]−1. The wavelength of the
input T and P pulses are λT = 1.536µm and λP = 1.540µm, respectively. The QPM period
was chosen such that the SHG interaction is phase-matched, whereas the DFG interaction
has negligible phase-mismatch.
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of the input pulses, which meet the phase-matching condition for the QPM period

Λ = 18.44µm used in Fig. 5.3, are λT = 1.536µm and λP = 1.540µm.

We have used TL Gaussian pulses of widths 1 ps for the input test and pump pulses.

The test pulse peak power is 1 mW, whereas the pump pulse peak powers are 50 mW

and 1 W, which correspond to Figs. 5.10(a) and 5.10(b), respectively. The power level

used in Fig. 5.10(a) would correspond to negligible pump depletion and negligible signal

amplification, and thus the results of the numerical simulations can be directly com-

pared with the frequency-domain analysis. Although the SH pulse is broadened in the

interaction (see section 5.2), the output pulse is not. The broad SH pulse, which acts as

the pump for the DFG process, guarantees its overlap with the input signal pulses, such

that the DFG process does not cease to happen and the output pulse keeps growing.

In contrast to the CW cascaded SHG:DFG scheme, whose overall efficiency can only be

less than or equal to the efficiency of the simple DFG interaction, the ultrashort pulse

cascaded SHG:DFG interaction can be more efficient than the simple DFG interaction

in long devices.

The power level used in Fig. 5.10(b), on the other hand, causes the depletion of the

pump pulse and the distortion of the SH pulse. It can also be seen that the signal pulse

experiences small gain, and the output converted pulse in this case reaches much higher

peak powers. Nevertheless, no significant distortion compared to the case of undepleted

pump [Fig. 5.10(a)] can be observed.

5.6 Summary

The theoretical analyses and numerical simulations for the ultrashort pulse parametric

interactions have been presented in this chapter. The frequency-domain analysis on

the ultrashort pulse SHG8 was extended to SFG and DFG single-step χ(2) interactions,

as well as to the cascaded SHG:DFG interaction. The devices chromatic dispersion

significantly affects these ultrashort pulse parametric interactions, and manifests itself

in the temporal walk-off effect. Figure 5.11, showing the width of the generated output

pulses, summarises the implications of temporal walk-off effect on the ultrashort pulse

parametric interactions considered in this chapter. For SHG and SFG, which are very

similar, the temporal walk-off effect causes pulse broadening. For DFG, instead of

broadening the output pulse, the temporal walk-off effect limits the conversion efficiency.

The cascaded SHG:DFG inherits most of its properties from the DFG process, in the

5.6 Summary
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Figure 5.11: The generated output pulsewidths of the ultrashort pulse parametric interac-
tions: SHG (blue circles), SFG (green dots), DFG (green squares), and cascaded SHG:DFG
(red diamonds), as a function of the normalised propagation length.

sense that the temporal walk-off effect does not broaden the output pulse. Nevertheless,

its conversion efficiency is not limited by the temporal walk-off effect.
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Chapter 6

Blind-Frequency-Resolved Optical

Gating in a LiNbO3
Quasi-Phase-Matched Waveguide

Device

In chapter 3, it was shown that guided-wave geometries provide an efficiency enhance-

ment over bulk materials, due to the coexistence of tight confinement and long interac-

tion lengths. This efficiency enhancement will definitely benefit the FROG technique,

described in the Chapter 2, increasing its measurement sensitivity. The implementa-

tion of FROG in a guided-wave geometry is nontrivial, mainly because it imposes a

collinear geometry to the χ(2) nonlinear interaction. We learnt from Chapter 2 that

the implementation of SHG FROG in a collinear geometry yields an interferometric

term [Eq. (2.9)], making its experimental implementation very challenging. Never-

theless, ultrasensitive fringe-resolved autocorrelation measurements have been demon-

strated recently in a QPM LiNbO3 waveguide.1 Although the interferometric terms

can be avoided using the simpler type-II SHG interaction,2 it requires the waveguide

to support both TE and TM polarisations. XFROG or blind-FROG configurations can

provide an alternative solution for the implementation of the FROG technique in a

guided-wave geometry.

In this chapter, we report the first, to our knowledge, implementation of the FROG

technique, i.e. a SFG blind-FROG configuration, in a QPM LiNbO3 waveguide device.3

The choice for SFG over DFG is because of practical considerations. Although concep-

tually DFG blind-FROG is less restricted by the temporal walk-off effect compared to

SFG blind-FROG, as pointed out in the previous chapter, its implementation in a wave-
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guide device is restricted by the complexity in selectively coupling a laser beam in the

700 nm-regime into the fundamental mode of our waveguide. In addition, pulse sources

of picoseconds width in that wavelength regime are not available in our laboratory. This

experiment was done with help from Dr. Benn C. Thomsen, Michael A. F. Roelëns, and

Paulo J. Almeida.

6.1 Experiments

For the SFG blind-FROG configuration, we need two pulses of different wavelengths,

namely the signal and the probe pulses, in the telecommunications band. These pulses

will be launched into our waveguide to generate sum-frequency (SF) pulses with a wave-

length near 760 nm. A spectrogram will be measured by recording the SF pulse spectrum

as a function of a time-delay introduced between the input pulses. The spectrogram for

SFG blind-FROG is given by Eq. (2.21):

Γ(SFG Blind-FROG)(Ω, τ) ∝
∣

∣

∣

∣

∫ ∞

−∞
A(t)G(t − τ) exp (−iΩt)dt

∣

∣

∣

∣

2

, (6.1)

where A(t) and G(t) are the complex amplitudes of the signal and probe pulses, respec-

tively.

The device used in this experiment is the one described in Chapter 4. Due to the

finite phase-matching bandwidth of our device and the fabrication uncertainties, we first

had to perform SFG measurements to determine a suitable pair of phase-matching wave-

lengths for our FROG experiments, as described in Subsection 4.5.3. At a temperature

of 105 0C, we achieved phase-matching for wavelengths of 1533.0 nm and 1546.5 nm.

Both wavelengths are within the tuning ranges of two short pulse sources available

within our laboratory (as described below). In addition, the acceptance bandwidth of

the ultrashort pulse interaction in our sample had to be considered when choosing the

sources pulsewidths. As pointed out in Section 5.2, the acceptance bandwidth of ul-

trashort pulse SHG and, equivalently, SFG is the same as that of the CW SHG tuning

curve. Hence, the SHG phase-matching bandwidth of 0.75 nm, which corresponds to a

frequency bandwidth of 94 GHz for a phase-matched wavelength of 1538.9 nm at 105 0C,

has to be able to accommodate the convolution of the two input pulses, so that the spec-

trogram is not corrupted by the transfer function [Eq. (5.20)]. If a relatively long pulse,

whose narrow spectrum can be considered as a Dirac delta function, is chosen to be

one of the input pulses, the other input pulse spectral bandwidth is determined by the

6.1 Experiments
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Figure 6.1: Schematic illustration of the SFG Blind-FROG experimental setup. Solid
lines represent fibre links, whereas dashed lines are electronic connections.

acceptance bandwidth of the device.

A schematic of our SFG blind-FROG experimental setup is shown in Fig. 6.1. The

signal pulses were generated by a gain-switched DFB laser diode (GS-DFB) operating at

1546.5 nm, whose output was linearly compressed with a length of dispersion compen-

sation fibre (DCF). The spectral bandwidth of the GS-DFB laser was ∼ 0.7 nm. A CW

light seed was injected into the GS-DFB laser to reduce the timing jitter.4 During our

experiments we used three different lengths of DCF (95 m, 110 m, 125 m), whose GVD

parameter is b = +1.359 × 10−19 s2/m at 1546.5 nm, in order to produce different pulse

durations. Both probe and signal sources were driven at a repetition rate of 10 GHz

from a common clock, thus ensuring synchronisation of the pulse trains.

The probe pulses were generated by external modulation of a tunable diode laser

operating at 1533.0 nm using an electro-absorption modulator (EAM). The probe pulses

were passed through a variable optical delay line fitted with a stepper motor, and were

combined with the signal pulses via a 50:50 coupler. After amplification by EDFAs,

both pulse trains had an average power of ∼ 50mW, corresponding to a pulse energy

of ∼ 5 pJ. The average power (energy) of both pulses at this point was reduced to

∼ 22mW (∼ 2.2 pJ). The combined pulses were then coupled from the fiber into the

PPLN waveguide using free-space optics. A bulk polariser was included within the setup

to select the appropriate polarisation for the waveguide (TM in our case). The overall

coupling efficiency into the waveguide was ∼ −7 dB, limited mainly by mode-mismatch.

The average launched power (energy) was ∼ 4.3mW (∼ 430 fJ) for both input pulse

6.1 Experiments



Blind-FROG in a LiNbO3 QPM Waveguide Device 106

1 1.5 2 2.5 3 3.5 4 4.5 5
50

100

150

200

250

300

350

400

Coupled Probe Power (mW)

M
ea

su
re

d
 o

u
tp

u
t 

P
o

w
er

 (
µ

W
)

Figure 6.2: Output SF pulse power, after correcting for Fresnel reflection at the waveguide
end-faces and microscope objective transmission, as a function of the coupled input probe
pulse power. The red point shows our working point.
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Figure 6.3: Typical measured spectrogram in SFG blind-FROG experiment. The fre-
quency modulation is due to the 10GHz repetition rate of the pulses.

trains.

Before taking the spectrograms, we had to check the validity of the linear relationship

of Eq. (2.21). A 10× microscope objective was placed at the waveguide output to focus

the SF pulse, which had a central wavelength of 769.7 nm, onto an InGaAs detector.

Figure 6.2, showing the output of the SFG power as a function of the coupled input

probe pulse power, confirms this essentially linear relationship. For our SFG blind-

FROG experiment, a fibre was butt-coupled to the waveguide output to collect the SF

pulses. At our working point, the average output SF power was ∼ 300µW, about one-

third of which was coupled into the collection fibre. The fibre was then connected to

an ”Advantest Q8384” optical spectrum analyser (OSA), operated at adaptive sweep

mode without averaging, to record the spectrum of the SFG pulses.

6.1 Experiments
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Figure 6.4: Interpolated (top) and retrieved (bottom) spectrograms for signal pulse com-
pressed with (a) 95m, (b) 110m, and (c) 125m long DCFs.

20 40 60 80 100 120 140 160 180 200
10-3

10-2

10-1

Number of Iterations

R
et

ri
ev

al
 E

rr
o

r

Figure 6.5: Typical FROG retrieval error [Eq. (2.24)] as a function of the number of
iterations.

As the basis of the FROG technique, spectrogram measurements were performed

by recording the spectrum of the generated SF pulses as a function of the time-delay

between the input signal and probe pulses. Figure 6.3 shows a contour plot of the

typical raw spectrogram data obtained in our experiments. The frequency modulation

that appears in the spectrogram is due to the 10 GHz repetition rate of the pulses.

6.2 Results and Discussions
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Figure 6.6: (a) Retrieved powers (solid markers, left ordinates) and chirps (empty markers,
right ordinates) of the probe pulses. (b) Overlay of autocorrelation trace from a commercial
device (solid line) and numerically generated autocorrelations of the retrieved probe pulses.
The probe pulses in the figures were mixed with signal pulses compressed through 95 (green
diamonds), 110 (red squares), and 125m (blue circles) long DCFs.

6.2 Results and Discussions

Noise suppression of the measured spectrograms was achieved by background subtrac-

tion and low-pass filtering. They were then interpolated onto a Fourier grid with a

temporal span equal to, or less than the pulse period before applying the retrieval al-

gorithm described in Section 2.5. The top row of Fig. 6.4 shows a series of interpolated

spectrograms for signal pulses compressed with the three different DCFs lengths. Al-

though we did not impose a spectral constraint in the retrieval algorithm, no nontrivial

ambiguities were observed. With a 128 × 128 spectrogram, the algorithm converged

rapidly after 50-150 iterations to a FROG retrieval error [Eq. (2.24)] of less than 0.005

in all cases indicating good quality retrievals. Figure 6.5 shows the typical FROG re-

trieval error as a function of the number of iterations. The bottom row of Fig. 6.4 shows

the retrieved spectrograms.

Figure 6.6(a) shows the retrieved intensities and chirps of the probe pulses. We

found a reasonably consistent agreement between the retrieved probe pulses as we used

the same probe pulse in all of our measurements. Slight discrepancies in the temporal

shape among the retrieved pulses can be attributed to the sampling error induced by our

particular motorised optical delay line, whereas the discrepancies in the chirp outside

the main pulse arise from the retrieval uncertainty in the low intensities region. Addi-

tional comparison between the numerical autocorrelation of the retrieved probe pulses

6.2 Results and Discussions
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Figure 6.7: Top: Retrieved powers (red circles, left ordinates) and chirps (red squares,
right ordinates) of the signal pulses compared with independent measurements made with
a commercial SHG-FROG pulse analyser (blue lines). Bottom: Retrieved (red circles) and
measured (blue lines) signal pulse spectra. The signal pulses were compressed with a) 95,
b) 110, and c) 125m long DCFs.

and their autocorrelation traces measured with a commercial autocorrelator, shown in

Fig. 6.6(b), gave excellent agreement. In all cases, the width of the probe pulse is 25.5 ps.

Finally, we note that the red-shift chirp (the frequency decreases with time across the

pulse) observed in the retrieved probe pulse is known to be imposed by the EAM.5

The top row of Fig. 6.7 shows the retrieved powers and chirps of the signal pulses

compressed with three different DCFs lengths. We compared the retrieved signal pulses

with independent characterisations using a commercial SHG-FROG pulse analyser

(”Southern Photonics”). Characterisations using the Southern Photonics device were

done before the pulses were combined via a 50:50 coupler. The excellent agreement be-

tween them confirms the high reliability of our measurements in all cases. The measured

width for the signal pulses compressed with 95, 110, and 125 m of DCFs are 7.5, 6.0,

and 4.5 ps, respectively. Gain-switching in DFB lasers is known to cause a red-shifted

chirp on the output pulse due to refractive index changes during optical pulse propa-

gation,6 and remains of this can be seen as the signal pulse was compressed with 95 m

of DCF, suggesting the possibility of further compression using a longer DCF. Indeed,

the amount of this red-shift chirp decreased when the signal pulse was compressed with

110 and 125 m long DCFs. The satellite pulses are evidence of residual nonlinear chirp

6.2 Results and Discussions
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Figure 6.8: Mode-locked fibre laser (Pritel) spectrum.

on the edges of the GS-DFB pulse.6

Comparisons between the retrieved spectra of the signal pulses and direct measure-

ments of the spectral envelopes taken from the OSA [bottom row of Fig. 6.7] yield

good agreement. The fringes in the measured spectra are associated with the 10 GHz

repetition rate of the pulse train. Since the retrieved spectra correspond to a single

pulse, such fringes do not exist. Note also that the spectral shape is different for each

compression fiber length due to the fact that we adjusted the GS-DFB laser drive and

injection seeding conditions to minimise the pulse duration in each instance.

For the results in this experiment, the peak power of the coupled probe pulse is

evaluated to be ∼ 14 mW, whereas the peak powers of the coupled signal pulses com-

pressed with 95, 110, and 125 m of DCF are ∼ 54, 67, and 90 mW, respectively. These

values correspond to a device sensitivity of ∼ 60 mW2. Reducing the input powers by

a factor of 3 would still yield sufficient output power for a reasonable measurement,

leading to an estimated device sensitivity of better than ∼ 6.7 mW2. It is worth noting

that characterisations of both signal and probe pulses after the combining 50:50 coupler

using the commercial SHG-FROG device were not possible due to the limited device

sensitivity. In addition, the limited resolution of the commercial SHG-FROG device

spectrometer made it difficult to obtain a reliable spectrogram.

6.3 Limitations
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Figure 6.9: Measured spectrogram of mode-locked fibre laser signal pulse (left) and its
frequency marginal (right).

6.3 Limitations

In our experiments, the spectral bandwidth of the GS-DFB laser was at the limit of

the acceptance bandwidth of our device. We attempted to characterise signal pulses

of shorter duration to observe the onset of temporal walk-off effects. In place of the

GS-DFB laser, a mode-locked fibre laser (ML-FL), which operated at 1546.5 nm and

had a duration of ∼ 2 ps, was used. Its spectrum, shown in Fig. 6.8, had a full-width at

half-maximum (FWHM) spectral bandwidth of ∼ 1.5 nm. The ML-FL was amplified by

an EDFA, resulting in an average power of ∼ 9mW after the combining 50:50 coupler.

As in the previous experiments, we measured the spectrogram by recording the SF

pulse spectrum as a function of the time-delay between the input pulses. Figure 6.9

shows the measured spectrogram and its frequency marginal. Since the probe pulse

spectrum can be considered a Dirac delta function, one expects the frequency marginal,

which is the convolution of the input spectra [Eq. (2.17)], to be that of ML-FL spectrum

(Fig. 6.8). However, Figure 6.9 clearly shows that the measured frequency marginal

is not the expected one, confirming the presence of a filtering action by the device.

The side-lobe in the shorter wavelength regime clearly shows the effect of a sinc-type

transfer function [Eq. (5.14)] due to the temporal walk-off effect. We could not force

the agreement between the measured and expected marginals, because there exist zero

values in the spectral band of interests.

6.3 Limitations
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6.4 Summary

In conclusion, we have demonstrated the implementation of SFG blind-FROG in a QPM

waveguide device. High quality simultaneous retrievals for short pulses of ∼ 4 − 7 ps

durations and relatively long pulses of ∼ 25 ps durations with a coupled average power

(energy) of 4.3 mW (430 fJ) were achieved. Such pulses could not be characterised

by a commercial pulse analyser. The efficiency enhancement provided by the guided-

wave geometry has been clearly demonstrated. The temporal resolution of the FROG

technique, which is determined by the acceptance bandwidth of the device, limits the

durations of pulses that can be characterised. This trade-off between the acceptance

bandwidth and the efficiency (see Chapter 3) implies that the use of a shorter device may

enable the characterisation of shorter duration pulses at the expense of lower efficiency.

QPM engineering7,8 can be used broaden the acceptance bandwidth, and thus increase

the temporal resolution. However, the complexities in its design and fabrication are

significant. Imperfect QPM engineering may yield a distorted transfer function, making

a frequency marginal correction to the acquired spectrogram necessary.8 In the next

chapter, we shall present the analyses and the experimental demonstration of a novel

FROG configuration based on cascaded χ(2) : χ(2) interactions that provides a simple

and elegant solution to this problem.
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Chapter 7

Cascaded χ
(2) Frequency-Resolved

Optical Gating

The use of a waveguide device in a FROG configuration has been shown, in the pre-

vious chapter, to provide efficiency enhancement over bulk materials. However, as the

interaction length is increased to gain further efficiency enhancement, the acceptance

bandwidth decreases, thus limiting the temporal resolution. Therefore, there is a need

to establish a trade-off between sensitivity and temporal resolution. It was mentioned

before that engineering of the QPM structure1–3 could be used to broaden the accep-

tance bandwidth without much sacrifice of the efficiency, providing a mean to improve

this trade-off. However, the design and fabrication complexities involved are significant.

Specifically, imperfect QPM engineering may result in a distorted transfer function,

making necessary a frequency marginal correction to the acquired spectrogram.3 Hence,

there is a great interest in finding alternative solutions to this problem.

In this chapter, we propose, analyse, and experimentally demonstrate a novel FROG

configuration based on cascaded χ(2) interactions in a periodically-poled LiNbO3 wave-

guide.4,5 We will first describe the proposed configuration in Section 7.1, and then in

Section 7.2, theoretically and numerically analyse it based on the ultrashort pulse cas-

caded SHG:DFG interaction studies in Section 5.5. Finally, in Section 7.3, a report on

the experimental demonstration of the proposed configuration will be presented. The

experiment were done with help from Francesca Parmigiani and Dr. Periklis Petropou-

los.
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7.1 Configuration Descriptions

The cascaded χ(2) SHG:DFG FROG configuration we propose mimics a frequency non-

degenerate four-wave-mixing process, in a QPM waveguide. This differs from the cas-

cading configuration of Ref. 6, where SHG and degenerate down-conversion were used

to mimic χ(3) self-diffraction or polarisation-gate FROG configurations. In fact, the

latter scheme is based on noncollinear interactions and could not be implemented in a

channel waveguide nor in long devices.

The cascaded SHG:DFG interactions had been previously described in Section 5.5.

A FROG configuration can be readily constructed based on these interactions, by intro-

ducing a time-delay between the test and the pump pulses at the input and recording

the spectrum of the output pulse. Without a priori knowledge of the input pulses, a

complete characterisation about the test pulse is still possible by using the retrieval

algorithm described in Section 2.5. On the other hand, the gate pulse simultaneously

retrieved in this way does not directly correspond to any measurable quantity (not the

pump nor its second harmonic, strictly speaking), but it rather reflects the distributed

nature of the cascaded SHG:DFG process.

7.2 Theoretical Considerations

The discussions on XFROG and blind-FROG configurations in Section 2.4 revealed that

a DFG based configuration has a better temporal resolution compared to the SFG based

one. The spectral filter function in SFG XFROG corrupts the information of the test

pulse, especially for interaction lengths greater than the walk-off length [Eq. (5.14)]. On

the contrary, the information of the test pulse in the DFG XFROG case is not corrupted

by such a filter function [Eq. (5.25)]. The spectrogram of DFG XFROG/blind-FROG

with a gate pulse at a higher frequency, taken from Eq. (2.21), is given by:

Γ(DFG blind-FROG)(Ω, τ) ∝
∣

∣

∣

∣

∫ ∞

−∞
A∗(t)G(t− τ) exp (−iΩt)dt

∣

∣

∣

∣

2

. (7.1)

As discussed in Section 2.4, G(t) is not the input reference pulse, but it is filtered by

the DFG transfer function [Eq. (5.27)].

In the cascaded SHG:DFG FROG configuration, the reference pulse is replaced

by a pump pulse whose SH (generated inside the χ(2) medium) gates the test pulse

(See Fig. 5.8). The spectrogram is still given by Eq. (7.1), but with the gate pulse

7.1 Configuration Descriptions
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being Â′
SH [Eq. (5.32)], the effective SH of the input pump pulse. When temporal

walk-off effects are negligible, the gate pulse simply reduces to the square of the pump

pulse, i.e. G(t) = A2
P(t). Similar to the case of DFG XFROG, the output pulse in

the SHG:DFG XFROG does not suffer from the spectral filter function, and thus high-

quality retrieval of the test pulse can be guaranteed even for a device of several walk-

off lengths. Therefore, the cascading scheme appears to be extremely well-suited for

measuring picosecond or even subpicosecond signals in a few centimetre-long LiNbO3

waveguide.

In principle, with negligible pump depletion, the gate pulseG(t) could be obtained by

fully characterising the pump pulse and then applying Eq. (5.33). However, this would

require the exact knowledge of the transfer function GC(Ω), which is very difficult

to determine precisely in practice. The blind-deconvolution algorithm (Section 2.5)

provides a solution to this problem, as it can retrieve both the test and the gate pulses

without any additional characterisation of the pump pulse, or of the χ(2) device.

In order to evaluate the performance of the χ(2) : χ(2) SHG:DFG blind-FROG tech-

nique we simulated the device via Eqs. (5.34) with two pulses at the input: the pump

pulse at ωP and the test pulse at ωT. We then introduced a variable time-delay between

the input pulses and finally obtained the spectrograms for the numerical FROG exper-

iment by calculating the spectra of the output pulses around ωO for each time-delay.

The spectrogram can be easily interpolated onto a Fourier grid, and then fed into the

retrieval algorithm, to retrieve the powers and the phases of both input pulses.

Figure 7.1 shows several examples of spectrograms generated in the numerical ex-

periments. In all cases, a 1 ps-wide transform-limited (TL) Gaussian pulse with 50 mW

peak power was used as the pump. The test pulses were: a) a TL Gaussian, b) a

linearly-chirped Gaussian, c) a Gaussian with cubic spectral phase, and d) a Gaussian

pulse with the typical chirp induced by self-phase-modulation (SPM) in a χ(3) medium

(such as a fibre link). The width of the first, second and last test pulses was δtT = 1ps,

whereas the third test pulse had a spectral bandwidth of δf = 1 THz. The device length

was chosen to be 5Lw, which would correspond to ∼ 1.6 cm in LiNbO3. The intensity

(left-hand ordinates) and chirp (right-hand ordinates) of the signal pulses retrieved by

the blind-deconvolution algorithm from the spectrograms are overlayed with the input

test pulses of the numerical FROG experiments in the bottom plots of Fig. 7.1. Despite

the device length exceeding several walk-off lengths, the retrieval of the test pulses is

7.2 Theoretical Considerations
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Figure 7.1: Top row: Generated spectrograms. Bottom row: The retrieved powers (red
circles) and chirps (red squares) of the test pulses overlayed with the input for the simula-
tions (blue lines). Various test pulses were used: a) a TL Gaussian, b) a linearly-chirped
Gaussian, c) a Gaussian with cubic spectral phase, and d) a self-phase-modulated Gaussian
pulse. We used a peak power of 1mW for all of the test pulses, a 1 ps Gaussian pulse with a
50mW peak power for the pump pulse. The device has a length of 5Lw with a normalised ef-
ficiency of ηnor = 70%[Wcm2]−1. The SHG interaction was exactly phase-matched, whereas
the DFG interaction had a negligible phase-mismatch.

excellent.

It is interesting to compare the gate pulses retrieved by the blind-deconvolution

algorithm from the numerically generated spectrograms with the calculations based on

Eq. 5.32. Figure 7.2 shows the spectrograms corresponding to the input conditions of

Fig. 7.1(a) at three different normalised propagation lengths. The bottom plots show

the retrieved gate pulses (circles) together with the effective SH pulse calculated from

Eq. 5.32 (solid lines). It can be easily observed that the retrieved gate pulses match

perfectly the effective SH pulses. The integration over z in Eq. (5.33) yields a skewed

effective SH pulse which results in a smeared spectrogram. Figure 7.3 shows the width

of the retrieved gate pulse in Fig. 7.2 together with the width of the SH pulse. The gate

pulse is narrower than the SH pulse, in accordance with the frequency-domain analysis

in Section 5.5.

The retrieved gate pulse can be considered as a by-product of the characterisation.

Unfortunately, no information about the input pump pulse can be extracted from it

without exact knowledge of the transfer function GC(Ω) [Eq. (5.33)]. The frequency-

domain treatment [Eqs. (5.31) and (5.32)] shows that the output pulse is only related to

the convolution of the test and the gate pulses, and thus the choice of the pump pulse

A(t) does not affect the test pulse retrieval quality, provided the pump wavelength meets

7.2 Theoretical Considerations
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the QPM condition for SHG (∆β
(QPM)
SHG = 0, see Section 4). Numerical simulations using

different kinds of pump pulses, including highly chirped ones, confirmed this feature.

The cascaded XFROG inherits most of its features from the DFG interaction and,

most notably, the output pulse does not experience a spectral filter function which can

degrade the time resolution. This does not imply, however, that the characterisation

of ultrashort pulses is not restricted by the device length. As the length increases,

the width of the SH and the gate pulses also increase, limiting the FROG temporal

resolution for two reasons. First, the resolution with which the input signal pulse can

be retrieved from the spectrogram is determined by the width of the gate pulse, which

should be able to sample all the significant phase variations of the test pulse in the

time-frequency domain.7 Secondly, the quality of the retrieved test pulses is limited by

the Nyquist sampling criterion. The Nyquist sampling criterion specifies a minimum

number of points required to correctly represent a specific function in a certain temporal

span. Therefore, in a temporal span determined by the gate pulse which is sampled at a

specific number of points, the test pulses that can be correctly represented are limited.

The Wigner representation Eq. (2.18) can be used to assess the retrieval quality

of both intensity and phase of the test pulses with a single parameter.8 The retrieval

quality can then be assessed by calculating the Wigner trace error between the retrieved

pulse and the input pulse of the numerical FROG experiments. The Wigner trace error

is defined as follows:

εW =

√

∑

ω,τ [Winput(ω, τ) − αWtest(ω, τ)]2
∑

ω,τ [Winput(ω, τ)]2
, (7.2)

where α is a scaling factor chosen so as to minimise the Wigner trace error. The Wigner

representation as a time-frequency distribution is more sensitive than a spectrogram,

and the trace error is independent of the computational matrix size.

Numerical simulations for a 1 ps Gaussian test pulse with a strong self-phase mod-

ulation [4 times of that shown in case (d)] of Fig. 7.1) with the same parameters used

in Fig. 7.1 showed an almost flat Wigner trace error of about εW ∼ 0.004 over 10Lw

propagation lengths. Increasing the propagation length any further is not computa-

tionally convenient, thence in order to further explore the retrieval error in SHG:DFG

blind-FROG, we fixed the device length at 5Lw (for 1 ps pulsewidth) and decreased the

test pulsewidth instead. Figure 7.4 shows the Wigner trace error εW for both a TL

Gaussian and a SPM Gaussian test pulse as a function of the test pulsewidth. The plot

7.2 Theoretical Considerations
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Figure 7.4: Wigner trace error as a function of pulsewidth for TL Gaussian (circles - solid
line) and for self-phase-modulated Gaussian (squares - dashed line) test pulses.
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Figure 7.5: Comparisons of the intensities and chirps of retrieved test pulses (red markers)
and the input pulse (blue markers) of different widths in the numerical simulations used to
calculate the Wigner trace error in Fig. 7.4.
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clearly shows a trend for the error to increase as the pulsewidth decreases in both cases

(being higher for the SPM pulse case). According to our observations (see Fig. 7.5), a

good quality pulse retrieval is described by a Wigner trace error of less than 0.05 (about

half of the value used in Ref. 8). We can therefore conclude that by using a 5Lw long

device, high-quality retrieval would still be possible for pulse durations down to 0.4 ps

and 0.7 ps for the case of TL and SPM test pulses, respectively.

The frequency-domain treatment in Section 5.5 was developed under the assumption

of negligible SHG pump depletion. Nevertheless, the fact that the pump pulse has little

impact on the retrieval of the test pulse suggests that the cascaded FROG configuration

could still work well even when the pump is depleted (and the gate is further distorted).

Consistently, in our simulations we do not find any significant change in the Wigner

trace error (εW < 0.004) of the retrieved test pulses when the pump peak power is

varied by 3 orders of magnitude (from 50 mW to 50 W). The retrieved gate pulses, on

the other hand, do not match the calculated effective SH pulse [Eq. (5.32)] as expected.

Currently available technologies allow the fabrication of several centimetres-long

high-quality QPM waveguides. As an example for the implementation of our cascading

FROG device, we can consider a 3.2 cm (10Lw) long device. This would be appropriate

for the characterisation of a 1 ps test pulse with arbitrary chirp and a peak power of

1 mW. For a 1 ps pump pulse with a peak power of 5 W, an output pulse with a peak

power of 2.8 mW is obtained, corresponding to an average power of 22µW for the output

pulse (assuming a 10 GHz repetition rate). As a comparison, using the same parameters

and assuming an ideal coupling for the pump pulse, the DFG XFROG is less efficient

due to temporal walk-off effects. The DFG interaction only yields an output pulse with a

peak power of 0.4 mW, corresponding to an average power of 3µW. The characterisation

of the same test pulse using SFG XFROG could only be done using a 1Lw long device.

In this case, an output pulse with a peak power of 0.7 mW, corresponding to an average

power of 5.7µW, would be obtained by using the same pump pulse as above. The above

comparison is done for TL test and pump pulses. For chirped pulses, the device length

for SFG XFROG would need to be shortened, thus the efficiency would be even lower.

Although the proposed cascading configuration can guarantee good efficiencies and

better time resolutions than traditional single step XFROG techniques, a self-consistency

check of the measured spectrograms is not possible in a real experiment (the self-

consistency check is usually done by means of a frequency marginal Eq. (2.17), which
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is the modulus-squared of Eq. (5.31)), due to the difficulties in the independent deter-

mination of the gate pulse.

We would also like to make a final remark on the retrieval procedure. It is well-known

that the blind-FROG algorithm exhibits nontrivial ambiguities,9,10 i.e. there might exist

other pairs of pulses which yield a similar spectrogram. In order to solve this problem,

additional constraints are normally employed, such as spectral constraints on both input

pulses. The use of spectral constraints on both input pulses in the cascaded FROG

configuration is not straightforward, as the spectrum of the gate pulse cannot be easily

obtained. Nevertheless, recent investigations10 show that a unique retrieval of the pulse

pair is more likely for spectrograms that are not symmetric with respect to the delay τ .

Figure 7.2 shows that the generated spectrogram of cascaded XFROG becomes more

asymmetric as the propagation length increases. Indeed, in most cases, we obtained

high quality retrievals (i.e. Wigner trace errors below threshold) without applying any

spectral constraint. We had some difficulties in retrieving signal pulses with a linear

chirp, but we could easily overcome them by applying the spectral constraint on the

test pulse only. The use of a single spectral constraint on the test pulse did not make

a significant change to the quality of the pulse retrieval in all the other cases, but it

improved the convergence rate of the retrieval algorithm.

7.3 Experimental Realisations

The device used in this experiment is the one described in Chapter 4 and used in the

previous chapter. In order to accommodate available sources in our laboratory, we had

to shift the SHG phase-matching wavelength to 1541.9 nm by operating the waveguide

device at a temperature of 121 0C. Figure 7.6 shows a schematic of our experimental

setup. The output from a 10 GHz mode-locked fibre laser (ML-FL) operating at λP =

1541.9 nm was first gated down to 2.5 GHz by an electro-optics modulator (EOM), pre-

amplified by an EDFA, and then split into two using a 90:10 coupler. The first path,

which contains 10% of the power, was amplified by an EDFA to generate our pump pulse.

An optical band-pass filter (BPF) with a 5 nm FWHM bandwidth was used to suppress

the amplified spontaneous emission (ASE). A motorised variable optical delay line was

included in this path. The remaining 90% of the pulse train was used to generate our test

pulse. The pulse train was used as the control of a nonlinear optical loop mirror (NOLM)

configuration, with the signal being a CW laser diode operating at λT = 1560nm. The
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Figure 7.6: Schematic illustration of the cascaded SHG:DFG FROG experimental setup.

optical loop in the NOLM configuration was a 220 m highly-nonlinear fibre with a zero-

dispersion-wavelength at 1550 nm and a GVD parameter of b = −1.283× 10−23 s2/m at

1555 nm. The control pulse of the NOLM was suppressed using two 3nm FWHM optical

bandpass filters arranged in a series, with an EDFA in between to preserve the integrity

of the converted pulse train. Finally, another EDFA with a variable gain was placed

after the last BPF. Since the NOLM configuration is polarisation sensitive, several fibre

polarisation controllers (FPCs) were placed in appropriate places. Finally, 90% of the

pump pulse and 10% of the test pulse were combined together, resulting in average

powers (energies) of 100 mW (40 pJ) and 0.2 − 2mW (80 − 800 fJ), respectively, before

being launched into the waveguide. Note that due to the polarisation sensitivity of the

nonlinear interactions in the LiNbO3 waveguides, the polarisations of the pump and

test pulses were independently controlled by FPCs. The waveguide was fibre-coupled

at both the input and the output, with a fibre-to-fibre throughput of ∼ −11.5 dB,

due to uncoated end-faces (∼ −1.7 dB), intrinsic propagation loss (∼ −2.6 dB), and

fibre-waveguide mode mismatch (∼ −7.2 dB). Therefore, the coupled average powers

(energies) for pump and test pulses are 36 mW (15 pJ) and 72 − 720µW (29 − 290 fJ),

respectively.

The spectra at the output of the waveguides were measured by an ”Advantest

7.3 Experimental Realisations



Cascaded χ(2) Frequency-Resolved Optical Gating 124

1520 1530 1540 1550 1560 1570
Wavelength (nm)

In
te

n
si

ty
 (

10
 d

B
/d

iv
)

output

pump

test

(a) 0.2 mW test pulse average power

1520 1530 1540 1550 1560 1570
Wavelength (nm)

In
te

n
si

ty
 (

10
 d

B
/d

iv
)

output

pump

test

(b) 2mW test pulse average power

Figure 7.7: Measured spectra at the output of the waveguide with (green lines) and
without (blue lines) the presence of the pump pulse. With the presence of the pump pulse,
the generated output pulse is shown at zero delay (τ = 0).

Q8384” optical spectrum analyser (OSA), operated at normal sweep mode without

averaging, and are shown in Fig. 7.7. This shows the spectra of the waveguide output

with (green lines) and without (blue lines) the presence of the pump pulse, for test

pulses with average powers of 0.2 and 2mW. The presence of the pump pulse induces

the cascaded SHG:DFG interaction, yielding the generated output pulse. There was no

significant overlapping between the spectra of the test, the pump, and the generated

output pulses. The narrow peak in the test pulse spectrum is a residual continuous-wave

(CW) component from the NOLM, which has little contribution toward the nonlinear

interactions, as no such component can be observed in the spectrum of the generated

output pulse. We observed that the side-lobe structure on the shorter wavelength side

in the pump pulse spectrum depends on its power and is an indication of SHG cascading

self-phase modulation. Note that this does not affect the FROG measurement.

The internal conversion efficiency for both cases, defined as

η =
UO

UT
=

∫ ∞
−∞ |AO(t)|2 dt

∫ ∞
−∞ |AT(t)|2 dt

, (7.3)

where AT(t) and AO(t) are the complex amplitude of the coupled test pulse and the

generated output pulse, respectively, was estimated to be ∼ −9 dB. We define the

wavelength range of the output pulse between 1516 and 1533 nm, and the test pulse

between 1554 and 1570 nm. The fact that the conversion efficiency is the same for both

test pulse powers confirms the linearity of Eq. (7.1).
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Figure 7.8: Measured (top) and retrieved (bottom) spectrograms for two different test
pulse average powers.

The top row of Fig. 7.8 shows a measured spectrogram for test pulses of 0.2 and

2 mW average powers after an interpolation onto 64×64 Fourier grids. Noise suppression

was achieved by background substraction only. Employment of the retrieval algorithm

described in Section 2.5 to the interpolated spectrograms yielded the bottom row of

Fig. 7.8. Although we did not impose a spectral constraint, no nontrivial ambiguities

were observed. The algorithm converged rapidly after 50-150 iterations to a root-mean-

square (rms) error of 0.009 and 0.006 for average powers of 0.2 and 2 mW, respectively,

indicating a good quality retrieval.

Figure 7.9 shows the retrieved powers and chirps of the test pulses. The excellent

agreement between the retrieved test pulses over a dynamic range of 10 dB (0.2−2mW)

can be easily observed. Independent measurements in the time and the spectral domains

confirmed the high-quality pulse retrieval. Figure 7.10(a) shows the excellent agreement

between the measured autocorrelation trace of the test pulses and the autocorrelation

numerically generated from the retrieved test pulse temporal profiles. The independent

autocorrelation measurements were done at the point before the recombining coupler.
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Figure 7.9: Retrieved powers and chirps of the test pulses of 0.2mW (red) and 2mW
(blue) average powers.
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Figure 7.10: a) Measured autocorrelation trace of the test pulse and numerically generated
autocorrelation from the retrieved test pulse. b) Measured and retrieved spectrum of the
test pulse. The retrieved test pulse had average powers of 0.2mW (red) and 2mW (blue).
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Figure 7.11: Retrieved powers and intensities of the gate pulses from the characterisation
of test pulses of 0.2mW (red) and 2mW (blue) average powers.

Similarly, the measured and the retrieved spectra in Fig. 7.10(b) show an excellent

agreement (over 30 dB range). The narrow peak in the measured test pulse spectrum is

not present in the retrieved one, because the residual CW component hardly contributes

toward the nonlinear interaction, as previously described. The temporal full-width at

half-maximum (FWHM) of the retrieved pulse is 2.1 ps, whilst its spectral FWHM is

0.18 THz (1.5 nm), yielding a temporal-bandwidth product of 0.39. It is worth under-

lining that the acceptance bandwidth limitations of single-step χ(2) FROG would have

made it impossible to characterise test pulses down to these durations in the same

device, as shown in the previous chapter.

It is also interesting to look at the retrieved gate pulse (Fig. 7.11). As it does

not depend on the properties of the test pulse (see Section 7.2), once retrieved in one

characterisation, it could be employed as a well-referenced pulse for characterisations

of other pulses, just as it is normally done in XFROG configuration (Section 2.4). This

could improve the speed of subsequent retrievals as well as provide self-consistency error

checks via the frequency marginal.

7.4 Summary

The analysis of the cascaded SHG:DFG FROG configuration introduced in Section 5.5

revealed its superiority compared to SFG and DFG Blind-FROG. This theoretical pre-

diction was experimentally verified by characterising a 2.1 ps pulse train with a coupled

average power (energy) of 72µW (29 fJ). Such pulses could not be characterised using
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SFG blind-FROG as shown in the previous chapter due to the acceptance bandwidth

limitations. The dramatic improvement in efficiency and temporal resolution of the

cascaded scheme compared to single-step χ(2) FROG configurations have been clearly

shown. In principle, even the characterisations of subpicosecond pulses with arbitrary

chirps would be possible this scheme.
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[6] A. Kwok, L. Jusinski, M. A. Krumbügel, J. N. Sweetser, D. N. Fittinghoff, and
R. Trebino, “Frequency-Resolved Optical Gating Using Cascaded Second-Order
Nonlinearities,” IEEE Journal of Selected Topics on Quantum Electronics 4(2),
271–277 (1998).

[7] L. Cohen, Time-Frequency Analysis (Prentice Hall, New Jersey, 1995).
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Chapter 8

Conclusions and Future Directions

This final chapter summarises the research work presented throughout this thesis, and

presents its possible future directions.

8.1 Conclusions

Frequency-resolved optical gating is a well-established technique for the complete char-

acterisation of ultrashort optical pulses, as reviewed in Chapter 2. The most commonly

used configuration is based on the SHG interaction in bulk materials, due to its high

efficiency compared to other schemes based on third-order nonlinear interactions. As

shown in Chapter 3, the use of guided-wave geometry provides efficiency improvements

due to tight optical confinements and long interaction lengths, whilst the QPM structure

gives access to the LiNbO3 highest nonlinear coefficient and guarantees a wider wave-

length operation range by proper engineering of the gratings period. The properties of

a QPM LiNbO3 waveguide device, which was fabricated in the ORC, were presented in

Chapter 4. This device was used throughout this research work.

This research work led to the first successful implementation a QPM Lithium Nio-

bate waveguide for the FROG technique. The simultaneous complete characterisation

of two ultrashort pulses of durations 4-7 ps and 25 ps in the 1.55µm-band with a cou-

pled energy of 430 fJ was presented in Chapter 6. The temporal walk-off between the

interacting pulses in this interaction resulted in a finite acceptance bandwidth, and thus

limited the temporal resolution of the measurement. As a result of this, we proposed

a novel FROG configuration using cascaded SHG:DFG interactions. Theoretical and

numerical analyses of this configuration in the first half of Chapter 7, based on the work

in Chapter 5, revealed its robustness against the temporal walk-off effect. This configu-
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ration overcomes the limited bandwidth of SFG and outperforms the efficiency of DFG.

The second half of Chapter 7 shows the experimental realisation of this configuration,

confirming the theoretical predictions. A 2.1 ps pulse train with a coupled average power

(energy) of 72µW (29 fJ) was successfully characterised in the experiments.

8.2 Future Directions

Several future directions from this research work can be readily envisaged. The novel

FROG configuration presented in Chapter 7 can be used to characterise even shorter

optical pulses, down to ∼ 500 fs according to our theoretical predictions, in the same

device. In addition, the broad bandwidth of this configuration opens up a new possibility

for the simultaneous characterisation of multiple pulses with different wavelengths, such

as those in WDM systems.1 Using SFG instead of SHG as the first step in the cascading

scheme can also be beneficial, as it would allow an access to the spectral region taken

by the single pump pulse in the cascaded SHG:DFG scheme.2

In terms of measurement sensitivity, a waveguide with a higher figure-of-merit and a

lower propagation loss will definitely provide efficiency improvements. Furthermore, the

use of appropriate tapering at the waveguide input/output will increase the amount of

power transferred from the standard SMF. The extension of the partial characterisations

of the fabrication processes presented in Section 4.3 should pave the way to a higher-

quality QPM LiNbO3 waveguide device.

Other interesting directions that can be taken in the future might involve imple-

menting the FROG technique in novel devices, such as periodically- or hexagonally-

poled LiNbO3 slab waveguides.3,4 Such device should have better efficiency than bulk

materials, while still allowing noncollinear interactions, thus enabling sensitive measure-

ment using the relatively simple noncollinear SHG for FROG technique. Other methods

for achieving broad acceptance bandwidth in PPLN such as using pulse-front tilt and

noncollinear interactions5–7 are of particular interest for FROG applications.
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Appendix A

Coupled Mode Equations for

Three-Wave Mixing

In this appendix, the coupled-mode equations for three-wave mixing in a QPM LiNbO3

waveguide device is derived. We shall start our journey with the following wave equation

derived from Maxwell’s equations:

∇×∇× E(r, t) +
1

c2
∂2E(r, t)

∂t2
= −µ0

∂2P(r, t)

∂t2
. (A.1)

It is often useful to separate the rapidly varying part of the electric and polarisation

fields by writing:

E(r, t) =
∑

j

Ej(r, t) exp [−iωjt] + c.c. (A.2a)

P(r, t) =
∑

j

Pj(r, t) exp [−iωjt] + c.c, (A.2b)

where ωj is the carrier frequency of the interacting waves. Fourier transform of the

electric field E(r, t) is given by:

F [E(r, t)] = E(r, ω) =
1

2π

∫ ∞

−∞
E(r, t) exp (iωt)dt

=
1

2π

∑

j

∫ ∞

−∞
Ej(r, t) exp (iΩjt)dt

=
∑

j

Ej(r,Ωj),

(A.3)
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where Ωj = ω − ωj is the frequency detuning coordinate, and Ωj ≪ ωj. Hence, we can

rewrite the electric field as an inverse Fourier transform as follows:

E(r, t) =
∑

j

∫ ∞

−∞
Ej(r,Ωj) exp (−iωt)dt

=
∑

j

∫ ∞

−∞
Ej(r,Ωj) exp [−i(Ωj + ωj)t]dt.

(A.4)

Substituting the above equation into Eq. (A.1) results in:

∑

j

[

∇×∇× Êj(r,Ωj) −
(Ωj + ωj)

2

c2
Êj(r,Ωj)

]

=
∑

j

µ0(Ωj + ωj)
2P̂j(r,Ωj). (A.5)

Separation of P into the linear and nonlinear part, i.e. P = PL + PNL, results in

∑

j

[

∇×∇× Ê(r,Ωj) −
(Ωj + ωj)

2

c2
ε(x, y, ω)Ê(r,Ωj)

]

=
∑

j

µ0(Ωj + ωj)
2P̂NL(r,Ωj),

(A.6)

where ε(x, y, ω) = 1+χ(1)(x, y, ω) is the relative permittivity of the waveguide structure.

We will omit the subscript j in writing the equations whenever it is clear what the

notations refer to.

We can rewrite the first term on the left-hand-side (LHS) of Eq. (A.6) as:

∇×∇× Ê(r,Ωj) = ∇
[

∇ · Ê(r,Ωj)
]

−∇2Ê(r,Ωj). (A.7)

The first term can be readily evaluated from Eq. (3.1a), which in the absence of free

charge, simply becomes

∇ · D̂ = 0. (A.8)

Utilising the constitutive relation [Eq. (3.2a)], the above expression can be recast as

∇ε · Ê + ε∇ · Ê = 0. (A.9)

For waveguides with a graded refractive index profile and a small refractive index in-

crease, its derivative is negligible, i.e. ∇ε ≈ 0. Naturally, it follows that ∇ · Ê = 0, such

that Eq. (A.6) can be rewritten as follows

∑

j

[

∇2Ê(r,Ωj) +
(Ωj + ωj)

2

c2
ε(x, y, ω)Ê(r,Ωj)

]

= −
∑

j

µ0(Ωj + ωj)
2PNL

j (r,Ωj).

(A.10)
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We can consider Eq. (A.10) as a linear wave equation (LHS only) with a nonlinear

perturbation on the right-hand-side (RHS). We shall first find the solution for the linear

part for a single frequency:

∇2E(r,Ωj) +
(Ωj + ωj)

2

c2
ε(x, y, ω)E(r,Ωj) = 0. (A.11)

Since the waveguide structures we consider are symmetric along the z−coordinate, it is

logical to solve the above equation via the separation of variables method and assume

the following solution:

Ê(r,Ωj) = F(x, y)Â(z,Ωj). (A.12)

Substitution of the above equation into the LHS of Eq. (A.10) yields the following two

equations:

[

∂2

∂x2
+

∂2

∂y2

]

F(x, y) +

[

(Ωj + ωj)
2ε(x, y, ω)

c2
− β2(ω)

]

F(x, y) = 0, (A.13a)

∂2Â(z,Ωj)

∂z2
+ β2(ω)Â(z,Ωj) = 0, (A.13b)

with β being the separation of variable constant. The first of the above expression

[Eq. (A.13a)] can be readily identified as the eigenvalue equation for the guided-wave

mode profile. In such a structure, the electromagnetic radiation cannot travel freely,

but exists as discrete entities Fq(x, y), with a propagation wavevector βq(ω). Since the

electromagnetic waves interact via nonlinear interaction, their envelope varies during

propagation. It is then useful to separate the rapidly varying part of the amplitude as:

Â(z,Ωj) = Â(z,Ωj) exp [±iβ(ωj)z], (A.14)

where Â(z,Ω) is a slowly varying amplitude, and the plus-minus sign identifies the for-

ward and backward propagating waves, respectively. Selecting the forward propagating

wave and substituting the above solution into Eq. (A.13b) result in

{

∂2Â(z,Ωj)

∂z2
+ 2iβ(ωj)

∂Â(z,Ωj)

∂z
+

[

β2(ω) − β2(ωj)
]

Â(z,Ωj)

}

exp [iβ(ωj)z] = 0.

(A.15)

We can expand the propagation wavevector β(ω) around the frequency ωj as (see sec-

tion 5.1):

β(ω) = β(ωj) + Ωj
1

uj
+

1

2
Ω2

jbj + . . . , (A.16)
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such that the factor
[

β2(ω) − β2(ωj)
]

can be approximated as:

[

β2(ω) − β2(ωj)
]

= [β(ω) − β(ωj)] [β(ω) + β(ωj)] ≈ 2β(ωj)

[

Ωj
1

uj
+

1

2
Ω2

jbj

]

. (A.17)

Next, by utilising the slowly-varying amplitude approximation:

∂2Â(z, ω)

∂z2
≪

∣

∣

∣

∣

∣

β(ωj)
∂Â(z, ω)

∂z

∣

∣

∣

∣

∣

, (A.18)

Eq. (A.15) can be rewritten as:

{

i
∂Â(z,Ωj)

∂z
+

[

Ωj
1

uj
+

1

2
Ω2

jbj

]

Â(z,Ωj)

}

2β(ωj) exp [iβ(ωj)z] = 0. (A.19)

Hence, we can rewrite the complete electric-field solution as follows:

E(r, t) =
∑

q

3
∑

j=1

C
(q)
j F

(q)
j (x, y)A

(q)
j (z, t) exp

[

i(β
(q)
j z − ωjt)

]

+ c.c, (A.20)

where we consider three interacting waves at distinct frequencies that satisfy ω3 =

ω1 + ω2 or Ω3 = Ω1 + Ω2, A
(j)
q (z, t) ∈ C is a slowly-varying amplitude both in time

and space, ωj is the angular frequency, β
(q)
j = β(q)(ωj) is the propagation wavevector of

mode number q in the waveguide, and C
(j)
q is a normalisation constant such that

1

2

∫

x,y

Re [(E × H∗) · ẑ] dxdy = P(z, t) = |A(z, t)|2 . (A.21)

Evaluation of the above normalisation results in

C
(q)
j =





2ωjµ0

β
(q)
j

∫

x,y

∣

∣F(q)(x, y)
∣

∣

2
dxdy





1
2

, (A.22)

where the orthogonality of the mode profiles have been used:

∫

x,y

F(q)(x, y) ·
[

F(r)(x, y)
]∗
dxdy ∝ δqr, (A.23)

with δqr being a Kronecker delta function.

Having simplified the linear part of Eq. (A.10) to Eq. (A.19), we now evaluate the

nonlinear term on the right-hand-side (RHS) of Eq. (A.10). The second-order nonlinear

interaction that take place in the QPM LiNbO3 waveguide device have been chosen in

such a way to exploit d33, the largest nonlinear coefficient of LiNbO3. Therefore, the

polarisations of the input waves must be parallel to the z−axis of LiNbO3. The RHS of
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Eq. (A.10) in frequency domain can be written explicitly for the polarisation wave at a

frequency ω3 as follows:

µ0ω
2
3P

NL
3 (r,Ω3) = x̂

4dω2
3

c2

∫ ∞

−∞
E1(r,Ω1)E2(r,Ω3 − Ω1)dΩ1, (A.24)

where we have used the relation Ω2 = Ω3−Ω1, and the fact that Ω3 ≪ ω3, in writing the

above relation. Substituting the full electric-field solution [Eq. (A.20)] into the above

equation yields

µ0ω
2
3P

NL
3 (r,Ω3) = x̂

4dω2
3

c2

∑

q,r

∣

∣

∣
F

(q)
1 (x, y)

∣

∣

∣

∣

∣

∣
F

(r)
2 (x, y)

∣

∣

∣
C(1)

q C
(r)
2

× exp
[

i(β
(q)
1 + β

(r)
2 )z

]

∫ ∞

−∞
Â

(q)
1 (r,Ω1)Â

(r)
2 (r,Ω3 − Ω1)dΩ1, (A.25)

We can combine the evaluated linear and nonlinear parts of Eq. (A.10), Eq. (A.19)

and Eq. (A.25), respectively, to yield the following equation for the wave at a central

frequency ω3:

∑

q

{

i
∂Â

(q)
3 (z,Ω3)

∂z
+

[

Ω3
1

u3
+

1

2
Ω2

3b3

]

Â
(q)
3 (z,Ω3)

}

∣

∣

∣
F

(q)
3 (x, y)

∣

∣

∣

=
2dω2

3

β
(q)
3 c2

∑

q,r

∣

∣

∣
F

(q)
1 (x, y)

∣

∣

∣

∣

∣

∣
F

(r)
2 (x, y)

∣

∣

∣

C
(q)
1 C

(r)
2

C
(q)
3

exp
[

i(β
(q)
1 + β

(r)
2 − β

(q)
3 )z

]

×
∫ ∞

−∞
Â

(q)
1 (r,Ω1)Â

(r)
2 (r,Ω3 − Ω1)dΩ1. (A.26)

Multiplying both sides of the above equation with
∣

∣

∣
F

(3)
q (x, y)

∣

∣

∣
and performing the inte-

gral over the (x, y)−surface result in

∂Â3(z,Ω3)

∂z
− i

[

Ω3
1

u3
+

1

2
Ω2

3b3

]

Â3(z,Ω3)

= 2iω3κ exp [−i∆β0z]

∫ ∞

−∞
Â1(r,Ω1)Â2(r,Ω3 − Ω1)dΩ1, (A.27)

where

∆β0 = β3 − β1 − β2 (A.28)

is the central frequencies wavevector mismatch, and κ is the nonlinear coupling coeffi-

cient, given by

κ = d

√

2µ0

N (ω1)N (ω2)N (ω3)c

√

1

Sovl
, (A.29)
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with N being the effective index of certain modes of the waveguide, and

Sovl =

∫

|F1|2 dxdy
∫

|F2|2 dxdy
∫

|F3|2 dxdy
(∫

|F1| |F2| |F3| dxdy
)2 (A.30)

being called the area overlap.

In writing Eq. (A.27), we assumed that the interaction is between fundamental

modes, and thus have omitted the mode indices q, for two reasons. First, each dis-

crete propagating mode satisfies different phase-matching conditions due to chromatic

dispersion, so that we may consider them separately. Second, the expression of the

area overlap [Eq. (A.30)] tells us that the highest coupling coefficient is obtained from

interaction between fundamental modes. We now perform an inverse Fourier transform

on Eq. (A.27) to yield:

∂A3

∂z
+

1

u3

∂A3

∂t
+ i

b3
2

∂2A3

∂t2
= 2iω3κA1A2 exp [−i∆β0z]. (A.31)

Following similar derivations for the waves at frequencies ω1 and ω2 yield the other two

coupled-mode equations:

∂A1

∂z
+

1

u1

∂A1

∂t
+ i

b1
2

∂2A1

∂t2
= 2iω1κA

∗
2A3 exp [i∆β0z], (A.32a)

∂A2

∂z
+

1

u2

∂A2

∂t
+ i

b2
2

∂2A2

∂t2
= 2iω2κA

∗
1A3 exp [i∆β0z], (A.32b)

concluding the derivation of the coupled-mode equations for three-wave mixing.
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