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Shape optimization of the carotid artery bifurcation
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ABSTRACT

A parametric CAD model of the human carotid artery
bifurcation is employed in an initial exploration of the
response of shear stress to the variation of the angle of the
internal carotid artery and the width of the sinus bulb.
Design of experiment and response surface technologies
are harnessed for the first time in such an application with
the aim of developing a better understanding of the
relationship between geometry (anatomy) and sites of
arterial disease. '

INTRODUCTION

The haemodynamic conditions that persist in the human
carotid artery bifurcation are such that arterial disease
commonly occurs in this region of the vascular system.
Ultimately, the blockage that results from thickening of
arterial walls (clinically referred to as stenosis) can
rupture. The particles (emboli) that are produced can be
carried in the bloodstream to the brain leading to stroke
and fatality. Although there is much evidence for the
correlation between sites of disease and the region of
reversed flow in the internal carotid artery (ICA) [1], a
greater understanding is needed of the impact different
geometrical features of the bifurcation have on the
~ likelihood and severity of disease. Such information will
aid clinicians identify patients most at risk and also
provide a basis for the design of grafts and stents.

The common carotid artery (CCA) bifurcates
into two branches in the lower neck: the internal carotid
artery (ICA) and the external carotid artery (ECA). Until
relatively recently, many computer models of the carotid
artery bifurcation (CAB) have treated it as Y-shaped and
thus neglected the significance of straightening the flow
relative to the CCA. Ding et al draw attention to the
differences between the Y-shaped geometry and the so-
called tuning fork model [2]. Interestingly, they claim
that the Y-shaped geometry used by Bharadvaj et al [3]
has become a standard in experimental and numerical
investigations but they then proceed to show that a
tuning-fork model represents a significant improvement
particularly in relation to the correlation between the
oscillatory shear index (OSI) and the location of intimal
thickness. Thomas et al reinforce the preference for
tuning-fork models especially for young healthy people
[4]. The parametric CAD representations presented in

this article are based upon a tuning-fork model of the
bifurcation. ~

Numerous CFD simulations and in vitro analyses
now provide much evidence for the correlations between
locations of atherosclerosis and regions of low mean shear
stress, high oscillation and high mean shear stress
gradients [1, 5, 6]. Those studies that have investigated
the impact of geometrical variations on flow features and
on the correlations of these load metrics with sites of
arterial disease are particularly relevant in the current
context {7, 8].

Many other papers tend to use geometries
derived from digitised images of real anatomy obtained
from magnetic resonance imaging and ultrasound [9, 10].
Alternatively, Dbifurcation geometry is based on the
experimental glass models described in [2] and [3].
Whereas previous work in this field has essentially
provided information ascertained for discrete geometries,
we aim to map complete landscapes relating shear stress
metrics to CAB shape parameters. Here we focus on two
parameters, the angle of the ICA and the width of the
sinus - bulb. Ultimately, we hope to apply the same
techniques to many parameters simultaneously. The ICA
angle is known to have a significant impact on the
location and subsequent development of disease [7, 11,
12] and similar evidence is available for the shape of the
bulb [13] and the area ratios of the ICA and ECA relative
to the CCA [14].

The current work draws on techniques developed
in aerodynamic design [15] to systematically investigate
the relationship between the angle of the ICA and the
width of the sinus bulb and a quantifiable measure of the
region of reversed flow, the minimum time-averaged

shear stress, 7mn , where
-1
T=— |Tdl
T
and T denotes the period of a single pulse, 7 significs the

instantaneous shear stress and 7 is time. An optimum

geometry could be one in which 7. is maximised,
indicative of weaker recirculation.

OVERVIEW
A response surface modelling approach is adopted in
which the design space is populated by an LP, design of

experiments and the variation of T is plotted using the
method of kriging [16]. In order to systematically
simulate the flow through a range of different bifurcations



a software system is employed that automatically
generates new geometries in CATIA V5 (Dassault
System) from a baseline shape, constructs a suitable mesh
in GAMBIT V2.1 (Fluent Inc.) and then solves the
unsteady Navier-Stokes equations in FLUENT (Fluent
Inc.).

Careful consideration of a number of geometry
descriptions [2, 3, 17] shows that, from a CAD
perspective, insufficient information is available in all of
them to construct a parametric CAD model from scratch,
without making a number of assumptions, and/or
unrealistic constraints are imposed that limit the overall
flexibility of the models. Consequently, we present a new
parametric CAD definition of the tuning-fork geometry.
There are some similarities with older models but a
number of important innovations are introduced that yield
a complete and reusable definition and provides sufficient
flexibility to facilitate parametric (design) studies such as
that described below. Thus, the baseline geometry is
based on the tuning-fork glass models described in [2] but
uses mean values tabulated in [3]. Hence, it effectively
possesses a blend of the mean dimensions reported in [2]
and [3]. The precise values are not critically important
since the nature of the parametric model is such that any
number of the defining parameters can be varied to yield
an alternative geometry.

A mixture of splines and Bezier curves are used
to control the bifurcation shape whereas a number of
section definitions define the main bifurcation branches.
Consequently, shape control through the bifurcation is
achieved by adjusting the co-ordinates of the Bezier curve
nodes. In this way, it is hoped that superior shape control
can be achieved with a minimum number of parameters.
A detailed description of the geometry definition is
provided in the appendix.

The ICA angles vary between 9.80 and 41.0
degrees; this represents a range of three standard
deviations symmetrically positioned either side of the
mean. Bulb widths are less straightforward to define
since the bulb shape is actually manipulated by the
control points of Bezier curves. In this case, the
parameter used to vary the bulb width is the x-coordinate
of the control point of the outer ICA edge and its range of
movement is set-up to produce an appropriate set of bulb
shapes.
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Figure 1: A typical pulse.

The mean pulse for the human carotid artery
shown in Figure 1 is used [18] with a time-step of 0.0001s

and the time-averaged shear stress, 7, is stored for each
boundary surface. Meshes of between 25000 and 30000
cells are employed in each geometry. These spatial and
temporal resolutions are consistent with those used in
other sources and validated in mesh and time dependency
studies performed prior to this article.

RESULTS AND DISCUSSION

Simulations for a 50 point LP, are performed using the

relatively simple strategy depicted in Figure 2.
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Figure 2: Response surface construction.

Figure 3 depicts snapshot streamlines for the geometry

producing the lowest value of 7w . Similar flow patterns
are present in all geometries with the strong systolic pulse
initiating regions of recirculating flow that are then
convected downstream.
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Figure 3 :
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Typical streamline variation every tenth of'a
cycle.

Since, initialty, we are more concerned to understand the
complete landscape under examination - than in



determining the optimum, we construct response surfaces
for 10, 20, 40 and 50 design points in Figures 4 to 7 to
assess the convergence of the surface with number of
desing points. Each surface has been constructed using
the kriging method; the hyper-parameters have been tuned
using a genetic algorithm followed by a dynamic hill
climb.
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Convergence of the response surface is clearly evident
between successive numbers of design points both in
terms of the approximate locations of high and low values

of Tww . Surprisingly, Twn appears to be minimised for

small ICA angles and small bulb widths. Tntuitively, one
would expect a larger curvature change to produce
stronger recirculation and, indeed, we find that larger
angles and widths produce greater vorticity as evidenced
in Figure 8.
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Figure 8: Streamlines of the flow at mid-points in the
cycle for geometries with (a) small ICA angle and small
bulb and (b) large ICA angle and large bulb.

However, the fact that we are exploring the spatial
variation of a scalar (time-averaged) variable could be
misleading. For example, although a larger curvature
change may generate stronger vorticity, the nature of the
high speed core flow (in the common carotid artery) of a
geometry with more modest curvature variation, may
concentrate its recirculating flow for longer in a particular

position leading to lower 7yu. Such an observation

suggests that the choice of Twin @S an objective function
may not be a good one. Figure 9 depicts the variation of
time-averaged shear stress on the outer ICA wall for a -
range of bulb widths at a large ICA angle. Whereas there
are relatively - small differences in  7.m - between
geometries, there is a more significant variation in the
area of negative mean shear stress, 7_. Thus, alternative
shear stress metrics are under investigation including

spatially averaged integrals of T given by

= [z
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Figure 9: Variation of time-averaged shear stress on the
outer ICA wall for a range of bulb widths at large ICA
angle.
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Figure 10: 9 point variation of T

Figure 10 shows a kriged response surface to the variation

of 7 though points at the corners of the domain, the mid-
points of each outer edge and at the centre. Selection of
boundary points in this way has proved useful in
establishing the limits of exploration before committing to
a full design of experiments (DoE). Although the surface
requires refinement with updates and/or a full DoE, it is

clear that the metric, ;, produces more plausible results

than the minimum value of the shear stress, 7 mi .
Consequently, on-going work is focussed on

using 7 and other similar metrics to explore the design
space of the carotid artery bifurcation. We now have a
- three-dimensional parametric geometry definition for the
tuning-fork model and are applying a search and update
strategy as depicted in Figure A2 in the appendix. We are
varying five parameters — the ICA and ECA angles, the
bulb width and the ICA and ECA outflow diameters.
Response surfaces are being constructed and tuned using
kriging as described above and, parallel updates are being
evaluated using maxiumum expected improvement [16].

CONCLUSIONS

The above analysis successfully applies response surface
and design of experiment technologies to the exploration
of the relationship between vascular anatomy and
haemodynamics.  Ultimately, it is hoped that such
techniques will form the basis of an inverse design tool
for identifying the likelihood and severity of disease for
particular patients and, for the design of stents and grafts.
However, results obtained so far for the variation of the

minimum value of time-averaged shear stress, Tuin,
suggest that selection of suitable objective functions

requires further work. -Unexpectedly, Twmin is lowest for
small ICA angles and bulb widths. A more plausible
response is produced by the negative area of the mean
shear stress curve.
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APPENDIX

Tuning fork geometry definition -

The parametric CAD definition uses the junction G H Q P
between the inner walls of the ICA and ECA as the origin
and starting point of the construction. Figure Al depicts
the complete definition.” First, lines OA and OB are
drawn from the origin, O, for the ECA and ICA,
respectively, that define the orientations and the

respective widths at the bifurcation. The CCA is also B=TF N7 M

defined relative to O with an offset for its centre-line. It , _.lc ‘___

can be seen that the ICA and ECA both return to paths ,ZDjf W& Pi2 Iy J

that are parallel with the CCA. P2 %, X Pil II.'
The co-ordinates of the Bezier control points and \\ 1".,‘ I§B‘< !

the co-ordinates of other defining points of the ICA and X ] g L

ECA are tabulated for the baseline geometry in Table 1 Pol N7 0 A

and the values of the various parameters are listed in B™, f

Table 2. Starting with the ICA, the following comments
accompany these definitions.

1) ICA Bezier curve end-points. The end-point,
C, of the inner curve in Figure Al is based on a blend
between the ways in which the distance OC is defined in
the Bharadvaj et. al. and Ding et. al. papers. Relative to
C, the outer curve end-point, D, is positioned a distance,
CD away in order to accommodate an interface region
between the bulb and the straight outflow of width GH.
CD > GH so that the shape of the Bezier curves are not
over constrained.

2) Bezier curve control points. Two control
points are used for each of the ICA Bezier curves. For the
outer curve, the distance of Pol above point B is specified
by the height of a right-angle triangle drawn with its
hypotenuse on BD and of a parametric. length, dmax
bulge, equivalent to the position of the maximum bulb
width in Bharadvaj et. al. The y-coordinate of the control
point Pil for the inner ICA curve is evaluated in the same
way but along the line OC. The x-coordinates of Pol and
Pil are then set relative to B and O, respectively, using
parameters dyye: and diger. The second control points for Figure A1 Tuning fork geometry definition.
each curve are required to control the tangency constraint
in to the interface region. Suitable positions for Po2 and
Pi2 are a fixed distance below points D and C,
respectively.

3) ICA interface. A suitable interface region
between the bulb and the straight section of the ICA
tapers from a width, CD to the outflow width, EF over a
length d;,.

4) ICA straight section. The straight section, of
length dy,, is such that EF = GH.

5) ECA curvature. Splines are used to define the
shape of the curved ECA section. Relative to points O
and A, the other end-points, [ and J, are constructed in the
same way as points C and D for the ICA. Intermediate
points, K and L, are fixed a distance, deere, along lines
drawn from O and A, respectively, and parallel to the
direction of the ECA.

6) ECA interface and straight section. These are
defined in the same way as for the ICA with IJ > MN =
PQ and with the same lengths, d;, and dg,.




Point

X co-ordinate

y co-ordinate

B B, =0, —w,,cos(8,) B, =0, —wy sin(@,)
. o _p _180g sin’(6) C -0 41802 Sﬁn(ﬁi)COS(H;)
Y 76, sin(90-6,/2) " 76, sin(90-6,/2)

D D, =C, —wg Dy:Cy

E E =D, E =D, +1

F F.=E, +w,, F,=E,

G G, =E, G, =E, +d,

H H =F, H, =G,
P, Py =B, ~d,.sin(0)-d,. Poty =B, + dyx puige c08(6;)
Py B =0, —d e Sin(gi) ~iper By, =0, +d e COS(Q')
Pz Py =D, P, =D, -4/15
Py P, =C, P, =C, —4/15

4 A, =0, +w,,cos(6,) A,=0, = w,,sin(6,)

, ; —o 41808 s_in(e,.)sin(ee) 3 [0+ 180g s§n(0,.)cos(96,)

"z, sin(90-6,/2) 16 Y 7o, sin(90-6,/2)

J J,o=1 +w, J, =1,

K K, =0, +d.,,,sin(6,) K,=0,+d,,. cos(0,)

L L =4 +d,,., sin(@e) L ,=4,+d,,, cos(HE)
M M, =J, M,=J, +1

N N.=M_ -w,, N, =M,
P P =M, P =M +d,
0 0. =N, 0, =P,

Table 1. Co-ordinate definitions for the tuning-fork model (cf. Figure Al).




Parameter Default value
6, 25.4 degrees
6, 25.1 degrees
Weo 8.00mm
Wop k v 1.04
dmax bulge 0.91
dim 2.14
Aouer -0.0019
Diner 0.0011
Wep 0.75
WE 0.7125
dyy 2.5
Wou 0.69 -
d@Cl”‘\‘@ 0 -9 l
Wy 0.6053
Whn 0.575

Table 2. Default parameters for baseline tuning-fork model. All widths, w, and lengths, d, are non-dimensionalised by
the CCA width, w,y. The subscripts refer to locations shown in Figure A1 with appropriate definitions provided in the
text.

Cluster
Parallel
Analysis

Figure A2 Parallel update strategy.



