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Recent research is making progress in framing more precisely the basic dynamical
and statistical questions about turbulence and in answering them. It is helping both to
define the likely limits to current methods for modelling industrial and environmental
turbulent flows, and to suggest new approaches to overcome these limitations. Our
selective review is based on the themes and new results that emerged from more than
300 presentations during the Programme held in 1999 at the Isaac Newton Institute,
Cambridge, UK, and on research reported elsewhere. A general conclusion is that,
although turbulence is not a universal state of nature, there are certain statistical
measures and kinematic features of the small-scale flow field that occur in most
turbulent flows, while the large-scale eddy motions have qualitative similarities within
particular types of turbulence defined by the mean flow, initial or boundary conditions,
and in some cases, the range of Reynolds numbers involved. The forced transition
to turbulence of laminar flows caused by strong external disturbances was shown to
be highly dependent on their amplitude, location, and the type of flow. Global and
elliptical instabilities explain much of the three-dimensional and sudden nature of the
transition phenomena. A review of experimental results shows how the structure of
turbulence, especially in shear flows, continues to change as the Reynolds number
of the turbulence increases well above about 104 in ways that current numerical
simulations cannot reproduce. Studies of the dynamics of small eddy structures and
their mutual interactions indicate that there is a set of characteristic mechanisms in
which vortices develop (vortex stretching, roll-up of instability sheets, formation of
vortex tubes) and another set in which they break up (through instabilities and self-
destructive interactions). Numerical simulations and theoretical arguments suggest
that these often occur sequentially in randomly occurring cycles. The factors that
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determine the overall spectrum of turbulence were reviewed. For a narrow distribution
of eddy scales, the form of the spectrum can be defined by characteristic forms of
individual eddies. However, if the distribution covers a wide range of scales (as in
elongated eddies in the ‘wall’ layer of turbulent boundary layers), they collectively
determine the spectra (as assumed in classical theory). Mathematical analyses of
the Navier–Stokes and Euler equations applied to eddy structures lead to certain
limits being defined regarding the tendencies of the vorticity field to become infinitely
large locally. Approximate solutions for eigen modes and Fourier components reveal
striking features of the temporal, near-wall structure such as bursting, and of the very
elongated, spatial spectra of sheared inhomogeneous turbulence; but other kinds of
eddy concepts are needed in less structured parts of the turbulence. Renormalized
perturbation methods can now calculate consistently, and in good agreement with
experiment, the evolution of second- and third-order spectra of homogeneous and
isotropic turbulence. The fact that these calculations do not explicitly include high-
order moments and extreme events, suggests that they may play a minor role in the
basic dynamics. New methods of approximate numerical simulations of the larger
scales of turbulence or ‘very large eddy simulation’ (VLES) based on using statistical
models for the smaller scales (as is common in meteorological modelling) enable some
turbulent flows with a non-local and non-equilibrium structure, such as impinging or
convective flows, to be calculated more efficiently than by using large eddy simulation
(LES), and more accurately than by using ‘engineering’ models for statistics at a single
point. Generally it is shown that where the turbulence in a fluid volume is changing
rapidly and is very inhomogeneous there are flows where even the most complex
‘engineering’ Reynolds stress transport models are only satisfactory with some special
adaptation; this may entail the use of transport equations for the third moments or
non-universal modelling methods designed explicitly for particular types of flow. LES
methods may also need flow-specific corrections for accurate modelling of different
types of very high Reynolds number turbulent flow including those near rigid surfaces.

This paper is dedicated to the memory of George Batchelor who was the inspiration
of so much research in turbulence and who died on 30th March 2000. These results
were presented at the last fluid mechanics seminar in DAMTP Cambridge that he
attended in November 1999.

1. Introduction
‘The problem of turbulence’ has been seen as one of the great challenges of

mathematics, physics and engineering for more than 100 years, by Lamb, Einstein,
Sommerfeld, Ishlinski and others. Much of the interest in meeting this challenge
is because of its practical value; the solution of many technical, industrial and
environmental problems increasingly requires improvements, both in our fundamental
understanding of turbulence, and in the utilization of advances in computation to
calculate, at appropriate levels of accuracy and speed, the characteristic features and
statistical properties of these flows (e.g. Hunt 1995; Holmes, Lumley & Berkooz 1996).

Major centres for mathematical science and theoretical physics are holding in-
tensive programmes on turbulence (examples being at Ascona, Monte Verita 2nd
Symposium on Turbulence, Switzerland (Gyr, Kinzelbach & Tsinober 1999) and the
Institute for Theoretical Physics Santa Barbara in 2000) to complement regular sum-
mer schools and conferences, such as the European Turbulence Conferences (Frisch
1998) and Turbulent Shear Flow Symposia. In this paper we draw some general
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conclusions about current questions and developments in research on turbulence
and its practical applications, resulting from the programme at the Isaac Newton
Institute at Cambridge (UK) between January and June 1999. This involved more
than 400 participants, visiting for various periods, and about 300 presentations by
academic and governmental researchers, and those working on problems in industrial
and environmental organisations, some of which combined with the Royal Academy
of Engineering to provide generous support for the programme. All three disciplines
of mathematics, physics and engineering were well represented. We also refer here
to other recent research developments reported in the scientific literature and at the
International Congress on Industrial and Applied Mathematics held at Edinburgh in
July 1999. Detailed reports on various aspects of the programme have been or are
being published by Voke, Sandham & Kleiser (1999); Launder & Sandham (2001);
Vassilicos (2000b); Hunt & Vassilicos (2000).

This report is aimed at a broad fluid mechanical readership. It focuses, inevitably
somewhat selectively and subjectively, on progress in research towards the major
questions of the subject and certain practical objectives, both of which provided
a framework for the programme. Although these were formulated well before the
programme began, they evolved by progressive adjustment and addition during the
six-month period. They essentially finally became the following.

(i) To consider broadly and in depth whether fluid turbulence in its different
manifestations has some common features (in some defined statistical sense) that are
universal to all kinds of fully turbulent flow, or whether any commonality only exists
within certain types of turbulence (such as those driven by mean shear, or natural
convection). In other words is there one ‘problem of turbulence’ or several?

(ii) To explore the promising directions for tackling the fundamental problems of
turbulence dynamics, some of which go back to the 1930s (see Constantin 2000;
Frisch 1995). Within this fell the following specific questions.

(a) Is Taylor’s (1938) conjecture about turbulence correct? It is that the normalized
mean rate of energy dissipation, ε̂ = ε/(u3

0/Lx) (where ε is the dimensional dissipation
rate, u0 is a typical r.m.s. velocity, and Lx is a typical integral length scale) of a
turbulent flow field (away from a boundary) is independent of the turbulent Reynolds
number Re = u0Lx/ν, if the Reynolds number is sufficiently large, i.e.

ε̂→ const as Re→∞. (1)

If this is true (as is generally assumed in statistical models), what are the implications
for the structure of the velocity field? If it is not, as some investigations suggest, what
is the asymptotic relation between the rate of energy dissipation and the Reynolds
number?

(b) What is the nature of the ‘wiggliness’ and ‘smoothness’ of the velocity field
as Re → ∞, a question first raised by Richardson (1926) who wondered whether
the velocity, even though its magnitude is finite, might be so ‘wiggly’ that it is not
effectively differentiable anywhere (as with a Weierstrass function or some other fields
with a non-integral Hausdorff fractal dimension). An alternative concept is that as
Re → ∞, turbulence is fundamentally intermittent with a finite number of distinct
points where the derivatives are singular, separated by smooth regions in between?
Some combinations of such distributions of near-singularities (defined as singularities
in the limit as the Reynolds number tends to infinity) are necessary if equation (1)
is to be valid. Furthermore, how are such distributions consistent with the idea that
velocity fields at the small scales may be self-similar over an increasing range of
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length scales as Re increases? How can deviations from self-similarity be considered
in the context of multiple-scale velocity fields?

(c) Can even stronger singularities occur in which the velocity and vorticity at
points in the flow tend to infinitely large values in a finite time t∗, after a finite-
amplitude turbulent flow field has been initiated at t = 0? Although this phenomenon
has never been observed, some special mathematical solutions to the Euler and
the Navier–Stokes equations suggest that it may be possible (Leray 1935; Kerr∗,
Moffatt∗, Ohkitani & Gibbon 2000; Doering & Gibbon 2000). Are near-singularities
of Navier–Stokes turbulence the remnants of finite-time singularities of the Euler
equations? Does the tendency for such singular events to occur determine the ‘tail’ of
the probability distribution of the turbulent flows and if so, how?

(d) What is the nature of the eddy transfer or ‘cascade’ process, in which when
Re� 1 (if (1) is correct) the velocity fluctuations right down to the smallest scales
reach a quasi-equilibrium state in the ‘Lagrangian’ or ‘turn-over’ time scale of order
Lx/u0? Also, to what extent are small-scale processes (depending on the precise defi-
nition) independent of the large-scale motions? Some physical models have suggested
an infinite cascade involving vortical events at each ‘eddy’ scale (Tennekes & Lumley
1971; Frisch 1995), whereas others have suggested that relatively few complex events
are needed (e.g. Lundgren 1982). The upscale energy transfer equally needs better
understanding through study of the large-scale dynamics, which depends on how
these eddy motions are correlated over large distances (see for example Monin &
Yaglom 1975).

(e) To what extent do the large-scale motions of the turbulence tend to become
independent of initial and boundary conditions, or, if the flow was initially laminar,
of the particular process of transition to turbulence (George*): is this by means
of internal self-organization or by chaotic interactions or both? Landau & Lifshitz
(1959): “We have seen that, whatever the initial phases βj , over a sufficiently long
interval of time the fluid passes through states arbitrarily close to any given state,
defined by any possible choice of simultaneous values of the phase øj . Hence it
follows that, in the consideration of turbulent flow, the actual initial conditions cease
to have any effect after sufficiently long intervals of time. This shows that the theory
of turbulent flows must be a statistical theory.” Batchelor (1953)’s view was more
conditional: “. . . we put our faith in the tendency for dynamical systems with a large
number of degrees of freedom, and with coupling between these degrees of freedom,
to approach a statistical state which is independent (partially, if not wholly) of the
initial conditions. With this general property of dynamical systems in mind, rather
than investigate the motion consequent upon a particular set of initial conditions,
we explore the existence of solutions which are asymptotic in the sense that the
further passage of time changes them in some simple way only.” This and the
other fundamental questions, provide a context for considering the appropriate future
directions for the statistical computational models of turbulence needed for practical
purposes.

(f) How are fully developed turbulent velocity fields related to their sources of
energy whether from initial conditions, continuing instabilities within a flow, or from
boundary conditions such as a rigid wall?

(iii) To consider changes in ideas about the fundamental statistical properties of
turbulence. Whereas the previous questions have only slightly changed over the past
50 years, those about the fundamental statistical properties of turbulence, although
they are based on earlier theories, have changed more significantly as more detailed
measurements have been made. The first three listed below are based on Kolmogorov’s
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(1941, 1962) theories and their extensions and have been reviewed by Frisch (1995),
and Sreenivasan & Antonia (1998). The last two concern the basic concepts of
inhomogeneous turbulence due to Prandtl (1925) and von Kármán (1930), which
apply to a wide range of turbulent flows independently of initial conditions.

(a) How do the mean value of nth-order moments Sn, where Sn = ∆un(r), of the
difference in velocity ∆u(r) between points separated by a distance r vary with n when
r is less than the integral scale Lx and much greater than the viscous microscale η?
Is there a universal result when Re → ∞ for Sn normalized on the mean (or some
conditional mean) value of ε, ε̄ of the form

Sn(r) = Cnε̄
n/3rn/3 for n > 1, η � r � Lx. (2a)

If not, is there some less general power law such as

Sn(r) ∝ rζ(n), (2b)

and if so, what determines ζ(n)? What is the nature of the dependence of Cn or ζ(n)
on the large scales, which in general are non-isotropic and inhomogeneous? How is
this dependence related to the recently observed anisotropy of the structure functions
(Noullez et al. 1997; van de Water, Staicu & Guegan 2000)? Are these small-scale
statistics affected by particular characteristics such as the mean shear?

(b) Do the Lagrangian nth-order moments S (L)
n of the velocity ∆u(∆t) of a fluid

particle at two points separated in time by ∆t scale similarly on ε̄ ? For example (as
a generalization of Inoue 1951) does

S (L)
n (∆t) = C (L)

n ε̄n/2(∆t)n/2. (3)

Can the same scaling apply to the related moment of the separation distance ∆(t)
between marked fluid particles released at time t = 0, such that

[∆(t)]n = C∆ε̄
n/2t3n/2. (4)

(c) What are the fundamental statistical distributions governing the observed in-
termittency of the smallest-scale gradients and dissipation rate ε? The form of the
probability distribution of ε affects the quantitative value of ζ(n) in (2b) (Kolmogorov
1962), but so also does the nature of near-singularities in the turbulence.

(d) Are certain statistical properties of fully developed inhomogeneous turbulence
near plane rigid surfaces independent of the upstream or outer flow conditions and
what is their form? This question refers to flows with and without a significant velocity
Ū greater than the typical fluctuating velocity u∗; firstly, what is the mean velocity
profile Ū(x3u∗/ν), whose mathematical form may be determined by the dependence on
the Reynolds number of the outer flow (Barenblatt & Chorin 1998)? Secondly under
what conditions are the velocity spectra Φ11(k1) and Φ22(k1) along the streamwise
direction given by

Φ11(k1), Φ22(k1) ∝ u2
∗k
−1
1 , (5)

when Λ−1 < k1 < x−1
3 , for x3 � h, where h is the thickness of the boundary layer/pipe

and Λ is an outer length scale much greater than h (Marušić & Perry 1995)? Thirdly,
for turbulent flows with or without a mean velocity component, how general is the
self-similar form of the two-point velocity correlation of the normal components

R33(x3, x
′
3) = u3(x3)u3(x

′
3)/u

2
3(x3) = f(x3/x

′
3) for x3 < x′3 (6)

(Hunt et al. 1989)?
(e) To what extent do the asymptotic forms as Re → ∞ for the statistics and
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characteristic eddy structures differ from those found when Re is finite? Are there
distinct subclasses of turbulence corresponding to different ranges of Re (or of
Rayleigh number for natural convection (cf. Castaing et al. 1989))?

(iv) To consider how fundamental research on turbulence might lead to improve-
ments in turbulence-simulation methods and statistical models. The deficiencies of
current models, as pointed out by industrial participants, tend to become apparent
when they are applied to turbulent flows that are highly inhomogeneous and rapidly
changing (over the length and time scales of the large eddies), which is to be expected
since these ‘non-conforming’ situations do not correspond with the assumptions that
underpin the models, e.g. Launder & Spalding (1972), Lumley (1978). Because indus-
try is now familiar with the use of such models, it was requested that their rationale
and limitations should be defined and explained using recent research, such as that on
inhomogeneous turbulence. Since the models are often applied to ‘non-conforming’
flows, interest was expressed in interpreting the often puzzling results of the compu-
tations in these situations. Moreover, significant modifications are being proposed to
existing modelling methods and these need to be evaluated and understood.

Questions (reviewed by Geurts*; see also Geurts & Leonard 1999) about the limita-
tions of large-eddy simulation methods are closely linked to those on the fundamental
dynamics and statistics, since the methods involve computing the ‘resolved’ velocity
field above a certain ‘filter’ scale lf that is greater than that of the smallest ‘Kol-
mogorov’ eddies of the turbulence lK . (Only if the Reynolds number of the turbulence
is small enough, typically Re < 103, is it possible to avoid this approximation and
compute the turbulence directly, e.g. Moin & Mahesh 1999). Discussions were mainly
focused on constant-density flows, though the importance of turbulence in two-phase
flows (Hewitt*; Reeks*), buoyancy-dominated flows (Banerjee*; Launder*), and com-
pressible flows (Bonnet*; Gatski*) were reviewed. There are many detailed questions
about this filtering approximation; for example what happens when very small-scale,
highly anisotropic and often non-Gaussian motions are generated near boundaries, or
how is the predictability of a simulated flow affected by randomness of the unresolved
small scale, a problem of interest for forecasting environmental flows and controlling
engineering flows (Lesieur 1999).

2. Origins
Turbulent flows are generated in different ways. Laminar flows (i.e. flows that

in any one realization in a fluid with simple boundaries are exactly predictable
for all time given a finite amount of data about the flow) can become unstable
when small fluctuations develop nonlinearly. Turbulent flows can also originate from
fluctuations caused by boundaries with complex (fractal) shapes (Queiros-Conde
& Vassilicos 2000) and complex movements (Warhaft*) or by the effects of body
forces, e.g. electro-magnetic forces. A fully developed turbulence is reached when
one or more of these processes has generated velocity fields that are chaotic in
space and time, having smooth spectra and smooth probability distributions. Once
this state is reached, which requires that the Reynolds number is large enough,
these general qualitative properties are observed not to change even when quite
substantial perturbations are introduced, say in relation to u0 and Lx, such as mean-
flow distortions or damping via body forces or suspended particles. In flows with
certain interactive body forces (e.g. electromagnetic or gravitational) the turbulence
can generate resonances with local singularities (Kerr*; McGrath, Fernando & Hunt
1997). A significant mechanism, discussed later, for increasing the level of chaotic
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behaviour in turbulence at high values of Re is the continuous growth of instabilities
from infinitesimal initial amplitudes even when the turbulence is fully developed.

A key question of recent research has been to identify and describe the different
mechanisms affecting the evolution of unstable fluctuations from perturbations on
laminar flow into fully developed turbulence. The first of two types of transition
proposed by C. C. Lin (Ffowcs Williams, Rosenblat & Stuart 1969) was a ‘slow’
evolution (as in wakes, jets and curved shear flows) when the initial shear flow is
unstable to a single mode and there are distinct bifurcations as subsequent modes
develop by nonlinear interaction. The second type is a fast evolution (as in pipe flow)
when nonlinear growth of a single transition rapidly produces a spectrum of velocity
fluctuations comparable in width to that of fully developed turbulence. In this case
there is a ‘fast’ transition or breakdown and a sudden change from smooth laminar
flow to turbulence or patches of turbulence. These concepts are consistent with the
mathematical demonstration of Ruelle & Takens (1971) that (whether the transition
is slow or fast) a smooth spectrum with finite width can exist at finite Re.

These categories can be understood physically by considering how these instabilities
develop in particular flows. For example, in boundary layers, disturbances grow in
the streamwise direction via a ‘slow’ transition process with distinct modes, typically
evolving from linear to three-dimensional weakly nonlinear form (Smith*). Depending
on whether the streamwise extent of the boundary layer flow is short or long, the
disturbances may or may not develop into turbulence for a given value of Re. In
other flows, for example with recirculation, such as Taylor–Couette or certain wake
flows, the disturbances stay at the same amplitude everywhere in the flow and do not
necessarily generate turbulence, so that the slow evolution of nonlinearities implies
slow transition. As Huerre & Monkewitz (1990) first clarified, in the former case
of the boundary layer the ‘slowly’ evolving instabilities are ‘convective’, and may or
may not lead to transition anywhere in the flow. In the latter type of flow absolute
instabilities fill the domain, and are slowly evolving. In most cases where there is a
fast evolution of nonlinear disturbances, whether the instabilities are convective or
absolute, there is fast transition to turbulence.

Recent research has provided some insights into the questions raised by this frame-
work, but the framework itself has not seriously been questioned. Whereas many
features of slow instabilities have been analysed, the key fundamental question is to
understand the breakdown process, which can also reappear in a fully turbulent flow as
a ‘transition’ from one form of turbulence structure to another – see below. The most
thoroughly studied case is that of global instability of rotational flows with locally
closed elliptical streamlines (and particle paths), whose general significance for turbu-
lence was pointed out by Gledzer et al. (1975), Malkus & Waleffe (1991) and others,
and whose theoretical understanding was developed by Bayly (1986). The discussions
showed that both global (referring to a non-local classical linear analysis in terms of
normal modes) and local (referring to WKB short-wave asymptotics along individual
trajectories – see Lifshitz & Hameiri 1991) solutions along streamlines (see Cambon &
Scott 1999; Leonard*) lead to the exponential growth of three-dimensional, wave-like
disturbances. Disturbances grow over times that scale on the inverse of the strain
rate and not on the inverse of vorticity. These two time scales can be comparable but
they can also be very different as in the vortex interaction experiments of Leweke &
Williamson (1998). Nonlinear interactions develop over a period of the order of the
rotation time (and not significantly less), leading to a fully developed, multi-length-
scale, turbulent flow, i.e. a breakdown. Recent laboratory experiments on a laminar
vortex distorted by an adjacent vortex by Leweke & Williamson (1998) and on a fully
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turbulent vortex undergoing compression by Borée et al. (1999) demonstrate how
this basic inviscid instability (Lundgren & Mansour 1997) causes rapid transition
of laminar flows and a rapid change in the structure of a turbulent flow. This is
consistent with the integral of helicity, H =

∫
u · ω dV , being conserved for these

isolated structures or contained flows. Note that the local helicity h = u · ω increases
from zero at the base flow to positive and negative values of order u2

0/Lx, showing
that increasing |h| is not necessarily an indicator of a slower cascade of vorticity.

With an analysis employing global instability methods, Le Dizes* showed that the
mechanisms involved in the elliptic instability are essentially equivalent to the growth
of three-dimensional perturbations within vortices explained as ‘vortex core dynamics’
by Hussain*.

New qualitative evidence presented by Durbin* from the numerical simulations
of Wu et al. (1999) was consistent with the analysis of Malkus & Waleffe (1991),
in that these global or elliptical instabilities are the cause of the rapid evolution
of boundary layer instabilities when the imposed disturbances (whether at the wall
or from external velocity fluctuations) have a significant amplitude ue. These pro-
duce sufficiently large closed streamline regions around the critical layer for rapid
three-dimensional instabilities to grow locally in the form of the very low-amplitude
disturbances. ‘Bottom up’ (i.e. forward pointing) triangular spots are generated at
the wall while ‘top down’ (backward pointing) spots are generally formed from very
low amplitude disturbances imposed at the top of the boundary layer. Typically, the
former rapid evolution and transition occurs if ue is comparable to the fluctuations
in the fully turbulent boundary layer, i.e. ue ∼ u∗ where u∗ is the friction velocity,
typically U0/20 where U0 is the mean velocity outside the layer.

A qualitative understanding of this spot transition is currently applied in the design
of turbo-machinery blades. As it passes downstream, the entrainment flow into the
growing spot affects the mean velocity profile, so as to reduce the deficit in the
momentum flux of the boundary layer profile and its tendency to thicken in the
adverse pressure gradient towards the trailing edge of the aerofoils (Hodson*).

The effects of different kinds of external turbulence on the transition to turbulence
of laminar boundary layers on isolated bodies can only be analysed theoretically
in the initial stages of transition for the idealized case of a very thin flat plate
and when the amplitude of external fluctuations have a vanishingly small amplitude
(e.g. Wundrow & Goldstein 1999). For practical situations, various approximate
theoretical methods have been developed for different types of laminar flow and
external turbulence (Atkin*). Some concepts were presented about how velocity
fluctuations of free-stream turbulence outside a boundary layer affect fluctuations
within it and cause ‘bypass’ of the transition process via a sequence of instabilities.
The first mechanism is that fluctuations are ‘convected’ along the streamlines and
enter the growing boundary layer where its velocity gradient amplifies the small-scale
fluctuations algebraically (Voke*; see also Trefethen et al. 1993) and where larger-
scale fluctuations may amplify the eigenmodes of the layer. Different methods for
calculating the amplification of disturbances in shear flows where the streamlines are
slightly non-parallel were discussed (Lingwood*), in particular the relative merits of
the widely used parabolized stability equations (PSE) and the rigorous triple-deck
asymptotic theory (Lucchini*; Healey*). The second mechanism is caused by the
action of external fluctuations travelling over the layer as a localized disturbance,
such as a moving wake. Numerical simulations confirm the theory that if they travel
at the same speed as the free-stream speed U0, the fluctuations they induce tend to be
maximal at the top of the layer because the flow within the layer is ‘sheltered’ from the
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larger scales of the external turbulence; the smaller scales can induce fluctuations and
diffuse downwards. However the upper fluctuations rapidly grow as Kelvin–Helmholtz
billows and spread the resulting small-scale turbulence downwards. Both effects can
cause transition. In engineering models they are usually represented as a diffusion-like
transport process in one-point statistical models (Savill*). Durbin* argued that such
approximations might be incorrect because they imply that the external turbulence
would have a greater effect on the boundary layer when its length scale is increased.

The third major area of controversy about the initiation and persistence of turbu-
lence concerns the cycle of growth and decay of fluctuations in turbulent boundary
layers near a rigid surface (or ‘wall’). There are minor differences between the mech-
anisms proposed for the lower range of the turbulent Reynolds number (Re), but a
major difference in the proposed self-generation mechanisms when Re becomes very
large. When Re . 104, as many numerical simulation and laboratory measurements
have demonstrated, instabilities in initially laminar boundary layers become nonlinear,
and then develop into longitudinal vortices. These deflect upwards and downwards
the mean spanwise vorticity of the boundary layer, causing low-speed and higher-
speed strips with associated elongated vorticity fields. These become unstable, grow,
and disrupt the local flow structure; significant velocity fluctuations are generated
that may extend into the outer layer; following their decay, the streamwise vortical
regions re-form once more (Jimenez*; Sandham*; Hussain*). In order to describe the
possible mechanisms, elements of the flow field have been studied in isolation, e.g.
by conditional sampling (Hussain*), or by proper orthogonal decomposition of the
measured two-point velocity correlations (Holmes et al. 1996). Different techniques
have then been used to analyse these fields, for example by local stability analysis or
by calculating the temporal evolution of a few low-order modes.

While the main picture, as described above, is common to all investigations, there
are some significant differences among the models, particularly regarding whether the
near-wall dynamics is a pure instability mechanism quite independent of the fluctu-
ation velocity field in the outer part of the boundary layer (or channel flow) (Hussain*),
or whether random fluctuations in this outer field stimulate resonant modes near the
wall. This interaction may be essential to sustain the cycle of growth and decay of
the ‘near wall’ vortical structures (Sandham*). Apparently no experimental evidence
yet exists that leads to a clear distinction between the validity of these concepts.

In turbulent boundary layers the continued generation of small-scale instabilities
or resonances near the wall at moderate Re means that the flow is susceptible to
being controlled, for example by adjusting small panels up and down to modify
the growth of instabilities (Hussain*; Holmes et al. 1996; Carpenter*). If the eddy
structure undergoes substantial change at very high Reynolds number, as indicated
by experiments, will the effectiveness of such wall techniques be reduced? Another
turbulence-control technique is the introduction of long-chain molecules which reduce
the frictional drag of liquid flows in large pipelines; since the mechanism here is
through ‘damping’ of eddy straining, it should not change qualitatively at high
Reynolds number, as is observed (Sreenivasan*).

In most turbulent free shear flows, the effect of instabilities on the mean flow and
turbulence is surprisingly not generally considered to be so significant, because they
occur on the edges of the free shear layer. In these flows the energy of the turbulence
is mostly generated in the interior of the flow where there is a strong local interaction
between the gradient of the mean velocity ∇U and the Reynolds stresses uiuj . The role
of instabilities may be particularly significant on the edges of clouds and plumes when
influenced by body forces and external turbulence (e.g. Baht & Narasimha 1996).
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3. New measurements and simulations
The most universal and fundamental aspects of turbulence, namely the small-scale

statistical structure when Re is large enough for a significant inertial, spectral subrange
to exist, can still only be studied in detail through measurements, because numerical
simulations and theoretical models are only approximate. Furthermore, no facilities
yet exist in which it is possible to mount controlled experiments with a well-designed
velocity field at very high Reynolds numbers (Nieuwstadt*); the measurements still
have to be made in artificial turbulent flows constructed for other purposes, such
as in one part of an aeronautical wind tunnel where Re ∼ 104–105 (Arneodo et al.
1999; Saddoughi & Veeravalli 1994), or in strong jets (Van Atta 1991), or else in the
atmospheric boundary layer where Re & 105. As explained in § 1, many measurements
in these flows of the nth-moments ∆un(r) of the velocity difference between two points
separated by a distance r have shown that for n = 2, 3, . . . , the results approximately
follow the predictions of (2a). The departures in the theoretical exponent of the
higher-order structure functions from the predicted values were attributed to the
fluctuations in the energy dissipation rate ε following Kolmogorov’s modified theory
(1962) (recently reviewed by Sreenivasan & Antonia 1998).

Recently, large wind tunnel and atmospheric measurements have related the small-
scale motions to the velocity field as a whole, u(x, t) for example by calculating the
conditional nth-order moments of components of ∆u(r) at each value of |u|, denoted

by (∆un; |u|) (Praskovsky et al. 1993; Tsinober*; Sreenivasan*). These results showed
some dependence of the amplitude and even the structure of small-scale eddy motion
on the large-scale eddy motion. In this context we note that Nie & Tanveer (1999)
rigorously derived, from the Navier–Stokes equation, Kolmogorov’s four-fifths law
for the third-order structure function (equation (2a) for n = 3 with C3 = 4/5) without
Kolmogorov’s assumption of local isotropy. Hence, some elements of the small-scale
structure can persist even in the presence of large-scale effects. We conclude that the
mechanisms for direct connections between large and small scales in different types
of turbulence will only be better understood with more detailed and different types
of statistical measurements.

These new experimental and theoretical results are nevertheless consistent with
earlier studies showing significant amplitudes of the non-isotropic component of the
second- and higher-order moments of small-scale turbulence that were dependent on
the large-scale mean shearing motion or the non-isotropic, non-Gaussian eddies of
natural convection (Saddoughi & Veeravalli 1994; Hunt, Kaimal & Gaynor 1988).
Other kinds of local conditional statistics taken effectively at two points were re-
ported that were designed to elucidate the detailed structures of small-scale eddies at
high Re. Wavelet analysis of these measurements is a natural generalization of the
structure-function analysis of these measurements providing increased information
both in physical and scale spaces (Arneodo et al. 1999; Brasseur*). For example, the
wavelet transform was applied to the study of the dynamics of the Burgers equation
leading to a clear demonstration of how a single localized characteristic flow structure
in the field (in this case in the form of a shock) can all by itself determine the high-
wavenumber energy spectrum, and how energy transfer can be studied concurrently
in both scale and physical spaces (Brasseur*). Furthermore, by applying wavelet
methods to experimental, one-point turbulence velocity data, Arneodo et al. (1999)
were able to show that if the turbulence is a multiplicative cascading process (which
it may well not be), then this process is not self-similar. From their atmospheric
measurements of low-order and higher statistics, Kholmyansky & Tsinober* and
Sreenivasan* deduced that small-scale turbulence may not be completely self-similar
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at the Reynolds numbers currently attainable. However, flow visualization studies in
the laboratory (Schwarz 1990; Douady, Couder & Brachet 1991), casual observations
in the environment of dust, bubbles, clouds etc., and numerical simulations at lower
Re (Passot et al. 1995; Jiménez et al. 1993; Ohkitani*) have shown that character-
istic structures exist in the form of rolled up vortical layers and elongated vortices.
However, there is still no conditioned experimental data for these structures that is
sufficiently detailed for their precise analysis.

Although flow visualization provides multi-point qualitative information this can
only be provided systematically by making measurements at three or more points
simultaneously. Warhaft* showed how three-point velocity and temperature measure-
ments in active grid turbulence (which produces enough energy to simulate many
features of high-Re turbulence) could demonstrate quite clearly the existence of
‘scalar/vortical fronts’ on thin surfaces across which there are intense scalar gradi-
ents (see Mydlarski & Warhaft 1998; Chertkov, Pumir & Shraiman 2000). This is
consistent with numerical simulation and theoretical concepts about the first stage of
intense scalar mixing, the second stage being the rolling up of these fronts leading to
intense local mixing (Nieuwstadt*).

A complementary approach to understanding turbulence structure is to consider
how the relative velocity ∆u(t) and the distance ∆ between pairs of fluid particles vary
with time t (and the initial spacing ∆0 at t = 0). Richardson’s (1926) atmospheric
measurements, that helped stimulate the Obukhov–Kolmogorov theory, suggest that

∆2 = G∆εt
3, (7)

when ∆ is smaller than the turbulence length scale L. This statistical relation, which
has great practical value for estimating concentration fluctuations (Derbyshire, Thom-
son & Woods*), can now be understood better in terms of the eddy motions in the
turbulence: an approach of practical value on the scale of synoptic storms. (A col-
laboration between industrialists and academics was initiated during the programme
to use this approach for establishing the limitations of Richardson’s law.) Laboratory
experiments (albeit at quite low Re . 102) of Tabeling* using the new techniques of
simultaneously measuring ∆ and the pattern of the flow field (with particle imaging),

showed how ∆2 increases mostly because of sudden separation events between a min-
ority of particle trajectories, the majority of them remaining close to each other for a
very long time. This is consistent with simulation results and the approximate theory
of Fung et al. (1992) who argued that these rare, sudden and intense separation events
occur in saddle-point regions where streamlines converge and diverge most rapidly
(where the ‘scalar fronts’ described above tend to form). It may be because of the
scarcity of these particle separation bursts that, in some flow fields, the Richardson
constant G∆ in equation (7) is of the order 0.1 or smaller (see also § 4.2). There remains
much uncertainty about this fundamental constant and the generalization of (3) to
high moments, that can only be settled by experiments at high enough Re for there to
be a wide self-similar ‘inertial range’ (cf. Voth, Satyanarayan & Bodenschatz 1998).

Turbulent flows in practice are inhomogeneous and bounded either by a rigid wall
or by a region of non-turbulent flow in which there might be some kind of laminar
motion or none at all. In the latter case, there is a transition between the turbulent and
laminar flow, with a randomly moving ‘interface’ separating the rotational velocity
fluctuations of the turbulence from irrotational motion, which decay to zero over a
distance Lx from the interface. Recent experiments and simulations for both these
types of boundary are more detailed than earlier studies and suggest that new concepts
and models are necessary for these critical boundary regions of turbulent flows.
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Although the structure of turbulence near a ‘wall’ in the absence of mean flow has
only been studied in detail over the past 20 years, its main features (for convective
turbulence or mechanically generated turbulence) have now been established through
similar findings in experiments, e.g. Kit, Strang & Fernando (1997), numerical simu-
lations, e.g. Perot & Moin (1995a, b), Banerjee*, and approximate models, e.g. Craft &
Launder (1996): namely that the length scales of eddy motions parallel to the wall are
largely determined by the length scales of eddy motion away from the wall Lx (e.g. as
in thermal convection, Castaing et al. 1989), while the length scales normal to the wall
are determined by the distance (x3) to the wall. The normal velocity decreases towards
the wall and parallel components increase (by up to 30%) until they are within a
fluctuating shear layer of thickness L � Lx. For Re below about 103, the surface
shear layer produced by the energy-containing eddies is laminar and its thickness is
of order Re−1/2. As Re increases above about 104, this overall structure, including
the form of the spectra, does not change, but the shear layer at the wall changes
character and its thickness L becomes approximately proportional to (logRe)−3 as
opposed to Re−1/2. For a smooth wall there is a very thin inner viscous layer of
thickness h∗ ∼ ν/u∗ where u∗ is the friction velocity of the energy-containing eddies.
(See reviews in Plate et al. 1998.)

By contrast, when there is a mean shear flow parallel to the wall the eddy structure
is quite different and has a greater qualitative change as Re increases, especially
in its relation to the eddy structure far above the wall. Measurements have been
recently reported of the spectra Φ11, Φ22(k1) of the streamwise and spanwise velocity
fluctuations in turbulent pipe flows of radius h for Re up to 104 (Kim & Adrian 1999)
and in the atmospheric boundary layer of thickness h for (Re > 105) (e.g. Hoxey
& Richards 1992; Fuehrer & Friehe 1999). These confirmed over different ranges
of x3 the main result of the earlier studies of Marušić & Perry (1995) and others;
in pipes the range was close to the ‘wall’ (i.e. h∗ < x3 < hs ∼ 0.2h), while in the
atmosphere the range was very close to the ground (z0 < x3 < hs ∼ 0.01h), where
h∗/h ∼ 10−3 and z0/h ∼ 10−4. In both cases the large-scale spectra had an invariant
self-similar structure for eddy scales (k−1

1 ) greater than the distance (x3) from the wall,
but less than a long streamwise length scale (Λ) i.e. (2π/Λ) > k1 > (2π/x3). It was
found that the spectra (Φ11(k1), Φ22(k1)) = (C∗11, C∗22)u

2∗k−1
1 , where u∗ is the surface

friction velocity, and C∗11, C∗22 are approximately independent of x3/h.
Not only is the depth hs of the surface layer, where this self-similar spectra is

observed, sensitive to the value of Re, but so is the value of Λ/h. In both cases
the maximum value of Λ is significantly greater than both h and the scale of the
eddy structures in the outer part of the flow (which can be explained in terms of
the formation of ‘streaks’ by vertical fluctuations interacting with the mean shear,
Jimenez*). At lower Re, Λ varies with x3/h quite rapidly in a pipe (Kim & Adrian
1999) and less so in a boundary layer, but in both cases reaches about 18h when
x3/h ∼ 0.2h, whereas in the very high Re range of the atmospheric boundary layer Λ
is approximately equal to 3h–5h and does not vary significantly with z. (This formula,
proposed by Davenport (1961), has been used by wind engineers ever since!) These
experiments confirm the theoretical model of Townsend (1976) and Perry* that at very

high Re the variances of the parallel components u2
1, u

2
2, obtained from integrating the

spectra, vary in proportion to u2∗[ln(Λ/z) + constant]. Most measurements now agree
that in this range of wavenumber the spectra for the normal velocity component
Φ33(k1) and the co-spectra of the shear stress Φ13(k1) are constant with wavenumber,
i.e. Φ33, Φ13 ' (C∗33, C∗13)u

2∗. So on integration these variances are proportional to
u2∗. This is consistent with the definition u2∗ = −u1u3 and with the general result for

high-Re shear flows that u2
3/(−u1u3 is of order unity.
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These statistical results are also broadly consistent with the main features of the
eddy structure, namely the elongated contours of instantaneous high and low stream-
wise velocity, found in numerical simulation (Jimenez*) and atmospheric observations
of elongated streamwise vortices, and with the sloping eddy structures expanding in
diameter as the distance from the wall increases seen in laboratory experiments
(Perry*).

The difference between the magnitude of Λ/h and its variation with the normal
distance (x3/h) as Re increases much above 104 is consistent with the possible change
of the eddy structure. A more vigorous vertical exchange of large eddies from the
outer region of boundary layers towards the wall is seen in the atmosphere in the
form of moving ‘cats paws’ on water surfaces or cornfields, an increased value of the
cross-correlation R̂33(x3, x3), defined in (6) (Brown & Thomas 1977; Hunt & Morrison
2000), and an increase in the vertical turbulence (u2

3) with height (z) in the surface
layer (Högström 1990).

The turbulence in the outer regions of a boundary layer and throughout the whole
thickness of free shear flows is dominated by the interface with the exterior non-
turbulent flow. An industrial participant regretted that despite its importance for
aeronautical applications this aspect of inhomogeneous turbulence has received far
less research attention than that near the wall. As Lumley* remarked, the dynamics
of these interfaces also determine how local regions of intense vortical motions evolve
within a general turbulent flow when Re is very large. Recent analysis by Bisset et
al. (1998) of previously published numerical simulations of wakes (Moser, Rogers
& Ewing 1998), has shown that turbulence statistics have a local structure when
expressed in terms of the normal distance nI from such interfaces. Even though
the Reynolds number of these simulations were not large (Re ∼ 102) it was found
that the conditional profiles of the variables as a function of nI vary sharply near
nI = 0 because of the very active small-scale motions at the interface; the vorticity
variance ω2(nI ) and dissipation ε̄(nI ) were approximately constant for nI/h . −0.01,
and vanished for nI/h & 0.01h, showing that the interface is even thinner than the
expected scale of order Re−3/4. Even the large-scale variables such as the conditional
mean velocity Ū and temperature T̄ also have sharp jumps at the interface. The
computed flow fields show how large scales bring ‘fresh’ fluid from the interior of the
region to the interface where it is mixed both at saddle-point regions (defined with
respect to the moving surface) and at engulfing nodal regions at the back of the large
folds in accordance with the experimental results of Ferré et al. (1990) and Gartshore
(1966).

These results should help explain and improve some of the ad hoc steps taken in
numerical calculations of interface processes which largely ignore the intermittency
of the turbulence. The rate of boundary entrainment Eb or slow movement outward
of the mean interface position, i.e. Eb = dx3I /dt is approximated by a diffusion-like
process in the models (Turner 1986). But since the eddy viscosity νe outside the
interface is zero, this would mean Eb = 0. Therefore, as explained by modellers
(Leszchiner*), a small non-zero value of νe has to be assumed, although its magnitude
has only a small effect on Eb (cf. Cazalbou, Spalart & Bradshaw 1994). Further studies
are needed to resolve the uncertainty in the value of Eb for turbulent layers, which
experimenters and modellers find is of the order of u∗, the r.m.s. velocity fluctuation.
George* on the other hand argued that Eb is determined by a weak diffusive process
and is much smaller, being of the order u∗(u∗/U0) (George & Castillo 1994).

These discussions about the structure of the fluctuating velocity field at the wall
and at the outer interface in turbulent boundary layers are related to the current
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controversies about the form of the mean velocity profile normalized on the surface
friction velocity, U(n∗)/u∗, where n∗ = x3u∗/ν∗. Since its discovery by von Kármán
(1930) the profile has generally been accepted as having a logarithmic form, i.e.

U/u∗ = Aln(n∗) + B, (8)

where A ' 2.5 and B ' 5.6 are experimental coefficients that were assumed to be
effectively invariant with Reynolds number for Re & 103. There is a similar log profile
over rough surfaces. The form (8) is now questioned, firstly by close examination of
new measurements in high-Re turbulent boundary layers (e.g. those of Zagarola &
Smits 1998), and secondly by reconsidering similarity theory, which leads Barenblatt
& Chorin (1998) to propose that the data are better described by a ‘power law’ profile
of the form

U/u∗ = A′nα∗ + B′, (9)

where α is a function of Re. The largest differences between (8) and (9) (which are
of the order of 10–20%) appear at locations where n∗ . 102. Perry* and other ex-
perimenters have commented that this is where the measurements are most uncertain
because, at very high values of Re, the measurement points are so close to the wall
that the accuracy of the measurement is not great enough to distinguish between the
formulae. However these differences matter because even small changes of say 3%
in the pressure drop along pipes or in the skin friction of aircraft are economically
significant. Establishing the form of this universal near-wall profile is also considered
essential as a boundary condition for many widely used statistical models applied to
this kind of turbulent flow (see § 5).

4. Eddy structures
4.1. Dynamics

We review here and in the following section the various ways in which progress
in dynamical and statistical calculations are contributing to the basic problems of
turbulence, set out in § 1. Because the full flow field at high Re can neither be calculated
analytically nor simulated numerically, various idealizations and approximations are
made in constructing theoretical models. Note that even where complete simulations
are possible (as they are for Re . 103), theoretical models are still being actively
developed to understand the flow, to extend the statistical results to higher values of
Re and to provide methods for faster practical calculations.

There are two main theoretical approaches. One, described in this section, is to
focus on the internal dynamics and external interactions of typical observed forms of
eddy structure. In some studies the eddy flow fields are idealized in order to simplify
the analysis. The other approach, described in § 5, is to calculate in some simplified
way the dynamics of an approximation of the overall flow field, usually in terms
of its representation by a set of defined functions, e.g. its Fourier coefficients. The
objective of either type of calculation is usually to derive or explain certain statistics
of the whole flow, e.g. spectra, dissipation and transfer of energy and the probability
distributions of the velocity field.

Studies of eddy structures are assisted by experiments and numerical simulations
of the interactions between particular isolated vortical motions and surrounding flow
fields that are characteristic of larger-scale structures within a turbulent flow (e.g.
Couder*). The intrinsic assumptions involved in overall dynamic models (see § 5), can
be examined by studying how the turbulence responds to a narrow band of forcing
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frequencies or step perturbations (i.e. the relaxation process). Revealing experiments
of this kind were conducted by Kellog & Corrsin (1980) and and are now recom-
mended as an essential element in improving models of turbulence spectra (Adrian
& Moser 2000).

Much research continues to be based on the analysis of how small perturbations
with random velocity and vorticity fields, u(x, t),ω(x, t), with an integral scale l develop
with time (t) in a more energetic velocity and vorticity field U ,Ω with length L � l
(Hunt*; Cambon*; Leonard*). Initially, the strain rate of the large-scale fields is
greater than that of the small scale field u, i.e. (u/l)/S = µ� 1 where S = U/L and
µ is a small parameter. Studies along these lines show firstly how structures in the
small-scale field evolve, secondly how they may react back on the large-scale field and
thirdly how they affect the overall dynamics and statistics of turbulence (e.g. Cambon
& Scott 1999).

These stages can be explained in terms of the contributions of the large- and small-
scale fields in the vorticity equation. The linear terms, caused by the direct interaction
of the fields, whose magnitude can be characterized as γ

L
µS2, are ∇∧ (U ∧ω+ u∧Ω),

and the nonlinear term caused by self-interaction of the small-scale fields, whose
magnitude is γ

NL
µ2S2 is ∇∧ (u∧ω− 〈u∧ω〉), where the average operation is denoted

by 〈 〉 as it must be taken over the large scale L. Here γ
L

and γ
NL

are coefficients of
order unity that depend on the nature of the interaction.

The basic form of the large-scale straining may be characterized by its second-order
invariant II , where II is normalized on the squares of the symmetric strain ratio and
the vorticity, i.e.

II =
(∂Ui/∂xj)(∂Uj/∂xi)

Σ2 + 1
2
Ω2

=
Σ2 − 1

2
Ω2

Σ2 + 1
2
Ω2
, (10)

where

Σij =
∂Ui

∂xj
+
∂Uj

∂xi
, Σ2 = ΣijΣji, Ω2 = |Ω|2.

It is also convenient to define the normalized third invariant

III =
(∂Ui/∂xj ∂Uj/∂xk ∂Uk/∂xi)

(Σ2 + 1
2
Ω2)2/3

. (11)

Consider the case where II has a significant component, i.e. II + 1 > µ, then it is
found that (except if ∂Ui/∂xj is perfectly axisymmetric) the linear amplification of
the non-uniform vorticity ω of the small scales leads to the formation of distinct thin
layers, or sheets, parallel to ω and aligned in the direction of the strain, which rotate
if Ω 6= 0 (e.g. Betchov 1956). This increases the magnitude of the nonlinear term
and in general γ

NL
increases faster than γ

L
. Since ‘sheets’ of small thickness tend to

have a finite width, they begin to roll up and distort in other ways by self-induction
(through the term (u · ∇)ω) (Kida & Tanaka 1994; Passot et al. 1995; Kevlahan &
Hunt 1997). Scalar fields are distorted by these motions into similar pattens of planar
and rolled-up sheets (Brethouwer & Nieuwstadt*).

The straining produced by the rolling-up weakens the part of the sheet that is
feeding into the roll-up, which therefore tends to become an isolated vortex structure
(e.g. Pullin & Saffman 1998). In some circumstances if the initial small-scale velocity
field is a coherent structure with a particular orientation and symmetry with respect to
the axis of an irrotational strain, the nonlinear term does not grow as fast as the linear
term (Gibbon*; see also Lundgren 1982) (i.e. γ

NL
� γ

L
), for example if wide vortex

sheets or tubes are formed. In this special case the vorticity cannot grow without
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limit because the form of the small-scale flow is generally unstable to even smaller-
scale levels of fluctuation which can grow exponentially on this distorted but slowly
changing structure, e.g. as Kelvin–Helmholtz-like billows, provided viscous effects are
small enough locally (Passot et al. 1995). Both these types of nonlinearity, operating
on the time scale S−1, tend to limit the growth of ω2 and to amplify those components
of the velocity fluctuations which the linear distortion tends to suppress (e.g. normal
to the mean velocity in a shear flow). The reduction of anisotropy by direct nonlinear
mechanisms in straining flows leads to different results than statistical modelling based
on the ‘scrambling’ process of Rotta (1951). For example the components amplified
by the linear process are not correspondingly reduced by the nonlinear process.

The growth of ω2 can also be limited by another mechanisms: when the stretching of
the vorticity extends beyond the scale L over which the large-scale strain is correlated,
then the effective strain is weaker because it has a random orientation and magnitude
(Leonard*). This limiting process also takes place on the strain time scale S−1. The
recent numerical study of Ohkitani (1998) shows that the mean-square growth of
vorticity is less than that of the length of fluid elements l2, which is consistent with
the existence of these self-limiting mechanisms.

The growth of the small-scale turbulence affects the non-uniformity of the large-
scale strain field (i.e. ∇∇U ). This provides another mechanism for the limitation of the
growth of small scales. The nonlinear self-induced terms ∇∧〈u∧w〉 at the large scale L
affect the vorticity on this scale, which can grow until a significant perturbation in the
large structure U develops, such as a set of closed streamlines. This greatly limits the
straining of the small scales (Kerr & Dold 1994; Nazarenko, Kevlahan & Dubrulle
1999). This example of an upscale process, which has been verified experimentally
(Couder*), requires a stable large-scale flow with a significant amplitude for the large-
scale perturbation to develop driven by the small-scale turbulence. (See also Sulem et
al. 1989.)

Where the large-scale straining is purely rotational, e.g. with vorticity Ω3, then
II ' −1. This motion has no direct stretching effect on the vorticity of the small-scale
turbulence on a time scale S−1; it merely rotates the vorticity and velocity fields which,

for example, leads to oscillations in the ratios of the moments (u2
1/u

2
2) if the turbulence

is initially anisotropic. On a longer time scale TL = Lx/u0, the small-scale turbulence
increases the separation of fluid elements by a distance ∆3 in the direction of Ω. Since
this nonlinear process amplifies the vorticity component ω3, in the direction of Ω, in
regions where ∆3 > 0 and reduces ω3 in regions where ∆3 < 0, vortical structures
emerge parallel to Ω. Furthermore, those having the same sense of vorticity as Ω are
stabilized against small fluctuations by the large-scale rotation, while those with the
other sense do not tend to form and are unstable (Cambon*). Where these structures
are formed very close to each other, they tend to rotate around each other and to
merge into larger structures (e.g. Hopfinger, Browand & Gagne 1982). This is one
of several examples of where, as certain eddy structures form, they tend to merge
with others nearby and suppress other types, both effects tending to amplify the local
gradients of vorticity at the edges of the structures.

In simulations of the development of an initial distribution of vortices at Re ' 0.150,
Ohkitani* showed how the vorticity was amplified in the form of sheets which then
rolled up quite rapidly and, through viscous diffusion, turned into a distribution of
elongated vortices or ‘worms’. These persisted until the turbulence finally decayed.
Despite the relative brevity of the sheet-roll-up phase, his calculations showed that
this mechanism provided more of the transfer of energy to small scales than the
longer lasting ‘worm’-like phase. Perhaps this explains why the rolled-up vortex sheet
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in an extended straining flow (recently reviewed by Pullin & Saffman 1998) can only
persist and be continually regenerated at very high values of Re (such as seen by
traces in atmospheric and oceanic turbulence) and not at the lower values of Re that
can be directly simulated numerically.

Recent theory supported by numerical simulations and experiments has revealed
more about the dynamics of these small but mature vortices, especially how they
contribute locally to the role of dissipation of energy ε and how, outside them,
they induce helical streamlines and straining fields which affect other vortices (e.g.
Okhitani*; Kida, Miura & Adachi 2000; Douady et al. 1991, Vassilicos 2000a). It is
found that these vortices have a finite length (which can be as large as the integral
scale at low Re), are not very curved, and have a finite lifetime; these effects may
be caused more by the growth of instabilities within the vortices stimulated by the
random fluctuations in the surrounding flow than by strong mutual interactions
between vortices (Verzicco & Jiménez 1999; Melander & Hussain (1993); Miyazaki
& Hunt 2000). At high enough values of Re, this breakup stage could presumably
be followed by a new cycle of sheet formation–roll-up–vortices–breakup; this could
occur everywhere and at random places throughout the flow. The role of ‘background’
fluctuations outside the structure can be significant in all these stages (Hunt*; Tsinober
1998). Chertkov et al. (2000), and Ooi et al. (1999) have shown how different stages
of this cycle can be mapped on to a graph of invariants of the velocity strain field
(‘Q–R’ or II–III plots) from numerical simulations (see also Tsinober 1998). Hunt*
suggested that this provides a semi-deterministic model for the natural time scale of
the small-scale eddy motions.

Understanding how large or intense the structures grow and the different time
scales at which they break-up affects how they contribute to the overall dynamics
and statistics of the turbulence. Some investigators have suggested on theoretical
grounds (Hunt*), others on the basis of studying vortices in two-dimensional flows
(Kiya, Ohyama & Hunt 1986) and low-order model behaviour of boundary layer
eddies (Holmes et al. 1996), that most vortical structures move round each other,
so that their interactions are long range and on average not very strong (see § 5).
On the other hand Hussain* and Moffatt* suggested that strong interactions (when
the helicity integral of the structure changes) might occur sufficiently often to affect
the dynamics and especially the extreme values in the probability distribution. A
new analysis by Moffatt* of flow vortices grouped in two anti-parallel pairs and
orientated so that they collide with each other at right angles showed how, even when
viscosity is included in the calculation, the velocity and vorticity tend locally to an
infinitely large value at a finite time t∞ that is independent of viscosity even when Re
is finite. This specific calculation of a realizable flow (assuming it remains stable and
the critical symmetry of the vortices is exact) is consistent with some earlier theory
that such singularities could exist (Leray 1933; Pumir & Siggia 1990). Numerical
simulations conducted during the programme by Ohkitani & Gibbon (2000) showed
that a class of stretched solutions identified by Gibbon, Fokas & Doering (1999) leads
to a finite-time singularity.

Mathematical studies are helping to define bounds and general properties of such
singularities that form in a finite time. Doering & Gibbon (2000) proved during their
stay at the INI that there cannot be a finite-time singularity of the Navier–Stokes
equation if the ratios between a set of statistically defined microscales, all smaller
than the Taylor microscale, are increasing fast enough with time. Constantin (2000)
obtained results on the inviscid Euler equations using the Cauchy–Weber relations
(for the vorticity and velocity of distorted fluid line elements) which may point to the
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absence of finite-time, geometrically regular, self-similar singularities. The study of
singularities and near-singularities is inherently linked to the pivotal dependence of
dissipation on Reynolds number (Taylor’s conjectured equation (1)) and to the way
that this dependence is determined by the flow geometry of the underlying velocity
field (see Doering & Constantin 1998; Flohr & Vassilicos 1997; Angilella & Vassilicos
1999; Kerswell 1999).

The mechanisms for the growth and interaction of the largest-scale eddy structures
are necessarily studied in the context of particular types of turbulent flows because
these structures always retain some influence or ‘memory’ from initial or boundary
conditions (see § 5). Nevertheless, where the large-scale eddies are free to move and
interact with each other, and whether produced homogeneously at some initial time
or in some local region (as in a boundary layer), it is found that they have some
general features in common. In both two- and three-dimensional turbulence there is
a greater tendency for large vortical eddies to grow by the mechanism of boundary
entrainment (discussed in § 3) and by engulfing small eddies, than to be diminished by
breakup caused by occasional collisions with other large eddies. There are stronger
tendencies for three-dimensional as compared to two-dimensional vortices to become
unstable and to interact (even at a distance) with other structures. The net growth
rates of these structures is much less than for two-dimensional vortices, which is
consistent with statistical results (e.g. Lesieur 1990). These mechanisms shed some
light on the unresolved questions (Herring*; Davidson*) about the nature of long-
range effects in two- and three-dimensional turbulence and the convergence of volume
integrals Ik =

∫ ∞
0
rkR(r)dr of the cross-correlations R(r) = u(x)u(x+ r). Davidson*

considered the angular momentum of large but finite volumes of isotropic turbulence,
whose large eddies have small enough initial momentum that their energy spectrum
E(k) is much less than O(k2) – Saffman (1967). He gave a new argument for why
Loitsyanskii’s (1939) integral I4 is finite, and approximately constant. This integral
plays a critical role in statistical models discussed in § 5.

4.2. Kinematics and statistics of eddy structures

The objective identification of these ‘structures’ and the assessment of their contri-
butions to the overall statistics of a flow is as important as their dynamics. There
are three main approaches to the identification problem, according to the sampling
method used and the type of eddy being analysed (Bonnet & Glauser 1993). The
first uses statistics, such as two-point Eulerian correlations to extract the forms of
modes defined in fixed coordinate systems (e.g. Devenport’s* study of eddies in the
near wake). The second is based on measurements of individual realizations of the in-
stantaneous fields. With only limited measurements available at high Re, well-focused
identification methods using conditionally sampled data are necessary; new develop-
ments in the measurement and analysis of the multiple-scale properties and individual
events using wavelet analysis were reported by Arneodo et al. (1999) and Nicolleau
& Vassilicos (1999) (see also Silverman & Vassilicos 1999). When complete data of
flow fields are available (which are only obtainable from numerical simulations and
therefore at moderate values of Re), the forms of eddy structures can be evaluated in
terms of tensorial invariants of the velocity gradient field (§ 4.1). For example, vortices
near the wall in boundary layers have been identified using as the threshold criteria
various combinations of II, Σ2, Ω2 (Hussain*; Perry*; Lesieur*). Small-scale vortices
in homogeneous turbulence were identified, for example as regions of low pressure,
by Kida et al. (2000).

The third ‘optimal’ type of approach is to combine the first two, for example by
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using data at a point from a single realization, in combination with correlations from
an ensemble, to infer the local eddy structure. To test the conjecture by Tabeling*
that many vortices may exist close to each other, kinematic criteria would be needed.
He linked this to Novikov’s recent concept of a ‘complex vortex’ derived from
conditionally averaged analysis of the Navier–Stokes equations.

Comparing different types of analysis, it appears that the ‘modal’ approach based
on statistical data is most suitable for large eddies in inhomogeneous flows whose
position in the flow is relatively fixed (e.g. close to the wall, or relative to the centre
of a wake), and for analyzing their temporal evolution (Holmes et al. 1996). Other
approaches are needed where the eddies move randomly and interact with others
(Fung et al. 1992). In meteorology, where Lagrangian forecasts of the evolution and
position of low-pressure vortical motion is one of the main objectives of modelling,
variations in eddy structures have been identified in terms of changes in the capacity,
or ‘fractal’ dimension (Methven & Hoskins 1997) and to simple measures of the
random movement of the structures in terms of their departure from straight-line
trajectories over various periods of time (van der Waal & Milton 1999).

Theoretical models, flow visualization experiments, wavelet analysis of measure-
ments, and some numerical simulations, have all indicated how, for a scale less than the
integral scale of turbulence Lx, eddies have various characteristic structures. Although
there are differences between the mathematical representation of eddies, all methods
tend to agree about their broad aspects such as the size and energy of the structure.
However, at a detailed level, each method emphasizes different features; for exam-
ple Fourier and wavelet transforms or spectra are sensitive to discontinuities and
accumulation regions (Lundgren*; Leonard*), while multi-point cross-correlations
describe the inhomogeneous structure and its dynamics (using proper orthogonal de-
compositions and modal dynamics). Hausdorff fractal dimensions, Hölder exponents
(Eyinck*) and capacity dimensions (Vassilicos*) may be used to reveal scaling laws for
‘wiggly’ variables that are fractal and/or have accumulation regions with self-similar
structures.

In some cases and for certain types of variables, the measures are related to each
other. For example the exponent ζ in the cross correlation 〈∆u2(r)〉 ∼ rζ is exactly
related to the exponent p in the spectrum E(k) ∼ k−p (i.e. p = ζ + 1), and to the box
counting dimension, D′k . In fact a smaller range of self-similar scales is required for
one measure rather than the other (Vassilicos & Hunt 1991). Other examples were
discussed where the self-similarity can only be detected at finite Re by plotting the
data as one set of the higher moments against others (e.g. Ciliberto, Leveque & Ruiz
Chavaria 2000; Vulpiani et al. 2000; van der Water et al. 2000).

In some cases the exponent p of the full spectrum E(k) for all eddy scales is
determined by the characteristic eddy spectrum, E(e)(k), i.e. E(k) ∝ E(e)(k). This is
consistent with measurements in turbulent shear flows (at moderate Re) where p ' 2
(Hunt & Carruthers 1990) and the small scales in the inertial range of the turbulent
flow (at very high Re) where p ' 5/3 (Moffatt 1984; Lundgren 1982). However, if
the typical eddy structures for a range of scales are statistically independent (Perry*;
Townsend 1976) and if the spatial and temporal distribution can be assumed or
derived from studying their generation (cf. Belcher & Vassilicos 1997) the spectrum
may be largely determined by the distribution of eddies. In general this occurs when
the distribution is quite flat and the singularities of the eddy spectrum are relatively
weak. Perry* and Hunt* showed how ‘space-filling’ elongated wall vortices in a
turbulent boundary layer imply that E(k) ∝ k−1, for a self-similar range of eddy scales
larger than those in the inertial range. These questions are not settled; Hatakeyama
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& Kambe (1992) have proposed a statistical model based on the independence of
elemental line vortices, which is not consistent with studies indicating dynamical
interactions of structures in the inertial subrange (e.g. Tsinober 1998).

It remains an open question whether, for the small scales, the full Lagrangian
spectra are also determined by the eddy spectra, i.e. ΦL(ω) ' Φ(LE)(ω) ∝ εω2 (Fung
et al. 1992; Malik & Vassilicos 1996). Such spectra are predicted by two-point closure
models based on the Lagrangian renormalization approximation (Kaneda 1993;
Kaneda*). Thomson* pointed out that the precise nature of these time-dependent
processes at the eddy scale greatly affect G∆, the normalized rate of separation of
particles in the inertial range of turbulent flow, in particular the greater the degree of
coherence the smaller the G∆.

5. Simulations and models of the full flow field
We review here developments in the calculation of various approximations for

individual realizations and statistics of the full flow field u, especially for very high-
Re flows. Approximations û(x, t) to the full flow field u(x, t), with error δu(x, t) are
calculated either in order to simulate individual realizations for particular initial
boundary conditions, as for example in environmental forecasting, or in order to
derive from the realizations, whether analytically or by summation, statistics of the
flow. This latter indirect approach is necessary when the statistics cannot be derived
from ‘statistical’ models that derive these quantities directly. There is growing interest
in different kinds of approximate models and simulations, including those based on
governing equations other than those of Euler or Navier–Stokes. Furthermore, fast
approximate simulation methods are of great practical use (e.g. Hanjalic*; Holm*;
Rodi*). The basic dynamical statistical studies of eddy structure of the previous
section can partly explain, and in some cases predict, the applicability of different
approximate methods for various types of flow.

Some guiding principles, to help researchers and users alike, have been proposed
based on the following set of non-dimensional parameters (Savill*; Hunt & Savill
2002).

(i) When calculating a turbulent flow, like any other fluid flow, it is necessary to
state the temporal and spatial domain. The dependence of the turbulence on the
initial conditions, or upstream boundary conditions if the turbulence is advected
into the domain, is defined by the residence time parameter α

T
= TL/TD , where the

time a fluid particle has spent in the domain is TD , and the natural time scale of
energy-containing eddies is TL = Lx/u0. (Note that α

T
may vary across the domain.)

(ii) The degree of non-equilibrium of the turbulence defined in a Lagrangian frame
moving with mean velocity is α

NE
= |P/ε− 1| ' TL/TD , where P and ε are the rates

of production and dissipation of energy respectively. Here TD is the time scale of any
imposed distortion of the turbulence, such as the time for elements to leave a turbulent
boundary layer and enter the wake behind an obstacle, or be compressed in a shock
wave – both being examples of aeronautical turbulent flows that are considered to
be unsatisfactorily calculated by the present generation of practical models (Hills &
Gould*).

(iii) Turbulence dynamics are intrinsically inhomogeneous when the integral scale
Lx is of the order of or greater than the scale ΛI over which the turbulence structure
varies (e.g. ΛI = (|u|2/∇|u|2 or Lx/∇Lx) (Durbin*). The degree of this non-locality is
defined by α

NL
= Lx/ΛI .
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(iv) In large eddy simulations (LES) of the flow field it is usual to filter out the
eddies with scales smaller than lf , a measure of this approximation being αf = (lf/Lx).

(v) In some models of the full flow field and stochastic simulations small-scale
dynamics are represented by random processes (Mason & Thomson 1992) with a
time scale τs, a measure of this approximation being αs = τs/TL.

Note that these measures (i–v) are based on integral-scale quantities of turbulence
because it is assumed that the models and simulations are being used primarily to
calculate the mean flow and energy-containing eddies. To some extent these quantities
also determine the smallest-scale motions even though the computations may not
describe them exactly (e.g. on the Kolmogorov microscale lk and time scale τk).

(vi) Most calculations are numerical and involve making approximations over
spatial scales and temporal discretization scales ∆x,∆t, a measure of the errors
involved being ∆x∗ = ∆x/ΛI . Current research indicates how, although many earlier
model calculations were greatly affected by numerical approximations, it is now
possible to reduce ∆x∗ and ∆t∗ to sufficiently small values, thanks to greater computer
power now available, and that most approximations or errors are caused by the model
assumptions rather than their numerical approximations (Hills & Gould*). Studies of
the errors of the filtering and discretization approximations have shown that for large-
eddy and stochastic simulations it is generally necessary that the discretization scales
are smaller than the filtering and stochastic time scales (i.e. ∆x∗ . 1

2
αf; ∆t∗ . 1

2
αs)

(e.g. Mason & Callen 1986; Guerts*).
There are three main areas of development in modelling the full flow field:
(a) answering some of the basic statistical questions about turbulence (such as those

in § 1) by reducing the number of assumptions made to calculate, at some defined
level of accuracy, key statistical quantities (such as the nth-moments of velocity at p
points, and s time events M(n;p,s));

(b) calculating low-order statistics (typically n 6 3; p 6 2, s 6 2) for non-stationary,
non-local turbulent flows near rigid boundaries and near interfaces with non-turbulent
or other kinds of turbulent or fluctuating flows;

(c) approximate simulations, especially reducing the errors in the resolved scales,
and improving the statistical or stochastic modelling of the subgrid-scale motions and
its conditional dependence on the larger resolved scales.

Since turbulence has different physical and functional forms (e.g. in the relations
between statistical properties) depending on the type of the flow (e.g. Lumley*), we
now consider models in the context of these types, classified in terms of the parameters
just introduced. General models and simulation methods need to be assessed over a
range of turbulent flows, whereas those that are designed to be applicable in a narrow
range should be assessed accordingly.

(a) Short time and rapidly changing turbulence (α
T
� 1, α

NE
∼ 1, α

NL
∼ 1). For a

short time t > t0 after turbulence is generated within a domain or is advected into
it (i.e. α

T
� 1) the nonlinear terms have only a small influence on the velocity field,

while distortions by linear effects, such as by gradients of the mean velocity, impact
on boundaries or body forces, may have a large effect. Note that, because of the
linearity, the turbulence is mostly sensitive to the initial conditions, though for some
types of distortion (such as mean shear) certain of the resulting turbulence statistics
are quite insensitive to their initial state. The linearity enables many features of the
turbulence to be calculated analytically, including even the first-order corrections in
the nonlinear terms. Research into these rapidly changing flows is progressing in
two main directions. First, increasingly complex forms of linear distortion are being
analysed, particularly where the scale of the turbulence Lx is larger than the distance
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ΛT over which mean strain is varying (Leonard*; Hunt & Durbin 1999) (i.e. α
NE
� 1),

or where combinations of distortion are being applied (e.g. mean shear and stable
stratification) (Hanazaki*).

Second, several complex nonlinear effects can be studied because, when α
T
� 1,

they are weak enough to be calculated by expansion methods, starting with the
non-stationary inhomogeneous linear solutions. This enables the growth of the back-
reaction of the turbulence on the mean or larger scale flow to be estimated, including
the growth of instabilities and waves, the development of large scale flows driven by
Reynolds stresses of distorted turbulent flow fields, and the effects of the distortion on
the nonlinear vortex stretching and advection (see § 4). The effects of these terms may
remain quite small for a large enough time (or distance) such that α

T
∼ 1, and the

linear processes can effectively determine the flow structure even in fully developed
flows. This is why these studies provide insights into fundamental mechanisms. They
also have more practical objectives such as to provide an exact limiting case as
a comparator for general statistical models or to calculate in detail the effects of
distortion on particular flows with given upstream conditions.

(b) Statistical models for small-scale fully developed turbulence. There continues to
be incremental progress in constructing ‘theoretical-physics’ models for calculating
moments M(n,p,m) of the small-scale velocity field, from the Navier–Stokes equation,
by making the fewest possible assumptions about the mechanisms and no explicit
assumptions about numerical coefficients (McComb 1990). Although the ultimate
aim is to describe the statistics completely (i.e. n, p, m→∞), at present the systematic
renormalization and perturbation methods are limited to computing Eulerian mo-
ments with n 6 3, p 6 2, in particular the spectra in the Kolmogorov inertial and
viscous ranges.

Earlier calculations in a fixed Eulerian frame using the direct interaction approxi-
mations (see Kraichnan 1959) needed to be modified to apply in a Lagrangian frame
in order to agree with the observed form of the inertial-range spectrum, in which
E(k) = αkε̄k

−p, where p ' 5/3. However in recent RNG calculations of McComb*,
in which a different initial assumptions are made, this modification is not necessary.
Although the amplitude αk agrees well with the measurements to within the 10%
accuracy of the experiments, there is no prediction about the small correction of p
dependent on the intermittency of the energy dissipation rate. Perhaps this is consis-
tent with Kida’s* conclusion that these methods provide satisfactory approximations
for second- (and presumably other low-) order moments because they only depend on
a subset of all the possible nonlinear interactions between Fourier modes or ‘eddies’.
These are not the most locally intense, such as those which lead to large fluctuations
in the dissipation rate and the small corrections to p.

There remains a question as to whether or how these models, which assume
independence between different components of the energy spectrum and in which the
dynamical interactions are quite ‘smooth’, are consistent with models of the velocity
fields of the local eddy structure (e.g. of rolled-up vortices) that may have the same
form of energy spectra. One reason why they are not inconsistent is because the
former perturbation model is only a valid solution to the governing equation for
velocity fields averaged and therefore ‘phase averaged’ over time scales of the order of
that of the local eddy scale τ(l) ∼ ε̄−1/3l+2/3, whereas local models fully satisfy these
equations over local time scales that are much smaller. Therefore if the velocity field
is analysed on a scale ∆x, only eddy length scales of the order of l would actually be
represented, where l ∼ ∆. There are independent eddy motions smaller than ∆x and
therefore these individual small eddies are smooth. However, as one observes in the



Developments in turbulence research 375

different scales of motion in plumes and clouds, mathematically the filtered velocity
is fractal in the sense that ∆u/∆x does not have a limiting value as ∆x/Lx → 0 and
∆x/`k →∞.

New approaches to statistical models for the higher moments n > 3 are being
actively developed because of their intrinsic interest and because of their application
in effectively defining the higher moments of the probability density function and the
structure of internal intermittency. In other words they are more closely connected to
the isolated extreme events, such as those discussed in § 3. The analysis by Proccaccia*
is a considerable extension of the Eulerian theory of third and higher two-point
moments, i.e. n = 3, p = 2. If Kolmogorov’s method of using the Kármán–Howarth
equation (see Frisch 1995), which links second and third two-point moments, is
reformulated to link higher moments, it is found that it is not mathematically
consistent. This is because the higher moments are limited by viscous processes in the
microscale range. However, new combinations of n and p can be defined that only
depend on the inertial-range scales, and are therefore independent of the Reynolds
number. No equivalent theoretical results have yet been derived for the cases of n > 3,
p > 2. Proccaccia’s approach is to extend the original approach of Richardson (1926)
and Batchelor (1952) to develop, using extra assumptions, a Lagrangian analysis for
the nth moment of the relative velocity of a fluid particle ∆un(∆t), at a distance ∆t
from the fractal trajectory of a reference particle.

Less ambitious and more local calculations on relative diffusion in a moving frame
of reference have been developed by Pumir* (see § 3) by considering the dynamics of
small numbers of fluid particles moving together. Such calculations may lead to more
information about the shapes of vorticity contours and relative velocities of particles,
and better estimates for the fundamental constant G∆ = ∆2(t)/εt3 (cf. § 4).

There is still an active stream of turbulence research that is mainly based on the
methods of statistical physics because of the difficulties of developing reductionist
theories based on the equations of motion. One observational justification is that joint
probability distributions for particular combinations of variables have similar forms in
different types of turbulence (e.g. Chatwin*). The theoretical basis essentially follows
from the arguments of Landau & Lifschitz (1959) and Batchelor (1953), quoted in
§ 1. As with other statistical research, the aim is to make general predictions based on
a few physical or statistical assumptions. For example the conceptual Parisi–Frisch
(1985) model for the formation of eddies as a fractal process shows consistency
between recent measurements of higher-order moments ∆un(r) for different values of
n(> 3), and intermittency variables. Model differential equations for the probability
distributions (and other stochastic variables?) are also providing links between these
moments (Gawedski*). Each of such artificial statistical models has good and bad
points; so far none of them can explain the differences between the moments of ∆u
when the relative velocities are parallel to and perpendicular to the displacement
vector r (van de Water*).

(c) Statistical models for the overall structure – two-point moments. Increasingly, the
solutions of engineering and environmental problems involving turbulent flows require
calculations of the spectra (or two-point moments) of the velocity. Also needed is
some knowledge of the sensitivity of calculations of one-point moments (such as
Reynolds stresses) to the variations in the spectra, anisotropy and inhomogeneity of
the turbulence (a possible source of error emphasized in the account of one-point
methods by Launder & Spalding 1972). The most extensively developed model for
spectra is the eddy damped quasi-normal Markovian (EDQNM) coupled differential
equation model for the second- and third-order moment M(2,2). The basic theory
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(e.g. Lesieur 1990) includes some ideas from statistical physics, for example the
relaxation time scale for relating second and third moments. For the case of isotropic
turbulence, an alternative approach is to use renormalization methods, which avoids
the assumption of this time scale (McComb 1990). EDQNM has been extended
to uniformly distorted turbulent flows, such as large-scale compression, shear or
stable stratification, etc. The method is consistent with linear theory for large strain
rates and has been extensively verified (Cambon & Scott 1999). In our notation
the conditions for this locally homogeneous theory are α

T
∼ 1; α

NE
∼ 1, α

NL
� 1.

Bertoglio* and Cambon* described how the method can be extended with the aid of
further approximations to weakly inhomogeneous turbulence (i.e. α

NL
. 1) (when it is

still possible to define three-dimensional spectra). It was shown how in some cases of
strong deformation rate, such as during compression in an engine, one-point moments
derived by integrating these spectra give more accurate calculations than those based
on simpler equations for one-point models. This is because, except by adjustment of
their empirical coefficients, such one-point models allow for similar variations in the
turbulence structure (Launder & Spalding 1972).

Where the turbulence is highly non-local or non-stationary, such as near rigid or
flexible interfaces (i.e. α

NL
� 1, α

NE
& 1) the above methods do not apply. However,

linear methods can be used in some of these flows even though, formally, they are
only valid when α

T
. 1. In some cases the nonlinear effects are suppressed and the

turbulence is changing slowly with time. In other cases, a correction to the linear
model can be estimated using a relaxation time that varies with the eddy scale (Mann
1994). Bannerjee* reviewed recent work showing how these methods largely predicted
the turbulence structure near density interfaces, verified by experiments and direct
numerical simulation.

(d) One-point closures for flows in engineering and the environment. In the majority
of practical turbulent flow problems the main objective is still to calculate the mean
velocity U (x, t), temperature θ(x, t), or some other mean scalar such as mass fraction,
and some approximate measures of the amplitude and scale of the turbulence (e.g.

u0 =

√
u2

1, and Lx). From the mean momentum equation it follows that the gradients

of the Reynolds stresses uiuj should be calculated as accurately as the required
gradients of U , while other measures of turbulence may be derived less accurately
(e.g. Lx). While uiuj(x, t) are moments at one point, Lx is formally a measure of two-
point moments. But it is often assumed to be a quantity defined at a point (assuming
local homogeneity, i.e. α

NL
. 1) or estimated from the local value of mean dissipation

ε (' u3
0/Lx).

Practical models devised to predict these quantities have tended to be Eulerian and
have not changed fundamentally over the past 25 years (Lumley*). Research into their
rationale and limitations has led on to incremental modifications, usually designed
for different types of turbulent flows. The numerous workshops for testing the models
against experiments and systematic comparison of all the elements of the models
with direct numerical simulations have all contributed to these advances. Following
Prandtl’s (1925) physical arguments based on his flow visualization studies of eddies
in a shear flow, in the simplest statistical models the Reynolds stresses (−uiuj) are
assumed to be proportional to the gradients of mean velocity ∂Uk/∂xj and to the
‘bremsweg’ (later ‘mischungsweg’) length scale lm. This depends on the type of flow
and the location within it. Such relations, which are assumed to be independent of
initial and boundary conditions of turbulence, and any non-local and non-stationary
effects (i.e. α

T
� 1, α

NL
� 1, α

NE
� 1), are still widely applied for calculating nearly
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unidirectional flow because of their computational efficiency and convenience, for
example over turbomachinery blades and in certain environmental flows. In many
such cases the largest errors are caused by the ‘wall-layer’ approximations (e.g.
equation (8)) in the boundary conditions for U near smooth or rough rigid surfaces,
which can only be derived by local analyses for the viscous processes in the former
case or for the flow through the roughness elements in the latter case. In unidirectional
shear flows the Reynolds stress −u1u3 parallel to the mean shear ∂U1/∂x3 is sometimes
used to estimate the stresses in other directions and the total turbulence kinetic energy
K = 1

2
uiui on the assumption that they are proportional to the shear stress.

Where the mean flow and turbulence are changing rapidly (i.e. α
NE
∼ 1), the

errors in these local equilibrium or ‘mixing length’ models are sometimes corrected by
physically based modifications developed for the specific (e.g. meteorological) types of
flow (Derbyshire et al.*). Usually for such flows more complex models are used which
explicitly allow for finite values of α

T
, α

NL
, α

NE
. Following Kolmogorov (1942), and

the later developments reviewed by Launder & Spalding (1972) and Lumley (1978),
time and space developments are calculated of either the turbulent kinetic energy
K = 1

2
uiui or the components of the Reynolds stress uiuj . The factors considered are

the gradients of the mean velocity, the fluctuating pressure gradients, the eddy-induced
transport of turbulence across the shear flow, and the mean rate of dissipation ε̄ by
viscous processes. The last three terms have to be approximated in terms of the same
second-order moments and the mean flow or by the use of additional equations. For
general-purpose calculations of industrial and some environmental flows with a mean
velocity that is large relative to the turbulent fluctuations (so that u0/U � 1) but
which may vary in direction, only two coupled differential equations for K and ε̄
are used, and often the Reynolds stresses are estimated by the local eddy viscosity
approximation

(ukuk
1
3
δij − uiuj) = Cµ(K

2/ε̄)(∂Ui/∂xj + ∂Uj/∂xi), (12)

where Cµ is a coefficient determined by comparison with experiments.
For turbulent flows that are far from equilibrium, such as turbulence in a strongly

diverging flow approaching a stagnation point (i.e. α
NE
& 1), the turbulence structure

changes rapidly, and the form of its anisotropy differs significantly from that in shear
flows. Then the local relation (12) is incorrect and the K–ε equations give quite
misleading information about the turbulence. However, in using the full Reynolds
stress transport equations (RSTE) (Hanjalic*; Craft*), −uiuj develops as a result of
the history of the mean strain ∂Ui/∂xj . Some industries are making use of models
based on these RSTEs (Laurence*), while others consider that the possibility of extra
accuracy does not compensate for the extra complexity. In flows that are highly
inhomogeneous (i.e. α

NL
& 1) the higher relative contribution of the eddy transport,

such as occurs in natural convection with low mean velocity (so that u0/U0 . 1),
can be estimated more accurately by calculating explicitly transport equations for
the third moments that are otherwise approximated in the RSTE in terms of second
moments (Andre et al. 1976; Ilyushin*; Launder*).

The K–ε and RSTE model equations have been formulated quite generally so that
all the tensors satisfy invariance properties and the dimensionless coefficients are the
same in different types of flow and different ranges of Re. It is implicitly assumed that
the effects of non-locality and non-equilibrium are small (i.e. α

NL
< 1, α

NE
< 1), and

therefore that (cf. Launder & Spalding 1972) any changes in the turbulence structure
(e.g. spectra, anisotropy, etc.) only have a small effect on the second moments.
However, in most recent developments, these assumptions about the universal and
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localized nature of second-order turbulence dynamics are being relaxed in various
ways:

(i) The variations in the eddy structure of turbulent flow resulting from initial
anisotropy of the moments uiuj (Townsend 1976), from their spectra or from various
types of straining (cf. Cambon*), can be large enough to diminish the tendency of

the pressure–strain term p∂ui/∂xj to reduce the anisotropy of the turbulence. This is
now well understood in terms of the eddy dynamics (see § 3), and can be succinctly
described in an anisotropy diagram of the second and third variants IIb, IIIb of the
anisotropy tensor bij = ((uiuj/ukuk)− 1

3
δij) (Lumley 1978) or of the anisotropy of the

spectra (cf. Kassinos, Reynolds & Rogers 2001).

This sensitivity is now allowed for in some models so that effectively the isotropic
tendencies of the pressure–strain terms are assumed to be negligible if IIIb < 0
(Launder*).

(ii) Another way in which variations in the turbulence structure are being modelled
within the same general methodology is (following Hanjalic, Launder & Schiestel
1980; Schiestel 1987) to split the energy (K) equation into two parts, one for calculating
the large scales which are dependent on the production of energy by the mean shear
and buoyancy and the transfer of energy to the small scales, and the other calculating
the smaller scales. The differences in the development times of these two parts of
the spectrum approximately model the effects of changes in the form of the energy
spectrum on the large scale turbulence and the mean flow (Laurence*; Hanjalic*).

(iii) Where there are local gradients of the mean velocity ∂Ui/∂xj the second ‘fast’
component of the pressure–strain terms is usually approximated as KG where G is a
tensor proportional to the local value of (∂Ui/∂xj) (which naturally follows from the
Poisson equation for the fluctuating pressure). However, where these mean gradients
vary rapidly over the length scale of the turbulence (i.e. α

NL
& 1), the assumptions

of the modelling of these terms is invalidated. This causes errors, for example in the

ratios of Reynolds stress u2
1/u

2
3 etc. in high Reynolds number turbulence near a ‘wall’

and thence in calculations of heat transfer. One way of modelling this non-local effect
is to allow quadratic and cubic products of Reynolds stress to appear in the linear
rapid part of the pressure–strain term. This effectively accounts for the fact that
mean strain distorts the shape of the two-point velocity correlation surfaces (which
modify the pressure fluctuations). In this way one can formally arrange to satisfy
the two-component limit to which turbulence reduces at a wall (Lumley 1978; Shih,
Lumley & Janicka 1987; Launder & Li 1994; Craft, Ince & Launder 1996; Craft*).
To extend such calculations into the buffer layer, one approach is to introduce higher
derivatives of the mean velocity gradients (∂2U1/∂x

2
3 etc.) into the approximation for

the pressure strain (Launder & Li 1994; Craft*). Another approach is to introduce
an auxiliary inhomogeneous differential equation for the variable G(x3) with the
right-hand side being proportional to ∂U1/∂x3. This robust numerical approximation
for the pressure Poisson equation is being applied in several engineering applications
(Durbin*; Laurence*). It is consistent with the normal velocity eddies being blocked
by the wall, which becomes an increasingly significant process at high Re (see §§ 2, 3).
Similar non-local effects of blocking in stably stratified inversion layers (Banerjee*)
have been handled by the two-component limit approach noted above (Craft et
al. 1996; Launder*). It has alternatively been modelled in some atmosphere and
ocean calculations by expressing the length scale (needed for momentum or scalar
flux calculations such as (12)) as integral expressions which have to be evaluated
implicitly (Bougeault & Lacarèrre 1989).
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(iv) The relation (12) between Reynolds stress and mean velocity gradients, used
in conjunction with the K–ε pair of equations, is not only local, but also linear in
these gradients. Calculations using linearized theory for rapidly changing turbulence
(Townsend 1976) show that this approximation is also in doubt if the gradients change
significantly on a time scale of the order of that of turbulence TL (i.e. α

NE
& 1), which

commonly occurs for example in aeronautical boundary layer flows. The errors are
such that ‘nonlinear eddy viscosity’ formulations for (12) are being introduced in
which −uiuj is expressed as an expansion, up to third order, in ||∂Ui/∂xj || (Gatski*).
However, even these steps are insufficient to represent correctly the sensitivity to
streamline curvature. One proposal is that (12) be augmented by cubic-level products
of mean strain and vorticity in ways that cannot simply be interpreted as modifying
Cµ (Craft, Launder & Suga 1997).

(e) Approximate simulations and derived statistics. There have also been interesting
developments in the application of approximate calculations of individual realizations
of turbulent flows. These methods are used mainly to derive statistics from their en-
sembles. Most of the research is focused on approximating the small scales, especially
those close to boundaries, but because all simulations are limited by the size of the
domain and the period of the computation, there continues to be some uncertainty
about the approximations involved in simulating the largest scales of turbulence
comparable to those of the space–time domain and in estimating the effects on these
scales of the errors at the smaller scales.

For example, what is the effect on the statistical properties of boundary layer
simulations if the domain is not large enough to model the eddy structures, which can
be 18 times larger than the boundary layer thickness (see § 3), which have not so far
been observed in large-eddy simulations? However in some ‘low-order’ simulations
such structures are postulated in the basic assumptions of the simulation (Holmes
et al. 1996) and consequently are represented. If numerical simulations are used to
calculate the space–time development of individual realizations of turbulent flow, then
specific initial data are required. But they are incomplete in most applications such
as environmental forecasting or for control of turbulent flows. Kreiss* posed the bold
hypothesis that only the large-scale velocity field (with scale of order of Lx) need be
specified (but at frequent time intervals much less than TL = Lx/u0) in order for the
velocity field at small scales to adjust dynamically to the same form whatever its initial
form, given the same large-scale field. He largely verified this conjecture in numerical
simulations of two- and three-dimensional homogeneous turbulence forced at the large
scale. The moderate Reynolds number, Re ∼ 200, of the simulation may explain why
no obvious small-scale instabilities were observed. This result is consistent with other
studies, which show that large-scale eddy structures can dominate the evolution of the
flow field and provide a rational basis for flow control (Holmes et al. 1996), at least
in this range of Re. It may also be in accordance with the greatly reduced estimates
for error growth in high-Re flow systems. When eddy structures are free to move,
any ‘error’ in their position eventually grows algebraically, and not exponentially; this
leads to lower growth in the errors of simulation of environmental flows than were
originally estimated by Lorenz (1963). Indeed Kreiss went so far as to argue that a
much smaller amount of data is required for environmental real time prediction than
is usually being supplied! (But see Hunt 1999.)

Large-eddy simulations, which were reviewed by Sandham (1999), have for more
than 30 years been producing striking new insights into turbulence, particularly the
structure of the energy-containing eddies. Active research is still needed to calculate
reliably the errors in the resolved motions on the scale of the filter lF . Some new
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corrections have been proposed based on the assumption of similarity of eddy motion
over a range of length scales (e.g. Geurts*). Although such filtering has some effect
on the larger scales (so that the simulation cannot be a prediction for a particular
realization far into the future), many tests show that because of the downscale
cascade in three-dimensional turbulence, the structure and statistics of the large-scale
eddy motion is insensitive to these small-scale modelling assumptions (Jiménez*).
(The upscale cascade in two-dimensional turbulence makes the structures sensitive
to smaller-scale processes, e.g. Dritschel 1993.) The interactions between large and
small eddy motions are more critical near rigid boundaries within a surface layer
of thickness hs; shear layers and coherent eddy structures form which extend over
distances parallel to the wall that greatly exceed hs and often exceed Lx. These affect
the level of the turbulent fluctuations near the wall and the large-scale motions in the
interior of the flows, especially in thermal convection. It is now realized that the earlier
approach for modifying LES near a wall by damping the velocity components is quite
incorrect at very high Re(& 104) because the wall amplifies the small-scale turbulence.
A replacement by a local, quasi-steady, boundary-layer velocity profile with associated
small-scale turbulence (Thomson*; Moin*) at least provides a reasonable first-order
correction. But this does not completely model the structure of the surface-layer
eddies which is significant for calculating the transition between the turbulence in the
boundary layer at the trailing edge of an aerofoil and in the wake. Currently, various
attempts are being made to model the layer with local boundary layer equations so
that the solutions match with the resolved motions above the surface (Moin*).

Because LES methods use grids that are much smaller than the integral scale
(at least 1/10) they require enormous computation time. Yet many studies show
that for unsteady, non-local, turbulent flows, where α

NL
& 1 and α

NE
& 1, such as

thermal convection with a low mean velocity or unsteady wake flows, the K–ε or
RSTE equations are too inaccurate to be used as statistical models (since they require
α
NL
� 1, α

NE
� 1). However, these can be used as unsteady equations to calculate a

very large-eddy simulation (VLES) approximation to the realization of the unsteady
velocities of the large eddies. The ‘turbulence’ in the statistical equations is assumed
to represent the small-scale turbulence in the VLES unsteady calculations. Thus
the method involves an assumption about the independence of large- and small-
scale motions. This assumption is similar to that made in LES about the resolved
and ‘subgrid’ scale eddies. But in the case of VLES because more of the dynamics
at the resolved scale are ‘modelled’ (e.g. eddy transport), the discretization scales
and (implicit) separation scale are both much greater than for LES. This speed-up
in computations more than compensates for any loss in accuracy for some flows
(Hanjalic*), though others at the meeting disagreed.

As with other statistical models, appropriate approximations are made for specific
flows to simplify the calculations sufficiently for particular features to be explored in
more depth, for example by analytical solutions or using dynamical systems theory
to study how the solutions evolve in time (Holmes et al. 1997). Research using these
analytical solutions is showing how, below each large eddy, the surface layers of the
interior flow have a complex internal structure at very high Re that would need an
unrealistically small grid size and large computational time to be completely resolved
(cf. Plate et al. 1998).

The ways in which small scales affect calculations of the large-eddy structure are
quite sensitive to the assumptions about the surface boundary conditions and the
small-scale statistical models; for example it depends on whether mean streamwise
vortical eddies or other secondary flows exist, driven by normal stresses of large-scale
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turbulence. It remains to relate these calculations (e.g. Townsend 1976) to LES and
other direct simulations of the large-scale eddy structure.

All the previous approximate simulations were based on filtering, averaging and
approximating the Navier–Stokes equation. However, by analogy with statistical
models that resemble the stochastic phenomena of turbulence, there are also methods
based on phenomenological arguments for simulating the random or mean velocity
fields without solving or approximating the Navier–Stokes equations. These may
provide the full field or partial elements of it, such as the random fluctuations smaller
than the resolved scales of large-eddy simulations. (For a review of Monte Carlo or
kinematic simulations see Elliott & Majda (1996).) A novel approach for calculating
the mean velocity in shear flows as Re varies from 103 to 106 by heuristically
adapting the Navier–Stokes equations to reflect the motion of large eddies conveying
momentum across the shear flow has been proposed by Holm*. Its solution agrees to
within 5% with measured profiles of the mean velocity over this range of Re.

6. Concluding remarks
Can we conclude that current research is making progress towards answering the

main questions about turbulence? The evidence of this review suggests that the answer
is yes, but that we are still some way off finding complete answers. Some particular
advances are summarized in the abstract.

The main question on which hang many others, is to what degree fluid turbu-
lence is a universal phenomenon. On the one hand, research continues to provide
more evidence (§ 3) and better dynamical explanations (§ 4), though still no com-
plete theory, for the occurrence of similar qualitative features at the smaller scales
in all types of three-dimensional turbulent flows; namely random, intermittent mo-
tions on wide ranges of length and time scales, where the very smallest scales are
determined in part by molecular processes, a net cascade of energy to these scales,
and a mean rate of dissipation ε̂, that, when normalized on large-scale motions, is
approximately independent of the Reynolds number. On the other hand, there are
many non-universal aspects; not only are there qualitative differences in the structure
of the large-scale eddy motions, but there is also increasing evidence (§ 3) that in
quantitative terms (e.g. statistical two-point, Eulerian measures) the above small-scale
phenomena depend to some degree on the particular types of large-scale flow. The
dependence of the eddy’s structure and statistics on the flow type is also found (both
theoretically and experimentally) in the underlying dynamics that determines the
eddy motions. This is reflected in the sensitivity to the type of flow of the space–time
development of the moments, as for example in Reynolds stress transport equations
(§ 5).

A consequence of this increasing evidence and understanding of non-universality is
a change in the direction of research. There is now more emphasis on studying various
types of turbulence within distinct parameter ranges, leading to a variety of statistical
models and approximate simulations that typically depend on the characteristic forms
of the large-eddy structures in each type.

At the same time, some models that have been formulated on the assumption
of great generality are being adapted to particular types of flow, for example by
allowing for significant non-local and non-equilibrium effects (§ 5). Some industrial
users of statistical models have called for their systematic classification in terms of
their assumptions and ranges of validity, so as to provide initial guidance to those
applying such models to any particular type of flow. It was suggested that research
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along these lines may be at least as useful as conducting further comparisons among
very general models applied to test case flows, which inevitably are quite idealized in
terms of the geometry of the flow and the types of initial and boundary conditions.

Nevertheless, the search for some kind of universality is the goal of much exper-
imental research in high Reynolds number turbulence; it tends to be restricted to
studies of the statistics of the relative velocity ∆u over very small length and time
scales in the inertia range; evidence continues to support the generalized Kolmogorov
hypothesis that the statistics of ∆u (when suitably normalized and corrected for
large-scale motions) are approximately the same in all types of fully developed turbu-
lence at very high Re (& 104). Consequently much theoretical research is still directed
towards establishing a dynamically based, universal statistical theory for motions
in the inertial and viscous microscale ranges. Accurate Lagrangian and multipoint
Eulerian measurements, which will require the new facilities now being proposed (e.g.
Nieuwstadt*), could provide the critical tests for any such theory, especially if (see
§ 4) it is based on an analysis of the velocity field around moving fluid elements.

Our review shows that although, regrettably, there are rather few innovative experi-
mental research projects, there is certainly a diversity of theoretical and computational
methods in turbulence. Most of them contribute some insight into the varied manifes-
tations of turbulence. It is noticeable that some authors explicitly estimate the range
of validity of their methods and results, but many others still leave this task to the
reader or, worse, the person applying the method in practice. Another reason for the
variety of methods, and of the focus of research on statistical models and approximate
simulations, is that (§ 5) the scientific and practical applications vary greatly. Not only
do the nonlinear interactions between turbulence and other processes vary, but also
the level of complexity that is appropriate changes depending on the availability of
computing capacity (for the turbulence part of the total calculation) and of sufficiently
detailed or accurate input data.

Currently this diversity of methods and assumptions is not sufficiently understood or
valued by those engaged in turbulence research and its applications. Some interesting
combinations of different and hitherto competing approaches are now being tried,
such as integrating the statistical and dynamical analyses of eddies by using Reynolds
stress transport models in large-eddy simulations. At the same time, new hypotheses
and general questions still have to be rigorously and competitively examined, such
as those that emerged this year about the transition of very high Reynolds number
eddy structure and the mathematical properties of singularities. Clearly this field of
research is flourishing!
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