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Abstract

We study a simple model of public opinion formation that posits that in-

teraction between neighbouring agents leads to bandwagons in the dynamics of

individual opinions, as well as in that of the aggregate process. We show that in

di¤erent speci�cations of the model, there is a tendency for the process to show

consensus on one of the two competing opinions.

We show how a publicly available poll of current public opinion may lead to

a form of contagion, by which public opinion tends to agree with the poll. We

point out that, in the absence of a poll, the process displays the feature that,

after long time spans, a sequence of states occur which, when viewed locally,

remain almost stationary and are characterized by large clusters of individuals

of the same opinion.

The running metaphor we use is that of a model of pre-electoral public opinion

formation, with two candidates running. We provide some heuristic considera-

tions on the implication that these �ndings could have in terms of space-time

allocation of fundings in an electoral campaign.
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In order to understand the emergence and the dynamic stability of social norms

and patterns of behaviour in society, a growing body of recent literature analyzes

interdependent settings where the communication structure within a large population

of agents is highly decentralized. Most of this literature focuses on situations where

the relative advantage of choosing one, out of �nitely many actions, is increasing in

the probability with which other agents do so, thus formalizing an explicit payo¤

externality. This incentive structure raises an issue of coordination, that even in the

absence of any explicit coordination device, may be achieved by society over time

when individuals are randomly matched and interaction takes place repeatedly. The

results to date indicate that, whenever a risk-dominant (as introduced by Harsanyi

and Selten (1988)) equilibrium exists, this is robust to stochastic perturbations that

may come from postulated mistakes or mutations, or from randomness in the initial

condition. An implication of these �ndings is that the risk-dominant action spreads

in the population in a form of contagion. In particular, in a locally interactive setting,

starting from a small cluster of agents playing the risk-dominant action, myopic best

reply dynamics ensure that this action will, eventually and with probability one, be

adopted by all other agents in the population.

This paper analyzes a simple stochastic dynamic process of public opinion for-

mation and it studies the way in which this evolves over space and over time. The

setting to which our results apply is basically the following. There is a large popu-

lation of agents who repeatedly choose one out of two possible actions. Returns to

each action depend on the state of the world, and this is not known with certainty.

Agents derive a posterior probability on the basis of a symmetric binary signal they

receive and/or by observing a sample of actions taken within a subset of other agents

(their neighbours). Observed actions are informative, since signals are (informational

externality). While signals are generated by the same probability distribution, ob-

served actions are not, and this introduces a degree of informational heterogeneity

across agents.

Speci�cally, the metaphor we use to describe the model is that of a process of

pre-electoral opinion formation, where individuals repeatedly form their own opinion

as to which, out of two, candidates to vote for, as the time when elections come.

We postulate that the way in which opinions are chosen re�ects an informational

externality that leads agent to conform to other individual choices. Since the pop-

ulation is large and communication among individuals is highly decentralized, other

individuals�opinions are not perfectly observed. Choices are hence made on the ba-
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sis of a sample of observations that each agent gathers each time a choice is to be

made. Heterogeneity among agent may hence arise endogenously from the di¤erent

information available to each. Additionally, individuals may rely on some publicly

available statistics of the current public opinion. We refer to the process of public

opinion as to the dynamic process generated by the collection of all individual opin-

ions and we are interested in analyzing the properties of this dynamics. In particular,

we address two complementary issues. The �rst relates to the asymptotic properties

of the dynamics. Starting from an initial random con�guration of opinions in the

population, will the process of public opinion formation eventually show consensus

in the aggregate, or will di¤erent opinions co-exist inde�nitely? Under which condi-

tion will one opinion propagate in the population in a form of contagion? The second

focuses on the behaviour of the process along the dynamics and relies on the spatial

characterization of the process of clustering, by which consensus is achieved. In our

model, it is the aggregate of all individual opinions that shapes and de�nes public

opinion in its collective dimension, and in particular, electoral support for each of

the candidates. In this sense, and as we discuss towards the end of the paper, our

results provide a basis for analyzing issues of space and time allocation of funding in

an electoral campaign.

Issues related to the process of public opinion formation are in fact not tangential

to economic theory. Public opinion plays a key role in shaping animal spirits, expec-

tations, voting decisions, patterns of consumer and producer behaviour, as well as

dynamics of adoptions of di¤erent technologies and innovation. The process of public

opinion has also been extensively studied in �elds other than economics. Our model

provides a formalization of two aspects that are often emphasized in the sociological

literature. The �rst is the fact that individuals faced with di¤erent choices as to

whom - or what - to support show a tendency to be in�uenced by the opinion of

some collective majority (mutual awareness, as de�ned in Crespi (1997)). The sec-

ond is that environmental conditions that are speci�c to each agent seem to matter

in determining the outcome of individual choices (situational correlates of opinion,

as in Crespi (1997)). These features of the public opinion process seem to be well

documented in terms of experimental, as well as empirical evidence.

The paper is organized as follows. Section 2 describes the details of the process of

private and public opinion formation. The probability with which a voter chooses an

opinion depends on a sample of observations of other voters�opinions, as well as on a

publicly available electoral poll. The collective processes rely on two main elements.
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First, it is assumed that opinions are formed repeatedly over time in a sequential

manner (where only one voter at a time can revise or formulate an opinion). Second,

the distribution from which observations are drawn at random is endogeneized in

terms of a simple statistic of the opinions adopted in a voter�s neighbourhood. Section

3 analyses the properties of the dynamic process of public opinion formation. As

anticipated, the study relies on the characterization of the long-run properties of the

process, as well as those of its dynamics. The results show that these two aspects are

complementary and provide a better understanding of the process itself. By pursuing

a space-time analysis (i.e. by relating the two dimensions, time and space, over which

our process is de�ned) we also study the process of cluster formation. In Section 4

we provide some heuristic considerations as to the implications that these �ndings

would have within a more general model that allows for strategic behaviour on the

part of the two candidates. Finally Section 5 concludes and the Appendix contains

the technical proofs.

2 The model

A single round of elections is going to be held at a future date. Two candidates,

0 and 1, run the elections and the winner will be decided through simple majority

voting1. To focus the model on the behaviour of the public, we disregard completely

any strategic element on the part of the candidates. For the purposes of our analysis,

each of them has some well de�ned electoral plan, the implementation of which will

a¤ect each voter�s utility, after the elections are run and the winner is decided.

In the model there is a population of voters that formulate their opinion as to

which candidate to support when the elections will be held. Voters behave in an

identical manner, although, as we shall see, asymmetries might arise due to di¤erences

in the information they possess. In our setting, voting decisions on the part of each

single voter are almost by de�nition deprived of any strategic content. The model we

formalize in fact postulates that each possible electoral outcome is an unknown state

of nature for the single voter. Preferences, formalized by a utility function, depend

on the state of nature, and expected utility considerations determine the process of

opinion formation and ultimately the outcome of the elections.

We are going to describe the way in which, given current public opinion, a voter

formulates his or her own. For the voter, the outcome of this process will be an

opinion, 0 or 1, which would correspond to a vote (for 0 or for 1 respectively) if
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elections were to be held at the same point in time. Voters may be forgetful and go

through this process repeatedly in their electoral life.

Ingredients of this process are: two exogenous states of nature, labelled as w =

f0; 1g corresponding to the event �candidate 0 wins the elections�and �candidate 1
wins the elections�; two possible ballots, labelled v = f0; 1g and a utility function
that depends separably on the outcome of the election and on the ballot chosen,

U(w; v). The idea we want to pursue is that, although the outcome of the elections

is exogenous to the voter, utility also depends on the vote itself. Speci�cally, and for

" > 0, we assume that the utility of each voter is given by:

U(w; v) =

8<: 0 v 6= w
" v = w

This formalizes the idea that voters strictly prefer to vote for the winning candi-

date2. Given these preferences, and given that the outcome of the elections depends

on the distribution of ballots in the population, a voter needs to assess the probability

with which each candidate is going to win the elections. Given this assessment, a

voter will conform to what (s)he perceives to be the opinion of the majority of voters

in the population.

2.1 Private Opinion Formation

Voters�decisions clearly depend on the assessment of the probability with which each

candidate will win the elections. We postulate that the latter is made on the basis

of the inference drawn from some privately gathered observations of other voters�

opinions, as well as on the basis of a publicly available electoral poll. We think of the

poll as a signal on the uncertain state of the world. If we let p 2 [0; 1] be a parameter
that de�nes the probability with which a voter privately observes an opinion in favour

of candidate 1 in a sample of n observations, � 2 [0; 1] the assessment of candidate
1�s percentage votes produced by a public electoral poll, and � 2 [0; 1] the relative
weight of privately and publicly gathered information in the voter�s assessment, the

probability with which the voter formulates an opinion that favours candidate 1 is

modeled as:

Pr [1 j �; p; n; �] � �Pr [1 j p; n] + (1� �) Pr[1 j �]

Throughout the paper we shall take � to be given exogenously and identical for all

voters in the populations. The electoral poll that produces � is clearly endogenous,

but is not modeled explicitly. The idea we have in mind is that a single poll, in terms
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of some sample statistics, is produced at a given point in time and it is freely available

to all voters. Most of the Section that follows is devoted to the endogeneization of

the parameter p, that will account for heterogeneities across voters that arise from

a highly decentralized information structure in the population. For the sake of the

exposition, we take � to be one in the rest of this sub-Section and we formalize the

process of inference that leads to the assessment of the probability with which either

candidate will win the elections as follows.

We assume that each voter has �at priors over � 2 [0; 1] which is the fraction of
voters in the population who currently support candidate 1, and updates this priors

after having observed a sample of observations. We take priors to be given by a

Beta distribution with equal parameters, Be(1; 1). Each observation consists of a

randomly chosen other voter in the population, the opinion of whom is observed.

Thus, each observation comes from a Binomial distribution, Bi(p), where 0 � p � 1:
We denote the density of the probability distribution that generates observations by

fBi(r j n; p) where r is the number of opinions 1 in a sample of n observations.
If a voter has observed a sample of r opinions 1 in a sample of n observations,

then (s)he updates her prior Be(1; 1) to the posterior Be(1+r; 1+n�r _), with density
fBe(z j 1 + r; 1 + n � r) and mean (1 + r)(n + 2)�1. Given this posterior, the voter
would choose opinion 1 if the PrfBe [z > 1=2 j r; n] > 0:5; and opinion 0 otherwise.

Hence, we can calculate the ex-ante probability of choosing opinion 1, given p and

n � 1 observations3. We �nd it convenient to take n to be an odd number and to

write this probability, for n = 2m+ 1 as:

Pr [1 j p;m] =
2m+1X
r=m+1

�
2m+ 1

r

�
pr(1� p)2m+1�r m � 0 (1)

This quantity depends onm (the number of observations) and on p (the parameter

that determines the probability of observing a 1). It is not di¢ cult to see that, for

any �xed m = m <1 the above probability is a continuous and increasing function

of p 2 [0; 1]; formalizing the fact that the more likely observations 1s are, the higher
is the probability that the voter will adopt opinion 1: It is also clear from (1) that,

for any m, Prc[1 j p = 0;m] = 0; Pr c[1 j p = 0:5;m] = 0:5 and Pr c[1 j p = 1;m] = 1.
However, for any p 2 (0; 0:5) [ (0:5; 1), since observations are realizations of the
random variable Bi(p), the voter�s behaviour is only described probabilistically in

the sense that 0 < Pr c[1 j p;m] < 1.
It is worth noticing that, for m = 0; the above probability is linear in p, since

Prc[1 j p;m = 0] = p. This resembles pure imitative behaviour on the part of a voter,
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who only samples one observation and blindly imitates it. To see the way in which

the above probability changes as the number of observation increases, suppose p was

actually the true proportion of 1�s supporters in the population. Let s�(p) denote the

probability with which an expected utility maximizer voter should choose opinion 1;

i.e. s�(p) = 0 for p < 0:5 , s�(p) = 1 for p > 0:5 and, conventionally, set s�(p) = 0:5

for p = 0:5. Then4, for the number of observations becoming very large and for each

given p = p, limm!1 Prc [1 j p;m] = s�(p). In other words, for m large, Pr c[1 j p;m]
is essentially described by s�(p), although it remains di¤erentiable, since only in the

limit, for m!1, its image is restricted to the values f0; 0:5; 1g.
In order to account for the fact that the information gathered by a voter, or his

or her behaviour may be not be as systematic as prescribed by equation (1), we shall

also analyze a noisy version of it. Speci�cally, we shall assume that, given a sample

of observations, a noisy conformist voter draws one realization at random from the

probability distribution de�ned by her updated posterior. In this case the probability

with which (s)he will choose opinion 1 is given by PrfBe [z > 1=2 j r; n] to produce5:

Pr nc[1 j p;m] =
2m+1X
r=0

�
2m+ 1

r

�
pr(1�p)2m+1�r (2m+ 2)!

r!(2m+ 1� r)!

1Z
1=2

zr(1�z)2m+1�rdz

(2)

where we take n = 2m + 1 for m � 0. Again, for any �xed m = m < 1 the

above probability is a continuous and increasing function of p 2 [0; 1]; formalizing the
fact that the more likely observations 1s are, the higher is the probability that the

voter will adopt opinion 1: However, unlike (1), (2) re�ects the fact that behaviour

is noisy since, for any m, Pr nc[1 j p = 0;m] > 0; Pr nc[1 j p = 0:5;m] = 0:5 and

Pr nc[1 j p = 1;m] < 1. This noise tends to disappear as the number of observations
increases, since equation (2) behaves exactly in the same fashion as equation (1) did6:

for each given p = p, limm!1 Prnc [1 j p;m] = s�(p) and, for m large, it is essentially

described by s�(p):

2.2 Public Opinion Formation

As anticipated, we are going to model a dynamic process of public opinion formation,

in which we take the behavioral speci�cations introduced in the previous Section

as primitives. In order to account for di¤erent plausible information structures and

information transmission among agents, we shall introduce a speci�c type of hetero-

geneity among the voters in the population.
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The general notation of the model we study has individual x 2 S choosing ballot
v(x) 2 f0; 1g: We shall assume throughout that S is countable. A con�guration of

opinions in the population will be denoted by v 2 f0; 1gS . We model the dynamics
of the process where at each point in time at most one individual changes opinion.

To this aim, we assume that time runs continuously and each individual may choose

a new opinion at a random exponential time, with mean one. The time-dependence

of all variables will be denoted by sub-t, but sometime dropped to lighten notation.

Whenever individual x is to form a new opinion, (s)he will do so in the way described

in the previous Section.

The dynamic aspect of the model is determined by the endogeneization of the pa-

rameter p (that, we recall from the previous Section, is a voter�s probability of observ-

ing an opinion in favour of candidate 1). Speci�cally, we assume that at each point in

time, pt � p(x; vt), meaning that such probability depends on the agent�s identity, as
well as on the current con�guration of opinions in the population, but is homogeneous

over time. In order to capture the amount of correlation that seems to be particularly

pertinent in processes of opinion formation, we proceed as follows. We provide each

agent with a spatial location on a d-dimensional lattice Zd, and postulates that (s)he

can only observe the opinions adopted within the set of agents that live in her/his

vicinity. Formally, we take S � Zd and de�ne the set of x�s nearest neighbours as

fy :k y � x k= 1g, i.e. the set of 2d agents who live at Euclidean distance one from
agent x. We assume that each voter is equally likely to observe any of the opinions

adopted among her nearest neighbors. As a result p(x; v) = (2d)�1
P
fy:ky�xk=1g v(y)

and the parameters that determine the probability of observing opinions are (spa-

tially) correlated among voters who are neighbours. Since the set of neighbours is

�nite, p only takes values in f0; (2d)�1; 2(2d)�1; ::::; 2d(2d)�1g:
As we anticipated, although clearly endogenous, the process that produces the

electoral poll � is not modeled explicitly. The idea we have in mind is that at any

point in time a voter is to form an opinion, (s)he may take into account the assessment

of the percentage votes of candidate 1 produced by a freely and publicly available

electoral poll. We assume that each voter treats such public information in exactly

the same stochastic way a conformist voter does. Hence, from equation (1) (for p � �
and m = 0) the assessed probability of voting for candidate 1 given the poll is given

by:

Pr[1 j �] � Pr c[1 j �; 0] = �
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where � 2 [0; 1].
We also envisage a second way in which a voter may handle the information

coming from an electoral poll: this postulates that, given the poll, the voter chooses

the ballot that favours the winning candidate and tosses a coin otherwise. As a

result, Pr[1 j �] = 1(f� > 0:5g) Pr[0 j �] = 1(f� < 0:5g) and Pr[1 j �] = Pr[0 j �]
if � = 0:5. Although these two speci�cations may be given di¤erent behavioural

motivation, since we only treat � parametrically (in that we do not model explicitly

the way in which the poll is produced), this latter case is de facto a particular case

of the former, obtained for � 2 f0; 1g.
In order to make the model tractable, we require the process that produces the

poll not to show any time-dependence, and we assume that the last poll is available

at some �nite time T . Furthermore, although subject to potential sample bias, we

require the electoral poll not to mis-represent the current state of public opinion, in

the sense that, for all T , if vT (x) = 1 (vs. vT (x) = 0) for all x 2 S, then �T = 1 (vs.
�T = 0).

The following De�nition summarizes the details of the processes of public opinion

formation that we study:

De�nition 1 (Public Opinion) Consider a population of voters denoted by S �
Zd: For any t � 0, let � 2 [0; 1], �T 2 [0; 1], m � 0 and pt = (2d)�1

P
fy:ky�xk=1g vt(y) 2

f0; (2d)�1; 2(2d)�1; ::::; 2d(2d)�1g: At each random exponential time t, with mean one,
voter x chooses ballot 1 at rate7:

Pr [1 j �; pt;m; �T ] � �Pr [1 j pt;m] + (1� �) Pr[1 j �T ]

where:

either

Pr [1 j p;m] � Prc [1 j p;m] if all voters are conformist and behave according to
equation (1). In this case, vc(m) de�nes the process of public opinion formation for

a population of conformist voters.

or

Pr [1 j p;m] � Prnc [1 j p;m] if all voters are noisy conformist and behave ac-
cording to equation (2). In this case, vnc(m) de�nes the process of public opinion

formation for a population of noisy conformist voters.

In general, we shall denote by vt the process at time t: In all speci�cations, vt are

clearly an element of the state space f0; 1gS . We are interested in characterizing the
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evolution of the stochastic process vt over time and over space and we shall mostly

focus on two extreme cases. The �rst is when a poll is available at time T = 0, it

uniformly determines the initial opinion of each voter and it is then ignored by the

voters at any subsequent time at which the opinion is revised. We motivate this poll

in terms of an opening speech that candidates publicly give or some initial electoral

poll that is made available only at the beginning of the electoral campaign. In the

parametrization we adopt, this corresponds to the case when � = 0 at t = 0 and

� = 1 for all t > 0. The second case we shall analyze is instead when an electoral poll

is available at some �nite time T � 0 and has a long lasting e¤ect on the process of
public opinion in that it is taken into account by each voter at any subsequent time

t � T at which opinions are to be revised. In this case we take � < 1 for all t � T
and we shall study the dynamics of the process of public opinion for t � T .

3 Main Results

The �rst question we address relates to the asymptotics of the processes we study,

i.e. their limit behaviour for t!1.
Before we state the main results, it is worth noticing that some feature of the

processes we shall analyze are relatively intuitive. First, since whenever called to

form an opinion, a voter samples current observations, and on the basis of these (s)he

decides, the aggregate process of public opinion clearly satis�es some Markovian prop-

erties. Second, as pointed out earlier, the noisy conformist voter who samples �nitely

many observations can choose each of the opinions with strictly positive probability.

This suggests that this process may be ergodic, in that all possible con�gurations

of opinions in the population could be visited in�nitely often by the process. This

feature is clearly not shared by the conformist voter process, as only opinions that

are observed can be adopted with positive probability. It should be clear from the

speci�cation that, for this latter process, the set of probability measures that have

pointmass one on a state where everybody adopts the same opinion are invariant.

Clearly, in the special case of � = 0 for any t, full weight is given to the publicly

available poll. Since any private information is disregarded by a voter, any potential

asymmetries that arise from the local nature of information gathering vanish. As a

result, whenever �T 2 (0; 1), the behaviour of each single voter is Markovian over
f0; 1g and the asymptotic behaviour of the process of public opinion formation is
described by the product measure of mutually singular countable Markov chains.
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Hence the last electoral poll that becomes available fully characterizes the process of

public opinion formation.

Interesting questions arise for � 2 (0; 1]: In this case the stochastic process of
public opinion formation is still Markovian over its state-space (since any transition

probability depends only on the current con�guration of opinions and, possibly, on

the currently available electoral poll), although the behaviour of a single voter no

longer is (due to the local nature of the interaction).

Some of the results that follow are obtained for a speci�c characterization of the set

of all voters, that are located on a one-dimensional lattice and only observe a sample

of opinions from their nearest neighbors. This speci�cation is chosen mostly for

convenience, as it allows for sharper results and for an intuitive characterization of the

space-time analysis we address towards the end of this Section. The basic properties

of the processes in this case are the following. Since d = 1, private opinions are

formulated by voters on the basis of the opinions chosen by the two adjacent voters.

As a result the parameter that produces observations only takes values p 2 f0; 1=2; 1g:
Both speci�cations of the model involve a process of sampling of m opinions among

their nearest neighbours, but while, for any value of m, a conformist voter de facto

simply imitates the opinion that are observed, a noisy conformist voter who observes

all identical opinions can still not imitate what (s)he sees on the ground of the uniform

prior.

In the statement of the results we use the following further notation. We shall

denote any probability distribution over the state space by �t, and the initial dis-

tribution by �0. Degenerate probability distributions that have pointmass on the

con�gurations where all individuals adopt exactly the same ballot (that is con�gu-

rations v0 where v(x) = 0 for all x in S and con�guration v1 where v(x) = 1 for

all x in S) are denoted by �0 and �1 respectively: Given �0; we let �
�0
t be the law

of v�0t , and we write limt!1 �
�0
t = �

�01 to mean that ��0t is weakly convergent. We

also denote by I the set of invariant measures (i.e. a measure that is stationary over

time) for vt and Ie � I the set its extreme points. We shall de�ne the process vt to
be ergodic if and only if I is a singleton; in this case the above limit will not depend

on the initial condition, in the sense that limt!1 �
�0
t = �1 for any �0.

A �rst understanding of the properties of the process is obtained by studying the

process vnc(m) for any value of m <1 and is summarized in the following Theorem.

In words, the Theorem asserts that in the absence of any electoral poll, when public

opinion is only driven by private information on the part of each voter, the process
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admits an invariant measure that can be fully characterized. Speci�cally, this invari-

ant measure posits higher limit probability to con�gurations of public opinion where

opinions among voters tend to be spatially homogenous. If and whenever the process

is ergodic, the above invariant measure is unique, meaning that independently of any

initial condition (that may or may not involve an initial electoral poll), the process

will converge to it over time.

Theorem 1 Consider vnct (m) as in De�nition 1 for m <1.

1. If � = 1 for all t � 0 and for all 0 < d <1, the following measure is invariant
for the process:

�(m)1 (v) = K exp[
X
x

X
fy:ky�xk=1g

�(m)(p(x; v))(2v(x)� 1)(2v(y)� 1)] (3)

where K is such that
P
v �

(m)
1 (v) = 1 and �(m)(p(x; v)) is detailed in the proof.

If d = 1, i.e. for S = Z1, then �(m)(p(x; v)) � �(m) = 1
4 log(2

2(m+1) � 1).

2. If j S j< 1 and/or d = 1; for all � 2 (0; 1] and for all �T 2 [0; 1], the process
is ergodic.

Hence if � = 1 for all t > 0, the measure in equation (3) is the unique invariant

measure for the process and

lim
t!1

�
(m);�0
t = �(m)1 for any initial distribution �0:

Proof. See Appendix.

The above Theorem provides a characterization of the limit behaviour of the dy-

namics vnct (m): Part 2. states that one of the following two conditions guarantees that

the process does not show any path dependence. The �rst requires the population

of voters to be �nite (i.e. for j S j<1). In this case the process can be regarded as
a �nite state Markov chain over the space of all possible con�gurations of opinions.

Given that each voter only samples a �nite number of observations (i.e. m <1), as
previously noticed, any opinion can be adopted by each voter with strictly positive

probability. This guarantees that all possible transitions among di¤erent con�gura-

tions can occur with strictly positive probability and as a result, initial conditions

become less and less important along the dynamics. The second instead requires

voters to be located on a one-dimensional lattice (i.e. for d = 1). This allows to
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formalize some monotonicity properties of the process, stated in terms of attractive-

ness, that rely on the fact that coordinates, i.e. voters, tend to agree in opinion with

their nearest neighbours. It is known that attractive processes with strictly positive

transition rates are ergodic.

Whenever ergodicity is guaranteed, then no matter where the process starts, the

probability with which each con�guration could be observed asymptotically is given

by the above limiting distribution. Notice that, since this is true for any initial

condition, this is also true for a speci�c initial condition where, for example, each

voter initially chooses opinion 1 with probability � 2 [0; 1]; where � is an initial

electoral poll. This formally corresponds to the case where �0 � ��, that is a product
measure with density � (such that ��fv(x) = 1g = � for all x 2 S). Hence, if voters�
behaviour is noisy, an electoral poll available at time T = 0 does not have any e¤ect

on the asymptotic properties of the process. In an analogous manner, a poll available

at a �nite point in time 0 < T <1 that is taken into account (with weight 0 < � � 1)
by all voters at any time t > T does not a¤ect the ergodicity properties of the process.

However, as detailed in the proof, if some strictly positive weight (0 < � < 1) is given

to an informative poll in the voters�assessments, the reversibility properties upon

which the full characterization relies fail to hold.

As the limit distribution (3) has full support, each of the possible con�gurations

of opinions in the population can be observed in the limit. However, it is clear from

the above formulation that some con�gurations are more likely to be observed than

others. To see this, consider the one-dimensional case, where the function � is a mere

re-parametrization of the model. As the sum of which in the square brackets of (3) is

taken over all couples of nearest neighbours, and as the addendum is equal to one if

and only if v(x) = v(y), the two con�gurations which are more likely to be observed

are those where every voter chooses exactly the same opinion, i.e. v0 and v1. Since,

in the one dimensional case, (3) is continuous in the parameter8 m, this proves the

next Corollary.

Corollary 2 Consider vnct (m) as in De�nition 1. Assume d = 1 and � = 1 for all

t > 0. Then

for all m,
�
(m)
1 (v0)

�
(m)
1 (v1)

= 1 and lim
m!1

�
(m)
1 (v)

�
(m)
1 (vi)

= 0

where vi = fv0; v1g and v 6= vi.

The interpretation of the above Corollary in our model is the following. Taking

13



a limit for m ! 1 means studying what happens when a voter samples an in�nite

number of observations. Observations are opinions randomly gathered in the neigh-

bourhood and the interpretation we have in mind is that each of these provides the

voter with some further information about the state of the system at the time at

which (s)he forms an opinion. Ergodicity breaks down only in the limit, as the tran-

sition probabilities of which in De�nition 2 become discontinuous in the parameter

p, as m grows to in�nity. The message that the above result conveys is that, asymp-

totically, we are more likely to observe a con�guration of homogeneous opinions in

the population, due to the underlying symmetries that the process satis�es9.

Given these asymptotics (and given that elections typically take place at a �nite,

rather than in�nite, time), what we would like to know in more detail is what happens

along the dynamics of the process. In particular we would like to gather some further

understanding of the way the process evolves, when the behaviour of voters is not

driven by lack of information about the current con�guration of opinions in the

neighbourhood. As we shall see, it is exactly in this setting that the importance of

an electoral poll in shaping the dynamics becomes relevant.

The Theorem that follows establishes that this line can be pursued and that the

resulting process is exactly the process vc(m), for which the asymptotic behaviour is

fully characterized.

Theorem 3 Consider vnc(m) and vc(m) as in De�nition (1).

1. For all d, for all � and for all �T , vc(1) = vnc(1) as in De�nition (1).

Suppose d = 1 and, for �0 2 [0; 1]; let �0 � ��0 be the product measure with

density �0, i.e. ��0fv(x) = 1g = �0 for all x 2 S. Suppose further that, at
t = 0, � = 0. Then, for all m, the process vc(m) is such that:

2. If � = 1 for all t > 0; then:

Ie = f�0; �1g and lim
t!1

�
��0
t = (1� �0)�0 + �0�1

3. If � 2 (0; 1) for all t > 0; then the process is ergodic.

If �T = 1 (vs. �T = 0), then for t > T :

I = f�1g and lim
t!1

�
�
T
t = �1

(vs. I = f�0g and lim
t!1

�
�
T
t = �0):
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Proof. See Appendix.

Part 1. shows that the process vct can be interpreted as a limiting case of the

process vnct : This is simply due to the fact that, as we already mentioned in Section 2,

noisy conformist voters approximate conformist voters for the number of observations

growing large.

Part 2. states some relevant properties of the public opinion process when voters

are conformist and only an initial electoral poll is made available. In this case the

process is clearly path-dependent, since both con�gurations where all voters adopt

the same opinion are invariant for the process. Moreover, these are the only two

invariant measures for the process. This is relevant for our purposes because it shows

that the extreme invariant measures of vc are exactly those to which vnc collapses for

m!1.
The second reason why Part 2. is relevant is that it fully identi�es the basins of

attraction of each of the two invariant measures in terms of the initial electoral poll.

The initial public assessment of the probability with which a candidate will win the

election fully identi�es the set of initial conditions that lead the process of public

opinion to asymptotically show uniform agreement on that candidate.

The third reason why Part 2. is interesting is that it shows that, along the

dynamics, the process shows consensus, in that if we look at any possible couple of

voters, x and y in S, the probability that they choose di¤erent opinions approaches

zero asymptotically:

lim
t!1

Pr[vt(x) 6= vt(y)] = 0 for all x and y in S

Clearly, for any �0 2 (0; 1), each single voter may change her or his opinion

in�nitely many times (as limt!1 vt(x) does not necessarily exist). However, as a

result of the above considerations, the observed frequencies of individuals choosing

the same opinion grows, in probability, over time.

Part 3. describes the e¤ects of an electoral poll available at some �nite point in

time T , and accounted for by voters from then on (since � 2 (0; 1)); on the dynamics
of the process of public opinion. If the poll is treated stochastically by each single

voter, this introduces a further probabilistic component in voters�behaviour, since,

for example, a conformist voter who is surrounded by opinion 1s, could still choose

opinion 0 on the grounds that candidate 0 is favoured by the poll. However, as shown

in the proof, this aggregate process is still attractive, since the probability of choosing
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an opinion is increasing in the number of neighbours doing so. Hence ergodicity is

guaranteed by the same argument used in the proof of Theorem 1.

Interesting cases arise when �T = f0; 1g: In this case, as asserted by Part 3.,
the behaviour of the process of public opinion formation is substantially altered, in

that the state that shows consensus and agrees with the last available electoral poll

becomes a trap for the process. This amounts to saying that starting from any time-

T distribution, �T , the limt!1 v
�T
t (x) exists, meaning that each voter may change

opinion only �nitely many times, and will eventually choose the ballot that favours the

winning candidate, assessed by the electoral poll. This leads to a form of contagion

in the aggregate, as:

Pr[ lim
t!1

vt(x) = lim
t!1

vt(y) = �T for all x and y in S j �T 2 f0; 1g; t � T ] = 1

meaning that if the last poll available identi�es candidate 1 as the winning candidate,

Pr[limt!1 vt(x) = 1 for all x in S] = 1:

Our aim is now to characterize more in detail how this consensus (in the case of

a poll only available as initial condition) or contagion (when a poll is available and

accounted for by voters at any subsequent time) occurs along the dynamics.

As our processes are de�ned in the two dimensions of time and space, we shall �nd

it useful to relate these two dimensions in a space-time analysis. In particular, we

aim at characterizing a clustering process, by relying on the local speci�cation of the

model. With the term �cluster�we mean a connected group of individuals holding

the same opinion, that is the length of a segment with all connected individuals of

the same opinion. In order to see how the size of a cluster increases with time,

we shall later express the length of a cluster as a function of t. Formally, given a

con�guration, v, we de�ne a cluster as the connected components of fx : v(x) = 0g
or fx : v(x) = 1g; the size of a cluster of ones in a segment of side l around the origin
as:

j vl j=j fx : v(x) = 1;x 2 [�l; l]g j

and the mean cluster size of v around the origin as:

C(v) = lim
l!1

2l

�number of clusters of v in [�l; l]�

whenever this limit exists.

Given the asymptotics described in Theorem 3, we already know that the mean

cluster size tends to grow inde�nitely. The result that follows provides some informa-

tion as to the rate of growth of the mean cluster size in the two cases studied in Part
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2. (consensus) and Part 3. (contagion) of Theorem 3. In particular it shows that the

rate of growth of the mean cluster size of the process of public opinion when a poll

is available at some �nite time T and accounted for by the voters at any subsequent

time is higher than the rate of growth of the mean cluster size in the case where a

poll is only available as initial condition.

Remark 1

a. Under the same assumptions as in Part 2. of Theorem 3, and for �0 2 (0; 1), the
mean cluster size, C��0 (vt), grows in probability at rate

p
t, in the sense that:

C��0 (vt)

t1=2
!p K

where K is a positive constant depending on �0.

b. Under the same assumptions as in Part 3. of Theorem 3, for �0 2 (0; 1) and
�T = 1, the size of a cluster of ones around the origin, grows in probability at

least at rate t, in the sense that, for t > T > 0:

j vt j
t

!p 1

for  < 1.

Proof.

a. Under the assumptions of Part 2. of Theorem 3, our model reproduces the

dynamics of a model known in the probabilistic literature as the Voter�s model. On

these grounds, statement a. is proved in Bramson and Gri¤eath (1980). In fact,

Theorem 7, p. 211 of that paper also provides the following estimate for the lower

and upper bound of the limit expected value of the above quantity:

p
�

�
1

2�0(1� �0)

�
� lim
t!1

E[
C��0 (vt)

t1=2
] � 2

�
�0
2 + (1� �0)2
�0(1� �0)

�p
�

where �0 is the initial poll and (unfortunate notation) � = 3: 141 6:

b. The second statement is proved in the Appendix.

The second statement in the above Remark asserts that whenever the available

poll is taken into account by voters at any time an opinion is to be formulated

(and hence the opinion that favours the winning candidate as assessed by the poll

propagates in a form of contagion) the mean cluster size grows at least at a linear

rate. This is in essence due to the fact that, beyond having an initial e¤ect, the
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poll also directly a¤ects the rate at which each voter adopts an opinion in support

of the candidate favoured by the poll. This determines a fundamental asymmetry

in the rate of growth of the cluster size. The intuition for why this is true is the

following. Suppose the poll favours candidate 1 and consider a cluster of opinion 1s.

What determines the rate of growth of such cluster is what happens at the left and

right border of this cluster. The right bordering 1 and her right bordering 0 face an

identical distribution of opinion within their respective neighbourhood and, in the

absence of a poll, would be equally likely to change their opinion. However, since

the poll favours candidate 1 and since this is given a positive weight (1 � � > 0) in
the opinion formation process, the rate at which the right neighbouring 0 �ips to 1

is higher than the rate at which the right bordering 1 �ips to 0. Hence, in expected

terms, the cluster is going to increase.

The above reasoning fails to hold in the case where the poll has only an initial

e¤ect on the process of public opinion, since the borders of a cluster behave in a

perfectly symmetric way. In this case, whenever the model shows consensus, the

�rst statement of the above Remark asserts that, as t gets large, the largest segment

containing all individuals choosing the same opinion, has side of probability order
p
t. As a result, for t very large, such cluster tends to be almost stationary, in the

sense that the rate at which it changes is slower than the rate at which time changes.

This amounts to saying that, although the process we analyze does not admit any

stationary distribution where both opinions co-exist inde�nitely (this is ruled out by

Part 2. of Theorem 3), any such con�guration can indeed be observed along the

dynamics, and when viewed locally, remains almost stationary.

4 Some remarks on the allocation of funding in an elec-

toral campaign

As the dynamics we studied are speci�ed over time and over space, natural questions

to be addressed relate to the optimal spatial allocation of funding in an electoral

campaign (i.e. among di¤erent districts or di¤erent states), as well as to the optimal

timing of such allocation (i.e. between the time when the elections are called and

the time just before the elections are actually held). Although a formal treatment of

these interesting questions warrants future research, in what follows we elaborate on

the insights that the model we studied in this paper provides.

The �rst thing that all speci�cations of our model show is that the spatial dis-
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tribution of votes matters in the long run, as well as in the short run. In particular,

simply by looking at the limit distribution for the ergodic process generated by the

dynamics of the noisy conformist voters model, as in Theorem 1, it is easy to see

that the limit probability of each con�guration depends on the opinions chosen in its

connected components, and not on the frequency with which opinions are adopted

in the population. For example, in a one-dimensional setting, consider two con�gu-

rations, vncA and vncB , identical at all sites apart from the sites fx� 2; x� 1; x; x+ 1g
which are as follows:

vA : :::: v(x� 2) = 1 v(x� 1) = 0 v(x) = 1 v(x+ 1) = 0 ::::

vB : :::: v(x� 2) = 1 v(x� 1) = 1 v(x) = 0 v(x+ 1) = 0 ::::

From Theorem 1 we infer that the limit probabilities of these con�gurations (where

the frequencies of 1s is exactly the same) are respectively:

��1(vA) / exp[�6�]
��1(vB) / exp[2�]

Con�guration vB is given higher probability, as more coordinates agree with their

neighbouring coordinates. These considerations clearly relate to the long-run distri-

bution of the process, but the insight applies to its dynamics as well, as can be seen

by looking at the dynamics of the speci�cation of the model in terms of conformist

voters, to which we focus next.

Much of the descriptive and normative literature on elections in political science

identi�es at least two alternative basic rules that a candidate may follow when decid-

ing where to allocate resources (in terms of money, as well as time spent campaigning)

among di¤erent constituencies or states. The �rst posits that a candidate should al-

locate campaign resources roughly in proportion to the electoral votes of each state

(Brams and Davis (1974)). The second suggests that candidates should mostly be

concerned with the likelihood that resources can swing a state from one candidate to

another, and by this advocates a competitive allocation of resources to be directed

to the �marginal�states (Colantoni et al. (1974)). With some heroic simpli�cations,

we can translate these two alternatives into the set-up of our model, by asking the

following question: suppose a candidate had the possibility to buy one vote (i.e. to

buy the support of one voter), would (s)he rather do so within a cluster of voters

who support the other candidate, or exactly at the border of a cluster? It turns out

that, even in the absence of a poll, our model suggests that the best alternative is

this latter possibility. To see this, consider the following con�guration, v, that has a
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border at x, in that v(x� 1) 6= v(x):

:::: v(x� 2) = 1 v(x� 1) = 1 v(x) = 0 v(x+ 1) = 0 v(x+ 2) = 0 ::::

Suppose, for simplicity, that the process is started deterministically at con�gu-

ration v. In this case the duality equation (9) (see the proof of Theorem 2 in the

Appendix) states that the probability that starting from con�guration v, the voter

at site x supports candidate 1 is: Evvt(x) =
P
y pt(x; y)v(y), which, applied to the

subset fx� 1; x; x+ 1g; becomes:

Ev[vt(x�1)+vt(x)+vt(x+1)] =
X
y

pt(x�1; y)v(y)+
X
y

pt(x; y)v(y)+
X
y

pt(x+1; y)v(y)

The above probabilities are given explicitly in equation (8), and it is not di¢ cult

to see that, for any �nite t, since pt(x; x + j) = pt(x; x � j) for any j � 1 and since
p(0)(x; x+ 1) = p(0)(x; x� 1) = 1

2 :

1

2
� pt(x; x+ 1)� pt(x; x+ j) > 0 8j > 1

formalizing the fact that a voter�s opinion is more strongly a¤ected by the opinions

held in the neighbourhood than by opinions held further away.

If we take into account of this fact, and we denote pt(x; x+1) as p, we can re-write

the above equation as:

Ev[vt(x� 1) + vt(x) + vt(x+ 1)] � p[v(x� 2) + v(x� 1) + 2v(x) + v(x+ 1) + v(x+ 2)]

= p[1 + 1 + 2v(x) + v(x+ 1) + v(x+ 2)]

Hence, by buying the vote of voter x, candidate 1 increases the probability that

at time t voters in fx � 1; x; x + 1g support her or him by twice as much as (s)he

would do by buying the vote of voter x+1 or voter x+2. This is because by moving

the border of a cluster by one voter, the candidate guarantees stability of the area

inside the cluster, that being inward looking is not so exposed to sudden swings in

opinions.

The importance of electoral poll, or analog quanti�able messages that candidates

may send to the electorate, are made quite clear in the main results of this paper. If

voters behaviour is a¤ected by some noise (in the speci�cation of the model in terms of

noisy conformist voters and in the results of Theorem 1), the e¤ect of an electoral poll

is somewhat limited, since the noisy component of private information gathering de

facto determines the asymptotic properties of the process, and these are only partially
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a¤ected by a poll. However, if and when voters�behaviour is not noisy, or in any case

when such noise disappears in the limit (as in the speci�cation of the model in terms

of conformist voters), the importance of a poll becomes paramount. Even if such

message is only taken into account at an early stage of the electoral campaign and

disregarded by voters forever after (as in Theorem 3, Part 2.), due to the underlying

monotonicity properties of the process of public opinion, the poll determines the

basins of attraction of the two limit distributions that, we recall, show consensus, as

well as the lower and upper bound of the expected minimum cluster size (Remark 1,

statement a.). Hence the model suggests that what happens at the very beginning of

an electoral campaign has a very strong e¤ect on its later developments, and raises

the incentive for a candidate to invest campaign resources on whatever is deemed

to have any power to a¤ect the initial distribution. Loosely speaking, a very good

opening speech in an electoral campaign, or some primary results, have a long lasting

e¤ect on the process of public opinion: although they do not determine the �nal

outcome (since the process is path-dependent), they directly a¤ect the probability

with which a candidate achieves uniform support in the electorate.

If the poll is repeatedly taken into account by voters in their opinion formation

process, then it not only singles out one con�guration as the only asymptotic outcome

(Theorem 3, Part 3.), but it also increases the rate at which support grows in the

population (Remark 1) from
p
t to at least t. This clearly emphasizes the importance

of the last electoral poll in an electoral campaign and formalizes an incentive, on the

part of candidates, to invest resources in producing a last electoral poll, as close as

possible to the date of the elections.

A further insight that the model provides relates to the optimal timing of resource

allocations in an electoral campaign. As we showed before, in the conformist voter

model when only an initial poll is made available, the process is path-dependent, as its

long run behaviour depends crucially on the initial distribution. Along the dynamics,

in the absence of any further poll, clusters emerge and are almost stationary when

viewed locally, since their rate of growth is of probability order
p
t: It is instructive

to interpret the numerical lower and an upper bound available for the expected mean

cluster size. To this aim, consider a process that starts with an initial distribution

where each voter chooses opinion 1 with probability, say, � = 0:5: As choices are

initially independent, clearly, at time zero, the probability of observing a cluster of

k = 100 voters with the same opinion is 2�100. As the process evolves, however,

choices show a certain amount of spatial correlation. For t ! 1 the mean cluster
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size, re-scaled by
p
t, will converge to a limit that lies between 2

p
� = 3: 5449 and

4
p
� = 7: 0898. Hence a cluster of k = 100 voters could be approximately observed

as early as after t = 198: 94, and is on average not going to vary until t = 795: 78.

In other words, in order to observe the cluster size to double (say from k = 100

to k = 200), the process needs to go through four times as many periods (say from

t � 200 to t � 800). Simple calculus shows that the lower and the upper bound of the
(limiting) mean cluster size are convex in � and symmetric around � = 0:5. Hence

for � 6= 0:5 a cluster of a given mean size is likely to be observed earlier than if � was
0:5 and is likely to �persist�for a relatively longer spell of time. Hence, conditional

on a candidate winning the elections, the higher is �, the lower is the number of

time periods that are necessary to achieve a given minimum expected cluster size of

votes in her or his favour, and the longer is the spell of time within which his or her

electoral support is going to remain almost stationary. Hence, if a candidate could

gather some information about the current distribution of potential votes and if this

was favourable to her or him, then delaying the date of the elections could have a

detrimental e¤ect on the outcome.

These last considerations seem to suggest that a linear allocation of funding over

time during an electoral campaign might not be fully and always optimal, since the

returns in terms of growing support in the electorate are determined by the properties

of the dynamics of the process of public opinion and these may be endogenously

a¤ected by candidates. It is however clear that considerations of this sort require

an explicit account of the strategic interaction between the two candidates, which at

present is not part of the model.

An important assumption that we have maintained throughout all of this paper

is that voters are homogenous in their behaviour and the only form of heterogeneity

in the opinions that are chosen stems endogenously from the con�guration of other

agents�opinions at the time choices are to be made. One important extension one

may consider is to allow for modelled heterogeneities among voters, other than those

stemming from the local nature of information. This is particularly interesting in the

light of a recent line of research in the �eld of Political Economy that focuses on the

social e¤ects of preference falsi�cation (T. Kuran (1997) provides a very insightful

study10), where the opinion reported in public may not re�ect true preferences due

to social pressures or peer considerations. Our model may capture some aspects

pertinent to this approach, once we allow for heterogeneous preferences among voters.

We outline below two ways in which this may occur.
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In the �rst case we assume conformist voters, located on a one-dimensional lattice

sampling opinions among their nearest neighbours and no electoral poll. The form of

heterogeneity we consider relates to voters�behaviour when facing an equal distribu-

tion of opinions within their neighbours: while a conformist voter as in our De�nition

?? would toss a fair coin, now a type-1 voter chooses opinion 1, while a type-0 voter

chooses opinion 0. This formalizes the idea that peer pressure are strong enough to

fully determine opinions for a voter who is surrounded by all neighbours choosing the

same opinion, but that in the absence of a strict majority within the neighbourhood,

a voter�s type determines one�s choice. This seemingly innocent asymmetry in be-

haviour alters substantially the asymptotics of the process of public opinion, in that

although consensus may still obtain, whenever both types exist in the population

of voters, in�nitely many con�gurations where both opinions co-exist may also be

absorbing for the dynamics. To see this notice that a border between a cluster of at

least two ones and a cluster of at least two zeros, where bordering voters are a type-0

and a type-1 respectively, is stable (in that no voter would �ip). Hence the process

admits in�nitely many possible absorbing states where both opinions co-exist.

In the second case conformist voters are heterogenous in terms of the poll they

account for in determining their opinion: suppose 0 < � < 1 and that type-1 voter

receive � = 1, type-0 voters receive � = 0. In fact, we may take � = f1; 0g to represent
a voter true preferences and � to measure the weight given to social pressures that

may lead to preference falsi�cation. Looking at the implied �ip rates, it is not di¢ cult

to see that a type-1 (vs. type-0) voter would choose opinion 1 (vs. opinion 0) with

probability one if and only if (s)he is surrounded by all neighbours choosing opinion

1 (vs. opinion 0). In all other cases the probability of choosing an opinion is strictly

between zero and one and is increasing in the number of neighbours choosing the same

opinion. This means that, for example, a type-1 voter surrounded by all zeros �ips

to opinion zero at rate �: As a result, whenever both types exist in the population,

the system admits no absorbing states. We conjecture that since this process is

attractive, it may still display clustering. It is however not clear how the invariant

measures could be characterized since reversibility fails to hold in this case.

5 Conclusions and some related issues

This paper analyses a simple model of public opinion formation that posits that

interaction between neighbouring agents leads to bandwagons in the dynamics of
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individual opinions, as well as in that of the aggregate process. Bandwagons emerge

due to the local nature of information gathering and the potential heterogeneity

in behaviour that this entails. We show however that in di¤erent speci�cations of

the model, the process tends asymptotically to show consensus on one of the two

competing opinions, meaning that initial correlation of opinions among agents tends

to vanish over time. We consider the e¤ects on the process of opinion formation

of a publicly available poll and show that this may lead to a form of contagion, by

which public opinion tends to agree with the poll. In the absence of a poll, the

process displays the feature that, after long time spans, a sequence of states occur

which remain almost stationary and, when viewed locally, are characterized by large

clusters of individuals who hold the same opinion.

Throughout the paper we used the metaphor of a model of pre-electoral public

opinion formation, with two candidates running. This allowed us to provide some

heuristic considerations related to the space-time allocation of funding in an electoral

campaign. As previously pointed out the model we study shares some analogies with

the recent literature on learning and evolution in games. As a concluding remark we

brie�y elaborate on these latter points.

Consider the following 2-by-2 symmetric coordination game, where actions are

labelled as 0 and 1 and payo¤s are such that a > c and d > b :

0 1

0 a; a b; c

1 c; b d; d

By standard arguments, the game admits two strict Nash equilibria in pure strategies

f1; 1g and f0; 0g and a Nash equilibrium in mixed strategies where each player plays

action 1 with probability � � (a� c+ d� b)�1(d� b).
The behavioural speci�cations we introduced in Section 2.1, motivated in terms

of binomial sampling with uniform priors, provide smoothed approximation for the

best-reply correspondence induced by the above game11. To see this, let p be the

probability with which action 1 is chosen, BR(p) be the best reply correspondence

and BR(p;m) and BR(p;m), where m odd is the sample size, be obtained in analogy
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to equations (1) and (2) respectively:

BR(p) =

8>><>>:
0 p < �

[0; 1] p = �

1 p > �

BR(p;m) =
mX
r=0

�
m

r

�
pr(1� p)m�r 1(f (m+ 1)!

r!(m� r)!

1Z
�

zr(1� z)m�rdz > �g)

BR(p;m) =
mX
r=0

�
m

r

�
pr(1� p)m�r (m+ 1)!

r!(m� r)!

1Z
�

zr(1� z)m�rdz

These constitute approximations of BR(p) since straight-forward adaptations of

the results contained in the proof of Part 1 of Theorem 3, would show that limm!1 j
BR(p;m)�BR(p;m) j= 0 and limm!1BR(p;m) = BR(p).

A locally interactive speci�cation of the model is obtained by postulating that a

player can only observe a sample of actions chosen within her neighbourhood. With

the notation used throughout this paper, this amounts to saying that the values of p

are de�ned as p(x; v) = (2d)�1
P
fy:ky�xk=1g v(y) (where v(y) now denotes the action

chosen by player y, who is a nearest neighbour of player x) and are restricted to

f0; (2d)�1; 2(2d)�1; ::::; 1g:
The results we obtain in the paper refer to the case where � = 0:5. In the above

parametrization of the game, this is the case when a � c = d � b, meaning that,
since the two pure strategy Nash equilibria are risk-equivalent, the game does not

admit any risk-dominant equilibrium as de�ned in Harsanyi and Selten (1988). The

interpretation of the results of our paper are as follows.

Theorem 1 in the case of � = 1 and d = 1 provides a result analog to Blume

(1993). In fact an alternative route to prove this result is by establishing a relation

between the process vnc(m) for m �nite, and a class of stochastic processes known

as Ising models. This could be based on the fact that the transition probabilities of

which in equation (2) correspond exactly to the �ip rates of a stochastic Ising model,

with nearest neighbour interactions, relative to the following potential:

JR =

8<: �(m) = 1
4 log(2

2(m+1) � 1) if R = fx; yg and y :j x� y j= 1
0 otherwise

(4)

For d > 1; it is worth noticing that, for any �nite m and over values of p =2 f0; 1=2; 1g,
BR(p;m) does not coincide with the speci�cation used in Blume (1993), given bydBR(p;m) = [1 + exp[mf(c � a)p + (d � b)(1 � p)g]�1 applied to a 2-dimensional
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lattice. The logic followed in Corollary 2 is entirely analog to that used in equilibrium

selection in games. The result says that, whenever a risk-dominant equilibrium does

not exist, as the noise becomes in�nitesimally small (i.e. form!1) the unique limit
distribution of the process posits positive probability only on the two con�gurations

that reproduce, in terms of observed frequencies, the two pure strategy Nash equilibria

of the underlying game.

Theorem 3 for � = 1 and d = 1 may be interpreted to describe a coordination

game played in a one-dimensional locally interactive system, by countably many

myopically best-responding players who, in case of indi¤erence, choose each action

with probability 1=2 and where initial conditions are random (as in Lee and Valentinyi

(2000)), i.e. where initially every player chooses action 1 with probability �0. This

result says that, whenever a risk-dominant equilibrium does not exist, a) the only

absorbing states of the process are the two con�gurations that reproduce, the two

pure strategy Nash equilibria of the underlying game and b) the initial condition fully

identi�es the basins of attraction of the two steady states. As a result, the process

shows consensus, meaning that the probability with which all players adopt the same

action tends to one over time.

Remark 1, Part a. characterizes the speed with which consensus is achieved as
p
t: This means that, although both actions cannot co-exist inde�nitely in our model

(in the sense used for example in Morris (2000)), the process is characterized by large

clusters of adjacent agents who adopt the same action that persist over time, and when

viewed locally look as if they were stationary. The analysis pursued here has some

analogies, at least in its motivation, with Ellison (1993) and Ellison (2000), where

the author studies the rates of convergence of best-reply dynamics for an underlying

coordination game, repeatedly played by couples of players drawn at random from a

�nite population. Our model di¤ers from the cited paper in a number of respects.

First, the speci�cation of the dynamics that Ellison studies is perturbed by mistakes

(that take the form of a multinomial distribution that assigns small, though strictly

positive, probability, uncorrelated across players and over time, to actions that are

not best-replies to the current con�guration of play). This is substantially di¤er-

ent from the way we model individual behaviour (that in the speci�cation given by

BR(p;m) could be motivated in terms of mistakes that do depend on expected payo¤s

as indBR(p;m)). Second, Ellison�s dynamics are de�ned over a �nite state-space and
modeled as �nite, discrete time, regular Markov chains, whereas our dynamics de�ne

a Markovian process over a countable state-space, that is ergodic if players adopt
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BR(p;m); but is path-dependent if players adopt BR(p;m). Lastly, the cited paper

compares the speed of convergence of transition probabilities to their limit values, in

a model with local interaction and in an (analog) model with global interaction and

shows that , whenever a risk-dominant equilibrium exists, the speed of convergence is

higher in a locally interactive setting. All speci�cations of our model rely on a local

characterization of the way in which interaction takes place and the results we obtain

here rely on an explicit relation between the two dimensions over which our processes

are de�ned (i.e. time and space) in a process that may show path-dependency. Since

in a non-local speci�cation of our model (where players are equally likely to interact

with any other player in the population) consensus would grow at least at a linear

rate, our results imply that, whenever a risk-dominant equilibrium does not exist,

the speed of convergence is actually lower in a locally interactive system.
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Appendix

Proof of Theorem 1

1. (characterization of the invariant measure) We start by looking at the one-

dimensional case, i.e. for d = 1 and we claim that the following measure is invariant

for the process vnc(m) for any m <1:

��1(v) = K exp[
X
x

X
fy:ky�xk=1g

�(2v(x)� 1)(2v(y)� 1)]

whereK = f
P
v exp[

P
x

P
fy:ky�xk=1g �(2v(x)�1)(2v(y)�1)]g�1 and � = 1

4 log(2
2(m+1)�

1):

We re-write the transition probabilities of which in equation (2) by substituting

� = 1
4 log(2

2(m+1) � 1):

Pr nc[1 j m; p(x; v)] � Pr nc[1 j �; p(x; v)] = (5)

=
1

1 + exp[�4�(2p(x; v)� 1)] (6)

where we recall p(x; v) = 1
2

P
y:ky�xk=1 v(y) and, since S = Z1, it takes values in

f0; 1=2; 1g. For example, if p(x; v) = 0 the above equation states that the probability
that opinion 1 is chosen is given by [1 + exp[4�]]�1 = [1 + exp[log[22(m+1) � 1]]]�1 =
(22(m+1))�1, which corresponds exactly to (2) for p = 0.

To prove the assert, it su¢ ces to notice that the above measure is reversible, in

that:

Pr nc[1 j �; p(x; v); v(x) = 0]��1(vx=0) = Pr nc[0 j �; p(x; v); v(x) = 1]��1(vx=1)

where the two con�gurations vx=0 and vx=1 di¤er only in the coordinate x (i.e.

vx=0(x) = 0; vx=1(x) = 1 and vx=0(y) = vx=1(y) for all y 6= x):

��1(vx=1)

��1(vx=0)
= exp[2�

X
fy:ky�xk=1g

(2v(y)� 1)]

=
1

1 + exp[�2�
P
fy:ky�xk=1g(2v(y)� 1)]

�

� [ 1

1 + exp[2�
P
fy:ky�xk=1g(2v(y)� 1)]

]�1

=
Pr nc[1 j �; p(x; v); v(x) = 0]
Pr nc[0 j �; p(x; v); v(x) = 1]

The same logic applies to the case where 1 < d < 1. In this case, for any

given m < 1 and for p � p(x; v) = (2d)�1
P
fy:ky�xk=1g v(y) which takes values in
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f0; (2d)�1; 2(2d)�1; ::::; 1g, reversibility requires:

�
(m)
1 (vx=1)

�
(m)
1 (vx=0)

= exp[4�(m)(p)d(2p� 1)]

=
1

1 + exp[�2�(m)(p)d
P
fy:ky�xk=1g(2v(y)� 1)]

�

� [ 1

1 + exp[2�(m)(p)d
P
fy:ky�xk=1g(2v(y)� 1)]

]�1

=
Pr nc[1 j p;m; v(x) = 0]
Pr nc[0 j p;m; v(x) = 1] �

Pr nc[1 j p;m]
1� Pr nc[1 j p;m]

where Pr nc[1 j p;m] is as in equation (2). Hence �(m)(p) solves the following
equation:

Pr nc[1 j p;m]
1� Pr nc[1 j p;m] = exp[4�

(m)(p)d(2p� 1)]

This equation has a unique solution for any p 6= 0:5 given by:

�(m)(p) =
log[Pr nc[1 j p;m]� log[1� Pr nc[1 j p;m]]

4d(2p� 1)

If p = 0:5, since Pr nc[1 j p = 0:5;m] = 0:5 for any m, any �nite value of � satis�es
the above equation. It can be shown that �(m)(p) is symmetric, in the sense that

�(m)(p) = �(m)(1 � p): Hence, for any given d, �(m)(p) is fully characterized by d
values. In fact, for d = 1, its domain is restricted tof0; 0:5; 1g and its co-domain is
fully characterized by the parameter � = 1

4 log(2
2(m+1) � 1), as used in the �rst part

of this proof.

2. (ergodicity) We interpret the process vnc as a system of interactive, nearest

neighbours, particles on the state space S.

We look �rst at the case where j S j� S < 1: For convenience, and in order to
assume away bordering conditions (where, since there are only �nitely many voters,

a voter would be surrounded by only d neighbours, as opposed to 2d), we think of

the lattice Zd as folded to form the torus �(S) = Zd \ [�S=2; S=2]d for S = 2; 4; :::::.
The process vnc moves on the �nite state space of all con�gurations v 2 f0; 1g�(S).

In the model, at any point in time, at most one voter may choose to revise her or

his opinion. When (s)he does so, (s)he behaves according to equation (1), which we

recall only depends onm, p(x; v), � and � and are homogeneous over time. Hence the

dynamics is generated by the following �ip rates, c(x; v) that de�ne the probability

with which coordinate x �ips, from v(x) to 1� v(x), when the process is in state v:

cnc(x; v; �; �;m) = v(x) + (1� 2v(x))[�Pr nc[1 j p(x; v);m] + (1� �)�]
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where v(x) = f0; 1g and Pr nc[1 j p;m] is as in equation (2).
It can easily be checked that for any value of (�; �) 2 (0; 1] � [0; 1], since 0 <

Pr nc[1 j p;m] < 1 for m <1, these �ip rates are strictly positive. Hence, transition
probabilities are strictly positive from each state to all, and only, the states that

di¤er from that state by at most one coordinate. Hence we may regard the process

as a �nite-state Markov chain, and conclude that, since starting from one state, the

process can reach any other state in at most S <1 steps, the process is ergodic.

Whenever S = Zd is countable, but possibly in�nite, so is the state space of the

process vnc and hence the above logic does not hold. We proceed as follows. We �rst

show that the process is attractive (or monotonic) in that coordinates tend to agree

with neighbouring coordinates. We then use a result stating that, in Z1, a su¢ cient

condition for an attractive system with a countable state-space to be ergodic, is

that the transition probabilities that generate the process be strictly positive (as we

already know they are).

We introduce the following partial order on f0; 1gZ1 . We say that, for �; � 2
f0; 1gZ1 , � � � if �(x) � �(x) for all x 2 Z1. Then a process is de�ned to be

attractive if, whenever � � � �ip rates satisfy the following:

c(x; �; �; �;m) � c(x; �; �; �;m) if �(x) = �(x) = 0

c(x; �; �; �;m) � c(x; �; �; �;m) if �(x) = �(x) = 1

Since for any � � �; p(x; �) � p(x; �); also Pr nc[1 j p(x; �);m] � Pr nc[1 j p(x; �);m]
for any m. Hence, the process is attractive. For example, for d = � = 1, �ip rates

expressed as a function of � <1 are:

cnc(x; v; �) �

8<: Pr nc[1 j �; p(x; v); v(x) = 0] = [1 + exp[�4�(2p(x; v)� 1)]]�1 if v(x) = 0

Pr nc[0 j �; p(x; v); v(x) = 1] = [1 + exp[4�(2p(x; v)� 1)]]�1 if v(x) = 1

or:

cnc(x; v; �) =
1

1 + exp[�4�(1� 2v(x))(2p(x; v)� 1)]
and it can easily be checked that attractivity is guaranteed.

As proved in Gray (1982) (and reported, for example, in Liggett (1985), as The-

orem 3.14, p.152), this is a su¢ cient condition for ergodicity. Hence, the set of

invariant measures, I, for the process vnc(m); with m <1, is a singleton.
As a result, for �t � � = 1 for all t > 0, the only such measure is the one identi�ed

in Part 1. of this proof and the last statement of Part 2. of the Theorem follows.
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Notice that for any �t � � < 1 for all t > 0, the reversibility properties we used
in Part 1. of the proof only hold for � = 0:5 (since in any other case �Pr nc[1 j p =
0;m]+(1��)�+[�Pr nc[1 j p = 1;m]+(1��)�] 6= 1, thus formalizing an asymmetry
in the �ip rates).

Proof of Theorem 3

1. Recall that the processes vnc(m) and vc(m) are ultimately de�ned by the

transition probabilities of which in (2) and (1) respectively. Hence, we only need to

show that limm!1 Pr nc[1 j m; p] = limm!1 Pr c[1 j m; p] for any given p � p(x; v) �
i=2d for i 2 f0; 1; ::::; 2dg.

For d = 1, this is trivial, since Pr nc[1 j m; p = 0] = 2�2(m+1), Pr nc[1 j m; p =
0:5] = 0:5 and Pr nc[1 j m; p = 1] = 1 � 2�2(m+1) and, over f0; 12 ; 1g and for all m,
Pr c[1 j m; p = 0] = 0, Pr c[1 j m; p = 0:5] = 0:5 and Pr c[1 j m; p = 1] = 1.

For d > 1, we show that convergence obtains over all values of p:

j Pr nc[1 j m; p]� Pr c[1 j m; p] j�

� j
2m+1X
r=0

�
2m+ 1

r

�
pr(1� p)2m+1�r �

2m+1X
r=m+1

�
2m+ 1

r

�
pr(1� p)2m+1�r j=

=

mX
r=0

�
2m+ 1

r

�
pr(1� p)2m+1�r � 1

2m

which goes to 0 for m!1.
To characterize this limit, notice that, Pr c[1 j m; p] is symmetric around p = 0:5,

in that Pr c[1 j m; p] = 1 � Pr c[1 j m; 1 � p]. Hence it su¢ ces to show that, for all
0 < p < 0:5, limm!1 Pr c[1 j m; p] = 0. To this aim, notice that, for 0 < p < 0:5, this
is a sum of m decreasing terms. Hence:

0 < Pr c[1 j m; p] � m
�
2m+ 1

m+ 1

�
pm+1(1� p)m

0 < limm!1 Pr
c[1 j m; p] � limm!1m

�
2m+ 1

m+ 1

�
pm+1(1� p)m = 0

thus concluding the proof.

2. Since � = 0 at t = 0 the initial condition fo the process is given by the product

measure ��0 . Since � = 1 for all t > 0 �ip rates for this process are:

cc(x; v) = v(x) + Pr c[1 j m; p(x; v)](1� 2v(x))

for v(x) 2 f0; 1g and Pr c[1 j m; p(x; v)] as in equation (1). Since d = 1, p(x; v) =

(2)�1
P
fy:ky�xk=1g v(y) 2 f0; 1=2; 1g and over these values Pr c[1 j m; p(x; v)] �
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p(x; v) for all m � 0. As a result:

cc(x; v) = v(x) + p(x; v)(1� 2v(x)) (7)

By simple inspection of the �ip rates that de�ne the process it is clear that any

state for which v(x) = v(y) for all x; y in S is stationary for the process. Clearly,

for this process vc, I � Ie � f�0; �1g. Hence, the result relies on the proof that
these are the only two extreme invariant measures (i.e. Ie � f�0; �1g), so that, as
I is a convex set, any other invariant measure is fully characterized. Furthermore,

one needs to show that the domains of attraction of each extreme invariant measure,

depend on the stochastic initial condition given by the product measure ��0 , and

limt!1 �
�0
t = (1� �0)�0 + �0�1.

We make use of results that are well known in the statistical literature on the

Voter�s model (Liggett (1985), Section 1 and 3, Chapter V or in Bramson and Grif-

feath (1980)) that our model reproduces for this speci�cation of the parameters. In

the Voter�s model, a voter at x 2 Zd changes his opinion at an exponential rate (with
mean one) proportional to the number of 2d nearest neighbours with the opposite

opinion. If 2d neighbours disagree with the person at x, the �ip rate is 1. It can be

seen by equation (7) that this is exactly the dynamics of our model.

As the logic of the proofs is interesting in its own right, we sketch the proof in

what follows.

The process vc can be studied in terms of its dual process in terms of coalesc-

ing random walks. The duality relation transforms questions about vc in questions

concerning the cardinality of the coalescing random walk system.

We �rst show that such duality can be used, by checking the conditions of which

in equation. (4.3) (p. 158) in Liggett (1985). To this aim, note that, at any t > 0,

the �ip rates of equation (7) can be written as:

cc(x; v) = (1� v(x)) + (2v(x)� 1)
X

fy:ky�xk=1g

1

2
(1� v(y))

These coincide with equation. (4.3) (p. 158) in Liggett (1985), once we take c(x) = 1,

A = fyg and p(x;A) = p(x; y) = 1=2 if y :k y � x k= 1 and zero otherwise.
The dual process is a system of countably many continuous time, symmetric

random walks that jump after an exponential mean-1 holding time, with probabilities

p(x; x+ 1) = p(x; x� 1) = 1=2. Whenever two random walks meet (i.e. if one jumps

to a site that is already occupied), then they coalesce, i.e. they merge into one. In
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particular, any such random walk de�nes a continuous time Markov chain, X(t), with

transition probabilities:

pt(x; y) = e
�t

1X
n=0

tn

n!
p(n)(x; y) (8)

where p(n)(x; y) are the n-step transition probabilities associated with p(x; y). Any

system of �nitely many independent copies of X(t); where any two merge whenever

they meet, de�nes a system of �nitely many coalescing Markov chains over the state

space of all �nite subsets of S = Z1.

We denote by At the system of coalescing random walks at time t, that started

at time zero in the �nite subset A � S. For any such subset A, let:

gt(A) = Pr
A[j At j<j A j for some t � 0]

This represents a measure of how far apart the single processes are. Clearly, for any

t, gt(A) = 0 when j A j= 1, as a single recurrent random walk is never going to die. If
j A j= 2, gt(A)!t!1 1; meaning that two recurrent random walks will tend to meet

and coalesce, as time grows, and possibly only asymptotically. In order to shorten an

otherwise very long proof, we shall however assume that gt�(A) = 1 when j A j= 2

for some t� <1.
Let A = fx 2 S : v(x) = 1 for all x 2 Ag and, for � being a probability measure

on f0; 1gS , let �(A) = �fv : v(x) = 1 for all x 2 Ag. Then the duality equation can
be stated as follows (see equation. 1.7, p. 230 in Liggett (1985)):

�t(A) = E
A�(At) (9)

where �t(A) is the probability that the process vt has vt(x) = 1 for all x 2 A and

EA�(At) is the probability that j At j random walks, started at A, are still alive at

time t.

By using this duality relation, we now show that, given a product measure ��,

limt!1 �
�
t = (1� �)�0 + ��1.

To characterize the basins of attraction of fv0; v1g, suppose the process vc is
started (stochastically) with product measure ��. If � is the �rst time that j At j= 1
(which is �nite with probability one by our assumption that gt�(A) = 1 when j A j= 2)
the duality equation (9) implies that:

lim
t!1

EA�(At) = E
A[ lim
t!1

EA��(At)]
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Applying this again to A = fxg we obtain:

lim
t!1

X
y

pt(x; y)�(fyg) = � for all x 2 S

But, by part (b) of Theorem 1.9 in Liggett (1985) (p. 231), this is a necessary and

su¢ cient condition for limt!1 ��t ! (1 � �)�0 + ��1 to be true. Hence, for � = �0
the assert follows.

3. We follow the same logic we used in Part 2. of the proof of Theorem 1 for the

case of S = Z1. Flip rates for this model can be written as:

cc(x; v; �; �;m) = v(x) + (1� 2v(x))[�Pr c[1 j p(x; v);m] + (1� �)�] (10)

for v(x) = f0; 1g where Pr c[1 j p(x; v);m] is given in equation (1). Attractivity is,
again, guaranteed by the fact that, for any m, Pr c[1 j p;m] is increasing in p. Hence
the process is ergodic if these �ip rates are strictly positive.

Recall that � 2 (0; 1) by assumption. Since, for all m, Pr c[1 j p = 0;m] = 0 and
Pr c[1 j p = 1;m] = 1, it is clear that, for any � 2 (0; 1), 0 < cc(x; v; �; �;m) < 1,

which guarantees ergodicity in this case. For � 2 f0; 1g ergodicity is proven next.
We prove the statement for � = 1. (The proof for � = 0 is entirely analog). In

this case the con�guration v1 = fv 2 f0; 1gZ1 : v(x) = 1g is absorbing, since, form
the �ip rates of which in (10), no voter would chance opinion. Moreover, this would

be the only absorbing state, since in any other con�guration some voters, for whom

p(x; v) < 1; could �ip with positive probability. Since the state-space of the process

vc on Z1 is only countable, ergodicity might still fail to hold12.

Let SN be �nite sets that increase to S; such that limN!1 SN = S: De�ne the

following �ip rates:

cc;Ni (x; v; �; �;m) =

8>><>>:
cc(x; v(x)i; �; �;m) if x 2 SN

0 if x =2 SN and v(x) = i

1 if x =2 SN and v(x) 6= i

with v(x)i = v(x) for x 2 SN; and v(x) = i for x =2 SN ; i 2 f0; 1g:
Denote the process with �ip rates cc;Ni (x; v; �; �;m) by Si;N (t); where Si;N (t)

is equal to the original process for x 2 SN ; and characterized by all coordinates set
equal to i for x =2 SN : Let �0S0;N (t) be the law of the process characterized by �ip
rates cc;N0 (x; v; �; �;m) when the initial distribution is given by all 0 at time 0 and let

�1S1;N (t) be the law of the process characterized by �ip rates c
c;N
1 (x; v; �; �;m) when
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the initial distribution is given by all 1 at time 0: As cc(x; v(x); �; �;m) is attractive,

by Theorem 2.7 in Liggett (1985), also cc;Ni (x; v; �; �;m) are attractive and

�0S0;N (t) � ��S(t) � �1S1;N (t)

for � 2 (0; 1); and

lim
N!1

lim
t!1

�0S0;N (t) = lim
t!1

�0S(t)

lim
N!1

lim
t!1

�1S1;N (t) = lim
t!1

�1S(t)

Now limt!1 �0S0;N (t) = limt!1 �1S1;N = �1;N ; that is, as t!1; independently
of the initial distribution, the process restricted on SN converges to a con�guration

all ones. In fact Si;N (t) is a �nite Markov chain over SN ; and as there is a unique

absorbing state (v1N � fv(x) = 1 for all x 2 SNg) we know that the unique ergodic
distribution posits pointmass one on this state. As limN!1 SN = S; il follows that

lim
N!1

lim
t!1

�0S0;N (t) = lim
N!1

lim
t!1

�1S1;N (t) = lim
N!1

�1;N = �1

The desired result then follows.

Proof of Remark 1

a. We have already shown that, under the assumptions of Theorem 3, Part 2. our

model reproduces the dynamics of the Voter�s model. Theorem 7 (p.211) in Bramson

and Gri¤eath (1980) requires the initial condition to be a product measure (as such

translation invariant) and in our model ��0 is so by de�nition.

b. We prove the statement for �T = 1: In this case we know (Theorem 3, Part

3.) that, starting from any time T distribution, the system converges to v1. We

here characterize the minimum rate at which this occurs. First notice that, since

� 2 (0; 1), �T = 1 and d = 1; �ip rates are given by:

cc(x; v; �; �;m) = v(x) + (1� 2v(x))[�p(x; v) + (1� �)]

Hence, starting from v0 (where p(x; v) = 0 for all x), ones are produced by the poll

at rate (1� �) > 0.
Suppose at some time t > T = 0, v(x) = 1 and v(y) = 0 for all y 6= x. The

minimum rate at which this one at x grows into a cluster of two adjacent ones is

computed as follows. Within a small time interval, since at most one voter can

change opinion, three things can happen:

a) v(x) = 1 �ips to v(x) = 0, v(x� 1) = v(x+ 1) = 0. This occurs at rate �.
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b) v(x) = 1, v(x� 1) = 0 �ips to v(x� 1) = 1; v(x+ 1) = 0. This occurs at rate
�=2 + (1� �).

c) v(x) = 1; v(x+ 1) = 0 �ips to v(x+ 1) = 1; v(x� 1) = 0: This occurs at rate
�=2 + (1� �).

Under a) the cluster disappears; under b) or c) the cluster grows by one unit. It

can easily be checked that these are also the (minimum) rates at which a cluster of

at least two adjacent ones grows by one unit. Hence, between T = 0 and t, with

probability one, the cluster size is such that:

j vt j�
tZ
0

[2(
�

2
+ 1� �)� �]dt = 2(1� �)t

As a result, since � 2 (0; 1); for t > T :

lim
t!1

j vt j
2t

� (1� �) lim
t!1

t1�

which is equal to 1 for  < 1.
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Notes

1Since many speci�cations of our model allow for a countable population of agents, simple majority

is to be intended as the limit of its natural restriction to [�N;N ] as N ! 1 whenever this limit

exists. As it will become clear, this will not play a key role in our results.

2The simplest way to motivate this is to think in terms of a side payments, denoted by "; that a

voter gets if (s)he has voted for the candidate who wins the elections and to further postulate that

the utility function is quasi-linear in this latter argument. The relevance of this assumption within

the framework of a standard herding model has been recently emphasized by Collander (2002).

3This is given by Pr [1 j p; n] =
Pn

r=0

�
n
r

�
pr(1�p)n�r 1(f (n+1)!

r!(n�r)!

1R
1=2

zr(1�z)n�rdz > 0:5g) where

1(f�g) is an indicator function that takes value of one whenever f�g is true.

4This statement is proved in the proof of Part 1. of Theorem 3.

5See footnote 3.

6This statement is proved in the proof of Part 1. of Theorem 3.

7Speci�cally, we mean that, within a small time interval dt:

Pr[vt+dt(x) = 1 j �; pt;m; �T ] = Pr[1 j �; pt;m; �T ]dt+ o(t)

Also, the assumption that opinions are revised at random times ensures that the probability that

more than one voter revises opinion at the same time is negligible.

8More precisely, it varies upper hemicontinuously with m in the weak convergence topology.

9 It is clear that Corollary 2 only relies on a comparative static exercise over the limit distributions

of a sequence of identical processes, that di¤er only in the parameter m and, as such, it does not

provide a full understanding of the dynamics. Loosely speaking, what we do next is to reverse the

logic we followed in Corollary 2 (where we �rst looked at the asymptotics for t ! 1, and then at
the limit for m!1) by �rst looking at a process where a voter knows exactly what the opinions in
her neighbourhood is (i.e. in the limit for m!1) and second at what happens along the dynamics
of this process (i.e. asymptotically for t!1).

10We are grateful to an anonymous referee of a previous version of this paper and to A. Hamlin

for drawing this book to our attention.

11The term smooth refers to the fact that the best-reply correspondence are approximated by

continuous functions. For an overview of analog approximations, see for example Fudenberg and

Levine (1998), Chapter 4 and therein references.

12The intuition why this could be so, is as follows. Suppose the process starts at v0 = fv 2
f0; 1gZ1 : v(x) = 0g. An occasional v(x) = 1 appears and, when it does so, it may grow into a block
of 1s. But if (1� �) is small, the length of the block of 1s surrounded by 0s may grow at a negative
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rate. The process is described approximately by a countable positive recurrent Markov chain over

the number of 0s, (0; 1; 2; :::::g, absorbed at 0 after a time with �nite expected value. If (1 � �)
(the rate of production of 1s) is small relative to this expected time, then one may expect the limit

distribution for t!1, to be di¤erent from �1. Hence the process would not be ergodic. Hence we

need to prove that ergodicity holds for any value of � 2 (0; 1).
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