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Abstract

The policy implications of estimated macro-econometric systems depend on the formulations
of their equations, the methodology of empirical model selection and evaluation, the techniques of
policy analysis, and their forecast performance. Drawing on recent results in the theory of forecast-
ing, we question the role of ‘rational expectations’; criticize a common approach to testing economic
theories; show that impulse-response methods of evaluating policy are seriously flawed; and ques-
tion the mechanistic derivation of forecasts from econometric systems. In their place, we propose
that expectations should be treated as instrumental to agents’ decisions; discuss a powerful new ap-
proach to the empirical modelling of econometric relationships; offer viable alternatives to studying
policy implications; and note modifications to forecasting devices that can enhance their robustness
to unanticipated structural breaks.
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1 Introduction

The policy implications derived from any estimated macro-econometric system depend on the formu-
lation of its equations, the methodology used for the empirical modelling and evaluation, the approach
to policy analysis, and the forecast performance. Drawing on recent results in the theory of forecasting,
we question the role of ‘rational expectations’ in the first stage; then criticize the present approach to
testing economic theories prevalent in the profession; next, we show that impulse-response methods of
evaluating the policy implications of models are seriously flawed; and finally, question the mechanistic
derivation of forecasts from econometric systems. In their place, we propose that expectations should be
treated as instrumental to agents’ decisions; suggest a powerful new approach to the empirical model-
ling of econometric relationships; offer viable alternatives to studying policy implications; and discuss
modifications to forecasting devices that can enhance their robustness to unanticipated structural breaks.
We first sketch the arguments underlying our critical appraisals, then briefly describe the constructive re-
placements, before presenting more detailed analyses of these four issues. Sub-section 1.1 summarizes
our critiques, and sub-section 1.2 introduces our remedies.

1.1 Four critiques of present practice

Our approach builds on extensive research that has radically altered our understanding of the causes of
forecast failure, the occurrence of which was one of the driving forces behind the so-called ‘rational
expectations revolution’ that replaced ‘Keynesian’ models. Forecast failure is a significant deterioration
in forecast performance relative to the anticipated outcome, usually based on the historical performance
of a model: systematic failure is the occurrence of repeated mis-forecasting. The research reveals that
the causes of forecast failure differ from what is usually believed – as do the implications. To explain
such differences, we begin by reconsidering the ‘conventional’ view of economic forecasting.

When the data processes being modelled are weakly-stationary (so means and variances are constant
over time), three important results can be established. First, causal variables will outperform non-causal
(i.e., variables that do not determine the series being forecast), both in terms of fit and when forecast-
ing. Secondly, a model that in-sample fully exploits the available information (called congruent) and
is at least as good as the alternatives (encompassing) will also dominate in forecasting; and for large
samples, will do so at all forecast horizons. Thirdly, forecast failure will rarely occur, since the sample
under analysis is ‘representative’ of the sample that needs to be forecast – moreover that result remains
true for mis-specified models, inaccurate data, inefficient estimation and so on, so long as the process
remains stationary. Such theorems provide a firm basis for forecasting weakly-stationary time series us-
ing econometric models: unfortunately, they can be extended to non-stationary processes only when the
model coincides with the data generation process (DGP).

The systematic mis-forecasting and forecast failure that has periodically blighted macroeconomics
highlights a large discrepancy between such theory and empirical practice, which is also visible in other
disciplines: see e.g., Fildes and Makridakis (1995) and Makridakis and Hibon (2000). The key problem
is the inherently non-stationary nature of economic data – even after differencing and cointegration trans-
forms have removed unit roots – interacting with the impossibility in a high-dimensional and evolving
world of building an empirical model which coincides with the DGP at all points in time. Consequently,
one can disprove the most basic theorem that forecasts based on causal variables will dominate those
from non-causal. Restated, it is easy to construct examples where forecasts based on variables that do
not enter the DGP outperform those based on well-specified causally-sound models – one such example
is shown below. Importantly, such results match the empirical evidence: we have opened Pandora’s Box,
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with profound implications that are the focus of this paper.
Having allowed the data process to be non-stationary and models to be mis-specified representations

thereof (both in unspecified ways), one might imagine that an almost indefinite list of problems could
precipitate forecast failure. Fortunately, that is not the case. To understand why, we must dissect the
ingredients of econometric models. In general, econometric models have three main components: de-
terministic terms, namely variables whose future values are known (such as intercepts which are 1, 1, 1,...
and trends, which are 1, 2, 3, 4...); observed stochastic variables with known past, but unknown future,
values (such as GNP and inflation); and unobserved errors all of whose values (past, present and future)
are unknown. Most relationships in models involve all three components because that is how we con-
ceive of the data. In principle, any or all of the components could be: mis-specified; poorly estimated;
based on inaccurate data; selected by inappropriate methods; involve collinearities or non-parsimonious
formulations; and suffer structural breaks. Moreover, forecast failure might result from each ‘problem’.
Given the complexity of modern economies, most of these ‘problems’ will be present in any empirical
macro-model, and will reduce forecast performance by increasing inaccuracy and imprecision. However,
and somewhat surprisingly, most combinations do not in fact induce systematic forecast failure.

The taxonomy of sources of forecast errors in Clements and Hendry (1998, 1999a) implicates unanti-
cipated forecast-period shifts in deterministic factors (such as equilibrium means, examples of which are
the means of the savings rate, velocity of circulation, and the NAIRU) as the dominant cause of system-
atic failure. As explained in section 2.1, there is an important distinction between shifts in the determ-
inistic components (such as intercepts) that enter models, and those that precipitate forecast failure (un-
modelled shifts in data means), but for the moment we leave that to one side, as the former is usually
sufficient for the latter. The crucial converse is that forecast failure is not in fact primarily due to the
list of ‘problems’ in the previous paragraph, or even the Lucas (1976) critique of changing parameters:
by themselves, none of these factors induces systematic failure. Our first critique now follows – since
‘rational expectations’ claim to embody the actual conditional expectations, they do not have a sound
theoretical basis in an economy subject to deterministic shifts. Further, in the presence of unmodelled
deterministic shifts, models embodying previously-rational expectations will not forecast well in general.

Turning to the second critique, tests of economic theories based on whole-sample goodness of fit
comparisons can be seriously misled by unmodelled deterministic shifts. This occurs because such shifts
can be proxied by autoregressive dynamics, which has two implications. First, deterministic shifts in-
duce apparent unit roots, so cointegration often fails in the face of such breaks. Thus, long-run rela-
tionships – often viewed as the statistical embodiment of economic theory predictions – then receive no
support. Secondly, such false unit roots can make lagged information from other variables appear irrel-
evant, so tests of theories – particularly of Euler equations – can be badly distorted. Our second critique
now follows: so long as the degree of non-congruence of a model is unknown, false theories can end
being accepted, and useful ones rejected.

A necessary condition for both economic theories and macro-economic models to be of practical
value is that their parameters remain constant over the relevant horizon, and for the admissible range of
policy changes to be implemented. Many structural breaks are manifest empirically, and so are easy to
detect; deterministic shifts are a salient example. The class of breaks that are easy to detect comprises
shifts in the unconditional expectations of non-integrated (denoted I(0)) components. Their ease of de-
tection is the obverse of their pernicious effect on forecast performance. However, it transpires that a
range of parameter changes in econometric models cannot be easily detected by conventional statistical
tests. This class includes changes that leave unaltered the unconditional expectations, even when dy-
namics, adjustment speeds, and intercepts are radically altered: illustrations are provided in Hendry and
Doornik (1997). This leads to our third critique – impulse-response methods of evaluating the policy
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implications of models are dependent on the absence of such ‘undetectable breaks’, and so can be mis-
leading in both sign and magnitude when non-deterministic shifts have occurred, even when models are
rigorously tested (and certainly when minimal testing occurs).

Fourthly, there is ample evidence that forecasts from econometric systems can err systematically in
the face of deterministic shifts, such that they perform worse than ‘naive’ methods in forecasting compet-
itions. Theory now exists to explain how and why that occurs: see e.g., Clements and Hendry (1999c).
The implementation of cointegration may in practice have reduced the robustness of econometric-model
forecasts to breaks, by ensuring they adjust back to pre-existing equilibria, even when those equilibria
have shifted. Mechanistic econometric-model based forecasts, therefore, are unlikely to be robust to pre-
cisely the form of shift that is most detrimental to forecasting. It is well known that devices such as inter-
cept corrections can improve forecast performance (see e.g., Turner, 1990), but manifestly do not alter
policy implications; and conversely, that time-series models with no policy implications might provide
the best available forecasts. Hence our fourth critique – it is inadvisable to select policy-analysis models
by their forecast accuracy: see Hendry and Mizon (2000).

1.2 Some remedies

The existence of these four problems implies that many empirical macro-econometric models are in-
correctly formulated and wrongly selected, with policy implications derived by inappropriate methods.
Whilst we suspect that some amelioration arises in practice as a result of most macro-forecasters con-
tinuing to use intercept corrections to improve forecasts, the almost insuperable problems confronting
some approaches to macro-economics remain. Fortunately though, effective alternatives exist.

First, since expectations are instrumental to the decisions of economic agents, not an end in them-
selves, the devices that win forecasting competitions – which are easy to use and economical in in-
formation – suggest themselves as natural ingredients in agents’ decision rules (possibly ‘economically-
rational expectations’: see Feige and Pearce, 1976). We show that is the case, with the interesting implic-
ation that the resulting rules may not be susceptible to the Lucas (1976) critique, thus helping to explain
its apparent empirical irrelevance: see Ericsson and Irons (1995).

Next, stimulated by Hoover and Perez (1999), Hendry and Krolzig (1999) investigate econometric
model selection from a computer-automation perspective, focusing on general-to-specific reduction ap-
proaches, embodied in the program PcGets (general–to–specific: see Krolzig and Hendry, 2000). In
Monte Carlo experiments, PcGets recovers the DGP with remarkable accuracy, having empirical size
and power close to what one would expect if the DGP were known, suggesting that search costs are low.
Thus, a general-to-specific modelling strategy that starts from a congruent general model and requires
congruence and encompassing throughout the reduction process offers a powerful method for selecting
models. This outcome contrasts with beliefs in economics about the dangers of ‘data mining’. Rather, it
transpires that the difficult problem is not to eliminate spurious variables, but to retain relevant ones. The
existence of PcGets not only allows the advantages of congruent modelling to be established, it greatly
improves the efficiency of modellers who take advantage of this model-selection strategy.

Thirdly, there is a strong case for using open, rather than closed, macro-econometric systems, par-
ticularly those which condition on policy instruments. Modelling open systems has the advantage that
amongst their parameters are the dynamic multipliers which are important ingredients for estimating the
responses of targets to policy changes. Further, it is difficult to build models of variables such as interest
rates, tax rates, and exchange rates, which are either policy instruments or central to the determination of
targets. Since many policy decisions entail shifts in the unconditional means of policy instruments, cor-
responding shifts in the targets’ unconditional means are required for policy to be effective. The relevant
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concept is called co-breaking, and entails that although each variable in a set shifts, there are linear com-
binations that do not shift (i.e., are independent of the breaks: see Clements and Hendry, 1999a, ch. 9).
Co-breaking is analogous to cointegration where a linear combination of variables is stationary although
individually they are all non-stationary. Whenever there is co-breaking between the instrument and target
means, reliable estimates of the policy responses can be obtained from the model of the targets condi-
tioned on the instruments, despite the probable absence of weak exogeneity of policy instruments for
the parameters of interest in macro-models (due to mutual dependence on previous disequilibria): Eric-
sson (1992) provides an excellent exposition of weak exogeneity. The existence of co-breaking between
the means of the policy instruments and targets is testable, and moreover, is anyway necessary to justify
impulse-response analysis (see Hendry and Mizon, 1998).

Finally, there are gains from separating policy models – to be judged by their ability to deliver ac-
curate advice on the responses likely from policy changes – from forecasting models, to be judged by
their forecast accuracy and precision. No forecast can be robust to unanticipated events that occur after
its announcement, but some are much more robust than others to unmodelled breaks that occurred in the
recent past. Since regime shifts and major policy changes act as breaks to models that do not embody
the relevant policy responses, we discuss pooling robust forecasts with scenario differences from policy
models to avoid both traps.

We conclude that the popular methodologies of model formulation, modelling and testing, policy
evaluation, and forecasting may prejudice the accuracy of implications derived from macro-econometric
models. Related dangers confronted earlier generations of macro-models: for example, the use of dy-
namic simulation to select systems was shown in Hendry and Richard (1982) to have biased the choice
of models to ones which over-emphasized the role of unmodelled (‘exogenous’) variables at the expense
of endogenous dynamics, with a consequential deterioration in forecast performance, and mis-leading
estimates of speeds of policy responses. As in that debate, we propose positive antidotes to each of the
major lacunae in existing approaches. The detailed analyses have been presented in other publications:
here we seek to integrate and explain their implications for macro-econometric modelling.

1.3 Overview

The remainder of the paper is structured as follows. Since we attribute a central role to forecast-period
shifts in deterministic factors as the cause of forecast failure, section 2 first explains the concept of de-
terministic shifts, reviews their implications, and contrasts those with the impacts of non-deterministic
shifts. Thereafter, the analysis assumes a world subject to such shifts. Section 3 derives the resulting im-
plications for ‘rational expectations’, and suggests alternatives that are both feasible and more robust to
breaks. Then section 4 discusses tests of theory-based propositions, before section 5 turns to model se-
lection for forecasting. Next, section 6 introduces three related sections concerned with aspects of model
selection for policy. First, section 6.1, considers the obverse of section 5, and shows that policy models
should not be selected by forecast criteria. Secondly, section 6.2 considers policy analyses based on im-
pulse responses, and thirdly, section 6.3 examines estimation of policy responses. Section 7 describes
appropriate model-selection procedures, based on computer automation, and section 8 justifies the focus
on congruent modelling. Finally, section 9 concludes.

2 Setting the scene

In a constant-parameter, stationary world, forecast failure should rarely occur: the in-sample and out-
of-sample fits will be similar because the data properties are unchanged. As discussed in Miller (1978),
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stationarity ensures that, on average (i.e., excluding rare events), an incorrectly-specified model will fore-
cast within its anticipated tolerances (providing these are correctly calculated). Although a mis-specified
model could be beaten by methods based on correctly-specified equations, it will not suffer excessive
forecast failure purely because it is mis-specified. Nevertheless, since a congruent, encompassing model
will variance-dominate in-sample, it will continue to do so when forecasting under unchanged conditions.
Thus, adding causal variables will improve forecasts on average; adding non-causal variables (i.e., vari-
ables that do not enter the DGP) will only do so when they proxy for omitted causal variables. In an
important sense, the best model will win.

Empirical models are usually data-based (selected to match the available observations), which could
induce some overfitting, but should not produce systematic forecast failure (see Clements and Hendry,
1999b). Conversely, when the data properties over the forecast horizon differ from those in-sample – a
natural event in non-stationary processes – forecast failure will result. The latter’s regular occurrence is
strong evidence for pandemic non-stationarity in economics, an unsurprising finding given the manifest
legislative, social, technological and political changes witnessed over modern times (and indeed through
most of history).

Once such non-stationarity is granted, many ‘conventional’ results that are provable in a constant-
parameter, stationary setting change radically. In particular, since the future will not be like the present
or the past, two important results can be established in theory, and demonstrated in practice: the poten-
tial forecast dominance of models using causal variables by those involving non-causal variables; and
of in-sample well-specified models by badly mis-specified ones. Clements and Hendry (1999a) provide
several examples: another is offered below. Together, such results remove the theoretical support for
basing forecasting models – and hence agents’ expectations formation – on the in-sample conditional ex-
pectation given available information. We develop this analysis in section 3. Moreover, these two results
potentially explain why over-differencing and intercept corrections – both of which introduce non-causal
variables into forecasting devices – could add value to model-based forecasts: this aspect is explored in
section 5, which emphasizes the potential dangers of selecting a policy model by such criteria as forecast
accuracy. Finally, a failure to model the relevant non-stationarities can distort in-sample tests, and lead
to incorrect inferences about the usefulness or otherwise of economic theories: that is the topic of section
4.

Not all forms of non-stationarity are equally pernicious. For example, unit roots generate stochastic
trends in data series, which thereby have changing means and variances, but nevertheless seem relatively
benign. This form of non-stationarity can be removed by differencing or cointegration transformations,
and often, it may not matter greatly whether or not those transforms are imposed (see e.g., Sims, Stock
and Watson, 1990, for estimation, and Clements and Hendry, 1998, for forecasting). Of course, omitting
dynamics could induce ‘nonsense regressions’, but provided appropriate critical values are used, even
that hypothesis is testable – and its rejection entails cointegration. As we show in section 2.2, shifts
in parameters that do not produce any deterministic shifts also need not induce forecast failure, despite
inducing non-stationarities.

Consider an h-step ahead forecast made at time T , denotedbyT+hjT , for a vector of ny variables yT+h.
The difference between the eventual outcomes and the forecast values is the vector of forecast errors
eT+hjT = yT+h � byT+hjT , and this can be decomposed into the various mistakes and unpredictable
elements. Doing so delivers a forecast-error taxonomy, partitioned appropriately into deterministic, ob-
served stochastic, and innovation-error influences. For each component, there are effects from structural
change, model mis-specification, data inaccuracy, and inappropriate estimation. Although the decom-
position is not unique, it can be expressed in nearly-orthogonal effects corresponding to influences on
forecast-error means and variances respectively. The former involves all the deterministic terms; the
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latter the remainder. We now briefly consider these major categories of error, commencing with mean
effects, then turn to variance components.

2.1 Forecast failure and deterministic shifts

Systematic forecast-error biases derive from deterministic factors being mis-specified, mis-estimated, or
non-constant. The simplest example is omitting a trend; or when a trend is included, under-estimating
its slope; or when the slope is correct, experiencing a shift in the growth rate. A similar notion applies to
equilibrium means, including shifts, mis-specification of, or mis-estimation in the means of (say) the
savings rate, velocity of circulation, or the NAIRU. Any of these will lead to a systematic, and pos-
sibly increasing, divergence between outcomes and forecasts. However, there is an important distinction
between the roles of intercepts, trends etc., in models, and any resulting deterministic shifts, as we will
now explain.

To clarify the roles of deterministic, stochastic, and error factors, we consider a static regression
where the parameters change prior to forecasting. The in-sample DGP, for t = 1; : : : ; T , is:

yt = �+ �xt + �t; (1)

where xt is an independent normally-distributed variable with mean � and variance �2x. Also, �t is an
independent, normally-distributed error with mean zero and constant variance �2� . Finally, xt has known
future values to the forecaster, and f�tg is independent of x. A special case of interest below is � = 0,
so � is just the mean of y.

In (1), the conditional mean of yt is E [ytjxt] = �+ �xt and the conditional variance is V[yt] = �2� .
The unconditional mean, E [yt], and variance, V [yt], (which allow for the variation in xt) are �+�� = 


and �2� + �2�2x respectively. Thus, there are two deterministic components in (1): the intercept � and
the mean of the regressor �, so the overall deterministic term is 
. Indeed, we can always rewrite (1) as:

yt = �+ ��+ � (xt � �) + �t

= 
 + � (xt � �) + �t; (2)

Shifts in the composite deterministic term 
 will transpire to be crucial.
Consider using the estimated DGP (1) as the forecasting model. For simplicity, we assume known

parameter values. Then, with an exactly-measured forecast origin at time T , (1) produces the h-step
ahead forecast sequence: byT+hjT = �+ �xT+h: (3)

However, over the forecast period, h = 1; : : : ;H , there is a shift in the parameters of the process un-
known to the forecaster, so that in fact:

yT+h = ��
+ ��xT+h + �T+h

= 
� + ��
(xT+h � �) + �T+h:

The distributions of fxT+hg and f�T+hg could also change (e.g., �; �2x or �2� might change), but we neg-
lect such effects here as not germane to the central issues. Indeed, when xt is known, as is assumed here,
changes � in are irrelevant.

The resulting sequence of forecast errors eT+hjT = yT+h � byT+hjT after the unanticipated shift is:

��
+ ��xT+h + �T+h � (�+ �xT+h)

= (��
� �) + (��

� �) xT+h + �T+h: (4)
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There are two kinds of terms in (4): those contributing to the mean, and deviations from that mean. The
former is obtained by taking expectations, which leads to:

ET+h

�
eT+hjT

�
= (��

� �) + (��
� �)�

= 
� � 
: (5)

The composite shift is zero if and only if 
� = 
: importantly, that does not require �� = � and
(��

� �)� = 0. When (5) is non-zero, we call it a ‘deterministic shift’: the effect is pernicious when
ET+h

�
eT+hjT

�
increases by several ��, but is then usually easy to detect.

An empirically-relevant case is when the variables labelled yt and xt are log-differences, so � defines
the mean growth rate of xt, and 
 that of yt. Many econometric growth-rate equations have � ' �� (often
around 0.5%–1%), so the requirement that 
�� 
 be as large as (say) 2�� is actually very strong: e.g., a
doubling of the trend rate of growth. Consequently, even moderate trend shifts can be hard to detect till
quite a few periods have elapsed.

To illustrate that an ‘incorrect’ model can outperform the in-sample DGP in forecasting, we return
to the special case of (1) when �� = � = 0. The expected forecast error sequence from using the
in-sample DGP will be (�� � �). That remains true when the forecast origin moves through time to
T + 1, T +2 etc.: because the forecasting model remains unchanged, so do the average forecast errors.
Consider, instead, using the naive predictor eyT+hjT+1 = yT+1. The resulting sequence of forecast errors
will be similar to eT+hjT when the origin is T : unanticipated shifts after forecasting are bound to harm all
methods. However, when forecasting from time T+1 onwards, a different result ensues for eeT+hjT+1 =

yT+h � eyT+hjT+1 because:

eeT+hjT+1 = yT+h � yT+1

= ��
+ �T+h � ��

� �T+1

= �h�1�T+h; (6)

where �h�1�T+h = �T+h � �T+1. The last line of (6) has a mean of zero, despite the deterministic
shift. Thus, on a bias criterion, eyT+hjT+1 outperforms the in-sample DGP (and could win on mean-square
error), despite the fact that yt�1 is not a causal variable. Dynamics make the picture more complicated,
but similar principles apply.

An interesting, and much studied, example of a deterministic shift concerns forecast failure in a
model of narrow money (M1) in the UK after the Banking Act of 1984, which permitted interest pay-
ments on current accounts in exchange for all interest payments being after the deduction of ‘standard
rate’ tax. The own rate of interest (Ro) changed from zero to near the value of the competitive rate (Rc:
about 12 per cent per annum at the time) in about 6 quarters, inducing very large inflows to M1. Thus, a
large shift occurred in the mean opportunity cost of holding money, namely a deterministic shift from Rc

to Rc�Ro. Pre-existing models of M1 – which used the outside rate of interest Rc as the measure of op-
portunity cost – suffered marked forecast failure, which persisted for many years after the break. Models
that correctly re-measured the opportunity cost by Rc � Ro continued to forecast well, once the break
was observed, and indeed had the same estimated parameter values after the break as before. However,
methods analogous to eyT+hjT also did not suffer forecast failure: see Clements and Hendry (1999c) for
details and references.

In general, the key drivers of forecast failure are mis-specification of, uncertainty in, or changes to
the conditional expectation (where that exists) given the history of the process. The mean forecast can
differ from the correct conditional expectation due to biased estimation of the mean, or when there are
unexpected shifts. Because forecast failure is usually judged relative to in-sample behaviour, the latter is
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the dominant cause. However, mis-estimation of coefficients of deterministic terms could be deleterious
to forecast accuracy if estimation errors are large by chance.

2.2 Non-deterministic shifts

Having extracted the deterministic terms, all other factors fall under the heading of non-deterministic.
The converse problem now occurs. Shifts in the coefficients of zero-mean variables have a surprisingly
small impact on forecasts (as measured by the inability of parameter-constancy tests to detect the break).
There are three consequences. First, such shifts seem an unlikely explanation for observed forecast fail-
ure. Secondly, changes in reaction parameters such as � are difficult to detect unless they induce a de-
terministic shift in the model, which cannot occur when xt has mean zero (� = 0). This finding helps
explain the absence of empirical evidence on the Lucas (1976) critique, as discussed in section 3. Finally,
although they have relatively benign effects in the context of forecasting, undetected changes in reaction
parameters could have disastrous effects on policy analyses – but we leave that story till section 6.2.

More formally, when xt and yt both have mean zero in (1) , all terms in (4) have zero expectations,
so no forecast bias results when � changes. There is an increase in the forecast error variance, from �2� to
(��

� �)2 �2x + �2� , and the detectability (or otherwise) of the break depends on how much the variance
increases. For (�� � �)2 = 4�2� (say), then the ratio is 1 + 4�2x which can be difficult to detect against
the background noise (see e.g., Hendry and Doornik, 1997, for simulation illustrations).

In a stationary dynamic process, an intercept like � also differs from the unconditional mean 
, and it
is shifts in the latter which are again relevant to forecast failure. A strong, and corroborated, prediction
is that shifts in both the intercepts and the regression parameters which leave the unconditional mean
unchanged will not induce forecast failure, and tests will be relatively powerless to detect that anything
has changed. For example, 
� = 
 when ��

+ ��� = � + ��, even though every parameter has
altered. Indeed, the situation where the unconditional mean is constant is precisely the same as when
all the means are zero: Hendry and Doornik (1997) and section 6.2 below provide the details, and lead
to the conclusions that shifts in unconditional means are a primary source of forecast failure, and other
‘problems’ are less relevant to forecast failure.

For example, omitting zero-mean stochastic components is unlikely to be a major source of forecast
failure, but could precipitate failure if stochastic mis-specification resulted in deterministic shifts else-
where in the economy affecting the model. Equally, the false inclusion of zero-mean stochastic variables
is a secondary problem, whereas wrongly including regressors which experienced deterministic shifts
could have a marked impact on forecast failure as the model mean shifts although the data mean does
not.

Estimation uncertainty in the parameters of stochastic variables also seems to be a secondary prob-
lem, as such errors add variance terms of O(1=T ) for stationary components. Neither collinearity nor a
lack of parsimony per se seem likely culprits, although interacting with breaks occurring elsewhere in
the economy could induce problems.

Finally, better-fitting models have smaller error accumulation, but little can be done otherwise about
forecast inaccuracy from that source.

2.3 Digression: modelling deterministic terms

Over long runs of historical time, all aspects of economic behaviour are probably stochastic. However,
in shorter periods some variables may exhibit little variation (or deviation from trend) and so be well rep-
resented by a deterministic variable. Further, such variables might be subject to level shifts characteriz-
ing different epochs (see Anderson and Mizon, 1989). ‘Models’ of intercept shifts are easily envisaged,
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where they become drawings from a ‘meta’ distribution; or where large shocks persist but small do not;
or they are functions of more basic causes – endogenous growth theory could be seen as one attempt to
model the intercepts in growth-rate equations. Such re-representations do not alter the forecasting im-
plications drawn above, merely re-interpret what we call deterministic shifts: the key issue is whether
the average draw over the relevant horizon is close to that over the sample used, or differs therefrom.
The latter induces forecast failure.

That concludes the ‘scene setting’ analysis, summarized as: deterministic shifts of the data relative to
the model are the primary source of forecast failure. Monte Carlo evidence presented in several papers
bears out the analytics: parameter non-constancy and forecast-failure tests reject for small changes in
unconditional means, but not for substantial changes in dynamics, or in all parameters when that leaves
equilibrium means unaltered (all measured as a proportion of ��).

3 ‘Rational expectations’

When unanticipated deterministic shifts make an economy non-stationary, the formation of ‘rational ex-
pectations’ requires agents to know:

� all the relevant information;
� how every component enters the joint data density;
� the changes in that density at each point in time.

In terms of our scalar example, the model forecast error eT+hjT in (4) equals the ‘rational expectations’
error �T+h if and only if every other term is zero. Yet most shifts, and many of their consequences, cannot
be anticipated: assuming knowledge of current and future deterministic shifts is untenable. Otherwise,
the resulting forecasting device can be dominated by methods which use no causally-relevant variables.
Thus, it ceases to be rational to try and form expectations using the current conditional expectation when
that will neither hold in the relevant future, nor forecast more accurately than other devices. Agents will
learn that they do better forming expectations from ‘robust forecasting rules’ – which adapt rapidly to
deterministic shifts. These may provide an example of ‘economically-rational expectations’ as suggested
by Feige and Pearce (1976), equating the marginal costs and benefits of improvements in the accuracy
of expectations: Hendry (2000b) provides a more comprehensive discussion.

Robust forecasting rules need not alter with changes in policy. Of course, if agents fully understood a
policy change and its implications, they would undoubtedly be able to forecast better: but that would re-
quire the benefits of doing so to exceed the costs. The problem for agents is compounded by the fact that
many major policy changes occur in turbulent times, precisely when it is most difficult to form ‘rational
expectations’, and when robust predictors may outperform. Thus, many agents may adopt the adapt-
ive rules discussed above, consistent with the lack of empirical evidence in favour of the Lucas (1976)
critique reported in Ericsson and Irons (1995). Consequently, if an econometric model used �xt as a re-
placement for the expected change �xe

t+1jt
when agents used robust rules, then the model’s parameters

need not change even after forecast failure occurred. Alternatively, the unimportant consequences for
forecasting of changes in reaction coefficients, rather than their absence, could account for the lack of
empirical evidence that the critique occurs, but anyway reduces its relevance. Hence, though it might be
sensible to use ‘rational expectations’ for a congruent and encompassing model in a stationary world, in
practice the evident non-stationarities make it inadvisable.
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4 Model selection for theory testing

Although not normally perceived as a ‘selection’ issue, tests of economic theories based on whole-sample
goodness of fit comparisons involve selection, and can be seriously misled by deterministic shifts. Three
examples affected by unmodelled shifts are: lagged information from other variables appearing irrelev-
ant, affecting tests of Euler equation theories; cointegration failing so long-run relationships receive no
empirical support; and tests of forecast efficiency rejecting because of residual serial correlation induced
ex post by an unpredictable deterministic shift. We address these in turn.

The first two are closely related, so our illustration concerns tests of the implications of the Hall
(1978) Euler-equation consumption theory when credit rationing changes, as happened in the UK (see
Muellbauer, 1994). The log of real consumers’ expenditure on non-durables and services (c) is not coin-
tegrated with the log of real personal disposable income (y) over 1962(2)–1992(4): a unit-root test using
5 lags of each variable, a constant and seasonals delivers tur = 0:97 so does not reject (see Banerjee
and Hendry, 1992, and Ericsson and MacKinnon, 1999, on the properties of this test). Nevertheless, the
solved long-run relation is:

c = � 0:53
(0:99)

+ 0:98
(0:10)

y + Seasonals: (7)

Lagged income terms are individually (max t = 1:5) and jointly (F(5; 109) = 1:5) insignificant in ex-
plaining �4ct = ct�ct�4. Such evidence appears to support the Hall life-cycle model, which entails that
consumption changes are unpredictable, with permanent consumption proportional to fully-anticipated
permanent income. As fig. 1a shows for annual changes, the data behaviour is at odds with the theory
after 1985, since consumption first grows faster than income for several years, then falls faster – far from
smoothing. Moreover, the large departure from equilibrium in (7) is manifest in panel b, resulting in a
marked deterioration in the resulting (fixed-parameter) 1-step forecast errors from the model in David-
son, Hendry, Srba and Yeo (1978) after 1984(4) (the period to the right of the vertical line in fig. 1c).
Finally, an autoregressive model for ��4ct = �4ct � �4ct�1 produces 1-step forecast errors which
are smaller than average after 1984(4): see panel (d). Such a result is consistent with a deterministic
shift around the mid 1980s (see Hendry, 1994, and Muellbauer, 1994, for explanations based on fin-
ancial deregulation inducing a major reduction in credit rationing), which neither precludes the ex ante
predictability of consumption from a congruent model, nor consumption and income being cointegrated.
The apparent insignificance of additional variables may be an artefact of mis-specifying a crucial shift,
so the ‘selected’ model is not valid support for the theory. Conversely, non-causal proxies for the break
may seem significant. Thus, models used to test theories should first be demonstrated to be congruent
and encompassing.

We must stress that our example is not an argument against econometric modelling. While ��4ct�1

may be a more robust forecasting device than the models extant at the time, it is possible in principle that
the appropriate structural model – which built in changes in credit markets – would both have produced
better forecasts and certainly better policy. For example, by 1985, building society data suggested that
mortgages were available on much easier terms than had been the case historically, and ‘housing-equity
withdrawal’ was already causing concern to policy makers. Rather, we are criticizing the practice of
‘testing theories’ without first testing that the model used is a congruent and undominated representa-
tion, precisely because ‘false’ but robust predictors exist, and deterministic shifts appear to occur inter-
mittently.

The same data illustrate the third mistake: rejecting forecast efficiency because of residual serial cor-
relation induced ex post by an unpredictable deterministic shift. A model estimated prior to such a shift



12

1960 1970 1980 1990

0.00

0.05

0.10 ∆4c 
∆4y 

1960 1970 1980 1990

−2

0

2

DHSY residual 

1960 1970 1980 1990

−2.5

0.0

2.5

5.0 Cointegration residual 

1960 1970 1980 1990

−2

−1

0

1

2 ∆1∆4c 

Figure 1 UK real consumers’ expenditure and income with model residuals.

could efficiently exploit all available information; but if a shift was unanticipated ex ante, and unmod-
elled ex post, it would induce whole-sample residual serial correlation, apparently rejecting forecast ef-
ficiency. Of course, the results correctly reject ‘no mis-specification’; but as no-one could have outper-
formed the in-sample DGP without prescience, the announced forecasts were not ex ante inefficient in
any reasonable sense.

5 Model selection for forecasting

Forecast performance in a world of deterministic shifts is not a good guide to model choice, unless the
sole objective is short-term forecasting. This is because models which omit causal factors and cointeg-
rating relations, by imposing additional unit roots, may adapt more quickly in the face of unmodelled
shifts, and so provide more accurate forecasts after breaks. We referred to this above as ‘robustness’ to
breaks.

The admissible deductions on observing either the presence or absence of forecast failure are rather
stark, particularly for general methodologies which believe that forecasts are the appropriate way to judge
empirical models. In this setting of structural change, there may exist non-causal models (i.e., models
none of whose ‘explanatory’ variables enter the DGP) that do not suffer forecast failure, and indeed may
forecast absolutely more accurately on reasonable measures, than previously congruent, theory-based
models. Conversely, ex ante forecast failure may merely reflect inappropriate measures of the inputs, as
we showed with the example of ‘opportunity-cost’ affecting UK M1: a model that suffers severe fore-
cast failure may nonetheless have constant parameters on ex post re-estimation. Consequently, neither
relative success nor failure in forecasting is a reliable basis for selecting between models – other than for
forecasting purposes. Apparent failure on forecasting need have no implications for the goodness of a
model, nor its theoretical underpinnings, as it may arise from incorrect data, that are later corrected.
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Some forecast failures will be due to model mis-specification, such as omitting a variable whose
mean alters; and some successes to having well-specified models that are robust to breaks. The problem is
discriminating between such cases, since the event of success or failure per se is insufficient information.
Because the future can differ in unanticipated ways from the past in non-stationary processes, previous
success (failure) does not entail the same will be repeated later. That is why we have stressed the need for
‘robust’ or adaptable devices in the forecasting context. If it is desired to use a ‘structural’ or econometric
model for forecasting, then there are many ways of increasing its robustness, as discussed in Clements
and Hendry (1999a). The most usual are ‘intercept corrections’, which adjust the fit at the forecast origin
to exactly match the data, and thereby induce the differences of the forecast errors that would otherwise
have occurred. Such an outcome is close to that achieved by modelling the differenced data, but retains
the important influences from disequilibria between levels. Alternatively, and closely related, one could
update the equilibrium means and growth rates every period, placing considerable weight on the most
recent data, retaining the in-sample values of all other reaction parameters.

In both cases, howsoever the adjustments are implemented, the policy implications of the underlying
model are unaltered, although the forecasts may be greatly improved after deterministic shifts. The obvi-
ous conclusion, discussed further below, is that forecast performance is also not a good guide to policy-
model choice. Without the correction, the forecasts would be poor; with the correction they are fine, but
the policy recommendation is unaffected. Conversely, simple time-series predictors like ��4ct�1 have
no policy implications. We conclude that policy-analysis models should be selected on different criteria,
which we now discuss.

6 Model selection for policy analysis

The next three sub-sections consider related, but distinct, selection issues when the purpose of model-
ling is policy: using forecast performance to select a policy model; investigating policy in closed mod-
els, where every variable is endogenous; and analyzing policy in open models, which condition on some
policy variables. Although the three issues arise under the general heading of selecting a policy model,
and all derive from the existence of, and pernicious consequences from, deterministic shifts, very differ-
ent arguments apply to each, as we now sketch. ‘Selection’ is used in a general sense: only the first topic
concerns an ‘empirical criterion’ determining the choice of model, whereas the other two issues derive
from ‘prior’ decisions to select from within particular model classes.

First, because forecast failure derives primarily from unanticipated deterministic shifts, its occur-
rence does not sustain the rejection of a policy model: shifts in means may be pernicious, but need not
impugn policy implications. For example, intercept corrections would have altered the forecast perform-
ance, but not the policy advice. Secondly, because badly mis-specified models can win forecasting com-
petitions, forecast performance is not a sensible criterion for selecting policy models, as shown in section
6.1. Thirdly, policy conclusions depend on the values of reaction parameters, but we have noted the dif-
ficulty of detecting shifts in those parameters when there are no concomitant deterministic shifts, with
adverse consequences for impulse-response analyses. Section 6.2 provides some detailed evidence. Fi-
nally, policy changes in open models almost inevitably induce regime shifts with deterministic effects,
and so can highlight previously hidden mis-specifications, or non-deterministic shifts; but also have a
sustainable basis in the important concept of co-breaking, noted in section 1.2 above.
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6.1 Selecting policy models by forecast performance

A statistical forecasting system is one having no economic-theory basis, in contrast to econometric mod-
els for which economic theory is the hallmark. Since the former system will rarely have implications
for economic-policy analysis – and may not even entail links between target variables and policy in-
struments – being the ‘best’ available forecasting device is insufficient to ensure any value for policy
analysis. Consequently, the main issue is the converse: does the existence of a dominating forecasting
procedure invalidate the use of an econometric model for policy? Since forecast failure often results from
factors unrelated to the policy change in question, an econometric model may continue to characterize
the responses of the economy to a policy, despite its forecast inaccuracy.

Moreover, as stressed above, while such ‘tricks’ as intercept corrections may mitigate forecast fail-
ure, they do not alter the reliability of the policy implications of the resulting models. Thus, neither
direction of evaluation is reliable: from forecast failure or success to poor or good policy advice. Policy
models require evaluation on policy criteria.

Nevertheless, post-forecasting policy changes that entail regime shifts should induce breaks in mod-
els that do not embody the relevant policy links. Statistical forecasting devices will perform worse in
such a setting: their forecasts are unaltered (since they do not embody the instruments), but the out-
comes change. Conversely, econometric systems that do embody policy reactions need not experience
any policy-regime shifts. Consequently, when both structural breaks and regime shifts occur, neither
econometric nor time-series models alone are adequate: this suggests that they should be combined, and
Hendry and Mizon (2000) provide an empirical illustration of doing so.

6.2 Impulse-response analyses

Impulse response analysis is a widely-used method for evaluating the response of one set of variables to
‘shocks’ in another set of variables (see e.g., L̈utkepohl, 1991, Runkle, 1987, and Sims, 1980). The find-
ing that shifts in the parameters of dynamic reactions are not readily detectable is potentially disastrous
for impulse-response analyses of economic policy based on closed systems, usually vector autoregres-
sions (VARs). Since changes in VAR intercepts and dynamic coefficient matrices may not be detected –
even when tested for – but the full-sample estimates are a weighted average across different regimes, the
resulting impulse responses need not represent the policy outcomes that will in fact occur. Indeed, this
problem may be exacerbated by specifying VARs in first differences (as often occurs), since deterministic
factors play a small role in such models.

It may be felt to be a cruel twist of fate that when a class of breaks is not pernicious for forecasting,
it should be detrimental to policy – but these are just the opposite sides of the same coin. Moreover, this
is only one of a sequence of drawbacks to using impulse responses on models to evaluate policy we have
emphasized over recent years: see Banerjee, Hendry and Mizon (1996), Ericsson, Hendry and Mizon
(1998a), and Hendry and Mizon (1998). Impulse response functions describe the dynamic properties of
an estimated model, and not the dynamic characteristics of the variables. For example, when the DGP is
a multivariate random walk, the impulse responses calculated from an estimated VAR in levels will rarely
reveal the ‘persistence’ of shocks, since the estimated roots will not be exactly unity. Equally, estimated
parameters may be inconsistent or inefficient, unless the model is congruent, encompasses rival models,
and is invariant to extensions of the information used (see section 8). When a model has the three proper-
ties just noted, it may embody structure (see Hendry, 1995b), but that does not imply that its residuals are
structural: indeed, residuals cannot be invariant to extensions of information unless the model coincides
with the DGP. In particular, increasing or reducing the number of variables directly affects the residuals,
as does conditioning on putative exogenous variables. Worse still, specifying a variable to be weakly or
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strongly exogenous alters the impulse responses, irrespective of whether or not that variable actually is
exogenous. While Granger non-causality (Granger, 1969) is sufficient for the equivalence of standard-
error based impulse responses from systems and conditional models, it does not ensure efficient or valid
inferences unless the conditioning variables are weakly exogenous. Moreover, the results are invariant
to the ordering of variables only by ignoring the correlations between residuals in different equations.
Avoiding this last problem by reporting orthogonalized impulse responses is not recommended either: it
violates weak exogeneity for most orderings, induces a sequential conditioning of variables that depends
on the chance ordering of the variables, and may lose invariance. The literature on ‘structural VARs’
(see, e.g., Bernanke, 1986, and Blanchard and Quah, 1989), which also analyzes impulse responses for a
transformed system, faces a similar difficulty. The lack of understanding of the crucial role of weak exo-
geneity in impulse-response analyses is puzzling in view of the obvious feature that any given ‘shock’ to
the error and to the intercept are indistinguishable, yet the actual reaction in the economy will be the same
only if the means and variances are linked in the same way – which is the weak exogeneity condition in
the present setting. Finally in closed systems which ‘model’ policy variables, impulse-response analysis
assumes that the instrument process remains constant under the ‘shock’, when in fact this will often not
be so. Thus, it may not be the response of agents that changes when there is change in policy, but via
the policy feedback, the VAR coefficients themselves nevertheless shift, albeit in a way that is difficutl
to detect. There seems no alternative for viable policy analyses to carefully investigating the weak and
super exogeneity status of appropriate policy conditioning variables.

Despite the fact that all of these serious problems are well known, impulse responses are still calcu-
lated. However, the problem which we are highlighting here – of undetectable breaks – is not well known,
so we will demonstrate its deleterious impact using a Monte Carlo simulation. Consider the unrestricted
I(0) VAR:

y1;t = �11y1;t�1 + �12y2;t�1 + �1;t

y2;t = �21y1;t�1 + �22y2;t�1 + �2;t

where both errors �i;t are independent, normally-distributed with means of zero and constant variances
�ii, with E[�1;t�2;s] = 0 8t; s. The yi;t are to be interpreted as I(0) transformations of integrated variables,
either by differencing or cointegration. We consider breaks in the� = (�ij)matrix, maintaining constant
unconditional expectations of zero (E[yi;t] = 0). The full-sample size is T = 120, with a single break
at t = 0:5T = 60, setting �ii = 0:01 (1% in a log-linear model). An unrestricted VAR with intercepts
and one lag is estimated, and then tested for breaks. The critical values for the constancy tests are those
for a known break point, which delivers the highest possible power for the test used. We consider a large
parameter shift, from:

� =

 
0:50 �0:20

�0:20 �0:25

!
; (8)

to:

�
�
=

 
0:50 0:20

0:20 0:25

!
; (9)

so the sign is altered on all but one response, which is left constant simply to highlight the changes in the
other impulses below.

We computed 1000 replications at both p = 0:05 and p = 0:01 (the estimates have standard errors of
about 0.007 and 0.003 respectively), both when the null is true (no break) and when the break from � to
�

� occurs. The resulting constancy-test rejection frequencies are reported graphically for both p values
to illustrate the outcomes visually: the vertical axes show the rejection frequencies plotted against the
sample sizes on the horizontal.
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Figure 2 Constancy-test rejection frequencies for the I(0) null.

6.2.1 Test rejection frequencies under the null

As fig. 2 reveals, the null rejection frequencies in the I(0) baseline data are reassuring: with 1000 rep-
lications, the approximate 95% confidence intervals are (0.036, 0.064) and (0.004, 0.016) for 5% and
1% nominal, and these are shown on the graphs as dotted and dashed lines respectively. The actual test
null rejection frequencies are, therefore, close to their nominal levels. This gives us confidence that the
estimated power to detect the break is reliable.

6.2.2 Shift in the dynamics

The constancy-test graph in fig. 3 shows the rejection frequencies when a break occurs. The highest
power is less than 25%, even though the change constitutes a major structural break for the model eco-
nomy: the detectability of a shift in dynamics is low when the DGP is an I(0) VAR. This may be an
explanation for the lack of evidence supporting the Lucas (1976) critique: shifts in zero-mean reaction
parameters are relatively undetectable, rather than absent.

6.2.3 Misleading impulse responses

Finally, we record the impulse responses from the averages of pre- and post- break models, and the model
fitted across the regime shifts in fig. 4. The contrast is marked: despite the near undetectability of the
break, the signs of most of the impulses have altered, and those obtained from the fitted model sometimes
reflect one regime, and sometimes the other. Overall, mis-leading policy advice would follow, since even
testing for the break would rarely detect it.
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Figure 3 Constancy-test rejection frequencies for the I(0) structural break.

6.3 Policy analysis in open-models

Many of the problems in analyzing the responses of targets to changes in instruments noted above are
absent when the modelling is validly conditional on the instruments, leading to an open model. Since
it is often difficult to model the time-series behaviour of the policy instruments, particularly in high-
dimensional systems, conditioning on them is much easier and is certainly preferable to omitting them
from the analysis. For economic policy analysis, another advantage of modelling ny target variables yt
conditionally on nz instrument variables zt, is that @yt+h=@z

0
t , which are important ingredients in the

required policy responses, are directly estimable analytically, or at worst via simulation.
The fact that the fztg process is under the control of a policy agency does not ensure that zt are

exogenous variables: indeed, policy is likely to depend on precisely the disequilibria in the rest of the
economy that are key to its internal dynamics. Although the weak exogeneity of zt for the parameters
of the endogenous variables’ equations is required for there to be no loss of information in making infer-
ences on the parameters of interest, in practice it is likely that reliable estimates of policy responses will
be obtained even when zt is not weakly exogenous. This is because cointegration relations are usually
established in the system, before conditioning is introduced.

A more important requirement is that whenever policy involves a regime shift, the instruments must
be super exogenous for the parameters of interest. Co-breaking (described in section 1.2 above) between
the targets and instruments then ensures that the policy is effective, and that the response of yt can be
reliably estimated (efficiently, when zt is weakly exogenous for the response parameters). Since realistic
policies involve deterministic shifts, any failure of co-breaking will be readily detected.

6.3.1 Stationary process

This section draws on some results in Ericsson et al. (1998a), and is presented for completeness as a
preliminary to considering the more realistic integrated setting in the next sub-section. Modelling the
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Figure 4 Impulse response comparisons in an I(0) VAR.

conditional distribution for yt given zt (and any relevant lags) will yield efficient inference on the para-
meters of interest when zt is weakly exogenous for those parameters. In addition, the conditional model
will provide reliable estimates of the response in yt to policy changes in zt when its parameters are in-
variant to the policy change. When these conditions are satisfied, the conditional model provides viable
impulse responses and dynamic multipliers for assessing the effects of policy. However, Ericsson et al.
(1998a) showed that, in general, the weak exogeneity status of conditioning variables is not invariant to
transformations such as orthogonalizations, or identified ‘structural VARs’.

Irrespective of the exogeneity status of zt, modelling the conditional distribution alone will result
in different impulse-response matrices (@yt+h=@"

0
t) and dynamic multipliers (@yt+h=@z

0
t) because the

latter takes into account the effects from contemporaneous and lagged zt. Thus, the response of yt to
an impulse in the innovation "t of the conditional model is not the relevant response for assessing the
effects of policy changes in the fztg process.

6.3.2 Integrated process

In an integrated process, the class of open models will be equilibrium-correction systems conditional on
the current growth-rate of the policy instruments, �zt, assuming that the zt are I(1), and are included
in some of the r cointegration relations �0xt�1. For there to be no loss of information, this analysis
requires that zt be weakly exogenous for both the long-run parameters �, and any short-run dynamic
response parameters (for both lagged yt�s and lagged zt�k), all of which parameters should be invariant
to the policy change. Under these conditions, it is possible to estimate the responses in the growth rates
�yt and the disequilibria �0xt to particular choices of the instruments zt even when the latter are I(1).
To derive the impact on (say) �yt+h from a change in zt requires a specification of the future path of
zt+i in response to zt over t = 1 to t + h; implicitly, the model must be closed. This provides a link
to the ‘policy rules literature’ (see e.g., Taylor, 1993, 2000), where alternative mappings of the policy
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instruments onto past values of disequilibria are evaluated. Nevertheless, the outcomes obtained can
differ substantially from impulse-response analysis based on a (cointegrated) VAR when the policy rule
does not coincide with the historical description of policy responses, and in importantly when the policy
rule itself is changed perhaps as a result of observing previous responses to policy.

Partitioning the disequilibria �0xt = �
0
yyt + �

0
zzt reveals that �0

yyt are feasible target variables in
this context despite yt and �0

yyt being I(1). However, an implication of this analysis is that very special
conditions are required for policy that changes a single instrument zi;t (e.g., the minimum lending rate) to
successfully target a single target variable yj;t (e.g., inflation) when these variables are I(1). Conversely,
Johansen and Juselius (2000) demonstrate that if a policy that targets an I(1) variable is successful, then
the target will be rendered I(0).

Also, there are only ny + nz � r unconstrained stochastic trends when r is equal to the number
of cointegrating vectors, so the growth rates �y of yt and �z of zt are linked by �0

y�y + �
0
z�z = 0.

However, when there is co-breaking between �yt and �zt, then a change in �z will result in a cor-
responding change in the unconditional mean �y of �yt. Hence, just as in Hendry and Mizon (1998,
2000), linkages between deterministic terms are critical for policy to be effective when it is implemented
via shifts in deterministic terms in the instrument process. Moreover, co-breaking here requires that �yt
responds to contemporaneous and/or lagged changes in zt.

An important aspect of policy changes which comprise deterministic shifts is their ability to reveal
previously undetected changes which might contaminate model specification. The dynamic response in
a model will trace out a sequence of shifts over time, which will differ systematically from the corres-
ponding responses in the economy when earlier changes lurk undetected. While the outcome will not be
as anticipated, the mis-specification does not persist undetected.

7 Empirical model selection

First developing congruent general models, then selecting appropriate simplifications thereof that retain
only the relevant information has not proved easy – even to experienced practitioners. The former re-
mains the domain where considerable detailed institutional, historical and empirical knowledge interacts
with value-added insights and clever theories of investigators: a good initial general model is essential.
However, the latter is primarily determined by econometric modelling skills, and the developments in
Hoover and Perez (1999) suggest automating those aspects of the task that require the implementation
of selection rules, namely the simplification process. Just as early chess-playing programs were eas-
ily defeated, but later ones can systematically beat Grandmasters, so we anticipate computer-automated
model selection software will develop well beyond the capabilities of the most expert modellers. We
now explain why a general-to-specific modelling strategy – as implemented in PcGets – is able to per-
form so well despite the problem of ‘data mining’, discuss the costs of search, distinguish them from the
(unavoidable) costs of inference, and suggest that the practical modelling problem is to retain relevant
variables, not eliminate spurious ones.

Statistical inference is always uncertain because of type I and type II errors (rejecting the null when it
is true; and failing to reject the null when it is false respectively). Even if the DGP were derived a priori
from economic theory, an investigator could not know that such a specification was ‘true’, and inferen-
tial mistakes will occur when testing hypotheses about it. This is a ‘pre-test’ problem: beginning with
the truth and testing it will sometimes lead to false conclusions. ‘Pre-testing’ is known to bias estimated
coefficients, and may distort inference (see inter alia, Judge and Bock, 1978). Of course, the DGP spe-
cification is never known in practice, and since ‘theory dependence’ in a model has as many drawbacks as
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‘sample dependence’, data-based model-search procedures are used in practice, thus adding search costs
to the costs of inference. A number of arguments point towards the advantages of ‘general-to-specific’
searches.

Statistical analyses of repeated testing provide a pessimistic background: every test has a non-zero
null rejection frequency (‘size’), so type I errors accumulate. Size could be lowered by increasing the
significance levels of selection tests, but only at the cost of reducing power to detect the influences that
really matter. The simulation experiments in Lovell (1983) suggested that search had high costs, leading
to an adverse view of ‘data mining’. However, he evaluated outcomes against the truth, compounding
costs of inference with costs of search. Rather, the key issue for any model-selection procedure is: how
costly is it to search across many alternatives relative to commencing from the DGP? As we now discuss,
it is feasible to lower size and raise power simultaneously by improving the search algorithm.

First, White (1990) showed that with sufficiently-rigorous testing and a large enough data sample,
the selected model will converge to the DGP, so selection error is a ‘small-sample’ problem, albeit a
difficult and prevalent one. Secondly, Mayo (1981) noted that diagnostic testing was effectively inde-
pendent of the sufficient statistics from which parameter estimates are derived, so would not distort the
latter. Thirdly, since the DGP is obviously congruent with itself, congruent models are the appropriate
class within which to search. This argues for commencing the search from a congruent model. Fourthly,
encompassing – explaining the evidence relevant for all alternative models under consideration– resolves
‘data mining’ (see Hendry, 1995a) and delivers a dominant outcome. This suggests commencing from
a general model that embeds all relevant contenders. Fifthly, any model-selection process must avoid
getting stuck in search paths that inadvertently delete relevant variables, thereby retaining many other
variables as proxies. The resulting approach of sequentially simplifying a congruent general unrestric-
ted model (GUM) to obtain the maximal acceptable reduction, is called general-to-specific (Gets).

To evaluate the performance of Gets modelling procedures, Hoover and Perez (1999) reconsidered
the Lovell (1983) experiments, searching for a single conditional equation (with 0 to 5 regressors) from
a large macroeconomic database (containing up to 40 variables, including lags). By following several
reduction search paths – each terminated by either no further feasible reductions or significant diagnostic
test outcomes – they showed how much better the structured Gets approach was than any method Lovell
considered, suggesting that modelling per se need not be bad. Indeed, the overall ‘size’ (false null rejec-
tion frequency) of their selection procedure was close to that expected without repeated testing, yet the
power was reasonable.

Building on their findings, Hendry and Krolzig (1999) and Krolzig and Hendry (2000) developed the
Ox (see Doornik, 1999) program PcGets which first tests the congruency of a GUM, then conducts pre-
selection tests for ‘highly irrelevant’ variables at a loose significance level (25% or 50%, say), and sim-
plifies the model accordingly. It then explores many selection paths to eliminate statistically-insignificant
variables on F- and t-tests, applying diagnostic tests to check the validity of all reductions, thereby en-
suring a congruent final model. All the terminal selections resulting from search paths are stored, and
encompassing procedures and information criteria select between the contenders. Finally, sub-sample
significance is used to assess the reliability of the resulting model choice. In Monte Carlo experiments,
PcGets recovers the DGP with power close to what one would expect if the DGP were known, and empir-
ical size often below the nominal, suggesting that search costs are in fact low. In the ‘classic’ experiment
in which the dependent variable is regressed on 40 irrelevant regressors, PcGets correctly finds the null
model about 97% of the time for the Lovell database.

Some simple analytics proposed in Hendry (2000a) suggest why PcGets performs well, even though
the following analysis ignores pre-selection, search paths and diagnostic testing (all of which improve
the algorithm). An F-test against the GUM using critical value c
 would have size P (F � c
) = 
 under
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the null if it were the only test implemented. For k regressors, the probability of retaining no variables
from t-tests at size � is:

P (jtij < c� 8i = 1; : : : ; k) = (1� �)k ; (10)

where the average number of variables retained then is:

n = k�: (11)

Combined with the F-test of the GUM, the probability � of correctly selecting the null model is no smaller
than:

� = (1� 
) + 
 (1� �)k : (12)

For 
 = 0:05 and � = 0:01, when k = 40, then � = 0:98 and n = 0:4. Although falsely rejecting
the null on the F-test signals that spurious significance lurks, so (11) will understate the number of re-
gressors then retained, nevertheless, eliminating adventitiously-significant (spurious) variables is not the
real problem in empirical modelling.

Indeed, the focus in earlier research on ‘over-fitting’ – reflecting inferior algorithms – has mis-
directed the profession’s attention. The really difficult problem is retaining the variables that matter.
Consider an equation with six relevant regressors, all with (absolute) t-values of 2 on average (i.e.,
E[jtij] = 2). The probability in any given sample that each observed jbtij � c� = 2 (say) is approx-
imately 0.5, so even if one began with the DGP, the probability of retaining all six is:

P
�
jbtij � c� 8i = 1; : : : ; k j jtij = 2

�
= 0:56

' 0:016:

Using 1% significance lowers this to essentially zero. Surprisingly, even if every E[jtij] = 3, the chances
of keeping the DGP specification are poor:

P
�
jbtij � c� 8i j jtij = 3

�
= 0:846 ' 0:35:

Thus, the costs of inference are high in such full-sample testing, and will lead to under-estimating model
size. An alternative, block-testing, approach discussed in Hendry (2000a) seems able to improve the
power substantially.

Nevertheless, many empirical equations have many regressors. This is probably due to the high av-
erage t-values found in economics:

P
�
jbtij � c� 8i j jtij = 5

�
' 0:9896 ' 0:935;

(so almost all will always be retained), and not to selection biases as shown above. Even selecting by
t-testing from 40 candidate regressors at 5% would only deliver 2 significant variables on average. We
conclude that models with many significant variables correctly represent some of the complexity of ag-
gregate economic behaviour and not ‘over-fitting’.

The evidence to date in Hoover and Perez (1999) and Hendry and Krolzig (1999) for conditional dy-
namic models, Krolzig (2000) for VARs, and Hoover and Perez (2000) for cross-section data sets is of
equally impressive performance by Gets in model selection. Certainly, the Monte Carlo evidence con-
cerns selecting a model which is a special case of the DGP, whereas empirically, models are unlikely
even to be special cases of the local DGP (LDGP). However, that is not an argument against Gets, but
confirms the need for commencing with general specifications than have some chance of embedding the
LDGP. Only then will relaible approximations to the actual economic process be obtained.
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8 Congruent modelling

As a usable knowledge base, theory-related, congruent and encompassing econometric models remain
undominated by matching the data in all measurable respects (see, e.g., Hendry, 1995a). For empir-
ical understanding, such models seem likely to remain an integral component of any progressive re-
search strategy. Nevertheless, even the ‘best available model’ can be caught out when forecasting by
an unanticipated outbreak of (say) a major war or other crisis for which no effect was included in the
forecast. However, if empirical models which are congruent within sample remain subject to a non-
negligible probability of failing out of sample, then a critic might doubt their worth. Our defence of
the program of attempting to discover such models rests on the fact that empirical research is part of a
progressive strategy, in which knowledge gradually accumulates. This includes knowledge about gen-
eral causes of structural changes, such that later models incorporate measures accounting for previous
events, and hence are more robust (e.g., to wars, changes in credit rationing, financial innovations, etc.).
For example, the dummy variables for purchase-tax changes in Davidson et al. (1978) that at the time
‘mopped up’ forecast failure, later successfully predicted the effects of introducing VAT, as well as the
consequences of its doubling in 1979; and the First World-War shift in money demand in Ericsson,
Hendry and Prestwich (1998b) matched that needed for the Second World War.

Since we now have an operational selection methodology with excellent properties, Gets seems a nat-
ural way to select models for empirical characterization, theory testing and policy analyses. When the
GUM is a congruent representation, embedding the available theory knowledge of the target-instrument
linkages, and parsimoniously encompassing previous empirical findings, the selection strategy described
in section 7 offers scope for selecting policy models. Four features favour such a view. First, for a given
null rejection frequency, variables that matter in the DGP are selected with the same probabilities as if
the DGP were known. In the absence of omniscience, it is difficult to imagine doing much better sys-
tematically. Secondly, although estimates are biased on average, conditional on retaining a variable, its
coefficient provides an unbiased estimate of the policy reaction parameter. This is essential for economic
policy – if a variable is included, PcGets delivers the right response; otherwise, when it is excluded, one is
simply unaware that such an effect exists.1 Thirdly, the probability of retaining adventitiously significant
variables is around the anticipated level for the variables that remain after pre-selection simplification.
If that is (say) even as many as 30 regressors, of which 5 actually matter, then at 1% significance, 0.25
extra variables will be retained on average: i.e., one additional ‘spuriously-significant’ variable per four
equations. This seems unlikely to distort policy in important ways. Finally, the sub-sample – or more
generally, recursive – selection procedures help to reveal which variables have non-central t-statistics,
and which central (and hence should be eliminated). Overall, the role of Gets in selecting policy models
looks promising.

Because changes to the coefficients of zero-mean variables are difficult to detect in dynamic models,
for policy models they remain hazardous: the estimated parameters would appear to be constant, but in
fact be mixtures across regimes, leading to inappropriate advice. In a progressive research context (i.e.,
from the perspective of learning), this is unproblematic since most policy changes involve deterministic
shifts (as opposed to mean-preserving spreads), hence earlier incorrect inferences will be detected rapidly
– but is cold comfort to the policy maker, or the economic agents subjected to the wrong policies.

1This is one of three reasons why we have not explored ‘shrinkage’ estimators, which have been proposed as a solution to
the ‘pre-test’ problem, namely, they deliver biased estimators (see, e.g., Judge and Bock, 1978). The second, and main, reason
is that such a strategy has no theoretical underpinnings in processes subject to intermittent parameter shifts. The final reason
concerns the need for progressivity, explaining more by less, which such an approach hardly facilitates.
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9 Conclusion

The implications for econometric modelling that result from the observance of forecast failure differ con-
siderably from those obtained when the model is assumed to coincide with a constant mechanism. Causal
information can no longer be shown to uniformly dominate non-causal. Intercept corrections have no the-
oretical justification in stationary worlds with correctly-specified empirical models, but in a world subject
to structural breaks of unknown form, size, and timing, they serve to ‘robustify’ forecasts against determ-
inistic shifts – as the practical efficacy of intercept corrections confirms. Forecasting success is no better
an index for model selection than forecast failure is for model rejection. Thus, emphasizing ‘out-of-
sample’ forecast performance (perhaps because of fears over ‘data-mining’) is unsustainable (see, e.g.,
Newbold, 1993, p.658), as is the belief that a greater reliance on economic theory will help forecasting
(see, e.g., Diebold, 1998), because that does not tackle the root problem.

A taxonomy of potential sources of forecast errors clarifies the roles of model mis-specification,
sampling variability, error accumulation, forecast origin mis-measurement, intercept shifts, and slope-
parameter changes. Forecast failure seems primarily attributable to deterministic shifts in the model re-
lative to the data. Other shifts are far more difficult to detect. Such findings are potentially disastrous
for ‘impulse-response’ analyses of economic policy. Since the changes in VAR intercepts and dynamic
coefficient matrices may not be detected even when tested for, but the recorded estimates are a weighted
average across the different regimes, the resulting impulse responses do not represent the policy out-
comes that will in fact occur.

If the economy were reducible by transformations to a stationary stochastic process, where the res-
ulting unconditional moments were constant over time, then well-tested, causally-relevant, congruent
models which embodied valid theory restrictions would both fit best, and by encompassing, also domin-
ate in forecasting on average. The prevalence historically of unanticipated deterministic shifts suggests
that such transformations do not exist. Even the best policy model may fail at forecasting in such an
environment. As we have shown, this need not impugn its policy relevance – other criteria than fore-
casting are needed for that judgement. Nevertheless, the case for continuing to use econometric systems
probably depends on their competing reasonably successfully in the forecasting arena. Cointegration,
co-breaking, and model-selection procedures as good as PcGets, with rigorous testing will help in un-
derstanding economic behaviour and evaluating policy options, but none of these ensures immunity to
forecast failure from new breaks. An approach which incorporates causal information in a congruent
econometric system for policy, but operates with robustified forecasts, merits consideration. We have
not yet established formally that Gets should be used for selecting policy models from a theory-based
GUM – but such a proof should be possible, given the relative accuracy with which the DGP is located.
Achieving that aim represents the next step of our research program, and we anticipate establishing that
a data-based Gets approach will perform well in selecting models for policy.
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