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Abstract

The paper develops a framework for the analysis of finite n-player games,
recurrently played by randomly drawn n-tuples of players, from a finite popu-
lation. We first relate the set of equilibria of this game to the set of correlated
equilibria of the underlying game, and then focus on learning processes modelled
as Markovian adaptive dynamics. For the class of potential games, we show that
any myopic-best reply dynamics converges (in probability) to a correlated equi-
librium. We also analyze noisy best reply dynamics, where players’ behaviour
is perturbed by payofl dependent mistakes, and explicitly characterize the limit
distribution of the perturbed game in terms of the correlated equilibrium payoff
of the underlying game.
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1 Introduction

A branch of recent literature in economic theory has studied models of learning and
evolution in an attempt to provide a rationale for commonly used equilibrium notions
in game theory. Clearly, any equilibrium notion characterizes epistemologically equi-
librium behaviour on the part of players. However, if agents’ behaviour is taken as
a primitive of the analysis, then not all types of behaviour are necessarily consistent
with an equilibrium notion. Hence, the focus of this literature on convergence and
stability properties of dynamic processes of learning and evolution that may lead to
equilibrium.

One line of research builds upon the characterization of equilibrium play in terms
of aggregate behaviour, as in the “mass-action” interpretation, that J. Nash himself
suggested in his Ph.D. Dissertation (Princeton University, 1950). The idea is fairly
simple, in that it relates any of the players of an underlying game with a set of agents
who could potentially fulfill the role of that player in the interaction. Optimality of
equilibrium choices must then hold for each of these agents.

Focusing on a dynamic process of learning and/or evolution in this setting requires
the study of the dynamics of strategy choices in the aggregate. On the grounds of
the complexity of a potentially very rich and articulate form of aggregate interaction,
this formalization relaxes the assumption of rationality of players, to various forms of
modelled reasonable behaviour. An equilibrium notion is then characterized in terms
of the steady state of such dynamic process.

As many games admit multiple equilibria, though each equilibrium may be jus-
tified on the grounds of a dynamic process that leads to it, it is unclear how we
are to predict what is the likely outcome of the interaction. One way of addressing
multiplicity issues is to describe agents’ behaviour in probabilistic terms, formaliz-
ing the idea that there is a clear and systematic rational element in their decisions,
but choices as such are not always consistent with it, as sometimes players make
mistakes, and blindly imitate other players or choose actions in an entirely random
fashion. By guaranteeing ergodicity properties of the dynamics, mistakes can recover
unique predictions, as some equilibria might be more robust to perturbations than

others.



This paper contributes to this literature in three respects. First it provides a
simple rationale for the notion of correlated equilibrium. The focus on the wider
set of correlated equilibria (rather than on Nash equilibria) stems naturally from
considering a very general pattern of interaction among players. Such generality
of the interaction structure constitutes a second contribution, as it allows to relate
different plausible models in a unified framework. Third, the formulation of the
model allows for a straight-forward characterization of the long-run properties of an
underlying stochastic dynamics and provides a useful tool for analyzing equilibrium
selection issues for the class of potential games.

In particular, the paper develops a framework for the analysis of finite n-player
games, recurrently played by randomly drawn n-tuples of players, from a finite pop-
ulation. The framework of the interaction is exogenously given, in the sense that it
is formalized in terms of a probability distribution that is common knowledge among
players. It accounts for uniform random matching (where each player is equally likely
to be matched with any other (n — 1) players in the population) and local match-
ing (where each player’s opponents are randomly chosen among her neighbours) as
special cases. Though the analogy is not pursued here, as noted in Morris (1997),
there exists a close relation between the interpretation we provide in terms of local
interaction and that of a game of incomplete information.

Section 3 analyzes the relation between the set of equilibria of the aggregate
game (defined as a population game in Section 2) and the set of equilibria of the
underlying game, i.e. the game that once matched, players play. It is shown that
the identification of the former in terms of replicated version of the latter, does not
necessarily hold, as choices may be correlated due to the pattern of interactions.
The Section builds upon the results of Mailath, Samuelson and Shaked (1997). By
constructing a replica game, it is shown that if matching is uniform, then any of the
resulting correlated equilibria corresponds to a Nash equilibrium. In the model, the
random matching may provide a correlation (or convexification) device, that acts in
an analog way as past play does in Hart and Mas-Colell (1997), though the analogy
between the two papers stops here.

In Section 4, we formalize a class of learning models as myopic best-reply be-

haviour. The dynamics rely upon the assumption that players hold static expecta-



tions on the environment they are called to interact in, and, whenever they are able to
adjust their strategies, they act so as to maximize their expected payoff. In a frame-
work that focuses on the evolution of play over time, these dynamics are particularly
appealing in that, whenever the environment is stationary, players’ behaviour is op-
timal. We show that if the underlying game is a potential game (roughly speaking, a
game where players behave as if they had identical payoff functions), the population
game, played under any arbitrary matching, also converges to an absorbing state.
As the potential function we use is the average expected payoff in the population,
the result (stated in Theorem 3) is essentially a generalization of the fundamental
theorem of natural selection, to a finite population - finite game setting. Hence, we
are able to characterize correlated equilibria of the underlying game as being local
maximizers of the potential. The result we obtain here is related to Neyman (1997),
though we do not need any specific assumption of convexity.

In Section 5, we take the view that ergodicity properties of the process make it
a good predictor of the long run behaviour of the population game. To this aim
we analyze perturbed best-reply dynamics, where players adopt a myopic best-reply
to the previous period state of the system with high probability, but with some
small, though positive, probability they do something else instead. Specifically, we
assume that mistakes are payoff dependent, in that the probability with which any of
the available actions is adopted depends on the expected payoff achievable with that
specific action. For the same class of games for which we are able to prove convergence
in Section 4, we show that the probability with which each state is observed in the
limit is a function of the average expected payoff in the population, in that state. This
allows us to address equilibrium selection issues over the set of correlated equilibria
of the underlying game. Though technically less demanding, the result generalizes
the model of Blume (1993) to a finite population - n-player game, where interaction

is not necessarily restricted to be on a lattice.

2 The Model

As it will become apparent in what follows, the line we take in the formalization is

to keep the model as simple as possible, though generality is achieved at the cost of



at times heavy notation. The model consists of three key ingredients: a specification
of the interactive setting, a definition of a notion of equilibrium in this setting and a
characterization of a dynamic learning process through which agents can potentially
learn to play the equilibrium, by interacting repeatedly over time. We address these

issues in exactly this order.

2.1 The game:

Let €2 be a finite set; p be a probability measure defined over subsets of elements
of €2, and G be a normal form game. We take €2 to represent the set of players, u
to formalize the probability with which players are matched and G to be the game
that, once matched, players play. A population game is simply defined by these three

elements:

Definition 1 (Population Game) Given a population of players 2, a random match-
ing technology u, and an underlying game G, the triple I' = (0, G, p) defines a pop-
ulation game if Q, p and G satisfy':

1. 2<4Q =N < 0.

2. For2 <n < N, p is defined over P = {(w1,w,.....,wp) : w; € Q} and is such
that for all w; in Q, p(w;) =3, plws,w—;) > 0;

3. G = ({Ai} 1, {IL}1 ) is an n player-normal form game, with action spaces

n
{A;}7 1 and payoff functions {11;}7 1 : ] A; — R respectively.
i=1

We refer to 1 as the random matching among players, and we assume this is
exogenously given to players, in the sense that p is common knowledge among players.
The general specification of the matching that we adopt encompasses standard
formalizations of the interaction pattern used in the recent literature on random
matching models, though it is by no means limited to those. In order to see this, let

us denote the support of u by S, and state the following:

Definition 2 (Uniform Matching) Matching is uniform if ¥V (w1,w2,.....,wn) in
S, (w1, we, ey wi) = (#5) L.



If S = P, we shall denote u as py; and refer to it as uniform population matching.
If S C P, we shall denote p as p;, and refer to it as uniform local matching.

In particular p;; characterizes a model, commonly referred to in the literature as
a random matching model, where each player is equally likely to be matched with any
subset of (n—1) players in the population. p;, instead formalizes the idea that the set
of potential opponents for player w depends on w itself, and player w is equally likely
to meet any player within that set. Since one possible way to distinguish player wy
from player w9 in the population is to provide each player with an “identity” in terms
of a specific location on an appropriately characterized space €2, this formalization
has often been used in the recent literature (for example in Ellison (1993) and (1995),
Blume (1993), Anderlini and Tanni (1996a and 1996b), Morris (1996), Ely (1996) and
others). Unlike in most of these contributions, the results we obtain here do not
typically depend on any particular topological characterization of the set €2.

In general, an underlying game requires the assignment of a role to each of the
players who take part in the interaction. In our setting, a random matching that has

this property satisfies the following Definition:

Definition 3 (Role identification) Matching assigns roles to players if pn parti-
tions Q in {4}, e plwi, ... ywn) > 0 only if, for all i = 1,2,....,n, each
w; € €.

We will conventionally assume that if the above definition holds, then all w’s in
Q; who take part in the interaction will play role ¢ in GG (i.e. they will have set of
actions A; and payoff function II;)2.

In the examples, we will find it convenient to represent {2 in terms of a graph,
G(Q, E), where FE is the set of edges connecting any n-tuple of elements of €2 to which
14 assigns positive probability.

2.2 Equilibria

As (7 is a normal form game, action spaces are finite. Let A, be the set of actions
available to player w in G and let any a,= {a},a2,- - -, al?} such that a’>, > 0

w?r w?

and Zi:l,---,ﬁ A, a’, = 1 denote any mixed strategy adopted by player w. We think



of a pure strategy as a degenerate probability distribution and we denote it by a,,
(or a,, if we want to specify that a!, = 1). Player w’s opponents are denoted by
—w and are chosen at random, among those players for which p(w, —w) > 0. If 11,
denotes w’s payoff function in G, w’s expected payoff from choosing a, is denoted
by E,[ll,(a,,a) | p]. Strategy al, maximizes w’s expected payoft, if and only if
al, € Argmaxa, [l (aw, a—y) | 1.

In the population, a mixed (vs. pure) strategy profile a €[], a, (vs. a € T[], aw)
associates a mixed (vs. pure) strategy a,, (vs. a,) to each player w € Q. A subset of
the set of all profiles are the equilibrium profiles of the population game I, defined

as follows:

Definition 4 (Equilibria of I') Given a population game T, O(') C ], a, is the
set of its equilibrium profiles. Fach element a* € O(T") is such that a* = [],a¥,
where a¥, € Argmaxa, E,[IL,(a,,a_y) | p] for all w.

O(I') C O(T) is the set of strict® equilibrium profiles of I'. Each element a* € (')

*

. .
s such that a* = 1], a’,

where a}, = Argmax,, E, [, (aw,a—w) | p] for all w € .

We note at this point that the above definition of equilibrium reminds of that of
a Bayesian Nash equilibrium in a game of incomplete information. Though it will
not be pursued here, the analogy is not a mere coincidence. In Anderlini and Ianni
(1996a) such interpretation was used to analyze a model where interaction takes place
on a lattice of Von Neumann-Morgestern neighbourhoods and players repeatedly play
a 2-by-2 coordination game. Morris (1997) provides a careful general characterization
of this analogy, that hinges upon the formalization of the pattern of interaction among

players.

2.3 Learning Processes

The behavioural assumption underlying the learning model we analyze is that each
player aims at maximizing her expected payoff. Expectations as to potential oppo-
nents’ behaviour are adaptive. This is motivated by the idea that future play will
not be different from what was observed in the recent past. In the jargon of the re-
cent literature on learning, the dynamic processes we shall study are those of myopic

best-reply and a noisy version of it.



Time is discrete. We shall assume that, at each time ¢ only one n-tuple of players
actually play the game (though, by assumption, all players have a strictly positive
probability to take part in the interaction*). The latter will involve players (w1, ..., wy,)
with probability u(wi, ...,wn). Before the random draw takes place, each player w has
chosen an action from the set A,,, by appealing to a rule. Within the same model, all
players appeal to the same rule, which is simply a mapping from “what she knows”
to “what she would do, were she chosen to play” and takes the form of a probability
distribution over the action space. We shall describe different rules below.

At the beginning of time, nature assigns an action to each player. The first
interaction takes place at time zero. Between time zero and time one, only one
player, chosen at random in the population, receives an updating opportunity; the
latter consists of the possibility to change the original action according to the rule.
Then time one’s interaction takes place. As time rolls by, the above story is repeated
with exactly the same timing. As two players that consecutively update their actions
have information sets that differ by the action of at most one player, we believe that
this specification is more likely than others to capture the inherent stochastic nature
of information gathering®.

The specification of the behavioural rules and of the allocation of updating op-
portunities, completely defines a stochastic process over [[,, a,,. We will refer to p as
the process that governs the dynamics under myopic best reply, to ¢ as the process
under noisy best reply, and we shall denote by P(a’ | a) and P?(a’ | a) the probability

with which the system transits from a to @’ under the two processes respectively.

2.3.1 Behavioral Rules

As expectations are adaptive, we need to explicitly account for a dynamic element
in the specification of the behavioural rules we postulate. We assume that at the
beginning of period ¢, all players are informed about the configuration of actions in

the population at period ¢ — 1 (namely a;_1).

MBR: The first behavioral rule we analyze is known as the myopic best-reply: players
hold static expectations about their opponents’ behavior and, whenever they

have the opportunity to do so, they choose the action that maximizes their



expected payoff. As a result, if it is player w’s turn to update, she will choose

an action such that:
al € Arg max E,Oy(ay, a” ) | 1]

NBR: The second behavioral rule we analyze is based on the idea that the probability
with which a player adopts each action available to her depends on the expected
payoff to that action. To this aim, we assume that, if it is player w’s updating
turn, she will choose an action such that:

expl 0 B[ (aw;, a) | 4]
ZieAw exp[a EM [Hw<a’wi7 at:wl) ’ lu]]

where ¢ > 0 is a parameter. The rule is not meant to model any specific

{ait —

a’, Li=1,.., 1AL} (1)

behavioural assumption, but instead formalizes the idea that the ratio between
the (logarithm of the) probabilities with which a player chooses any two actions
is proportional to the difference in the expected payoff®. If we are to motivate
probabilistic behaviour in terms of mistakes, the above rule postulates that the
probability with which such mistakes occur is payoff-dependent, in that very

costly mistakes are less likely to occur than relatively less costly mistakes.

3 Characterization of Equilibria

The first objective we have is to characterize the set of equilibria of the population
game ' in terms of the set of equilibria of the underlying game (. Being finite,
(¢ admits at least one Nash-equilibrium in pure or in mixed strategies. In general,
we shall denote by N(G) the set of Nash-equilibria of G and by ¥(G), the set of
correlated equilibria of G, as introduced in Aumann (1974).

In order to look at a random matching model where only a subset of individuals are
drawn to play the underlying game, we first build on the “mass action” interpretation
verbally described by John Nash himself and borrow the terminology used elsewhere
in the literature. This is done by constructing a replica game for the underlying
game (. A replica game is constructed from G, by replicating say 2 < m = N/n
agents with exactly identical preferences, for each role 7z in G. We then assume that

the n players who are going to play &, are drawn at random, each of the m replicas

10



of ¢ having equal probability. Within our model each m-replica of G is obtained as

follows:

Definition 5 (Replica of G) 'y, = (2, ug, G) is an m-replica of G if p = up is
such that a) it satisfies Definition 3, with 48 = m for all i = 1,2,....,n, and b) it
satisfies Definition 2 and it has full support.

Condition a) requires the matching to define an n-partition of the set  or, equiv-
alently, to generate an n-partite graph. Condition b) requires the probability distri-
bution that defines the matching to be uniform, i.e. pp(wi,..ccc.;wpn) = (M)~ " for all
(Wi e ,wnp ) in the support of i z. Hence roles are known to players, while opponents
are uncertain and randomly chosen in the population.

The idea behind the replica game is that each of the roles ¢ available in G is
played by an individual chosen at random among all players in €2;. It is clear that for
m = 1 the replica game I' coincides with (. Definition 4 would characterize the set
of Nash-equilibria and the subset of strict Nash-equilibria respectively. It is natural
at this point to ask whether this is also true for any m-replica (m > 1), and whether
the relation would hold if we relaxed conditions a) and/or b).

In order to address these questions we need some further notation to relate the set
of equilibria of the population game, previously defined in terms of action profiles in
the population, to probability distributions over sets of actions, or Cartesian products
of them. We proceed as follows. First note that a generic profile, a € J][, a,,
induces a partition of the set of n-tuples of players according to the actions that
are chosen in a. Let us denote the restriction of p over this partition p,(T]; 4;).
By construction, this is a probability distribution over the Cartesian product of the
action space: any p(i1,49, .....in) is the frequency with which an outside observer
would observe (or rather foresee, if mixed strategies are chosen) the combination of
actions (i1 € Aj,i9 € Ag,.....iy, € Ay), if the action profile in the population was
a and matching was defined by p. Let us denote by p,(A4;) for i = 1,2,...,n its
corresponding marginals (for example (i) = >y c Ay o 2 ca, K015 72, ooniin)).

Then the following holds:

Proposition 1 Let 'y, = (Q, pug, G) be an m-replica of G. Then for all a* € ©(T'y,),
Ma(Ai) € N<G)

11



Proof. See Appendix.

Relaxing condition a) in the Definition 5 leads to a remark about the consistency
of the interpretation of the model.

Suppose p is uniform and has full support over P, but does not assign roles to
players (this is the case if Definition 2 holds, but Definition 3 does not). Then roles
in the underlying game, as well as opponents in the interaction are uncertain to
each player. If matching is uniform, one plausible interpretation is that any player
is equally likely to play any of the roles available in (. If actions are chosen ex-
ante, i.e. before playing the game, a consistent specification requires all action spaces
to consist of exactly the same labeled elements. In this case, however, the relation
between the set of equilibria of the population game, I', and the underlying game, G,

is not obvious’

. Now suppose instead that, before the interaction takes place, each
player can choose a strategy that consists of the choice of an action for each of the
possible roles that could be assigned to her in the interaction (in other words, suppose
that such strategies can be made conditional on future roles). Then the equilibria of
the population game as in Definition 4 can be interpreted in an ad interim sense, i.e.
after the uncertainty about roles resolves and only the uncertainty about opponents
has to be accounted for. The class of games for which this distinction does not
matter is the class of symmeitric games, i.e. games for which the payoff functions are
independent of the roles®.

We now focus on the implications of condition b) used in Definition 5, and show
that the characterization of the set of equilibria of I' in terms of replicated version
of the Nash equilibria of G does not necessarily hold if matching is not uniform.
This particular feature of local random matching models was first noted in Mailath,
Shaked and Samuelson (1997), where the authors characterize the set of equilibria
of a model formalized in terms of a number of finite populations of players, one for
each of the roles of an underlying normal form game, randomly grouped in “casts”
to play one shot of the underlying game. It is not difficult to see that such a model
is analog to what we previously defined as an m-replica of G in all respects, apart
from condition b), since matching is not necessarily uniform. The authors show i)
that each equilibrium of the model defines a correlated equilibrium of the underlying

game, and ii) that for any correlated equilibrium of an underlying game one can de-
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sign an interaction mechanism that reproduces that equilibrium in terms of observed
frequencies over the Cartesian product of the action spaces. The Proposition that

follows builds upon their result.

Proposition 2 (Mailath, Samuleson, Shaked (1997)) Let ' = (Q, u, G).
If p satisfies Definition 3, then i) for any a* € O(L), p,([1; 4i) € ¥(G) and ii)
for any ¢ € U(Q) there exists an a and a p such that p,(I1; Ai) = .

Proof. See Appendix.

As pointed out in Mailath, Samuelson and Shaked (1997) and in Ianni (1997), if
matching does not assign roles to players (i.e. if Definition 3 is not satisfied), the w;s
are exchangeable in the definition of u. As a result p, (T, A;) will itself be symmetric
(since, roughly speaking, any permutation of the n players would be observationally
equivalent), and so will the correlated equilibrium®. As not all correlated equilibria
are symmetric, in the Sections that follow we shall assume that the random matching
allows for role identification among players, or in other words, that Definition 3 holds
throughout.

The main conclusion that we can draw from the analysis so far is that, in gen-
eral, the set of equilibria of the population game might look very different from the
(replicated version of the) set of equilibria of the underlying game. This is in general
the case if each player is not equally likely to interact with any other player in the

population. Some illustrative examples follow.

Example 1 Let C'y and Co be 2-by-2 underlying games with payoff matrices given
by:

A=

3/2,3/2 0,0 3,3 1,1
CcE
0,0 1,1 0,0 4,4

and consider Ty = (Q,C4, 1) and T'c = (2, Co, n) where 1Q = 4 and p is specified
as in the following graphs (vertices are players, edges are elements in the support u

and the number above each edge is the probability with which each matching occurs).

13
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A: Uniform nearest neighbours B: Local nearest neighbours C: Local nearest neighbours

The setting on the left (Figure A) is a simpler version of the model analyzed
in Ellison (1993), where players are located on a circle and interact only with their
nearest neighbors. It is not difficult to see that, for the game on the left, the only
strict equilibria of I' 4 are those where every player adopts exactly the same action,
i.e. replicated versions of the strict Nash equilibria of the underlying game. Any con-
figuration of play where different actions co-exist cannot be supported in equilibrium.
The picture in the middle (Figure B) shows why this analogy does not hold in general,
as for example a configuration of play where o and 3 adopt say the first of the two
actions available, and 6 and v adopt the other is also a strict equilibrium of I, though
it does not correspond to any of the Nash equilibria of G. Analog reasoning applies
to underlying asymmetric games, such as C¢, played under the matching pattern of
which in Figure C. It is not difficult to check that, in this latter case, one possible
strict equilibrium of the population game has o and 3 playing the Top-Left Nash
equilibrium strategies, while v and & play the Bottom-Right. Proposition 2 shows that
any such equilibrium induces a correlated equilibrium of the underlying game. For

the C4-Figure B and the Co-Figure C games, these are respectively:

1/3 1/6
1/8 9/24

1/3 1/6
1/6 1/3

Example 2 Let Z be a 2-player - 3-action game of the Rock, Scissors, Paper kind:

0,0 2,1 1,2
Z=11,2 0,0 2,1
2,1 1,2 0,0

14



and consider I' = (0, Z, pu; ) where py is specified as follows:

o ]
f6

ﬁ £

¥ ¢

Uniform Local Matching

Though the underlying game 7 admits only one Nash equilibrium in mixed strate-
gies (that assigns equal probability to each of the actions), one strict equilibrium of
the corresponding I' has players a and 6 playing R, players 8 and e playing S and
players v and ¢ playing P, inducing the following correlated equilibrium:

0 1/6 1/6
1/6 0 1/6
1/6 1/6 0

Though all the configurations in the above Examples yield a strict equilibrium of
the corresponding population game, we will argue in the Sections that follow, that
the equilibria of Example 1 are, in a way, more robust than that of Example 2. In
order to address issues of dynamic stability of equilibria of the population game, we

now move on to analyze the learning processes we study.

4 Will we ever see an equilibrium?

The question we address next is the interpretation of the equilibria in terms of the
learning process we examine. We shall do so by studying the equivalence classes of
the process!® p that, we recall, ranges over [], a,. It should be clear that, given an
arbitrary matching pu, by “lumping” the process in terms of the fractions of players in
the population adopting each of the available actions, we would inevitably miss out
relevant information. Given a population game, I', let E®(I") be the set of ergodic
sets of the process under p and A9 (I") C E?(T") be the set of absorbing states. Given
that the state space is finite, we know that E®(I") # (. We also know that state a is

15



absorbing if and only if P(a | a) =1 and therefore, only those states that are strict
equilibria of I can be absorbing (or in other words A¢(I") = 6(T")). In order to fully
characterize the process under MBR dynamics, we need to show that such absorbing
states can be reached, possibly in finite time, by the process.

It is well known that MBR dynamics can cycle (i.e. admit ergodic sets different
from absorbing states) over simple normal form games, the Rock-Scissors-Paper being
a leading example. It is also known that for some classes of normal form games cyclic
behaviour can be ruled out if we are able to show that the game admits a potential, i.e.
a real valued function that ranges over the Cartesian product of the action spaces
and behaves monotonically along any path of the dynamics. Normal form games
that exhibit this property are defined in Monderer and Shapley (1996a), as potential
games. In that paper the authors explicitly characterize this class of games by defining
a set of conditions on the relation between the underlying payoff functions, that are
sufficient to guarantee convergence of any dynamics that moves along an improvement
path. In a population game of the kind analyzed here, as expected payoffs depend
on the payoffs of the underlying game, as well as on an arbitrary definition of the
matching, checking for those conditions is at best not operative, as it would involve
studying functions defined over [], a, (rather than []; 4;).

The logic we follow is then to construct a tractable potential function for the
population game and show that convergence to an absorbing state obtains whenever
such potential exists.

For each profile a, we define the average expected payoff per interaction by ag-

gregating expected payoff from a round, over all players:

M) =~ 3 Mo, a u)u(w, —w)
(w,~w)

This quantity clearly changes, as the MBR dynamics unfolds, and it is clear from
the construction that II,(a) is real valued and bounded over its domain. In what
follows, we shall show that if the underlying game  is a potential game, than this
function behaves monotonically along any path of MBR dynamics.

One problem we need to address is the occurrence of ties that might make a player

indifferent between different actions. To this aim, recall that, as the population is

finite, each player can only see a finite number of distributions of play among her
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potential opponents. Hence, for most underlying games, we can deal with ties by
perturbing the payoff functions and/or the matching in such a way that observed
frequencies do not reproduce any of the mixed equilibria of G''. As a working tool,

we define a population game for which this holds as having no ties:

Definition 6 I' has no ties if 11, and p are such that for all w € Q and for all
Ay, € Ay: EM[HwWwvafw) ’ p] # Eu[HwW[mafw) ’ 1.

The result that follows identifies a sufficient condition for global convergence for
MBR dynamics played in a population game I'. The condition requires the underlying
game G to have identical interests (as in Monderer and Shapley (1996b)).

Definition 7 (Game with Identical Interests) G = ({4;}7 ,{IL}*,) is a n
n

player-normal form game with identical interests, if {IL;}? { =11: ] A; — R for all
i=1

1’s.

If this condition is satisfied, then the following Theorem shows that (1) the average
expected payoff in the population, in a given state, (I,(a)) corresponds exactly to
the average payoff of the underlying game, taken with respect to the restriction of
p induced by the state a over the Cartesian product of G’s action space (previously
denoted as . (I]; As) and here lightened to p,); (2) that the function II,(a) is non-
decreasing along any path of the myopic best-reply dynamics, and that there exists
a relation between the set of its maximizers and the set of absorbing states of the

underlying process.

Theorem 3 Let I' = (Q,u, @), and assume G has identical interests. Then the
following holds:

(1) for any given a, I1,(a) = E,,_[I1(i1,49, ....,in)] fori; € Ay;
(2) along any path of p:

a) I1,(a) is non-decreasing;

b) I, (a) is (locally) mazimized at any a € A®(I') = O(I'), and, whenever I'

has no ties, the only maximizers are to be found in 6(T).
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Proof. See Appendix.

The above theorem asserts that for the class of games with identical interests
(that includes for example pure coordination games, as in Kandori and Rob (1993)
or Robson and Vega-Redondo (1996)), asymptotics of the process can be analyzed
by looking at the set of states that maximize the average payoff. Since we know
from Proposition 2 that every equilibrium a induces through pu, (I]; Ai) a correlated
equilibrium of the underlying game, we think of II,(a) = E,_[II(i1,%2,....,7n)] as
the average payoff of the underlying game, taken with respect to the probability
coefficients that define the corresponding correlated equilibrium. Being the image of
a convex polyhedron under a linear map, the set of correlated equilibrium payoffs
is also a convex set in ™. As the function II,(a) behaves monotonically along the
dynamics, the above result also implies convergence, over time, of p, to the set of
correlated equilibria of the underlying game (. Hence each of the local maximizers of
the potential I1,(a) corresponds to an equilibrium of I" and to a correlated equilibrium

of G. This is stated next.

Corollary 4 Consider I' = (, 1, ), where G has identical interests and T' has no
ties. If I' is played under MBR, for any given initial condition ayg,

Jim Prla; € 6I)] =1 and Jim Prlp,, € ¥(G)] =1

Proof. See Appendix.

In general, equilibria of the population game depend on the interaction pattern
1, as well as on the underlying game, and unless G admits a Nash equilibrium in
strictly dominant actions, the set 8(I') will not be a singleton. In this case, as it
is well known, the probability with which each state is observed in the limit will
depend on the initial condition. In the Section that follows, we exploit the ergodicity

properties of a perturbed process to analyze the long run behaviour of the system.

5 Which equilibria are we likely to see?

In this Section we analyze the process generated under noisy best reply. We assume
mistakes are independent across players and over time, but do explicitly depend on

payoff considerations, as formalized in equation (1). It is clear, that this process p”
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also ranges over [[, a, and, for any 0 < o < oo, it admits a unique ergodic set that
includes all states in the state-space (i.e. £¢°(T") =[], aw).

The result that follows shows that, for the same class of population games for
which we proved global convergence in the previous Section, we are also able to fully

characterize the limit distribution of the process °.
Theorem 5 Consider I' = (Q, u, G). For any 0 < o < 00 :

(1) ¢ is ergodic. Each entry is such that lim, o P7(a! | @) = P(a' | a) for all
a,al € T, aw = A

If G has identical interests, then:

(2) ©° admits the following probability vector as a unique ergodic limit distribution:

exploll,(a)]
Yacaexploll,(a)]’

P, = [Py(a) = ac Al

Proof. See appendix.

The above result is to be interpreted in the following way. Recall that in Section 4
we specified conditions under which the average expected payoff in the population was
strictly increasing, and as such could be taken to represent a potential, or an energy
function for the system under myopic best-reply dynamics. Sufficient for this is that
the underlying game has identical interests, or that it is a potential game. In this
case at each step of the noiseless process the average expected payoff increases. As
previously pointed out, the (noiseless) myopic best reply dynamics can be obtained
for the model we analyze in this Section with ¢ = co. Mistakes occur for any finite
value of ¢. In this case the system can loose “energy” at random in amounts that
are proportional to the value of ¢. Hence some of the local maxima of the energy
function, i.e. the average expected payoff, can be destabilized. If actions are chosen
in an entirely random fashion, that is for ¢ = 0, the system wanders randomly
among all its possible states. As a result, for any finite value of the parameter o,
we cannot identify states as attractors for the dynamics. However, we can identify
attractor probability distributions over states, that take the form specified in the

above Theorem.
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As part (1) and (2) of the Theorem are true for each finite o, and transition
probabilities are continuous in o, we can then consider the limit as o becomes infinite.
It is a direct implication of the Theorem that, as this happens, the system spends
most of its time in the state for which the average expected payoff achieves a global
maximum. As (from part (1)) g7 converges to p entry-by-entry as o — oo, the limit
distribution concentrates all of its mass on one of the absorbing states of g that are
absorbing states of the population game.

It is interesting to interpret the findings of Theorem 5 in terms of equilibrium
selection over the set of correlated equilibria of the underlying game. In particu-
lar, a direct implication is that, if the underlying game admits a Pareto-dominant

equilibrium, then it will be selected by the learning process.

Corollary 6 Consider I' = (2, 1, ), where G has identical interests, and suppose G
admits i = (1,42, ....,in) as a Pareto-dominant outcome. If T is played under NBR,
then there exists an a € A and a p for which:

U, (a) = B, (II) =11(i1,i9,....,7n) and lim Fy(a) = 1.

T — 00

Proof. See Appendix.

Games that fall into this class are, for example, common interest games, as in
Aumann and Sorin (1989). The above Corollary then postulates that a population
game, played under noisy best-reply dynamics, is able to select the one that yields
the “highest” correlated equilibrium payoff within that set.

It is not difficult to see that the results of Theorems 3 and 5 can be generalized
to the class of better reply dynamics (where each player myopically adopts an action
that only increases her expected payoff) and to the class of games that are best-reply
equivalent to games with identical interests. As the first generalization would not
substantially add to the analysis, and in the second the explicit relation with the
average payoff (and correlated payoff in equilibrium) would be lost, this line is not
pursued.

As it turns out in Theorem 5, the full characterization of the process can be done
very simply in terms of Markov chains. For the class of games that we analyze, an

equivalent specification of the stochastic process can be given in terms of a Markovian
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random field'2. This characterization requires, as a further assumption in our model,
that the set of players, €, be equipped with a distance (for example in a lattice of
Von Neumann or Moore neighbourhoods). Such characterization turns out to be
particularly useful if the model is extended by allowing for a countably'® infinite
population of players, all other things being equal. This would make the version of
the model we analyze here under uniform local matching (i.e. for u = p;), close
to that studied in Blume (1993), where the author provides a characterization for
an underlying two-player m-by-m symmetric game in terms of an Ising model (for
m = 2), or a Pott’s model for m > 2). As pointed out in that paper, complications
might arise as the partition function, i.e. the normalizing factor of which in Theorem
5, part (2), may not be summable. Our results for n = 2 and for an underlying
symmetric game would constitute an analog of Theorems 6.1 and 6.3 in that paper.

It should be clear that, though the specification of the model is different, the
logic followed in the analysis is very close to that of Kandori, Mailath and Rob
(1993). Namely, the equilibrium selection results are obtained in two steps: first, the
asymptotics (over time) of a noisy dynamics is characterized in terms of an ergodic
limit distribution expressed in terms of a parameter (o, in our model), and second,
a limit is taken over this parameter to formalize a process of learning by players.
Clearly, if the order of the limits is reversed, the logic fails to hold, as so do the
ergodicity properties. Besides, the caveat of Bergin and Lipman (1996) applies to
this model as well: if the model allows for state-dependent mistakes, for example
if o depends on a (the state) or on w (the player), and the speed at which each o
reaches infinity differs, then the equilibrium selection result of the Corollary would
not necessarily hold.

Perhaps surprisingly, the closest analog of our convergence result is that obtained
for an infinite population / random matching model where the dynamics are modelled
as replicator dynamics. As Hofbauer and Sigmund (1988) show, for a two-player
symmetric potential game (a partnership game in their terminology), the replicator
equation is a gradient vector field, with the mean payoff as potential function in a
suitable Shahshahani metric. A full understanding of this analogy warrants future

research.
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6 Conclusions

The paper provides a starting point for the analysis of the dynamic properties of
equilibria for finite n player games, repeatedly played by randomly drawn n-tuples of
players from a finite population. The general framework adopted throughout accounts
for standard assumptions (as random matching, or local matching) about the random
way players are matched, as particular cases. On one hand such generality helps to
capture aspects of the articulate way in which information is gathered and transmitted
in real life, and is probably more conducive to applications of this kind of theoretical
modeling to market structures. On the other hand, this generality is needed also at
a theoretical level, if equilibrium convergence and equilibrium selection results that
have been the focus of a branch of recent literature, are to be generalized to settings
more complex than underlying coordination games.

It emerges from the analysis that the way matching among individuals takes place
determines a variety of equilibria that do not correspond to replicated versions of the
equilibria of the underlying game. Clearly, the specific characterization of each of
them relies on topological properties that might not be obvious. However, in terms of
the measure they induce, the focus is to be directed on the set of correlated equilibria
of the underlying game, rather than on that of its Nash equilibria. Pursuing this
line of research could also be of practical help in understanding the structure of the
set of correlated equilibria, beyond the results of Cripps (1993) and Evangelista and
Raghavan (1996). Furthermore, the learning process studied in the paper provides a
much needed rationale for the notion of correlated equilibrium, that hinges upon the
local nature of information gathering. Along these lines it seems appealing to combine
a spatial characterization of the model with some consideration of the history of play
in terms of past play. A more plausible model would combine these two dimensions
(space and time) in the formalization of the learning process. As for the class of
games with identical interests, we know (from Monderer and Shapley (1996b)) that
learning dynamics like fictitious play converge, and we know from Hart and Mas-
Colell (1997) that history per se can work as a convexification device to support a
correlated equilibrium, results could be obtained along these lines.

The convergence and equilibrium selection results of this papers are shown to hold
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for potential games. Clearly this is only a sufficient condition, that may be replaced
by others in particular settings. In the class of 2-player - 3-actions coordination
games for example assumptions like the band-wagon property or supermodularity
have been shown to work in Kandori and Rob (1993) and (1995) for a game played
under uniform population matching. However, if matching is local, these conditions
are neither necessary, nor sufficient to rule out cyclic behaviour.

In our setting potential games are of interest because they allow us to derive
convergence and equilibrium selection results that do not depend on the particu-
lar specification of the interactive structure. As payoff functions are identical, these
equilibria are robust to permutations of the roles in the underlying game, and the dis-
tinction between ez-ante and ad-interim interpretation of the equilibrium conditions
does not bite. This matters when analyzing convergence and stability properties of
the dynamics we study, as well as when studying a noisy version of the dynamics:
first because equilibria of the population game are robust to any one player deviation
(this plays the same role that strictness of Nash equilibrium plays in the underlying
game); second because it guarantees reversibility properties of the noisy dynamics we
study. This latter point clearly depends on the specific formalization of the mistakes
that affect players’ choices in the model we use.

It is difficult to provide a convincing motivation (other than technical conve-
nience) for adding mistakes to an otherwise myopically optimal behaviour. However,
preliminary results show that the formalization used here can be motivated in terms
of limited information on the part of scarcely informed rational players, who make
inference on the aggregate play by sampling some observations. Motivation aside,
one thing noted in an example in Tanni (1997) is that, for a population game played
under local matching and for the underlying game in Example 1 of this paper, this
specification of mistakes yields different equilibrium selection results than the one
used in many papers that originated from Kandori, Mailath and Rob (1993) and
Young (1993). In these papers mistakes do not explicitly depend on expected pay-
offs, but only on the ranking between the expected payoff achievable with different
actions. It would be interesting to investigate further the dependence of equilibrium
selection results on the specification of the process of mistakes. Blume (1995) con-

stitutes a first step in that direction, for an underlying 2 player game, played under
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uniform population matching. One may conjecture that the two specifications might
be related to properties of properness and perfection of the equilibria.

University of Pennsylvania, 2/28/98.
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Appendix:

As the result of Proposition 1 can easily be derived from Proposition 2, we invert

the order of the proofs.

Proof of Proposition 2

i) The proof extends the result of Proposition 1, part (1.1) in Mailath, Samuelson
and Shaked (1997) by allowing players to use mixed strategies. The extension is
straight-forward, as it suffices to notice that player w’s expected payoff from choosing
a,, is a linear function of w’s mixing probabilities a’,, for i = 1,2, ...., # A, and of w’s

opponents mixed strategies, a_’,:

Eu[Hw<awvafw) | 1] = EM[ Z Z aiaii)ﬂw(%a—z‘) | ]

€A, —1€EA_,

Suppose a* € O(T). Then for all w for which @, > 0 and for all j # 7 the following
holds:

0 =< Z Z u(w, _w)ai)[ﬂw<ai7 afz‘) - Hw(%‘, afi)]a:fd
< Z Z Z pi(w, _"J)afua:fu [, (a;, a_;) — I, (a;,a_;)]

w:al,>0 0—i ;. “:Z;>0

Yo Mia,aq) = Wilajoa)] D D plw, —w)ala,

a_; w:iat>0_y . “:Z;>0
= > [Mi(ai,a4) = Milag,a4)] palasas)
a_;

As this holds for any ¢ and j, and for any w the above inequalities reproduce
exactly those that a correlated equilibrium of G must satisfy. Hence the assert follows.
Explicitly, the probability distribution induced by a* over the Cartesian product

of the action space, g« ([]; Ai) has components:
.. LN i1 i i
P (11,89, ceniin) = Z al a2 .l (Wi, w, ..., wWn)
(W1,w2,..;w5)

for any combination of actions (i1 € Ay,is € Ao, .....ip, € Ay).
ii) As for the converse of the Proposition, if matching satisfies Definition 3, the

proof is as straight-forward as in part (1.2) of the quoted paper, hence omitted. I
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Proof of Proposition 1

From Proposition 2 we know that (for each given m and) for each equilibrium of
the m-replica of G, a* € ©(I'y,), pa«([1; Ai) defines a correlated equilibrium of G.
Hence, to prove the assert we only need to show that the correlated equilibrium is

the product measure of its marginals:

=
o
*
—
-,
=
-~
»
L
3
~—
Il

i ot b —
E ag a2 .l (Wi, we, .y wp) =
b
(w1,w250wp)

= Z all, Z a? ... Z alr (m)"

w1€EN w2 €N Wn €EQy,
This concludes the proof, once we notice that its corresponding marginals are exactly

p(i) = (m) 1Y, cq 0l forall I =1,2,...n §

Proof of Theorem 1

(1): It suffices to notice that Il(ay, a—w) = 35 ca, -+ Yo ca, G -ai (i1, 9, ..0n).

w

Hence:

O,(a) = Z Z Z all ..al p(wi,wa, .ooywy) | (i1, i, ..0p)

11€A in€An (le‘d?y"':wn)

= > Y aliny g, eenin) iy, g9, in)

i1€A1 inEAn

= F,_[H(%1,19,...in)].

(2). a): Let a® and a' be such that P(ay; | ap) > 0. In order to prove the
statement, it suffices to show that, given u, II(a') — II(a") = AIl(a®) > 0. As
previously defined:

1

Hlt(a) = n Z I (aw, a—w)p(w, —w)
(“)77“))
1
= Z pl(w, —w)y, (ay, a_y,) + Z p(w', =y (ag, a )]
o) (')A, —w)

Hence, if w is the player who changes action between a® and a':

AT = [ e, —)lTa(ab,a o) ~ (el a )] =

(wafw)

= %[nzlu(w, —w)[(a),a ) —(a®,a )] >0

26



as the only transitions that occur with strictly positive probability in ¢ are those
where w switches to a best-reply.

(2): b) The first statement is true since absorbing states of the process are all
(and only) those states that are strict equilibria of I'. In any of these, no player can
achieve a higher expected payoff by choosing a different action, given the actions of
all other players. Hence the average over all n-tuples of players cannot be increased
in a single step of the dynamics.

To prove the second statement, notice that for an underlying potential game:

L) = = 3 Hu(asa )i, —w)

(wafw)

- %Zﬂ(w) Zﬂw(awvaw)u(—w | w)
= % Z p(w) Z 0, (a;, a—;) Z p(—w | w)

—WiG— =0 _;

= - ,u(w) ZH(CLZ‘, a,,-),u(afi ’ ai)

ie. it is a weighted average of smooth functions of the form 3y, . (as, a ;)pu(a—; | as).
Hence II,(a) is maximized if and only if each single function is maximized. By
Definition 4, for all w’s and for a given pu, any a; adopted in equilibrium is a maximizer
for a given a_;. As I" has no ties, for each player the best-reply is unique. Hence a is

absorbing. I

Proof of Corollary 1

It suffices to notice that the stochastic process under MBR is an absorbing Markov
chain over the state space [[, a,. Hence, no matter where the process starts, the
probability after ¢ steps that the process is in an ergodic state tends to 1 as ¢ tends to
infinity. The function II,(a;) behaves monotonically over ¢ and is locally maximized
at any a € 0(I') C O(T), that we know from Proposition 2 defines a correlated
equilibrium of G. 11

Proof of Theorem 2
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(1): Clearly the process p° ranges over the same state space as p does, and
from Definition 1, it is clear that the perturbation does not alter the Markovian
properties of the process. Also, from the same Definition, each player adopts a mixed
strategy that has full support. As a result any transition between any two states
that differ only by player w’s action takes place with strictly positive probability.
Hence any state a communicates with any other state a' in a finite number of steps.
In the terminology introduced at the beginning of Section 4, g7 contains a unique
ergodic set that includes all states in the state-space. As a standard result (see,
for example, Kemeny and Snell (1976), Theorem 4.1.6), ° admits a unique limit
distribution, i.e. a unique probability vector [F,(a), a € A] such that F,(a) =
Sates Pr(ah)P7(a | al). Besides, the latter is ergodic, in that for any arbitrary
probability vector [g(a), a € AJ, limy_, q(a)(p?)" = Py(a).

As for the second statement, suppose w is adopting a suboptimal action a,,; in
state a, and his best-reply, given state a, is action a,,, that he adopts in state al.
Under @7 the transition between a and a' will occur with probability:

Po(a' | a) = 1 exp| oL, [, (au,, at:wl)thu“
125 e a,, explo Byl (aw;, aZ) | ]
Hence lim, oo P?(al | a) = 1 = P(a! | a). Accordingly, limy oo P?(a | al) =0 =

P(a|a'). Asw, i and j are chosen arbitrarily, the assertion is proved.

(2): As the underlying game is a potential game, we are able to explicitly derive its
limit distribution by simply noticing that the chain is reversible, i.e. the probability
vector [Py(a), a € Aissuchthat Py(a)P(a']| a) = P,;(a')P(a| a') for alla,a! € A
(see, for example, Liggett (1985), Proposition 5.7). Again, suppose w is adopting
action a,; in state a, and action a,; in a'. Then the following holds:

1
%{;)) = exp[ocAll,(a)]

= explo Z’LL(w’ —w)[II(aw,, a—w) — H<awj ya-—w)]]

F exp[0 % (e, )10, 0-0) ] .

ﬁQ Zz‘eAw eXp[U Z—w M(wv _W)H<awi7 a*w)]

) [L exp[ o>, p(w, _W)H<awj7 a—y)] ] o
ﬁQ Zz‘eAw eXp[U Z—w M(wv _W)H<awi7 a*w)] ]

Pr(a' | a)

Fo(a|a')
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Mas the relative advantage, for player w, of action ¢ with respect to action j is exactly

equal to the ratio between the one step transition probabilities. I

Proof of Corollary 2

As G has identical interests, a degenerate probability distribution that has mass
on i = (iy,19,...,in) is a (strict) Nash and correlated equilibrium of . Hence (from
Proposition 2, part ii)) we can construct a profile of actions a in a population game
', for which p, (41,92, ...,%n) = 1 and I, (a) = E,,_[U(i1,%2, ..., in)] = H(i1,%2, ..., n).
As II,(a) > II,(a') for all a’ # a, the remaining part of the statement follows from

part (2) of Theorem 2, once we notice that P,(a) is continuous in o. I
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Notes

Notational conventions we keep throughout are: the use of greek letters (other than p) to index
players and latin letters to index actions; the symbol $W to denote the cardinality of the finite set
W and ¢(W) to denote any permutation of its elements; F,e to denote the expected value of the
random variable e taken with respect to the measure %. Furthermore, we abide to the convention of
denoting a finite set (w1, ws, ....,wy) as (w;,w_;) where the subscript —i refers to all indices other

than 7 in the set.

2A companion paper of this, Tanni (1997), studies an analog model where the random matching

does not satisfy the above definition.

3As in Harsanyi (1973), “Strict” simply means that, given p, each player has a unique best

response to her rival’s strategies.

4This assumption is only introduced for convenience, as, in general, there is no guarantee that
a complete matching (involving (n)le groups) exists. As it might sound a little bit odd that a
player learns, even though she does not play the game in every period, we notice that, for n = 2,
an equivalent specification of the model, where all players play the game at each time ¢, could be
obtained by assuming that a) y satisfies Definition 3 and b) the induced graph G satisfies a condition
known as Hall’s condition. See Biggs (1990) for a graph-characterization of existence conditions.
Alternatively, one could plausibly postulate that, within each time period, very many matchings
take place, so that the expected payoff to a player can be taken to correspond to the average actual

payoff from that round of interactions.

5A motivation for postulating this sort of asynchronous updating is provided in Anderlini and
Tanni (1996a) in terms of noise at the margin. The idea is that strategy changes are costly; as
a result whenever a learning rule prescribes an action that is different from the action previously
adopted, a player does not necessarily follow the prescription and with some positive probability,
does not change her action. Hence the dynamics of the system reproduce any of the possible paths

of asynchronous updating.

SThis is obvious if we re-write the rule as follows:
Inal,
D o[BI (awa-) | il — Bulll (au;a-) | ]

Inal,
A behavioural specification of this rule could be given in terms of conditional logit specification,
as in McFadden (1974). McKelvey and Palfrey (1995) fit an analog model to a variety of experimental
data sets. For our purposes, the idea we want to convey is that, for a player wanting to go to the
20th floor by elevator, the probability with which she presses wrong buttons is decreasing in the

number of levels below floor 20.

“To see this, consider the simplest case where n = N = 2 and G = (A, A,II;,1I5), where we
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read II; : A x A — R, i = 1,2 as the payoff matrices. Unless the game is symmetric, which is the
case if II5 = II;, the set of equilibria characterized by Definition 4, would correspond to the set of

Nash-equilibria of a different game, namely G = (A4, 4, %(Hl +113), %(Hl +113)).

i=1>

payoff functions {II;}}; : H A; — R are such that IL;(as, a ;) = i(as, ag—sy) = I{as, a_;) for all

i=1

8q = ({Ai}iq, {IL;},) is a symmetric n player-normal form game, if A; = A for all i’s and

7’s.

°A correlated equilibrium ¥ is symmetric if Vil in,in = Vo(iyig,...in) f0T all permutations ¢(i142, ...in)

of the indices (142, ...0n).

10Recall that two states belong to the same equivalence class if they “communicate”, i.e. if the
process can go from one state to the other. The resulting partial ordering shows the possible directions
in which the process can proceed. The minimal elements of the partial ordering of equivalence classes
are called ergodic sets, i.e. sets that, once entered, cannot be left by the dynamics. Ergodic sets that

contain only one element are called absorbing states.
UNote that this property is generic either in the payoff space, or in the specification of the matching.
12T Tanni (1996), Section 6.3.2 this is done for the case of a two-player underlying game.

131f the population is finite, the characterization in terms of Markov fields (instead of Markov
chains) would only provide a different interpretation of the model, at the cost of technical complexity.
Though used to argue in favour of technicality, such remark also appears as Remark 6 in Allen (1982),

where the author studies a model of stochastic technological diffusion.

14 s Pa') _ P(alla) - . ..
The condition P — Plaal) known as Detailed Balance Condition.
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