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Abstract. This study evaluates the empirical significance of idiosyncratic pricing shocks

in inflation dynamics. To this end, using store-level price data for a selected group of

products and employing identification schemes dictated by (S,s) pricing theory, product-

level Structural Vector Autoregressions comprised of inflation and relative price

skewness are estimated. Robustly to alternative identification assumptions, definitions of

the relative price and measures of asymmetry in relative price distributions, idiosyncratic

shocks tend to explain about 25 to 30 percent of the forecast error variance in inflation

rates at the 12-month horizon. They also lead to substantial build-up in inflation after

about 3 to 5 months following the initial disturbance.
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1 Introduction

Previous research indicates that (S,s) pricing models originally developed to provide

behavioral foundations for business cycle analyses, are able to carry implications for the

understanding of short-run fluctuations in inflation. Rátfai (1999) demonstrates that

information contained in the cross-sectional distribution of relative prices is useful in

explaining short-run inflation dynamics. By pressing for a balanced panel of store-level

prices recorded in continuously operating stores, however, the semi-structural approach

pursued in that study places strong requirements on the price data needed to construct

relative prices and their cross-sectional distributions. Realistically, given current data

collection practices of statistical agencies, it is almost impossible in practice to obtain

such a data set for a broader set of product categories. The need to utilize the insights of

the (S,s) pricing literature to learn about inflation dynamics for a broader set of products

coupled with the lack of adequate data to pursue a more structural approach provides the

motivation for the present analysis.

The specific goal of the present study is to assess the empirical significance of

heterogeneity and idiosyncrasy in pricing shocks as short-run determinants of aggregate

inflation. To this end, motivated by insights obtained from two-sided (S,s) models,

bivariate structural Vector Autoregressions (VAR) comprised of inflation and relative

price skewness are estimated and analyzed1.

In a univariate context, the postulated correlation between various measures of

cross-sectional relative price variation and aggregate inflation is an old and extensively

studied issue in macroeconomics; its history goes back to the seminal work of Mills

(1927). One of the first related studies in the modern era is by Vining and Elwertowski

(1976). By examining various forms of regression equations with some measure of cross-

sectional relative price variability in sector-specific price changes on the left hand and

                                                

1 The term relative price is associated with the log difference between the actual and the
target price level. Although much of the related literature uses the phrase relative (or real)
price for the concept of price deviation originally envisioned by the (S,s) literature, to
conform to the rest of the related literature, the standard terminology is adopted here.
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inflation on the right hand side, the paper is representative of many subsequent

investigations. These studies typically find that inflation is positively related to cross-

sectoral price variability. The result is interpreted as being indicative of the welfare costs

of inflation2.

There exist several hitherto overlooked aspects of the comovement between

inflation and relative price variation. Three of them are addressed in the present work.

First, one of the neglected issues is the way the possibly simultaneous determination of

inflation and relative price variation is controlled for. Indeed, it is a priori not obvious

whether higher inflation causes increased relative price variation or the other way around.

The main virtue of the structural VAR approach adopted in this study is that it is able to

isolate structural disturbances with an economic interpretation without imposing strong

constraints on the joint dynamics of the variables involved.

Second, presumably due to the lack of strong theoretical priors on relative price

skewness, most of the previous related studies focused on the second moment of relative

price variation and ignored higher ones. Mainly inspired by the emergence of the (S,s)

modeling framework and the empirical microeconomic evidence supporting it3,

macroeconomists has just recently started to investigate the importance of higher than

second moments of relative price variation. First, Ball and Mankiw (1994) and Tsiddon

(1993) develop two-sided (S,s) pricing models based on fixed cost to price adjustment,

symmetric shocks to relative price and positive trend inflation (to proxy for the change in

the target price level). The model implies that the higher trend inflation, the more right

skewed the relative price distribution is4. In a complementary fashion, Ball and Mankiw

(1995) show that given symmetric inaction bands for relative prices and asymmetry in

idiosyncratic pricing shocks, the third moment of shocks impacts on short-run aggregate

                                                
2 Weiss (1993) provides a comprehensive survey.
3 See, for example, Lach and Tsiddon (1992), Tommasi (1993), Kashyap (1995) and
Rátfai (1998).
4 A multi-sector real business cycle model with an asymmetric input-output structure also
implies this result. See Balke and Wynne (1996). Ball and Mankiw (1994) also note that
an increase in the variance of relative prices could lead to higher inflation.
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price changes. The paper demonstrates that this pattern extends to the relationship

between the skewness of the relative price distribution and inflation.

Finally, possibly caused by the limited availability of appropriate data, most

previous studies focused on the cross-sectional variation in sectoral or city-level price

indices and neglected relative price measures based on microeconomic data5. The present

study aims to address this potential shortcoming as well.

The plan of the paper is as follows. To motivate the estimation strategy in

identifying the structural VAR model, Section 2 explains two-sided (S,s) pricing models

and their relevant empirical implications. Section 3 covers measurement issues. The data

set used is described in Section 4. Besides standard unit root and other specification tests,

the time series model forming the basis of the empirical analysis is discussed in Section

5. The basic estimation results are presented in Section 6. Section 7 adds some further

findings to help evaluate the robustness of the baseline results. Section 8 provides an

assessment of two related papers that have a close bearing on the present study. Finally,

conclusions are offered in Section 9.

2 Theory and Identification

The two-sided (S,s) pricing approach offers a novel perspective on modeling the

relationship between relative price variation and inflation. On the one hand, it reverses

the traditional direction of causality from inflation to relative price variation emphasized

by the overwhelming majority of the empirical literature. It does not rule out the standard

channel, just points to the presence of the reverse direction as well. On the other hand, by

emphasizing the importance of the asymmetry in the relative price distribution, the (S,s)

approach shifts the focus of discussion from the second moment of relative price

variation to the third one. For the purposes of the present study, the predictions of two

                                                
5 Exceptions include Lach and Tsiddon (1992) and Konieczny and Skrzypacz (2000).
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interrelated (S,s) models are of particular interest. In what follows, the models and their

implications for structural identification are discussed.

First, a central theme advanced in the two-sided (S,s) pricing literature is the

interplay of trend inflation and the shape of the relative price distribution. The basic idea

explored in Ball and Mankiw (1994) is the following. Given fixed costs to price

adjustment and a positive trend in target price changes (as proxied by inflation),

monopolistically competitive firms are relatively less inclined to pay the adjustment cost

in response to a deflationary shock to the target price than to an inflationary shock. The

reason for asymmetry in the distribution is that trend inflation continuously erodes

relative prices, thereby making the non-adjustment band asymmetric with a relatively

more heavily populated downward and less populated upward portion. It follows that

even symmetrically distributed shocks produce an asymmetric distribution of relative

prices. For instance, positive trend inflation results in a right skewed distribution of

relative prices and more frequent price increases than price decreases.

In addition to higher trend in inflation making the distribution of relative prices

more skewed to the right, the model also implies that an aggregate shock common to all

price-setting units has no contemporaneous impact on the shape of the relative price

distribution. To see why this is the case, first, consider the timing convention for shocks

and nominal adjustments invoked in empirically implementing the notion of relative

prices. According to this, relative prices in period t are defined as zijt = pij,t-1 – p*ijt. It

means that current relative prices reflect pricing shocks that occurred in period t but

contain actual nominal prices inherited from period t-1. That is, zijt represents relative

prices before nominal adjustments could have taken place. The definition implies that

pricing shocks of the aggregate type filtered through p*ijt affect relative prices identically

by displacing them exactly the same way in the state space. As illustrated in Figure 1, it

means that any two different realizations of aggregate shocks in period t produce relative

price distributions of the same shape but of different location. The observation that

aggregate shocks do not alter the shape, including the asymmetry in it, of the relative

price distribution serves as one of the two alternative identification assumptions in the

data analysis.
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Second, Ball and Mankiw (1995) outline a one-period model with

monopolistically competitive firms with costly price adjustment. They posit that firms

face shocks to their target price level and incur a fixed cost of adjustment (“menu cost”)

when they decide to alter their nominal price. The optimal pricing policy of firms in this

setting is to change nominal price only if the relative price moves outside the boundaries

of the optimally determined inaction bands. If the resulting inaction range is symmetric

which is expected to be the case with no trend in inflation, then the average price level is

determined by the distribution of shocks to firms’ desired prices. If for example the

distribution of idiosyncratic shocks is mean zero but is skewed to the right, more firms

are likely to raise the nominal price. It follows that the aggregate price level rises. A

similar argument applies to left-skewed distributions and the possible decline in the

aggregate price levels. By presenting numerical simulation results, Ball and Mankiw

(1995) show that this implication of the model extend to the skewness of relative price

distributions themselves. Finally, the model also predicts that the variance of relative

price shocks have no independent impact on aggregate inflation.

For identification purposes in the upcoming empirical analysis, an important

corollary of the Ball and Mankiw (1995) analysis is that non-symmetric realizations of

idiosyncratic shocks have no long run impact on the price level. To see why this is the

case, consider a situation where trend inflation is zero and there are no aggregate but only

idiosyncratic shocks. Again, in the presence of fixed costs, only shocks of a sufficiently

extreme size push the relative price outside the adjustment boundaries and induce stores

to make nominal adjustment. Now assume that the population distribution of shocks and

thus the distribution of relative prices are symmetric in the cross-section. The realization

of this distribution however is not necessarily symmetric; for instance, there will be

periods dominated by a few large pricing shocks together with many smaller negative

ones. In this case the number of stores close to the lower adjustment boundary and with a

tendency for nominal price increase exceeds the number of similar stores close to the

upper boundary and with a tendency for nominal price decrease. Consequently, such a

realization of shocks makes the aggregate price level rise. However, once nominal

adjustments have taken place in the current period and relative prices get readjusted to

their target level, a relatively smaller number of relative prices will be bunching close to



6

the inflationary end of the distribution than to the deflationary one. Given symmetric

pricing shocks in the following periods, this implies that fewer nominal price increases

are expected to take place relative to nominal price cuts in the upcoming periods. In the

absence of further pricing shocks, this adjustment process continues until the original

symmetric distribution of relative prices is restored and the aggregate price level returns

to its original level.

The above reasoning implies that the impact of idiosyncratic shocks on the price

level is mean reverting and that inflationary periods tend to be followed by deflationary

ones. In other words, any unit root in the log price level is exclusively driven by

aggregate shocks. This insight offers another identifying assumption in the structural

VAR analysis of inflation and relative price skewness.

3 Measurement

As exemplified by previous studies in the literature, on top of the choice between the

second and the third moment, one may choose among a number of empirical objects in

studying cross-sectional relative price variation. First, possibly due to the unavailability

of more disaggregated price data, most previous studies utilized inter-sectoral measures

of relative price variation involving the cross-sectoral standard deviation of changes in

sectoral price indices. Analyses of intra-sectoral microeconomic price variation of

particular products are rare6. Examining aggregate price indices in this context is

problematic for two related reasons. On the one hand, cross-sectoral measures of

variation are bound to draw on changes in some aggregate price measure with the

outcome of many microeconomic pricing decisions swamped into this index. And, unless

stores’ pricing policies are perfectly synchronized within sectors, sectoral price indices

are not able to capture the aggregated implications of potentially heterogeneous

microeconomic decisions. Consequently, utilizing mere averages of micro level prices

                                                
6 Exceptions include Lach and Tsiddon (1992), Tommasi (1993), Reinsdorf (1994).
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before calculating their higher moments could mask regularities present in

microeconomic pricing behavior with important aggregate consequences (see e.g. Parsley

(1996)). On the other hand, as the underlying economic theory motivating any analysis of

this kind is a microeconomic one under the assumption of optimizing individual agents,

its test ideally should draw on highly disaggregated, micro level price data and not on

already aggregated price indices.

Second, the correspondence between potentially measurable empirical objects of

price variation and the theoretical concepts motivating their use appears to be an

obscured issue in much of the related literature. However, as economic models do not

necessarily have observationally equivalent implications regarding them, a fundamental

distinction needs to be made among the concepts of cross-sectional variability,

dispersion, and relative price variation. For instance, while theories of the (S,s) kind are

built around the concept of relative price, that is, the deviation between the actual and the

target price level, search theories tend to have implications for intra-sectoral price

dispersion, variation in price levels7. Despite its conceptual ambiguity in fitting

microeconomic pricing models, the vast majority of the empirical literature still draws on

measures of cross-sectoral price variability as represented by the standard deviation of the

change in sectoral price indices. Clearly, as opposed to cross-sectoral price dispersion

(the variation in the level of sectoral price indices) which would just compare apples to

oranges, the across-sector variability measure captures a statistically sensible object.

Nonetheless, it does not seem to adequately represent the theoretical concepts motivating

the study of the correlation between inflation and relative price variation. Indeed, from

the specific perspective of (S,s) pricing models, it is the notion of variation in relative

prices (or price deviations) and not in nominal price levels or nominal price changes that

is relevant for the purposes of empirical studies like the present one.

Finally, the interest in the relationship between the skewness of relative price

distributions and aggregate inflation is supported by the relative novelty of the (S,s)

                                                
7 In fact, given a panel of microeconomic price data, a potentially interesting exercise is
to look at the dispersion of price levels within specific sectors. One example for the
within-sector dispersion approach is Reinsdorf (1994). Lach and Tsiddon (1992) use
microeconomic price data to study the variability in within-sector price changes.
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approach pointing to the role of asymmetry in the relative price distribution. Although

previous studies have examined skewness this issue8, they measured skewness over

sectoral inflation rates, as opposed to relative prices based on microeconomic data.

Furthermore, these papers focused on univariate statistical models, often without explicit

behavioral motivation.

In light of the above discussion, the present study employs a proxy for the relative

price which is not only feasible to measure but also consistent with the (S,s) pricing

approach motivating the analysis. Specifically, the relative price in store i of product j at

time t is computed as the deviation of individual log price levels from their product-

specific log mean: zijt = pij,t-1 – pjt. pjt is an equally weighted index of sectoral price levels

in sector j at time t and is defined as ∑
=

=
jtn

1i
ijt

jt
jt p

n
1p  where njt is the number of stores

observed in sector j in month t. Note the timing convention implicit in the definition of
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Then, separately for each sector j, the skewness statistic in the relative price distribution

is defined as
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where zjt is the sector-specific mean of relative prices and Djt is the across-store standard

deviation of zijt. Inflation in sector j, Πjt, is defined in the standard way by

1tj,jtjt ppΠ −−= .

                                                

s8 See, for instance, Blejer (1983) and Ball and Mankiw (1995).
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4 Data

The empirical analysis builds on a large microeconomic data set of store level consumer

prices of specific, narrowly defined and homogenous products. The sample consists of

cross-sections of monthly frequency price observations of twenty-seven items, including

mostly specific food products and some services. As stores in the sample are not

longitudinally matched, the data in each product category can be considered as a series of

cross-sections of microeconomic prices.

The sample of prices was drawn from the store level data set collected for the

monthly computation of the CPI by the Central Statistical Office, Hungary. Products are

selected from the full CPI database based on the criteria of being narrowly defined

(according to size, branding, type and flavor), continuously available items with

insignificant variation in non-price characteristics. An important advantage of the data set

is that coupons were relatively infrequent during the sample period and thus pricing

actions can be safely thought of as driven by considerations other than strategic ones.

The data are available from 1992:1 until 1996:7 at the monthly frequency. For

each month, there are about 100-150 price observations (on average about 125) for each

product. Observations are collected from 20 geographically dispersed locations in the

country including all the 19 counties and the capital city, Budapest. Although stores in

the sample are identified only by their geographic location and are not longitudinally

matched, the staff of the CSO is instructed to make an effort to keep the set of stores

appearing in the sample stable over time. Table 1 summarizes the products investigated

including the expenditure weight attached to them in computing the aggregate CPI and

their relative expenditure weight in the current sample as well.

Despite the turbulent economic environment during economic transition in the

1990s, aggregate inflation was relatively stable and moderate in Hungary. Year-to-year

change in the monthly aggregate CPI and its food component are plotted in Figure 2. The

graphs show that annual aggregate inflation initially decelerated until early 1994.

Reaching a minimum of about 15 percent, the series eventually turned around and took

on an increasing path reaching about 30 percent at a peak in early 1995. Starting in about
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the second quarter of 1995, shortly after an anti-inflationary fiscal adjustment package

was introduced in March 1995, a steady disinflationary trend takes effect.

5 Empirical Specification and Estimation

Specified separately for each product j in the sample, consider the bivariate, structural

VAR model of sectoral inflation (Πjt) and relative price skewness (Sjt):
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Dynamics in endogenous variables are assumed to be driven by contemporaneous and

past values of an unobservable vector of serially uncorrelated and mutually orthogonal

structural innovations εjt = [εjt
Π, εjt

S] with variance-covariance matrix D = E(εjtεjt’)9.

Orthogonality of shocks implies that the off-diagonal elements of D are zero. The first of

the structural shocks, εjt
Π, is interpreted as an aggregate pricing shock affecting all

relative prices the same way. The second one, εjt
S, is assumed to reflect purely

idiosyncratic disturbances to pricing policies that could impact on the shape of the

relative price distribution10. Accordingly, G0
SΠ captures the contemporaneous impact of

aggregate shocks on relative price skewness and G0
ΠS represents the contemporaneous

impact of idiosyncratic shocks on inflation.

The structural VAR model written in a more compact form is

jtjtjtjt yLByGy ε++= )(0

                                                
9 All the parameters are specific to product categories. Product-specific indexes for
parameters are omitted for convenience.
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where B(L) is a pth degree matrix polynomial in the lag operator L with B(L) = 0. The

diagonal elements of G0 are normalized to zero. Given some regularity conditions, the

structural form VAR is readily transformed to the reduced form autoregressive one:

jtjtjt uyLHy += )( .

Here the ujt are reduced form innovations with an unrestricted variance-covariance matrix

Σ. They can be expressed as linear combinations of the structural innovations as

jtjt uB 0=ε

where B0 = I - G0. As endogenous variables are written as combinations of their own past

realizations and a prediction error, the reduced form VAR is suitable for estimation. From

the reduced form VAR, it is straightforward to recover its Wold moving average

representation as

jtjt uLCy )(=

where C(L) = (I - H(L))-1. The infinite, structural form moving average representation of

the VAR is obtained as

jtjt LMy ε)(=

where M(L) = C(L)(B0)-1. This form is of particular interest for both model identification

and economic inference.

                                                                                                                                                

10 In discussing the specific identifying assumptions imposed on the model, these
structural innovations are described in terms of explicit economic considerations.
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Consistent estimates of the reduced form parameters are obtained by equation-by-

equation Ordinary Least Squares estimation of the autoregressive form. The number of

lags included in each product-specific system is dictated by a series of Likelihood Ratio

tests. Based on estimates of H(L) and u, the reduced form parameters in C(L) and Σ are

readily computed. However, there are four distinct primitive structural parameters (two of

them in B0 and another two in D) and the reduced form estimation provides only three

separately identified parameters (the ones in Σ). For exact identification, it is necessary to

place an extra piece of restriction on structural parameters. The discussion in Section 2

suggests two alternative restrictions stemming from explicit theoretical considerations.

They amount to a particular economic interpretation of the primitive shocks governing

the dynamics of the endogenous variables in the statistical model.

First, two-sided (S, s) pricing theory implies that on impact the skewness in the

distribution of relative prices is shaped by idiosyncratic pricing shocks and is

contemporaneously invariant to shocks of the aggregate kind. In terms of formal

restrictions, it constrains the B0 matrix by B0
SΠ = 0. This is what I call as the “Short Run”

(SR) identification assumption. Second, two-sided (S,s) pricing theory also implies that

idiosyncratic shocks have only transitory impact on the aggregate price level thus

aggregate inflation is governed only by aggregate shocks in the long run. Formally,

constraining the long-run impact of idiosyncratic shocks on the log price level to zero

amounts to the restriction of MΠS (1) = 0. This is called the “Long Run” (LR)

identification assumption.

Specification Tests

To assure correct model specification in all the twenty-seven VARs, the stochastic

properties of the product-specific inflation and skewness series are examined in a

sequence of unit root tests. The specific testing procedure adopted is the Augmented

Dickey-Fuller (ADF) test with the Schwartz Information Criterion used for selecting the

number of lags included in the ADF regressions. By default, the maximum number of
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lags allowed in the tests is 12. Figures for the relevant ADF t-statistic and the largest

autoregressive parameter are shown in Table 2. The results suggest the absence of a unit

root in the inflation and the skewness series as well. Additional ADF test results reported

in Table 3 indicate that the log price level series cannot be rejected to contain a unit

root11.

Three unit-root test issues deserve special attention, each of which having a

bearing on model specification too. First, a visual inspection of the series suggests that

with the exception of the skewness series s10603 and s52366, the series do not appear to

contain a deterministic time trend. Therefore, with the exception of these series, the ADF

stationarity tests do not include a deterministic time trend.

Second, standard unit root tests do not reject the presence of a unit root in the case

of three of the skewness series, s10301, s14424 and s66105. However, visual inspection

of the series also suggests that the three series are likely to contain a structural break12.

To test for the stationarity of the three series, I use the unit root test of Perron (1997) that

corrects for the presence of a break. The resulting t-statistic and autoregressive roots

reported in Table 2 show that all the three series are better viewed as stationary with a

structural break.

Finally, upon further inspection some of the inflation series, and interestingly

virtually none of the skewness series, seem to exhibit seasonal fluctuations. This

impression is confirmed by a set of seasonal regressions with inflation on the left and

monthly seasonal dummies on the right hand side. The thirteen inflation series with at

least two statistically significant monthly dummy coefficients and with an R2 statistic of

                                                

11 Further test results, not reported here, shows that the presence of unit-root in the
stochastic component of the series can be rejected in all but one of these series even when
deterministic seasonal effects are controlled for.

12 Perron (1997) shows that not accounting for a break in the series when it is actually
present may result in a false acceptance of unit root in standard ADF testing. To address
this issue, he devised a modified ADF procedure and provided the appropriate critical
values for the t-statistic. The procedure is based on a regression equation that includes
dummies for capturing the break in the series, potentially of three different kinds (a pure
intercept, a pure slope or a combination of the two), and chooses endogenously the break
point in the series.
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at least 0.4 are characterized as ones containing a deterministic seasonal component. To

check whether the stochastic element in inflation series is stationary, a set of standard

ADF tests for the estimated residuals obtained from the first stage seasonal regressions

are conducted. Test results in Table 4 show no evidence of non-stationarity in the

residuals. Based on these considerations, fifteen of the inflation series is modeled as

stationary with a deterministic seasonal element.

Overall, besides the constant term and the raw data, thirteen of the VARs

examined include seasonal dummies, one includes a pure time trend, one includes a time

trend and seasonal dummies, two include dummies for a structural break, and one has

dummies for a structural break and deterministic seasonals. Nine of the VARs exhibit

none of these peculiarities and are estimated with only a constant added to the

endogenous variables.

6 Baseline Results

This section reports on the structural VAR estimation results of short-run and

long-run multipliers, forecast error variance decompositions and impulse response

functions. First, the short-run multiplier parameters represent the contemporaneous

conditional impact of a structural shock to variables in the system. Formally, they

correspond to the appropriate elements of the G0 matrix in the structural autoregressive

representation of the time series model. Second, the long-run multipliers reflect the

cumulative response in endogenous variables to structural shocks as reflected in the

appropriate elements of M(1).

Third, the forecast error variance decomposition (FEVD) function dividing the

forecast error variance in a variable among all the individual structural shocks provides a

measure of the quantitative importance of the particular structural shocks. Formally, the

variance decomposition function gives the percentage of the k-step-ahead forecast error

variance for variable j in the estimated VAR attributable to the structural shock i as
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where mij,h is the (i,j)th entry of the infinite moving average matrix M(h) and di
2 is the

diagonal element of the D matrix comprising of the variance of the structural innovations.

In the present context, 12-month-ahead forecast errors are examined. And fourth,

orthogonalized impulse response functions tracking the dynamics of the variables in

response to structural shocks are studied. In a complementary fashion to forecast error

decompositions, impulse response functions provide an answer to the following question:

how does a current unitary structural shock make the econometrician revise the forecast

of future realizations of variables in the VAR system. In terms of model parameters, the

answer is recovered from the appropriate entry of the matrix, M(L).

It is a priori not obvious how to present the results due to the large number ways

they can be organized and grouped, a combinations of the four categories of inference,

twenty-seven products and two identification schemes. The largest number of variation

providing a practically non-digestible flow of information is clearly in the product

dimension with twenty-seven units. To get around this issue, summary measures of

parameter estimates are defined detecting the central tendency in the various pieces of

product-specific results. Three different measures are examined including the median of

the parameter estimates from product-specific VARs, direct parameter estimates from a

VAR with aggregate inflation and the skewness in relative prices pooled together from all

the products, and median results from a panel VAR regression. The summary measures

are described in greater detail below13.

Median Results
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The median is chosen to capture the central tendency in parameter estimates as the

across-product mean of the estimated parameters may be contaminated by extreme

observations and easily give a distorted picture of the overall trend in the data. The

median alleviates the impact of potential outliers, perhaps resulting from mis-

specification in some of the individual VARs. It also preserves the product-level

approach to analyzing price data advocated in the paper.

To formally assess the statistical significance of results involving the median of

the parameters, non-parametric, confidence interval sign-tests are employed. This test

determines a confidence interval for the median and tests the null hypothesis that the

median of the parameter estimates is not different from zero against a two-sided

alternative14. The test builds on the idea that if the number of sample observations larger

than zero is sufficiently large then the null that the median is not different from zero can

be rejected. To further evaluate the extent of the heterogeneity in point estimates and

forecast error decompositions, the cross-product standard deviations of the estimated

coefficients are also reported. For the impulse response function, the upper and the lower

quartiles of the parameter estimates are displayed.

The top panel in Table 5 summarizes the information obtained on the median of

the estimated coefficients of the short-run and the long-run cross-multipliers.

Independently of the identification assumption chosen, the contemporaneous impact of a

structural inflation shock to relative price skewness is small with a small variance. Under

the SR identification assumption it is zero by construction. In the LR case, parameter

estimates appear to be indistinguishable from zero. Indeed, the non-parametric sign-test

shows that this result is statistically significant at the 5 percent level. Finding a

universally small contemporaneous response under the LR identification schemes not a

                                                                                                                                                

13 In preliminary calculations, I experimented with looking at estimation results excluding
the three items from the sample representing services. As the results remained
qualitatively unchanged, I do not pursue further this issue.
14 See Gibbons and Chakraborti (1992).
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priori imposing the constraint of no impact of inflationary shocks to relative price

skewness is reassuring to the extent that the SR identification assumption is a sensible

one. The contemporaneous impact of an idiosyncratic shock to inflation is less clear-cut.

Prior considerations motivated by (S,s) pricing theory suggest that increased relative

price skewness should lead to higher inflation. Although neither of them is significant,

the median measures are of the expected, positive, sign for impulse responses estimated

under both the SR and the LR identification scheme. The median estimates in the third

and fourth column of the table suggest that the long run impact of idiosyncratic shocks on

inflation is relatively modest. Estimated under the SR identification scheme, the small

long-run response of inflation to idiosyncratic shocks indicates that imposing the LR

identification assumption is actually borne out by the data.

Next, median estimates of forecast error variance decompositions are examined.

The estimates in the top panel of Table 6 show that idiosyncratic shocks explain about 19

to 26 percent of the variation in inflation forecasts at the sectoral level. Note that the total

impact of structural shocks to a particular variable does not necessarily have to add up to

exactly 100 percent for the median of product-specific measures. Idiosyncratic shocks

appear to be the fundamental determinant of the forecast error variance in relative price

skewness. They are less important under the LR identification assumption where, for

instance, their median contribution is 66 percent to forecast error variance. In the SR case,

however, more than 80 percent of the median forecast error variance in relative price

skewness is attributed to idiosyncratic pricing shocks.

Calculated under the two different identification schemes, Figures 3a and 3b show

the median of the product-specific impulse responses of inflation, relative price skewness

and the price level to one standard deviation idiosyncratic and aggregate shocks. From

the perspective of this study, the top-left panels in the figures are of primary interest.

They depict the median of the 12-month-ahead impulse response of inflation to

idiosyncratic shocks. The impulse responses portray a remarkably uniform picture across

different identification assumptions. To slightly different extent depending on the

identification assumption chosen, idiosyncratic shocks induce a surge in aggregate

inflation that start to dissipate only after about four to five months. The impulse effects

tend to peak at about three to four months after the initial idiosyncratic shock has
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occurred. The medium size of the impulse responses at the peak is economically

significant. According to the sign-test, the positive responses at the fourth month are

statistically different from zero under both identification assumptions.

Pooled Relative Prices

Another way to capture the central tendency in the data is to estimate a bivariate

structural VAR model comprised of aggregate inflation and the skewness of pooled

relative prices. The latter variable is computed by first calculating relative prices the same

way it is done for the product level analysis, then pooling all of the resulting relative

prices together and calculating their cross-sectional skewness statistic. More formally,

assuming that all relative prices are drawn from the same underlying distribution, the

pooled skewness measure is defined as
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t. Dt stands for the standard deviation of pooled relative prices at time t. Aggregate
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Now, estimated under the two distinct identification assumptions, the relevant

multipliers for the pooled data are displayed in the middle panel of Table 5. First, in
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contrast to the median results reported above, the short-run coefficients shown in the first

two columns of the table indicate a sizeable and statistically significant deflationary

impact of a unitary idiosyncratic shock. The corresponding forecast error variance

decompositions are displayed in the middle panel of Table 6. The figures indicate that the

relative share of idiosyncratic shocks is even more sizeable than for the median measure.

For instance, it moves up to as large as 64 percent in the case of LR identification

assumption.

As portrayed in Figures 4a and 4b, impulse response results based on the pooled

data are similar to the corresponding cross-product median results15. In particular,

independently of the identification assumption chosen, one can detect a sizeable and

statistically significant inflationary effect of the idiosyncratic shock, occurring at about

the third and fourth months following the initial shock. At the same time, for the LR

identification scheme, there appears to be a second sizeable peak occurring at the fifth

month. As compared to the across-product median results, impulse responses show a

slightly longer lasting and larger effect of the idiosyncratic shock. The graphs also feature

a statistically significant initial deflationary effect that seems to disappear after the first

month in the SR identification case and after the second month in the LR identification

case. This is the impact that has been captured in the short-run median multipliers.

Finally, one may note that imposing both identifying restrictions dictated by

economic theory results in an overidentified VAR model. To test for the relative merit of

the two restrictions, a set of simple exclusion tests are conducted on the pooled data. The

resulting t-test statistic indicates that the restriction of no impact from aggregate shocks

to relative price skewness cannot be rejected at the 10 percent level of significance.

Similarly, the F-test statistic for the LR restriction indicates non-rejection.

                                                

15 To evaluate the uncertainty associated with the parameter estimates, 90 percent
confidence bands for the impulse response functions are reported. Confidence bands are
constructed using Runkle’s (1987) bootstrap procedure with 500 repetitions.
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Panel VAR

Finally, cross-equation restrictions on the product level VAR models are imposed

resulting in a panel VAR. The specific restrictions are that the reduced form

autoregressive coefficients appearing in the H(L) matrix are the same across the different

products. Correspondingly, the number of lags in H(L) are also specified to be the same

for all the time series models. In estimating the panel VARs, the appropriate structural

break dummies, seasonal parameters and deterministic time trend are also included. To

identify the VAR model, the same assumptions (SR and LR) are employed as in the

baseline product-level specification.

In practice, the system is estimated as two separate panels by standard Dummy

Least Square methods. One of the panels comprises of all the inflation series, the other of

all the relative price skewness series. Estimating the models by DLS is likely to produce

unbiased estimates as the time dimension of the panel well exceeds 30 observations (cf.

Judson and Owen (1997)). The procedure leads to structural parameter estimates that are

different across products. Therefore, impulse response functions and forecast error

variance decompositions are bound to differ across products as well. To characterize the

central tendency in the dynamics of the variables in the model, similarly to the

unrestricted case, cross-product percentiles including the median and the lower and upper

quartiles are presented.

Results for the impulse response functions are reported in Figures 5a through 5b.

From the perspective of this paper, the top-left graphs are again the most relevant ones.

The pictures portrayed therein are remarkably similar to the ones in the unconstrained

case. A notable feature of the graphs is the relatively strong homogeneity in the impulse

response functions. For instance, in the case of the LR identification constraint impulse

responses universally start out negative, then turn to positive for the horizons of one to

four months and again negative for the next six months. Although the emerging picture is

less clear-cut here, the SR identification case produces similar results. In particular, for

the horizons of two to four months the impulse responses are positive, afterwards the

results are somewhat more mixed. The initial impulse responses tend to be mostly
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positive, according to the median sign-test, becoming significantly so after one month

having elapsed.

Overall, invariantly to the identification assumption adopted, the central results of

the impulse response analyses in the panel VAR approach are in accordance with

previous findings obtained from the baseline VARs with no cross-equation constraint.

The major difference is that the resulting parameter estimates portray a more

homogeneous picture of inflation dynamics across products.

7 Robustness

To evaluate the power of the above results, further results are impulse response and

forecast error decompositions results are presented from alternative definitions of relative

prices and of the asymmetry in their distribution. For simplicity, in what follows only one

summary measure of the central tendency in the data is examined, pooled relative prices

in relation to aggregate inflation.

Other Measures of Asymmetry

The standard skewness statistic is introduced to represent the relative bunching of relative

prices in the mass of observations in the tails of the empirical distribution. However, a

potential problem with the skewness statistic is that it could be sensitive to outliers in the

distribution and may actually capture something different from the concept it is meant to

measure. To evaluate if the main results of the analysis are robust to alternative

definitions of asymmetry, an additional, non-parametric measure of asymmetry in the

relative price distributions is examined. The specific asymmetry measure is the difference

between the mean and the median of the pooled relative price distribution scaled by its
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standard deviation, mm16. It is expected to be larger, the more intensive the bunching of

relative prices in the lower tail of the distributions is. Importantly, the series is positively

correlated with the standard skewness coefficient with partial correlation coefficients of

0.58.

Utilizing the alternative asymmetry measure, the VAR system of inflation and

relative price asymmetry is estimated subject to the two identification restrictions

introduced before. The resulting impulse response functions are depicted in Figures 6a

and 6b. First, a direct comparison of the impulse responses reveals that the impulse

response functions obtained for the mm measure here are strikingly similar to the one

derived from the standard skewness measure as depicted in Figures 4a and 4b. Most

importantly, the top-left panels in Figures 6a and 6b demonstrate that there is a peak in

the response of inflation to idiosyncratic shocks after about four months following the

initial shock. An additional notable feature of the impulse responses is the sizeable

though imprecisely measured contemporaneous response of inflation under both

identification constraints.

Finally, the top panel of Table 7 shows decompositions of 12-month-ahead

forecast error variances of the structural VARs. The figures corroborate the baseline

results in that idiosyncratic shocks are quantitatively important determinants of aggregate

inflation dynamics.

Timing in the Measurement of Relative Prices

Another potential objection to the generality of the baseline results is that they are

obtained by assuming a particular timing convention in the definition of relative prices.

To address this issue, relative prices are defined in a slightly different but still plausible

                                                
16 I also experimented with another related measure, W = (Q1  Q3 - 2M)/(Q3-Q1), where
Q1 and Q3 are the lower and the upper quartiles and M is the median of the distribution.
(see Stuart and Ord (1987), p. 112). As this measure leads to almost identical results, I
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way, and examine how the resulting impulse response and variance decomposition

compare to the ones arrived at under the original definition. The modified measure of

relative prices is zijt = pij,t-1 – pj,t-1 where pj,t-1 is the one-period lagged sectoral average

price level and is meant to proxy the target price level.

As before, findings from impulse response analyses and forecast error

decompositions are examined solely for the pooled relative price measure and aggregate

inflation measures. First, Figures 7a and 7b display the impulse responses for relative

price skewness, inflation and the price level. Clearly, the impulse responses obtained

under the LR identification scheme here are indistinguishable from the ones obtained in

the baseline case. Aggregate inflation responds to idiosyncratic shocks with a five months

lag following the structural shock and that this response is statistically significant. In

general, impulse responses under the SR assumption differ from the LR case to the extent

that the lagged response of inflation materializes only two months after the initial

disturbance and that there is a statistically significant direct impact too. Forecast error

variance figures displayed in the bottom panel of Table 7 confirm that idiosyncratic

shocks are important determinants of inflation dynamics for the modified definition of

relative prices as well.

8 Inter-Sectoral Variation in Relative Inflation

In an influential study, Ball and Mankiw (1995) develop a theory of relative price

skewness and inflation and estimate the impact of the skewness in sectoral inflation rates

on aggregate inflation using industry level inflation data. Robustly to alternative

measures of asymmetry in relative inflation distributions, they find that asymmetry has a

statistically significant impact on aggregate inflation. The OLS estimation results in their

baseline specification is

                                                                                                                                                
confine my attention to the mean-median difference measure defined in the text. I thank
John Aldrich for bringing this measure of asymmetry to my attention.
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where πt denotes aggregate inflation and st denotes the skewness coefficient of the

distribution of inter-sectoral relative inflation rates. In what follows, the data exercise of

Ball and Mankiw is replicated and connected to the present analysis.

First, the inter-sectoral relative inflation as a measure of relative price is adopted

to estimate the above univariate regression equation in the present sample17. Here the

product categories represent the different sectors of the economy. The estimated

regression equation is
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Clearly, the result is qualitatively identical to the one obtained by Ball and Mankiw:

skewness impacts on inflation and the impact is statistically significant.

As a next step, the current aggregate inflation and inter-sectoral relative inflation

skewness data is placed into the structural VAR framework developed above. The

relevant results are mixed and sensitive to the identification assumption chosen. In

particular, as shown in the top-left panels of Figures 8a and 8b, the identification scheme

that produces impulse responses consistent with the univariate regression results is the

one where aggregate shocks are constrained to have no contemporaneous effect on cross-

sectional skewness. Under the LR identification assumption, the impulse response of

inflation to an idiosyncratic shock exhibits a drop on impact and a peak only after 5

months following the initial disturbance.

                                                

17 As the main focus of this paper is on the asymmetry in relative price distributions, I set
aside examining the second moment of relative sectoral inflation rates and its interaction
with the third moment, an issue emphasized by Ball and Mankiw (1995).



25

Finally, for the sake of comparison, the univariate approach is also applied to the

pooled intra-sectoral relative price measure in the current sample. The estimation results

are the following:

)931.0()117.0()427.0(
291.0410.1538.0118.1 2

1 =++= − R,sttt ππ
.

The parameter estimates show a positive relationship between inflation and relative price

skewness. They also indicate a relatively good fit of the regression equation. Although

the estimated coefficient on skewness is insignificant at conventional levels, when the

skewness statistic is replaced by the alternative asymmetry measure proposed above the

estimates becomes highly significant and the R2 statistic increases to about 0.6. This

result is in contrast to the corresponding structural VAR estimates. There, independently

of the identification scheme chosen, the contemporaneous estimated impact of skewness

on inflation is negative in both VAR specifications considered.

An Anticipated Criticism

Results from a structural VAR analysis of inflation and relative price skewness suggest

that a “favorable” idiosyncratic shock can cause an initial fall in aggregate inflation and

then an eventual increase only in a few months afterwards. This conclusion markedly

differs from the univariate inter-sectoral empirical results obtained in Ball and Mankiw

(1995), reproduced above and confirmed in the present data set.

In a recent paper Bryan and Cecchetti (1996) argue that the empirical results in

Ball and Mankiw (1995) documenting a positive correlation between inflation and

relative price skewness are statistical artifacts and suffer from small-sample bias. Their

statistical argument stands on statistical grounds and is motivated by the following

thought experiment. Consider a sample of price changes that is drawn from a zero-mean

symmetric distribution and actually has a sample mean of zero. In this case, by
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construction, the mean and the skewness of the distribution are uncorrelated. One can

easily show that if an extra draw is made from the far positive (or negative) tail of the

underlying distribution then it may induce a simultaneous increase (or fall) in measured

inflation and in measured skewness. The example illustrates the possibility of a

spuriously measured positive unconditional correlation between inflation and the

skewness of the distribution of price changes when the distribution has fat tails.

Motivated by these considerations, Bryan and Cecchetti go on and use Monte Carlo

simulations to demonstrate that the suspected bias is not only a theoretical possibility but

also an actual concern in the Ball and Mankiw data. Indeed, after having corrected for

small-sample bias, they find negative correlation between the skewness of sectoral price

changes and aggregate inflation. As a behavioral explanation for their findings, Bryan

and Cecchetti suggest that if price setters were fully reluctant to cut their nominal prices,

a fall in aggregate inflation would induce the distribution of nominal price changes

bunching around zero implying increased skewness. They then draw the conclusion that

“the recent focus on the correlation between the mean and skewness of the cross-

sectional distribution of inflation is unwarranted”.

Though the criticism of Bryan and Cecchetti does appear to invalidate the

empirical results of Ball and Mankiw (1995), its main thrust is not applicable in the

context of this paper. First, the finding of negative contemporaneous, unconditional

correlation between inflation and relative price skewness does not preclude the presence

of more complex dynamic relationship between the two variables. Indeed, to the extent

that they highlight the lagged response of inflation to idiosyncratic shocks and the

potential presence of negative contemporaneous correlation between inflation and

relative price skewness, one might view the findings of this paper as complementary to

the small-sample simulation exercise performed by Bryan and Cecchetti18.

As a more general point, in accordance to the discussion in Section 3, the

particular construct Bryan and Cecchetti (following Ball and Mankiw) use to measure the

relative price actually makes their argument immaterial to the assessment of (S,s) pricing
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models, models that actually motivate studies of asymmetry in relative price distributions

like the present one. There are two issues to consider in this regard, both of them related

to the problem of the correspondence between theory and measurement. On the one hand,

defining relative prices at the inter-sectoral level is inconsistent with the firm level focus

of pricing models in the literature. Indeed, the sectoral level approach ignores an

important element of microeconomic reality, the intra-sectoral heterogeneity price setting

practices (see Rátfai (1998)). On the other hand, although the idea of downward rigid

price adjustment is appealing intuitively, so far only models of the (S,s) type have had

success in rigorously modeling rather than just assuming downward rigidity19. Therefore,

it is difficult to determine how any inter-sectoral argument regarding the distribution of

price changes would directly bear on the intra-sectoral concept envisioned by (S,s)

theory, the distribution of relative prices.

9 Conclusions

This study aimed at using implications of two-sided (S,s) pricing models to learn about

idiosyncratic determinants of aggregate inflation dynamics in the short run. Based on two

distinct identification assumptions, both of them explicitly motivated by (S,s) pricing

theory, bivariate dynamic systems of equations including current and lagged values of

aggregate inflation and relative price skewness are studied. In the baseline specification,

product-level VARs are estimated, and then the median values of the product-level

estimates are presented. In addition to the baseline specification, two further types of

estimates are examined. The first one is based on a pooled measure of relative prices. The

skewness of the distribution of the pooled relative price data and aggregate inflation

placed into in the proposed structural VAR model. The other alternative specification is a

                                                                                                                                                
18 Nonetheless, it remains to be seen how their small-sample bias argument applies to the
distribution of relative prices measured in microeconomic data. This exercise is left for
future research.
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panel VAR model with the reduced form slope parameters constrained to be the same

across the different products. The estimated structural parameters are different across

products here, so the focus is on the median values of product-specific parameter

estimates.

To examine the relative importance of idiosyncratic and aggregate pricing shocks

in inflation dynamics, standard impulse response analysis and historical variance

decomposition are utilized. The main findings are that idiosyncratic pricing shocks

explain a non-negligible portion of the forecast error variance in inflation and that these

shock lead to substantial inflationary responses in about three to five months after the

occurrence of the shock. These results are robust to plausible identification assumptions,

alternative definition of the relative price and to an alternative measure of asymmetry in

the relative price distribution.

A potential explanation for the strong and robust lagged response of sectoral

inflation to idiosyncratic shocks could be that price setters are slow to recognize or learn

of shocks of an idiosyncratic nature, or they just adjust sluggishly to these shocks. This

argument still leaves the initial response of inflation unexplained. Overall, the results give

emphasis to conducting further theoretical research on the macroeconomic consequences

of heterogeneous pricing behavior within individual sectors. More specifically, they

provide a motivation for modeling price setters' sluggish response to idiosyncratic pricing

shocks.

                                                                                                                                                

19 See Ball and Mankiw (1994), Tsiddon (1993).
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Table 1
Products in the Sample

Product
Code

Product Name Absolute
Weight in CPI

Relative Weight
in Sample

10001 Pork, Chops 0.49 9.39
10002 Spare Ribs, with Bone 0.19 3.64
10003 Pork, Leg without bone and hoof 0.77 14.75
10102 Beef, Round 0.04 0.77
10103 Beef, Shoulder with Bone 0.04 0.77
10301 Pork Liver 0.12 2.30
10401 Chicken Ready to Cook 0.41 7.85
10601 Sausage, Bologna type 0.25 4.79
10603 Sausage, Italian type 0.17 3.25
10605 Sausage, Boiling 0.17 3.26
10801 Carp, living 0.06 1.15
11302 Curd, 250g 0.16 3.07
12101 Lard, pork 0.13 2.49
12201 Fat Bacon 0.07 1.34
12203 Smoked Boiled Bacon 0.07 1.34
12301 Sunflower Oil 0.37 7.09
13002 Flour, prime quality 0.28 5.36
13301 Roll, 52-56g, 10 pieces 0.21 4.02
13501 Sugar, white, granulated 0.53 10.15
13801 Dry Biscuits, without Butter, Packed 0.05 0.96
14424 Tomato Paste 0.03 0.57
15208 Vinegar, 10 hydrate 0.05 0.96
17001 Coffee, Omnia type, 100g 0.21 4.02
19001 Cigarette, Kossuth type, 25 pieces 0.17 3.26
52366 Broom, Horsehair-synthetic Mix 0.01 0.19
66105 Car Driving School, Full Course 0.16 3.07
66301 Movie Ticket, Evening, 1-6 Rows 0.01 0.19

5.22 100.00

Notes: 1. Information compiled in this table is taken from various consumer price
statistic booklets of the Central Statistical Office, Hungary.
2. Weights are expenditure-based. Absolute weights are the same as in the CPI.
Relative ones reflect weight in this particular sample.
3. Having selected by these criteria, products are narrowly defined items
according to size, branding, type and flavor.
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Table 2
Unit Root Tests for Inflation and Relative Price Skewness

Inflation Skewness
Product
Code

ADF
t-statistic

Largest AR
Root

Product
Code

ADF
t-statistic

Largest AR
Root

dp10001 -4.94 0.45 s10001 -2.61 0.74
dp10002 -4.95 0.44 s10002 -3.77 0.56
dp10003 -4.88 0.46 s10003 -2.71 0.73
dp10102 -3.92 0.53 s10102 -4.32 0.54
dp10103 -4.02 0.44 s10103 -8.83 0.70
dp10301 -4.06 0.50 s10301b -8.91 -0.87
dp10401 -5.83 0.21 s10401 -4.26 0.47
dp10601 -4.50 0.43 s10601 -3.86 0.55
dp10603 -4.50 0.43 s10603a -3.22 0.69
dp10605 -4.24 0.48 s10605 -2.67 0.63
dp10801 -4.19 0.46 s10801 -5.16 0.23
dp11302 -7.21 0.07 s11302 -4.71 0.39
dp12101 -3.88 0.64 s12101 -3.67 0.59
dp12201 -3.98 0.52 s12201 -3.70 0.57
dp12203 -4.78 0.39 s12203 -3.03 0.69
dp12301 -5.77 0.21 s12301 -3.10 0.66
dp13002 -4.14 0.48 s13002 -3.96 0.50
dp13301 -6.37 0.11 s13301 -3.88 0.55
dp13501 -4.46 0.35 s13501 -5.91 0.19
dp13801 -5.95 0.18 s13801 -3.59 0.60
dp14424 -4.48 0.42 s14424c -5.02 0.38
dp15208 -5.40 0.27 s15208 -2.81 0.75
dp17001 -3.46 0.63 s17001 -4.17 0.68
dp19001 -7.03 0.02 s19001 -2.68 0.78
dp52366 -8.20 0.12 s52366a -3.71 0.56
dp66105 -6.66 0.07 s66105d -5.58 0.43
dp66301 -7.06 0.02 s66301 -2.70 0.75

a ADF regression includes deterministic time trend.
b ADF regression includes dummies for a structural  “intercept and slope” break at 94:12. The 5%
t-sig critical value is –5.59 for T = 70. See Perron (1997).
c ADF regression includes dummies for a structural “intercept break” at 93:01. The 5% t-sig
critical value is –4.83 for T = 100. See Perron (1997).
d ADF regression includes dummies for a structural “slope break” at 93:01. The 5% t-sig critical
value is –5.23 for T = 60. See Perron (1997).
Notes: 1. dp<code> refers to the monthly percentage change in the average price level of the

product denoted by <code>. Similarly, s<code> refers to the relative price skewness
measure of the product denoted by <code>.
2. The number of lags in the regressions is based on the Schwartz Information Criterion
allowing for a maximum number of lags of 12.
3. Unless otherwise indicated, regressions do not include a time trend.
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Table 3
Unit Root Tests for Log Price Levels

Log Price Level
Product Code ADF

t-statistic
Largest AR Root

log_p10001 -3.85 0.81
log_p10002 -2.92 0.82
log_p10003 -3.82 0.82
log_p10102 -1.42 0.94
log_p10103 -1.34 0.94
log_p10301 -2.93 0.86
log_p10401 -1.68 0.90
log_p10601 -1.62 0.91
log_p10603 -1.92 0.89
log_p10605 -1.62 0.92
log_p10801 -2.76 0.84
log_p11302 -6.22 0.52
log_p12101 -3.82 0.83
log_p12201 -2.79 0.85
log_p12203 -3.39 0.82
log_p12301 -2.48 0.84
log_p13002 -1.74 0.94
log_p13301 -3.40 0.79
log_p13501 -1.96 0.94
log_p13801 -2.19 0.86
log_p14424 -0.63 0.98
log_p15208 -2.11 0.88
log_p17001 -2.19 0.93
log_p19001 -2.73 0.78
log_p52366 -2.15 0.88
log_p66105 -1.81 0.89
log_p66301 -0.97 0.94

Notes: 1. log_p<code> refers to the log of the average price level of the product denoted
by <code>.
2. Each of the ADF regressions includes a constant and a deterministic time trend.
3. The number of lags in the regressions is based on the Schwartz Information
Criterion with a maximum number of lags of 12.
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Table 4
Unit Root Tests for Residuals from Seasonal Dummies Regressions

Residuals from Seasonal Dummy Regressions
Product Code ADF

t-statistic
Largest AR Root

res_dp10001 -3.95 0.54
res_dp10002 -4.30 0.48
res_dp10003 -3.98 0.53
res_dp10102 -3.79 0.46
res_dp10103 -4.19 0.49
res_dp10301 -4.25 0.48
res_dp10401 -5.30 0.28
res_dp10601 -4.70 0.40
res_dp10603 -4.95 0.35
res_dp10605 -4.50 0.43
res_dp10801 -4.58 0.40
res_dp11302 -9.51 -0.13
res_dp12101 -3.67 0.59
res_dp12201 -3.57 0.52
res_dp12203 -4.51 0.43
res_dp12301 -2.90 -0.26
res_dp13002 -3.77 0.54
res_dp13301 -7.15 0.00
res_dp13501 -4.79 0.29
res_dp13801 -6.20 0.16
res_dp14424 -4.46 0.44
res_dp15208 -5.22 0.30
res_dp17001 -3.26 0.65
res_dp19001 -7.71 -0.07
res_dp52366 -8.44 -0.14
res_dp66105 -6.50 0.09
res_dp66301 -7.31 0.00

Notes: 1. res_dp<code> refers to the residual obtained from a seasonal dummy
regression of the change in the log average price level of the product denoted by
<code>.
2. ADF regressions include a constant and no time trend.
3. The number of lags in the regressions is based on the Schwartz Information
Criterion with a maximum number of lags of 12.
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Table 5
Short-Run and Long-Run Multipliers

MEDIAN OF PRODUCT-SPECIFIC ESTIMATES
Short Run Long Run

Identification Restriction G0
ΠS G0

SΠ M(1)ΠS M(1)SΠ
SR: B0

SΠ = 0 0.74
[1.45]

0
[0]

-0.16
[2.81]

-0.16
[1.08]

LR: M(1)ΠS = 0 0.18
[3.03]

-0.01
[0.07]

0
[0]

-0.14
[1.49]

Note: The across-product standard deviations of the estimated parameters are in
parentheses. SR and LR refer to the identification scheme chosen.

ESTIMATES BASED ON POOLED DATA
Short Run Long Run

Identification Restriction G0
ΠS G0

SΠ M(1)ΠS M(1)SΠ
SR: B0

SΠ = 0 -2.38 0 1.60 0.06

LR: M(1)ΠS = 0 -3.39 0.06 0 0.39

Note: SR and LR refer to the identification scheme chosen.

PANEL ESTIMATES
Short Run Long Run

Identification Restriction G0
ΠS G0

SΠ M(1)ΠS M(1)SΠ
SR: B0

SΠ = 0 0.14
[0.56]

0
[0]

0.33
[0.78]

-0.25
[0.14]

LR: M(1)ΠS = 0 -0.18
[0.06]

0.03
[0.08]

0
[0]

-0.17
[0.23]

Note: The across-product standard deviations of the estimated parameters are in
parentheses. SR and LR refer to the identification scheme chosen.
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Table 6
Forecast Error Decomposition -

Median, Pooled, Panel Estimation

MEDIAN OF PRODUCT-SPECIFIC ESTIMATES
Variance Share in Percentage Terms

12 month horizon
Identification
Restriction

Source of
Shocks

Aggregate
Inflation

Relative Price
Skewness

Aggregate (Π) 0.81
[0.13]

0.19
[0.23]

SR: B0
SΠ = 0

Idiosyncratic (S) 0.19
[0.13]

0.82
[0.23]

Aggregate (Π) 0.74
[0.22]

0.34
[0.22]

LR: M(1)ΠS = 0

Idiosyncratic (S) 0.26
[0.22]

0.66
[0.22]

Note: Cross-product standard deviations of the estimated parameters are in parentheses.

ESTIMATES BASED ON POOLED DATA
Variance Share in Percentage Terms

12 month horizon
Identification
Restriction

Source of
Shocks

Aggregate
Inflation

Relative Price
Skewness

Aggregate (Π) 0.66 0.10SR: B0
SΠ = 0

Idiosyncratic (S) 0.34 0.90
Aggregate (Π) 0.36 0.58LR: M(1)ΠS = 0

Idiosyncratic (S) 0.64 0.42

PANEL ESTIMATES
Variance Share in Percentage Terms

12 month horizon
Identification
Restriction

Source of
Shocks

Aggregate
Inflation

Relative Price
Skewness

Aggregate (Π) 0.73
[0.04]

0.19
[0.05]

SR: B0
SΠ = 0

Idiosyncratic (S) 0.27
[0.03]

0.82
[0.05]

Aggregate (Π) 0.74
[0.04]

0.24
[0.02]

LR: M(1)ΠS = 0

Idiosyncratic (S) 0.26
[0.05]

0.76
[0.03]

Note: Cross-product standard deviations of the estimated parameters are in parentheses.
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Table 7

Forecast Error Decomposition - Alternative Measures of Asymmetry
and Timing, Pooled Data

S: mm

Variance Share in Percentage Terms
12 month horizon

Identification
Restriction

Source of
Shocks

Aggregate
Inflation

Relative Price
Skewness

Aggregate (Π) 0.72 0.18SR: B0
SΠ = 0

Idiosyncratic (S) 0.28 0.82
Aggregate (Π) 0.62 0.20LR: M(1)ΠS = 0

Idiosyncratic (S) 0.38 0.80

S: p*-1

Variance Share in Percentage Terms
12 month horizon

Identification
Restriction

Source of
Shocks

Aggregate
Inflation

Relative Price
Skewness

Aggregate (Π) 0.68 0.21SR: B0
SΠ =0

Idiosyncratic (S) 0.32 0.79
Aggregate (Π) 0.66 0.40LR: M(1)ΠS = 0

Idiosyncratic (S) 0.34 0.60
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Figure 1

Impact of an Aggregate Shock on the Distribution of Relative Prices

ΓΓΓΓ(z)

 s          S

Note: The solid line represents relative price distribution before the aggregate

shock, the dashed line after the aggregate shock. zijt is the relative price of

product j in store i at time t defined as zijt = pij,t-1 – p*ijt. S and s are the two

adjustment boundaries.

 zijt
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Figure 2

Annual CPI Inflation in Hungary, Monthly Data
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Figure 3a
Impulse Response Functions

Note: Dashed lines are the upper and lower quartiles, the solid line is the median of impulse responses across products.
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Figure 3b
Impulse Response Functions

Note: Dashed lines are the upper and lower quartiles, the solid line is the median of impulse responses across products.
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Figure 4a
Impulse Response Functions

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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Figure 4b
Impulse Response Functions

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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Figure 5a
Impulse Response Functions

Panel VAR

o

Note: Dashed lines are the upper and lower quartiles, the solid line is the median of impulse responses across products.
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Figure 5b
Impulse Response Functions

Panel VAR

Note: Dashed lines are the upper and lower quartiles, the solid line is the median of impulse responses across products.
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Figure 6a
Impulse Response Functions

(Pooled Data)

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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Figure 6b
Impulse Response Functions

(Pooled Data)

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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Figure 7a
Impulse Response Functions

(Pooled Data)

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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Figure 7b
Impulse Response Functions

(Pooled Data)

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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Figure 8a
Impulse Response Functions

(Pooled Data)

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.

LR - BM '95
skew->infl

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12

LR - BM '95
skew->skew

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12

LR - BM '95
infl->infl

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12

LR - BM '95
infl->skew

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12

LR - BM '95
skew->price level

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0 1 2 3 4 5 6 7 8 9 10 11 12

LR - BM '95
infl->price level

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0 1 2 3 4 5 6 7 8 9 10 11 12



Figure 8b
Impulse Response Functions

(Pooled Data)

Note: Dashed lines are 90 percent Runkle (1987) confidence bands.
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