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Abstract
The value of selecting the best forecasting model as the basis for empirical economic policy ana-

lysis is questioned. When no model coincides with the data generation process, non-causal statist-
ical devices may provide the best available forecasts: examples from recent work include intercept
corrections and differenced-data VARs. However, the resulting models need have no policy implic-
ations. A ‘paradox’ may result if their forecasts induce policy changes which can be used to improve
the statistical forecast. This suggests correcting statistical forecasts by using the econometric model’s
estimate of the ‘scenario’ change. An application to UK consumers expenditure illustrates the ana-
lysis.

1 Introduction

It is a pleasure to participate in a volume celebrating the contributions to economics of Michio Mor-
ishima, who was a colleague for many years. The eclectic nature of Michio’s extensive publications
makes it impossible to choose any topic on which he has never written, and our chapter is related to
Morishima and Saito (1964), who developed a macro-econometric model of the US economy. While
Morishima and Saito (1964) focus on econometric equations with a close eye on economic-policy ana-
lysis, we also consider the relationship between statistical forecasting devices and econometric models in
the policy context. In particular, we investigate three aspects of this relationship. First, whether there are
grounds for basing economic-policy analysis on the ‘best’ forecasting system. Secondly, whether fore-
cast failure in an econometric model precludes its use for economic-policy analysis. Finally, whether
in the presence of policy change, improved forecasts can be obtained by using ‘scenario’ changes, de-
rived from the econometric model, to modify an initial statistical forecast. To resolve these issues, we
analyze the problems arising when forecasting after a structural break (i.e., a change in the parameters
of the econometric system), but before a regime shift (i.e., a change in the behaviour of non-modelled,
often policy, variables), perhaps in response to the break (see Hendry and Mizon, 1998, for discussion of
this distinction). These three dichotomies, between econometric and statistical models, structural breaks
and regime shifts, and pre and post forecasting events, are central to our results.

We envisage a statistical forecasting system as one having no economic-theory basis (in contrast to
econometric models for which this is the hallmark), so it will rarely have implications for economic-
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policy analysis – and may not even entail links between target variables and policy instruments. Con-
sequently, being the ‘best’ available forecasting device is insufficient to ensure any value for policy ana-
lysis, and the main issue is the converse: does the existence of a dominating forecasting procedure inval-
idate the use of an econometric model for policy? Our answer is almost the opposite of the Lucas (1976)
critique: since forecast failure often results from factors unrelated to the policy change in question, the
econometric model may continue to characterize the response of the economy to the policy, despite its
forecast inaccuracy. Indeed, when policy changes are implemented, forecasts from a statistical model
may be improved by combining them with the predicted policy responses from an econometric model.

The rationale for our analysis is as follows. Using the taxonomy of forecast errors in Clements and
Hendry (1996a), Hendry and Doornik (1997) establish that deterministic shifts are the primary source
of systematic forecast failure in econometric models. Nevertheless, there exist devices that can robus-
tify forecasting models against such breaks, provided they have occurred prior to forecasting (see e.g.,
Clements and Hendry, 1996b, and Hendry and Clements, 1998). Such ‘tricks’ can help mitigate fore-
cast failures, but the resulting models need not have useful policy implications. However, no methods
are robust to unanticipated breaks that occur after forecasting, and Clements and Hendry (1998c) show
that those same ‘robustifying’ devices do not offset post-forecasting breaks. Moreover, post-forecasting
policy changes induce breaks in models that do not embody policy variables or links, so such models
lose their robustness in that setting. Conversely, despite having experienced forecast failures from pre-
forecasting breaks, econometric systems which do embody the relevant policy effects need not exper-
ience a post-forecasting structural break induced by the policy-regime shift. Consequently, when both
structural breaks and regime shifts occur, neither class of model alone is adequate: this suggests invest-
igating whether, and if so how, they should be combined.

The structure of the analysis is as follows. In the next section, we discuss the relevant forecasting
and economic-policy concepts and issues to motivate the paper. This is followed in x3 by an example
of forecasting and policy in the presence of regime shifts. We analyze the impact of structural breaks
and policy changes on forecasts in an open vector equilibrium-correction mechanism in x4, and present
the case for combining the forecasts from robust statistical devices and policy-scenario changes in x5.
Section 6 then provides an extensive empirical illustration using models of UK aggregate consumption.
We present conclusions in x7.

2 Background

Much previous work on economic forecasting has considered the properties of forecasts when:

1. the data generation process (DGP) is known;
2. the DGP is constant; and
3. the econometric model coincides with the DGP.

These three assumptions are strong, and unlikely to be fulfilled in practice. As discussed in Hendry
(1997) and Hendry and Doornik (1997), the failure of the first and third need not greatly affect the im-
plications of forecasting theory. However, the failure of all three radically alters many aspects of that
theory: for example, when the DGP is non-constant and the model is mis-specified, it cannot be proved
that causal variables will dominate non-causal for forecasting. Moreover, while the three assumptions
are sufficient to ensure that forecasts from the econometric model will be at least as good as those from
purely statistical procedures, they are not necessary. For example, as discussed in Hendry (1979) and
Miller (1978), stationarity ensures that, on average (i.e., excluding rare events), an incorrectly-specified
model will forecast within its anticipated tolerances (providing these are correctly calculated). Moreover,
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even though such mis-specified models could be beaten by other methods based on correctly-specified
equations, an encompassing model – however poor – will variance-dominate in-sample, and hence also
when forecasting under unchanged conditions.

Since omniscience is not characteristic of economics, a better approach assumes that none of the three
conditions applies. Clements and Hendry (1994, 1998a) investigated a theory more relevant to practical
economic forecasting in which:

a. the DGP is unknown;
b. the DGP is non-stationary (due to unit roots and structural breaks); and
c. the econometric model is mis-specified for the DGP.

These features seem descriptive of operational economic forecasting. Moreover, they provide a rationale
for ‘intercept corrections’ to model-based forecasts (see Hendry and Clements, 1994, and Clements and
Hendry, 1996b), which is absent when 1.–3. hold. Further, differencing transformations, which arbit-
rarily impose unit roots and thereby eliminate cointegrating relations, also change permanent structural
breaks in deterministic factors into ‘blips’ (see Clements and Hendry, 1995). Thus, despite being non-
optimal under 1.–3., in practice such procedures can robustify forecasts against the form of structural
break that Hendry and Doornik (1997) find to be the most pernicious source of forecast failure, namely
shifts in deterministic factors.

A consequence of these results is that in a class of models for processes subject to structural breaks,
the best available forecasting model need not be based on the ‘causal determinants’ of the actual eco-
nomic process, and as the example in x3 shows, may be based on ‘non-causal’ variables. Thus, the best
economic-policy analysis need not be based on the model that happens to forecast best, and the existence
of a procedure that systematically produces better forecasts need not invalidate the policy use of another
model.

The fact that a purely statistical device may provide the best available forecasts induces an appar-
ent paradox. In a world characterized by a.–c. above, forecasts based on the currently-best econometric
model may be beaten by statistical devices when forecasting after a structural break. Assume for the mo-
ment that the statistical forecasting model does not depend on any policy variables, and hence has neither
policy implications, nor produces any revisions to forecasts following policy changes. These ‘best’ fore-
casts for some future period are presented to the finance minister of a given country, who thereupon de-
cides that a major policy initiative is essential, and implements it. That the statistical forecasts are not
then revised would justifiably be greeted with incredulity. More pertinently, providing the policy model
did not fall foul of the critique in Granger and Deutsch (1992), so that changes to policy variables did
indeed alter target variables, then a better forecast seems likely by adding the policy change effects pre-
dicted by the econometric model to the previous forecasts. But this contradicts any claim to the effect
that the statistical devices produced the best forecasts in a world of structural change.

The resolution, of course, depends on distinguishing between unknown breaks – where (e.g.) differ-
encing may deliver the best achievable forecast – and known changes, the consequences of which are
partly measurable. The conclusion is that a combination of robustified statistical forecasts with the scen-
ario changes from econometric systems subject to policy interventions may provide improved forecasts.
This is the subject of x5.

An independent issue is that there is no unique measure of forecast accuracy, since predictability de-
pends on intertemporal transformations (see e.g., Hendry, 1997). Measures such as mean square forecast
errors (MSFEs) are often used for forecast comparisons across alternative models or methods (see e.g.,
Wallis and Whitley, 1991), but as shown in Clements and Hendry (1993), these lack invariance to non-
singular, scale-preserving, linear transforms across isomorphic members of a model class for multi-step
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forecasts in systems of equations. Even the (invariant) generalized forecast-error second moment cri-
terion (GFESM) which they propose is not thereby unique – a monetary measure is quite conceivable
(see West, 1993). Our present concern does not depend on such a difficulty, and we assume that the agent
desiring the forecast has a well-specified loss measure by which to judge forecast accuracy, and there is
a unique optimum for the specified criterion. However, we recognize the additional practical difficulty
of determining how to evaluate the outcomes of the forecasts or the policies.

The sources of forecast errors can be categorized into six classes as discussed in Clements and Hendry
(1994), for example:
(i) slope change;
(ii) intercept change;
(iii) model mis-specification;
(iv) parameter estimation;
(v) initial forecast conditions;
(vi) error accumulation.
The first two are distinguished here because their consequences seem very different in practice: zero-
mean changes are not easily detected, whereas shifts in equilibrium means can induce dramatic forecast
failure. Such shifts need not, although they could, alter the partial derivatives of target variables with
respect to instruments, in which case, the reasons for predictive failure need not impugn a policy model.
Assuming they do not, e.g., because the regime shift is not due to causes that affect policy connections,
then a better forecast can be derived by using the scenario change to modify the forecast obtained from
a robustified method.

Alternatively, the policy model will be invalid when:
a] it embodies the wrong causal attributions;
b] its target-instrument links are not autonomous;
c] its parameters are not invariant to the policy change under analysis.
These are distinct from the causes of forecast failure, though they could be a subset of the factors in any
given situation. We now consider a case where poor forecasts need not invalidate policy advice.

3 Forecasting and policy analysis across regime shifts

Hendry (1997) illustrates the potential role for statistical forecasting methods when an economy is sub-
ject to structural breaks, and the econometric model is mis-specified for the data generation process. He
considers an economy where gross national product (GNP, denoted by y) is ‘caused’ solely by the ex-
change rate over a sample prior to forecasting, then the DGP changes to one in which y is only caused
by the interest rate, but this switch is not known by the forecaster. The DGP is non-dynamic, and in par-
ticular, the lagged value of y does not affect its behaviour (i.e., yt�1 is non-causal). Nevertheless, when
forecasting after the regime change, on the criterion of forecast unbiasedness, a forecasting procedure
that ignores the information on both causal variables, and only uses yt�1, namely predicting a constant
change in y by E[ytjyt�1] = yt�1 can outperform (in terms of bias) compared to forecasts from mod-
els which included the correct causal variable. Here, neither the statistical model, nor the econometric
model based on past causal links, is useful for policy.

Since policy analysis conducted on an incorrect model is not useful, we now consider what can be
concluded in general settings. The paradigmatic example we have in mind is an econometric model of
(say) the tax and benefits system which accurately portrays the relevant links, and yields a good approx-
imation to the changes in revenues and expenditures resulting from changes in the basic rates. However,
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it would not necessarily provide good time-series forecasts in an economy subject to structural breaks
that affected macroeconomic variables such as total consumers’ expenditure and inflation.

The policy implications of any given model in use may or may not change with a particular regime
shift. For the setting above, if the exchange rate (et) did not alter when the interest rate (rt) was changed
in the first regime, so rt had no direct or indirect effect on y in that regime, then the policy implications of
the first-regime model would be useless in the second regime. That seems unlikely here, though such may
well occur in practice. If et is in fact altered by changes in rt, so will yt in both regimes. Policy analysis
involves estimation of the target-instrument responses, which in this case means @yt+h=@rt when yt is
the target variable and rt the policy instrument. For the statistical model �yt = &t, this response is zero
at all forecast horizons h, and so despite its robust forecasting abilities, such a model is uninformative
for policy analysis. The first-regime econometric model, on the other hand, does provide an estimate of
@yt+h=@rt via (e.g.):

\@yt+h

@rt
=

hX
i=0

@yt+h

@et+i

@et+i

@rt
: (1)

In regime-2, the actual policy response is @yt+h=@rt, so the regime-1 econometric model policy re-
sponses in (1) will be valuable when they have the same sign, and do not over-estimate the response
by more than double, whereas the statistical model is always uninformative in that it gives a zero policy
response.

The next section formalizes results for forecasting in the face of both structural breaks and regime
shifts, when the DGP is a cointegrated system dependent on policy-determined variables. In x5, we ex-
plore the possibility that some combination of statistical forecasts and estimated policy responses could
dominate either alone.

4 Structural breaks and regime shifts in policy models

Previous studies of the impacts on forecasting of structural breaks have looked at closed models (e.g.,
Clements and Hendry, 1998c, and Hendry and Clements, 1998). We now generalize these results to open
models to investigate the effects of regime shifts in non-modelled variables which are often policy instru-
ments. We focus on deterministic shifts following Hendry and Doornik (1997), although other paramet-
ric changes could be envisaged. To establish the appropriate conditions, we first ascertain the impacts
of structural breaks and regime shifts in two models. These are a second-differenced predictor (denoted
DDV) and a vector equilibrium-correction mechanism (VEqCM). Clements and Hendry (1998c) show
that these predictors have the same forecast biases for breaks that occur after forecasts are announced, but
that the DDV is robust to deterministic breaks that have occurred before forecasting: this section draws
on their approach, extending it to open models and to forecasts of growth rates (rather than levels). Thus,
we consider forecasting after a structural break (due to a change in the parameters of the econometric sys-
tem), but before a regime shift (here, a change in the policy rule). Since the VEqCM has some response
to policy, but the DDV does not, such comparisons yield insights into the effects of using robustified
forecasting methods, then exploiting policy-change information via an econometric system.

We envisage a policy rule as comprising drawings of the k policy variables zt from a distribution
centered on �, perhaps dependent on recent past information in the economy, which we write as:

zt = �+ g (It�1) (2)

where E[g(It�1)] = 0. The policy variables zt are under the control of a policy agency, which, within
regime, makes a drawing from (2), but when introducing a regime shift, changes � to ��. The in-sample
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DGP consists of the marginal process for the I(0) policy variables zt, and an open VEqCM, conditional
on zt, representing the behaviour of the n private-sector I(1) variables xt:

�xt = � +��0
xt�1 + �zt + �t where �t � INn [0;�] (3)

where� and� are n�r of rank r. To ensure that xt is I(1), and not I(2), rank(�0
?
�?) = n�r, where�?

and �? are n�(n� r)matrices such that�0
?
� = 0; �

0

?
� = 0with (� : �?) and (� : �?) being rank-

n matrices. Also, INn[0;�] denotes independent drawings from an n-dimensional normal distribution
with mean zero and variance �. For t < T , the I(0) variables are stationary, so let:

E [�xt] = 
; E
�
�
0
xt

�
= �; and E [zt] = �: (4)

Taking expectations in (2) and (3):

E [�xt] = 
 = � +�E
�
�
0
xt

�
+ �E [zt] = � +��+ ��;

using (4), so that:
� = 
 ���� ��; (5)

where E [��0xt] = �0
 = 0. From (3) and (5), therefore:

�xt = 
 +�
�
�
0
xt�1 � �

�
+ �z+t + �t; (6)

where z+t = zt � �.
The system in (6) can be re-written as two distinct blocks, respectively obtained on pre-multiplying

by �0 and �0

?
:

�
�
0
xt � �

�
= �

�
�
0
xt�1 � �

�
+ �0�z+t + �0�t (7)

�
0

?�xt = �
0

?
 +�0

?�z
+
t +�0

?�t;

where � = Ir +�
0
�. For explicit results under regime shifts, we assume that z+t does not permanently

alter the growth rate of the system, so that�0
?
� = 0, or� = �	. We also assume that the parameters of

(2) can change freely from those of (3), although in principle, the analysis could be generalized to allow
for dependencies (e.g., through g (�) depending on the disequilibria from the equilibrium corrections in
(3)), or for I(1) policy variables that entered the cointegration vectors.

The dependence assumptions made about deterministic terms are fundamental to the outcome of the
following analysis. For example, if 
, �, and � were unconnected, (6) has ‘policy ineffectiveness’, in
that only deviations of zt from � have an impact, and changes in � have no effect when implemented by
keeping z+t fixed. If so, only impulse responses would be of interest. However, we consider that shifts in
� are likely to have an impact on x in practice, and hence assume � , �, �, 	, and �may change freely,
with � altering in response to shifts in �. Since there is no impact of changes in � on 
, @�=@�0 = 0

entails � =  �	�, which is an assumption of contemporaneous mean co-breaking (see Hendry, 1995b
and Hendry and Mizon, 1998), leading to � = 
 � � in (5). Thus, the final formulation in-sample
(i.e., before breaks occur) is:

�xt = 
 +�
�
�
0
xt�1 � +	�

�
+�	z+t + �t: (8)

In the face of either regime shifts or structural breaks that directly alter deterministic terms:

E [�xt] = 
t (9)

E
�
�
0
xt

�
=  t �	t�t (10)

E [zt] = �t: (11)
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The assumption of a non-constant mean vector in (11) is essential to consider policy regime shifts, the
non-constant means in (9) and (10) are required if structural breaks occur, (dependence on t), and co-
breaking in (10) is needed if mean shifts in policy are to be effective (dependence on �). To the extent
that 	t 6= 	, policy will not have its anticipated consequences.

We first investigate a single structural break at time T which shifts the DGP parameters from 
 to


�,  to  �, and 	 to 	�, but leaves � and � unchanged, such that, just prior to forecasting, the DGP

becomes:
�xT = 
� +�

�
�
0
xT�1 � � +	�

�

�
+�	�

z
+
T
+ �T (12)

so:
�
� = 
� �� �

;

but the forecaster is unaware that the parameters of the DGP have changed. The changes in 
 and  in-
duce forecast failure in the VEqCM, whereas the change in	 reduces the predictability of policy. When
the zT+j are the realized values of the policy vectors for j = 1; 2, the data outcomes are:

�xT+j = 

� +�

�
�
0
xT+j�1 � � +	�

�
�
+�	�

z
+
T+j + �T+j: (13)

Ignoring estimator variances, and assuming accurate data, we consider two forecasting rules for
period T + 1. One investigator uses the in-sample DGP with a provisional setting for the deviation of
the policy variable zT+1 from its mean of � to obtain the provisional 1-step forecast (called procedure
(a)): c�xT+1jT = 
 +�

�
�
0
xT � +	�

�
+�	z+

T+1; (14)

whereas the DDV (procedure (b)) is given by the simple rule:

g�2xT+1jT = 0;

which exploits the fact that few economic variables accelerate indefinitely, so that:

f�xT+1jT = �xT :

The analysis is then extended to the 2-step case, namely forecasting T +2 from T . Section 4.1 discusses
the setting of breaks where �� = �; policy revisions and their effects on constant parameters when �� 6=
� are discussed in x4.2, whereas x4.3 allows for both shifts. Although we focus on forecast biases, the
variances of the alternative forecasting devices are noted as these become increasingly important as the
horizon increases (see e.g., Clements and Hendry, 1998c).

Since deterministic shifts induce non-stationary behaviour in all the data moments even after reduc-
tion to an I(0) representation, all the moments need to be derived recursively through time, and cannot
be replaced by their asymptotic equivalents. For example, while E[�0xT+j ] = �

� =  
� � 	

�
� for

j � 0, even though � has shifted fully to �� at time T , from (7), E[�0xT ] = �� �� (�� � �). These
unconditional moments are summarized in (15) when there is a structural break, but no regime shift, for
j = 0; 1; 2.

E
�
�
0
xT�1

�
= �; E [�xT�1] = 
;

E
�
�
0
xT+j

�
= �

� �� ��� � E
�
�
0
xT+j�1

��
= �� ��j+1r�; (15)

E [�xT+j ] = 

� +�

�
E
�
�
0
xT+j�1

�� ��
�
= 
� ���jr�;

where r� = �
� � �. As � =  � 	� and �� =  

� � 	
�
�, then r� = r � r	�, where

r =  � � and r	 = 	
� �	; also r
 = 
� � 
.
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4.1 No policy revision (�� = �)

We first consider the forecast errors that result when the investigator is the policy maker, and sets zT+j
as a deviation from �; x4.2 considers what happens when � is changed to ��, where such a response
could be in the light of the forecasts from either procedures (a) or (b). Since � is unchanged, we replace
 �	� and  � �	�

� by � and ��.

4.1.1 One-period ahead forecast errors

The respective forecasting errors of procedures (a) and (b), conditional on known zT+i, are:

b�T+1jT = r
 ��
�r� �r	z+T+1

�
+ �T+1 (16)

where b�T+1jT = xT+1 � bxT+1jT = �xT+1 � c�xT+1jT ; and:

e�T+1jT = �xT+1 � f�xT+1jT = ��0�xT +�	��zT+1 +��T+1: (17)

Note that although the 1-step ahead forecast errors are the same for levels and differences, this is not so
for multi-step ahead forecasts. Since E [�0xT�1] = � from (12), then:

E [�xT j zT+1; zT ] = 
� ��
�r� �	�

z
+
T

�
;

and maintaining �0
� = 0 (so the cointegration vectors do not trend):

�
0
E [�xT j zT+1; zT ] = ��0� �r� �	�

z
+
T

�
:

Thus, the two forecast errors have conditional means:

E
�b�T+1jT j zT+1; zT � = r
 ��

�r� �r	z+T+1
�
; (18)

and:
E
�e�T+1jT j zT+1; zT � = �� ��0�� �r� �	�

z
+
T

�
+�	��zT+1: (19)

When 	� = 	 and �� = � , the DDV does worse on conditional bias if �zT+1 6= 0. However, if the
VEqCM parameters change, and the policy vector does not change, so E[�zT+1] = 0, then the DDV
does better on average, noting that E[z+

T+i] = 0.
Treating the zT+i as fixed, the respective variance matrices are:

V
�b�T+1jT j zT+1; zT � = �; (20)

and, for � = In ���0:

V
�e�T+1jT j zT+1; zT � = �+�

�
�
0
�
�
V
�
�
0
xT�1

� �
�
0
�
�
�
0 +���0

: (21)

Thus, the DDV always loses on variance when � 6= 0. However, if � is small, in the sense that the
feedbacks are slow (as is often found in practice), then V

�e�T+1jT � ' 2�, to be compared with the bias
gains of (19) over (18). For large breaks, such as oil crises shifting mean inflation, the DDV could have
a much smaller mean square forecast error: from the results in Clements and Hendry (1993), this would
apply to all linear transforms of the data.
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4.1.2 Two-periods ahead forecast errors

The last comment is not applicable to multi-step forecasts: here we focus on measuring the forecast errors
in the metric of the changes, denoted byb��;T+2jT = �xT+2 � c�xT+2jT and e��;T+2jT = �xT+2 �f�xT+2jT . Setting the provisional policy vector at the value zT+2 and using (5), the 2-step ahead VEqCM
forecast is:

c�xT+2jT = � +��0bxT+1jT +�	zT+2

= 
 +��
�
�
0
xT � �

�
+�	z+

T+2 +��
0
�	z

+
T+1:

For the DDV: f�xT+2jT = f�xT+1jT = �xT :

Since:

�xT+2 = 

� +�

�
�
0
xT+1 � ��

�
+�	�

z
+
T+2 + �T+2

= 

� +��

�
�
0
xT � ��

�
+�	�

z
+
T+2 +��

0
�	

�
z
+
T+1 + �T+2 +��

0
�T+1;

as: �
�
0
xT+1 � ��

�
= �

�
�
0
xT � ��

�
+ �0�	�

z
+
T+1 + �

0
�T+1;

then their respective forecasting errors conditional on zT+i are:

b��;T+2jT = r
 ���r�

+�
�r	z+T+2 + �0�r	z+T+1�

+�T+2 +��
0
�T+1 (22)

where r� = r �r	�, and:

e��;T+2jT = �� (Ir +�)
�
�
0
�
�r�

+� (Ir +�)
�
�
0
�
� �
�
0
xT�1 � �

�
+�	�

z
+
T+2 +��

0
�	

�
z
+
T+1 �D�	�

z
+
T

+�T+2 +��
0
�T+1 �D�T ; (23)

where D = In ���0 �
�
��

0
�2

, as 2Ir + (�0�) = Ir +�, and:

�
0�xT+1 =

�
�
0
�

� �
�
0
xT � ��

�
+ �0�	�

z
+
T+1 + �

0
�T+1:

Since:
E
�
�
0
xT+1 ���

�
= �E

�
�
0
xT � ��

�
= �

2r�;

these have expected values:

E
�b��;T+2jT j zT+2; zT+1� = r
 ���r� +�

�r	z+T+2 + �0�r	z+T+1� ;
and:

E
�e��;T+2jT j zT+2; zT+1� = �� (Ir +�)

�
�
0
�

�r� +�	
�
z
+
T+2 +��

0
�	

�
z
+
T+1 �D�	�

z
+
T
:

Unconditionally, as E[z+
T+i] = 0, then:

E
�b��;T+2jT � = r
 ���r�;
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and for B = (Ir +�) (�
0
�):

E
�e��;T+2jT � = ��Br�:

Conversely, if no parameters change, then E[b��;T+2jT ] = 0 = E[e��;T+2jT ]. Finally:

E
�b��;T+2jT �� E

�e��;T+2jT � = r
 ��D (r �r	�) ;

which could take either sign.
Again treating the zT+i as fixed, their variance matrices are:

V
�b��;T+2jT j zT+2; zT+1� = �+��0���0 (24)

and:
V
�e��;T+2jT j zT+2; zT+1� = �BV ��0xT�1�B0

�
0 +�+��0���0 +D�D0

: (25)

Thus, (25) always exceeds (24). Nevertheless, there are values for the structural breaks such that the
MSFE of (b) is less than that of (a), and we consider such cases here – otherwise, the open VEqCM is
best on both bias and variance criteria, so the issue of pooling forecasts does not arise.

4.2 Policy-regime shift (�� 6= �)

We now allow for a shift in policy regime from � to ��, which only affects data from time T+1 onwards,
all other parameters remaining constant. Thus:

�xT = 
 +�
�
�
0
xT�1 � +	�

�
+�	z+

T
+ �T

whereas
�xaT+j = 
 +�

�
�
0
x
a
T+j�1 � +	��

�
+�	z�T+j + �T+j (26)

where xaT+j denotes the after-policy-change data. The key feature of such a policy shift is that it comes
after the DDV forecasts are made, so does not alter its forecasts, whereas the VEqCM includes the policy
variables, and hence produces different forecasts. We denote after-policy forecasts byc�xaT+ijT , and let
z
a
T+i = �

� + zT+i � �, so that z�T+i = z
a
T+i � �� = z

+
T+i to focus the whole change in the values

of the policy variables on the regime shift for ease of comparability across cases. The unconditional
moments for j = 1, 2 are summarized in (27) when there is a regime shift, but no structural break, using
r� = �

� � �.

E
�
�
0
x
a
T+j

�
=  �	�� +�j	r�;

E
�
�xaT+j

�
= 
 +��j�1

	r�: (27)

4.2.1 One-period ahead forecast errors

Now:
�xaT+1 = 
 +�

�
�
0
xT � +	��

�
+�	z�T+1 + �T+1

and as the policy maker knows the regime shift has occurred:

c�xaT+1jT = 
 +�
�
�
0
xT � +	��

�
+�	z�T+1

so both the data and the VEqCM forecasts are shifted by the ‘policy-scenario’ difference, �	r�. The
corresponding forecast errors, given (26), areb�a

T+1jT
= �xaT+1 � c�xaT+1jT , so:

b�aT+1jT = �T+1: (28)
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Equation (28) has zero conditional and unconditional expectations. The DDV remains:

f�xaT+1jT = �xT ;

with forecast errors e�a
T+1jT

= �xaT+1 � f�xaT+1jT , so:

e�aT+1jT = �	r� +��
0�xT +�	

�
z
�
T+1 � z+T

�
+��T+1;

which on average equals:

E

he�aT+1jT j zT+1; zT
i
= �	r� +�	�zT+1 +��

0
�	z

+
T
: (29)

Compared to (19) under no structural break, the errors in (29) are increased by �	r�, which is also the
unconditional bias, and the additional bias relative to the VEqCM when only a regime shift occurred.
The variances remain as in x4.1.1. Thus, for a pure regime shift, the VEqCM is unequivocally better.

4.2.2 Two-periods ahead forecast errors

Now:

�xaT+2 = 
 +�
�
�
0
x
a
T+1 � +	��

�
+�	z�T+2 + �T+2

= 
 +��
�
�
0
xT � +	��

�
+�	z�T+2 +��

0
�	z

�
T+1 + �T+2 +��

0
�T+1;

as: �
�
0
x
a
T+1 � +	��

�
= �

�
�
0
xT � +	��

�
+ �0�	z�T+1 + �

0
�T+1:

Their 2-step ahead forecasting rules conditional on zp
T+2, zp

T+1 are respectively:

c�xaT+2jT = 
 +�
�
�
0bxaT+1jT � +	��

�
+�	z�T+2

= 
 +��
�
�
0
xT � +	��

�
+�	z�T+2 +��

0
�	z

�
T+1;

whereas the DDV still uses f�xaT+2jT = �xT . The forecast errors are denoted byb�a
�;T+2jT

= �xaT+2�c�xaT+2jT and e�a
�;T+2jT

= �xT+2 � f�xaT+2jT , so that conditional on zT+i:

b�a�;T+2jT = �T+2 +��
0
�T+1;

and:

e�a�;T+2jT = ��

�
�
0
xT � +	��

��� ��0xT�1 � +	�
�

+�	z�T+2 +��
0
�	z

�

T+1 ��	z+T
+�T+2 +��

0
�T+1 � �T :

These have expected values:
E

hb�a�;T+2jT j zT+2; zT+1
i
= 0;

and:
E

he�a�;T+2jT j zT+2; zT+1
i
= ��	r� +�	z

�
T+2 +��

0
�	z

�
T+1 �D�	z+T :

As E[z�T+i] = 0, then:

E

he�a�;T+2jT
i
= ��	r�:

Again, the regime shift acts as a post-forecasting break, and hence uniformly worsens the bias of the
DDV relative to the VEqCM, exacerbating its variance loss.
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4.3 Structural break and regime shift

We now allow for both the shift in policy regime from � to ��, affecting data from time T +1 onwards,
and the previous deterministic shift at time T . Now, the regime shift might be in response to the forecasts
from either the VEqCM or the DDV. Thus, xp

T+j denotes the post-break and policy-change data, for
j = 1; 2:

�xp
T+j = 


� +�
�
�
0
x
p

T+j�1 � � +	�
�
�
�
+�	�

z
�

T+j + �T+j: (30)

We denote post-policy forecasts by c�xpT+ijT , and let zp
T+i = �

� + zT+i � �, so that z�T+i = z
+
T+i as

before.

4.3.1 One-period ahead

Now:
�xp

T+1 = 

� +�

�
�
0
xT � � +	�

�
�
�
+�	�

z
�

T+1 + �T+1;

whereas: c�xpT+1jT = 
 +�
�
�
0
xT � +	��

�
+�	z�T+1: (31)

The corresponding forecast error, given (30), is (b�p
T+1jT

= �xp
T+1 � c�xpT+1jT ):

b�p
T+1jT

= r
 ��r +�r	
�
�
� + z�T+1

�
+ �T+1: (32)

Equation (32) has the same conditional and unconditional expectation as (18) only when	� = 	, since:

E

hb�p
T+1jT

j zT+1; zT
i
= r
 ��r +�r	

�
�
� + z�T+1

�
: (33)

The DDV forecast remains: f�xpT+1jT = �xT ;

with forecast error e�p
T+1jT

= �xp
T+1 � f�xpT+1jT :

e�p
T+1jT

= �	�r� +��
0�xT +�	�

�
z
�

T+1 � z+T
�
+��T+1;

which on average equals:

E

he�p
T+1jT

j zT+1; zT
i

= �	
�r� ��

�
�
0
�

�
(r �r	�)

+�	��z�T+1 �
�
In ���0

�
�	

�
z
+
T : (34)

Compared to (19), the errors in (34) are ‘increased’ by �	�r� ( there could be offsets between changes
in parameters). When the only structural break is a change in	 to	� in response to the policy shift, (as
in, say, the Lucas, 1976, critique), then:

E

hb�p
T+1jT

i
� E

he�p
T+1jT

i
= �

�r	�� �	�r� � �0�r	�
�
;

which could take either sign for any element. Thus, despite agents possibly responding to a regime shift
by a structural break, the VEqCM forecasts of the policy effect could be of value relative to the ‘time-
series’ forecasts.
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4.3.2 Two-periods ahead

Since:

�xp
T+2 = 


� +�
�
�
0
x
p

T+1 � � +	�
�
�
�
+�	�

z
�

T+2 + �T+2

= 

� +��

�
�
0
xT � � +	�

�
�
�
+�	�

z
�

T+2 +��
0
�	

�
z
�

T+1 + �T+2 +��
0
�T+1;

the respective forecasting errors conditional on zp
T+2, zp

T+1 are:

c�xpT+2jT = 
 +�
�
�
0bxp
T+1jT

� +	��
�
+�	z�T+2

= 
 +��
�
�
0
xT � +	��

�
+�	z�T+2 +��

0
�	z

�

T+1;

for the VEqCM, as:

bxp
T+1jT

= xT + 
 +�
�
�
0
xT � +	��

�
+�	z�T+1;

so: �
�
0bxp
T+1jT

� +	��
�
= �

�
�
0
xT � +	��

�
+ �0�	z�T+1;

and the DDV remains f�xpT+2jT = �xT . The forecast errors are denoted by b�p
�;T+2jT

= �xp
T+2 �c�xpT+2jT and e�p

�;T+2jT
= �xT+2 � f�xpT+2jT , so that conditional on zT+i:

b�p
�;T+2jT

= r
 ��� (r �r	��)
+�r	z�T+2 +��0�r	z�T+1
+�T+2 +��

0
�T+1;

and:

e�p
�;T+2jT

= ��

�
�
0
xT � � +	�

�
�
��� ��0xT�1 � � +	�

�

�
+�	�

z
�

T+2 +��
0
�	

�
z
�

T+1 ��	�
z
+
T

+�T+2 +��
0
�T+1 � �T :

These have expected values:

E

hb�p
�;T+2jT

j zT+2; zT+1
i
= r
 ��� (r �r	��) +�

�r	z�T+2 + �0�r	z�T+1� ;
and:

E

he�p
�;T+2jT

j zT+2; zT+1
i

= �
�
Ir ��2

�
(r �r	�) +��	�r�

+�	�
z
�

T+2 +��
0
�	

�
z
�

T+1 �D�	�
z
+
T
:

As E[z�T+i] = 0, then:

E

hb�p
�;T+2jT

i
= r
 ��� (r �r	��) ; (35)

and:
E

he�p
�;T+2jT

i
= �

�
Ir ��2

�
(r �r	�) +��	�r�: (36)
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Table 1 Unconditional bias effects of structural breaks and regime shifts.

r
 r r	�� r� r	r�

E

hb�p
T+1jT

i
In �� � 0 0

E

he�p
T+1jT

i
0 � (Ir ��) �� (Ir ��) �	

� �� (Ir ��)

E

hb�p
�;T+2jT

i
In ��� �� 0 0

E

he�p
�;T+2jT

i
0 �

�
Ir ��2

� �� �Ir ��2
�
��	

� �� �Ir ��2
�

4.4 Overview

We summarize the unconditional forecast-error biases in table 1. The coefficients represent the impacts
of the different breaks on the two forecasting procedures, one and two steps ahead, for growth rates. To
clarify the patterns for longer horizons, the regime shift has been partitioned into the effect through any
changes in the policy-reaction coefficientr	, scaled by the second-regime policy mean, the policy mean
change r�, and the interaction term r	r� (note that �� (Ir ��) = ��(�0�)). Since the roots of
� are inside the unit circle, �j ! 0 as j ! 1, so in the limit, for r and r	�

�, the DDV biases
converge to the same magnitude, but the opposite sign, as the VEqCM at one-step, whereas the VEqCM
biases converge to zero. Thus, only short-horizon benefits result from using the DDV as the baseline for
such breaks. Conversely, the VEqCM is systematically wrong for changes in the growth rate 
. Finally,
the DDV biases from a regime shift converge to zero when r	= 0. The table emphasises the different
susceptibilities of the two approaches to the different shifts, thereby indicating possibilities for using each
to ‘correct’ the other.

5 Policy-change corrections to robust forecasts

Any need to combine two disparate models on the same information set is evidence that both are incom-
plete: see Clements and Hendry (1998a). The encompassing principle argues for finding the congruent
representation which can explain the failures of both models, but in the short-run that may prove infeas-
ible. When the two models are differently susceptible to the causes of predictive failure, certain com-
binations could be beneficial: however, the relevant combination must reflect the motivation for pooling
(namely, the impacts of breaks), rather than the usual grounds as discussed in (say) Bates and Granger
(1969).

5.1 Pooling policy changes and DDV forecasts

The case of interest is when the robust forecast is made from the DDV, and that prompts a policy response
to change the original setting zT+h to the actual post break and policy change outcome zp

T+h. However,
by construction, the DDV forecast is unaltered, so its forecast error changes one-for-one with the policy
change. Since a deterministic shift happened one period earlier, a major change in �xT+1 would just
have occurred, inducing a correspondingly changed value for �xT+2, and leading to forecast failure in
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the VEqCM. Conversely, forecasts from the open VEqCM are revised unconditionally by the difference
between (14) and (31):

E

hc�xpT+1jT � c�xT+1jT
i
= �	r�:

Under the assumptions used here, the change in the realization over what it would have been provision-
ally, namely the difference between (13) and (30), is:

E
�
�xp

T+1 ��xT+1
�
= �	�r�: (37)

If the policy-reaction matrix remained constant (	� = 	), the econometric model would correctly
predict the impact of the regime shift, despite the deterministic structural break. Otherwise, the policy-
reaction mistake is:

�r	r�:

The DDV forecast error due to the policy change is equal to (37). Consequently, a combined forecast
of the form:

�xT+1jT = f�xpT+1jT + c�xpT+1jT � c�xT+1jT (38)

implies an unconditional forecast-error bias from (34) of (�T+1jT = �xp
T+1 ��xT+1jT ):

E
�
�T+1jT

�
= E

�
�xp

T+1 ��xT
���	r� = �

�r	r� + (Ir ��) (r �r	�)
�
;

which avoids much of the structural break, yet captures some, and possibly all, of the policy effect. This
exploits the fact that the DDV is robust to the past change in the intercept, whereas the VEqCM takes
account of the current change in policy. Further, as the modification from the VEqCM is deterministic,
the combined procedure has the same variance as the DDV forecast would have had in the absence of
policy change (�� = �), so after the change, for	� = 	, (38) dominates both the DDV and the VEqCM
forecasts in mean, but loses to the latter in variance.

Similarly, at two-periods ahead, let:

�xT+2jT = f�xpT+2jT + c�xpT+2jT � c�xT+2jT ;
then, as:

E

hc�xpT+2jT � c�xT+2jT
i
= ��	r�

for ��;T+2jT = �xp
T+2 ��xT+2jT :

E
�
��;T+2jT

�
= �

�
�r	r� +

�
Ir ��2

�
(r �r	�)

�
:

When 	� = 	, so the policy response does not change:

E
�
��;T+2jT

�
= �

�
Ir ��2

�r = ���0� (Ir +�)r ; (39)

which compares favourably with (36), and will be smaller than (35) when the roots �0� are small. As
before, there is no variance impact from the scenario-change correction. We now illustrate the empirical
relevance of such combinations.
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6 Empirical illustration: DHSY revisited

Davidson, Hendry, Srba and Yeo (1978) developed an equilibrium-correction model of constant-price
UK consumers’ expenditure on non-durables and services (c) as a function of real personal disposable
income (i) and annual inflation (�4pt), where lower case letters denote logs and �4 =

�
1� L

4
�

when L
is the lag operator. The sample period was 1959(2)–1976(2) after initial values for lags, less 8 observa-
tions for forecasts. On estimating a variant of their model, our results are (all computations and graphics
were produced by GiveWin and PcFiml: see Doornik and Hendry, 1996, 1997):

�4ct = 0:25
(0:04)

�4it + 0:24
(0:04)

�4it�1 � 0:42
(0:11)

�4pt + 0:35
(0:11)

�4pt�1 (40)

� 0:086
(0:015)

(c� i)t�4 + 0:66
(0:22)

�4dt;

R
2 = 0:958 b� = 0:0061 SC = �9:92

Far(5; 54) = 0:25 Farch(4; 51) = 1:62 Fhet(12; 46) = 0:81 Fres(1; 58) = 0:10

�
2
nd
(2) = 0:39 FCh(8; 59) = 0:79 V = 0:092 Jt = 1:31

In (40), dt is a dummy variable associated with a pre-announced threat to change Purchase Tax, equal to
zero except in 1968(1)–(2) when it takes the values +0:01, �0:01, so its coefficient is interpretable as a
percentage change in expenditure: b� denotes the residual standard deviation, expressed as a percentage of
the level of the associated variable, and SC is the Schwarz criterion (see e.g., Hendry, 1995a). The resid-
ual diagnostic tests are of the form Fj(k; T�l), which denotes an F-test against the alternative hypothesis
j for: 5th-order serial correlation (Far; see Godfrey, 1978), 4th-order autoregressive conditional heteros-
cedasticity (Farch; see Engle, 1982), heteroscedasticity (Fhet; see White, 1980), the RESET test (Fres; see
Ramsey, 1969), a parameter constancy test over 1974(3)–1976(2) (FCh; see Chow, 1960), a chi-square
test for normality (�2

nd
(2); see Doornik and Hansen, 1994), and the variance-change and joint-parameter

constancy tests from Hansen (1992) (denoted Jt and V):� and �� denote significance at the 5% and 1%
levels respectively. In (40), we have left�4pt to enter freely, rather than as part of a cointegrating relation
– which the results in Davidson et al. (1978) could be interpreted as supporting, as we wish to consider
models that exclude inflation. The cointegration relation ct � it is the log of the average propensity to
consume, and so is denoted apct in the sequel. For later analyses of the performance of (40), see inter
alia Hendry and von Ungern-Sternberg (1981), Davis (1982), Birchenhall, Bladen-Hovell, Chui, Osborn
and Smith (1989), Carruth and Henley (1990), Hendry, Muellbauer and Murphy (1990), Muellbauer and
Murphy (1989), Harvey and Scott (1994), Hendry (1994) and Muellbauer (1994).

Here, we embed their model, denoted by the acronym DHSY, in a 3-equation VAR for ct, it and �4pt

and replicate the main features of their results. Next, we drop the inflation variable from the system, and
develop a model for (ct, it) which reproduces the consumption-income relation, but fails on forecast tests
(and did so at the time). Thus, inflation, responding to the impact of the first ‘Oil crisis’, induced a shift in
the equilibrium mean of apct, and our test period – commencing in 1974(3) – is after that shift. We also
develop a ‘time-series’ model for ct which does not fail on forecasting, but which would not respond to
policy changes that affected income, such as altered income-tax rates. Then we generate new data from
the DHSY system treating it as the DGP, but with income growth increased by 2.5% throughout the fore-
cast period. Since the in-sample data are unaltered, the time-series model produces identical forecasts
of the changed data, but the policy-modified econometric model delivers altered forecasts. Finally, we
use the difference between these two ‘runs’ of the econometric model (a measure of the policy effect)
to intercept-correct the time-series forecast, to reflect both income-tax changes and the hidden effects of
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Table 2 System goodness of fit and evaluation.

2
666666666666664

statistic c i �4p VAR
b� 0:88% 2:06% 0:82%

Far (5; 46) 0:88 2:06 0:19

Farch (4; 43) 0:81 0:25 3:55�

Fhet (32; 18) 0:36 0:44 1:63

�
2
nd

(2) 2:65 3:02 2:90

F
v

ar
(45; 101) 1:08

F
v

het
(192; 85) 0:54

�
2 v

nd
(6) 10:6

3
777777777777775

Table 3 System residual cross correlations.
2
64

c i

i 0:71 �
�4p �0:47 �0:31

3
75

the omitted variable which induced the structural break.

6.1 A three-equation VAR

The variables (ct, it, �4pt) were treated as I(1) and analyzed over the whole sample using a VAR with
5 lags, including a constant, linear deterministic trend, and �4dt. Table 2 shows the individual equation
and system goodness-of-fit and evaluation statistics. Vector tests are shown as Fv

j
(k; T � l), and their

outcomes are consistent with a congruent system.
Table 3 records the inter-correlation structure of the residuals, which reveals important features to

model in all the equations, but we will focus on those between c and (i, �4p). The eigenvalues of the
long-run matrix are�0:71, and�0:23�0:08�, using � to denote

p�1 to avoid confusion with income, i,
so the rank is non-zero, and is unlikely to be three given the data. The system dynamics are represented
in table 4 by the eigenvalues of the companion matrix (denoted �), where we also record the modulus
(j�j). These eigenvalues are difficult to interpret, comprising the four roots of unity, a further unit root,
and four large complex roots, with the remainder neither zero nor unity. To understand their composition,

Table 4 System dynamics.
2
6664

� �1 � �� 0:95 � 0:32� 0:89 � 0:15� 0:13 � 0:84�

j�j 1 1 1 1:00; 1:00 0:90; 0:90 0:84; 0:84

� �0:51� 0:55� �0:48 �0:68 0:51� 0:26�

j�j 0:75; 0:75 0:48 0:68 0:57; 0:57

3
7775
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consider the simplest version of the VAR written as:

�4ct = �0:1 (c� i)t�4 + v1;t

�4it = v2;t

�4pt = �4pt�1 + v3;t:

This system has 15 eigenvalues: six are zero, with �1:0�, �1:0, �0: 974�, �0: 974, and 1, thereby in-
ducing the four roots of unity, the extra unit root, and the four large roots, with the zeroes replaced by
non-zero values in table 4, corresponding to the additional short-run dynamics. Thus, despite the five
unit roots, the data are I(1).

For ct, lags 3–5 were significant (on F(3; 49), at 5% or less), for it, lags 1 and 5, and for �4pt, only
lag 1: the trend was insignificant. As fig. 1 shows, the first two equations are constant, with their 1-
step residuals having constant 95% confidence bands, but the equation for inflation is not constant: as
a consequence, the system break-point Chow (1960) tests lie above the 1% critical values for a short
period.

1970 1975

-.01

0

.01

Consumption

1970 1975

-.025

0

.025

Income

1970 1975

-.01

0

.01

.02
Inflation

1970 1975

.6

.8

1

Break-point Chow tests

1% line

Figure 1 System recursive graphical statistics.

6.2 Cointegration

The fitted and actual values of this system in levels have correlations of 0:998, 0:992 and 0:991, so we
turn to reductions to I(0). The cointegration analysis restricted the trend to the cointegration space, and
yielded table 5 (see Doornik and Hendry, 1997, Banerjee, Dolado, Galbraith and Hendry, 1993, Jo-
hansen, 1995, and Doornik, Hendry and Nielsen, 1999). For each value of the rank r of the long-run
matrix in the Johansen (1988) procedure, table 5 reports the log-likelihood values (`), eigenvalues (�)
and associated maximum eigenvalue (Max) and trace (Tr) statistics together with the estimated cointeg-
rating vectors (b�) and feedback coefficients (b�). Although the null of no cointegration is not rejected
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Table 5 Cointegration analysis.

2
666664

r 1 2 3

` 980 986 990

� 0:21 0:17 0:11

Max 15:9 12:7 7:8

Tr 36:4 20:4 7:8

3
777775
;

2
666664

b� 1 2 3

c �0:18 0:31 �0:04
i 0:63 0:32 �0:12

�4p �0:26 �0:38 �0:01

3
777775

2
6664
b�0 c i �4p t

1 1 �0:68 0:45 �0:0014
2 �2:28 1 �0:44 0:0063

3 �1:93 2:40 1 �0:0075

3
7775

Table 6 Restricted cointegration analysis.
2
6664

b� SE

c �0:10 (0:036)

i 0 (�)
�4p 0 (�)

3
7775 ;

2
64

c i �4p tb�0 1 �1 1:18 0

SE � � (0:21) (�)

3
75

at conventional I(1) critical values (even ignoring the degrees-of-freedom corrections to the Tr statistic
suggested by Reimers, 1992), given that (40) has a feedback coefficient with a t-value of 7 when the
constant is excluded, the first cointegrating vector may be a consumers’ expenditure relation. Consist-
ent with this, when the trend is excluded from the cointegration relation, the coefficients for the income
and inflation ‘elasticities’ become 0:93 and �0:69 respectively (�2(1) = 0:30). The sizes of the other
feedback coefficients might suggest a violation of long-run weak exogeneity, but enforcing that together
with a unit income elasticity yielded �

2(4) = 6:7. The results are shown in table 6. These results are
close to the long-run relation in (40) so their long-run analysis was not much distorted by being single
equation.



20

Table 7 DHSY vector model goodness of fit and diagnostics.

2
666664

statistic value
F
v

ar
(36; 124) 0:79

F
v

het
(204; 103) 0:93

�
2 v

nd
(6) 11:2

F
v

Ch
(24; 56) 1:20

3
777775

Table 8 DHSY vector model residual correlations.2
64

c i

i 0:01 �
�4p �0:27 �0:50

3
75

6.3 A simultaneous-equations model

A model of the system was developed by sequential simplification in fourth differences for c and i, and
first differences for �4p, incorporating the DHSY feedback term. This yielded (41).

DHSY vector-model FIML estimates
�4ct = 0:27

(0:08)

�4it + 0:21
(0:07)

�4it�1 � 0:22
(0:19)

�4pt + 0:14
(0:19)

�4pt�1

� 0:081
(0:017)

apct�4 + 0:67
(0:24)

�4dt

�4it = 0:69
(0:29)

�4ct�1 + 0:53
(0:14)

�4it�1 � 0:55
(0:12)

�4it�4 + 0:35
(0:12)

�4it�5 + 0:004
(0:006)

�1�4pt = 0:14
(0:08)

�1�3pt�1 + 0:28
(0:07)

�4ct�2 + 0:28
(0:10)

�4ct�4 � 0:17
(0:05)

�4it�5 � 0:007
(0:002)

apct � apct�4 +�4ct ��4it

(41)
The likelihood-ratio test of the over-identifying restrictions on the I(0) VAR yielded �

2(38) = 44:7,
and table 7 reports the model goodness-of-fit and diagnostic statistics. On the vector diagnostic tests,
the model is congruent with the sample evidence, and remains constant over the forecast period. The
residual b�s are 0:64%, 2:00%, and 0:74%: and their cross correlations for the consumption equation
are dramatically smaller than those in the VAR, consistent with finding closely similar estimates in OLS
and FIML. For the rest of the paper, we treat (41) as the DGP against which to compare the remaining
findings. Figure 2 reports the comparative forecast accuracy of (41), a mis-specified version which omits
inflation, and a ‘time-series’ model, described in the next two sections.

6.4 A mis-specified econometric model

The natural mis-specification to consider is one where the econometrician omits inflation from the ana-
lysis of c and i, as DHSY did initially, since this induces a shift in the equilibrium mean of apct, causing
the model to suffer forecast failure. Accordingly, we now develop such a bivariate system. As the form



21

1960 1965 1970 1975

0

.05

Fitted and actual

1973 1974 1975 1976

0
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Forecasts
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.02 Time-series model

1974 1975 1976

-.02
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.02
Forecast errors
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-.02

0

.02 DHSY

Figure 2 Fitted and actual values, 1-step forecasts, and forecast errors from all models.

Table 9 Mis-specified model statistics.

2
666664

statistic value
F
v

ar
(16; 94) 0:89

F
v

het
(72; 87) 1:03

�
2 v

nd
(4) 3:57

F
v

Ch
(16; 56) 2:95��

3
777775

of analysis is close to that of the previous model, we only record the final model in (42) and its statistics.

Mis-specified model FIML estimates
�4ct = 0:35

(0:07)

�4it + 0:15
(0:06)

�4it�1 � 0:049
(0:010)

apct�4 + 0:60
(0:27)

�4dt

�4it = 0:93
(0:33)

�4ct�1 � 0:35
(0:30)

�4ct�3 + 0:45
(0:16)

�4it�1

� 0:47
(0:14)

�4it�4 + 0:37
(0:13)

�4it�5 + 0:007
(0:007)

apct � apct�4 +�4ct ��4it

(42)

The residual b�s are 0:73% and 1:94%, the residual cross-correlation is �0:11 and the likelihood-ratio
test of the over-identifying restrictions is �2(16) = 24:6. Table 9 reports the model goodness-of-fit and
diagnostic statistics. The forecast test strongly rejects the null of parameter constancy, whereas the in-
sample tests easily accept. Despite the forecast failure, the consumption-income nexus is well modelled,
and remains close to that in the postulated (DHSY) DGP.
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0

.025

.05

.075 DHSY 

1974 1975 1976

-.05

-.025

0

.025

.05

.075 Econometric model with IC

Figure 3 8-step ahead forecasts of �4ct from all models.

6.5 A ‘time-series’ model

The time-series analyst is assumed to have differenced the data twice, to remove both seasonal and I(1)
unit roots, and so investigates �1�4ct and �1�4it: see Prothero and Wallis (1976). However, (43)
treats these variables as unrelated, mimicking a univariate analysis of the former to illustrate the policy
analysis aspects.

‘Time-series’ model FIML estimates
�1�4ct = 1:30

(0:32)

�4dt b� = 1:01%

�1�4it = 0:00
(�)

b� = 2:48%

(43)

In sample, the residual standard deviations greatly exceed those of the mis-specified econometric
model, and many of the diagnostic statistics reject the adequacy of this model, with some of the mis-
specifications due to the moving-average error induced by over-differencing, and others perhaps to the
resulting incorrectly-estimated standard errors: see table 10. However, modelling the moving-average
error would lose some of the robustness to deterministic shifts (see Clements and Hendry, 1998b:
also, Clements and Hendry, 1997, investigate the impact of seasonal shifts on forecasts). Despite the
considerable non-congruency on these in-sample tests, the forecast test does not reject over the same
period that the ‘econometric model’ failed. This reflects better forecasting and not just incorrectly-wider
confidence bands, as fig. 2 shows, where the first row records the outcomes in the space of �4ct for the
‘econometric model’, with the ‘time-series model’ in the second row, and the DHSY model in the third
row.

Nevertheless, (43) is constructed to deliver the same forecasts before and after the income-tax
change, although (42) would reflect the consequences thereof if the policy effect were included (this is
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Table 10 ‘Time-series’ model statistics.
2
666664

statistic value
F
v

ar
(16; 104) 4:97��

F
v

het
(18; 147) 2:03�

�
2 v

nd
(4) 6:78

F
v

Ch
(16; 60) 1:06

3
777775
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Figure 4 8-step ahead forecasts for ct from all models.

to mimic the role of an ‘exogenous’ policy variable). Thus, it may be possible to beat the ‘time-series’
forecasts in such a setting, as x6.7 considers.

6.6 Dynamic forecasts

The above analysis recorded the sequence of 1-step forecasts, so we now evaluate the forecast perform-
ances on 8-step forecasts, including an attempt to intercept correct (IC) the ‘econometric’ model using the
residual at the forecast origin to set it back on track (see Clements and Hendry, 1996b). The outcomes for
�4ct are shown in fig. 3, and for levels in fig. 4. The IC improves the mis-specified econometric model,
but would have worsened DHSY if also used there.

These 8-step results are after the break induced by the oil crisis, so we also record 12-step forecasts
to represent pre-break forecasting. As anticipated from the theory in Clements and Hendry (1998b), all
the pre-break outcomes are poorer, and relatively similar – (43) is indeed not as robust to unanticipated
breaks, although it remains the least affected.
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Figure 5 12-step ahead forecasts for ct from all models.
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Figure 6 Original and post-policy data for c, y, �4p, c� y, �4c and �4y.
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6.7 Post-policy forecasts

The final stage was to construct the data that would have resulted after a substantial policy change aimed
at preventing the large fall in income and expenditure that actually occurred. To simulate a large income-
tax reduction, income was increased by 2.5%, over what it would otherwise have been, by adding 0.025
to i using an indicator variable for the remainder of the forecast period. The data on �4p, i and c were
sequentially generated, observation by observation, using the coefficients in (41) and adding on its resid-
uals. Thus, had the policy indicator been zero, the original data would have been reproduced precisely by
this process. Figure 6 compares the original and post-policy data, showing that the policy successfully
raised expenditure, but also induced some additional inflation from the cross-equation feedbacks.

Next, each of the four models was used to forecast this altered future data. We already know that
the time-series forecasts are unaltered, so those errors change to the extent the data are shifted. The
DHSY and mis-specified econometric models include the policy dummy with an imposed coefficient of
unity. The IC model needed two non-zero periods before the forecast to avoid perfect collinearity with
the policy indicator, but otherwise was unaltered. Figure 7 records the four sets of 8-step forecasts. The
time-series forecasts remain useful, especially compared to those from the econometric model, and the
great improvement from intercept-correcting the latter is obvious.

1974 1975 1976
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DHSY

1974 1975 1976
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0

.05
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Time series

1974 1975 1976
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0

.05

.1
Econometric model

1974 1975 1976

-.05

0

.05

.1
Econometric model with IC

Figure 7 8-step ahead forecasts of �4ct from all models on the post-policy data.

Finally, we now ‘scenario correct’ using the theory developed above, by computing the differences
between the trajectories of the econometric models with and without the policy indicator, and add that to
the time-series forecasts to have a ‘doubly-robust’ forecast as in (38). Figure 8 reports the comparative
policy responses of the DHSY and econometric models. As can be seen, the policy responses generated
by the econometric model are close to those from the DHSY DGP, despite the former omitting inflation.
From this perspective, the econometric model remains valuable for policy, and would have correctly pre-
dicted the impact of the regime shift. In turn, this suggests the scenario changes could be a useful basis
for ‘correcting’ the time-series forecasts, since the data have been shifted by the amounts computed by
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the DHSY DGP.

1974 1975 1976 1977

.01

.02

.03

.04
∆ 4

c

1974 1975 1976 1977

.02

.04

.06

Econometric model 

c

1974 1975 1976 1977

-.06

-.04

-.02 c-i

DHSY

∆ 4
c

Figure 8 Comparative policy responses of DHSY and econometric model.

Figure 9 reports the forecast errors from all the methods for comparison.

1974 1975 1976
-.075

-.05

-.025

0

.025
DHSY

Original data

Policy-modified data

1974 1975 1976
-.075

-.05

-.025

0

.025

Time-series model

1974 1975 1976
-.075

-.05

-.025

0

.025
Econometric  model

IC

no IC

1974 1975 1976
-.075

-.05

-.025

0

.025 Time series model with scenario effects

without IC

with IC

Figure 9 8-step ahead forecast errors from all models on the post-policy data for �4ct .
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Original Data
Model DHSY Ect TS IC
Mean �1:54 �2:64 �0:75 �0:10

SD 2:58 2:84 1:36 2:35

New Data
Model DHSY Ect TS IC TS(+Ect) TS(+IC)
Mean �1:92 �3:53 1:48 �0:68 �1:61 �1:31

SD 2:85 3:20 1:21 2:46 1:45 1:73

Table 11 8-period ahead forecast-error means and standard deviations.

There is a clear benefit from the new form of intercept correction relative to the econometric models’
forecasts, and the accuracy is close to that achieved by the extended DHSY system. However, the time-
series forecasts remain accurate even if not corrected. Table 11 records the percentage forecast errors and
their standard deviations (TS, Ect, and DHSY, respectively denote (43), (42) and (41); IC is the intercept-
corrected econometric model; TS(+Ect) is the scenario-corrected TS forecast based on adding the dif-
ference between the Ect based on the new and the original data, and TS(+IC) is the scenario-corrected
TS using the difference between the IC based on the new and original data.1 Thus, for the new data TS
is the most accurate, with IC close, and on mean forecast error, the latter does best. Both TS(+Ect) and
TS(+IC) perform reasonably, but do not dominate because the policy shift happens to induce an insigni-
ficant positive bias in TS (see fig. 9c). It is interesting how poorly the DHSY forecasting model performs,
given it is the DGP.

Original Data
Model DHSY Ect TS IC
Mean 0:67 �0:28 0:36 1:91

SD 1:40 1:71 0:80 1:24

New Data
Model DHSY Ect TS IC TS(+Ect) TS(+IC)
Mean 0:55 �0:77 2:27 1:45 �0:10 �0:07
SD 1:49 1:80 1:27 1:28 0:87 0:84

Table 12 4-period ahead forecast-error means and standard deviations.

Differences are more dramatic when the first four-period ahead forecasts are considered as in table 12.
Now, for the new data TS(+IC) is a clear winner, closely followed by TS(+Ect), with TS on the original
data next best. Thus, the scenario corrections can be useful in modifying a statistical device for forecast-
ing.

1The two sets of DHSY outcomes differ only because the policy indicator needed a small non-zero value in-sample to allow
estimation.
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7 Conclusion

The main conclusions relate to the three issues posed in the introduction. The dominance in forecasting
of an econometric policy model by a purely statistical device is not sufficient to sustain the use of the lat-
ter for policy: a statistical forecasting procedure which embodies no links between target variables and
policy instruments has no implications for economic policy analysis, so outperforming on forecasting is
clearly insufficient to justify policy analysis. Further, since the sources of forecast failure may be unre-
lated to the policy issue under analysis, forecast dominance does not by itself demonstrate the invalidity
of the econometric model for the policy: the empirical example illustrated this proposition. However,
combining robustified forecasts with policy-scenario changes may dominate either alone in a world sub-
ject to regime shifts: forecasting procedures designed to be robust to deterministic shifts that have oc-
curred prior to forecasting could be improved by ‘intercept correcting’ them using the policy-change
effects entailed by the econometric model. For short-horizon forecasts, the UK consumers’ expenditure
model illustrated this result. These findings exploited the different forecast biases of the various models
to breaks pre and post forecasting, discussed in Hendry and Clements (1998) and Clements and Hendry
(1998c), but ignored the variance consequences.

The present paper is more in the form of an existence theorem for the combination of robust fore-
casts and policy-change corrections than a practical manifesto, in that we have not yet developed criteria
for when the proposal will outperform. The usual ‘combination of forecasts’ approach (see e.g., Bates
and Granger, 1969, Diebold, 1989, and Coulson and Robins, 1993) does not seem appropriate, since in-
sample correlations between forecast errors are unlikely to be a useful guide when deterministic shifts
occur. Moreover, the corrections proposed above involve the difference between two dynamic forecasts
of the econometric model, and not simply its second set of forecasts. A first step would be to determ-
ine when a deterministic shift occurred just before the forecast origin, and we are currently developing
directed tests for such an event. That would enhance the decision to adopt a robust device. A second
step would involve checking if the policy predictions from the econometric system remained reliable in
the face of the shift, which is bound to involve judgement, perhaps supported by the results of tests of
parameter invariance to previous shifts (see e.g., Favero and Hendry, 1992, Engle and Hendry, 1993, and
Ericsson and Irons, 1995), and of the policy relevance of the model (see Granger and Deutsch, 1992).
We have assumed that the in-sample econometric model coincides with the DGP, and allowing for model
mis-specification and estimation must weaken the results. An alternative we are also investigating is us-
ing the time-series forecasts to ‘intercept correct’ the post-policy forecasts of the econometric model: as
analyzed in Clements and Hendry (1998d), this may provide a useful route to avoiding forecast failure
when structural breaks and regime shifts occur.
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