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Abstract: This paper investigates the effects of the omission of relevant variables
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1991). We show that underspecification of the statistical model leads to either failure
in detecting cointegration or underestimation of the cointegrating rank. Although in
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[. Introduction
The likelihood ratio (LR) tests for cointegration proposed by Johansen (1988, 1991)
have been widely applied in empirical research and it is of interest to study their
behaviour under various types of misspecification of the statistical model (SM) used
for cointegration testing. The robustness of the LR tests for cointegration has been
investigated using Monte Carlo simulations under omitted or irrelevant (redundant)
step and impulse dummy variables (see Andrade et al., 1994), dynamic misspecifica-
tion using a data generating process (DGP) with autoregressive and moving average
dynamics (see Boswijk and Franses, 1992; Cheung and Lai, 1993) and non-normality
assuming non-symmetric and leptokurtic innovations (see Cheung and Lai, 1993).
An interesting form of misspecification is the underspecification or overspecifica-
tion of the statistical model used for cointegration testing. This means that with
respect to the DGP, either some variables have been omitted from the SM or some
of the variables included in the SM are irrelevant. Podivinsky (1998) investigates
the performance of the LR tests for cointegration (mainly the trace statistic) when
there is a mismatch between the variables used in the SM (used for the cointegration
tests) and the variables entering the true cointegrating vectors. Using Monte Carlo
simulations he finds that the LR tests performed on an overspecified SM detect at
least the true number of cointegrating vectors. He also finds that LR tests based

on only two variables: (i) have low power when there are in fact two cointegrating



vectors among three variables, and (ii) may not detect a cointegrating vector if there
is only one cointegrating vector among three variables. The potential importance of
these results for the applied work is illustrated by DeLoach (2001) who uses LR tests
for cointegration (trace and maximal eigenvalue statistics) to test the hypothesis of
cointegration between the relative price of nontradables and real output (which is
consistent with the productivity-bias hypothesis of Balassa and Samuelson). In a
two variable model (relative price of nontradables, real output) he finds evidence of
cointegration for only two out of the nine countries considered. He attributes the lack
of evidence of cointegration to the fact that certain variables, which mirror long-run
determinants of the relative prices, have been omitted from the SM. After having aug-
mented the system with the variable for oil prices, he finds evidence of cointegration
for four out the nine countries.

The purpose of this study is to investigate analytically the effects of I(1) omitted
variables from the SM, on the inference about the cointegrating rank, carried out using
the LR test statistics (trace and maximal eigenvalue), proposed by Johansen (1988,
1991). The consistency of the estimators of the parameters of the error correction
model under the above form of misspecification is also considered. The analytical
findings are supplemented by a Monte Carlo investigation and an empirical example.

The literature concerning the effects of misspecifications on the LR tests for coin-

tegration is limited mainly to Monte Carlo studies. The contribution of this paper



is to provide an analytical (asymptotic) investigation of the robustness of LR tests
for cointegration when relevant variables are omitted from the SM, and therefore an
analytical formulation of earlier Monte Carlo studies.

The organisation of the paper is as follows. Section II describes the model. Sec-
tions IIT and IV provide some asymptotic results concerning the implications of omit-
ted variables for the inference about the cointegrating rank and the consistency of
the maximum likelihood estimators of the parameters of the error correction model.
Section V provides illustrations in the form of Monte Carlo simulations and an em-
pirical example. Section VI concludes. The proofs of all propositions are presented
in the Appendix.

A word on notation. The symbols ‘2’ and % denote convergence in probability
and convergence in distribution respectively, as the sample size, T', tends to infinity.
A is the first difference operator, | M| denotes the determinant of a square matrix M,
sp(M) denotes the space spanned by the columns of the matrix M and I, denotes
the identity matrix of dimension n. Moreover E(-), Var(:) and plim(-) denote the

expected value, variance and probability limit of the random argument respectively.

II. The model

The DGP is given by a VAR(1) model in error correction form,

AXt:HXt_1+€t, tzl,Q,T (].)



where g; ~ 4.i.d.(0,€2) and X is a p x 1, I(1) process. In addition X; is cointegrated
so that II = Ozﬂ/ (ov and (3 are p X r matrices) with » < p — 1 cointegrating vectors 3
such that 5 X; ~ I(0).

The SM used for cointegration testing is assumed to be underspecified i.e. it

L

p
includes only a subset of the variables in the DGP. More specifically, let H =

kxp*
be a selection matrix, then the SM includes p* < p variables given by X; = H "X, so

that k = (p — p*) relevant variables are omitted.
The misspecified SM takes the form of a multivariate regression of H AX, = AX}
on H' X, ;. The relation between AX; and X; , does not have an error correction

form as the model

AX; =1"X;  +e, t=1,2,...,T (2)

is misspecified. In particular e; is in general correlated with X; ;. We also define
BY = H'3, and o) = H' a, but II* # oV 3V and 11* # H'TIH as HH # I,,.
Although 3 X, is I(0), 8V X7 is not necessarily I(0) since a linear combination of
I(1) variables is in general I(1). The nature of 3 X7 is determined by the variables
entering the cointegrating relations in the DGP. Since only the space spanned by the
columns of (§ can be estimated, in general, (r — k) cointegrating vectors (stationary

relations) can be found by applying elementary row operations on ﬂ/. Thus, ﬁ, can



be transformed so that

B Ba - ﬂpl
/ Bia Bao -+ ﬂpQ
6 = ~
ﬂlr ﬁ?r ﬂpr
;rl 52+1 ﬁ?;fm 1 o 0 - 0 0
TZ 52+2 ﬁ?p—(r—l)ﬂ 1 o - 0 0 (3)
B B e e B 1

where the symbol &~ denotes the row equivalent matrix of 5~ given by (3) and p— (r —
i)=p"—(r—k)+i,i=1,2,...,7is the number of non-zero elements in the i-th row.
Given that only p* variables are included in the SM, we should be able to recover 1
cointegrating relations (using the underspecified SM), as long as p* — (r — k) +1i < p*.
Thus, at most , (r — k) (for i = r — k) cointegrating relations can be estimated from
the SM, by applying the same row operations on Y ason 3.

In what follows the analysis is based on the fact that the cointegrating vectors,
B, (as well as the adjustment coefficients, «) are not identified so § (and therefore
«) can be replaced by a non-singular transformation e.g. we can replace g by a
row equivalent matrix of 3. To avoid complicating the notation we retain the same

symbols for the parameters (and variables) and their non-singular transformations.
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Below we distinguish two cases:
Case (i). (r — k) < 0, where all the cointegrating relations in the DGP involve at
least one of the omitted variables, therefore 8 X7 ~ I(1).
Case (ii). (r — k) > 0, where there are ¢ < r, ¢ > (r — k), cointegrating relations
in the DGP which do not involve any of the k£ omitted variables, accounting also
for the event of fortuitous zeros. Therefore, some elements of ﬁ(l),Xf, ﬁ/HXf, say

are stationary, where (3;; is a submatrix of ﬂ(l) in the following partition, ﬂ(l) =
(1) ﬂll‘)(I;k / " . / "
. Then g\ X} = and 0, X; ~ I(0) while 5, X] ~
B X{
I(1). Here we assume that the actual cointegrating vectors can be found as the first

[ ﬂll 612

P*Xq  p*x(r—q)

q rows of ﬁ(l)l. Nevertheless, if the above ordering is not satisfied, the cointegrating
vectors can be isolated in the first ¢ rows of 8 using elementary row operations
(see above).

The eigenvalue equation that corresponds to (2) is

[ 51‘056‘61551! =0 (4)
T ) . T _
where 5§, = T~ 3(Xiy — X*)(Xiy — X, Sjo = T~V S(AX] — AX")(AX{ —
t=1 t=1
e ! !/ T <> A ! X~ T
AXY), Sfo = Sg = T X(X7y — X)(AXY — AXY), X* = T3 X}, and
t=1 t=1
B T
AX* =T 'Y AXF.
=1

The eigenvalue equation that corresponds to the DGP is

|)\SH — 5105&)1501| =0
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with S;j, ¢,7 = 0,1, defined similarly in terms of the process X; (the DGP).

Note that we can partition the stochastic vector X; into X; = where

xM
kx1
the upper (p* x 1) block holds the variables included in the SM and the lower (k x 1)

block corresponds to the omitted variables. Then, S,

1,7 = 0,1, is given by the top
left submatrix of the corresponding S;;, ¢,7 = 0, 1.

The matrix Sj; 'S5, S6 'Sk, has the same eigenvalues as the roots of (4), which

coincide with the non-zero eigenvalues of

S* = (DSllD)+(D510D)(DSO()D)+<DS()1D)

I- 0

where D = Pk 1 and here the superscript + denotes the Moore-Penrose
0 0
kxp* kxk

(generalised) inverse.

Sy 0
Let Q = , Q| # 0 then,
0 I

€L, = 8" =1Q7MIQL, — 87| = [QHIS*(¢) =0,
where S*(¢) = Q(¢I, — S*). Expanding the above equation,

(St — SioSe0 Ser 0
15*(Q)] = = [CL|I¢STy — S10S50 Sonl = 0. (5)
0 ¢y
As expected, there are k zero eigenvalues which correspond to the omitted variables.

The second factor of (5) is the characteristic polynomial in (4) associated with the
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SM. If the LR tests are to indicate the existence of cointegration in the underspecified
model, the second factor of (5) must give some eigenvalues with positive probability

limits.

III. Inference about the cointegrating rank

In order to investigate how the inference about the cointegrating rank is affected
we need to consider the asymptotic behaviour of S*(¢). In particular we examine
the limiting behaviour of the eigenvalue equation corresponding to the SM, in the

stationary and non-stationary directions as defined by the DGP.

Define By = (8,TY/23,), where 3, = 8,(8,3,)"%, 8, is p X (p — r) such that
2(1)

ﬂ(l) 1
BB, =0andp= |77 | B =| """ | then,
(2
8 v
kxr kx (p—r)

384 )8 T MBS*()B,
T3 5%(Q)8 TB.S*(()B.

|BrS*(¢)Br| =

C(BY'sHAW + 5O 8D) T 83 BY + 5B
- A1) qx 22 120 ax 3 | A2 H(2
7-12¢(3 55,80 + 3 82y 118 51,8" + B BY)

BV SiSi SusY T Shsi B || .

— 2(1)" qx ox—1 ox 120 o ax—1ax 21
7123 g gt 5x 80 11 g st s ALY

In order to analyse the limiting behaviour of (6) we resort to the Granger Represen-



tation Theorem which gives the following representation for X; in (1)

X, = oi}si + Oy (L)e, (7)

i=1
(see Johansen, 1996, Theorem 4.2). Then for the p*-dimensional vector of variables

X/ included in the SM we have the following representation, by using (7),
t
X;=C"> e+ Ci(L)e (8)
i=1
where C* = H'C, C;(L) = H Cy(L) both of dimensions p* x p and rank(C*) =

min(p*, p* — (r — k)). Thus, for case (i) rank(C*) = p* and for case (ii) rank(C*) =

(r* —q).

Proposition 1 gives the asymptotic results for the two cases.

T-12L. 0
Proposition 1. Case (i). When (r — k) <0, let To = , then
0o I,
/ ’ d ’ ! ~ = /
|YB7S*(¢)BrYr| — |(B* C*/ WW C* B*du| =0 9)
0

where B* = [ 30 B(Ll) ], p*xpand W = W(u) — fol W (u)du with W(u) being a

p-dimensional Brownian motion with variance Q0 and u € [0, 1].

I, 0 0

Case (ii). When (r —k) >0, let Tr= | o T2I,_, 0 | then

0 0 I,

1Y BrS*(¢)Br Y| 2
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1
|CEZ311»311 o Z2110286128»5'11||CB* C*/O WW duC” B*| =0 (10)

AXY 00 2opy, o

where B* = [ Bis _(Ll) ], p* % (p—gq), Var ,
) B X{ 25,0 28,6y,
W is defined as in case (i).

(9) shows that in the limit there are p roots at zero k of which exist by construction,
since the stochastic matrix B* C* fol WW'C* B* has rank p* almost surely. This
suggests that performing the LR tests for cointegration using the underspecified model
will lead to the rejection of the hypothesis of cointegration (i.e. acceptance of r = 0)
as the sample size becomes larger. The limit in (9) refers to case (i) where it is
assumed that all the cointegrating relations in the DGP involve at least one of the
omitted variables. Thus, all linear combinations of variables in the SM are /(1) and
therefore no cointegrating relations can be found.

(10) indicates that there are ¢ non-zero and (p — q) zero roots in the limit, which
suggests that ¢ cointegrating vectors can be detected in the underspecified model
as the sample size becomes large. The first factor in (10) gives the g positive roots
and the second the (p — r) zero roots. This is because in (10) the stochastic matrix
B¥C* fol WW' duC* B* with dimensions (p—q) x (p—q) has rank (p*—¢q) almost surely
and the k = (p — p*) zero roots appear in the second factor of (10) by construction.
The limit in (10) refers to case (ii) where ¢ of the cointegrating relations in the DGP
do not involve any of the k£ omitted variables, thus some linear combinations of the

11



variables in the SM are (0) and therefore some cointegrating relations can be found.

IV. Consistency

The analysis of consistency is carried out only for case (ii) where some cointegrating
vectors can be detected. For case (i) all the estimated eigenvalues converge in prob-
ability to zero and therefore the cointegrating space is consistently estimated by the
null space.

For the analysis of consistency we use the partition of § that appears in Section

11,
B bio
B=| P pxtra
Bor Ba
kxq  kx(r—q)
B Bll*
where 35, = 0. We define B = | (3, (111 and B! = p where
P*xq  p*x(p*—q) 5’
111
(p*—q)xp*

B, = ﬁllj_(ﬁlllj_ﬁlljjila By = 511(511511)71 and ﬂlllﬂllj_ = 0. B and B! are such

that the following relationship holds

B™'B=BB™' =03+ Bllj_ﬁlllj_ = I (11)

We have shown in Section III that the tests detect g cointegrating vectors, hence under

the assumption of cointegration IT* in (2) has rank ¢q. Thus, IT* can be expressed as
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IT* = auﬁln, where a1,? and f3;; are p* x ¢ matrices of rank g. The SM then takes
the form

AX] = anfy X, +e (12)
with Var(ef) = A*.

Let f3,,, @y, and A* be the maximum likelihood estimators of §,,, ay; and A*
calculated from the SM (2) (using (4)). The parameters 3,; and ay; correspond to
the p* x ¢ submatrices of 3, a in the DGP.

For the analysis of consistency we use a linear transformation of the columns of

511, which also maximises the likelihood function® given by

Bll = 611(311311)71 (13)
= Bn +B11L5/11¢511(B/11B11)71

= By +Bih

where the second equality follows by using (11) and by = 3y, 34,

a1 Q12
2Partitioning o similarly to 3 we obtain a = prxa prx(r=a) , where Ha = oV =

Q21 022
kxq kx(r—q)
a1 Q19 and aj1 are the adjustment coefficients that correspond to the cointegrating
p*Xq p*x(r—q)
vectors which can be detected in the underspecified model.
3In fact for any normalisation ¢ we can define [30 = [3(5 [3)’1 = B(c, B)’l; expanding around (3

and normalising 3 and 3 by ¢ 8 = ¢ 3 = I,., we obtain § — 3 = (I, — Be)(B—B)+ Op(\Bfﬁ\Q) (see

Johansen, 1996, p. 180) therefore the properties of B follow from those of B

13



P ~1! NG
We also define a1 = &q134;511 such that &;108,; = &110;; and

! !
~ 2 > > 15 7
a1 = glﬁn(ﬂll iklﬂn) B116811
!
AT 5 y—1
= glﬁn(ﬂll iklﬂn)

where the first equality follows from the fact that ay; = S53,,(8,,5701) " (see
equation (6.11) in Johansen, 1996) given that we can estimate (3;; by solving (4).

In addition,

! !
" A T
A" = 80_ 31511(511 Eﬁll) 511 fo

= SSO - SE)lell(Bllelgll)iléllsfﬂ

where the first equality follows from the expression for the estimator of the variance-
covariance matrix of the errors in the SM (see equation (6.12) in Johansen, 1996) and
the second equality follows from the definition of 3,;.

The proposition below establishes the consistency of the maximum likelihood es-
timator for the cointegrating vectors in the sense that the estimator from the un-
derspecified SM converges in probability to a submatrix of the parameter, 3, in the

DGP, which is associated with the included variables.

Proposition 2. The estimator of the cointegrating vectors, Bn; associated with the

underspecified model (2) converges to vectors in sp(f), i.e. TV2(8y, — Byy) 2 0.

We then consider the probability limits of a;; and A* obtained from the underspecified

14



X*
model. We first partition a and § conformably with X; = ' (see also Section
X

IT) and we use the transformed, row equivalent form of 5. Then, the DGP (1)

becomes?,

AX; Qa1 Qo gy 0 X; et
= +
AXt(k) Qo1 Q22 5;2 5/22 Xt(f)l ggk)

The part of the DGP that corresponds to the included variables is
AX) = OfllﬂlllX:—l + al?(ﬂ,mX:—l + ﬂl22Xt(ﬁ)1) +&

or
AX; = anfyX; | +o01nZi g + ¢ (14)
where ef = H'e, ~ i.i.d.(0,Q%), @ = HQH and Z,_1 = 85X | + By X7 ~ I(0),
is the part of the DGP that cannot be estimated due to the omission of Xt(k).
The proposition below relates to the ‘inconsistency’ of &;; and A* in the sense
that their probability limits are different from the parameters, in the underspecified

model, that they aim to estimate.

Proposition 3. The estimators a1 and A* are “inconsistent’ for the parameters aqq
and Q* in (14) in the sense that they do not converge to the submatrices of a and €
(parameters of the DGP) that correspond to the included variables i.e. plim &1 # aq;

and plim A* £ Q.

4Note that in the DGP, E(8 X;_1e,) = 0.
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V. Hllustrations
A Monte Carlo experiment
In this section we present the results of some Monte Carlo experiments in order to
illustrate the asymptotic results presented in Sections III and IV and to give some
idea about the consequences of possible misspecifications of the SM, in finite samples,
in the case of omitted variables.

All calculations were done using Ox 3.00 (see Doornik, 1999). The number of
replications is 10,000 for all experiments. We use the 95% tabulated asymptotic
critical values from Osterwald-Lenum (1992, Case 0), thus the tests are carried out

at 5% significance level.
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We use two DGPs which are chosen on the basis of the asymptotic analysis to

reflect the cases (r—k) = 0 and (r—k) > 0, treated in Section III. Both DGPs consist

of three variables, but the first one (DGP1) has one cointegrating vector involving all

three variables whereas the second one (DGP2) has two cointegrating vectors, both

involving all three variables®. Thus,

]

A Xy

AXy

AXsy

and

AXyy

AXy | =

AXs

0.5

0.433 0.233

0.366 0.366

0.1

0.1

-0.7

0.3

1

-0.5

!

-0.5

Xi(-1)
Xog—1)

X3(t-1)

Xi@-1)
Xog—1)

X3(1-1)

1t

Eat

€3¢

€1t

Eat

€3¢

(DGP1)

(DGP2)

where t =1,2,...,T, ¢, = { €1, €9 €3t } ~ 1.1.d.N5(0, I') for DGP1 and DGP2.

The SMs used for the calculation of the trace and maximal eigenvalue statistics

include only X;; and Xo;.

Tables 1 and 2 show the rejection frequencies for various rank hypotheses using

the trace and the maximal eigenvalue statistics, for different sample sizes.

5Similar DGPs were used by Podivinsky (1998).
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Table 1. Rejection frequencies using the trace and

the maximal eigenvalue statistics (DGP1).

Sample size
Rank hypothesis

50 100 150 500 800

Trace statistic

r=20 0.1363 0.1474 0.1517 0.1571 0.1606

r<1 0.0166 0.0168 0.0178 0.0162 0.0164

Maximal eigenvalue statistic

r=0 0.1379 0.1503 0.1563 0.1583 0.1627

r<l1 0.0166 0.0168 0.0178 0.0162 0.0164

Table 2. Rejection frequencies using the trace and

the maximal eigenvalue statistics (DGP2).

Sample size
Rank hypothesis 50 100 150 500 800

Trace statistic

r<1 0.0747 0.0686 0.0669 0.0722 0.0686

Maximal eigenvalue statistic

r<l1 0.0747 0.0686 0.0669 0.0722 0.0686
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>From Table 1 we can see that the tests might not detect any cointegrating vectors
(low rejection frequencies of r = 0, especially for small sample sizes) which is what
we expected since (r — k) = 0 (see Section III). From Table 2 we conclude that with
DGP2 the LR tests are very likely to detect one cointegrating vector and this is in
accordance with the theoretical finding which suggests that if (r — k) > 0 the tests
detect at least (r — k) (2-1=1, in this case) cointegrating vectors.

The following Monte Carlo experiments use a very large T" value to evaluate the
probability limits of 3 and & We use a modified form of DGP2, in particular we use
a matrix whose rows are linear transformations of the rows of 3 found by adding to

the first row twice the second row i.e.

1 =2 1 3 -3 0

Q

1 =05 —0.5 1 -0.5 —-0.5

where ~ denotes a row equivalent matrix. Based on the asymptotic analysis of Section
IV, if we omit variable X3; we should expect one cointegrating vector whose estimator
converges to the space spanned by (3;; in the notation of Section IV, and in this case

B, = { 3 —3 } Table 3 shows the quantiles of the elements of the estimated

~(1)
- 11
cointegrating vector, 3;; = (associated with the largest eigenvalue) and the

=(2)

B
elements of the eigenvector corresponding to the smallest eigenvalue. In fact we use
the normalised form of the estimated cointegrating vector, Bll given in (13), in order

to achieve convergence to the true (known) submatrix of the true (3, (,;, instead of
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a linear combination of it. The estimation is carried out using 7" = 5,000 and 10,000

replications.
Table 3. Quantiles of the elements of
the estimated eigenvectors.
o1 ~(1) ~(2) N R
Quantiles 11 11 V12 V22
1% 2.9999 -3.0001 -0.0303 -0.0315
5% 3.0000 -3.0000 -0.0186 -0.0219
10% 3.0000 -3.0000 -0.0127 -0.0157
25% 3.0001 -2.9999 -0.0058 -0.0057
50% 3.0001 -2.9999 0.0001 -0.0000
5% 3.0003 -2.9997 0.0061 0.0053
90% 3.0005 -2.9995 0.0133 0.0151
95% 3.0007 -2.9993 0.0194 0.0209
99% 3.0011 -2.9989 0.0296 0.0321
(1) .
R 11 V12
'Note. The first column of ¢ = holds the eigenvector which corresponds
-(2) .
Bl a2

to the largest eigenvalue, i.e. the normalised estimated cointegrating vector, Bn whereas

(@12X1t + @22X2t) ~ I(l)

20



In Table 3 we can see that the elements of the estimated cointegrating vector,
after normalisation converge to the appropriate elements of the submatrix of § in
the DGP namely 3, = [ 3 -3 } . The elements of the other estimated eigenvector,
which is associated with the smallest eigenvalue seem to be sufficiently small.

Next we use DGP2 and a SM with only X;; and X5 to compute the quantiles
of the elements of the estimated adjustment coefficient matrix. The estimator of aq;
used in the simulations is given by a;; = dllﬁlnﬁll (Section IV) which is a trans-
formation of &;; such that dllﬁlll = dllﬁlll. For T' = 5,000 and 10,000 replications
the estimated adjustment coefficients seem to converge to the sum of the true ad-
justment coefficient matrix (i.e. the part of a, ay; say, in the DGP that corresponds

to the single cointegrating vector that can be detected using the misspecified SM)

al) 0.433

11 .

and the asymptotic bias. For this case we have aq; = = , and

ol 0.5

)

0y = is the transformed estimator of a;;. The results appear in Table 4.
~(2)
aqy

21



Table 4. Quantiles of the estimated

adjustment coefficients.

Q11 ~(1) ~(2)

Quantiles 11 11
1% 0.4879 0.5730
5% 0.4901 0.5752
10% 0.4914 0.5763
25% 0.4935 0.5783
50% 0.4957 0.5804
75% 0.4980 0.5826
90% 0.5002 0.5847
95% 0.5014 0.5859
99% 0.5036 0.5880

Table 4 provides an illustration of Proposition 3 namely that the estimator of
the adjustment coefficients in an underspecified SM is inconsistent or asymptotically
biased. From Table 4 we can see that the normalised estimated adjustment coefficients
are biased upwards.

An empirical example
To illustrate the issue of omitted variables we use the four-equation system of nar-

row money (M1), prices, aggregate expenditure and interest rates for the UK. The
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datab are quarterly, seasonally adjusted, covering the period 1963Q1-1986Q2 on the
following variables: nominal M1 (M), real total final expenditure at 1985 prices (1),
total final expenditure deflator (P) with 1985 as the base year, three-month local
authority interest rate (R;) and learning-adjusted interest rate on checking accounts
at commercial banks (Rs). In the analysis the difference R = Ry — Ry is used instead
of the Ry or Ry individually. The logarithms of the above variables are denoted by the
corresponding lower case letters. The interrelations among these variables have been
investigated extensively in the literature (see inter alia, Hendry and Mizon, 1993;
Hendry and Doornik, 1994; Ericsson et al., 1998; Doornik et al., 1998).

Following Doornik et al. (1998), there are two anticipated cointegrating relations

(m — p)i = co1 + c11is + ca1Apy + cs1 Ry (15)
it = Coz + Ciat + CoaApy + c32 Ry (16)

thus equation (15) imposes long-run price homogeneity and equation (16) has a linear
trend (¢) that captures exogenous technical progress. c;; is expected to be positive
and it can possibly be restricted to ¢;; = 1, making (15) a relation in the inverse
velocity of money. co1, c3; are expected to be negative. In (16) coo and c3y are

expected to be positive and negative respectively.

6The data set is supplied with PcGive 10.0. The numerical results were obtained using PcGive

10.0 (see Doornik and Hendry, 2001).
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For the particular sample the variables (m — p)y, i;, Ap; and R, were found to be
I(1) (the results of unit root tests are omitted for the sake of brevity).

The first SM (SM1) is a VAR(3) in all four variables, (m — p):, i;, Ap; and
R;, which includes also an unrestricted constant, a restricted time trend and two
unrestricted dummy variables that account for shocks in output and prices. This
formulation was used by Doornik et al. (1998). The second SM (SM2) is the same
as the first (a VAR(3)) except that the potentially relevant variable R; is omitted.
R; enters both anticipated cointegrating relations and if both of them exist in the
DGP (and therefore can be detected by the tests with high probability) cointegration
tests should detect one cointegrating relation when R; is omitted. This follows from
the asymptotic analysis and the evidence from the simulations. The third SM (SM3)
is the same as SM1 (again a VAR(3)) except that the variable (m — p); is omitted.
The omitted variable in this case appears in only one of the anticipated cointegrating
relations therefore its omission should not affect the detection of the cointegrating
relation that does not involve (m — p);, provided that both anticipated relations are
present in the DGP.

Tables 5, 6 and 7 show the statistics and p-values of the system diagnostic tests

for SM1, SM2 and SM3 respectively.
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Table 5. System diagnostic tests for SM1

Test Test Statistic p-value

Autocorrelation F(80, 254)=1.14  0.23
Normality X2 (8)=15.04 0.06

Heteroscedasticity F(260, 503)=0.75 0.99

Table 6. System diagnostic tests for SM2

Test Test Statistic p-value

Autocorrelation F(45,217)=1.22  0.18
Normality X2(6)=7.60 0.27

Heteroscedasticity F(120, 377)=0.78 0.94

Table 7. System diagnostic tests for SM3

Test Test Statistic p-value

Autocorrelation F(45,217)=1.15  0.25
Normality x2(6)=9.24 0.16

Heteroscedasticity F(120, 377)=1.04 0.38

The first diagnostic test is a Lagrange Multiplier test for 5-th order residual vector
autocorrelation, the second is a vector normality test and the third test is a vector

heteroscedasticity test (see Doornik and Hendry, 2001). The results of the diagnostic
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tests do not indicate any source of misspecification. The omission of a potentially

relevant variable does not seem to affect the statistical adequacy of SM2 and SM3.
Tables 8, 9 and 10 report the results of cointegration tests for SM1, SM2 and SM3

respectively. Rejection of the null hypothesis at 1% level of significance is indicated

by **.

Table 8. Cointegration tests for SM1

Null hypothesis Trace statistic Maximal eigenvalue statistic

r=20 76.58" 41.76**
r<1 34.85 16.28
r<2 18.57 12.01
r<3 6.56 6.56

Table 9. Cointegration tests for SM2

Null hypothesis Trace statistic Maximal eigenvalue statistic

r=20 38.37 18.18
r<1 20.19 12.11
r<2 8.09 8.09

26



Table 10. Cointegration tests for SM3

Null hypothesis Trace statistic Maximal eigenvalue statistic

r=20 49.68™ 34.57
r<1 15.11 11.62
r<2 3.50 3.50

For SM1 the hypothesis that » = 0 is rejected by both the trace and the maximal
eigenvalue tests. Therefore only one of the two anticipated cointegrating relations can
be detected by the tests. Since the cointegrating vectors are not identified it cannot
be determined at this stage which of the equations (15) or (16) the cointegrating
vector corresponds to. When the relevant variable R; is omitted and SM2 is used
for cointegration testing neither the trace nor the maximal eigenvalue test rejects the
hypothesis that » = 0. Hence, in the three-variable system no cointegrating relations
can be detected. This finding was somehow expected given the result of cointegration
tests for SM1 and given the fact that both (15) and (16) include the omitted variable
R;. However, the omission of (m —p); does lead to rejection of the hypothesis r = 0 in
the three-variable system. In this case the tests seem to detect the second anticipated
cointegrating relation.

Carrying out restricted estimation of the cointegrating vectors, it is found that the
single cointegrating vector in SM1 is identified as the first anticipated cointegrating
relation given by (15) and the single cointegrating vector in SM3 is identified as
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the second anticipated relation given by (16). In SM1 the coefficient of the linear
trend is restricted to 0 and the coefficient of 7; is restricted to -1. The test statistic
for these restrictions is x?(2) = 0.617 with p-value equal to 0.734. The results of
the restricted estimation appear in Table 11. In SM3 the coefficient of the trend is
restricted to -0.007 which is the negative of the mean of Ai; and the test statistic is
x%(1) = 1.112 with p-value equal to 0.291. The results of the restricted estimation
appear in Table 12. Thus, in SM3 cointegration tests detect the second anticipated
cointegrating relation given by (16) which the former possibly lack power to detect
in SM1. Even though the results of the diagnostic tests of Table 7 do not indicate

any misspecification in SM3, the sign and the significance of Ap; do give a hint.

Table 11. Estimates of restricted cointegrating

vector and adjustment coefficients for SM1.

A

o 5
(m—p): —0.103 1.000
(0.019) (=)
it —0.009 —1.000
(0.012) (-)
Apy 0.004 6.506
(0.008) (1.143)
R, —0.004 7.155
(0.015) (0.553)
t — 0.000

=)
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Table 12. Estimates of restricted cointegrating

vector and adjustment coefficients for SM3.

o g
1t —0.062 1.000
(0.0116) (=)
Ap; —0.0177 0.564
(0.007) (1.593)
R, —0.027 2.629
(0.014) (0.608)
t — —0.007

The empirical example shows that the diagnostic tests are not always of help in
pointing out misspecification due to omitted variables. This is because in an error
correction model the omitted variables bias depends on submatrices of a, aj2 (see
(14) and proof of Proposition 3). Thus, if a;o = 0 i.e. the variables in the DGP do
not adjust to cointegrating relations that involve omitted variables, the bias is zero
and therefore omission of relevant variables from the system may not be reflected in,

for example autocorrelation in the residuals of the model.

VI. Concluding remarks

This paper has considered the effects of underspecifying (omission of relevant vari-
ables) the SM on the LR tests for cointegration proposed by Johansen (1988, 1996).
We showed that omitting relevant variables from the SM will lead to either no de-
tection of cointegrating relationships, if the true cointegrating rank is smaller than
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or equal to the number of omitted variables (r < k) or the detection of ¢ < r coin-
tegrating relationships, if the true cointegrating rank is greater than the number of
omitted variables (r > k). In addition, the use of an underspecified SM does not
affect the consistency of the estimated cointegrating vectors since they still converge
to a subspace of sp(f) but it does affect the consistency of the estimators of the
adjustment coefficient matrix and variance of the errors.

The model used to investigate the effects of omitted variables is quite simple, be-
ing a VAR(1) without deterministic terms, in order to minimise the complexity of the
algebra involved. Since the effect of short-run dynamics is asymptotically negligible,
their inclusion in the model would not alter the asymptotic findings. Inclusion of
deterministic terms would require different scaling matrices that would take into ac-
count the deterministic direction in the p-dimensional space, however the asymptotic
results would remain unchanged.

Although the analytical results are asymptotic, small sample simulations show
that the theoretical findings also arise in sample sizes used in empirical work. The
empirical example also illustrates this point.

The omitted variables can also be (0). Since the inclusion of a stationary variable
increases the dimensions of the cointegrating space by one, omission of only I(0)
variables will lead to the underestimation of the cointegrating rank by the number of

omitted I(0) variables.
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Overall we conclude that the omission of relevant variables from the SM leads to
misleading inference, especially when followed by tests for linear restrictions on o and

[ conditional on the wrong cointegrating rank.

Appendix
Proof of Proposition 1.

Let the non-stationary direction for the process X; be B* which is p* x p for case
(i) and p* x (p — q) for case (ii) (for the detailed form of B* see under the relevant
cases in Section IIT). By application of the Functional Central Limit Theorem on (8)
and the Continuous Mapping Theorem (see (B.12) and Theorem B.5 in Johansen,

1996) we have
(Tu]

T71/2B*IXE~U] = T71/2B*I(C* Z €Ty + Cf(L)é?[Tu]) A B*IC*W(U)

i=1

1
B*X* 4 BYCr / W (u)du
0

and
T
T'B'S;B* = T7°BY (X;,— X")(X;,-X")B (17)
t=1
d ! 1 ~_ = ’
5 B C*/ WW'C* B*du.
0
Case (i)

Since 8V X7 is not I(0), because of the omission of relevant variables, (6) is not
appropriately scaled for convergence. Pre- and post-multiplying (6) by the scaling
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T-Y21. 0

matrix Yo = we obtain,
0 I,
1Y7B7S*(()Br Y| =
T71C5(1)/ST15(1)+01)<1) 1(5(1 Sllﬁj_ +0p( ) Op(l) Op(l) (18)
—1,2(0)" qx 4(1) 1 (1)
T8 ST1B +0p<1) Cﬁ 101 +0p(1) 0p<1) 0p<1)

— [T ¢BS1 B + 0,(1)

where B* = [ pn - gl ], p* X p. The second matrix in (18) is 0,(1) because its
blocks are products of averages of products of either two 1(0) processes (Sg,) or an
1(0) and an I(1) process (B* Sj,), which are O,(1) (see (B.12) in Johansen, 1996),
thus after scaling by Y7 they all become o,(1).

Then we have
T2 BpS*(Q)BrYr| = T B S,B" + 0,(1)]

=0 (19)

1
‘o* / WW' C* B*du
0

by (17).
Case (ii)
In what follows we will use the row equivalent form of § that appears in (3).

Consequently in a 2 x 2 block-partition of § the lower left block of §# or equivalently
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the upper right block of 3" is zero. Thus,

g G
ﬁ _ p* ilq p* X(}nzq) _ ﬁll ﬂlZ
/821 /822 0 522

kxq  kx(r—q)

We then have the following partitions: ﬁ(l) = [ By Bis } defined above and ﬂ(2) =

[ Bor  Bao ] = [ 0 By } Note that 3,, must satisfy the condition §,,C* = 0

kxq kx(r—q)

so that 3, X7 = 31,C;(L)e, ~ 1(0), by (8).

Then (6) becomes

|ByS™(¢)Br| =
(B Shbu B Shibrs T2, 55,1
CB1St10n C(BraStBuy + BoaBs) T 2¢(B1p50 8" + BT
7203 51,8, T3 51,81 + B ) T¢(BY 53,8 + B BP)

! * Q¥x—1 Q% oo ox—1 ox !oax ox—1ax a1)
511510500 1501511 511510500 1501512 /811510500 1‘S'[)]./BJ_
_ ! x ox—1 ox ook ox—1 Qx ! oax ax—1aox 2l
ﬂlQSIOSOO 15’01ﬂ11 ﬂlZSlosOO 1501ﬂ12 /6125105’00 ISOI S_) : (20)

2(1)" % ox—1 g% 2(1)" ax ox—1 ox 2(1)" s gx—1ax 21
Y S10Su S5 B B 850850 S BY 1S S B

Since ﬂllzXf_ is assumed to be I(1) the first term of (20) needs to be rescaled. Let

I, 0 0

now Tr= | o T2, 0 then

0 0 I,

T7B7S*(()BrYr| =
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Cﬁ;_lsflﬂll op(1)

5115f05561551511 Op(l) 0p<1)

op(1)

op(1) CT_lﬁlmSiklﬁm"‘Op(l) ¢r- 15125115¢ + 0p(1)

op(1) ¢T3V 8181+ 0p(1) ¢T3V 55,8 +0,(1)

- op(1) op(1) 0p(1)
op(1) op(1) 0p(1)
B (11811811 — B11S10S50  San B op(1)
op(1) (T~'B* S}, B* + 0,(1)

where now B* = { 81, _(Ll) },p* X (p—q).

The 0,(1) blocks are blocks that were O,(1) before scaling by Y7 because they

were products of averages of products of either two I(0) processes (5,,5%, S&,) or an

1(0) and an I(1) process (B* S}y, B* S%,6,,)-
Next we define

AX, Yoo Xog
Var =

8 X, Ya0 Ygs

In order to find the limit of (21) we need the following:
S0 = Sto = H SooH
5,1151‘0 = 22110 = H,EﬂoH

ﬁlllsflﬁll o 2211511 = leﬂﬂH
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and Spy 2 Y00, 5/510 LN Y50 and ﬁ/Snﬁ 2, Y35 by the Weak Law of Large Numbers

(see also Johansen, 1996, Lemma 10.3)). Thus,

1 BpS*(¢) BrYr| =

(A StiBu — B11SieSie 1Sk 0p(1) .

d
0p(1) (T-'B* S, B* + 0,(1)
o szllﬂll - Z::211023361Z:E;/Bll 0
0 (BYC* [} WW duC* B*
! 1 ~ ~_! !
= 1¢55,.6,, — T5,,0500  Sos,, (B C* /O WW duC* B*| = 0 (25)

by (22)-(24) for the first factor and by (17) for the second. |

Proof of Proposition 2.

The equations (5) and (6) have the same eigenvalues but (6) has eigenvectors

B, Vo

pXq pXx(p—q)

B;'V where V = is the matrix whose columns are the eigenvectors

A

R . 11
of (5) and 3, = Hf3;; = . The eigenvalues of (6) converge to the eigenvalues
0

of (25). Thus, the space spanned by the ¢ first eigenvectors of (6), which correspond
to the g largest eigenvalues, converges to the space spanned by vectors with zeros

in the last (p — ¢) positions. The space spanned by the first ¢ eigenvectors of (6) is
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A

sp(B;lﬁq) = sp(Bqu) where Bq = HBH and

—/

; 3 _
Br'B, = By
T3,

First we analyse block (1,1). Using the formula for the partitioned inverse we have,

(5/11511)71[% + ﬁlllﬁuFﬂlmﬁn(ﬁlllﬂn)fl] _(ﬁlllﬁll)ilﬂlllﬁmF

BR)" = /
—F 1561, (81161) F
where
F = [ﬁ/22522 + Hmﬁluﬁ;uﬂm]_l-
Thus,
) - Ay
BB)168,=
Ay

where Ay = I, — B11815F 1581101 and Ay = FB,,01; b1
Then we analyse ﬂlﬁq which appears in block (2,1). Partitioning ﬂl asin 0, =

[ (Ll), (f)’ ]WG obtain
(p—r)xp*  (p—r)xk

;) ~ , , ﬁll / ~ /-
ﬁj_ﬁq - [ S_l) (f) ] = (Ll) P11 = (Ll) B11.01
0

by the assumption 3 3 L, =0 (or ﬁlﬁ = 0) which gives

/ ’ ’ /811 /812 ’ ’ ’
BB = {5&1) ﬁ(f) } - { S_l) B (f) 5124‘5&2) By | =0

0 By
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and therefore ﬁ(j)/ﬁll = 0.

Thus,

Iq - BllﬁuFﬁImBlubl

axq

Bfléq = F31,81,, b1

(r—q)xq

77260 By 1 by

L (p—r)xq

(26)

By the form of (25) the last two blocks of (26) should converge to zero (in other

words sp(Bflﬁq) should converge to the space spanned by vectors with zeros in

the last (p — g) coordinates. A necessary condition for this is 7/2b; % 0. Then

~ p Iq
sp(Br'By) = sp( )-
0

o,(T7Y?). ®

Proof of Proposition 3.

Using the full sample, (14) can be written as

AX* = OéH/BIHle + 0612271 + e*

(27)

where AX* X*,, ¢* are p* x T, Z_1 is (r — q) x T and they are the full sample

counterparts of AX}, X/ |, ¢; and Z;_; respectively.

Using the partitioned form of X; and (3,

Sps = Var(8Xe1) = E(8 X1 X,18)
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/

E(ﬂllX;—leilﬁll) E(ﬁllXt*—lzt—l)

E(ZeaXi{aBn)  B(ZeaZ, )

2/311/311 E/Buz

*Zﬂn Z*ZZ
and the second equality follows from the fact that there are no deterministic terms

in the DGP.

Since (3;; can be estimated consistently (see Proposition 2)
plim &1 = plim Sf)klﬁll(ﬂlll iklﬂn)_l = plim [T_lAX*Xflﬁn(T_lﬂlllXilelﬂn>_1]

where the second equality is due to the absence of deterministic terms in the SM.

Substituting for AX™* as it is given in (27) and using Slutsky’s Theorem,

= o1+ alzplim[(Tflzleiﬁn)][th(TflﬁluX;Xiﬁn)]71

- all —"_ a122*z/3112:2;11:811

and the probability limits equal the corresponding population moments since the
process § X;_; (and therefore §,,X; , and Z,_;) is stationary and ergodic. (29)
shows that &q; is ‘inconsistent’ (or asymptotically biased) unless a5 = 0 or

plim(T~*Z_,X*,3,,) = 0. A stronger condition to achieve consistency is Z_; X*,3;, =

0 i.e. Z_, is orthogonal to X*3,;.
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For the estimator of the variance-covariance matrix of the errors (again using the

consistency of 3,;) we have
plim A = plim [Sg, — 551511(5;15T1ﬂ11)_15l115f0]
= plim (TT'AX*AX™)
—plim [T AX X" 6, (T By, X X5 80) T T 00 XD AXY]
= plim T 'AX*M*AX™
where M* = Ir—X*,8,, (8, X*, X*,31,) "8, X*,. Substituting for AX* using (27),

/

plim A* = plim T Y12 Z_\M*Z 10}y + 1o Z_ 1 M*e* + " M*Z' oy + e M*e]

and M*Z' | can be viewed as the residuals from the regression of Z, on 8, X*,. By

the Weak Law of Large Numbers we have
plim T*Z_ M*e* = E(Z_ M*c*) =0

since E(Z_1M*c*') = E[E(Z_1M*e*|X, )] = E[Z_{M*E(¢"|X,_,)] = 0, where X;_,
is the minimal o-field generated by the random vector X; ;. Furthermore,

!

plim T3, X* e = E(B, X ") =0
since B(3,X*,e”) = E[E(8,,X* ¥ |X,_1)] = E[3,,X* E(e”|X_1)] = 0 (see also
footnote 3). Hence,

plim A* = plim (T7'e*e”) 4 plim (T awZ {M*Z a),) (30)

. * * *—1 * !
= +a12(EZZ_ ZﬂuzﬂllﬂllzﬂnZ)al?
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since €* and Z_; are stationary random variables and by the Weak Law of Large
Numbers the probability limits in (30) equal their corresponding population moments.

Therefore, A* is ‘inconsistent’ unless a5 = 0. |
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