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Abstract: This paper investigates the effects of the omission of relevant variables

from the statistical model on cointegration analysis, proposed by Johansen (1988,

1991). We show that underspecification of the statistical model leads to either failure

in detecting cointegration or underestimation of the cointegrating rank. Although in

the underspecified statistical model the estimator of the detected cointegrating vectors

is shown to be consistent, this is not the case for the estimators of the adjustment

coefficient matrix and the variance of the error term. The asymptotic analysis is

supplemented by a Monte Carlo experiment and an empirical example.
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I. Introduction

The likelihood ratio (LR) tests for cointegration proposed by Johansen (1988, 1991)

have been widely applied in empirical research and it is of interest to study their

behaviour under various types of misspecification of the statistical model (SM) used

for cointegration testing. The robustness of the LR tests for cointegration has been

investigated using Monte Carlo simulations under omitted or irrelevant (redundant)

step and impulse dummy variables (see Andrade et al., 1994), dynamic misspecifica-

tion using a data generating process (DGP) with autoregressive and moving average

dynamics (see Boswijk and Franses, 1992; Cheung and Lai, 1993) and non-normality

assuming non-symmetric and leptokurtic innovations (see Cheung and Lai, 1993).

An interesting form of misspecification is the underspecification or overspecifica-

tion of the statistical model used for cointegration testing. This means that with

respect to the DGP, either some variables have been omitted from the SM or some

of the variables included in the SM are irrelevant. Podivinsky (1998) investigates

the performance of the LR tests for cointegration (mainly the trace statistic) when

there is a mismatch between the variables used in the SM (used for the cointegration

tests) and the variables entering the true cointegrating vectors. Using Monte Carlo

simulations he finds that the LR tests performed on an overspecified SM detect at

least the true number of cointegrating vectors. He also finds that LR tests based

on only two variables: (i) have low power when there are in fact two cointegrating
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vectors among three variables, and (ii) may not detect a cointegrating vector if there

is only one cointegrating vector among three variables. The potential importance of

these results for the applied work is illustrated by DeLoach (2001) who uses LR tests

for cointegration (trace and maximal eigenvalue statistics) to test the hypothesis of

cointegration between the relative price of nontradables and real output (which is

consistent with the productivity-bias hypothesis of Balassa and Samuelson). In a

two variable model (relative price of nontradables, real output) he finds evidence of

cointegration for only two out of the nine countries considered. He attributes the lack

of evidence of cointegration to the fact that certain variables, which mirror long-run

determinants of the relative prices, have been omitted from the SM. After having aug-

mented the system with the variable for oil prices, he finds evidence of cointegration

for four out the nine countries.

The purpose of this study is to investigate analytically the effects of I(1) omitted

variables from the SM, on the inference about the cointegrating rank, carried out using

the LR test statistics (trace and maximal eigenvalue), proposed by Johansen (1988,

1991). The consistency of the estimators of the parameters of the error correction

model under the above form of misspecification is also considered. The analytical

findings are supplemented by a Monte Carlo investigation and an empirical example.

The literature concerning the effects of misspecifications on the LR tests for coin-

tegration is limited mainly to Monte Carlo studies. The contribution of this paper
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is to provide an analytical (asymptotic) investigation of the robustness of LR tests

for cointegration when relevant variables are omitted from the SM, and therefore an

analytical formulation of earlier Monte Carlo studies.

The organisation of the paper is as follows. Section II describes the model. Sec-

tions III and IV provide some asymptotic results concerning the implications of omit-

ted variables for the inference about the cointegrating rank and the consistency of

the maximum likelihood estimators of the parameters of the error correction model.

Section V provides illustrations in the form of Monte Carlo simulations and an em-

pirical example. Section VI concludes. The proofs of all propositions are presented

in the Appendix.

A word on notation. The symbols ‘
p→’ and ‘ d→’ denote convergence in probability

and convergence in distribution respectively, as the sample size, T , tends to infinity.

∆ is the first difference operator, |M | denotes the determinant of a square matrixM ,

sp(M) denotes the space spanned by the columns of the matrix M and In denotes

the identity matrix of dimension n. Moreover E(·), V ar(·) and plim(·) denote the

expected value, variance and probability limit of the random argument respectively.

II. The model

The DGP is given by a VAR(1) model in error correction form,

∆Xt = ΠXt−1 + εt, t = 1, 2, . . . T (1)
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where εt ∼ i.i.d.(0,Ω) and Xt is a p× 1, I(1) process. In addition Xt is cointegrated

so that Π = αβ
0
(α and β are p× r matrices) with r ≤ p− 1 cointegrating vectors β

such that β
0
Xt ∼ I(0).

The SM used for cointegration testing is assumed to be underspecified i.e. it

includes only a subset of the variables in the DGP. More specifically, letH =

 Ip∗

0
k×p∗


be a selection matrix, then the SM includes p∗ < p variables given by X∗

t = H
0
Xt so

that k ≡ (p− p∗) relevant variables are omitted.

The misspecified SM takes the form of a multivariate regression of H
0
∆Xt = ∆X

∗
t

on H
0
Xt−1. The relation between ∆X∗

t and X
∗
t−1 does not have an error correction

form as the model

∆X∗
t = Π

∗X∗
t−1 + e

∗
t , t = 1, 2, . . . , T (2)

is misspecified. In particular e∗t is in general correlated with X
∗
t−1. We also define

β(1) = H
0
β, and α(1) = H

0
α, but Π∗ 6= α(1)β(1)0and Π∗ 6= H 0

ΠH as HH
0 6= Ip.

Although β
0
Xt is I(0), β

(1)0X∗
t is not necessarily I(0) since a linear combination of

I(1) variables is in general I(1). The nature of β(1)
0
X∗
t is determined by the variables

entering the cointegrating relations in the DGP. Since only the space spanned by the

columns of β can be estimated, in general, (r − k) cointegrating vectors (stationary

relations) can be found by applying elementary row operations on β
0
. Thus, β

0
can
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be transformed so that

β
0
=



β11 β21 · · · βp1

β12 β22 · · · βp2
...

...
...

β1r β2r · · · βpr


≈



β+11 β+21 · · · β+(p−r)1 1 0 0 · · · 0 0

β+12 β+22 · · · · · · β+(p−(r−1))2 1 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

β+1r β+2r · · · · · · · · · · · · · · · · · · β+(p−1)r 1


(3)

where the symbol ≈ denotes the row equivalent matrix of β 0 given by (3) and p−(r−

i) = p∗− (r−k)+ i, i = 1, 2, . . . , r is the number of non-zero elements in the i-th row.

Given that only p∗ variables are included in the SM, we should be able to recover i

cointegrating relations (using the underspecified SM), as long as p∗− (r−k)+ i ≤ p∗.

Thus, at most , (r − k) (for i = r− k) cointegrating relations can be estimated from

the SM, by applying the same row operations on β(1)
0
as on β

0
.

In what follows the analysis is based on the fact that the cointegrating vectors,

β, (as well as the adjustment coefficients, α) are not identified so β (and therefore

α) can be replaced by a non-singular transformation e.g. we can replace β
0
by a

row equivalent matrix of β
0
. To avoid complicating the notation we retain the same

symbols for the parameters (and variables) and their non-singular transformations.

6



Below we distinguish two cases:

Case (i). (r − k) ≤ 0, where all the cointegrating relations in the DGP involve at

least one of the omitted variables, therefore β(1)
0
X∗
t ∼ I(1).

Case (ii). (r − k) > 0, where there are q < r, q ≥ (r − k), cointegrating relations

in the DGP which do not involve any of the k omitted variables, accounting also

for the event of fortuitous zeros. Therefore, some elements of β(1)
0
X∗
t , β

0
11X

∗
t , say

are stationary, where β11 is a submatrix of β
(1) in the following partition, β(1) ="

β11
p∗×q

β12
p∗×(r−q)

#
. Then β(1)

0
X∗
t =

 β
0
11X

∗
t

β
0
12X

∗
t

 and β011X∗
t ∼ I(0) while β

0
12X

∗
t ∼

I(1). Here we assume that the actual cointegrating vectors can be found as the first

q rows of β(1)
0
. Nevertheless, if the above ordering is not satisfied, the cointegrating

vectors can be isolated in the first q rows of β(1)
0
using elementary row operations

(see above).

The eigenvalue equation that corresponds to (2) is

|ζS∗11 − S∗10S∗−100 S
∗
01| = 0 (4)

where S∗11 = T−1
TP
t=1

(X∗
t−1 − X̄∗)(X∗

t−1 − X̄∗)
0
, S∗00 = T−1

TP
t=1

(∆X∗
t − ∆̄X∗)(∆X∗

t −

∆̄X∗)
0
, S∗10 = S∗

0
01 = T−1

TP
t=1

(X∗
t−1 − X̄∗)(∆X∗

t − ∆̄X∗)
0
, X̄∗ = T−1

TP
t=1

X∗
t−1 and

∆̄X∗ = T−1
TP
t=1

∆X∗
t .

The eigenvalue equation that corresponds to the DGP is

|λS11 − S10S−100 S01| = 0
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with Sij, i, j = 0, 1, defined similarly in terms of the process Xt (the DGP).

Note that we can partition the stochastic vector Xt into Xt =


X∗
t

p∗×1

X
(k)
t

k×1

 where
the upper (p∗× 1) block holds the variables included in the SM and the lower (k× 1)

block corresponds to the omitted variables. Then, S∗ij, i, j = 0, 1, is given by the top

left submatrix of the corresponding Sij, i, j = 0, 1.

The matrix S∗−111 S
∗
10S

∗−1
00 S

∗
01 has the same eigenvalues as the roots of (4), which

coincide with the non-zero eigenvalues of

S∗ = (DS11D)+(DS10D)(DS00D)+(DS01D)

where D =

 Ip∗ 0
p∗×k

0
k×p∗

0
k×k

 and here the superscript + denotes the Moore-Penrose

(generalised) inverse.

Let Q =

 S∗11 0

0 Ik

, |Q| 6= 0 then,
|ζIp − S∗| = |Q−1||Q(ζIp − S∗)| = |Q−1||S∗(ζ)| = 0,

where S∗(ζ) = Q(ζIp − S∗). Expanding the above equation,

|S∗(ζ)| =

¯̄̄̄
¯̄̄̄ ζS∗11 − S∗10S∗−100 S

∗
01 0

0 ζIk

¯̄̄̄
¯̄̄̄ = |ζIk||ζS∗11 − S∗10S∗−100 S

∗
01| = 0. (5)

As expected, there are k zero eigenvalues which correspond to the omitted variables.

The second factor of (5) is the characteristic polynomial in (4) associated with the
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SM. If the LR tests are to indicate the existence of cointegration in the underspecified

model, the second factor of (5) must give some eigenvalues with positive probability

limits.

III. Inference about the cointegrating rank

In order to investigate how the inference about the cointegrating rank is affected

we need to consider the asymptotic behaviour of S∗(ζ). In particular we examine

the limiting behaviour of the eigenvalue equation corresponding to the SM, in the

stationary and non-stationary directions as defined by the DGP.

Define BT = (β, T−1/2β̄⊥), where β̄⊥ = β⊥(β
0
⊥β⊥)

−1, β⊥ is p× (p− r) such that

β
0
β⊥ = 0 and β =


β(1)
p∗×r

β(2)

k×r

 , β̄⊥ =


β̄
(1)
⊥

p∗×(p−r)

β̄
(2)
⊥

k×(p−r)

 then,

|B0
TS

∗(ζ)BT | =

¯̄̄̄
¯̄̄̄ β

0
S∗(ζ)β T−1/2β

0
S∗(ζ)β̄⊥

T−1/2β̄
0
⊥S

∗(ζ)β T−1β̄
0
⊥S

∗(ζ)β̄⊥

¯̄̄̄
¯̄̄̄

=

¯̄̄̄
¯̄̄̄
 ζ(β(1)

0
S∗11β

(1) + β(2)
0
β(2)) T−1/2ζ(β(1)

0
S∗11β̄

(1)
⊥ + β(2)

0
β̄
(2)
⊥ )

T−1/2ζ(β̄(1)
0

⊥ S∗11β
(1) + β̄

(2)0
⊥ β(2)) T−1ζ(β̄(1)

0
⊥ S∗11β̄

(1)
⊥ + β̄

(2)0
⊥ β̄

(2)
⊥ )



−

 β(1)
0
S∗10S

∗−1
00 S

∗
01β

(1) T−1/2β(1)
0
S∗10S

∗−1
00 S

∗
01β̄

(1)
⊥

T−1/2β̄(1)
0

⊥ S∗10S
∗−1
00 S

∗
01β

(1) T−1β̄(1)
0

⊥ S∗10S
∗−1
00 S

∗
01β̄

(1)
⊥


¯̄̄̄
¯̄̄̄ = 0. (6)

In order to analyse the limiting behaviour of (6) we resort to the Granger Represen-
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tation Theorem which gives the following representation for Xt in (1)

Xt = C
tX
i=1

εi + C1(L)εt (7)

(see Johansen, 1996, Theorem 4.2). Then for the p∗-dimensional vector of variables

X∗
t included in the SM we have the following representation, by using (7),

X∗
t = C

∗
tX
i=1

εi + C
∗
1 (L)εt (8)

where C∗ = H
0
C, C∗1(L) = H

0
C1(L) both of dimensions p∗ × p and rank(C∗) =

min(p∗, p∗ − (r − k)). Thus, for case (i) rank(C∗) = p∗ and for case (ii) rank(C∗) =

(p∗ − q).

Proposition 1 gives the asymptotic results for the two cases.

Proposition 1. Case (i). When (r − k) ≤ 0, let ΥT =

 T−1/2Ir 0

0 Ip−r

, then

|Υ0
TB

0
TS

∗(ζ)BTΥT | d→ |ζB∗0C∗
Z 1

0

W̃W̃
0
C∗

0
B∗du| = 0 (9)

where B∗ =
·
β(1) β̄

(1)
⊥

¸
, p∗ × p and W̃ = W (u) − R 1

0
W (u)du with W (u) being a

p-dimensional Brownian motion with variance Ω and u ∈ [0, 1].

Case (ii). When (r − k) > 0, let ΥT =


Iq 0 0

0 T−1/2Ir−q 0

0 0 Ip−r

, then

|Υ0
TB

0
TS

∗(ζ)BTΥT | d→
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|ζΣ∗β11β11 − Σ∗β110Σ∗−100 Σ
∗
0β11
||ζB∗0C∗

Z 1

0

W̃W̃
0
duC∗

0
B∗| = 0 (10)

where B∗ =
·
β12 β̄

(1)
⊥

¸
, p∗ × (p − q), V ar

 ∆X∗
t

β
0
11X

∗
t

 ≡
 Σ∗00 Σ∗0β11

Σ∗β110 Σ∗β11β11

 and
W̃ is defined as in case (i).

(9) shows that in the limit there are p roots at zero k of which exist by construction,

since the stochastic matrix B∗
0
C∗
R 1
0
W̃W̃

0
C∗

0
B∗ has rank p∗ almost surely. This

suggests that performing the LR tests for cointegration using the underspecified model

will lead to the rejection of the hypothesis of cointegration (i.e. acceptance of r = 0)

as the sample size becomes larger. The limit in (9) refers to case (i) where it is

assumed that all the cointegrating relations in the DGP involve at least one of the

omitted variables. Thus, all linear combinations of variables in the SM are I(1) and

therefore no cointegrating relations can be found.

(10) indicates that there are q non-zero and (p− q) zero roots in the limit, which

suggests that q cointegrating vectors can be detected in the underspecified model

as the sample size becomes large. The first factor in (10) gives the q positive roots

and the second the (p − r) zero roots. This is because in (10) the stochastic matrix

B∗
0
C∗
R 1
0
W̃W̃

0
duC∗

0
B∗ with dimensions (p−q)×(p−q) has rank (p∗−q) almost surely

and the k ≡ (p− p∗) zero roots appear in the second factor of (10) by construction.

The limit in (10) refers to case (ii) where q of the cointegrating relations in the DGP

do not involve any of the k omitted variables, thus some linear combinations of the
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variables in the SM are I(0) and therefore some cointegrating relations can be found.

IV. Consistency

The analysis of consistency is carried out only for case (ii) where some cointegrating

vectors can be detected. For case (i) all the estimated eigenvalues converge in prob-

ability to zero and therefore the cointegrating space is consistently estimated by the

null space.

For the analysis of consistency we use the partition of β that appears in Section

II,

β =


β11
p∗×q

β12
p∗×(r−q)

β21
k×q

β22
k×(r−q)



where β21 = 0. We define B =

"
β11
p∗×q

β̄11⊥
p∗×(p∗−q)

#
and B−1 =


β̄
0
11

q×p∗

β
0
11⊥

(p∗−q)×p∗

 where
β̄11⊥ = β11⊥(β

0
11⊥β11⊥)

−1, β̄11 = β11(β
0
11β11)

−1 and β
0
11β11⊥ = 0. B and B

−1 are such

that the following relationship holds

B−1B = BB−1 = β11β̄
0
11 + β̄11⊥β

0
11⊥ = Ip∗. (11)

We have shown in Section III that the tests detect q cointegrating vectors, hence under

the assumption of cointegration Π∗ in (2) has rank q. Thus, Π∗ can be expressed as
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Π∗ = α11β
0
11, where α11

2 and β11 are p
∗ × q matrices of rank q. The SM then takes

the form

∆X∗
t = α11β

0
11X

∗
t−1 + e

∗
t (12)

with V ar(e∗t ) ≡ Λ∗.

Let β̂11, α̂11 and Λ̂
∗ be the maximum likelihood estimators of β11, α11 and Λ

∗

calculated from the SM (2) (using (4)). The parameters β11 and α11 correspond to

the p∗ × q submatrices of β, α in the DGP.

For the analysis of consistency we use a linear transformation of the columns of

β̂11, which also maximises the likelihood function
3 given by

β̃11 = β̂11(β̄
0
11β̂11)

−1 (13)

= β11 + β̄11⊥β
0
11⊥β̂11(β̄

0
11β̂11)

−1

= β11 + β̄11⊥b1

where the second equality follows by using (11) and b1 = β
0
11⊥β̃11.

2Partitioning α similarly to β we obtain α =


α11
p∗×q

α12
p∗×(r−q)

α21
k×q

α22
k×(r−q)

, where H 0
α = α(1) =

"
α11
p∗×q

α12
p∗×(r−q)

#
and α11 are the adjustment coefficients that correspond to the cointegrating

vectors which can be detected in the underspecified model.
3In fact for any normalisation c we can define β̂c = β̂(c

0
β̂)−1 = β̃(c

0
β̃)−1; expanding around β

and normalising β and β̂ by c
0
β = c

0
β̂ = Ir, we obtain β̂−β = (Ip−βc0)(β̃−β)+Op(|β̃−β|2) (see

Johansen, 1996, p. 180) therefore the properties of β̂ follow from those of β̃.
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We also define α̃11 = α̂11β̂
0

11β̄11 such that α̃11β̃
0

11 = α̂11β̂
0

11 and

α̃11 = S∗01β̂11(β̂
0

11S
∗
11β̂11)

−1β̂
0

11β̄11

= S∗01β̃11(β̃
0

11S
∗
11β̃11)

−1

where the first equality follows from the fact that α̂11 = S∗01β̂11(β̂
0

11S
∗
11β̂11)

−1 (see

equation (6.11) in Johansen, 1996) given that we can estimate β11 by solving (4).

In addition,

Λ̂∗ = S∗00 − S∗01β̂11(β̂
0

11S
∗
11β̂11)

−1β̂
0

11S
∗
10

= S∗00 − S∗01β̃11(β̃
0

11S
∗
11β̃11)

−1β̃
0

11S
∗
10

where the first equality follows from the expression for the estimator of the variance-

covariance matrix of the errors in the SM (see equation (6.12) in Johansen, 1996) and

the second equality follows from the definition of β̃11.

The proposition below establishes the consistency of the maximum likelihood es-

timator for the cointegrating vectors in the sense that the estimator from the un-

derspecified SM converges in probability to a submatrix of the parameter, β, in the

DGP, which is associated with the included variables.

Proposition 2. The estimator of the cointegrating vectors, β̃11, associated with the

underspecified model (2) converges to vectors in sp(β), i.e. T 1/2(β̃11 − β11) p→ 0.

We then consider the probability limits of α̃11 and Λ̂∗ obtained from the underspecified
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model. We first partition α and β conformably with Xt =

 X∗
t

X
(k)
t

 (see also Section
II) and we use the transformed, row equivalent form of β. Then, the DGP (1)

becomes4, ∆X∗
t

∆X
(k)
t

 =
 α11 α12

α21 α22


 β

0
11 0

β
0
12 β

0
22


 X∗

t−1

X
(k)
t−1

+
 ε∗t

ε
(k)
t

 .
The part of the DGP that corresponds to the included variables is

∆X∗
t = α11β

0
11X

∗
t−1 + α12(β

0
12X

∗
t−1 + β

0
22X

(k)
t−1) + ε

∗
t

or

∆X∗
t = α11β

0
11X

∗
t−1 + α12Zt−1 + ε

∗
t (14)

where ε∗t = H
0
εt ∼ i.i.d.(0,Ω∗), Ω∗ = H 0

ΩH and Zt−1 = β
0
12X

∗
t−1 + β

0
22X

(k)
t−1 ∼ I(0),

is the part of the DGP that cannot be estimated due to the omission of X(k)
t .

The proposition below relates to the ‘inconsistency’ of α̃11 and Λ̂∗ in the sense

that their probability limits are different from the parameters, in the underspecified

model, that they aim to estimate.

Proposition 3. The estimators α̃11 and Λ̂∗ are ‘inconsistent ’ for the parameters α11

and Ω∗ in (14) in the sense that they do not converge to the submatrices of α and Ω

(parameters of the DGP) that correspond to the included variables i.e. plim α̃11 6= α11

and plim Λ̂∗ 6= Ω∗.
4Note that in the DGP, E(β

0
Xt−1ε

0
t) = 0.
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V. Illustrations

A Monte Carlo experiment

In this section we present the results of some Monte Carlo experiments in order to

illustrate the asymptotic results presented in Sections III and IV and to give some

idea about the consequences of possible misspecifications of the SM, in finite samples,

in the case of omitted variables.

All calculations were done using Ox 3.00 (see Doornik, 1999). The number of

replications is 10,000 for all experiments. We use the 95% tabulated asymptotic

critical values from Osterwald-Lenum (1992, Case 0), thus the tests are carried out

at 5% significance level.
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We use two DGPs which are chosen on the basis of the asymptotic analysis to

reflect the cases (r−k) = 0 and (r−k) > 0, treated in Section III. Both DGPs consist

of three variables, but the first one (DGP1) has one cointegrating vector involving all

three variables whereas the second one (DGP2) has two cointegrating vectors, both

involving all three variables5. Thus,
∆X1t

∆X2t

∆X3t

 =

0.1

0.1

−0.7


·
1 −2 1

¸

X1(t−1)

X2(t−1)

X3(t−1)

+

ε1t

ε2t

ε3t

 (DGP1)

and
∆X1t

∆X2t

∆X3t

 =

0.433 0.233

0.5 0.3

0.366 0.366


 1 −2 1

1 −0.5 −0.5



X1(t−1)

X2(t−1)

X3(t−1)

+

ε1t

ε2t

ε3t

 (DGP2)

where t = 1, 2, . . . , T , εt =
·
ε1t ε2t ε3t

¸0
∼ i.i.d.N3(0, I) for DGP1 and DGP2.

The SMs used for the calculation of the trace and maximal eigenvalue statistics

include only X1t and X2t.

Tables 1 and 2 show the rejection frequencies for various rank hypotheses using

the trace and the maximal eigenvalue statistics, for different sample sizes.

5Similar DGPs were used by Podivinsky (1998).
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Table 1. Rejection frequencies using the trace and

the maximal eigenvalue statistics (DGP1).

Sample size
Rank hypothesis 50 100 150 500 800

Trace statistic

r = 0 0.1363 0.1474 0.1517 0.1571 0.1606

r ≤ 1 0.0166 0.0168 0.0178 0.0162 0.0164

Maximal eigenvalue statistic

r = 0 0.1379 0.1503 0.1563 0.1583 0.1627

r ≤ 1 0.0166 0.0168 0.0178 0.0162 0.0164

Table 2. Rejection frequencies using the trace and

the maximal eigenvalue statistics (DGP2).

Sample size
Rank hypothesis 50 100 150 500 800

Trace statistic

r = 0 1 1 1 1 1

r ≤ 1 0.0747 0.0686 0.0669 0.0722 0.0686

Maximal eigenvalue statistic

r = 0 1 1 1 1 1

r ≤ 1 0.0747 0.0686 0.0669 0.0722 0.0686
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>FromTable 1 we can see that the tests might not detect any cointegrating vectors

(low rejection frequencies of r = 0, especially for small sample sizes) which is what

we expected since (r − k) = 0 (see Section III). From Table 2 we conclude that with

DGP2 the LR tests are very likely to detect one cointegrating vector and this is in

accordance with the theoretical finding which suggests that if (r − k) > 0 the tests

detect at least (r − k) (2-1=1, in this case) cointegrating vectors.

The following Monte Carlo experiments use a very large T value to evaluate the

probability limits of β̃ and α̃. We use a modified form of DGP2, in particular we use

a matrix whose rows are linear transformations of the rows of β
0
found by adding to

the first row twice the second row i.e. 1 −2 1

1 −0.5 −0.5

 ≈
 3 −3 0

1 −0.5 −0.5

 ,
where≈ denotes a row equivalent matrix. Based on the asymptotic analysis of Section

IV, if we omit variable X3t we should expect one cointegrating vector whose estimator

converges to the space spanned by β11 in the notation of Section IV, and in this case

β
0
11 =

·
3 −3

¸
. Table 3 shows the quantiles of the elements of the estimated

cointegrating vector, β̃11 =

 β̃
(1)

11

β̃
(2)

11

 (associated with the largest eigenvalue) and the
elements of the eigenvector corresponding to the smallest eigenvalue. In fact we use

the normalised form of the estimated cointegrating vector, β̃11 given in (13), in order

to achieve convergence to the true (known) submatrix of the true β, β11, instead of
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a linear combination of it. The estimation is carried out using T = 5,000 and 10,000

replications.

Table 3. Quantiles of the elements of

the estimated eigenvectors.

v̂‡
Quantiles β̃

(1)

11 β̃
(2)

11 v̂12 v̂22

1% 2.9999 -3.0001 -0.0303 -0.0315

5% 3.0000 -3.0000 -0.0186 -0.0219

10% 3.0000 -3.0000 -0.0127 -0.0157

25% 3.0001 -2.9999 -0.0058 -0.0057

50% 3.0001 -2.9999 0.0001 -0.0000

75% 3.0003 -2.9997 0.0061 0.0053

90% 3.0005 -2.9995 0.0133 0.0151

95% 3.0007 -2.9993 0.0194 0.0209

99% 3.0011 -2.9989 0.0296 0.0321

‡Note. The first column of v̂ =

 β̃
(1)

11 v̂12

β̃
(2)

11 v̂22

 holds the eigenvector which corresponds

to the largest eigenvalue, i.e. the normalised estimated cointegrating vector, β̃11 whereas

(v̂12X1t + v̂22X2t) ∼ I(1).
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In Table 3 we can see that the elements of the estimated cointegrating vector,

after normalisation converge to the appropriate elements of the submatrix of β in

the DGP namely β
0
11 =

·
3 −3

¸
. The elements of the other estimated eigenvector,

which is associated with the smallest eigenvalue seem to be sufficiently small.

Next we use DGP2 and a SM with only X1t and X2t to compute the quantiles

of the elements of the estimated adjustment coefficient matrix. The estimator of α11

used in the simulations is given by α̃11 = α̂11β̂
0

11β̄11 (Section IV) which is a trans-

formation of α̂11 such that α̃11β̃
0

11 = α̂11β̂
0

11. For T = 5,000 and 10,000 replications

the estimated adjustment coefficients seem to converge to the sum of the true ad-

justment coefficient matrix (i.e. the part of α, α11 say, in the DGP that corresponds

to the single cointegrating vector that can be detected using the misspecified SM)

and the asymptotic bias. For this case we have α11 =

 α(1)11
α
(2)
11

 =
 0.433

0.5

, and

α̃11 =

 α̃
(1)
11

α̃
(2)
11

 is the transformed estimator of α11. The results appear in Table 4.

21



Table 4. Quantiles of the estimated

adjustment coefficients.

α̃11
Quantiles α̃

(1)
11 α̃

(2)
11

1% 0.4879 0.5730

5% 0.4901 0.5752

10% 0.4914 0.5763

25% 0.4935 0.5783

50% 0.4957 0.5804

75% 0.4980 0.5826

90% 0.5002 0.5847

95% 0.5014 0.5859

99% 0.5036 0.5880

Table 4 provides an illustration of Proposition 3 namely that the estimator of

the adjustment coefficients in an underspecified SM is inconsistent or asymptotically

biased. FromTable 4 we can see that the normalised estimated adjustment coefficients

are biased upwards.

An empirical example

To illustrate the issue of omitted variables we use the four-equation system of nar-

row money (M1), prices, aggregate expenditure and interest rates for the UK. The
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data6 are quarterly, seasonally adjusted, covering the period 1963Q1-1986Q2 on the

following variables: nominal M1 (M), real total final expenditure at 1985 prices (I),

total final expenditure deflator (P ) with 1985 as the base year, three-month local

authority interest rate (R1) and learning-adjusted interest rate on checking accounts

at commercial banks (R2). In the analysis the difference R = R1−R2 is used instead

of the R1 or R2 individually. The logarithms of the above variables are denoted by the

corresponding lower case letters. The interrelations among these variables have been

investigated extensively in the literature (see inter alia, Hendry and Mizon, 1993;

Hendry and Doornik, 1994; Ericsson et al., 1998; Doornik et al., 1998).

Following Doornik et al. (1998), there are two anticipated cointegrating relations

(m− p)t = c01 + c11it + c21∆pt + c31Rt (15)

it = c02 + c12t+ c22∆pt + c32Rt (16)

thus equation (15) imposes long-run price homogeneity and equation (16) has a linear

trend (t) that captures exogenous technical progress. c11 is expected to be positive

and it can possibly be restricted to c11 = 1, making (15) a relation in the inverse

velocity of money. c21, c31 are expected to be negative. In (16) c22 and c32 are

expected to be positive and negative respectively.

6The data set is supplied with PcGive 10.0. The numerical results were obtained using PcGive

10.0 (see Doornik and Hendry, 2001).
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For the particular sample the variables (m− p)t, it, ∆pt and Rt were found to be

I(1) (the results of unit root tests are omitted for the sake of brevity).

The first SM (SM1) is a VAR(3) in all four variables, (m − p)t, it, ∆pt and

Rt, which includes also an unrestricted constant, a restricted time trend and two

unrestricted dummy variables that account for shocks in output and prices. This

formulation was used by Doornik et al. (1998). The second SM (SM2) is the same

as the first (a VAR(3)) except that the potentially relevant variable Rt is omitted.

Rt enters both anticipated cointegrating relations and if both of them exist in the

DGP (and therefore can be detected by the tests with high probability) cointegration

tests should detect one cointegrating relation when Rt is omitted. This follows from

the asymptotic analysis and the evidence from the simulations. The third SM (SM3)

is the same as SM1 (again a VAR(3)) except that the variable (m − p)t is omitted.

The omitted variable in this case appears in only one of the anticipated cointegrating

relations therefore its omission should not affect the detection of the cointegrating

relation that does not involve (m− p)t, provided that both anticipated relations are

present in the DGP.

Tables 5, 6 and 7 show the statistics and p-values of the system diagnostic tests

for SM1, SM2 and SM3 respectively.
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Table 5. System diagnostic tests for SM1

Test Test Statistic p-value

Autocorrelation F(80, 254)=1.14 0.23

Normality χ2(8)=15.04 0.06

Heteroscedasticity F(260, 503)=0.75 0.99

Table 6. System diagnostic tests for SM2

Test Test Statistic p-value

Autocorrelation F(45, 217)=1.22 0.18

Normality χ2(6)=7.60 0.27

Heteroscedasticity F(120, 377)=0.78 0.94

Table 7. System diagnostic tests for SM3

Test Test Statistic p-value

Autocorrelation F(45, 217)=1.15 0.25

Normality χ2(6)=9.24 0.16

Heteroscedasticity F(120, 377)=1.04 0.38

The first diagnostic test is a Lagrange Multiplier test for 5-th order residual vector

autocorrelation, the second is a vector normality test and the third test is a vector

heteroscedasticity test (see Doornik and Hendry, 2001). The results of the diagnostic
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tests do not indicate any source of misspecification. The omission of a potentially

relevant variable does not seem to affect the statistical adequacy of SM2 and SM3.

Tables 8, 9 and 10 report the results of cointegration tests for SM1, SM2 and SM3

respectively. Rejection of the null hypothesis at 1% level of significance is indicated

by **.

Table 8. Cointegration tests for SM1

Null hypothesis Trace statistic Maximal eigenvalue statistic

r = 0 76.58∗∗ 41.76∗∗

r ≤ 1 34.85 16.28

r ≤ 2 18.57 12.01

r ≤ 3 6.56 6.56

Table 9. Cointegration tests for SM2

Null hypothesis Trace statistic Maximal eigenvalue statistic

r = 0 38.37 18.18

r ≤ 1 20.19 12.11

r ≤ 2 8.09 8.09
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Table 10. Cointegration tests for SM3

Null hypothesis Trace statistic Maximal eigenvalue statistic

r = 0 49.68∗∗ 34.57∗∗

r ≤ 1 15.11 11.62

r ≤ 2 3.50 3.50

For SM1 the hypothesis that r = 0 is rejected by both the trace and the maximal

eigenvalue tests. Therefore only one of the two anticipated cointegrating relations can

be detected by the tests. Since the cointegrating vectors are not identified it cannot

be determined at this stage which of the equations (15) or (16) the cointegrating

vector corresponds to. When the relevant variable Rt is omitted and SM2 is used

for cointegration testing neither the trace nor the maximal eigenvalue test rejects the

hypothesis that r = 0. Hence, in the three-variable system no cointegrating relations

can be detected. This finding was somehow expected given the result of cointegration

tests for SM1 and given the fact that both (15) and (16) include the omitted variable

Rt. However, the omission of (m−p)t does lead to rejection of the hypothesis r = 0 in

the three-variable system. In this case the tests seem to detect the second anticipated

cointegrating relation.

Carrying out restricted estimation of the cointegrating vectors, it is found that the

single cointegrating vector in SM1 is identified as the first anticipated cointegrating

relation given by (15) and the single cointegrating vector in SM3 is identified as
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the second anticipated relation given by (16). In SM1 the coefficient of the linear

trend is restricted to 0 and the coefficient of it is restricted to -1. The test statistic

for these restrictions is χ2(2) = 0.617 with p-value equal to 0.734. The results of

the restricted estimation appear in Table 11. In SM3 the coefficient of the trend is

restricted to -0.007 which is the negative of the mean of ∆it and the test statistic is

χ2(1) = 1.112 with p-value equal to 0.291. The results of the restricted estimation

appear in Table 12. Thus, in SM3 cointegration tests detect the second anticipated

cointegrating relation given by (16) which the former possibly lack power to detect

in SM1. Even though the results of the diagnostic tests of Table 7 do not indicate

any misspecification in SM3, the sign and the significance of ∆pt do give a hint.

Table 11. Estimates of restricted cointegrating

vector and adjustment coefficients for SM1.

α̂ β̂

(m− p)t −0.103
(0.019)

1.000
(−)

it −0.009
(0.012)

−1.000
(−)

∆pt 0.004
(0.008)

6.506
(1.143)

Rt −0.004
(0.015)

7.155
(0.553)

t − 0.000
(−)
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Table 12. Estimates of restricted cointegrating

vector and adjustment coefficients for SM3.

α̂ β̂

it −0.062
(0.0116)

1.000
(−)

∆pt −0.0177
(0.007)

0.564
(1.593)

Rt −0.027
(0.014)

2.629
(0.608)

t − −0.007
(−)

The empirical example shows that the diagnostic tests are not always of help in

pointing out misspecification due to omitted variables. This is because in an error

correction model the omitted variables bias depends on submatrices of α, α12 (see

(14) and proof of Proposition 3). Thus, if α12 = 0 i.e. the variables in the DGP do

not adjust to cointegrating relations that involve omitted variables, the bias is zero

and therefore omission of relevant variables from the system may not be reflected in,

for example autocorrelation in the residuals of the model.

VI. Concluding remarks

This paper has considered the effects of underspecifying (omission of relevant vari-

ables) the SM on the LR tests for cointegration proposed by Johansen (1988, 1996).

We showed that omitting relevant variables from the SM will lead to either no de-

tection of cointegrating relationships, if the true cointegrating rank is smaller than
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or equal to the number of omitted variables (r ≤ k) or the detection of q < r coin-

tegrating relationships, if the true cointegrating rank is greater than the number of

omitted variables (r > k). In addition, the use of an underspecified SM does not

affect the consistency of the estimated cointegrating vectors since they still converge

to a subspace of sp(β) but it does affect the consistency of the estimators of the

adjustment coefficient matrix and variance of the errors.

The model used to investigate the effects of omitted variables is quite simple, be-

ing a VAR(1) without deterministic terms, in order to minimise the complexity of the

algebra involved. Since the effect of short-run dynamics is asymptotically negligible,

their inclusion in the model would not alter the asymptotic findings. Inclusion of

deterministic terms would require different scaling matrices that would take into ac-

count the deterministic direction in the p-dimensional space, however the asymptotic

results would remain unchanged.

Although the analytical results are asymptotic, small sample simulations show

that the theoretical findings also arise in sample sizes used in empirical work. The

empirical example also illustrates this point.

The omitted variables can also be I(0). Since the inclusion of a stationary variable

increases the dimensions of the cointegrating space by one, omission of only I(0)

variables will lead to the underestimation of the cointegrating rank by the number of

omitted I(0) variables.
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Overall we conclude that the omission of relevant variables from the SM leads to

misleading inference, especially when followed by tests for linear restrictions on α and

β conditional on the wrong cointegrating rank.

Appendix

Proof of Proposition 1.

Let the non-stationary direction for the process X∗
t be B

∗ which is p∗× p for case

(i) and p∗ × (p − q) for case (ii) (for the detailed form of B∗ see under the relevant

cases in Section III). By application of the Functional Central Limit Theorem on (8)

and the Continuous Mapping Theorem (see (B.12) and Theorem B.5 in Johansen,

1996) we have

T−1/2B∗
0
X∗
[Tu] = T

−1/2B∗
0
(C∗

[Tu]X
i=1

ε[Tu] + C
∗
1(L)ε[Tu])

d→ B∗
0
C∗W (u)

B∗
0
X̄∗ d→ B∗

0
C∗
Z 1

0

W (u)du

and

T−1B∗
0
S∗11B

∗ = T−2B∗
0
TX
t=1

(X∗
t−1 − X̄∗)(X∗

t−1 − X̄∗)
0
B∗ (17)

d→ B∗
0
C∗
Z 1

0

W̃W̃
0
C∗

0
B∗du.

Case (i)

Since β(1)
0
X∗
t is not I(0), because of the omission of relevant variables, (6) is not

appropriately scaled for convergence. Pre- and post-multiplying (6) by the scaling
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matrix ΥT =

 T−1/2Ir 0

0 Ip−r

 we obtain,
|Υ0

TB
0
TS

∗(ζ)BTΥT | =¯̄̄̄
¯̄̄̄
 T−1ζβ(1)

0
S∗11β

(1) + op(1) T−1ζβ(1)
0
S∗11β̄

(1)
⊥ + op(1)

T−1ζβ̄(1)
0

⊥ S∗11β
(1) + op(1) T−1ζβ̄(1)

0
⊥ S∗11β̄

(1)
⊥ + op(1)

−
 op(1) op(1)

op(1) op(1)


¯̄̄̄
¯̄̄̄ (18)

=
¯̄̄
T−1ζB∗

0
S∗11B

∗ + op(1)
¯̄̄

where B∗ =
·
β(1) β̄

(1)
⊥

¸
, p∗ × p. The second matrix in (18) is op(1) because its

blocks are products of averages of products of either two I(0) processes (S∗00) or an

I(0) and an I(1) process (B∗
0
S∗10), which are Op(1) (see (B.12) in Johansen, 1996),

thus after scaling by ΥT they all become op(1).

Then we have

|Υ0
TB

0
TS

∗(ζ)BTΥT | =
¯̄̄
T−1B∗

0
S∗11B

∗ + op(1)
¯̄̄

d→
¯̄̄̄
ζB∗

0
C∗
Z 1

0

W̃W̃
0
C∗

0
B∗du

¯̄̄̄
= 0 (19)

by (17).

Case (ii)

In what follows we will use the row equivalent form of β that appears in (3).

Consequently in a 2× 2 block-partition of β the lower left block of β or equivalently
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the upper right block of β
0
is zero. Thus,

β =


β11
p∗×q

β12
p∗×(r−q)

β21
k×q

β22
k×(r−q)

 =
 β11 β12

0 β22

 .

We then have the following partitions: β(1) =
·
β11 β12

¸
defined above and β(2) ="

β21
k×q

β22
k×(r−q)

#
=

·
0 β22

¸
. Note that β11 must satisfy the condition β

0
11C

∗ = 0

so that β
0
11X

∗
t = β

0
11C

∗
1 (L)εt ∼ I(0), by (8).

Then (6) becomes

|B0
TS

∗(ζ)BT | =¯̄̄̄
¯̄̄̄
¯̄̄̄


ζβ

0
11S

∗
11β11 ζβ

0
11S

∗
11β12 T−1/2ζβ

0
11S

∗
11β̄

(1)
⊥

ζβ
0
12S

∗
11β11 ζ(β

0
12S

∗
11β12 + β

0
22β22) T−1/2ζ(β

0
12S

∗
11β̄

(1)
⊥ + β

0
22β̄

(2)
⊥ )

T−1/2ζβ̄(1)
0

⊥ S∗11β11 T−1/2ζ(β̄(1)
0

⊥ S∗11β12 + β̄
(2)0
⊥ β22) T−1ζ(β̄(1)

0
⊥ S∗11β̄

(1)
⊥ + β̄

(2)0
⊥ β̄

(2)
⊥ )



−


β
0
11S

∗
10S

∗−1
00 S

∗
01β11 β

0
11S

∗
10S

∗−1
00 S

∗
01β12 β

0
11S

∗
10S

∗−1
00 S

∗
01β̄

(1)
⊥

β
0
12S

∗
10S

∗−1
00 S

∗
01β11 β

0
12S

∗
10S

∗−1
00 S

∗
01β12 β

0
12S

∗
10S

∗−1
00 S

∗
01β̄

(1)
⊥

β̄
(1)0
⊥ S∗10S

∗−1
00 S

∗
01β11 β̄

(1)0
⊥ S∗10S

∗−1
00 S

∗
01β12 β̄

(1)0
⊥ S∗10S

∗−1
00 S

∗
01β̄

(1)
⊥



¯̄̄̄
¯̄̄̄
¯̄̄̄ . (20)

Since β
0
12X

∗
t is assumed to be I(1) the first term of (20) needs to be rescaled. Let

now ΥT =


Iq 0 0

0 T−1/2Ir−q 0

0 0 Ip−r

 then

|Υ0
TB

0
TS

∗(ζ)BTΥT | =
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¯̄̄̄
¯̄̄̄
¯̄̄̄


ζβ

0
11S

∗
11β11 op(1) op(1)

op(1) ζT−1β
0
12S

∗
11β12 + op(1) ζT−1β

0
12S

∗
11β̄

(1)
⊥ + op(1)

op(1) ζT−1β̄(1)
0

⊥ S∗11β12 + op(1) ζT−1β̄(1)
0

⊥ S∗11β̄
(1)
⊥ + op(1)



−


β
0
11S

∗
10S

∗−1
00 S

∗
01β11 op(1) op(1)

op(1) op(1) op(1)

op(1) op(1) op(1)



¯̄̄̄
¯̄̄̄
¯̄̄̄

=

¯̄̄̄
¯̄̄̄ ζβ011S∗11β11 − β011S∗10S∗−100 S

∗
01β11 op(1)

op(1) ζT−1B∗
0
S∗11B

∗ + op(1)

¯̄̄̄
¯̄̄̄ (21)

where now B∗ =
·
β12 β̄

(1)
⊥

¸
, p∗ × (p− q).

The op(1) blocks are blocks that were Op(1) before scaling by ΥT because they

were products of averages of products of either two I(0) processes (β
0
11S

∗
10, S

∗
00) or an

I(0) and an I(1) process (B∗
0
S∗10, B

∗0S∗11β11).

Next we define

V ar

 ∆Xt
β
0
Xt

 =
 Σ00 Σ0β

Σβ0 Σββ

 .
In order to find the limit of (21) we need the following:

S∗00
p→ Σ∗00 = H

0
Σ00H (22)

β
0
11S

∗
10

p→ Σ∗β110 = H
0
Σβ0H (23)

β
0
11S

∗
11β11

p→ Σ∗β11β11 = H
0
ΣββH (24)
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and S00
p→ Σ00, β

0
S10

p→ Σβ0 and β
0
S11β

p→ Σββ by the Weak Law of Large Numbers

(see also Johansen, 1996, Lemma 10.3)). Thus,

|Υ0
TB

0
TS

∗(ζ)BTΥT | =¯̄̄̄
¯̄̄̄ ζβ 011S∗11β11 − β 011S∗10S∗−100 S

∗
01β11 op(1)

op(1) ζT−1B∗
0
S∗11B

∗ + op(1)

¯̄̄̄
¯̄̄̄ d→

=

¯̄̄̄
¯̄̄̄ ζΣ∗β11β11 − Σ∗β110Σ∗−100 Σ

∗
0β11

0

0 ζB∗
0
C∗
R 1
0
W̃W̃

0
duC∗

0
B∗

¯̄̄̄
¯̄̄̄

= |ζΣ∗β11β11 − Σ∗β110Σ∗−100 Σ
∗
0β11
||ζB∗0C∗

Z 1

0

W̃W̃
0
duC∗

0
B∗| = 0 (25)

by (22)-(24) for the first factor and by (17) for the second. ¥

Proof of Proposition 2.

The equations (5) and (6) have the same eigenvalues but (6) has eigenvectors

B−1T V̂ where V̂ =

"
β̂q
p×q

V̂2
p×(p−q)

#
is the matrix whose columns are the eigenvectors

of (5) and β̂q = Hβ̂11 =

 β̂11
0

. The eigenvalues of (6) converge to the eigenvalues
of (25). Thus, the space spanned by the q first eigenvectors of (6), which correspond

to the q largest eigenvalues, converges to the space spanned by vectors with zeros

in the last (p − q) positions. The space spanned by the first q eigenvectors of (6) is
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sp(B−1T β̂q) = sp(B
−1
T β̃q) where β̃q = Hβ̃11 and

B−1T β̃q =

 β̄
0

T 1/2β
0
⊥

 β̃q.
First we analyse block (1,1). Using the formula for the partitioned inverse we have,

(β
0
β)−1 =

 (β
0
11β11)

−1[Iq + β
0
11β12Fβ

0
12β11(β

0
11β11)

−1] −(β 011β11)−1β
0
11β12F

−Fβ 012β11(β
0
11β11)

−1 F


where

F = [β
0
22β22 + β

0
12β̄11⊥β

0
11⊥β12]

−1.

Thus,

(β
0
β)−1β

0
β̃q =

 A1
A2


where A1 = Iq − β̄

0
11β12Fβ

0
12β̄11⊥b1 and A2 = Fβ

0
12β̄11⊥b1.

Then we analyse β
0
⊥β̃q which appears in block (2,1). Partitioning β

0
⊥ as in β⊥ ="

β
(1)0
⊥

(p−r)×p∗
β
(2)0
⊥

(p−r)×k

#
we obtain

β
0
⊥β̃q =

·
β
(1)0
⊥ β

(2)0
⊥

¸ β̃11
0

 = β(1)0⊥ β̃11 = β
(1)0
⊥ β̄11⊥b1

by the assumption β
0
β⊥ = 0 (or β

0
⊥β = 0) which gives

β
0
⊥β =

·
β
(1)0
⊥ β

(2)0
⊥

¸ β11 β12

0 β22

 = · β(1)0⊥ β11 β
(2)0
⊥ β12 + β

(2)0
⊥ β22

¸
= 0
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and therefore β(1)
0

⊥ β11 = 0.

Thus,

B−1T β̃q =



Iq − β̄
0
11β12Fβ

0
12β̄11⊥b1

q×q

Fβ
0
12β̄11⊥b1
(r−q)×q

T 1/2β
(1)0
⊥ β̄11⊥b1

(p−r)×q


. (26)

By the form of (25) the last two blocks of (26) should converge to zero (in other

words sp(B−1T β̃q) should converge to the space spanned by vectors with zeros in

the last (p − q) coordinates. A necessary condition for this is T 1/2b1
p→ 0. Then

sp(B−1T β̃q)
p→ sp(

 Iq
0

).
>From (13) we obtain T 1/2(β̃11−β11) = β̄11⊥(T 1/2b1) p→ 0 and that (β̃11−β11) =

op(T
−1/2). ¥

Proof of Proposition 3.

Using the full sample, (14) can be written as

∆X∗ = α11β
0
11X

∗
−1 + α12Z−1 + ε

∗ (27)

where ∆X∗, X∗
−1, ε

∗ are p∗ × T , Z−1 is (r − q) × T and they are the full sample

counterparts of ∆X∗
t , X

∗
t−1, ε

∗
t and Zt−1 respectively.

Using the partitioned form of Xt and β,

Σββ = V ar(β
0
Xt−1) = E(β

0
Xt−1X

0
t−1β) (28)
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=

 E(β
0
11X

∗
t−1X

∗0
t−1β11) E(β

0
11X

∗
t−1Z

0
t−1)

E(Zt−1X∗0
t−1β11) E(Zt−1Z

0
t−1)



≡

 Σ∗β11β11 Σ∗β11Z

Σ∗Zβ11 Σ∗ZZ


and the second equality follows from the fact that there are no deterministic terms

in the DGP.

Since β11 can be estimated consistently (see Proposition 2)

plim α̃11 = plim S∗01β11(β
0
11S

∗
11β11)

−1 = plim [T−1∆X∗X∗0
−1β11(T

−1β
0
11X

∗
−1X

∗0
−1β11)

−1]

where the second equality is due to the absence of deterministic terms in the SM.

Substituting for ∆X∗ as it is given in (27) and using Slutsky’s Theorem,

plim α̃11 (29)

= α11 + α12plim[(T−1Z−1X∗0
−1β11)][plim(T

−1β
0
11X

∗
−1X

∗0
−1β11)]

−1

= α11 + α12Σ
∗
Zβ11

Σ∗−1β11β11

and the probability limits equal the corresponding population moments since the

process β
0
Xt−1 (and therefore β11X

∗
t−1 and Zt−1) is stationary and ergodic. (29)

shows that α̃11 is ‘inconsistent’ (or asymptotically biased) unless α12 = 0 or

plim(T−1Z−1X∗0
−1β11) = 0. A stronger condition to achieve consistency is Z−1X

∗0
−1β11 =

0 i.e. Z−1 is orthogonal to X∗0
−1β11.

38



For the estimator of the variance-covariance matrix of the errors (again using the

consistency of β̃11) we have

plim Λ̂∗ = plim [S∗00 − S∗01β11(β
0
11S

∗
11β11)

−1β
0
11S

∗
10]

= plim (T−1∆X∗∆X∗0)

−plim [T−1∆X∗X∗0
−1β11(T

−1β
0
11X

∗
−1X

∗0
−1β11)

−1T−1β
0
11X

∗
−1∆X

∗0 ]

= plim T−1∆X∗M∗∆X∗0

whereM∗ = IT−X∗0
−1β11(β

0
11X

∗
−1X

∗0
−1β11)

−1β
0
11X

∗
−1. Substituting for∆X

∗ using (27),

plim Λ̂∗ = plim T−1[α12Z−1M∗Z
0
−1α

0
12 + α12Z−1M

∗ε∗
0
+ ε∗M∗Z

0
−1α

0
12 + ε

∗M∗ε∗
0
]

and M∗Z
0
−1 can be viewed as the residuals from the regression of Z

0
−1 on β

0
11X

∗
−1. By

the Weak Law of Large Numbers we have

plim T−1Z−1M∗ε∗
0
= E(Z−1M∗ε∗

0
) = 0

since E(Z−1M∗ε∗
0
) = E[E(Z−1M∗ε∗

0 |Xt−1)] = E[Z−1M∗E(ε∗
0 |Xt−1)] = 0, where Xt−1

is the minimal σ-field generated by the random vector Xt−1. Furthermore,

plim T−1β
0
11X

∗
−1ε

∗0 = E(β
0
11X

∗
−1ε

∗0) = 0

since E(β
0
11X

∗
−1ε

∗0) = E[E(β
0
11X

∗
−1ε

∗0 |Xt−1)] = E[β
0
11X

∗
−1E(ε

∗0 |Xt−1)] = 0 (see also

footnote 3). Hence,

plim Λ̂∗ = plim (T−1ε∗ε∗
0
) + plim (T−1α12Z−1M∗Z

0
−1α

0
12) (30)

= Ω∗ + α12(Σ∗ZZ −Σ∗Zβ11Σ∗−1β11β11
Σ∗β11Z)α

0
12
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since ε∗ and Z−1 are stationary random variables and by the Weak Law of Large

Numbers the probability limits in (30) equal their corresponding population moments.

Therefore, Λ̂∗ is ‘inconsistent’ unless α12 = 0. ¥
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