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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

SELF-TUNING VIBRATION ABSORBERS
by Michele Zilletti

This thesis presents a theoretical and experimental study of self-tuning vibration control.
Feedback design is often based on the assumption of time-invariance, which means that the
controller has constant coefficients. Self-tuning control takes into account process changes in
the response of the system under control by incorporating an adjusting mechanism which
monitors the system, compares its status with the required one and adjusts the coefficients of the
controller. In this thesis a self-tuning process is analysed for active and semi-active control of
broadband vibration based on the maximisation of the power absorbed by the controller. The
absorbed power can be locally estimated without using extra sensors to monitor the global
response of the system under control. This is particularly advantageous in applications where
many actuators are required, in which case each actuator and the collocated sensor can be
treated as an independent self-tuneable unit.

A theoretical analysis of vibration control using this approach is presented for lumped parameter
systems and also for distributed systems, such as beam and panels. Different tuning strategies
are compared in terms of the reduction of the global response of the system under control. An
algorithm is then discussed that tunes the feedback gains of independent control units to
maximise their individual absorbed powers. Experimental studies are then presented of a self-
tuning control system with two decentralised control units using velocity error signals and

electromagnetic reactive actuators installed on an aluminium panel.

In the second part of the thesis the analysis is extended to the use of inertial actuators. In this
case the implementation of the self-tuning control based on the maximisation of the power
absorbed is investigated using simulations of velocity feedback control and shunted inertial

actuators.






“You never know when you start a journey where you are going to end up...”

Steve Elliott
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1. Introduction

1.1. The need to control structural vibration

Vibration occurs in most machines, structures and dynamic system and can be the cause of
disturbance, damage or even destruction. At the extreme end of the vibration scale, an
earthquake can have tragic consequences, being able to destroy entire cities. At the lowest end,
vibrations produced by a vehicle or a home appliance can cause discomfort and reduce sales.
Vibration control aims to reduce or modify the vibration of a mechanical system [1]. In the last
few decades more and more attention has been devoted to vibration control and multi-million

dollar industries have produced devices and materials for vibration control.

Vibrations can have different characteristics in terms of frequency and magnitude. For example
the range of frequencies most often associated with the effects of the whole human body
vibration on health, activities and comfort is approximately 0.5-100 Hz. Typically frequencies at
about 0.5 Hz can causes motion sickness. Vibrations at around 20 Hz are typically transmitted
through the seat of a vehicle while the frequency transmitted by vibrating tools is around 100
Hz. Depending on the magnitude of the vibration, the human body is generally more sensitive to

low frequency vibrations [2].

Vibrations can have dangerous and destructive effects on mechanical systems. For example
vibrations of high buildings and bridges due to the excitation produced by interaction with the
wind or due to a strong earthquake can cause structural damage if the amplitude of the vibration
excide a certain limit. In some cases, vibrations can also compromise the integrity of a

component due to mechanical fatigue.

In many engineering systems a source of discomfort is represented by air-borne and structure-
borne sound radiation. In particular, vibration of panels and shell structures may generate high
levels of interior noise in transportation vehicles such as aircrafts, trains, helicopters, cars, etc.

in the audio-frequency region, between about 0.02 and 20 kHz [1-3].

Because of this broad variety of vibrations problems it is difficult to find general solutions and
each problem needs to be carefully considered to understand the nature of the vibration. It is
important to understand the source of the vibration, its magnitude and frequency at receiving
location and the path along which the vibration reaches the receiving location. The approaches

to vibration control are typically classified into three types: passive, semi-active and active.



1. INTRODUCTION

This thesis manly concerns with the active control of thin lightly damped structures such as
panels. In cases where the controller is tuned to absorb power, however, the system may be

classed as semi-active.

1.2. Passive vibration control

Passive vibration control aims to reduce the response of a system by passively modifying its
characteristics. The modifications can involve structural changes or the addition of passive
elements in order to change the stiffness, damping and mass of the system under control. These
modifications reduce the response of the structure to the forces imposed by an external
disturbance. Purely passive vibration control techniques do not require external power and are

fixed at the time of implementation.

There are different approaches in designing passive vibration control systems. The first attempt
in reducing structural vibration is made in the design process. The design of a mechanical
component or of the entire system can be optimised in order to reduce the vibration level, either
minimising the vibration input of the disturbance or shifting the structural resonance frequencies
away from the disturbance frequencies. This method requires an accurate model to predict the

structural response and can only be applied during the design process.

A second approach involves the use of localised devices placed in strategic locations on the
structure in order to change a resonance frequency of the main system. A typical example of
such a passive device consists of a single degree of freedom system, either tuned to a resonance
frequency of the structure (vibration absorber) or at the disturbance frequency (vibration
neutraliser) [3]. These systems can efficiently reduce the vibration level only at frequencies

close to those it is tuned.

In the case where the vibration is characterised by many resonances of the structure, a passive
control solution could be to increase the damping of the system. Damping dissipates some of the
vibration energy of the structure by transforming it into heat. A preliminary estimate of the
structural damping already existing in the structure is necessary before any attempt to add extra
damping is made. The most common technique to add damping is to attach, at strategic
locations on the structure, highly damped materials, such as polymeric, to dissipate vibration

energy.

A fourth passive vibration control approach can be applied when one component of the system
vibrates excessively due to high vibration level transmitted through a few connections points.
The vibration of this part can then be efficiently reduced by isolating this path, for example by
making the connections sufficient resilient. This technique is particularly suitable when delicate

equipment have to be isolated from high vibration exposure.
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In many applications passive vibration control can offer a satisfactory attenuation of the
structural response, without excessive costs and with low maintenance requirements. The
penalty for high levels of passive vibration control, however, can be a significant increase in

weight and cost.

The effectiveness of localised passive devices is also generally limited to the narrow frequency
band for which these systems are designed and in some cases can even increase the vibration of

the main system if the operational conditions changes.

1.3. Semi-active vibration control

A resonant passive device may not work if there is a change in the operating or environmental
conditions. Real mechanical systems can be subjected to changes of these conditions and a
resonant device can lose its effectiveness, or in the worst cases, can enhance the vibration level
of the system under control. A semi-active system is a passive system in which the parameters
of the passive device (damping, stiffness, etc.) can be changed over time in order to tune the
controller and allow good reduction for a wide range of operational conditions. The stability of
a semi-active system is guaranteed as the passive system can only absorb power, although the

tuning mechanism could give rise to modulations of the vibration if it fails to converge.

Many techniques to change the properties of passive systems have been developed, particularly
to change the stiffness of a tuned device so that it can track changes in the excitation frequency.
For example, the stiffness of pneumatic springs can be altered by changing the air pressure
inside the device [4]. Another example using element of a shape memory alloy, whose Young
modulus changes with temperature, and so can be controlled by adjusting the electrical current
thorough it [5]. Other strategies of tuning the stiffness of a passive device involve changes in the
geometric shape of the stiffness element, using piezoelectric actuators for example [6].

Electro/magneto rheological fluids are type of fluids that increase their viscosity when exposed
to an electric or magnetic field. They are used in magnetorheological dampers in which the
magnetic field is produced using an electro magnet. The viscous damping of the device can be
therefore changed by varying the current across the coil that generates the magnetic field [7].
They have been used as adaptive dampers on vehicles, to allow less damping on smoother road
surfaces, and on washing machines, to control the drum vibration as its speed runs up through a

resonance.

Semi-active system can be implemented by shunting an electromechanical transducer with an
electrical impedance that can be adapted. This approach has been used for both piezoelectric [8]

and electromagnetic actuators [9, 10].
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1.4. Active vibration control

Active vibration control can take many different forms, but the important components of any of
them are a sensor, an electronic controller and an actuator. The sensor is used to detect the
vibration, the controller manipulates the measured signal in a suitable way and the actuator
applies a reacting force or moment to the system under control. Examples of actuators used in
active control are: shakers, piezoelectric ceramics and magnetostrictive devices. A substantial
advantage of an active control system is its adaptability to parameters changes of the system
under control, which guarantees a better performance in a wider range of operating conditions
compared with a passive one. Depending on the circumstances, active solutions may be cheaper
or lighter then passive systems. In some applications active control systems can offer
performances that no passive system can achieve, especially in controlling low frequency
vibration. The drawback of an active system is that an external power supply is needed.
Moreover active control is only effective in a given frequency band, generally at low

frequencies, and can enhance the vibration level at other frequencies [7, 11].

Several control schemes have been proposed which can be broadly classified into two main

families: feed-forward and feedback architectures.

Feed-forward control is generally the most suitable control strategy when a reference signal is
available that is strongly correlated with the disturbance. Feed-forward control was first design
for active noise control [12], but applications in vibration control can also be found in [11, 13].
The reference signal measured by a sensor, is passed to an adaptive filter and then used to drive
an actuator, which influences the system’s response. The coefficients of the adaptive system are
adjusted in order to minimise the error signal measured by sensors placed in one or more
strategic locations. The idea is to produce a secondary disturbance to cancel the effect of the
primary disturbance at the locations of the error sensors. This type of control strategy does not
guarantee global control unless the response is dominated by a limited number of modes that are
detected by the sensors. The implementation of this type of control does not need a detailed
model of the system under control. The performance of a feed-forward control system relies on
the delicate balance between the interaction of the primary and secondary sources, therefore the
amplitude and phase of a feed-forward controller must be carefully adjusted. Thus, to guarantee
a good performance of the controller, it is of crucial importance to use an efficient adaptive

algorithm that tunes the feed-forward controller in real time [14].

When a reference signal is not available, for example when a mechanical system is subjected to
a broadband random disturbance from many sources, the most suitable control strategy is
feedback control. In feedback control, the control signal measured by a sensor is influenced by

both the primary and secondary source and fed back to the actuator. In principle feedback
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control can be used to control tonal disturbances as well, although, in general, fixed feedback

controllers underperform compared to feed-forward systems [14].

Multichannel vibration feedback control systems can be classified in two types. In the first one,
all the actuators are driven by a single, centralised, controller, which uses the signals measured
by all of the sensors. In general the number and type of actuators and sensor transducers is
chosen in such a way as to measure and excite the vibration component of the structure to be
controlled. Thus they do not need to be collocated and a different number of sensors and
actuators may be used to selectively control different modes [7, 11, 15]. This arrangement is
called centralised control; its design needs an accurate model of the plant responses in order to
properly set the control functions and its implementation can be rather complicated. The plant
responses are often derived from modal models, which are accurate only at low frequencies
where the response of the structure is controlled by a small number of modes [15]. Thus the
performance and stability of such a centralised control system can be affected by changes in the
operation conditions of the structure (e.g. tensioning effects, temperature variations, etc.). Also

failure of one control channel can disrupt the operation of the whole control system.

The second multichannel control arrangement uses an equal number of sensors and actuators,
which are arranged in pairs. Each sensor—actuator pair is treated as an independent control unit
so that the error sighal measured by one sensor is only used to drive the collocated actuator. The
advantage of this decentralised control architecture is the simplicity of the control loops, which
can be simple gains for ideal force actuators and velocity sensors, whose design does not rely on
a model of the plant response [7, 16, 17]. Since such loops are unconditionally stable [18], the
failure of one control unit has no effect on the stability of the other units. Thus decentralised
control systems offer a more robust but less selective approach to control, which can be based
on modular control units that are evenly scattered on the system to be controlled [17]. In fact a
whole range of possible control architectures exist between the fully centralised and fully

decentralised, which are often described as distributed [19].

Conventional feedback design is usually based on the assumption of time-invariance, which
means that the control system and the mechanism of generating the control signal have constant
coefficients. In practice, however, systems parameters can change during time. The self-tuning
controller philosophy takes into account process changes of the system with time by automatic
adjustment of the controller’s parameters to optimise the control performance. In self-tuning
control, the adaptation mechanism often consists of identifying the system by measuring input
and output data, compare the status of the system with the desired one and tuning the controller
to achieve this condition [20]. This approach makes the system self-adaptable to a wide range of
operating conditions and different configurations of the system under control.
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An example could be an active control system for reducing the vibrations of an aircraft panel, to
reduce the noise transmitted inside the cabin. The fuselage is excited by a broadband
disturbance due to turbulent boundary layer or jet engines for example [13]. The pressurisation
of the cabin during the flight can produce a change of the lower resonance frequencies of the
panels by a factor of three [21]. A self-tuning controller can adapt to changes of the system
under control, guaranteeing an optimal reduction of the panels’ vibration for different operating
conditions. Another advantage is that a generic control system could be used in the same
configuration to control different structures (panel with different thickness for example) without
requiring a redesign process. If a fully decentralised arrangement is used, global information on
the response of system is not available at each independent control unit, and thus it is not
possible to automatically tune the control units in such a way that overall vibration of a structure
is minimised. In this thesis the possibility of self-tuning independent control units to obtain a

global effect of minimising the spatially averaged vibration of a structure is investigated.

1.5. Contributions of the thesis

The novel contributions of this thesis are:

e To demonstrate that for broadband excitation, tuning the damping of a dynamic
vibration absorber to maximise its power absorption is exactly equivalent to tuning the
damping to minimise the kinetic energy of a single degree of freedom host structure.

e To propose a self-tuning strategy of decentralised velocity feedback loops based on the
maximisation of the absorbed power, in which the tuning process only relies on the
local feedback signal.

e To assess the practical implementation of self-tuning decentralised velocity feedback
control on a thin aluminium panel with multiple reactive actuators.

e To investigate the maximisation of absorbed power as self-tuning strategy of
decentralised velocity feedback loops using inertial actuators.

e To provide a preliminary theoretical study to assess self-tuning broadband control of

lightly damped structures using shunted electromagnetic inertial actuators.

1.6. Structure of the thesis

This thesis is organised in nine chapters.

Chapter 1 provides a brief introduction on the motivations and technical background for
passive, semi-active and active vibration control of mechanical systems. Also the original

contributions of this research are summarised and the structure of this dissertation is outlined.

Chapter 2 presents an analytical analysis of vibration control of lumped parameter systems

subjected to a broadband disturbance and controlled by a tuneable damper. Two tuning
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strategies are compared: the minimisation of the kinetic energy of the system and the
maximisation of the power absorbed by the tuneable damper. Firstly, the simple case of a single
degree of freedom system with a tuneable damper is considered. The analysis is then extended
to a two degrees of freedom system consisting of two coupled oscillators. One of the two
masses is subjected to a broadband disturbance and the vibration is controlled using a single end
grounded damper acting on the other mass. An analytical expression of the optimal damping
coefficient is found for the case where the two oscillators are connected by a spring and is
presented in Appendix A. For the general case in which the two masses are connected by a
spring and a damper, numerical simulations are carried out to compare the different tuning

strategies.

Chapter 3 considers the vibration control of distributed structures subjected to a broadband
disturbance using decentralised velocity feedback loops consisting in ideal collocated sensor-
actuator pairs. This type of control approach corresponds on having a single end grounded
damper attached to the structure at control positions. Different strategies of tuning the control
gains of multiple feedback loops are compared. A self-tuning algorithm based on the
maximisation of the individual power absorbed by each feedback loop is presented. The
advantage of using the absorbed power as cost function to tune the control gain is that its
estimation can be accomplished using the feedback signal only without requiring extra sensors
to monitor the global response of the system. The formulation used to derive the mathematical
model of lightly damped beams and panels controlled by a multichannel controller for

deterministic and stochastic excitations is derived in Appendix B.

Chapter 4 describes the experimental test rig built for the implementation of multichannel
control of a clamped aluminium panel excited by a shaker fed with white noise. Nine control
units are mounted on the panel each consisting in a voice coil actuator closely collocated with
an accelerometer. Particular care is taken in the design of the controller in order to guarantee the
stability of the control system for values of control gains higher than the one producing the
transition in the control action between optimum damping and pinning of the structure.
Simulations results of the closed loop response of the system based on measured open loop
responses are presented in order to predict the performance of the control system. A complete
set of measurement for nine single control channels of the measured open loop and simulated

close loop responses is presented in Appendix C.

Chapter 5 presents the experimental results for the implementation of the self-tuning control
based of the maximisation of the power absorbed by the controller for single and two channels
control system. The experimental results of the single channel control using one of the two
control unit can be found in Appendix D.
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Chapter 6 discusses simulations results of lightly damped panel controlled by a single velocity
feedback loop which uses an inertial electromagnetic actuator when the structure is subject to a
broadband disturbance. The need of using such inertial devices in vibration control arises from
the fact that it is often not possible to use reactive actuator in practice, since there may be a solid
structure to react the force against. It is illustrated that maximising the mechanical absorbed
power provides a reasonable approximation to minimising the Kinetic energy of the host
structure. The problems arising from the instability caused by these devices are also discussed.
The mechanical and electrical impedances of an inertial electromagnetic actuator are derived in

Appendix E.

Chapter 7 introduces the use of the dynamic vibration absorbers to control broadband
vibration. The DVA is used here to control the vibration of a single degree of freedom system
subject to broadband disturbance. The maximisation of the power absorbed by the DVA is
compared to the minimisation of the kinetic energy of the host structure. The parameters
involved in the optimisation are the frequency ratio of the natural frequencies of the decoupled
SDOF systems and their damping ratios. It is demonstrated that the two tuning strategies are

exactly the same.

Chapter 8 presents preliminary studies of a self-tuning semi-active controller using
electromechanical inertial actuator. The system consists of an electromechanical inertial
actuator with an adaptable electrical shunt that acted as a passive damper and also as a source of

electrical energy to drive the self-tuning circuit.

Chapter 9 summarises the findings of this thesis and presents suggestions for further work.



2. Comparison of tuning strategies for broadband
control of lumped parameter systems

In this chapter the broadband vibration control of lumped parameter systems using a tuneable
damper is investigated. The aim is to compare two different control strategies: the minimisation
of the total kinetic energy of the system and the maximisation of the total power absorbed by the
tuneable damper. A single degree of freedom (SDOF) system excited by a broadband
disturbance is initially considered. A two degree of freedom system is then considered,
consisting of two coupled oscillators, one of which is subjected to a white noise disturbance and
controlled by a tuneable damper acting on the other mass. Firstly, a simplified model is
considered in which the two vibrating masses are connected by a spring. Secondly, a damper is

added between the two masses.

2.1. Broadband control of a single degree of freedom system
In this section the broadband vibration control of a single degree of freedom system is
considered. The system is composed by a vibrating mass m, a spring k and a viscous damper c

as shown in Figure 2.1. The mechanical damping constant c can be varied.

!

VX

Figure 2.1: scheme of the single degree of freedom system with a tuneable damper.

The mass is excited by a white noise external force f,. The equation of motion of the system can

be written as:

mx(t) + cx(t) + kx(t) = f,(t) 2.1)

where x(t) is the displacement of the mass. The steady-state response of the oscillator is
expressed assuming time-harmonic excitation for the time being of the form Refexp(jwt)}

where w is the angular frequency and j = v/—1. For brevity the time harmonic term exp(jwt)

will be omitted in the formulation which will be given in complex form. Therefore the time
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harmonic displacement x(t) = Re{¥(w)exp(jwt)} and the force f,(¢) = Re{f,(w)exp(jwt)}
will be replaced by the frequency dependent complex displacement and the force phasors ¥ and
fp. Throughout the thesis ~ will be used to identify complex, frequency-dependant functions.
The displacement ¥ is then given by:

fo
—w?m+joc+k (2.2)

X =

Deriving equation (2.2) the velocity of the mass per unit input force can be written as:

_ Jjo
 —w?m+joc+k (2.3)

o]
Il
oh|

Assuming that the excitation force fp is random with a power spectral density, PSD, of S¢(w)

(with the unit of N°s/rad) the PSD of the kinetic energy of the moving mass is given by:

1 2
Sk(w) = 5m|Y| Se(w) (2.4)
and substituting equation (2.3) in (2.4) yields:

Jjw
—w?m+ joc+k

1
Sk(w) = Sm |

St (2.5)

where S¢(w) is now assumed to be a constant, S, independent of frequency, corresponding to
white noise force excitation. If the aim of the tuneable damper is to minimise the integral of the
kinetic energy of the mass m for frequencies between +oo, so that the quantity to be minimised
is given by:

KE = f_wSk(w)dw 2.6)

Substituting equation (2.5) in (2.6) and using the integral tables given in reference [22] KE is
given by:

s
KE = —Sf

2c 2.7

Figure 2.2 shows the total kinetic energy as function of the damping constant c. It is interesting
to notice that the total kinetic energy of the mass does not depend on the value of m. As
expected the total kinetic energy of the mass decreases as the mechanical damping increases.

10
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Figure 2.2: Total kinetic energy of the vibrating mass as function of the mechanical damping c.

For ¢ equal zero the total kinetic energy tends to infinity since the system is undamped. For very
high values of the control gain the effect of the controller is to stop the vibration of the mass so
that its total kinetic energy tends to zero. This means that the overall response of the system is

minimised when the value of ¢ tends to infinity.

An alternative strategy of tuning the damper to obtain broadband control of the mass m is to

maximise the power absorbed by the tuneable damper given by:

1 .
Sp(w) = 7 Re{F;7} 2.8)

where * denotes the conjugate value of a complex number and £; is the force produced by the

damper given by:

fu=cv (2.9)
Substituting equation (2.9) in (2.8) and assuming the primary disturbance to have a constant

spectrum equal to unity, the PSD of the absorbed power is given by:

1 .
Sp(w) = EClYlZSf (2.10)

If the aim of the tuneable damper is to maximise the integral of the absorbed power between

+oo0, the quantity to be maximised is equal to:

p= J_ Spw)do 1)

Substituting equation (2.10) in (2.11) and using the integral tables given in reference [22] P is
given by:

11
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b=’ 2.12)

Equation (2.12) shows that for this simple system the absorbed power does not depend on the
value of the mechanical damping ¢ and so this cannot be used as strategy of tuning the damping
in the system. In this case the mathematical solution seems to be in contrast with the physical
explanation, that if ¢ tends to infinity the velocity of the mass tends to zero and no power should
be dissipated by the damper. If the power absorbed is numerically integrated over a finite

frequency band, P can be expressed as:

1 Wmax S al 50
P= Ecsffo [Y|*dw = chZ |Y]*Aw; (2.13)
=

where Aw; is the sampling circular frequency and w, .4 is the maximum frequency considered.
The integration band can include only positive frequency value because Y(—w) = ¥*(w).
Figure 2.3 shows the power absorbed integrated between 1 Hz-1 kHz (solid line), between 1 Hz-
10 kHz (dashed line), 1 Hz-100 kHz (dotted line) and O-infinity when m is 1 Kg and k is 40
N/m. The power absorbed is equal to r/(4m) for low values of c. The plot also shows that for
high value of ¢ the absorbed power tends to zero if the integration frequency band is finite and it

goes more rapidly to zero for smaller integration frequency bands.
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Figure 2.3: power absorbed by the damper as function of the mechanical damping c integrated between 0-
1kHz (solid line), 0-10 kHz (dashed line), 0-100 kHz (dotted line) and O-infinity (faint line).

The paradox between the mathematical and physically intuitive result is thus due to the infinite
bandwidth assumed for the PSD of the applied force. This makes the single degree of freedom
system a poor choice of model problem in this case.

12
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2.2. Broadband control of a two degrees of freedom system

In this section the broadband control of the two degrees of freedom system shown in Figure 2.4
is analysed. The scheme shows a system comprising two coupled oscillators where my , are the
masses, ki » 3 the stiffness of the springs and ¢y 3 are the damping constants. The external force

fp is applied on mass 1.

k, k, ko
— AN — —,/\/\/\—;

m, m
i
41 7
c, c, C; V.

X; X,
— > >
—>
A

Figure 2.4: Two degrees of freedom system excited by a force f,.
The equation of motion of the system shown in Figure 2.4 can be written in the matrix form as:

Mix(t) + Cx(t) + Kx(t) = f(t) (2.14)

Where M is the mass matrix, K is the stiffness matrix and C is the damping matrix
given by:

M:I:Trél O:ll K:[k1+k2 _k2 :|7 C=[C1+Cz —Cy :|l
m; 3

_kz kz + k _CZ C2 + C3 (215)

x(t) = [x1(t) x,(t)]T is the column vector containing the displacements of the two
masses x; and x,and £(t) = [f(t) 0]7 is the column vector of primary excitation.

Assuming the excitation to be harmonic for the time being and expressing the force

and the steady-state response in exponential form, equation (2.14) becomes:

Sk =1f (2.16)
where
< ,
S=-w*M+jwC+K 2.17)
is the dynamic stiffness matrix. The solution of equation (2.16) can be obtained as:
S _ o-1F
k=571 (2.18)
Integrating equation (2.18) to obtain the velocities yields:
V=i (2.19)

13
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where vV = jw% and Y = jwS™! is the mobility matrix. Using the expression of M, K

and C of equations (2.15) the velocities per unit input force of the two masses are

given by:
- By + (jw)B, + (jw)’B; + (jw)’B;
T Ay + (o)A + ()24, + (0)* A5 + (jw)*A, (2.20)
_ Co + (jw)C, + (jw)’C, + (jw)*Cy
Yi, = ] T 2 T 3 N (2.21)
Ay + (jw)A; + (o) A + (jw) Az + (jw) A,
where
AO = k1k3 + k2k3 + klkz BO =0 CO =0
Al = Czkl + C3k1 + C1k2 + C3k2 + C1k3 + C2k3 Bl = kz + k3 Cl = k2
Az = C1C2 + 6103 + C2C3 + kzml + k3m1 + klmz + kzmz Bz = CZ + C3 CZ = CZ
A3 = C2m1 + C3m1 + C1m2 + szz B3 = mz C3 =0
A4 = mlmz

Two different configurations of the two degrees of freedom system of Figure 2.4 are considered
in this section. In the first configuration the damper c, is assumed to be zero, while in the second
configuration all the parameters are different from zero. In both configurations the primary
force, which is assumed to be white noise with a PSD of unity at all frequencies and the
tuneable damper is the damper c;. Table 2.1 shows a summary of all the optimisation

implemented on different configurations with the respective sections.

14
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Table 2.1: summary of the different configurations of the two degrees of freedom considered in this

section
N. System’s Scheme Optimisation | Subsection
Configurations
Minimisation of
k, k, kinetic energy of
k, mp
1. | Two DOF system ™ i 291
c, C; 4
controlled by a 2N EN Maximisation of
grounded damper —p power absorbed
£ by c3
Minimisation of
kinetic energy of
my
4k K, k,

Case of a general two Minimisation of
" m, kinetic energy of

2. DOF system Z EDCZ e, b | theentiresystem 222

1 X2
controlled by a > >
—>
grounded damper 2 Maximisation of
power absorbed
by c3
2.2.1. Case of a simplify two DOF system controlled by a grounded damper

The simplified two degrees of freedom system shown in Figure 2.5 is considered in

this subsection.

k, k3 7

k, —W—7

m MW m, 2

EI 7

¢ ¢ U
X; X2
> — >

—>

f

Figure 2.5: Two DOF system controlled by a single end grounded damper and ¢,=0

For this configuration, with white noise force excitation, the +oo frequency integrated
power input, P;,, to the system is independent of c; [23]. The balance between the

power input and out to the system is thus equal to:

Pin = Pabsl + Pabs3 (222)

where P,,s; IS the power dissipated by damper 1 and P,,s3 iS the power dissipated by

damper 3. Differentiating equation (2.22) with respect of c; yields:

15
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aPabsl apabs3
=+ =
dcsg dcg (2.23)

The PSD of the power absorbed by the damper 1 is given by:

1 Fx o~
Sp1(w) = 5 Re{fi71} (2.24)

where fd is the force produced by the damper 1 given by:

fq= et (2.25)

Substituting equation (2.25) in (2.24) and assuming white noise excitation, the PSD of
the power absorbed by damper 1 can be written as:

1
Ser(@) = 1l 1°Se(@), (2.26)

and the PSD of the kinetic energy of mass 1 is given by:

1 ~
Sk (w) = Em1|Y11|25f(a’)- (2.27)

where S¢(w) is the PSD of the excitation force fp. From equations (2.26) and (2.27),

the frequency averaged power absorbed by damper 1 and the total Kinetic energy of

mass m; are given by:

1 teo 4
Pops1 = 551 o V11| dw (2.28)

KE, = lml f+m|?11|2 dw

2™ (2.29)
where S¢(w) is now assumed to be unity. Equations (2.28) and (2.29) indicate that the
power absorbed by damper 1 is proportional to the kinetic energy of mass 1 and thus
also the derivative with respect of c; of equation (2.28) is proportional to the
derivative with the respect of c; of the kinetic energy of mass 1. Thus equation (2.23)

yields to

— K —_—
dcsg dcs (2.30)

Equation (2.30) shows that setting the value of c; to maximise the power dissipated by

the damper 3, corresponds to minimise the kinetic energy of the mass m.
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Figure 2.6: +oo frequency integrated (a) kinetic energy of a two DOF system consisting in two coupled
oscillators connected by a spring and (b) power absorbed by damper 3 as function of the mechanical
damping cs.

Figure 2.6(a) and (b) shows the simulated +co frequency integrated Kkinetic energy of
the system and power absorbed by the damper 3 as function of the mechanical
damping cs;. The parameters used in these simulations are listed in Table 2.2. The
kinetic energy of the mass m; is minimised for the same value of c; (1.27 Ns/m) that
maximises the power absorbed by damper 3. Analytical expressions for the optimal

damping c; are derived in Appendix A in the case of ¢, and k3 equal zero.

Table 2.2: physical parameters of the two degrees of freedom system

m, = 0.5 Kg k, =2 N/m ¢, = 0 Ns/m
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2.2.2. Case of a general two DOF system controlled by a grounded damper

The two degrees of freedom system considered in this subsection is shown in Figure 2.7. The
integral of the total kinetic energy of the mass m;, the total Kinetic energy of the entire system
and the power absorbed by the tuneable damper are compared as tuning strategy of the

mechanical damping cs.

ASSONNNNNNN

Figure 2.7: general two degrees of freedom system controlled by a single end grounded damper.

Assuming the excitation being white noise, the kinetic energy of mass two, KE; is given by:

1 te
KE, = Emzfm [Y12] dw (2.31)
In this general case the frequency integrated power input is not constant, therefore it is not
guaranteed that the maximisation of the power absorbed correspond to the minimisation of the
kinetic energy of the mass m;. Substituting the expression of the mobilities given in equations
(2.20) and (2.21), when all the parameter of the system are different from zero, in equation
(2.28), (2.29) and (2.31), KE,, KE; and P, can be written as:

KE,

(m(=(ky + k3)*my ((c; + c)my + (¢ + c)my) +
(53(k1 +ky) + cy(ky + k) + ¢y (ky + k3))m1(_(02 +c3)? + 2(k, + k3)my) +
my((kzks + ky(ky + k3))((c2 + c3)my + (¢ + c)my) — (c3(ky + k) + (kg + k3) +
c1(ky + k3))(cac3 + c1(cp + c3) + (kg + k3)my + (ky + ky)my))))
ey + ks) + 5 (ky + k3) + ¢1(ky + k) mym, + (2.32)

(k2k3 + Iy (ky + k3))((52 +c3)my + (¢q + Cz)mz)2 -
(c3(ky + ky) + co(ky + k3) +
c1(ky + k3))((c2 + c3)my + (1 + ¢c)my)
(cac3 + c1(cy + ¢3) + (ky + k3)my + (ky + ky)my)))
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KE,
_ (mmy (=5 (e3(ky + kp) + coky + ks) + 1 (ky + k3)) = k3(camy + cymy + ¢y (my +my)
= 2

(4((‘33("1 +ky) + cy(ky + k3) + ¢ (ky + k3)) mym; +

(k2k3 + kl (kz + k3))((C2 + C3)m1 + (Cl + Cz)mz)z - (233)
(c3(ky + k) + co(ky + k3) +
cq(ky + k3))((c2 + c3)my + (¢4 + c)my)
(cac3 + c1(cy + ¢3) + (ky + k3)my + (ky + ky)my)))

(me3(—c5(c3(ey + ky) + (g + k3) + cq(ky + k3))
—k3(c3my + c1my + cp(my + my))))
(4((53("1 +ky) + cy(ky + k3) + ¢y (ky + kg))2m1m2 +
(kakes + by (ke + k) ((cs + c3)my + (1 + c)my)” — (2.34)
(c3(ky + kp) + ca(ky + k3) +

¢1(ky + k3))((c2 + c3)my + (¢q + c2)my)
(cze3 + c1(c5 + c3) + (ky + ks)my + (ky + ky)my)))

Pabs3 =

The total kinetic energy of the system is given by the sum of the individual kinetic energy of the

two masses leading to:

KE
(m(=Cky + k3)*my((c; + c3)my + (cq + c2)my) + (c3(ky + k) + ¢ (g + k3) + ¢ (kp + keg))m,y
(=(cz + ¢3)% + 2(ky + k3)my) + my(—c3(cs(ky + k) + ¢ (g + k3) + ¢y (ky + k3)) —
k3 ((cy + c3)my + (cq + c)my)) + my((koks + ky(kp + k3))((cz + c3)my + (¢q + c)my) —
_ (es(ley + ko) + ca(ky + k3) + ¢ (kp + k3))(cacs + €i(Cp + ¢3) + (kp + k3)my + (ky + k2)m,))))
(4((C3(k1 +ky) + cp(ky +k3) +ci(ky + k3))2m1m2
—(c3(ky + k) + co(ky + k3) + ¢ (ky + k3))
(cye5 + c(cy + c3) + kymy + kymy + kymy + kym,)
(csmy + c1my + co(my + my)) + (koks + ky(kz + k3))(csmy + cym; + c(my + m3))?)

(2.35)

Because of the complexity of these expressions it has not been possible to find analytical
solutions for the various optimisations but to gain a better understanding of the physical
behaviour of the system a specific case has been taken into account. The physical parameter of

the system are summarised in Table 2.3.

Table 2.3: physical parameters of the two degrees of freedom system

m; = 1 Kg k; = 1.3 N/m ¢, = 0.02 Ns/m
m, = 0.5 Kg k, =2 N/m ¢, = 0.03 Ns/m
ks =1.5N/m

19
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Figure 2.8 shows the PSD of the kinetic energy of the system for different values of c;. When ¢;
is equal zero the response is characterised by two resonances (solid line). When c; is increased
the two resonances are gradually damped. The dashed and dash-dotted line in Figure 2.8
represent the response of the system when the total kinetic energy is minimised and when the
power absorbed by the tuneable damper is maximised respectively, while the dotted line shows
the response when only the kinetic energy of the mass m; is minimised. The plot shows that
there is no much difference in the three optimisations in term of the total response of the system.
For very high values of c; the response is characterised by a single resonance. In this case the
effect of the damper is to pin the mass m; so that the system behaves like a single degree of
freedom system.

80

c,=0

— — = min(KE)
..... max(P_ )1
....... min(KE, )
40 6,=1000 |

60~

Kinetic Energy (1dB rel. 1 JINZ)

_1w L L
10?2 10" 10° 10'
Frequency (Hz)

Figure 2.8: PSD of the total kinetic energy of the system when: ¢c;=0 (solid line), KE in minimised
(dashed line), P,ps3 is maximised (dash-dotted line), KE; in minimised (dotted line) and c;=1000 Ns/m

(faint line)
0
2+ B
/’,’

4 =
g /
s /
g o / ]
& /
g /
I /
o 8 |- / .
H /
g /
2

10 / -

/
/
/
-12 - \_’/ 7

‘
10° 10” 10" 10° 10’ 10° 10°
Mechanical Damping c, (Ns/m)

Figure 2.9: total kinetic energy of the system (solid line) and kinetic energy of the mass m; as function of
the mechanical damping cs.
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Figure 2.9 shows the total Kinetic energy of the system (solid line) and the kinetic energy of the
mass 1 (dashed line) normalised to the value of the kinetic energy for c; equal zero as function
of cs. The plot shows that both curves decrease when c;is increased until they reach a minimum
and start to increase again when cs is further increased. The two curves are minimised for about
the same value of cs.
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Figure 2.10: Total power absorbed by the tuneable damper as function of the mechanical damping cs.

Figure 2.10 shows the power absorbed by the damper 3 as function of the mechanical damping
cs. The plot shows that the power absorbed is zero when c;is zero and increases when cs is
increased until it reaches a maximum. For very high values of c;the power tends to zero. In this
case the effect of the damper is to pin the second mass such that its velocity goes to zero and no
power is absorbed. The maximum of the power absorbed by the tuneable damper roughly
corresponds to the minimum of the total Kinetic energy of the system and the kinetic energy of

the mass m;.

Table 2.4: optimal values of c; and the corresponding attenuation in the total kinetic energy of the system.

Optimal values of c; (Ns/m) Attenuation in the total kinetic energy
of the system (KE) in dB

Minimising KE 1.556 -13.1
Maximising Pgps3 1.010 -12.7
Minimising KE; 1.313 -13.0

A summary of the optimal damping values together with the corresponding attenuation in the
total kinetic energy of the system in dB are summarised in Table 2.4. Although the optimum

values of c; are slightly different, the attenuation in the total kinetic energy of the system is only
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0.1 dB higher when the kinetic energy of the mass m; is minimised and about 0.4 dB higher
when the absorbed power is maximised. In the case of a general two degree of freedom system
the maximisation of power absorbed as strategy of tuning a single-end grounded damper seems

to be a good approximation for the minimisation of the kinetic energy of the entire system.

2.3. Summary and Conclusions

This chapter has presented a theoretical study of broadband vibration control of lumped
parameter systems. Two control strategies have been compared: the minimisation of the total
kinetic energy of the system under control and the maximisation of the power absorbed by a
tuneable damper integrated over too frequency band. For a single degree of freedom system
with a tuneable damper, the kinetic energy of the mass monotonically decreases when the
damping increases, while the power absorbed by the damper tends to a finite value when the
damping tends to infinity. This is in contrast with the more intuitive and physical explanation of
zero absorbed power when the motion of the mass is constrained by the very high value of
damping. This is due to the infinite bandwidth assumed for the PSD of the applied force, which
makes the single degree of freedom system a poor choice of model problem in this case.

A two degree of freedom system has also been considered, consisting of two coupled
oscillators, one of which is subjected by a white noise disturbance and which is controlled by a
tuneable damper acting on the other mass. A simplified model in which the two oscillators are
connected by a spring has been analysed first. In this case it has been demonstrated that the
maximisation of the power absorbed by the tuneable damper corresponds exactly with the

minimisation of the kinetic energy of the excited mass.

Finally a general two degree of freedom system in which the two masses are connected by a
spring and a damper has been analysed. In this case no analytical expression of the optimal
damping have been found but numerical simulation have shown that the values of damping that
minimises the kinetic energy of the entire system, are very similar to those that minimises the
kinetic energy of the excited mass and that maximises the power absorbed by the damper. In the

next chapter the analysis will be extended to distributed multi-degree of freedom systems.
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3. Tuning strategies of decentralised velocity
feedbacks for broadband control of distributed
structures

This chapter considers various tuning strategies for feedback control on distributed structures
such as beams and panels. A model is first introduced for lightly damped flexible structures
excited by a primary disturbance and controlled by multichannel decentralised velocity
feedback loops. Different control strategies of tuning the control gains of each independent
feedback loop are implemented with the aim of obtaining broadband control. The first strategy
considered tunes the feedback control gains in order to minimise the frequency-averaged total
kinetic energy of the structure. The overall kinetic energy is a global property, however, and its
measurement would require a dense array of sensors over the whole structure. Tuning the
feedback gains on this criterion thus defeats the idea of having entirely locally-acting control
loops. A parameter that can be measured entirely locally, however, is the mechanical power
absorbed by the control loop. The background in using the absorbed power as a tuning strategy
is reviewed in the first section. In this application the force is generated by the ideal actuator and
is made proportional to the measured velocity. The absorbed power can thus be readily
estimated from the mean square value of the measured velocity and the feedback gain, thus
providing a simple measurement of an entirely local parameter that could be used to tune the
gains. These two tuning methods are compared when the structure is subject to broadband,

narrow band and single frequency disturbance.

A third tuning strategy considered is the maximisation of the control stability, which sets the
control gains to maximise the damping ratio of a selected mode of the vibrating structure. In the
last part of this chapter the performance of three tuning strategies are compered in controlling

structural vibration of both a panel and a cantilever beam.

3.1. Background in self-tuning control using power absorption
In the last few years there has been much interest in developing strategies of self-tuning

decentralised feedback loops.

Elliott et al. [24] used a model of a thin aluminium plate controlled by an array of 4x4 direct
velocity feedback loops to study the performance of the controller. The feedback gains were set
to constant equal values while the total kinetic energy of the plate was monitored. It was found
that as the control gain increases the total Kinetic energy is attenuated providing active damping

on the excited modes. As the control gain becomes very large, the action of the feedback loops
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is to pin the plate at the control positions, so that the structure has a new set of lightly damped
modes. As result the kinetic energy of the plate started to rise again as the feedback gain is

increased.

Another important finding of Elliott et al. [24] was that the optimum gain is approximately
equal to the mobility of the infinite structure. It is interesting to note that this is a real, frequency
independent quantity for a plate, but for a beam, it is frequency dependent and has real and
imaginary components [25]. On the basis of this idea Engels et al. [26] estimated the optimum
gain value from the frequency average of the real part of the control point mobility to self-tune

the gain of the feedback control loop.

However, in a totally decentralized architecture the optimum gain cannot be deduced from
global quantity such as, for example, the total kinetic energy of the plate. Another proposed
strategy to tune the gains of decentralized feedback loops is the maximisation of the power
absorbed by the control system. The power absorbed is a local quantity since is calculated on
the base of the velocity at control position, measured by the error sensor, and the actuation

force.

Experiments on active control of flexural wave power flow in structures were carried out by
Redman - White et al. [27] who investigated active methods for reducing the magnitude of the
vibrational power flow associated with the propagation of flexural waves in a beam. The two
ends of the beam were terminated in sand boxes, which absorbed the vibrations, in order to
simulate an infinite structure by avoiding reflection effects at the two ends of the beam. The
beam was excited by a single frequency primary source located in the centre of the beam and
controlled by a pair of closely spaced secondary control forces placed halfway between the
primary excitation and the termination of a beam. The single frequency excitation signal was
used as a reference for the secondary control sources in a feedforward control arrangement. The
goal of the control system was to reduce the power flowing from the primary excitation into the
section between the secondary source and the end of the beam. 36 dB of reduction in the power
flowing between the control source and the end of the beam was achieved by maximising the
power absorbed by the controller. This had the effect of simulating a perfectly absorbing
termination such that the total power flowing downstream from the secondary source is

controlled, while the power flowing from the primary source remains substantially unchanged.

Guicking et al. [28] used an analog feedback using an accelerometer and an
electromagnetic shaker to control the vibration of a cantilever beam. The clamped edge of the
beam included an absorbing material to reduce reflections simulating a semi-infinite structure.
The aim of the analog controller was to maximise the absorbed power when the structure is
excited at a single frequency by matching the control point structural impedance. The secondary

source was placed at the free edge of the beam and was able to absorb all the power flowing
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from the primary source, avoiding reflections. The power was estimated by measuring both the

velocity at the control position and the control force.

Bardou et al. [29] further developed this approach by considering the two-dimensional
vibration field on a plate using feedforward control. They compared two active control
strategies in order to reduce the vibration of an infinite and a finite plate. The aim of the first
one was to minimize the total power supplied to a plate while the aim of the second was to
maximize the power absorbed by the secondary source. The work was focussed in the
understanding of the physical limitations of using the two different strategies at single
frequencies. A model of a plate excited by an array of single frequency primary forces and
moments and controlled by an array of secondary forces and moments was considered. A
general method was used for the calculation of the effect of minimizing the total power into the
plate and the analytic results were obtained for different configurations of primary and
secondary sources using combinations of moments and forces. In general the strategy where the
total power produced by the primary and secondary sources is minimised provided the best
control results. The other strategy where the power absorbed by the secondary sources is
maximised produces rather different results for single frequency control, since the action of the
control source tends to enhance the power input by the primary source and thus the total power

in the structure tends to increase rather than decrease.

Hirami [30] used the maximization of power absorbed to actively control the vibration of
finite structure. The first analysis was conducted on a single degree of freedom (SDOF) mass-
spring-damping excited by a harmonic force. The vibration of the system was controlled using a
velocity feedback loop with a complex control gain. It was shown that, in this case, the
condition of maximum power absorption is not the same as that of the minimization of energy.
For a real control feedback gain, it was shown that by maximizing the absorbed power the
control gain converges to the magnitude of the mechanical input impedance of the system but
the energy of the system is not minimized. The second example considered by Hirami [30] was
a finite string in a steady state vibration condition when excited by a harmonic displacement at
one end and controlled by a transversal force at the other end. The control force was set to be
equal to the product of the velocity at that point and complex control function. The condition of
maximum power absorption again tends to increase the total energy in the string, as it was found
for SDOF system. Some attenuation was achieved when the excitation is close to a resonance
frequency of the string. However, Hirami [30] showed that if the string is semi-infinite and the
controller is placed at the end of it, the implementation of maximum power absorption is
identical to adjust the control gain to equal the system’s infinite impedance, avoiding reflection
from the control end, as already found by other authors. In the case of a finite string excited at

its resonance frequency, if the control gain is increased the energy of the system increases as
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soon as the primary source is subjected to reflected wave. Instead, when the control gain is set
on the value that absorbs as much power as possible from the incident wave, the energy of the
system results bounded. In practice, the best performance in the control of a finite system
excited at a single frequency excitation appears to be achieved when the control gain is set on
the optimum value of power absorption estimated for the infinite system. Since the power
absorbed is a local quantity, an algorithm that self-tune the control feedback gain can be used to
make the system adaptive. Experiments in this direction have been carried out by Hirami [31].
The control system undertakes two tasks at the same time. One is the measurement of the power
absorbed by the controller using both, a force and velocity sensor and the other is to feed back
the velocity signal to the actuator with a certain gain. The controller proposed used a gradient
based algorithm that converges to the optimal feedback gain, which maximises the measured
absorbed power. The algorithm was designed to adapt in a short time before the reflected wave
reached the controller. The power absorbed is estimated by measuring both the control force and
the velocity at control position. Experiments were carried out by Hirami [31] on a string excited
at resonance and controlled by a shaker. The initial vibration level is reduced by 15dB after
placement of the shaker which changes the modal response of the string and introduces passive
damping. The active control produces a further 10 dB reduction. It was found that the optimum
gain increases with the frequency and the peak of power absorbed becomes smoother. Also in
the case of broadband excitation when a wide range of frequencies are excited, the algorithm

converges to the optimal value of gain that maximise the power absorbed, giving good results.

Sharp et al. [32] presented a method of reducing the sound power radiated by a vibrating
structure using a feedback control system based on optimal power absorption, focusing on
broadband frequency excitation. The optimal controller provides a casually constrained
impedance match between the control system and structure, maximising the power flow
between two systems. The structure used in this study was a simply supported beam. This
control method gave a reduction of radiated sound power at all resonance frequency of the
beam. The total kinetic energy of the beam was also reduced, demonstrating that the control
system does not reduce only the vibration at control position but provide global vibration

attenuation.

Sharp et al. [32] also investigated the conditions under which the maximization of power
absorption could lead to an increase in the energy in the system. The occurrence of this
phenomenon is due to the secondary source driving the primary source to generate additional
power in order to achieve greater power dissipation. Sharp et al. [32] however argues that as the
predictability of the disturbance decreases, as the excitation bandwidth increases, it becomes
less likely that the secondary source will influence the primary source and increase the total

power input.
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3.2. Broadband vibration control of a panel

In this section the model of a simply supported panel subject to an external primary excitation is
used to predict the structural response when controlled by direct velocity feedback loops.
Different types of excitations are considered. The first one is a white noise force acting at a
point of the panel. In this case the relative distance between the control location and the point of
the application of the primary force will influence the performance of the controller. To
overcome this effect, ‘rain-on-the-roof” primary excitation, consisting of a random distribution
of pressure in time and space, is considered. The effect of more than one channel control system
is considered and in the last subsection the implementation of a self-tuning algorithm to

maximise the power absorbed by each control loop is discussed.

3.2.1. Fixed gain for broad frequency band control

In this section, the implementation of a single direct velocity feedback control loop on a simply
supported panel is considered. The feedback gain is fixed at a single, frequency independent,
value. The feedback loop uses an ideal velocity sensor collocated with an ideal point force
actuator. Since the sensor and actuator pair is dual and collocated the velocity feedback loop is

unconditionally stable [18].

As shown in Figure 3.1, the origin O of the Cartesian co-ordinate system of reference (O, X, Y, z)
is assumed to be located at the top left corner of the panel with the z axis orthogonal to the

surface of the panel.

The primary harmonic force f,, which excited the panel, is located at point of coordinate (X,, Yp),
while the control force f., is located at point of coordinate (x, y1). The geometric and physical
parameters of the panel are summarized in Table 3.1 and the modal response of the panel is
derived in Appendix B.

A A

(xp,)’p)

Figure 3.1: Schema of simply supported panel excited by a primary force fp with a collocated ideal
velocity sensor and force actuator feedback control system.
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Table 3.1: Geometric and physical parameters for the panel

Parameter Value

Dimensions lex 1y =0.414x0.314 m?
Thickness h=0.001 m

Position of the primary excitation (X0, Yp)= (0.6 11, 0.4 1))
Position of the control point (x1,y1)= (0.3 1,0.71)
Mass density p =2700 kg/m®
Young’s modulus E =7x10" N/m?
Poisson ratio v; =0.33

Loss factor n=1%

Figure 3.2 shows the total flexural kinetic energy in the 10 Hz-1 kHz frequency range with no
control (thick line) when the optimal control gain (g = 36 dB) that minimises the kinetic energy
averaged between 1 Hz and 1000 Hz (dashed line) and when very high control gain (dotted line)
are implemented. Figure 3.3 shows the normalised’ total flexural kinetic energy integrated
between 10 Hz and 1kHz, for a range control gains between -25 dB and 100 dB (relative to 1
Nsm™ i.e. between 10™° and 10° Nsm™). Figure 3.2 shows that for a moderate gain, g, the
feedback loop effectively reduces the response at resonance frequencies. However, when a large
feedback gain is implemented the response of the plate is no longer actively damped, but is
characterised by a shifted set of resonances [33-35] due to the pinning of the structure at the

control point.

" Normalized to the total kinetic energy when the feedback control loop is left open

28



3. TUNING STRATEGIES OF DECENTRALISED VELOCITY FEEDBACKS FOR BROADBAND CONTROL OF DISTRIBUTED STRUCTURES

N
o
T

b
S
T

&
&
)

Kinetic Energy (1 dB rel. 1 JINz)
A
o
T
~

A
2]
T
N
=

50 - AN 1

- i

60 - ‘
10’ 10° 10°
Frequency (Hz)

Figure 3.2: PSD of the total flexural kinetic energy of the panel when it is excited by a unit primary force
and the control gains of the feedback control system using a force actuator are set to be 0 Nsm™ (solid line)
36 Nsm™ (dashed line) and 10° Nsm™ (dotted line).

As Figure 3.3 shows, there is an optimal value of the gain, between these two extremes, that
reduces the kinetic energy substantially.

Normalised averaged Kinetic Energy (dB)

6 L L L L L L
-20 0 20 40 60 80 100
Control gain (dB)

Figure 3.3: averaged PSD of total kinetic energy in the frequency range 0-1 KHz of the panel with and
without feedback control plotted against the control gain. The total kinetic energy is minimised for
g =36 Nms™,

The velocity feedback control loop with a collocated velocity sensor and force actuator pair
provides sky-hook active damping, which absorbs power from the structure under control. Thus,
it would be interesting to consider the optimal value of the control gain which maximises the
power absorbed by the velocity feedback control loop and then to contrast the reduction of total
flexural energy it produces with reference to the optimal case described above. The PSD of the

power absorbed by the feedback loop is given by:
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Sp(w) = S Re{f 5}, (3.1)

Since the control force is proportional to the control velocity via the control gain g, the power
absorbed can be written as:
.

Sp(w) = %glﬁc (3.2)

An advantage of this strategy is that the power absorbed is a local quantity because, as shown
by equation (3.2), it only depends on the control gain and the mean squared value of the velocity
at control position and thus it would be rather easy to implement a control algorithm that sets

the optimal gain that maximises the power absorbed by the controller.
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Figure 3.4: PSD of the power absorbed by the control feedback loop when it is excited by a unit primary
force and the control gains of the feedback control system using a force actuator are set to be 0.001 Nsm™
(solid line) 36 Nsm™ (dashed line) and 10°> Nsm™ (dotted line).

Figure 3.4 shows the spectrum of the power absorbed by the control loop for three control gains.
The thick line provides a benchmark reference of the power absorption produced by a very
small gain of 0.001 Nsm™. The dashed and dotted lines show the power absorbed when control
gains are implemented that produce the spectra in Figure 3.2, plotted with the corresponding

type of lines.
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Figure 3.5: PSD of power absorbed averaged in the frequency range 1-0 kHz by the feedback control loop
plotted against the control gain. The power absorbed is maximised for g = 39 Nsm™.

Figure 3.5 shows the total power absorbed, integrated between 10 and 1000 Hz, for a range
control gains between -25 and 100 dB. Comparing Figure 3.3 and Figure 3.5 it is found that the
maximum power absorbed by the control unit is produced by a similar gain that minimises the
total Kinetic energy of the plate. Thus the plots show a very interesting result: the control
performance produced when the average power absorbed by the feedback loop is maximised is
about the same as the one obtained minimising the averaged kinetic energy of the system. In
other words, if a frequency-independent control gain is implemented, then the response of the
panel is approximately minimised over a broad-frequency band when the control loop is set to

maximise the power it absorbs.

It also interesting to notice that the impedance of an infinite panel of the same thickness is about
33.8 Nsm™ which is approximately the same gain that minimises the total kinetic energy of the

panel as shown in reference [24].

The plots in Figure 3.6(a) and (b) show the normalised total kinetic energy and the total power
absorbed by the feedback control loop integrated between 1 Hz and 1 kHz as function of the
control gain when the controller is placed near the primary excitation. From these plots, it can
be noted that if the distance between the control and the primary excitation points is reduced,
the optimum value of control gain, which minimises the total kinetic energy, increases and

produces much higher reduction in terms of the panel’s response (about 16.5 dB).
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Figure 3.6: Total kinetic energy and total power absorbed plotted against the control gain when the
primary force is acted on (0.61,,0.4l,) and the control point is a) (0.58l,0.41l,). Total kinetic energy is
minimised for g = 555 Nsm™and the total power absorbed is maximise for g = 10 Nsm™.

Figure 3.6(a) shows that when the control gain is greater than the optimal value, the total kinetic
energy of the panel is about the same as that for the optimal control gain. This is due to the fact
that as the control loop gets closer to the primary excitation, the best way to reduce the overall
vibration of the plate is by pinning the excitation point so that very little residual vibration is
allowed at the excitation point and thus very little energy is injected by the primary force to the
plate. If, in an ideal condition, the control point and primary force are assumed to be at the same
position on the plate, the optimum gain, which minimises the total kinetic energy, would tend to
infinity, since the velocity at the control position would tend to zero. Thus no energy would be

input to the plate and the total energy of the plate would go to zero.

Comparing Figure 3.6(b) with Figure 3.5, the value of the control gain which maximises the
power absorbed decreases when the distance between the primary force and control point is
reduced. But, if the control system is tuned with the value of gain that maximises the power
absorbed it still gives about 11 dB of reduction in terms of the total kinetic energy of the panel.
This result demonstrates that the maximisation of the absorbed power gives acceptable level of

performance even in the case where the primary and control points are close to each other, but
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the difference in optimised gains larger as the control point approaches the single excitation

point in this case.

To make the control system insensitive to the distance between the primary and secondary
force, a random distribution of pressure (i.e. ‘rain-on-the-roof”) acting on the panel’s surface has
been considered. The primary forces are spatially uncorrelated and have a power spectrum
density that is constant in frequency (white noise) and in space (uniformity). The formulation
for multichannel control of a panel subject to ‘rain-on-the-roof’ excitation is derived in
Appendix B. Figure 3.7 shows a scheme of the simply supported panel. The geometric and
physical parameters for the plate and the position of the control point are summarized in
Table 3.1.

()] [-g |

A

Figure 3.7: Schema of the simply supported plate subject to a random excitation “rain-on-the-roof” with a
collocated ideal velocity sensor and force actuator feedback control system.

Figure 3.8 shows the PSD of the kinetic energy of the panel without control (solid line) and
when the frequency independent gain of the control loop is increased from a very small value to
higher values (dashed line, faint line and dotted line, respectively). As already seen in the case
of point force excitation, for small gains, the control loop produces active damping which
reduces the response of the plate up to the third resonance frequency at about 120 Hz. The
dashed line represents the response of the panel for the control gain that minimises the
frequency averaged response of the panel. If the control gain exceeds this value, the response of
the panel increases again, at other frequencies, eventually creating a new set of resonance

frequencies due to active pinning [33-35].
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Figure 3.8: PSD of the flexural kinetic energy of the plate when it is subject to a random excitation and
the control gains of the feedback control system using a force actuator are set to be 0 Nsm™ (solid line) 38
Nsm™ (dashed line) and 10° Nsm™ (dotted line).
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Figure 3.9: PSD of the power absorbed by the control feedback loop when the plate is subjected to a
broadband random excitation and the control gains of the feedback control system using a force actuator
are set to be 0.001 Nsm™ (solid line) 38 Nsm™ (dashed line) and 10°> Nsm™ (dotted line).

Figure 3.9 shows the PSD of power absorbed by the feedback loop when the control gain g is
increased. The solid line provides a benchmark reference of the power absorbed for a very low
value of feedback gain (0.001 Nsm™). When the control gain is increased with the same values
considered in Figure 3.8, the spectrum of the power absorbed increases until an optimum value

of control gain (dashed line) is reached.

When the gain is further increased, the power absorbed decreases again as the new set of
resonances emerge (dotted line). This interesting result suggests that a good level of
performance can be achieved by maximising the total power absorbed by the feedback loop over

a wide frequency band.
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Figure 3.10: PSD of average total kinetic energy in the frequency range 1Hk-1 KHz of the plate plotted
against the control gain. The total kinetic energy in minimised for g = 38 Nsm™.
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Figure 3.11: PSD of power absorbed in the frequency range 1Hk-1kHz by the feedback control loop
plotted against the control gain. The total power absorbed is maximised for g = 29 Nsm™.

This observation is confirmed by the plots in Figure 3.10 and 11, which show the 1 Hz to 1 kHz
frequency-integrated PSD of the total kinetic energy, normalised to the reference level without
control, and the 1 Hz to 1 kHz frequency-integrated PSD of the total power absorbed, as a
function of the control gain.

The two plots show that as the feedback control gain g is raised, the frequency integrated
kinetic energy initially decreases while the frequency integrated power absorbed initially
increases. The minimum of the kinetic energy and the maximum of power absorbed are
achieved at about the same control gain. At higher gains, the kinetic energy increases again and
the power absorbed drops off.
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Figure 3.12: PSD of Kkinetic energy and power absorbed plotted against the control gain when the plate is
subject to a random excitation and the control point is (0.8 I, 0.01 l,). Total kinetic energy is minimised
for g = 67 Nsm™ and the total power absorbed is maximise for g = 60 Nsm™.

Figure 3.12 (a), (b) shows the PSD of the normalised total kinetic energy and the PSD of the
power absorbed integrated between 1 and 1000 Hz plotted against the control gain when the
controller is located near the edge of the panel. It can be noted that the optimum values of
control gain, which minimise the PSD of the total kinetic energy and maximise the PSD of the
power absorbed are still similar, but are higher than in the previous case. This is due to the fact
that the control force is no longer able to excite the plate efficiently and that the plate’s
impedance is larger close to the edge. In the case of deterministic excitation there is a strong
dependence of the optimum gain on the distance between the primary and control force. In the
case of random excitation, the controlled response of the panel is relatively independent of the

position of the control force, except when it gets close to the edge of the plate [26].
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3.2.2. Fixed gain for narrowband control

This section investigates how the frequency band-width of the random excitations influences the

optimal value of control gain.

Figure 3.13 shows the difference between the control gains that would produce maximum
reduction of kinetic energy and maximum power absorption integrated over increasingly wider

frequency bands between 1 Hz and 1 kHz, starting at lower frequency of 1 Hz.
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Figure 3.13: difference between the control gains minimising the kinetic energy and maximising the
power absorption averaged over increasingly wider frequency bands between 1 and 1000 Hz.

For small bandwidths the two control gains differ by about four orders of magnitude since the
panel is stiffness controlled in this region and minimising the kinetic energy can be achieved by
almost pinning the panel, whereas the absorbed power is maximised at much lower gains.
However, when the bandwidth exceeds about 60 Hz, the difference between the two gains
abruptly drops down to values between 0 and 20 dB. Figure 3.14 shows a similar graph for the
difference between the reductions of kinetic energy that are produced with the two control gains

and shows a similar transition at 60 Hz.
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Figure 3.14: difference between the kinetic energy maximising the power absorption and the minimum of

kinetic energy achievable

3

The 60 Hz cut-off frequency corresponds to the fundamental resonance frequency of the simply
supported panel with the additional pinning constraint at the control position (the first peak of
the dotted spectrum in Figure 3.8). This suggest that maximising the total power absorbed also
minimises the kinetic energy provided the frequency range over which the two quantities are
integrated includes at least the fundamental resonance of the plate response when the control
unit pins the panel. In this case, the typical U and n shapes for the variations of kinetic energy
and power absorbed as function of the control gain shown in Figure 3.10 and Figure 3.11 can be
found. Figure 3.15 and Figure 3.16 show the total kinetic energy and total power absorbed as
function of the control gain respectively averaged between 1-40 Hz. Figure 3.15 shows that the
kinetic energy remains low at high gain, since the new resonance is outside this frequency band
of integration, and the absorption peak does not occur at the same gain as the minimum kinetic

energy.
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Figure 3.15: Frequency averaged PSD of the kinetic energy plotted against the control gain, averaged
from 1 to 40 Hz.
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Figure 3.16: Frequency averaged PSD of the power absorbed plotted against the control gain, averaged
from 0 to 40 Hz. The absorbed power is maximised for for g = 1.8 dB

3.2.3. Single frequency excitation

All the results presented so far are related to broadband excitation, so that the total kinetic
energy and power absorbed have been averaged over range of frequencies. In this section the
two strategies of tuning the control gain are compared in the case of a single frequency
excitation. Figure 3.17 shows the spectrum of the plate Kinetic energy when excited one
frequency at a time and there is no control (thick line) and when the control gain is set to either
minimise the panel Kkinetic energy (dotted line) or maximise the power absorbed (dashed line)

independently at each frequency.
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Figure 3.17: Kinetic energy for single frequency excitation without control, as function of excitation
frequency (solid line), with the gain adjusted at each excitation frequency to minimise the kinetic energy
(dotted line) and with the gain adjusted at each excitation frequency to maximise the power absorbed
(dashed line).

The resulting frequency-dependent control gains for the two cases are shown in Figure 3.18.
However it would not be possible to implement a broadband controller with frequency
responses corresponding to either of these curves, since their phase response is zero and so their
impulse responses would be symmetrical in the time domain and hence non-causal. Figure 3.17
indicates that, as one would expect, the best control approach is produced when the feedback

gain is adjusted to minimise the kinetic energy.
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Figure 3.18: optimum gain minimizing the total kinetic energy (dotted line) and maximizing the power
absorbed (dashed line) for single frequency excitation

The other approach, where the power absorbed by the control loop is maximised at each
frequency independently, produces reductions of the kinetic energy only over small frequency
bands. The resulting kinetic energy spectrum is characterised by resonance peaks and also new
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peaks that occur in between two resonances. A detailed analysis of the response of the plate at
the new peak at around 55 Hz, shows that the feedback loop reduces the error velocity to very
low values by implementing the very large feedback gain seen in Figure 3.18 at this frequency,
so that a new resonant mode is generated [33]. These single frequency simulations reinforce the
requirement for a significant excitation bandwidth if minimisation of power absorbed is to be

used to minimise kinetic energy.

3.2.4. Broadband control using two feedback loops

In this section the control effects of two feedback loops, with frequency independent gains, are
investigated when the panel is subject to broadband ‘rain-on-the-roof” excitation. The positions

of the two control points are given in Table 3.2 and they are a distance of about 0.3 m apart.

Table 3.2: position of the two feedback loops

Control position 1 x1,¥1 = 031,071,

Control position 2 X2y, =0431,,041,
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Figure 3.19: 1Hz to 1 kHz frequency integrated a) PSD of total kinetic energy and b) PSD of total power
absorbed by the two feedback loops as a function of the control gains g, and g,.

Figure 3.19 shows, as a function of the two feedback gains g, and g,, the 1 Hz to 1 kHz
integrated PSD of the total kinetic energy of the panel normalised to the reference PSD of
Kinetic energy without control and the 1 Hz to 1 kHz integrated PSD of the total power absorbed
by the two control feedback loops. The plots show that the minimum total Kinetic energy and
the maximum power absorbed are given when the two feedback gains are similar to the values
that they would have if they were controlling the vibration of the panel independently.
Moreover, the minimum total kinetic energy and the maximum total power absorbed occur for a

very similar pair of control gains. This suggests that controlling the response of the panel by
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locally tuning each control loop to maximise its power absorbed in a wide range of frequencies
can be extended to multiple feedback loops. Comparing Figure 3.10 with Figure 3.19(a) and
Figure 3.11 with Figure 3.19(b), shows that using two feedback loops instead of one further
reduces the total kinetic energy by about 1.5 dB and further increases the total power absorbed
by about 1.5 dB.

Figure 3.20 show the PSD, integrated between 1 Hz and 1 kHz, of the power absorbed by the
individual feedback loops as functions of the feedback gains g, and g,. The two plots show that
the power absorbed by each control unit is reduced when the other control unit is tuned close to
its optimal value, and the control gain that maximises the power absorbed by one control unit is
influenced by the control gain in the other loop.
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Figure 3.20: 1 Hz to 1 kHz PSD of power absorbed by (a) control unit number 1 and (b) number 2 as a
function of the control gains g, and g,.

The simultaneous maximisation of the local power in both control units, however, converges to
the maximisation of the total absorbed power shown in Figure 3.19. The important aspect of the
curves in Figure 3.20, as far as a practical adaptation algorithm is concerned, is that if one
control gain is fixed, the local power absorbed by the other loop is still maximised by a single
value of its control gain. It is thus possible to use gradient-based algorithms to adjust the
individual control gains.

3.2.5. Self-tuning algorithm to maximise the power absorbed by the controller

The simulation study presented in the previous subsections has shown that, assuming broadband
excitation, a similar control performance is achievable minimising the total kinetic energy of the
plate or maximising the power absorbed by each of the feedback loops. This suggests that
reductions in the overall vibration can be obtained by adapting the local feedback gains of the
control units to maximise the total power absorbed by each control unit.
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Figure 3.21: Scheme of a single self-tuning velocity feedback loop.

Figure 3.21 shows a potential self-tuning scheme for a local feedback loop. Since the control
force produced by the r-th feedback loop, f,, is proportional to the velocity measured at the r-th
control position, v, via the control gain g, then the power absorbed by the controller at a given
frequency is proportional to the mean squared value of the control velocity via the control gain,
as previously shown in equation (3.2) for a single channel. Thus an algorithm that adjusts the
control gain to maximise the total power absorbed can be implemented using only the local
velocity measured by the feedback sensor, the instantaneous value of which is used as the

feedback signal.

In this study, a simple algorithm that adjusts the control gain to maximise the total power
absorbed by each loop has been investigated. The algorithm increases the control gain in each
loop gradually from zero in fixed steps, then uses the calculated power absorbed to adapt the

control gain. The algorithm at the g-th iteration can be written as:

9r(q +1) = g-(q) + a(q){sgnl[AP-(q)]sgn[Ag- ()]} (33)

where sgn[ ] signifies the sign of the parameter in brackets, AP and are Ag the differences in
power absorbed and control gain between two consecutive iterations with all other control gains
in the other feedback controllers fixed. The parameter a(q) is the step by which the gain is
increased at the g-th iteration. When the power absorbed starts to decrease, the algorithm
reduces the control gain by half a step and so a(q) is given by:

aq+ 1) = o) ~ 21— sgnlan @)} 64

where the initial value of a for ¢ = 0 must be specified. The error in the estimation of g, after g
iterations is +2a(q) and since a(q) decreases in size with g, the algorithm converges to the
optimum. If the conditions on the plate change, it is assumed that this can be detected and the
value of a(q) re-initialised so that the algorithm can adapt the gain to its new optimum value.
When multiple feedback loops are tuned simultaneously, the power absorbed by one feedback

loop is influenced by all the others, as shown in Subsection 3.2.4. Therefore, the individual
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power absorbed by the r-th control loop must be re-estimated, keeping all the other gains
constant, before the r-th control gain is varied. A limitation of this tuning algorithm is thus that
global synchronization is required to ensure sequential tuning, even though each control loop is
still tuned using only the signal of the collocated sensor in decentralised manner. It is not clear
whether other control algorithms, which allow simultaneous adaptation of each control loop,
could be used and thus avoids the need for global synchronisation of the tuning. It is also
important to highlight that the broadband disturbance is assumed to be stationary during the

adaptation so that a change in the absorbed power is only due to change in the control gain.

3.2.6. 16 Self-tuning feedback loops

In this section the effects of implementing 16 self-tuning feedback loops on the panel are
investigated. Figure 3.22(a) shows the positions of the control points on the panel.
Figure 3.22(b) shows the value of the control gains of each feedback loop after the self-tuning
algorithm given in equations (3.3) and (3.4) has been used to tune all the feedback loops
sequentially to maximise their power absorbed. The way this is achieved is that the gain on the
first control loop is adjusted using equation (3.3), and then each of the other loops are adjusted,
after which this sequence is repeated until the gains have converged. The gain distribution is

symmetric, as expected, but within the range 27.5 to 33.8 Nms™.

@ ®)
o ® ® ® 317 33.8 33.8 317
® @435 0 275 311 311 275
Iy /A5
® © 8] @ 275 31.1 31.1 27.5
© 8 © ® 317 338 33.8 317
k

Figure 3.22: a) Scheme of a plate with the control points disposition and (b) values of control gain, in
Nsm-!, maximising the power absorbed of each control feedback loop, found using the self-tuning
algorithm.
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Figure 3.23: PSD of the total kinetic energy when g,.16= 0 (solid line), the self-tuning algorithm is
implemented (dashed line) and g1.16 = 32.7 Nsm™ (dotted line).

Figure 3.23 shows the PSD of the panel’s kinetic energy without control (solid line), after the
self-tuning algorithm has been used to adapt the gain of each feedback loop (dashed line) and
when the total kinetic energy is minimised off line using the same value of gain for each
feedback loop (dotted line). Although the kinetic energy PSD is only shown up to an excitation
frequency of 1 kHz in Figure 3.23, the simulations were performed with an excitation
bandwidth up to 10 kHz. This is to include the new resonance frequencies that would be created
with high gains in each of these 16 feedback loops, which may interfere with the adaptation
process. The plot demonstrates that the self-tuning algorithm provides an overall reduction very
close to the minimum that would be achieved if the total kinetic energy is minimised using

equal control gains, yet only uses information local to the control loops.

Figure 3.24 shows the convergence of the control gains g4, g», gs and g, when adapted using
the self-tuning algorithm (a) when their initial value is set on 0 and (b) when they are set to
random values. In the simulations the initial value of alpha is set on 10 and the error on the
estimation of g which is twice the minimum alpha is +0.02. Figure 3.24 illustrates that the
algorithm reliably converges to the correct optimum values, within these limits, whatever the

initial conditions.
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Figure 3.24: Convergence of control gains g; solid line), g, (dashed line) gs (dotted line) and g¢ (dash-dot
line) (a) starting from 0 and (b) random values.

Figure 3.25 shows the simulation results when the control unit 6, 10 and 12 fail after 5 iterations
and the corresponding values of g are then set to zero. Comparing Figure 3.22(b) and
Figure 3.25(a), the converged values of the control gains vary slightly from those above, but

still maximise the power absorbed in the remaining units.
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Figure 3.25: (a) Control gains after convergence when the control unit 6, 10, and 12 fail after 5 iterations;
(b) PSD of the total kinetic energy of the panel without control (solid line), using 16 self-tuning control
loops (dashed line) and after failure of three control units (dot-dashed line).

Figure 3.25(b) shows the PSD of the kinetic energy of the panel without control (solid line),
using 16 self-tuning control units (dashed line) and after the convergence of the algorithm when
the three control units fail (dot-dashed line). The plot shows that after the failure, the remaining
feedback gains have been slightly adjusted, but a good reduction of vibration is still achieved

over this frequency range.
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3.3. Vibration control of a beam to maximise control stability

This section considers the maximisation of control stability as a strategy of tuning the gain of an
ideal single velocity feedback loop. The objective of stability maximisation criterion is to
minimise the transient vibration of the system, and has been suggested as a tuning strategies by
Preumont [7] and Engelen [36] for example.

-g

Figure 3.26: Block diagram of a single direct velocity feedback loop control implemented on the plate.

The optimisation is achieved when the pole of a chosen mode of the closed loop frequency
response function (FRF) of the control system is located as far as possible from the imaginary
axis in the left-half of the s-plane so that the modal damping of that particular mode is

maximised.

Figure 3.26 shows the block diagram of the velocity feedback loop. Y, is the FRF between the
control force, f, and control velocity 7, ch is FRF between the primary excitation fp and
control velocity and g is the control gain. A beam, with the characteristic listed in Table 3.3, is
initially used as an example of a distributed structure in this section since it has more widely
spaced resonances and the behaviour of the poles is easier to visualise. The expression of the

FRFs can be found in reference [25]. The closed loop FRF is given by:

e (s) _ ch(s)
fo(s) 14 gY..(s)° (3.5)

and thus, the characteristic equation is given by:

1+ g¥..(s)=0. (36)

The root locus is a plot of the solution of the characteristic equation of the closed loop system

when the control gain is varied between zero and infinity. The root locus is constructed knowing
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the poles and zeros of the open loop FRF Y. which, for a lightly damped structure, can be
written as [36]:

s T of TS (s* + 67)
kTTL, 67 ?]:1(52 + wlz) (37)

ch (s) =

where s is the complex Laplace transform variable, k is the static stiffness of the structure at
control position, w; is the i-th complex resonance frequency, 6; is the i-th complex zero or anti-
resonance of the open loop FRF. As an example the cantilever beam of Figure 3.27 controlled
by a single ideal velocity feedback loop is considered when the response of the beam is

calculated, rain-on-the-roof excitation is assumed.

gl Ll EgEHHHHHHl
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L
Figure 3.27: Scheme of a cantilever beam subjected to ‘rain-on-the-roof” excitation and controlled by a
single ideal velocity feedback

Table 3.3: geometrical and physical characteristic of the beam:

Parameter Value

Dimensions 1 =0.31m

Thickness 0.001 m

Width d=0.025

Mass density p = 2700 kg/m®
Young’s modulus E =7x10" N/m?
Poisson ratio v; =0.33

Loss factor n=1%
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Figure 3.28: root loci of characteristic equation for different position along the beam: a) 0.07 mm b) 0.18
mm c) 0.25 mm d) 0.47 mm

Figure 3.28 shows the root loci plot of the closed loop FRF for four different locations of the
controller along the beam. The roots start at the poles of the open loop system when the
feedback gain is zero and end up at the zeros of the open loop as the feedback gain tends to
infinity [37]. All plots are characterised by an alternating succession of open loop poles and
zeros near the imaginary axis. This is due to collocation of the actuator and sensor. The root-
locus plot is entirely located on the left hand side of the s-plane, since the system is
unconditionally stable. Although only the root loci relative to the first two modes are shown, the
first five modes in equation (3.7) have been taken into account in the simulations. The open
loop poles of the system are independent of the location of the control loop but the open loop

zeros change with this location.

Figure 3.28(a) shows the root locus plot when the control position is located at x=0.07 m. The
two poles move to the nearest zeros, which are closely spaced in this case, when the control gain
is increased and they coincide with the zeros when the control gain tends to infinity. The zeros
represent the natural frequency of the structure when pinned at the control position.
Figure 3.28(b) shows the root locus plot when the controller is located at x=0.18 m. In this case

the second pole does not move to the next zero but towards the origin of the s-plane when the
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gain is increased. When the second pole is real, the second mode becomes critically damped.
When the controller is located at x=0.25mm (Figure 3.28(c)), the distance between the first zero
and the second pole becomes smaller than the distance between the first pole and origin,
therefore the first pole moves towards the origin and the second pole moves to the first zero as
the control gain is increased. Figure 3.28(d) shows the root locus plot when the control position
is located near the tip of the beam. The root locus does not show substantial difference with the

previous case.

The uncontrolled response of a cantilever beam is characterised by well separated modes at low
frequency, which have a magnitude that rapidly decreases with the frequency for a fixed loss
factor. Therefore a good broadband attenuation of the beam’s response can be obtained by
controlling only the first mode. The modal damping for a given control gain can be obtained
from the root locus plot as the sine of the angle formed by the imaginary axis and the line
connecting the origin of the s-plane to the point of the root locus corresponding to that particular
gain. Figure 3.29 shows the root locus plot of the closed loop FRF relative to the first mode only
when the controller is placed at x=0.18 m. The maximum damping achievable for the first mode

is given by the sine of the angle .
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Figure 3.29: root locus of the direct velocity feedback loop for the first mode at control position 0.18 m

The root locus plot of Figure 3.28 shows that it is not a simple matter to predict the trend of the
root locus plot just knowing the position of the open loop zeros and poles. To compute the
optimal value of the control gain, it is necessary to calculate the entire root locus. Therefore, the
implementation of this strategy as a self-tuning control would first require the measurement of
the open loop poles and zero of the structure from its measured frequency response, the
computation of the root locus of the characteristic equation and, finally, the estimation of the

optimal control gain.

50



3. TUNING STRATEGIES OF DECENTRALISED VELOCITY FEEDBACKS FOR BROADBAND CONTROL OF DISTRIBUTED STRUCTURES

Approximate values of the control gain that maximises the modal damping of the first mode
can, however, be found in literature [7, 36]. Considering the root locus of the first mode in
Figure 3.28, two distinct situations can be highlighted: in the first one the pole moves to the next
highest zero (plot (a) and (b)) and in the second one the first pole moves to the origin of the s-
plane (plot (c) and (d)). In plots (a) and (b) the distance of the first pole to the first zero can be
considered small compared to all the other poles and zeros. Therefore, equation (3.7) can be

approximated, in the vicinity of the first pole, by only considering the contribution of the first

mode, as:
7. (s) = 1s(s?2+27%)
cc\S) = k, s2 +w12 (3.8)
where
. A
1= k w? (3.9)

Under this assumption, Engelen et al. [36] found an approximate solution of the maximum

value of modal damping by solving equation (3.6) using a perturbation method, giving:

Wy — 27
{lmax - 20)1 (3_10)

which correspond to an optimal gain of:

12 Jw,/Z,

Yopt = Ew_lz 7, (3.11)

In the second case, when the pole moves towards the origin of the s-plane, the optimal gain is
the smallest values that critically damp the first mode. No expressions for the optimal control
gain have been found in literature for this specific case. However, Engelen et al. [36] have
shown that setting the control gain using equation (3.11) gives a good approximation for the
optimal gain, even if the controlled mode can be critically damped. Figure 3.30 shows a
comparison of the optimal control gains for different location of the feedback loop along the
beam obtained from equation (3.11) (solid line) and numerical simulations (dashed line). In the
simulation the optimal control gain has been tuned to maximise the modal damping of the first
mode or, in case the first mode can be critically damped, has been tuned to the minimum control
gain for which critical damping is achieved. The plot show that the maximum difference in

control gain using equation (3.11) and the numerical values is about 7 dB.
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Figure 3.30: optimal control gains for different position of the controller along the beam calculated with
numerical simulations (solid line) and using equation (3.11) (dashed line).

Similar strategy can be used to optimise the gain of a feedback controller on a panel, although
the root locus diagram becomes more complicated due to the closer spacing between the modes.
This makes the root loci very dependent on the position of the controller on the panel and

requires some care in the selection of the locus whose real part is to be minimised.

3.4. Comparison of different strategies of tuning single feedback loop

In order to compare the three tuning strategies discussed in the previous sections, simulations
have been carried out for different control loop locations on a cantilever beam subjected to rain-
on-the-roof excitation. In the simulations the first eleven modes of the beam have been taken in
to account and the kinetic energy of the structure and the power absorbed by the controller have
been averaged between 1Hz-1kHz. The optimal values of the control gains which maximise the
control stability have been found numerically. For control location where the first mode can be
critically damped, the minimum value of control gain for which critical damping is achieved is
assigned. Figure 3.31 and Figure 3.32 shows the three values of the control gains and the
corresponding reduction in the total kinetic energy found using the three optimisation strategies
for different controller position along the beam. Although the optimal gains using the three
optimisation methods can be quite different, the reductions in the total kinetic energy are very
similar. The major differences can be observed near the clamped side of the beam where the
maximisation of the power absorbed seems to underestimate the control gain compared with the
other two. This is also the area where the smallest reduction in the total Kinetic energy of the

beam can be achieved because the modal amplitude of all the structural modes is small.
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Figure 3.31: Values of the control feedback gain found using the three tuning strategies as function of the
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Figure 3.32: Reduction of total kinetic energy achieved using the three strategies as function of the

control point along a cantilever beam

Simulations have also been carried out to compare these three tuning strategies for control of a

simply supported panel subject to ‘rain-on-the-roof’ excitation. Two cases have been

considered: when the controller is moved along the x-axis at y=0.5l, and at y=0.25l,.
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Figure 3.33: (a) and (b) optimal control gains and (c) and (d) reduction in the kinetic energy for the three
tuning strategies on a panel when the controller moves along the x-axis at y=0.5l, and 0.25I,

The optimal control values and corresponding reduction in terms of kinetic energy of the panel
are shown in Figure 3.33 for the two cases.

The plots show that although the optimal feedback gains are relatively independent on the
position except near the boundaries, as observed by [26], the attenuation varies depending on
which modes can be easily control by the actuator. A controller at the centre, for example,

cannot control any even-even order modes.

In the control of a panel the maximisation of control stability method seems to performance
worse than in the case of a cantilever beam if compared with the minimisation of the kinetic
energy of the structure. This is due to the fact that the uncontrolled panel’s response is
dominated by more modes at low frequency than the beam and this tuning method is optimised
to control only the first structural mode. However the three methods give similar performance in
terms of the total Kinetic energy of the panel, as shown in the two bottom plots of Figure 3.33,

provided the controller is not positioned to close to the edge of the panel.
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3.5. Summary and conclusions

This chapter has discussed the vibration control of flexible structures using self-tuning ideal
velocity feedback loops. The total kinetic energy of the structure has been taken as a benchmark
to compare two tuning strategies: the maximisation of the power absorbed by the controller and
the maximisation of the control stability.

The background in using the absorbed power as a tuning strategy has been reviewed in the first
section. In the application considered here, the force is generated by the ideal actuator and is
made proportional to the measured velocity. The absorbed power could thus be readily
estimated from the mean square value of the measured velocity and the feedback gain, thus
providing a simple measurement of an entirely local parameter that has been used to tune the
gains. It has been shown that, for broadband disturbance, maximising the absorbed power
approximately minimises the Kinetic energy of the structure. For narrow-band and single
frequency excitations, however, the maximisation of the power absorbed could increase the
structural response. Simulations on the convergence of an algorithm to adjust the control gains

of independent feedback loops have been carried out.

The maximisation of the control stability as a further tuning strategy of the control gain of a
single feedback loop has been considered in this chapter. A cantilever beam subjected to
broadband excitation has been considered for this application. This control strategy aims to
maximise the damping ratio of the first structural mode. The estimation of the optimal control
gain has been made using the root locus plot of the closed loop response. It has been shown that
the root locus plot changes depending on the position of the controller along the beam.
Therefore the optimisation can be done after the entire root locus has been computed. To avoid
this, approximate expression of the optimal control gain could be used instead. In this case the
self-tuning procedure would require the measurement of the poles and zeros of the open loop

structure and the estimation of the control gain.

In the last section the two tuning strategies have been compared with the minimisation of the

kinetic energy of the entire structure under control giving similar level of performance.

The next two chapters will discuss the experimental implementation of self-tuning decentralised
velocity feedback based on the maximisation of the power absorbed by the controller using

reactive actuators.
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4. Design and testing of the experimental panel
and the controller

In this chapter the panel used for the experiments on decentralised velocity feedback using
reactive actuators is described. The experimental panel is equipped with nine reactive
electromagnetic actuators collocated with nine sensors. Two different types of sensors were
used: B&K piezoelectric accelerometers and low cost MEMS accelerometers. All the
components in the control loop are first described for each of the two configurations, including

sensor-actuator pairs and control electronics.

In the theoretical analysis in Chapter 3 it was possible to assume that the control loops were
unconditionally stable, since ideal force actuators and velocity sensors were used. The dynamic
response of the actuator and sensor in the experimental system can lead to instability for high
feedback gains i. e. conditional stability. Particular care must thus be taken to assess the stability
of the controller from the open loop frequency response before the closed loop frequency
response is calculated. Simulations are then performed to predict the closed loop behaviour of

the control system. The experimental results of closed loop control are left until Chapter 5.

4.1 The experimental panel design

The experimental panel demonstrator built for this study consists of a 1 mm thick rectangular
aluminium panel with dimensions 0.412x0.312 m? The panel is equipped with 9 miniature
voice coils actuators, consisting of a coil and a permanent magnet. As shown in Figure 4.1 the
actuators are placed between the panel and a frame which is used to react the force off. Since
the coils are lighter than the magnets, they were attached to the panel, whereas the permanent
magnets were attached to the relatively rigid frame. In this way the passive effect of the actuator
on the panel is minimised. The reactive actuators were commercial coil and magnet device
(H2W technologies, NCC01-04-001) and one is shown in Figure 4.2.
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ReactiveFrame

Permanent Magnet

Clamping Frame

I

Figure 4.1: The prototype experimental panel; a) the lower clamping frame with the reactive frame
mounted on top of the thick-walled Perspex box, b) aluminium panel with 9 B&K accelerometers.

Figure 4.2: a) the miniature voice-coil actuator (H2W, NCC01-04-001) shown in comparison to a
US$ quarter coin.

Each of the nine coil and magnet pairs is equipped with an accelerometer closely located with
the coil. Two configurations are analysed: in the first one the feedback sensor is a high-
performance piezoelectric accelerometer (B&K type 4375) shown in Figure 4.3(a), in the
second one the feedback sensor is a MEMS accelerometer (Analog Devices ADXL103) shown
in Figure 4.3(b).
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Figure 4.3: a) the B&K accelerometer type 4375, b) the MEMS accelerometer chip connected to a 10x20
2
mm* board.

As shown in Figure 4.1(b), the panel is clamped between two aluminium frames. The frames
have a width of 32 mm, but they have different thicknesses: 25mm for the bottom frame and 10
mm for the top one. The clamping frame and the panel are mounted on one side of a Perspex

box, which was left open during the experiments to avoid strong coupling between the panel

and the volumetric mode of the cavity.

Table 4.1: Physical properties of the smart panel and transducers

Parameter Value
Dimension (mm) 412%312
Thickness(mm) 1
Aluminium Panel Density (kg/m3) 2700
Young’s modulus (GPa) 70
Poisson’s ratio 0.33
Box wall thickness (mm) 30
Perspex Box Shaker position (X, y) (mm) (65, 93)
Box inner dimension (mm) 412x312x400
Resonant frequency (KHz) 35
Accelerometer B&K Frequency bandwidth (Hz) 0.1- 16500
Model 4375
Resonant frequency (KHz) 55
Accelerometer MEMS Frequency bandwidth (Hz) 0.1- 2500

Model Analog Devices ADXL103
Peak force (N) 0.9
. . Outside Diameter (mm) 9.5
Voice-coil actuator Total length (mm) 127
. Coil mass (g) 1.2
H2W Technologies Resistance (Q) 15
Model NCC01-04-001
EDVECO Force sensor Model 2312
B&K charge amplifier Model 2635
LDS Shaker Model V200
LDS Power amplifier Model PA25E-CE

The panel was excited by a shaker placed in the box. A force sensor was placed between the

shaker and the panel to measure the primary force produced by the shaker. The physical
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properties and geometry of the smart panel and the main characteristics of the transducers are

summarised in Table 4.1.

An initial set of measurements have been taken using B&K piezoelectric accelerometers as
feedback sensors. The charge output of each B&K accelerometer was amplified using a charge
amplifier (B&K type 2635). The charge amplifiers are equipped with a high pass filter with cut
off frequency of 10 Hz and an electrical integrator in order to obtain a measurement of the
velocity. An second set of measurements have been taken using nine low cost MEMS
accelerometers mounted on an aluminium L support. The aim of these measurements is to test
the possibility of using cheap and low performance accelerometers without compromising the
control stability. The MEMS accelerometer is designed to measure vibration up to 2.5 kHz and
has a resonant frequency of the seismic vibrating mass at 5.5 kHz. These sensors need external
power supply of 5 V and do not have a circuit to integrate the signal output to get a
measurement of the velocity. An existing control box, designed in ISVR and manufactured for
similar applications, has been used to supply power to the MEMS accelerometer, integrate and

amplify the signal output.

In both configurations, in order to measure the open loop frequency response functions (FRFs)
using a twenty channels analyser (Data Physics Maobilyzer 1), the actuators have been driven

with a reference white noise signal, amplified by a LDS PA25E voltage amplifier.

4.2. Response of the open loop system

In this section the response of the controller for the configurations using B&K and MEMS
accelerometers is described in detail. If the control-sensor pairs are dual and collocated, constant
gain feedback loops are in theory unconditionally stable [18], since the phase of the open loop

frequency response function, FRF, is confined between +90° at all frequencies.

1 2 3
4 5 6
7 8 9

Figure 4.4: Scheme of the panel with the positions of the 9 control units and position of the primary
source, *.

Unfortunately in a real system the actuators and sensors approximate ideal force and velocity

transducers only for a certain frequency band. Moreover the presence of filters in feedback loop
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may introduce phase shift which can limit the control gain before instability [38]. All the results
shown in this section for the stability studies of the single channel system refer to the control

unit number 5 of Figure 4.4.

4.2.1. Response of the controller using B&K accelerometers

In this section B&K accelerometers were used as sensors, since these have a good frequency
response below resonance. In order to analyse the stability of the feedback loop when B&K
accelerometers are used as feedback sensors, the control system has been notionally divided into
the blocks shown in Figure 4.5 and the FRF of each component of the system has been
measured. In this way it is easier to identify the effect of each element on the overall stability of
the control loop. The reactive force actuators are made of miniature coil and magnet pairs,
which have their own dynamics. The electrical admittance of the actuator, represented in
Figure 4.5 by the first block, has been measured taking the voltage input signal U as reference

and measuring the current | which is proportional to the force generated by the actuator [7].

U I | swucture | U, U, | Ampiifier | U,
B&K i plifier v
> Actuator and B&K Tntegrator PA2SE >

Figure 4.5: Schematic representation of all the components of each feedback loop using B&K
accelerometers.

The FRF in Figure 4.6 shows that the coil behaves like a low pass filter with a cut-off frequency
of 7.3 kHz. The phase is about zero up to 200 Hz above which it starts to drop due to the
inductance of the coil. The small peaks visible in the plot are due to the response of the panel
which affect the electrical impedance of the actuator through the transduction coefficient [39].

The maximum phase lag, of about -70°, occurs at around 8 kHz.

111U] (dB rel. 1 ANV)

I
10° 10
Frequency (Hz)

£(IV) DEG

1 1
10° 10*
Frequency (Hz)

Figure 4.6: Measured admittance of the actuator
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The structural response is represented by the second block in Figure 4.5. Since the applied force
is proportional to the current, the main part of the FRF curve in Figure 4.7 is what one would
expect from the point excitation of a structure, with a phase between 0° and -180°. The response
is characterised by resonances followed by anti-resonances. An additional phase lag of 180°

appears at around 35 kHz due to the natural frequency of the B&K accelerometer.
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Figure 4.7: Measured structural response at position 5.

The output signal of the accelerometer is integrated to get a measurement of the velocity of the
structure using the electrical integrator of the B&K charge amplifier. The measured FRF of the
integrator in the charge amplifier is plotted in Figure 4.8 when the cut-off frequency of the high
pass filter is set to 10 Hz. The plot shows that the integrator behaves almost like an ideal

integrator over the frequency band of interest, producing the desired 90° phase shift.

The amplifier used to amplify the sensors signal is the LDS PA25E voltage amplifier, its FRF is
shown in Figure 4.9 when the amplification gain is set on the maximum value. The response of
this amplifier is almost constant at all the frequencies except for the offset of a high pass filter

with a cut-off frequency of 4 Hz.
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Figure 4.8: Measured FRF of the B&K integrator
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Figure 4.9: Measured FRF of the LDS PA25E voltage amplifier

Figure 4.10 shows the directly measured open loop FRF (solid line) and the one predicted using
the individual measured responses of each element of Figure 4.5 (dashed line). The plot shows
that the prediction is in reasonable experimental agreement with the measurement. The phase of
the open loop FRF is confined between +£90° up 2.5 kHz. From about 2.5 kHz the phase excited
-90° and starts to drop because of the phase lag introduced by all the component of controller.

At 35 kHz a phase lag of -180° occurs due to the natural frequency of the sensor.
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Figure 4.10: Measured open loop FRF of channel 5 (solid line) and predicted using the individual
measured responses of each element of the feedback loop (dashed line).

4.2.2. Response of the controller using MEMS accelerometers

This section is focussed on the description of the controller using MEMS accelerometers
following the same procedure of subsection 4.2.1. Figure 4.11 shows the block diagram of the
second configuration of the controller. Each FRF of the components represents by the blocks in
Figure 4.11 have been measured. The first and second blocks represent the electrical admittance
of the actuator and the structural response already discussed in the previous section and plotted

in Figure 4.6 and Figure 4.7.

I U, U, U,
—U> Actuator :Itl?gg; Ub MEMS Ty Integrator : Amplifier —X»

Figure 4.11: Schematic representation of all the components of each feedback loop using MEMS
accelerometers
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Figure 4.12: Measured FRF of the MEMS accelerometer.

The third block in Figure 4.11 represents the FRF of a MEMS accelerometer shown in
Figure 4.12. The graph shows a phase response almost flat up to 2.5 kHz where it starts to drop.

A phase delay of 180° with a peak in the magnitude is visible at around 5.5 kHz due to the
resonance frequency of the seismic mass of accelerometer. An additional phase lag is due to the
low pass filter mounted on the MEMS accelerometer with cut off frequency of 2.5 kHz. The
smaller peaks at lower frequency are due to the resonance frequencies of the L support where
the MEMS is attached.

Finally, an integrator and an amplifier manufactured in ISVR have been included in the block
diagram to complete the implementation of the velocity feedback loop. The front panel of the
control box is shown in Figure 4.13. Each control channel has three checkpoints for monitoring
the three stages in each channel: pre-integration, post-integration, and final, post-amplification

check point.

Pre-Integratlon

-—
Post-lntegratiorﬂ

Figure 4.13: The front panel of the ISVR control box.

Figure 4.14 and Figure 4.15 show the measured FRFs of integrator and the amplifier of the
ISVR control box shown in Figure 4.13. The -3dB corner frequency of the integrator is about 4
Hz. The amplifier is provided with a high pass filter with cut off frequency of 50 Hz which

corresponds to a phase lag of 90°.
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Figure 4.14: Measured FRF of the integrator of the ISVR controller.
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Figure 4.15: Measured FRF of the amplifier of the ISVR controller.

Figure 4.16 shows the Bode diagram of the open loop FRF between the voltage of signal
feeding the actuator and the integrated and amplified output of the MEMS accelerometer (dotted
line), and the same FRF (solid line) predicted using the individual responses of each element in
Figure 4.11.

The plot shows that the prediction from the measured FRF of each component is in reasonable
experimental agreement with the measurement. The phase of the open loop FRF is confined
between £90° up 500 Hz. From about 500 Hz the phase excited -90° and starts to drop because
of the phase lag introduced by all the component of controller described so far. At 5.5 kHz a

phase lag of -180° occurs due to the natural frequency of the MEMS.
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Figure 4.16: Measured open loop FRF of channel 5 (solid line) and predicted using the individual
measured responses of each element of the feedback loop (dashed line).

4.3. Stability and performance analysis of single feedback loops

In this chapter the stability of the two control systems described in section 4.2 is studied. The
final aim of the experiment is to tune the control gain of each independent control unit in order
to maximise their power absorbed without leading the system to instability. The stability of each
control unit is therefore assessed using the Nyquist criterion and the closed loop response is

simulated in MATALB.

4.3.1. Stability and performance of single channel using B&K accelerometers

Figure 4.17 (a) shows the Nyquist plot of the open loop FRF when the control gain is adjusted
to have 6 dB gain margin. Figure 4.17(b) shows a zoom at the origin axis of the Nyquist plot of
the sensor-actuator open loop FRF. The plot shows that the locus cross the left hand side of the
diagram indicating that the system is only conditionally stable. The gain margin is the
maximum increase in gain that can be tolerated before the system gets unstable and is given by

1/6 where 6 is the distance indicated in Figure 3.17(b).
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Figure 4.17: (a) Nyquist plot of the measured open loop FRF of channel 5 and (b) zoom at the origin
using a B&K accelerometer

In order to study the performance of the control system and to investigate how the control
system influences the dynamic of the panel, a MATLAB simulation has been carried out based
on the measured responses. Firstly, the response of the panel at the control positions subjected
to the primary excitation has been measured. The panel has been excited by a shaker fed with
white noise. The nine FRFs between the force applied by the shaker, measured by a force sensor
and the velocities measured by the nine B&K accelerometers have been measured. Secondly,
the nine FRFs between the voltage driving the reactive actuator and the nine velocities have
been measured. This analysis has been carried out for the all loops but only the results relative
to loop number 5 are discussed in this chapter. The complete set of results relative to all the
channels can be found in Appendix C.

The panel’s PSD of the kinetic energy has been estimated as:

R
M
S(@) = 52 > 1512 @)
r=1

where |v,|? is the mean squared value of the velocity measured by the r-th accelerometer, M is
the mass of the panel and R is the number of the accelerometers. Equation (4.1) gives a good
approximation of the kinetic energy of the panel in the frequency range where the distance
between adjacent accelerometers positions is smaller than half wavelength. The aim of the

controller is to reduce the structural response at low frequency, where the wavelength is large.

Simulations of clamped-clamped aluminium panel of the same dimensions of the experimental
panel and controlled by an ideal velocity feedback loop have been carried out. Figure 4.18
shows PSD of the sum of the mean squared values of the velocities calculated in (a) 49 evenly

separated locations and (b) calculated in five locations on the panel. The estimate of the kinetic
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energy is plotted when the control gain is zero (solid line), when the total kinetic energy is
minimised (dashed line) and for very high values of control gain (dotted line). Comparing the
two plots similar responses can be observed although the contributions of some modes at higher
frequencies are not visible when 5 monitoring positions are considered. This estimate of the
kinetic energy of the panel is used here to evaluate the performance of the controller, even
though it is not used in the tuning process. Since the structural response is dominated by the low
frequencies modes, it can be concluded that nine monitoring positions is a reasonable number to

obtain good estimation of the total response of the panel when one or two control units are used.

(8) (b)
T T

Kinetlc Energy (1 dB rel. 1 JN?)

108 10° 10 10 10°
Frequency (Hz) Frequency (Hz)

Figure 4.18: Simulated PSD of the estimated kinetic energy of a panel with no control (solid line),
minimising the estimated frequency averaged kinetic energy of the panel (dashed line) and high control
gain (dotted line) simulated using (a) 47 monitoring locations (b) 5 monitoring position.
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Figure 4.19: Simulated PSD of the kinetic energy of the panel obtained from measured responses without
control (solid line), minimising the total kinetic energy of the panel (dashed-line) and with 6 dB gain
margin (dotted-line).

Figure 4.19 shows the simulated PSD of kinetic energy of the panel without control, minimising

the kinetic energy of the panel and when the control gain giving 6 dB gain margin is
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implemented. The plot shows that the control unit is able to reduce the response of the panel at
the first resonance frequency when the control gain is set to the value that minimises the
frequency averaged kinetic energy of the panel. Implementing the control gain which guarantees
6 dB gain margin, the response of the panel is slightly increased at higher frequency indicating
that the control unit starts to pin the panel at the control position. Because control unit number 5

is positioned in the centre of the panel only odd-odd modes can be controlled.
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Figure 4.20: Simulated frequency averaged PSD of the kinetic energy of panel obtained from measured
responses as function of the control gain number 5.
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Figure 4.21: Simulated frequency averaged PSD of the power absorbed by control unit number 5 obtained
from measured responses as function of the control gain number 5.

This is confirmed by the plot of Figure 4.20 which shows the frequency averaged kinetic energy
as function of the control gain. Figure 4.21 shows the simulated total power absorbed by the
control unit as function of the control normalised to the value giving 6 dB gain margin. The plot

shows that the power absorbed is maximised for a single value of control gain. Using B&K
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accelerometers allow the system to reach the maximum of power absorbed before the system
gets unstable. Moreover the value of gain that maximises the power absorbed is about the same

as the one that minimises the total kinetic energy of the panel.
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Figure 4.22: Measured open loop FRF of channel 5 driving the actuator with a current (dashed line),
driving the actuator with a voltage (solid line)

=)

Driving the actuator with a current eliminates the phase lag introduced by the electrodynamics
behaviour of the actuator discussed in section 4.2.1. Figure 4.22 shows the open loop FRF
driving the actuator with a current (dotted line) and open loop FRF driving the actuator with a
voltage (solid line). The FRF is included between £90° up to 5 kHz when the actuator is driven
with a current while the phase starts to drop from 2.5 kHz in case of voltage driving. An abrupt
phase lag with a peak in the magnitude is measured at about 35 kHz due to the resonance
frequency of the accelerometer in both cases. The magnitude of the peak is much smaller in case
of voltage driving because of the roll-off introduced by the coil of the actuator. Figure 4.23
shows the Nyquist plot of the open loop FRF between the current driving the actuator and the
velocity measured by the sensor for 6 dB gain margin. If this plot is compared with the Nyquist
plot of FRF of the voltage-driven actuator in Figure 4.17, it is clear that that the system becomes
unstable for much smaller value of control gain when driven by a current. In fact the reduction
achievable at the first resonance frequency in the response at the control position in case of
current-driven actuator is about 20 times smaller than the one achievable with a voltage-driven
actuator. Even though a phase lag is introduced by the electrodynamics behaviour of the
actuator when driving with a voltage, this also brings a roll-off which lowers the magnitude of
the peak due to the resonant frequency of the accelerometer in the open loop FRF, so that the

control system can tolerate higher gain before instability occurs.
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Figure 4.23: zoom at origin of Nyquist plot of the open loop FRF of channel 5 when the actuator is driven
with a current.

4.3.2. Stability and performance of each channel
The same simulation described in section 4.3.1 has been carried out for all the channels.
Table 4.2: : value of control gains, normalised to that for a 6 dB gain margin, required to minimise the

kinetic energy or maximise the power absorbed for each of the 9 control loops alone, and the
consequential changes in kinetic energy.

Increase in kinetic

Fookgun T psancqan (T ROt gy 42 ue

ch _min_imising (dB) minimis%?]/g maximising the (dB) wher?y power absogrbed maximisation of

klnetlgBenergy the kinetic powerglgsorbed maximising the and minimising pQ\t/\tl]er t_:o_mpa_red

(dB) energy (dB) power absorbed  the kinetic energy V\{(' minimising

inetic energy

1 -25.6 -1.6 -19.5 -1.3 0.8 0.3
2 -25.5 -1.9 -17.9 -1.5 0.7 04
3 -27.5 -1.5 -21.7 -1.2 0.8 0.3
4 -35.2 -0.5 -19.1 1.2 0.5 1.7
5 -19.5 -0.9 -21.2 -0.7 11 0.2
6 -19.7 -1.3 -23.8 -1.3 1.2 0.04
7 -12.8 -5.4 -21.0 -4.5 1.7 0.9
8 -22.5 -2.3 -154 -1.9 0.7 0.3
9 -26.0 -1.6 -20.1 -1.4 0.8 0.2
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As shown in the Nyquist plots in Appendix C, all the single channels system are conditionally
stable since the curves of the Nyquist plots enter in left hand side of the diagram but do not
encircle the point (-1,0j). The control gains have been limited to be smaller than a certain values
that lead the system to instability. The instability is mainly due to high frequency dynamic of

the sensors.

Table 4.2 lists the values of control gain normalised to the value of gain that guarantee 6 dB
gain margin that minimises the kinetic energy of the panel and maximises the power absorbed
with the respective reductions in kinetic energy. In general, the two strategies of tuning each
control unit give similar values of control gain and small differences in the reduction of kinetic

energy.

Control unit number 4 seems to be rather different than the others and the maximisation of
power absorbed seems to increase the overall Kinetic energy of the panel by about 1 dB. It is not
clear why this channel behaves so differently from the others. Another particular case is
represented by channel 7 which seems to be the most efficient, providing 5 dB of reduction in
the total Kinetic energy. This behaviour is due to the fact that channel 7 is the closest to the
primary source, so that the primary excitation is not able to efficiently excite the panel when
high values of control gain number 7 are implemented. The same behaviour has been predicted

in simulation results described in Chapter 3.

The sixth column of Table 4.2 shows the ratio between the control gain which minimises the
total Kinetic energy of the structure and the control gain which maximises the total power
absorbed by the control unit. These values show that the ratio is higher or smaller than 1
depending on the position of the control unit with respect of the edges of the plate and the

primary excitation.

4.3.3. Stability and performance of single channel using MEMS accelerometers

The control unit considered here is again number 5 located in the centre of the panel.
Figure 4.24 shows the Nyquist plot of the open loop FRF when the control gain is adjusted to

have 6 dB gain margin. The graph shows that the system is conditionally stable.
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Figure 4.24: (a) Nyquist plot of the measured open loop FRF of channel 5 and (b) zoom at the origin
using a MEMS accelerometer
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Figure 4.25: Simulated PSD of the kinetic energy of the panel obtained from measured responses without
control (solid-line) and with 6 dB gain margin (dashed-line)

Figure 4.25 shows the PSD of kinetic energy of the panel without control and when the control

gain giving 6 dB gain margin is implemented.
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Figure 4.26: Simulated frequency averaged PSD of the kinetic energy of panel obtained from measured
responses as function of the control gain number 5.
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Figure 4.27: Simulated frequency averaged PSD of the power absorbed by control unit number 5 obtained
from measured responses as function of the control gain number 5.

The effect of the controller when the maximum stable gain is implemented is to reduce the
response of the panel at the first resonance. It is evident that the control unit is not able to pin

the panel at the control position since new resonances are not visible in the structural response.

This is confirmed by Figure 4.26 and Figure 4.27 which show the frequency averaged Kinetic
energy and the frequency averaged power absorbed as function of the control gain normalised to
the value of gain giving 6 dB gain margin. From the plots it is clear that with this configuration
it is not possible to reach the control gain which minimise the total Kinetic energy of the panel
or maximises the power absorbed by the control unit before the system gets unstable. From the
analysis of this configuration carried out in section 4.2, it can be concluded that the control gain

is manly limited by the phase lag introduced by the MEMS sensor. It may be possible to re-
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define the filters in the control loops to allow greater stable gains in the feedback controller, but

this has not been attempted due to limitations of time.

4.4, Stability and performance analysis of a nine channel control system

In the third experiment performed within the scope of the stability investigation, the full 9x9
matrix of the sensor actuator frequency response functions, H(jw), is analysed using the
generalised Nyquist criterion [14]. In order to perform such an analysis, the 9x9 matrix of the
FRFs have been measured. The matrix, H(jo), is a fully populated matrix of the frequency

response functions between the nine velocity sensors and the nine reactive actuators:

), Goo) - (),
HOjo) = (Z(jw))z'1 (g(jw))z'z (5(1'(»))2_9 .
_(g(jw))al (g(jw))g,z (g(jw))tw-

where (5 (jw)) _is the frequency response between the i-th velocity sensor and the j-th voltage
j

i,

driving the actuator. Assuming that the plant and the controller are individually stable, the
generalised Nyquist criterion states [14] that the closed loop system is stable if and only if, for a
stable open loop system, the locus of the determinant of the measured difference matrix,
D(jw) = det[I + GH(jw)], where in this case G is the diagonal matrix of equal control gains,
does not encircle or passes through the origin, as the angular frequency, o , varies between — o
and +oo. The determinant D (jw) can be also written as the product of its eigenvalues to express
the single polar plot defined by the locus of D(jw) as series of more simple polar plots. The
determined D can be written as [14]:

D(jw) = det[l + GH(w)] = [[1 + A1 w)] ... [1 + A5 (jw)]] “3)

where 4;(jw) are the eigenvalues of the matrix GH(jw). The locus of equation (4.3) does not
enclose the origin, provided that the locus of none of the eigenvalues, called characteristic loci,
encircle the (-1,0j) point. In the general case of a multichannel system, the Nyquist criterion is
not as simple to interpret as in the single channel case, since varying the control gains of
different channel independently, the loci not only get bigger but they change their shape. Thus it
is difficult to obtain a clear geometric guide to the relative stability system. Figure 4.28 shows
the characteristic loci for the 9 channels control system. In the case considered here, however,
with decentralised control using equal feedback gains, the magnitude of each eigenvalue is
proportional to the feedback gain so each characteristic locus can be interpreted as a single-
channel Nyquist plot with the whole system being unstable if any one of these is unstable.
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Figure 4.28: Measured characteristic loci of the nine channels control system
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Figure 4.29: Simulations of the Convergence of algorithm to maximise the individual power absorbed by

nine control units.
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In order to evaluate the performance of the nine channels control system a MATLAB simulation
has been carried out. Using the algorithm described in Chapter 3, the all nine control gains of
the nine independent control units have been sequentially adjusted to maximise their power
absorbed in a numerical simulation. Figure 4.29 shows the convergence of the control gains as
function of the number of iterations.

In Table 4.3 are shown the values of control gains which maximise the power absorbed by each

control unit normalised to the value of the control gain that guarantees 6 dB gain margin.

Table 4.3: Values of the control gains which maximise the power absorbed by each control unit
Ch. 1 2 3 4 5 6 7 8 9

Gop(dB) | -180 | 210 | -187 | -206 | -19.2 | -201 | -249 |-22.9 -195

Figure 4.30 shows the Kinetic energy of the panel without control (solid line), when the power
absorbed by each of the nine control unit is maximised (dashed line) and when the control gain
that guarantees 6 dB gain margin is implemented (dotted line). The estimation of the kinetic
energy of the panel is not accurate in this case because it has been estimated using the control
velocities only. For this reason the pinning effect, when the maximum stable gain is
implemented, cannot be seen. In order to get a better estimation, measurements in other
positions on the panel are required. However, the plot shows that a reduction of the response of
the panel up to 1 kHz can be achieved maximising the power absorbed by each control unit. The

overall estimated reduction in terms of total kinetic energy of the panel is about 12 dB.

Kinetic Enegy (dB rel. 1J/N)

70 - i
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Figure 4.30: Simulated PSD of the kinetic energy of the panel obtained from measured responses without
control (solid-line) maximising the individual power absorbed by nine feedback loops (dotted line) and
with 6 dB gain margin (dashed-line).
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4.5, Summary and conclusions

This chapter has described the panel for the experiments on decentralised velocity feedback
using electromagnetic reactive actuators. The experimental panel is equipped with nine reactive
actuators closely collocated with nine sensors. Two different types control configurations using
two different sensors were tested: high performance B&K accelerometers and low cost MEMS
accelerometers. All the components of the controller for the two configurations have also been
described. The stability of the two configurations was assessed using the Nyquist criterion and
simulations on the closed loop response were carried out. It was found that for the first
configuration the control system is able to start to pin the panel and therefore the absorbed
power is maximised before the system becomes unstable. For the configuration using MEMS
accelerometers the system becomes unstable before the maximum of the power absorbed by the
controller is reached. In the implementation of the self-tuning algorithm based on the
maximisation of the absorbed power, described in Chapter 3, it is assumed that the absorbed
power is maximised for a value of control gain smaller than the maximum stable one. Therefore
the control configuration using B&K accelerometers has been chosen to carry out the

experiments for the real time control presented in the next chapter.
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5. Experimental implementation of self-tuning
control

In this chapter experimental results on the performance of the control system are presented.
Firstly, real time control with a single control unit is investigated by measuring the estimated
kinetic energy of the panel and the power absorbed by the controller for wide range of the
feedback gain. Secondly, results on a two channel control system, are discussed in order to
verify possible interaction between control units. In the last section the algorithm to maximise
the power absorbed by each of the two control units, as described in Chapter 3, is

experimentally implemented.

5.1. Experimental setup of a self-tuning control unit

Figure 5.1 shows a scheme of the experimental setup of the self-tuning control unit. The
velocity signal was amplified using a power amplifier and fed back to the voice-coil actuator.
The gain of the amplifier was set to the maximum value. A digital taper-potentiometer was used
to attenuate the velocity signal fed back to the actuator. The potentiometer is composed of 256
resistive sections, so that between each resistive section and both ends of the potentiometer are

outputs tap points.

Analog SP Board
Integrator USB-1409FS
velocity pre-att. USB
\l. connector PC
. A/D
velocity post-att.
Sensor
£ L_L 3 Digital
Actuator \D“—”g g Attenuator <, Eﬂ?gﬁl
Amplifier
max gain

Figure 5.1: Scheme of an experimental self-tuning control unit

The tap point of the resistive array is set by an 8-bit digital control signal. The control of the
device was accomplished via a 3-wire serial port interface using the digital output of a data
acquisition device. The attenuation provided by the potentiometer was in the range 0 dB to -50
dB with 256 possible linear steps. However, only 23 steps where selected in order to have 2dB

attenuation between successive steps.
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The resolution in the attenuation was limited by the level of noise in the velocity signal. The
solid line in Figure 5.2 shows the theoretical values of dB attenuation while the dots shows the
23 measured values of dB attenuation considered during the experiments as function of the

wiper’s position.
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Figure 5.2: Attenuation introduced by the potentiometer in decibel against the position of the wiper.

For direct local velocity feedback, the secondary force at each position, f;, is proportional to the
measured velocity, v,, in each channel via a feedback gain g,. The power absorbed by this

controller is then given by:

1 2y o 1 I
SPT((‘)) = ERe{fr Ur} = Egrlvrl (5.2)

The system is made self-tuning by using the algorithm described in Chapter 3. The algorithm
sequentially varies the control gain of each loop, estimates the absorbed power and adapts the
control gain to maximise this power. The velocity waveform is directly fed back to the actuator
but the power is estimated off line, using the mean square velocity, and the control gain is
changed in response to this estimate. Thus the tuning does not introduce any phase lag in the
feedback.
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Table 5.1: specifications of the acquisition device and the potentiometer

Parameter Specification
Manufacturer Measurement Computing
Model USB-1408FS
Number of analogue inputs 4

Data acquisition device Input ranges 2V
Maximum sample frequency 48 kHz
Resolution 14-bits
Number of digital output 16
Manufacturer Maxim
Model DS1267

Potentiometer

Digital steps 256
Attenuation range -50-0dB

The panel was excited with a shaker, fed with white noise signal in the frequency band of 10-
1000 Hz. The velocity measured by the sensor was acquired for 10 seconds and sampling
frequency of 3 kHz using the analogue input of the data acquisition device. The main
specification of the data acquisition device and the potentiometer are summarised in Table 5.1.
The acquired velocity signal was digitally filtered with a high-pass filter with a cut off
frequencies of 52 Hz. The filter reduces the noise level at low frequency and the mains at 50 Hz,
especially for high values of control gain when the measured velocity is very low. The power
was calculated as the mean product of the measured velocity signal and the signal driving the
actuator. This was implemented by taking the product of the pre-attenuation velocity signal and
the post-attenuation velocity signal (see Figure 5.1). The control algorithm iteratively changes
the attenuation, estimates the power and adapts towards the attenuation that maximises the
power absorbed by the control unit, as described in Chapter 3.

5.2. Performance with real time control using a single control unit

In this section results for real time control using control unit number 5 are discussed although
results for real time control using control unit number 1 can be found in Appendix D.
Figure 5.3(a), shows the power spectral density (PSD) of the kinetic energy of the structure
from the measured velocities of the panel, estimated from the integrated outputs of the 9
accelerometers, for different values of control gain corresponding to 0, -15 and -50 decibels of

attenuation in the signal fed back to the actuator. Figure 5.3(b) shows the same results obtained

83



5. EXPERIMENTAL IMPLEMENTATION OF SELF-TUNING CONTROL

from numerical simulations of clamped-clamped aluminium panel of the same dimensions when
the kinetic energy is calculated as the sum of the mean squared velocities at the position of the

nine accelerometers using the mathematical model described in Chapter 3.
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Figure 5.3: PSD of the estimated kinetic energy of panel with no control (solid line), minimising the
estimated frequency averaged kinetic energy of the panel (dashed line) and high control gain (dotted
line) a) measured and b) simulated

The masses of the sensors and the coil have also been included in the model. The modal
damping used in the simulations has been estimated from experimental results as 2% for the
first mode and 1% for all the others. The results show that the response of the panel is
characterised by distinct lightly damped resonances at low frequencies. The dashed line in
Figure 5.3(a) and (b) represents the response of the panel for the control gain that minimises the
frequency averaged response of the panel. If the control gain exceeds this value, the response of
the panel increases again (dotted-line), at other frequencies, eventually creating a new set of
resonance frequencies. As already seen in Chapter 3, this is due to the fact that the control loop
is pinning the panel at a control position and thus the resonance frequencies of the point-
constrained clamped panel are shifted up. Since the control unit is placed in the centre of the
panel only the first mode is most influenced by the controller and the first resonance due to the
pinning appears at around 136 Hz. The peak at about 17 Hz, when the control gain is set at the

maximum (dotted-line), is probably due to loss of accuracy of the sensor at low frequency.

The measured and simulated results are different in a number of aspects, however. The
measured resonance frequencies of the uncontrolled structure are lower than the resonances
calculated in the simulation. This is because the experimental boundary conditions do not
produce perfect clamping. The experimental panel is clamped between two aluminium frames
fixed with screws and has the first resonance frequency at about 58 Hz, compared with a
calculated value of 62 Hz with fully clamped edges, although the results are close enough to

make the comparison useful.
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Figure 5.4: a) experimental and b) simulated results of the normalised total kinetic energy of the panel
and c) experimental and d) simulated results of the total power absorbed as function of the control gain 5.

To obtain broadband control, the estimated kinetic energy and power absorbed by the controller
have been averaged over the frequency band from 10 to 1000 Hz. Figure 5.4(a) shows the
measured total kinetic energy of the panel, normalised to the total kinetic energy without
control, plotted against the feedback gain, which is normalised by the maximum gain used in the
experiment, while Figure 5.4(c) shows the measured total power absorbed by the control unit.
The measurement units of the absorbed power have been omitted because the control gain used
to estimate the absorbed power is the measured attenuation introduced by the potentiometer, not
the real overall value of gain as shown in Figure 5.1. The experimental results show that the
optimum value of the control gain which minimises the total kinetic energy is about -13 dB and
produces a reduction in total kinetic energy of about -2.4 dB. The control gain which maximises
the total power absorbed is about -17 dB and produces a reduction in the total kinetic energy of
the panel of about -2.2 dB. Therefore, maximising the absorbed power produces a global
structural response which is only about 0.2 dB higher than when the global response itself is
minimised. This suggests that a good level of performance can be achieved with broadband
excitation by maximising the power absorbed by the controller. Moreover the gradient of the

total Kinetic energy is very small around its minimum which means that a small error in the
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tuning of the control gain it does not significantly affect the total response of the structure.
Figure 5.4(b) and (d) shows the same results obtained from numerical simulations. The control
gain in the simulation is normalised to the maximum control gain used in the experiments.
Simulation and experimental results are in reasonable agreement. The major difference is that
the maximum reduction in the response of the panel in simulation is about -1.6 dB, which is 1.8
dB less than the reduction achieved in the experiments. This could be due to the fact that the
control unit in the experimental setup is not placed exactly symmetrically compared with the
actual modal shapes, so that the control unit in the experimental setup is able to marginally

control modes that are uncontrollable in the simulations.

5.3. Performance with real time control using two control units

In this section the real time control of a two channels control system is discussed. In this case
the estimated total kinetic energy of the structure and the total power absorbed by the two
control units have been measured for a wide range of combination of the two control gains.
Figure 5.5(a) shows the total kinetic energy of the panel, estimated as the sum of mean squared
velocities measured by the nine monitoring sensors normalised to the estimate total Kinetic
energy without control, while Figure 5.5(c) shows the total power absorbed by the two control
units as a function of the two control gains. In this section, the power absorbed is normalised to
the power absorbed when the two control gains are both set to -12 dB in order to make the
comparison between experiential and theoretical results easier. The experimental results show
that the combination of feedback gains that achieves a maximisation of total power absorbed by
the two control units corresponds reasonably well to those that result in the minimisation of the
total kinetic energy of the structure. A detailed analysis of Figure 5.5(a) and (c) shows that the
minimum of the kinetic energy is about -3.7 dB when the two control gains are set to -17 and -
15 dB. The power absorbed by the two control units produces a reduction of -3.5 dB in the total
kinetic energy of the panel when the two control gains are set to -15dB and -15dB. These results
suggest that, for broadband disturbances, controlling the response of the panel by locally tuning
each control loop to maximise its own absorbed power results in global reduction of the panel’s
response, as seen earlier in Chapter 3. Moreover, the total kinetic energy of the panel as a
function of the two control gains has a gradient that is low around its minimum; therefore a
small error in the tuning of the two control gains has negligible effect on the total structural
response. Experimental results are in reasonable agreement with the simulation results shown in
Figure 5.5(b) and (d). A summary of the comparison between experimental and simulation

results is shown in Table 5.2.
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Figure 5.5: a) experimental and b) simulated results of the normalised total kinetic energy of the panel
and c) experimental and d) simulated results of the total power absorbed as function of the two control
gains.

Table 5.2: Comparison between experimental and simulation results for the two channels control system

Experimental results Simulation results
Minimising 0,=-15dB 0s=-17 dB 0,=-14 dB gs=-18 dB
Kinetic Energy
Reduction in KE =-3.7 Reduction in KE =- 5.4 dB
Maximising g,=-15dB gs=-15dB g,=-18 dB gs=-16 dB
Power
Reduction in KE =-3.5 dB Reduction in KE =-5.3 dB

Figure 5.6 shows the measured (on the left) and simulated (on the right) values of the individual
power absorbed by the two control units as function of the two control gains. The results show
that the power absorbed by each control unit is reduced when both control units are tuned to
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their combined optimal values, compared with the power absorbed when they are individually

tuned in the absence of the other.
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Figure 5.6: a) and c) experimental and b) and d) numerical results of the individual total power absorbed
by control unit 1 and 5 as function of the two control gains.

The simultaneous maximisation of the local power in both control units, however, converges to
the maximisation of the total absorbed power, as shown in Figure 5.5(d). An important aspect of
the experimental curves in Figure 5.6, as far as a practical algorithm is concerned, is that if all
the other control gains are fixed, the local power absorbed by one loop is still maximised by a
single value of its control gain. Thus the adaptation can be performed as long as the estimation
of the power absorbed by one channel is made when the control gain of the other is not varied.
The self-tuning algorithm described in Chapter 3 can be used to sequentially adjust the

individual control gains.

54. Experimental implementation of the self-tuning control algorithm
The experimental results presented in sections 5.2 and 5.3 have shown that for broadband
stationary excitation a similar control performance is achieved minimising the total Kinetic

energy of the plate or maximising the power absorbed by each of the feedback loops. This
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suggests that reductions in the overall vibration can be obtained by adapting the local feedback
gains of the control units to maximise the total power absorbed by each control unit. In this
section the performance of the algorithm to maximise the power absorbed by each of the two

control units is described.
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Figure 5.7: convergence of the self-tuning algorithm a) starting from g;=-50 dB and gs=-50 dB and b)
starting from g;=-50 dB and gs=-25 dB

Figure 5.7 shows the convergence of the algorithm in terms of the two control gains when their
initial values are a) both set to -50 dB and b) when the control gain 1 is set to -50 dB and control
gain 5 is set to -25 dB. In this example, the initial value of a, which is the step by which the
attenuation is decreased at the first iteration, is 13 dB and each iteration takes about 20 seconds.
The algorithm is programmed to stop adjusting when o becomes smaller than 2 dB, which is the
limit of resolution in this case. As shown in section 5.3 the optimum control gains which
maximises the total absorbed power are g;=-15dB and gs=-15dB. Figure 5.7shows that the final
setting of the two control gains in both cases is within 4 dB of their optimum, a range of
feedback gains that would result in @ maximum error in the minimisation of the total kinetic
energy of the structure of about 0.5 dB. Higher precision in the adaptation is difficult to achieve
with the current arragement due to noise in the measurement of the control velocity.
Figure 5.7(a) shows that the algorithm converges after 22 iterations to -15dB of attenuation for
both channels. Figure 5.7(b) shows that the algorithm converges after 21 iterations to -15dB for
channel 1 and -13dB for channel 5. When multiple feedback units are tuned simultaneously, the
power absorbed by one control unit is influenced by the other, as seen in section 5.3. Therefore,
the individual power absorbed by one control unit must be re-estimated, keeping the other gain
constant, before this control gain is varied. One limitation of the current algorithm is thus that
some global synchronisation is required for multichannel control systems to ensure the loops
adapt sequentially. It may be possible to communicate the measured absorbed power between

units, which would allow more global tuning strategies. Another limitation is that the level of

89



5. EXPERIMENTAL IMPLEMENTATION OF SELF-TUNING CONTROL

disturbance is assumed to be constant from one step to the next so that the measured change in
power is due to the change in gain rather than a change in disturbance. The performance of this
self-tuning system could also be improved by reducing the noise in the measurements, so that a

shorter acquisition time would be required to obtain the same accuracy.
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Figure 5.8: measured PSD of the kinetic energy of the panel without control (solid line), after the
algorithm has converged (dashed-line) and implementing the maximum control gains on both channels

(dotted-line).

Figure 5.8 shows the PSD of the measured Kinetic energy of the panel for the uncontrolled
structure (solid line), when the power absorbed by the two control units is maximised (dashed
line) and when the maximum control gains are implemented. The plot shows that the response
of the structure is damped at the first few resonances when the power absorbed by each control
unit is maximised and the first mode is fully controlled. For very high control gain the two
control units are able to begin to pin the panel, so that new resonances appears in the spectrum
of the structural response (dotted-line). If all nine control units installed on the panel were used,
it would be necessary to include additional monitoring sensors in the estimation of the panel’s
Kkinetic energy to correctly account for the modes generated when the controller pins the

structure at the control positions.

The use of more than two control units has been discussed in Chapter 3 for a panel subjected to
a broadband ‘rain on the roof” excitation. The following simulations using nine self-tuning
control units have been carried out when the panel is excited by a point force. Figure 5.9(a)
shows the positions of the nine control units and monitoring positions while Figure 5.9(b) shows
the values of the control gains of each unit after the self-tuning algorithm based on the

maximisation of the absorbed power has converged.
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Figure 5.9: (a) Scheme of the panel with the control positions (0) and monitoring positions (*); (b) values

of the control gains in dB that maximise the power absorbed of each control unit. P indicates the position
of the primary excitation.

Figure 5.10 shows the PSD of the panel’s kinetic energy without control (solid line), when the
power absorbed by each control unit is individually maximised (dashed line), and when the
kinetic energy is minimised using the same value of gain for each feedback loop (dotted-line). A
total of 49 evenly separated velocity measurement locations have been monitored so that the
Kinetic energy of the panel is correctly estimated when the feedback loops implement very large

feedback gains so that the panel is pinned at the control positions.
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Figure 5.10: PSD of the total kinetic energy when g= 0 (solid line), the self-tuning algorithm is
implemented (dashed line) and g; 4=-13.0 dB (dotted line).

In the uncontrolled response of the panel (solid line) the contributions of some higher
frequencies modes are greater when 49 instead of 9 velocities are considered. Although the PSD
of the kinetic energy is shown up to 1 kHz the simulations have been performed with an
excitation band up to 10 kHz to include the new resonances that would be created when high

values of control gains are implemented. The plot shows that a very similar response is obtained
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maximising the power absorbed by each control unit compared with the minimisation of the
kinetic energy of the panel using equal gains. The overall reduction obtained from 1 Hz to 1
kHz normalised by the total kinetic energy of the panel without control after the self-tuning
algorithm has converged is about 7.4 dB while the one obtained minimising the overall kinetic
energy of the panel is about 8.1 dB. The use of nine feedback loops improves the performance
of the control system providing 4 dB reduction in the total structural response more than the two
channels controller described in section 5.3. Figure 5.11 show the convergence of the algorithm
for the nine control gains tuning all control unit sequentially. In the simulations the initial value
of the step by which the control gain is increased is 10 and the error in the estimation of the
optimal control gain is £0.2. Figure 5.11 shows that the algorithm converges to the optimum
between these limits.
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Figure 5.11: convergence of the control gains of the nine control units

5.5. Summary and conclusions

This chapter has presented an experimental implementation of multiple channel velocity
feedback loops on a panel. Experimental results have shown that, for broadband excitation, the
maximisation of the power absorbed gives good level of performance in practice if compared
with the minimisation of the kinetic energy of the structure. The transition in the control action
between optimum damping and pinning of the structure has been experimentally demonstrated.

The implementation of a simple algorithm to adjust the control gains in a multichannel
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configuration for a stationary disturbance has shown that each control unit can be made self-
tuneable. A limitation of this algorithm is that a synchronisation in the tuning of multiple
control units is required since the power absorbed by one feedback loop is influenced by all the
others. Moreover, the current algorithm stops to monitor the absorbed power after the algorithm

has converged being unable to track changes in the operating conditions.

A drawback of the electromagnetic reactive actuators used in these experiments is that they need
a structure to react the force off. In the next part of the thesis the more convent inertial actuators

are considered.
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6. Maximisation of power absorbed using an
Inertial actuator in a velocity feedback loop

Although the principle of self-tuning to maximise power absorption has been demonstrated
using reactive force actuators, it is often not possible to use these in practice, since there may be

no solid structure to react the force off.

This chapter presents a preliminary study for the use of the more practical inertial actuators to
control a lightly damped panel using a single velocity feedback. Inertial actuators react the
generated force off a proof mass and have been widely used for active vibration control [7].
Above their natural frequency they can behave very much like ideal force actuators over a
frequency band of several decades, before higher order resonances interfere with their dynamics
[40]. When inertial actuator are employed, however, the feedback control loop is no longer
unconditionally stable, even under ideal conditions, since the 180° phase shift in the response of
the actuator below its natural frequency will give rise to low frequency instabilities if the

feedback gain is too high.

6.1. Two port network of an electromechanical inertial actuator

The transducer assumed here to control the vibration of a structure is an electromagnetic inertial
actuator. In such transducers the mechanical system is fully coupled with the electrical system,
and these two coupled reactions can make the model complicated. In this section the
mathematical model of an inertial actuator is derived. A two-port model of the actuator has been
used to describe the electromechanical behaviour of the transducer when the actuator is attached
to a generic structure [39]. Figure 6.1 shows the two-port model of the transducer. The
mechanical system, to which the transducers is attached, is represented by its blocked force f,
and its mechanical impedance Z,,;,. Z,,, represents the open circuit mechanical impedance of
the actuator and Z,, is the blocked electrical impedance of the transducer. T; and T, are the
transduction coefficients that quantify the electromechanical coupling. T; describes the current
produced per unit velocity when © equal zero and T, describes the force produced per unit

electric current when ¥ is equal zero.
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Figure 6.1: A two-port network model of a transducer.

From Figure 6.1, the following relations between the mechanical quantities (velocity ¥ and

force f) and electrical quantities (voltage i and current 7) can be written:
= Zpi+ Ty 7 6.1)

f = TZZ+Z~I’HO

N

(6.2)

Analytical expressions for the impedances and transduction coefficients are derived in
Appendix E for a single degree of freedom inertial actuator. The force, f generated by the

actuator on the structure can be expressed as:

f=rfo—Zm? (6.3)

where Z,,;, is the structural impedance and £, is the blocked force necessary to pin the structure

at control position. The velocity at control position can be written as:

7 =Yof + Vepfp, 6.4)

where Y, is the mobility at control position, Ycp is the cross mobility between the location of the

primary excitation fp and the control location. Setting equation (6.4) to zero the resulting force

fp is given by:

i

fo=—2fo (6.5)

[

1}

6.2. Velocity feedback using a current-driven inertial actuator
For a velocity feedback control using a current-driven inertial actuator, the current 7 is

proportional to the velocity ¥ via a control gain —g, and thus:
i=—gb (6.6)
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Substituting equation (6.6) in (6.1) and (6.2) the voltage # and the force f become:

u= ( 1 gZeb)ﬁ' (67)

f=(=9T2 + Zp,)0 = Zry1, (6.8)

where Z, is the total mechanical impedance presented by the transducer. In order to simulate
the response of a lightly damped structure controlled by a velocity feedback using a current-
driven inertial actuator the model derived in Chapter 3 for an ideal point force actuator can be
used by substituting the real frequency independent control gain with the complex impedance

Zp,. Substituting equations (6.3) in (6.8), ¥ can be written as:

1 N
e -
—9Ts + Zonp + Zmo fo (6.9)

Substituting equation (6.9) in (6.6), T is given by:

i= 9 fi
—9Ts + Zop + Zmo (6.10)
The force f can be obtained by substituting equation (6.9) in (6.8) giving:
7o 9T+ Zno -
_gTZ + Zmb + Zmo > (6.11)
The mechanical power absorbed by the controller is given by:
(6.12)

1 £~ %
Sp(w) = ERe{fv },
substituting equations (6.11) and (6.9) in (6.12) yields:

Sp(a)) _ Re{(_gTZ + Zmo)} _ |fb|2- (6.13)

2|—gTs + Zmp + Zmo|

6.3. Stability of a feedback loop using a current-driven inertial actuator
The stability of the control system is assessed using the Nyquist criterion. The open loop
frequency response function for a single control channel can be derived from the velocity

response at the control position in absence of primary excitation:

97



6. MAXIMISATION OF POWER ABSORBED USING AN INERTIAL ACTUATOR IN A VELOCITY FEEDBACK LOOP

(6.14)
Assuming that a current proportional to the velocity signal is fed back to the actuator, equation
(6.8) can be substituted in equation (6.14) giving:

¥ = VgTyt — VoZmoD + Zy 7, (6.15)

where the term Z,, ¥ has been included to take into account the effect of the base mass of the
actuator whose impedance is Z,, = jwM,,. Thus substituting equation (6.6) in equation (6.15)

the open loop frequency response function can be written as:

=<

_ T,
14+ Y ZnotVZ,, (6.16)

Nu

Figure 6.2 shows the bode diagram of the open loop FRF of the current-drive inertial actuator,
with the parameter listed in Table 6.1 used to control the simply supported panel of Chapter 3.
The parameter of the inertial actuators were based on [41] but with stiffness modified to give

lower natural frequency.

Table 6.1: characteristic of the inertial actuator

Parameter Value
Electrical resistance of the coil R=2.7 Q
Base disc mass M,=9.5¢g
Proof mass M.=24 g
Spring Stiffness K:=100 N/m
Natural frequency w, =10 Hz
Viscous damping coefficient C,=1.96 N/ms™
Viscous damping coefficient ¢, =0.63
Transduction coefficient Bl=2.6 NA™
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Figure 6.2: Open loop frequency response function of a current driven inertial actuator

Figure 6.2 shows a phase lag of 180° at round 10 Hz due to the resonance of the inertial
actuator. For higher frequencies the actuator behaves like and ideal velocity feedback using a

point actuation force with the phase response between -270° and -450°.

Figure 6.3 shows the Nyquist plot of the open loop FRF. The locus crosses the left hand side of
the diagram indicating that the loop is only conditionally stable. In this case the gain margin,
which represents the maximum gain that can be implemented before the system gets unstable, is

about 34 dB.
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Figure 6.3: Nyquist plot of the open loop frequency response function of a current driven inertial actuator

Improvements in the stability can be achieved by using actuators with low natural frequency
compared with the first structural resonance and with a relatively high internal damping. The
level of damping of the inertial actuator chosen in the example might be difficult to achieve in

practice. A natural frequency of 10 Hz also requires the use of a very soft suspensions, which
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could cause high static displacement of the proof mass and likely stroke saturation for sudden
changes of the primary disturbance leading the system to instability [42]. These slightly
unrealistic parameters have been chosen for these simulations to have a more stable controller in
order to gain a better understanding on the possibility to use the maximisation of power
absorbed by the controller as a self-tuning strategy when an inertial actuator is employed. A
practical possibility to increase the stability of the controller is to use an analogue compensator
that shifts the apparent natural frequency of the inertial actuator at lower frequency as described
in reference [43].

6.4. Minimisation of the Kinetic energy and the maximisation of absorbed power using
an inertial actuator

In this section simulation results of a simply supported panel subjected to ‘rain-on-the-roof
excitation and controlled by a single velocity feedback control unit consisting of an inertial
actuator collocated with an ideal velocity sensor are presented. The inertial actuator is driven
with a current proportional to the measured velocity. The characteristics of the actuator are
listed in Table 6.1. Figure 6.3 shows the Kinetic energy of the panel used in Chapter 3 for
increasing values of control gain g. The response of the panel is damped, even when the
feedback gain is zero, due to the passive loading of the actuator, which acts primarily as a
passive damper above its natural frequency. As the feedback gain is increased, significant

attenuation is initially obtained at the first few panel resonances.
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Figure 6.4: PSD of the panel’s kinetic energy with a local velocity feedback controller driving the inertial
actuator with a current proportional to the velocity before placing the actuator (faint line) when feedback
gain is g=0 (solid-line), g=11 Asm™ (dashed line), and g=51.4 Asm™ (dotted line).

At higher gains, however, as well as the additional resonances due to pinning starting to appear,
there is also significant enhancement of the vibration at the natural frequency of the actuator,

due to the positive feedback in this frequency region caused by the phase response of the
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actuator (dotted-line). The feedback gain in this case, in which the actuator is driven by a
current, has units of Asm™, but since the assumed transduction coefficient, B, is 2.6 NA™, it has

a similar numerical value to that used in Chapter 3.
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Figure 6.5: Total kinetic energy of the panel (a) and power absorbed by the controller (b) as function of
feedback gain for a local velocity feedback controller driving an inertial actuator with a natural frequency
of 10 Hz (solid line).

The total kinetic energy of the panel and local absorbed power is plotted as a function of
feedback gain in Figure 6.5(a) and (b) for this case. These graphs are similar to those obtained
for a point force actuator in Chapter 3, up until the critical gain is approached, for which the
system becomes unstable. At low control gains, however the kinetic energy, normalised by that
before the actuator is attached is reduced by about 2 dB and the power absorbed by the
controller no longer tends to zero. This is because the passive response of the inertial actuator
still dissipates mechanical power even when the actuator is undriven. As the feedback gain is
increased towards the value for which the system becomes unstable, however, the kinetic energy

becomes very large and the power absorbed becomes negative.
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The frequency domain results are not valid for higher feedback gains. It is striking how quickly

these curves deviate from those using an ideal force actuator as the instability is approached.

As equation (6.2) shows, the control force is no longer directly proportional to the input signal
when using an inertial actuator, since the actuator has its own dynamics. In order to calculate the
local power absorbed by the actuator, as the product of the force it produces multiplied by the
local velocity, it is thus necessary to calculate an estimate of the force, f , using estimates of the

blocked response and undriven impedance T, and Z,,,,, SO that:

f=T0 + 200 6.17)
as illustrated in Figure 6.6. This figure shows how this estimate of the absorbed power can be
used to tune the feedback gain g. A compensator, C, is also included before the actuator, which
is assumed to be unity here, but in general could be used to lower the apparent natural frequency
of the actuator [43], in which case T, would need to be estimated with this compensator in

place, but Z,,, is unaffected.

M,
C& Ka l""
M= @—c o
[ I |~ f
p) — § -g
: ~——®
v

Figure 6.6: Self-tuning arrangement for direct velocity feedback with an inertial actuator in which C is a
compensator for the actuator, and T, and Z, are filters representing the blocked response and the

mechanical impedance of the actuator and compensator, used to estimate the applied force, f
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Figure 6.7: Blocked Frequency response of an inertial actuator, modelled as a single degree of freedom
system with the parameters shown in table 1 (solid line) and with + 20% variations in its natural
frequency and damping. +20% w, +20% T, (dashed line), +20% w, -20% {, (dotted line), -20% w, +20%,
(dash-dotted line), -20% w, -20% , (faint line).

One of the potential dangers in this approach is that the actuator dynamics are never known
perfectly, and may change with time or operating temperature. A series of further simulations
have thus been conducted with +20% deviations in either the modelled natural frequency or
modelled damping ratio of the actuator. Figure 6.7 shows the blocked actuator response T, for

various modifications of w, and {,.
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Figure 6.8: power absorbed by the controller as function of feedback gain for a local velocity feedback

controller driving an inertial actuator with a natural frequency of 10 Hz (solid line). Also plotted is the
estimated power absorbed when the actuator model is incorrectly identified+20% w, +20% C, (dashed
line), +20% w,-20% T, (dotted line), -20% ®, +20 T, (dash-dotted line), -20% w, -20% C, (faint line).

The effect of these deviations in the modelled response on the estimated absorbed power are

also plotted in Figure 6.8, which shows that although the estimated power is somewhat in error
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for low feedback gains, it retains the same shape near its peak as that with an accurate estimate

of applied force and can thus still be reliably used to tune the feedback gain.

When the feedback gain is very close to instability, however, and the estimated natural
frequency of the actuator is below the true value, there is a sharp spike in the estimated absorbed
power. The true force is then very close to being out of phase with the input signal, i, but the
estimated force will have less phase shift, since the phase of the estimated actuator response is
lower than the true value, as can be seen in Figure 6.7. The estimated absorbed power thus
becomes greater than the true power, since the large force and input signal appear to be closer to
being in phase. This effect should not prevent the convergence of a practical controller,
however, since it occurs so close to the point of instability, which the controller must in any

case steer clear of at all cost.

The adaptation algorithm used to adjust the feedback gain based on the estimated power
absorbed would thus have to be carefully designed not to stray too close to the unstable region.
This is particularly important if the inertial actuator did not have such a low natural frequency,
compared with the first structural resonance, as that assumed above. In that case, the maximum
in the power absorption curve with an ideal force actuator could occur at a significantly higher
feedback gain than the stability limit, so that the optimal feedback gain with the inertial actuator
is very close to the limit of stability. This is illustrated in Figure 6.9, in which the actuator
stiffness is increased so that its natural frequency is changed from 10 Hz to 20 Hz, which also

changes the damping ratio from 0.63 to 0.35.
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Figure 6.9: Total kinetic energy of the panel (a), and power absorbed by the controller (b) as a function of

feedback gain for a local velocity feedback controller driving an inertial actuator with a natural frequency

of 20 Hz. Also plotted is the estimated power absorbed when the actuator model is incorrectly identified;

+20% w, +20% C, (dashed line), +20% w,-20% C, (dotted line), -20% w, +20% {, (dash-dotted line), -20%
®,a -20% T, (faint line).

The ratio of the maximum, stable feedback gain, gmax, to the optimum feedback gain, g, can

be estimated by using the expression for these quantities derived in [17], which are:

20,M; w?
Imax ~ = 2 (6.18)
Wy
2M w4
Yopt = T (6.19)

where M is the mass of the panel, w; its first natural frequency, M; the apparent mass associated
with the first mode at this frequency, assumed to be approximately M/z, and w, and {, are the

natural frequency and damping ratio of the actuator, so that:
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gmax N( ﬂ
Jopt - wa (6.20)

This ratio is greater than unity in the simulations presented here when the actuator natural
frequency is 10 Hz, as in Figure 6.5, but less than unity when the actuator natural frequency is
20 Hz, as in Figure 6.9. The right hand side of this equation thus provides a convenient rule of
thumb for estimating how well suited a given inertial actuator is for controlling a panel with

given natural frequency.

6.5. Summary and conclusions

Simulation with a velocity feedback loop including an inertial electromagnetic transducer have
been used to illustrate that the maximisation of absorbed mechanical power again provides a
reasonable approximation to the minimisation of the kinetic energy of the host structure. Care
must be taken to ensure the feedback gain is below that which causes instability in this case.
The minimum feedback gain can be increased either by lowering the natural frequency of the
actuator or using an electrical compensator in the feedback loop. The characterisation of the
actuator can also be used to calculate the applied force from the measured current and velocity,
so that the absorbed power can again be estimated in practice. Pressures of time prevented an

experimental investigation of such a control system.

The feedback control system described in this chapter requires the use of external power to
drive the inertial actuator. In the next chapter the use of an idealised semi-active inertial
actuator, often called dynamic vibration absorber, will be considered in controlling broadband

vibration of a single degree of freedom system, which does not require an external power

supply.
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7.Broadband vibration control using a dynamic
vibration absorber

This chapter presents the broadband vibration control of a single degree of freedom system
using a dynamic vibration absorber. Dynamic vibration absorbers are single degree of freedom
systems whose natural frequency is tuned to suppress the vibration at its point of attachment of
a host structure. Tuning of a dynamic vibration absorber has previously been considered to
minimise the kinetic energy of the host structure and here, after a brief review, the maximisation

of the power dissipation within the absorber is also considered.

7.1. The dynamic vibration absorber

A widely used passive and semi-active device is the dynamic vibration absorber (DVA). Since
its invention, in 1911 by Fhram [44], this devices have been widely studied. The DVA can be
tuned in two different ways depending on the application. The first way of operating such a
device aims to suppress the vibration only at a particular forcing frequency, in which case the
device’ s natural frequency is tuned to this excitation frequency. The damping of the device
should then be as low as possible, so that it presents the greatest impedance to the host structure
at the operating frequency. The device is then often known as a “vibration neutraliser”, and
considerable ingenuity has been put into tuning the device to track variations in the excitation
frequency [6, 45, 46].

Alternatively the device can be used to attenuate the vibration due to a particular mode of the
structure over a range of frequencies, when it is sometimes referred to as a “tuned mass damper”
[3]. The optimum tuning of the natural frequency and damping ratio of the device then become
less obvious and depend on exactly how the optimisation criterion is defined. The selected mode
of the host structure is generally modelled as a single degree of freedom system for this
optimisation, often without any inherent damping. Different optimisations of DVA’s parameters
for broadband frequency excitation have been proposed [47-54] and will be reviewed in greater

detailed in the next section.

There is a vast literature on DVAs and although we do not aim to present a complete literature
review, which is attempted in reference [45, 46], it is instructive to consider few examples of

DVA:s installed on different civil, maritime and mechanical systems.

One application of DVAs is to control the wind induced vibration of pipelines above the Arctic
Circle as described in references [45, 55]. Figure 7.1 shows a scheme of the pipeline with a

DVA per span attached.
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Figure 7.1: Pipeline with one DVA per span (figure taken from [55])

The vibration of the pipeline are characterised by cyclic lift force due to the vortex shedding
phenomenon. For a span between 12 and 18 m as many as ten modes of the structure can be
excited depending on the wind. This vibration can cause damage at the connections of the pipes

due to mechanical fatigue.

Pipeline

Connection to pipeline

Connector plate

— Weight

Figure 7.2: The DVA configuration to damp the pipeline vibration (figure taken from [55])

A dynamic vibration absorber has been designed with a resonance in this frequency region. Due
to the severe environmental conditions at the Arctic Circle the design of a DVA to prevent
changes of the stiffness and damping of the device can be difficult task. However if a change in
the operation conditions could mistune the absorber by slightly changing its stiffness, the very
high modal density of the pipeline ensures that the natural frequency of the DVA will always be
near or at the resonance of the pipeline. Figure 7.2 shows a configuration of the dynamic
vibration absorber, which has a mass of between 23 to 34 Kg, suspended using a series of
elastomeric components in shear deformation. The modular design of the suspension allows

changes in the damping and stiffness of individual devices. With use of DVAs in this
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application, the root mean squared value of the displacement of the pipeline has been reported to
be reduced by a factor of seven [45]. In this application the properties of the device are not

controlled over time and so it is entirely passive.

As second example of a purely passive control using vibration absorbers is the Millennium
footbridge in London. During the opening day the bridge presented high level of vibrations and
after two days of limited access was closed. Modifications of the structure were implemented
for a total cost of 5 million pounds and the bridge reopened after two years. The excitation to
which the bridge is exposed are mainly due to the people walking on it. This produces a
repeating pattern of vertical force but also a sideway force due the swing of the human body.
The typical footfall rate for a normal walking is around 2 steps per second but in large crowds
this rate can drop to 1.4 steps per second or lower. Thus the forcing frequency is generally in the
region of 1.2-2.2 Hz. Since alternate footsteps apply forces in opposite lateral directions, the
lateral forcing frequencies are half of footfall rate, in the range of 0.6-1.1 Hz. On the
Millennium Bridge, even the lowest lateral mode at 0.475 Hz was excited. These low
frequencies were excited by pedestrians adapting their gait to the vibration of the bridge by
adopting a zigzag walk to help them balance [56, 57].

In the case of Millennium Bridge, a passive modification was studied and implemented to solve
the problem. Two possible solutions were considered [58]. The first was to move the low
resonances of the bridge in a frequency region away from the excitation frequency, by
increasing the stiffness of the bridge. It was calculated that an increasing of the stiffness by
seven times was necessary to fix the problem. It was then clear that a more suitable approach
was to damp the structure. The vibration problem was finally fixed using 37 viscous dampers to
attenuate lateral vibration modes of the bridge and 50 tuned mass damper 26 of which were used
to damp the vertical modes of the bridge and 24 to control lateral modes. Even though vertical
vibrations were not observed during initial opening of the bridge, the tuned mass dampers were

installed as a precaution.

|

Figure 7.3: Millennium Bridge London (right picture) with DVA mounted beneath the deck to reduce its
vibration level (left picture) from [59].
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The vibration absorbers comprise masses between 1 and 3t supported on compression springs
[58]. Viscous damping is provided by the presence of a paddle connected to the mass and
suspended in a pot of viscous fluid. Figure 7.3 shows a picture of the millennium bridge in
London and a DVA mounted beneath the deck.

An application of DVAs is to control the vibration of marine diesel engines [60]. In most cases,
a practical means to reduce vibration is simply to detune the lowest natural frequencies away
from the main dynamic excitation frequencies. This can be achieved by intervening on the
mounts of heavy structures built on the engine which severely influence the whole dynamic of
the system. The turbocharger of a Diesel engine can have a dominant effect on the global
vibration of the engine due to its large mass. For new designs a firing order can be introduced to
change the excitation forces at certain harmonic frequency. These solutions are hard to be
implemented on existing engines already in operation. The company Wartsilia has reduced the
vibrations mounting on their diesel engines using passive tuned vibration absorber [60]. The
vibration control of an engine has to be effective on a wide frequency band and has to be
capable to operate for thousands of running hours without maintenance. A prototype of the
DVA is shown in Figure 7.4. The absorbed developed by Wartsilia consists of a vibrating mass
disc supported by steel springs. Both are located in a cylindrical steel frame filled with damping
oil. All the absorber’s parameters, damping, stiffness and mass, can be separately adjusted for
individual devices. The damping can by regulated by changing the oil flow inside the absorber.
The analysis to design the vibration absorber starts with the measurements of the engine
response and its structural modes. These measurements allow finding the theoretical best
position and the direction of the absorber to obtain the best reduction of the overall vibration of
the engine. For example on a 9 cylinder four stroke Wartsilia 46 engine, the most efficient mode

to be controlled was identified as the first torsional mode at 29 Hz.

Figure 7.4: DVA to control the vibration of a Diesel engine from [60]

The absorbed was tuned at this excitation frequency and damping was chosen to obtain a

broadband control. In this way the absorber could reduce the vibration level at more than one
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harmonic order. Vibrations at all the three major excitation harmonics were reduced in both

transversal and longitudinal directions.

An application of DVAs in which they are used as a semi-active device is the structural
vibration control in aeronautic engineering. Aircraft engines can induce significant vibration
into the fuselage. For example, jet engines produce vibrations that propagate through the

structure which can cause considerable noise inside the cabin.

Adaptive tuneable vibration absorbers have been used to control the noise in the aft cabin of
Douglas Aircraft DC9-V [13, 61, 62]. This aircraft is powered by two jet engines mounted to
the aft fuselage structure. This causes the engine vibration to be transmitted to the fuselage

radiating a high level of noise inside the cabin.

Engine joke with 4
adaptive vibration
absorbers

Figure 7.5: Adaptive vibration absorber mounted on the engine yokes of a Douglas DC9 aircraft from
[61].

These two engines can generate a tonal excitation at their rotational speed and higher
harmonics. Initially, Douglas placed four vibration absorbers on each engine as shown in
Figure 7.5. They were tuned to neutralise the vibration transmission at the rotation frequency of
the engines at the cruise speed. However, the frequency of the engine induced vibrations
changes with the engine speed and the stiffness of the suspension of the absorber changed with
the age of the device and operating temperature so that the vibration absorbers could be
mistuned. For these reasons a semi-active device that can adapt to changes of the operating
conditions was designed by Barry Controls and Hood Technology. The suspension of the DVA
comprises two circular parallel rings connected with a plurality of flexible rods. An electrical
motor is used to change the compression or tension on the rods in order to change the stiffness
of the suspension and thus the natural frequency of the DVA. The DVAs are tuned
independently during the flight by a controller. It is reported in reference [13] that 25 dB
reduction at the noisiest seat are achieved at the engine tones and the system is able to adapt

over the rpm range of 65-100 %.
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7.2. Background in tuning the Dynamic vibration absorber

A survey of tuning criterion for dynamic vibration absorbers when used as tuned mass dampers
has been presented by Asami [47], and some of the results from this paper are presented in
Table 7.1. The original optimisation criterion used by Omondroyd and Den Hartog 1928 [63]
was that the magnitude of the displacement was equal at the two peaks in the coupled
displacement response after the device has been attached. This is also known as mini-max or
H,, optimisation. Another optimisation criterion would be to minimise the mean square
displacement of the host structure when excited by a random force of uniform power spectral
density, as first proposed by Crandall and Mark in 1963 [49] and also now known as H;
optimisation. A third possibility is to adjust the natural frequency and damping of the device
such that the poles of the overall system have the greatest negative value, so that the transient
response decays as quickly as possible. Asami et al. [47] attribute this result in Table 7.1 to
Yamaguchi in 1988 [52], although the same criterion was also considered by Miller and
Crawley in 1985 [51]. Krenk in 2005 [53] proposed a further method to tune the parameters of a
DVA. He tuned the frequency ratio of the two decoupled oscillators using the same criterion
proposed by Omondroyd and den Hartog [63] and proposed a new criterion for the optimal
damping ratio. The damping ratio was chosen by simultaneously minimising the displacement
of the main mass and the relative displacement of the two masses calculated at the natural

frequency of the system when the damper was blocked.
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Table 7.1: optimisation criteria of the dynamic vibration absorber on a lightly damped SDOF system. ¢,
is the optimal damping ratio of the DVA and v, is the optimal frequency ratio of the natural frequencies of the two

uncoupled systems.

Optimisation
Performance index Obijective Proposed by: Optimal parameters
criterion
Minimise the _ , 3u
H, m esimum Ormondroyd Copt 81+ p
1 Atmax = |— . & Den Hrtong
Optimisation Xstlmax displacement of 1928 [63] "
the primary mass Vopt = T3 p
H / u(4+3p)
Minimise the total Ilwata 1982 Copt = o T~
N _ 8(1+w(2+
’ Optimisation _ _Elx{] displacement of [64], A+wE+w
of the mean LT Srwy /K2 the primary mass | Warburton
squared over all frequency 1982 [54] N S
displacement Pt a2
o Miller et Cooe = U
Stability Minimise the - 5.1085 [51] P [THu
3 Maximisation A = —max;(Re[s;]) | transient vibration ]
of the system Yamaguchi 1
1988 [52], Vopt = m
Hy, Atmax = i ¥ (Ijvlinlimisation 01:c . 1
Stimax isplacement o opt = 577 1~
inimisati : Krenk 2005 "2(1"‘#)
4 Mmlmlsgtlon Agmax the main mass and rer[15 3]
of relative X, — % relative 1
displacement il v— ; Vopt = ———
P Xst max displacement oPt T 9 4y
H, Minimise the total . Vi
. kineti f =
Minimisation E[%{] INELE energy Warburton LT 2
5 Iy =—7—— the primary mass
of kinetic 2nSpws /Ky over all 1982 [54] Voo = 1
opt —
energy frequencies T+p
H, Minimise the total Vi
Maximisation GE [t — 5[] kinetic energy of _ Sopt ==~
6 of the Iy = W the primary mass This study 1
absorbed FE over all Vopt =
power frequencies Vitu

He also demonstrate that for the frequency tuning proposed by Omondroyd and den Hartog
[63], the complex locus of the natural frequencies has a bifurcation point corresponding to the
maximum damping of the two modes. For lower damping ratio the two modes have the same
modal damping. Warburton in 1982 [54] proposed the minimisation of the frequency averaged

Kinetic energy of the host structure as a tuning criterion.

In this section we consider a further criterion on which to optimise a dynamic vibration absorber
based on the maximisation of the power dissipated by the absorber. It is found for a damped

host structure, sometimes also called primary structure that the maximisation of the power
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absorbed by the damper corresponds to the minimisation of the kinetic energy of the host

structure.

7.3. Analysis
Figure 7.6 shows a scheme of a single degree of freedom system with a DVA. The primary
system is subjected to a random excitation f,, which is assumed to have a flat power spectral

density and vy and v, are the velocities of mass m; and ms,.

k, k,
— /M

m, m,

] a

(o5} ¢

Vi Vs
— > —»
—>
A

Figure 7.6: Scheme of the SDOF system with the DVA

Setting ¢3 and ks to zero in equations (2.20) and (2.21), the velocities per unit input

force of the two masses are given by:

jkyw — o0 — imyw? (7.1)

i i _ 2 _ 2 _ 2 _ 2 _; 3 _
kiky, + jckiw + icikyw — cicpw® — kymyw? — kymyw® — kymyw® — je,mw
jemuw? — icomyw?® + mymyw*

1}

1}
[:S

1

e}

_ Jkaw — cy0* (7.2)
T kyk, + ok w + icikyw — cicyw? — kymyw? — kymyw? — kymyw? — je,myw® —

jemuw? — icomyw?® + mym,ywt

The steady state response of the system can be expressed in terms of the five dimensionless
parameters defined by:

U =m,/m, : mass ratio
v = w,/wy: natural frequency ratio

A = w/w4: forced frequency ratio
¢, = c1/(2myw,) : primary damping (7.3)

{, = ¢;/(2myw,) : secondary damping
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where

w; = +/ k1/m, : natural frequency of the host / primary system

w, = \[ky/m, : natural frequency of the DVA (7.4)
The five dimensionless coefficients defined in equations (7.3) and (7.4) can be written as:
p=mitm,
V= mi/zkl_l/zmz_l/zk;/z
A= wmi/zkl_l/2 (7.5)
{,= 2_1clm11/2kI1/2
¢, = 27 eym; Ul
and thus a generic dimensionless term can be written as:
aVblclld{;({ — Z_e_fmf/2+c/2_d_f/2kl_b/z_c/z_f/zm;b/2+d_c/2k§/2_e/2C;C{a)c (76)

Each of the coefficient in equations (7.1) and (7.2) can be expressed in non-dimensional form
by setting each of them equal to equation (7.6) and solving for the parameters a, b, c, d, e, f, so

that equations (7.1) and (7.2) can be written as:

By + (D)B1 + A)*B; + (jA)°B;

[ = Jkym Yy, GA) =
YU = 3 G0a, + GO, + G4, + GAA, 7.7)
- - Co + GAC, + GN2C, + (jA)3C
0 = JVkimY;,(jA) = -0 1 2 2 3 3 4 (7.8)
Ao+ DAL + (DA, + (AP A3 + (JA)*A,
where
Ag = W’ By =0 Co=0
Ay =20, uv + 20w B, = m? C, = wm?
A, = W + p+ p?v? + 4(2(2[11/ B, = 2¢,uv C, =2,uv
Az = 20,uv + 20 1% + 20 B; =q C;3=0
Ay =u
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7.4. Minimisation of the total kinetic energy and maximisation of the power absorbed
If the aim of the DVA is to minimise the integral of the kinetic energy of the primary mass

calculated over the frequency-band +oo, the performance index to be minimised can be defined

by:

m1E[|1~71|2]

k= 27'[Sf(1)1/k1 (79)

where E[ ] denotes the expectation value. The performance index I, represents the ratio of the
kinetic energy of the primary system to the excitation force with a uniform spectrum density
S¢(w). The unit of S¢(w)is N%/rad. The constant 2w, /k, is introduced to ensure that the
performance index is dimensionless. The mean squared value of the velocity of the primary

mass can be written as:

+00
E[],]7] = 211 f IF|” d2

maky J_o, (7.10)
Substituting equation (7.10) in equation (7.9) yields:
1 [t
_ T2
he= 2nf_m IT1"d2 (7.11)
Thus, substituting equation (7.7) in (7.11) yields:
1 (*°| By +GMB, + (OB, + (B |
h=2) v ona + oA, + Gaa - gy P (7.12)
—0 0 1 2 3 4

Equation (7.12) can be integrated using the formula in reference [22] leading to:

_ 0 (A +v) + uv®) + 3,40V + (u+ Dvt — 202 + 1) + 4,507
GG+ DV ) ) + G AG G v+ e DR -2 ) (H19)
+3pv + 43,03v?)

k

On the other end the power absorbed by the DVA is the power dissipated by the damper ¢, and

so the absorbed power can be written as:

1
Sp(w) = ERe{fd[ﬁ1 — 9,1} (7.14)

Where * denotes complex conjugate and the force £ is the force produced by the damper given

by:

7d = CZ(T)l - 1‘;2) (715)
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Substituting equation (7.15) in (7.14) the absorbed power becomes:

1
Sp(w) = ECZ|U1 — ,|? (7.16)
In this case the non-dimensional performance index is defined by:

_ E[|91 = 1, /°]

P27 28w, /ky (7.17)

which represents the ratio of power absorbed by the DVA to that generated by excitation force
with a spectrum density S¢ acting on a damper of value k;/w,. The mean squared value of the

relative velocity times the mechanical damping ¢, can be expressed as follow:

a2y Si01 e =
CE[D1 = §,]°] = ——2,uv IT —©]*da

ky (7.18)
Thus the performance index becomes:
L f+°° Dy + (D, + (GA)?D, + (jA)* Dy
p2 — (zﬂv . AO + (]/’{)Al + (]/’{)ZAZ + 0).)3143 + (]2.)4144 (719)

where
Dy=Ay—By,=0
D,=A,—-B;=0
D,=A,—B,=0
Dy =A; —B3; =u
The integral over the frequency band between +oo of equation (7.19) can be calculated using

the expression given in reference [22], leading to:

~ (G, (S, + 44,5y + 4302 + 4, (1 + v?)
B 204G+ DV +v) + uv®) + 0,0 (40w + Dv2 + (u+ D2t — 202 + 1)
+2uv + 43,03v%)

Ipz
(7.20)

Although the denominators in equations (7.13) and (7.20) are the same, the dependence of their

numerators on ¢, and v is clearly different.

In order to minimise the total kinetic energy of the primary mass m;, the following conditions

have to be satisfied:
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ol
7, ="
2
al, (7.21)
— =0
av

while to maximise the total power absorbed by the DVA the following conditions have to be
satisfy:

a¢,

1 (7.22)
—~ =0

ov

Differentiating the performance index I, expressed in equation (7.13) with respect to ¢, and v,

and setting these equal to zero, yields a pair of simultaneous equations:

—uv[(GFu(u+ Dve + G (40EvE AV + 2u =32 + 2) + (u+ Dv* = 2v2 + 1)
+ 28 Guv3 (402v2 + 1) + 4(40F — D3V + 80, 33v(4¢7v? — 202

(7.23a)
+1)]=0
—0,u[(Puu + Dv8 + BACVAACY? + Qu+ 1)vE +2) = 3(u+ vt + 202 + 1)
+ 20,0,V (A0 (u+ DV = 2(u+ V2 + u+ 2) + 4438 — 1DIV?
(7.23b)

+80,Cv(alv? =2 +1)] =0

Following the same procedure, the partial derivatives of the performance index I, expressed in

equation (7.20) are given by:

mCuv[GEu(u + Dve + (G (402vE(44Ev2 + 2u = 3)v* + 2) + (u+ vt = 2v* + 1)
+ 28 Guv3 (438v2 + 1) + 4(407 — DGV + 80 33v(44Fv? — 2v2 + 1)]
=0 (7.24&)

Tuv[(Puu + 1)v0 + CAVA(ACYE + Qu+ V2 +2) = 3(u+ vt + 202 + 1)
(7.24b)
+ 20,0,V (A0 (u+ DV = 2(u+ V2 + u+ 2) + 443 — 1DIV?

+80,Cv(43v =2 + 1) =0

Simultaneous equation (7.23) and (7.24) are both satisfied for {, = 0 and v = 0 corresponding
to maximising I and ly,. The other solutions can be found setting to zero the terms in squared
brackets. If ¢; # 0 the term in square brackets in equation (7.23a) is equal to the term in square

brackets in equation (7.24a) and the term in square brackets in equation (7.23b) is equal to the
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term in square brackets in equation (7.24b), which means that minimising the total kinetic

energy and maximising the total power absorbed give the same solution.

If ¢, is equal zero the primary system is undamped. Equations (7.23a) and (7.23b) for 9l /93¢,
and dI/dv then reduce to:

1+ Q+4B)VvV -1 +wWv*=0

—1 4 (=2 + 43)V? + 3(1 + vt = (7.25)

Solving the two equations simultaneously the two positive real optimal values of {54, and vy

are obtained as:

WV
ZZopt - 7
1 (7.26)
T TR

The optimal condition in equations (7.26) is the same as in reference [54] although it has been
independently derived because the result was unknown to the author at the time this research
was carried out. In this case the performance index I, however, becomes equal to 7 /2 if {; is
exactly zero. The absorbed power is then independent of ¢, and v, as can be seen from equation
(7.23a) and equation (7.23b), since they both are proportional to ¢;. Provided that {; has a very
small value thus singular condition will not occur, these optimum values of ¢, and v will be the

same for maximising power absorption as ¢; tends to zero.

7.5. Comparison of tuning strategies

Figure 7.7 shows the performance index Iy, as function of {; when v is equal v,y (top plot) and
2 as function of v when {; is equal Jp (bottom plot) for different values of the primary

damping ration ¢;. The plot shows that when {; is equal zero the absorbed power is constant.

The absorbed power has a maximum provided {; has a finite value.
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Figure 7.7: I, as function of {; when v = vy (top plot) and I, as function of v when ; = (zopc (ottom
plot) for p = 0.1.
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Figure 7.8: I as function of { when v = v, (top plot) and Iy as function of v when {2 = Q20 (bOttom
plot) for u = 0.1.

Figure 7.8 shows the performance index I as function of ¢, when v is equal v, (top plot) and
I as function of v when ¢, is equal Qy,p (bottom plot) for different values of the primary
damping ration ;. The plot shows that I, is minimised for a single value of ¢, and v. As {; is
increased the gradient of I, around the minimum decreases.

Figure 7.9(a) and (b) show the PSD of the velocity and displacement respectively of the primary
mass in dimensionless form for five different strategies of tuning the DVA. In Figure 7.9(a) the
area under the curve is minimised when the minimisation of kinetic energy is implemented.
Figure 7.9(b) show that the H,, optimisation set the two peaks at the minimum magnitude and
the area under the curve is minimised when the H, optimisation is implemented. The
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minimisation stability optimisation is not designed to minimise the steady state response but

only the transient response.

@ (b)

T T ; T
—— Minimisation Kinstic Bacrgy —— Mimimisation Kinctic Bmergy
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07 0.8 0.9 1 11 12 13 14 07 08 0.9 1 1.1 12 13 14

Figure 7.9: Optimal PSD a) of the dimensionless velocity and b) the displacement of the primary mass in
dimensionless form when the four different criteria are implemented (¢; = 0, u = 0.1)

Figure 7.10 and Figure 7.11 show the optimal values of the frequency ratio and the damping
ratio as function of the mass ratio for five different tuning strategies. The five tuning strategies
give similar optimal values when p is small. For grater values of u the optimal conditions
diverges. It is interesting to notice that for the minimisation of Kinetic energy the optimal
damping always increases for increasing values of p. For all the other strategies the optimal

damping ratio converges to a finite value.
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Figure 7.10: Optimal frequency ratio v as function of the mass ratio p for the 5 different tuning strategies
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Figure 7.11: Optimal damping ratio C; as function of the mass ratio p for the 5 different tuning strategies
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Figure 7.12: Performance index I as function of the mass ratio p for the 5 different tuning strategies

Figure 7.12 shows the performance index Iy as function of the mass ratio p when the optimal
values for the different strategies are implemented. The curves in Figure 7.12 are obtained
substituting the optimal value in Table 7.1 in equation (7.13). The plot shows that the lowest
curve is the one obtained when the DVA is set to minimise the kinetic energy of the primary

mass as one would expect.

7.6. Effect of damping in the host structures
It has not been possible to solve equations (7.23a) and (7.24a) when ¢; # 0 in order to find

analytical expression for {5, and vgpy.

In this case only an approximate solution of the location of the minimum of the total kinetic
energy and thus the maximum of the total absorbed power can be found using the perturbation

method. First of all it is assumed that the primary damping ¢; is so small that it is regarded as a
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perturbation. To emphasize that ¢; is small a new symbol ¢ instead of the parameter {; is

introduced:

G=e (7.27)

Next, the solutions of equation (7.23a) and (7.24a) (which it has been shown to be the same if

¢, # 0) are assumed in the form of a power series of ¢:

v=vytev, +evi+l

(=050 t&d + 5(222 +1 (7.28)

Finally, equations (7.28) is substituted into equations (7.23), and collect terms of like powers of
€ and equate them to zero (starting with the constant terms, the terms containing &, the terms
containing €2, and so on) so that the equation is satisfied for all values of e. As a result, we have
a series of equations from which we can determinate the unknown coefficients in equation
(7.28) successively. The zero-order approximation leads to the result where v, and {5, are the

optimal values found in equations (7.26) when {; = 0. Equating first order terms to zero, yields

to:
(11(21 + a,vq + as = 0
7.29
b1<21 + szl + b3 =0 ( )
where
a, =2+2p by = 2/p(1 + )
a, = /u(1+p +p¥2/1+p b, = 4+ 5u + p?
a; = —2u/1+p by = —2,/p — 2p3/2

In equations (7.29) the values of v, and {,, have been already substituted. The solution of

equitation (7.29) is given by:

b= Vi
72421
30 (7.30)
b = 4T+

The first order approximate solution of equations (7.23) and (7.24) is therefore given by:
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Ve = ! +d Vi
P Fp 242
(7.31)
_— ﬂ N 3un
Z20pt ) (1 41 F M

Figure 7.13(a) and (b) show the performance indexes Iy and I, as function of the damping ratio
¢, and the frequency ratio v respectively when ¢; = 0.2 and u = 0.1. Figure 7.13 shows that Iy
has a global minimum which corresponds to the global maximum of I, represented by o. The
symbol x in Figure 7.13(a) and (b) mark the position of the optimum conditions when {; = 0

while o mark the first order approximate optimum given by equation (7.31).
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Figure 7.13: a) I, and b) I, when ¢; = 0.2 and u = 0.1. The solutions given by equations (7.26) are
shown as x, the approximate solutions given in equation (7.31) are shown as o, and the true minimum
and maximum are shown as o

7.7. Summary and conclusions

This chapter has discussed the use of a DVA for broadband control of a single degree of
freedom system. It has been shown that even if the damping of the host structure is not very
light, the ratio of natural frequencies and absorbed damping ratio that maximise the power
dissipation in the damper are the same as those that minimise the kinetic energy of the host
structure. If the power dissipation in the damper could be measured and the disturbance was
stationary, the DVA could be made self-tuneable. This might be important if the damping
mechanism of the absorber was level dependant, if it incorporated an element of coulomb
damping for example, when subject to different disturbances. One way of implementing a
dynamic vibration absorber with a variable damping is by using a shunted electromagnetic
inertial actuator. In next chapter a preliminary study of broadband vibration control using such a

device will be discussed.
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8. Self-tuning and power harvesting with
electromagnetic actuators

In Chapter 6 self-tuning of a direct velocity feedback control to reduce the response of a lightly
damped structure, has been discussed. However, the implementation of the velocity feedback
and the self-tuning requires energy. In this chapter the possibility is considered of using an
electromagnetic transducer with an adaptable electrical load connected in series with the coil
(this configuration is often called shunted electromagnetic transducer) that acts both as a passive
damper and also as a source of electrical energy to drive the self-tuning circuit which makes the
system energetically self-sufficient. In the first part of this chapter simulation results on reactive

shunted actuators are presented then the case of an inertial shunted transducers is considered.

8.1. Regenerative system for vibration control

A regenerative vibration control system is defined as one that can extract and store vibrational
energy from the system and use this energy to do useful work [65]. A necessary condition for a
regenerative system to be passive is to absorb more energy than it is ever delivered to the
system, so that the average over time absorbed power is positive. In the case of a shunted
transducer the useful work can provide damping, and thus the system could also be termed
semi-active. The use of shunted inertial actuators for vibration control was investigated in
references [9] and [10] making the shunt adaptive, but in both of these papers the aim was to
control a single mode with a largely reactive shunt impedance rather than to optimally add
damping. It was shown in reference [66] that the power harvested by a shunted inertial actuator
attached to a beam is maximised for a single value of the resistive shunt impedance when the
beam is excited at its first natural frequency. In this chapter, shunted electromechanical
actuators are considered for the control of vibration on different lightly damped structures when
excited by a broadband disturbance. The power harvested by the control system could be used
to drive a self-tuning circuit, which is designed to automatically adjust the shunt to minimise the
vibration of the structure. The total kinetic energy of the structure averaged over the frequency
is taken as the benchmark to evaluate two other self-tuning strategies: the maximisation of the
total mechanical power absorbed by the control system and maximisation of the electrical power
harvested by shunt. Two types of actuators are considered: shaker and inertial actuator. The first
one produces a force reacting off a rigid structure while the second reacts off a moving mass. In
the last part of this chapter the use of shunted inertial actuator as dynamic vibration absorbed to
control the vibration of single degree of freedom system is considered.
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8.2. Mathematical model for a shunted electromagnetic actuator
The behaviour of a shunted electromagnetic actuator can be described using the two port model
derived in the Chapter 6. In the case of a shunted electromagnetic transducer the voltage u

across the external load can be written as:

i=—71 (8.1)

where Z; is the electrical impedance of the shunt. Substituting equation (8.1) in (6.1) and (6.2)

the current 7 and the force fare given by:

e
l==—=7, .
Zep + 721, (82)
- -T.\T,
=\Z — |7
/ < R/ +ZL> 8.3)

so that the total mechanical impedance of the transducer can be derived from equation (8.3) as:

_, ., __TT
=4Zm = mo_M' (8.4)

<

Substituting equations (6.3) in (8.3) the velocity © can be written as:

o~ zeb + ZL f~
v = —— p — — — .
11Ty + (Zep + Z0) Zomp + Zmo) (85)

Substituting equation (8.5) in (8.2), the current 7 is given by:

. 7, ]
T = (G + 20) G + Zona) ™ (5.6)

The force f can be obtained by substituting equation (8.5) in (8.3) giving:

—T1To + (Zeb + Z1) Zmo 3
1Ty + (Zeo + Z0) (Zomp + Zumo) ®8.7)

f:

Substituting equations (8.5) and (8.7) in (6.12) the mechanical power absorbed can be written

as:
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Sp(@) = fetZ) I
2+ (Zao 4 2) T + Zo) (88)

|2

The electrical power dissipated in the electrical impedance Z;, which is also the power that can

be potentially harvested, is given by:

) N 1 R
SH(O)) = ERB{UL } = TRQ{ZL}. (8.9)
Substituting equation (8.6) in (8.9) yields:
|T.|°Re{Z,}
1 L =12
Su(w) = - - - ~ 2 |fb| (8.10)
2|-TaTy + (Zep + ZL) (Znp + Zimo) |
8.3. Broadband vibration control using a shunted shaker

In this section the use of a shunted shaker for broadband control of lightly damped structures is
investigated. The effect of the shaker on a vibrating structure can be described using the two
port model derived in the previous section. Assuming that a shaker is modelled as a single
degree of freedom system and is reacting off a rigid structure, the open loop mechanical
impedance Z,,, the blocked electrical impedance Z,}, and the transduction coefficient T; and T,

can be calculated as:

. K
Zmo = JwMj +j_w +Cs, (8.11)
Zeb =R +](1)L , (812)

where Mg, Ks and C, are the moving mass, the suspension’s stiffness and the mechanical
damping of the shaker, R and L are the resistance and the inductance of the coil, B is the
manganic flux of the permanent magnet and | is the length of the coil. Substituting equations
(8.11), (8.12) and (8.13) in equation (8.4), the mechanical impedance of the shunted shaker

becomes:

7y = joM +KS+C + (BD*
m = JWMs jw ST R+z, (8.14)

| S
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Two commercial devices have been selected and simulations have been carried out to predict
their mechanical impedance. The first is a V201 shaker made by LDS which has a conventional
suspension; the second is a coil and magnate device in which the coil is free to move in the

magnet. The main parameters of the two shakers are listed in Table 8.1.

Table 8.1: Main parameters of two different reactive actuators

H2W Technologies
LDS V201

HCC10-15-023-1X
Open circuit 185 -0
mechanical damping '
Close circuit . 1733 13.87
mechanical damping
Open circuit damping 8 0%
ratio 0
Close circuit damping 8.37
ratio '
Suspension’s stiffness
(N/m) 6650 0
Moving mass (Kg) 0.020 0.056 (coil)
BI (N/A) 5.13 10.2
Electrical 17 75
resistance (Q) ' '

Figure 8.1 shows the simulated mechanical impedance of the two shunted shakers. The arrows

in the plots indicate increasing values of the resistive load in the shunt.
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Figure 8.1: Mechanical impedances of (a) LDS V201, and (b) the H2W Technologies shaker

Figure 8.1(a) shows the mechanical impedance of the LDS shaker. In the plot different
frequency regions can be observed. A low frequency region, where the impedance is stiffness

controlled and total impedance Z,,can be approximated as K,/ (jw) ; A frequency region around
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the natural frequency of the shaker where the total impedance Z,, is damping controlled and can
be approximated as:

(B)?
R+R,

C'=C, + (8.15)

where R is the resistive load. A high frequency region where the impedance is mass control and

the total impedance Z,,, can be approximated as jwM;.

The maximum damping produced by the shunted shaker is reached when R, is equal zero and
therefore depends on the value of the transduction coefficient Bl and the internal electrical
resistance of the coil. Approximating the impedance of the shaker by K;/(jw) at low frequency
and by jwMs at high frequency, the region where the shaker behaves approximately like a
damper is given by the difference between the frequencies at which |Ks/(jw)]| is equal €’ and at

which |jowM| is equal to C':

(8.16)

which, for the LDS shaker, is from about 60 Hz to 132 Hz when R, is equal zero.

Figure 8.1(b) shows the mechanical impedance of the H2W shunted actuator for different values
of the resistive load R.. This shaker is not equipped with a suspension so its mechanical
impedance is not stiffness control at low frequency. At high frequency the mechanical
impedance of the H2W shunted shaker is mass controlled and is independent on the value of the
resistive load. At low frequency the force generated by the shaker is proportional to the value of
the shunt and increases as the resistive load decreases. Using equation (8.16) the frequency
region where the shaker is capable to produce damping on the structure to which it is attached is

from 0 Hz up to 39 Hz when R is equal zero.

8.3.1. Control of a beam using a shunted shaker

In this subsection simulation results are presented of an aluminium simply supported beam
excited by broadband white noise point force and controlled by a H2W shunted shaker. A
scheme of the beam with the shaker is shown in Figure 8.2 where f, is the primary excitation.
Table 8.2 summarises the physical and geometrical parameters of the simply supported beam.
The dimensions of the beam have been chosen such that the first two structural resonances are
well below 39 Hz where the shunted shaker behaves like a damper.
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Beam

J;T T \%gﬁﬁ

Figure 8.2: Simply supported beam excited by the primary force f, and controlled by a shaker

Assuming the coil is attached to the structure and this has mass M, the mechanical impedance

of the shunted shaker in this case is:

(B1)?
R+R,

Zm = joM + Cs + (8.17)

Table 8.2: Geometrical and physical parameters of the beam.

Value Parameter
Dimensions I=1m
Thickness h=0.001 m
Width d=0.03m
Mass density p=2700 kg/m’
Young’s modulus E=7x10" N/m?
Poisson ratio v1=0.33

Loss Factor 1n=0.01
Primary source position 0.4x1
Secondary source position 0.7x1

Figure 8.3 shows the PSD of the kinetic energy of the beam for different value of the resistive
load impedance R.. The faint line in the plot shows the PSD of the kinetic energy of the beam
before the actuator is attached to the structure. For very high values of the resistive load R_
(solid line), only little damping is added but the resonances of the beam are shifted down in
frequency compared with the beam without the actuator attached due to the added mass of the
coil.
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Figure 8.3: PSD of the kinetic energy of the beam without actuator (faint line), when the actuator is
attached but open circuit (solid line), minimising the total kinetic energy (dashed line) and for the actuator
short circuit (dotted line).

When R_ is decreased from a very high value, the effect of the shaker is to damp the first two
resonances of the beam (dashed line). At higher frequency the value of the shunt does not
influence the response of the beam. When R is equal zero, so the actuator is short circuit, the
effect of the shaker begins to pin the beam at the position where it is attached so that the kinetic

energy of the beam increases in the frequency region around the second resonance (dotted line).

Kinetic energy (dB)

10° 10 10?
R @

Figure 8.4: Total kinetic energy of the beam averaged over 0-800 Hz, normalised to that before the
actuator is attached as function of decreasing value of R, (solid line) and when the internal resistance of
the actuator is set to zero (dashed line).
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Figure 8.4 shows the total kinetic energy of the beam averaged over a frequency band between
0-800 Hz as function of decreasing value of the resistive load R,. The total kinetic energy is
normalised by the total kinetic energy of the beam before the shaker is attached, thus, about -3
dB of global reduction are due to the mass of the shaker. The graph shows that the effect of the
shunted shaker is to reduce the total response of the beam as the load R, is decreased until it
reaches an optimum value for R, of about 20 Q. For lower values of R, the effect of the shaker
is to constrain the motion of the beam at control position and approximate a pinned boundary
condition so that the total response increases again. The dashed line in Figure 8.4 shows the
total kinetic energy of the beam in the ideal case of internal resistance of the actuator equal zero.
From equation (8.17) it can be seen that in the case R and R are both equal zero, the mechanical
impedance of the actuator tends to infinity. This means that the controller is able to pin the

structure at control position behaving like an ideal skyhook damper.
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Figure 8.5: total absorbed power averaged over 1-800 Hz as function of the decreasing value of the
resistive load R,

Figure 8.5 shows the mechanical power absorbed by the shaker averaged between 0-800 Hz as
function of R.. The plot shows that for very high values of R, the absorbed power goes to zero.
When R_ is decreased the absorbed power increases until it reaches a maximum when R, is
about 12 Q. The maximum of absorbed power roughly corresponds to the minimum of kinetic
energy so that maximising the absorbed power almost minimises the overall vibration of the
structure. When R is further decreases the power absorbed by the shunted shaker decreases.
The absorbed power could be estimated by measuring the velocity and estimating the control
force using equation (8.3). If the adaptation of the electrical load is made automatically the
system could adapt itself to the optimum. The self-tuning could thus be accomplished with a
single accelerometer. In principle, the velocity could also be deduced from the voltage and

current in the coil, if a sufficiently accurate model of the transducer was available.
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Figure 8.6 shows the power dissipated by the shunt transducer, which is also the power that
could be potentially harvested as function of the electrical load R,. As one would expect the
harvested power by the shunt is zero when R, is zero and is again zero for high value of R,
which means the circuit is open. However, the plot shows that the harvested power is
maximised by a single value of the electric load and the maximum roughly corresponds to the

minimum of kinetic energy.
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Figure 8.6: total harvested power averaged over 1-800 Hz as function of the decreasing value of the
resistive load R

This suggests that instead of using the mechanical power absorbed by the transducer as the cost
function to be maximised in the self-tuning adaptation, the harvested electrical power could be
used instead. The harvested electrical power is proportional to the mean square voltage across
the coil divided by the resistance of the electrical load R_ and is thus very simple to estimate.
The power absorbed by the shunt could also potentially be used to power the circuit used for the
self-tuning system, so that no external power would be required. Table 8.3 shows a comparison
between the minimisation of the total kinetic energy of the panel and the other two self-tuning
strategies. Although the optimal values of R, are different for the three strategies, the global
reduction in terms of kinetic energy of the beam is only 0.1 dB less for the maximisation of the

mechanical power absorption and 0.3 dB for the maximisation of the harvested power.
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Table 8.3: comparison between maximisation of kinetic energy, maximisation the total absorbed and
harvested power

RL(Q) Attenuation in kinetic Absorbed power Harvested power
- energy (dB) (W/IN?) (WIN?)

Minimisation of

Kinetic energy 20 -8.5 41.9 30.5
Maximisation of

absorbed mechanical 12 -8.4 42.0 25.9

power

Maximisation of

harvested electrical 49 -8.2 39.0 33.8

power

The simulation results shown so far assume that the structure under control has the first two
natural frequencies well below the upper frequency of damping control in Figure 8.1, of 39 Hz
(i.e. w; = 1 Hz and w, = 7 Hz after the shaker has been attached in this case) which implies a
very long and thin beam. The response of such a structure may be difficult to measure because

of the very low natural frequencies.

8.4. Vibration control using a shunted inertial actuator

The use of a shunted shaker for vibration control assumes the presence of a rigid structure where
the actuator can react off. In this section, the more practical case of a shunted inertial actuator
for vibration control is considered. The actuator produces a force on the structure by reacting off
a moving mass. The dynamic behaviour of the actuator thus limits the frequency band where it
behaves like a damper when is shunted with a pure resistive load. The first part of this section
discusses the possibility of using a shunted actuator to optimally control the broadband vibration
of lightly damped structures. In this case it is necessary that the first resonance of the structure
is in the frequency region where the actuator behaves like a damper. In the second part the

possibility of using a shunted inertial actuator as vibration absorber is investigated.

8.4.1. Broadband vibration control using a shunted inertial actuator

The two port network model derived in Chapter 6 is used here to describe the behaviour of the
shunted inertial actuator. All the impedances relative to an inertial actuator are derived in
Appendix E. The characteristics of the actuator used to carry out the simulations are listed in
Table 8.4. The natural frequency of the actuator is 10 Hz, but the transduction coefficient Bl is
assumed to be somewhat greater than that of the commercial actuators considered below in
order to emphasis the effect of the shunt. The base mass of the actuator is considered to be
negligible. This ideal case is considered in order to get a better understanding of the behaviour
of a shunted electromagnetic inertial actuator for broadband control of lightly damped

structures.

134



8. SELF-TUNING AND POWER HARVESTING WITH ELECTROMAGNETIC ACTUATORS

Table 8.4: Assumed parameters of an idealised inertial actuator

Electrical resistance () R 3
Mechanical stiffness (N/m) K, 2000
Open circuit mechanical damping (N/ms™) C, 1.26
Closed circuit mechanical damping (N/ms™) C’ 534
Open Circuit damping ratio ¢, 0.02
Close circuit damping ratio ¢, 8.5
Vibrating mass (Kg) M, 0.5
Base mass (Kg) My, 0
Electromagnetic transducer constant (N/A) Bl 40
Natural frequency (Hz) w, 10

Figure 8.7 shows the simulated open circuit mechanical impedance, Z,,. The plot shows that

Zmo Presents a resonance due to the natural frequency of the actuator at 10 Hz and is equal to

the mechanical damping of the actuator ¢ at high frequency.

12, (Nsim)

Il
10°
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-100 o :
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Figure 8.7: open circuit mechanical impedance Zmo

10°
Frequency (Hz)

of the idealised inertial actuator
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Figure 8.8: transduction frequency response function 'Fl

Figure 8.8 shows the transduction coefficient T; which now has a non-trivial frequency response
as derived in Appendix E. The graph again shows a resonance at 10 Hz with a phase shift of
180°. At higher frequency the phase goes to zero and T; is real and equal to Bl. Figure 8.9 shows
the blocked electrical impedance, Z,,, of the actuator. The graph shows a peak at 10 Hz and

from about 400 Hz Z,,, is equal to the electrical resistance of the coil.
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Figure 8.9: blocked electrical impedance Z~eb of the idealised inertial actuator

Substituting the expressions of the Z,,,, T;, T, and Z,, for an inertial actuator given in
Appendix E in equation (8.4) and after some algebraic manipulations, the total mechanical

impedance Z,,,, presented by the shunted transducer can be expressed as:

7o JoM,(Ky + jwC")
™K, +jwC — w?M,’ (8.18)
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where C' = C, + (BD)?/(R + R,) is the close circuit mechanical damping assuming the shunt
Z, is resistive, R,.. Equation (8.18) is of the same form of the open loop mechanical impedance
of the actuator (equation (E.4)) but with a modified damping constant that depends on the
transduction coefficient Bl and the total electrical resistance (internal electrical resistance of the

coil plus the electrical resistive load). The damping ratio of the shunted actuator is given by:

- 2JK.M, (8.19)

Figure 8.10(a) shows the total mechanical impedance of the actuator Z,,,, when R, = 0.5 kQ, so

that the closed loop damping ratio of the actuator ¢, is about 0.07.
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Figure 8.10: a) total mechanical impedance Z~rn of the idealised inertial actuator for ¢, < 1/2 and for b)
&>1/2.

In Figure 8.10(a) four different frequency regions can be observed. A low frequency
region, where the impedance is mass controlled and total impedance Z, can be
approximated as jwM,; A frequency region around the natural frequency of the
actuator w,, where the total impedance Z,, is damping controlled so that Z, can be
approximated as M,k/c’; a frequency region between w, and w;, where the
impedance is stiffness control and the total impedance Z,, can be approximated as
K,/(jw) and finally a high frequency region where the total impedance Z, can be
approximated as C'. This occurs when w is greater than wy, which is the cut-off

frequency above which the actuator behaves like a damper and is equal to:

A (8.20)
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If ¢, =1/2, this cut-off frequency corresponds to the natural frequency of the actuator and
becomes smaller than w, if ¢, > 1/2. Figure 8.10(b) shows the total mechanical impedance Z,,,
when Ry, = 30 kQ so that {; = 0.8 and in this case only two different frequency regions are
important. The plot shows that at low frequencies the impedance is mass controlled and can be
approximate as jwM,. At higher frequencies the actuator behaves like a damper with
mechanical damping equal to C'. The transition between these two regions now happens at the

new cut-off frequency w,, given by:

Wn =40 (8.21)

For completeness Figure 8.11 shows the total impedance of the actuator Z,,, for many different
values of R.. The electrical load R, is varied from zero to 10> Ohm. The arrow in Figure 8.11
indicates increasing values of R.. The graph shows that when R =0 the cut off-frequency
beyond which the impedance is dominated by the damping, w,, is about 180 kHz. As the
resistive load increases the cut off frequency w, decreases and becomes equal to the natural
frequency of the actuator when Ry, = 50Q, so that {,=1/2. If R_ is further increased w,
becomes smaller than natural frequency of the actuator and the cut-off frequency now
becomes wy, beyond which the actuator again behaves like a damper. It should be noted that it
has been assumed that the coil has no inductance, which would limit the value of | Z,| at high

frequencies if R was small.
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Figure 8.11: Total impedance Z~m of the actuator varying R, from 0 to 10° Q.
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Figure 8.12: cut-off frequency of the idealised actuator as function of decreasing values of R,

Figure 8.12 shows the cut-off frequency of the idealised actuator as function of decreasing
values of R.. The plot shows that for high values of the resistive load the cut-off frequency, wy,
beyond which the actuator behaves like a damper, is around 250 Hz. As R, is decreased the cut-
off frequency decreases, and for R_ about 50 Q the cut off frequency wy becomes equal to the
natural frequency of the actuator. For lower values of the resistive load, ¢, is greater than 1/2

and the cut-off frequency w,, increases again.

In the frequency region where the total mechanical impedance of the actuator is real the control
system behaves like a skyhook damper of damping constant given by:

:l|\hx

=c, (1 _BY°
=\t RyR)) (8.22)

Equation (8.22) shows that the damping provided to the structure can vary from a minimum of
C,, the internal damping of the actuator if R, is very high to C, + (BI)?/(R) when R, is zero.
This means that the maximum damping achievable depends on the dimensionless parameter
(B1)?/(C4R) which suggests that the performance of the transducer increases for well coupled
actuator with a strong magnet and low internal resistance, as also derived in the power
harvesting analysis in reference [66]. The effect of various actuator design choices and this
important non-dimensional parameter will now be briefly explained. The value of the magnetic
flux B depends on the type of material used to build the permanent magnet. Materials with high
magnetic saturation values, such as Ne-Fe-B, have to be chosen [67]. The resistance of the coil

depends on its length and is therefore given by:
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R=py (8.23)

where p; is the resistivity of the coil’s material and Q is the cross section of the wire.
Substituting equation (8.23) into equation (8.22) in the case when R, = 0 gives an expression

of the maximum damping that can be produced by the actuator as:

, B21Q
Cmax = Ca t —— (8.24)

A scheme of the cross section of a permanent magnet with the coil is shown in Figure 8.13.

P

Qr

Magnet

Figure 8.13: Scheme of the cross-section of permanent magnet and the coil

The length of the wire is given by:

(N-1) (N-1)
| = 21K (zi;() p—id+Y, % p+id ) if N is odd (6.25)

N N
——1 d i —1 d ) R .
l= 2nK< PoP —5—id +2,P +5+ ld>, if N is even (8.26)

where N is the number of turns in the horizontal direction, K is the number of turns in the
vertical direction, p is the average diameter of the coil and d is the diameter of the wire. Both
equation (8.25) and (8.26) can be simplified leading to:

[ = 2npKN

(8.27)

The total number of turns can be written as:
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A
NK=3 (8.28)

where it is assumed that the coil fills the entire area A inside the magnet. Substituting equation
(8.28) in (8.27) and then in (8.24) the maximum mechanical damping generated by the shunted

inertial actuator can be written as:

, B22mAp
Cmax = Ca +——,
P1

(8.29)
Equation (8.29) shows that C/,.x does not depend on the number of turns of the coil but only on
the magnetic flux, the geometry of the permanent magnet and the resistivity of the wire. It is
also interesting to estimate how the additional damping due to a shunted electromagnetic device

scales with the size of the device. We can write equation (8.29) as:

Chhax _ - B?2mAp
Ca B p1Ca ' (8:30)

where the second term is equal to the non-dimensional parameter (BI)?/(C,R) defined above,
which is equal to the additional electromagnetic damping divided by the mechanical damping of
the device. The saturated flux density in the ferrous parts of the actuator limits the value of B,
which is thus reasonably independent of scaling, as is the material resistivity, p;. The way in
which the mechanical damping scales depends to some extent on the detailed mechanism of
damping, but can generally be assumed to scale as [L?] [68] where scaling notation described by
Madou (1997) [69] has been used. In equation (8.30) A and p clearly scale as [L?] and [L'], so
that the normalised electromagnetic damping, (B1)?/(C,R), must scale as [L?]. The
effectiveness of such an electromagnetic damper thus improves greatly as the size of the device

gets larger.

A number of commercial inertial actuators have been considered for an experimental study.
Table 8.5 summarised the main parameters of different actuators manufactured by different

companies.
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Table 8.5: Physical parameters of inertial actuators
1VV40 Data Motran Mcromega

ULTRA Physics IFX30-100 1A-01
Electrical
resistance () 3.15 15 163 3
Mechanical
stiffness (N/m) 110,190 58,517 20,600 95.62
Open circuit
mechanical 9.4 16 44 1.40
damping (N/ms™)
Closed circuit
mechanical 25.4 36.9 105.34 2.25
damping (N/ms™)
Open Circuit 3% 3% 20% 40%
damping ratio
Close circuit 7.2% 6.9% 48% 64%
damping ratio
Vibrating mass 0.28 1.21 0.58 0.032
(Kg)
Base mass (Kg) 0.14 ? 0.36 0.053
Mass ratio 2 16 0.6
Electromagnetic
transducer 7.1 5.6 10.1 1.6
constant Bl (N/A)
Natural frequency 99.8 35 30 8.7
(Hz)
Cut-off frequency 2,000 1,000 100 300
(Hz)
(B)?/(cR) 1.7 1.3 1.42 0.6

Figure 8.14 shows the open circuit mechanical impedance (solid line) and the closed circuit
mechanical impedance (dashed line) of the four inertial actuators of Table 8.5. It is interesting to
notice that the dimensionless parameter (BI)%/(cR) is only of order 1 for the four actuators in
Table 8.5. For the inertial actuator used in the simulations in Chapter 6 this parameter was about
1.9 and for the ideal actuator of Table 8.4 is about 423.

According to equation (8.20), the mechanical impedance of the ULTRA actuator (top left plot)
shows a cut-off frequency from which the actuator starts to behave like a damper of about 1.6
kHz, when R_ is equal 10° Q, and about 714 Hz, when Ry is zero. The Data physics actuator
(top right plot) shows a cut-off frequency where the actuator starts to behave like a damper of
about 583 Hz when R, is equal 10° Q and about 250 Hz when R, is zero. In the of case the
Motran actuator the cut-off frequency from which the actuator behaves like a damper is about
75 Hz when R, is equal 10° Q (dashed line) and is about 31.2 Hz when R, is equal zero (solid

line).
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As show in Table 8.5, the MICROMEGA inertial actuator can provide the highest close circuit
damping ratio and it is the only model to have it greater than 1/2. Its cut-off frequency is about
10.9 Hz according to equation (8.20) when Ry is equal 10° and is about 11.2 Hz according to

equation (8.21) when Ry is equal zero.
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Figure 8.14: Calculated mechanical impedance of four commercial actuators when open circuit (dashed
line) and short circuit (solid line). These are: Ultra actuator (top left plot), Data physics actuator (top
right plot), Motran actuator (bottom left plot) and Micromega (bottom right plot)

8.4.2. Broadband control of a cantilever beam using a shunted inertial actuator

This section discusses the vibration control of a cantilever beam, excited by a broadband white

noise point force using a shunted inertial actuator.
The damping ratio of the first mode of the beam when the actuator is shunted with a resistive

load is given by:

— C’
T 2w M; (8.31)

¢

where C' is the close circuit mechanical damping provided by the actuator, w, is the first

resonance of the beam. M, is the apparent mass of the first mode which depends on the position
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of the actuator on the structure. The modal point response of an undamped structure at control

position can be written as [25]:

3 jod (o)
Z [0 — 07 (8.32)

where & (x.), is the r-th modeshape calculated at control position, x. is the coordinate of the
control position along the beam, M,. is the modal mass, w,- is the r-th natural frequency and R is
the number of modes taken into account. The contribution of the first mode can be seen as the
response of a single degree of freedom system having the same natural frequency of the first
resonance of the structure and an apparent mass equal to the ratio between the modal mass and
the mode shape squared calculated at control position. The apparent mass at the tip of a
cantilever beam is given by MJ4 where M is the total mass of the beam. Since the first
resonance of beam is very well separated from higher resonances, the contribution of higher
modes does not significantly affect the response at low frequency. If the aim of the controller is
to critically damp the first structural mode (¢ = 1), setting equation (8.31) equal one, the
mechanical damping C’ must be given by:

C, = 2(L)1M1 (833)

Substituting equation (8.33) in (8.21) and assuming a damping ratio of the inertial actuator ¢, to
be greater than 0.5, the cut-off frequency above which the actuator behaves like a damper, w,,

is given by:

=2 M,
BERCYTA (8.34)

Thus the ratio between the first natural frequency of the beam and the natural frequency of the

actuator is given by:

w; 1M,
w, 2M; (8.35)

Substituting the expression of the apparent mass when the actuator is placed at the tip of a

cantilever beam in equation (8.35) yields:

wn (8.36)

where p is the ratio between the moving mass of the actuator M, and the total mass of the

structure M. Assuming p = 1, the first natural frequency of the beam has to be twice the cut-off
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frequency where the actuator starts to behave like a damper in order to critically damp the first

mode of the beam.

The following simulation results are carried out on a cantilever beam using the ideal inertial
actuator of Table 8.4, with a natural frequency of 10 Hz. The geometrical and physical

parameters of the beam are summarised in Table 8.6.

Table 8.6: Geometrical and physical parameters of the cantilever beam.

Value Parameter
Dimensions 1=0.38 m
Thickness h=0.016 m
Width d=0.03m
Mass density p=2700 kg/m®
Young’s modulus E=7x10" N/m?
Poisson ratio v1=0.33

Loss Factor 1n=0.01

Mass of the beam M=0.5 Kg

1! 1

Primary source position 112

Secondary source position I

1* natural frequency =90 Hz

The mass of the cantilever beam has been chosen to have u = 1. The ideal inertial actuator is
placed at the tip of a cantilever beam. The maximum mechanical damping that can be generated
by the shunted inertial actuator is about 535 N/m/s and from Figure 8.12 the maximum cut-off
frequency w,, above which the actuator behaves like a shy hook damper is about 180 Hz. The
first natural frequency of the structure has to be twice the cut-off frequency of the actuator and
therefore, for this ideal actuator, it is necessary that w; < 360 Hz to critically damp the first
mode. In this example the first natural frequency of the beam is much higher than the natural
frequency of the actuator and the open circuit mechanical damping is low, therefore the passive

dynamic of the actuator marginally influence the response of the beam.

The faint line in Figure 8.15 shows the kinetic energy of the beam before the actuator is placed
on the beam. When the actuator is shunted with a very high resistance the response of the beam
is slightly more damped at the resonance frequencies due to the passive effect of the actuator.
As the resistive load R, is decreased the actuator provides damping to the structure so that the
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first few resonances of the structure are very well damped (dashed

line). When the shunting

resistance is zero the electromagnetic coupling is so strong that the relative motion between the

coil and the magnet teds to zero and the first natural frequency of the structure is shifted at

lower frequency due to the additional mass of the magnet (solid line).

4" Min. of kinetic

R eersy
3 ~ \
~

~ 3

Kinetic energy (dB rel. 1J/N?)

-80 I I

Frequency (Hz)

10° 10

3

Figure 8.15: PSD of the kinetic energy of the beam without actuator (faint line), when the actuator is

attached but open circuit (dotted line), minimising the total kinetic energy
actuator short circuit (solid line).
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Figure 8.16: Total kinetic energy of the panel normalised by that one before
function of decreasing values of R, .

the actuator is attached as

Figure 8.16 shows the total kinetic energy of beam for different values of the resistive load R,.

The total kinetic energy of the beam presents an optimum value when

R. of about 6.3 Q giving

an overall reduction of about -11 dB. For lower values of R the effect is to begin to pin the

relative motion between the magnet and the coil of the actuator so that the total response of the

structure increases again.
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Figure 8.17: Total mechanical power absorbed by the shunted actuator as function of decreasing values of
R..

Figure 8.17 shows the mechanical power dissipated by the inertial actuator as function of the
resistive load R_.. When the actuator is shunted with a very high resistance the mechanical power
dissipated does not go to zero because of the internal damping of the actuator. When R_ is
decreased the power absorbed increases until it reaches a maximum. If R, is further increased
the absorbed power decreases again. The maximum of the mechanical absorbed power roughly
corresponds with the minimum of the total kinetic energy of the beam. An algorithm that
changes the electrical resistance R, estimates the mechanical absorbed power and converge to
its maximum could be implemented to make the system self-tuneable with the aim of

minimising the overall structural vibration.

Figure 8.18 shows the power dissipated by the resistive load, which is also the power that could
be potentially harvested as function of decreasing values of R,.. As one would expect the power
dissipated by the shunt is zero when R is equal zero and is again zero for very high values of R_
which means that the circuit is open. The harvested power is maximised when R, is about 21.2
Q which is a quite different value compared with the minimisation of the kinetic energy and

maximisation of the absorbed power.
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Figure 8.18: Total power harvested by the shunted transducer as function of decreasing values of R,.

Table 8.7 shows a comparison between the minimisation of the total kinetic energy of the panel
and the other two self-tuning strategies. Although the optimal values of R, are different for the
three strategies, the global reduction in terms of kinetic energy of the beam is only 0.1 dB less
for the maximisation of the mechanical power absorption. When the harvested power is
maximised the reduction in the total kinetic energy of the beam is about 1 dB less compared
with the minimisation of the kinetic energy. In this case the maximisation of the harvested

power gives good performance compared with the minimisation of the kinetic energy of the
structure.

Table 8.7: comparison between maximisation of kinetic energy, maximisation the total absorbed and
harvested power

RL(Q) Attenuation in Kinetic Absorbed g)ower Harvested 2power
energy (dB) (WIN?) (WIN?)
Ninetic onorey. 6.3 112 2.42 1.63
horbed ower 8.4 111 2.43 177
Panvesten power 212 -10 2.31 1.99

However, if a commercial actuator is considered, the transduction coefficient Bl is usually much
lower than the one considered in the simulations. Moreover if the base mass of the inertial
actuator is taken into account equation (8.35) becomes:

(8.37)
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where w; is the first natural frequency of the beam with the base mass of the actuator M,,
attached. In this case, setting equation (8.37) equal to two so that the frequency where the
actuator starts to behave like a damper is half of the first natural frequency of the beam, the
mass of the beam is equal to Mg = M, — 4M,,. For all the actuators in Table 85 M; = M, —

4M,, is less than zero.

This result suggests that with the commercial actuators considered it is impossible to use a

shunted device to critically damp the first mode of a cantilever beam.

8.4.3. Broadband control of a panel using a shunted inertial actuator

In this section the possibility of broadband control of a panel using a shunted inertial actuator is
investigated. The optimal value of a skyhook damper to obtain a broadband control for a finite

plate roughly corresponds to the impedance of an infinite plate of the same thickness [17] which

E
Copt = 8h? S 2 8.38
12(1—1/1) (8.38)

where h is the thickness of the panel, E is the Young’s module, p is the density and v, the

is given by:

Poisson’s coefficient of the panel’s material. Substituting equation (8.38) in (8.21) and
assuming that the damping ratio of the shunted inertial actuator ¢, to be greater than 0.5 the cut

off frequency above which the actuator behaves like a damper is given by:

_ 8h? Ep
M, [12(1—v3) (8.39)

Wn

The first natural frequency of a simply supported panel is given by:

7Y (A g —
@11 = (Z) 12(1—vD)p (8.40)

where, the panel has been considered square and of side L. From equation (8.39) and (8.40) the
ratio between the first natural frequency of the panel and the natural frequency of the actuator is

given by:
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o A (8.41)

where Ms is the mass of the panel. Equation (8.41) shows that if u = 1 the first natural
frequency of the panel has to be about 2.4 times the cut-off frequency from which the actuator
behaves like a damper to optimally control the vibration of the structure.

If the base mass of the actuator is taken into account, equation (8.41) can be written as:

On o, Ma
wp Mg+ M, (8.42)

where w7, is the first natural frequency of the panel with the base mass of the actuator M,
attached. If M,/(Mg + M,, ) is set to one so that the w7, is about 2.4 times w,, M, is equal to
M, — M,,. For the Micromega actuator, which is the only one to have the closed loop
mechanical damping grater that 0.5, the moving mass minus the base mass is less than zero.
This demonstrates that it is impossible to optimally control the broadband vibration of a plate

using a shunted commercial actuator listed in Table 8.5.

8.4.4. Shunted inertial actuator used as dynamic vibration absorber (DVA)

A shunted inertial actuator can be used as a dynamic vibration absorber (DVA) if it is tuned at
the natural frequency of system under control. The mechanical damping of a shunted inertial
actuator can be changed by varying the value of the resistive load of the shunt. In Chapter 7 the
optimal damping ratio of a DVA that minimises the total kinetic energy of an undamped SDOF
system was found to be /j1/2 where p is the mass ratio between the mass under control and the
moving mass of the DVA when the frequency ratio between DVA and the SDOF is set to
1/4/1+ p. For a lightly damped SDOF system, the same expression of the optimal damping
ratio and frequency ratio can be used with good approximation. If a shunted inertial actuator is
to be used to control a SDOF system, the value of optimal mechanical damping ratio has to be

greater than the open circuit mechanical damping ratio of the actuator, {,,e, and smaller than

the close circuit mechanical damping ratio, {4 ose t0 be able to minimise the overall Kinetic

energy of the mass under control. Thus:

N

Zopen < 7 < chose (8_43)
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Substituting the expression of the mass ratio in equation (8.43) the mass of the SDOF cannot

excide the limit values given by:

Ma M
Clmax)?  °  (24open)? (8.44)

where M; is the mass of the SDOF system. Table 8.8 lists the limiting values of the controllable
mass M, for the four inertial actuators of Table 8.5. The table shows that for the first two
actuators (ULTRA and Data Physics) the mass M is high compared to the moving mass of the
actuator. As shown in Chapter 7 the performance of the DVA decreases for high values of u and
thus the performance of the first two actuators would be very low. For the Micromega actuator
it is not possible to control a single degree of freedom system because the base mass is already

bigger than M.

Table 8.8: limit values of the mass of the SDOF system to be controlled with different commercial inertial

actuators
Actuator Mass of the SDOF system under control (Kg)
ULTRA 13.3 <M< 97.7
140 Data Physics 62.9 < M <334.7
Motran IFX30-100 0.6<M;<3.6
Micromega 1A-01 0.02 <M< 0.05

The Motran actuator can be used to minimise the kinetic energy of a SDOF system having a
vibrating mass between 0.6 Kg and 3.6 Kg. Figure 8.19 shows the kinetic energy of a SDOF
system having a mass of 2 Kg so that u = 4, a stiffness of 9.16x10* N/m and damping ratio of
2%. The stiffness has been chosen such that the frequency ratio between the actuator and SDOF
system is given by 1/\/m. The faint line in Figure 8.19 shows the kinetic energy of SDOF
with no actuator. The dotted line shows the kinetic energy of SDOF system when the actuator is
attached but open circuit. If the electric load is decreased the two resonances of the system are
more damped (dashed line) and when the R, is zero the response of SDOF shows a single
natural frequency because the electromagnetic coupling is so strong that the relative velocity

between the mass of SDOF system and the mass of the DVA tends to zero.
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Figure 8.19: PSD of the Kinetic energy of the SDOF actuator (faint line), when the actuator is attached but
open circuit (dotted line), for the optimal tuning (dashed line) and for the actuator short circuit (solid line).

Figure 8.20 shows kinetic energy of the SDOF system integrated between 1 Hz and 1 kHz
normalise to the total kinetic energy of system before the DVA is attached. When the coil circuit
is open circuit, the total Kinetic energy is attenuated by 31.3 dB because of the passive effect of
the actuator. As the R, is decreased the total kinetic energy starts to decrease until it reaches a
minimum when R_ is about 4.93 Q. If R__ is further decreased the total kinetic energy increases

again. The extra attenuation due to the resistive shunt is, however only about 0.2 dB.

=31.1
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BT

-31.8 : :

Figure 8.20: 1 Hz-10 kHz integrated kinetic energy of the SDOF system normalised to that without the
actuator attached as function of decreasing value of R normalised to the kinetic energy of the SDOF
system before the actuator is placed

Figure 8.20 shows the integrated mechanical power absorbed by the shunted inertial actuator

given by:
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p (o, BD? fwmaxl o
“\“TR+r,)), R (8.45)

where ur is the relative velocity of the two masses. As shown in equation (8.45), when the coil

circuit is open (R, — o) the absorbed power is quite high because the open circuit mechanical
damping ¢ of the Motran actuator is high.
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Figure 8.21: 1 Hz-10 kHz integrated mechanical power absorbed by the shunted inertial actuator as
function of decreasing values of R_
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Figure 8.22: 1 Hz-10 kHz integrated power harvested by the shunted inertial actuator as function of
decreasing values of R,

The mechanical power absorbed is maximised when R is equal 5.05 Q. In Chapter 7 it has been
shown that the minimum of the total kinetic energy and the maximum of the power absorbed
correspond if they are both integrated over and infinite frequency band. In this case the

numerical integration is made over a finite frequency band therefore the value of R_ that
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minimise the total kinetic energy and value of R that maximise the power absorbed are slightly
different. The current circulating in the coil 7 is proportional to the relative velocity v, and is

given by:

Bl
R+ R, R (8.46)

1=

The power dissipated by the shunt is given by the value of the shunt resistance times the mean

squared value of the current 7 integrated over the frequency which leads to:

Wmax

Py = L(BI)Zf |5g 2de
(R +R.)? 0 (8.47)

Figure 8.22 shows the power dissipated the shunt which is also the power that can be potentially
harvested. The plot shows that the harvested power is zero when the circuit is open and is again
zero when R is equal zero as one would expect. When R, is equal 2.53 Q the harvested power

is maximised.

Comparing equation (8.45) and (8.47) it is evident that the mechanical absorbed power and the
harvested power are maximised for a different value of R.. Although from the simulation results
the values of R, that maximise the mechanical absorbed power and maximise the harvested
power are very close, the attenuation in the total kinetic energy is about the same for the two
method of tuning the DVA as shown in Table 8.9.

Table 8.9: comparison between three different strategies of tuning the DVA

Attenuation in the
RL () kinetic energy of the
SDOFs (dB)
Minimisation of the
kinetic energy of the 4.93 -31.78
SDOFs
Maximisation of the
mechanical absorbed 5.05 -31.78
power
Maximisation of the 253 -31.74
harvested power

8.5. Summary and conclusions

This chapter provides a preliminary discussion of shunted electromagnetic transduces as
tuneable damping elements. The potential advantage of such device are that the changes to the
electrical shunt impedance are relatively easy to implement, and that the power that would

otherwise be dissipated in the shunt could, potentially, be harvested to provide power for the
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tuning circuit. It may be even possible to use a measurement of the electrical power harvested as
cost function with which to adapt the shunt impedance. This would provide an attractive self-

powering and self-tuning damping device.

A two port network formulation has been used to analyse the behaviour of both reactive and
inertial electromagnetic shunted transducers. Simulations have than been performed of
laboratory-scale devices, with masses of less than about 1 Kg, used to control idealised
structures such as beams and panels. Although the analysis is interesting, the final predicted
results have generally been disappointing, with the additional reductions in structural response
due to shunting the device being small relative to the reductions due to the inherent passive
behaviour of the devices themselves when they are open circuit. For this reason, and in the

interests of time, this concept has not been explored experimentally.

It has been shown, however, that the additional damping due to shunting the transducer
normalised by the passive damping of the device, scales as the square of the length-scale. Thus
although the effects predicted using laboratory-scale devices are modest, they would be much
more significant for the very large electromagnetic devices used to control the motion in civil
engineering structures and that large arrays of miniaturised devices would be less effective than

a single larger device.
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9. Conclusions and suggestions for further work

9.1 Conclusions

Vibration control systems can be classified as passive or active, depending on whether or not
external power is required. A passive system that can change its properties during time is often
defined as semi-active. An advantage of semi-active and active control system is that they can

adapt themselves to operate in different environmental and operating conditions.

Conventional control design is often based on a time-invariant assumption for the system and
signals under consideration, which means that the control system and the mechanism of
generating the control signal have constant coefficients. In self-tuning systems, control and
signal processing algorithms have coefficient which can vary with time so that the controller can
change its parameters in order to maintain a required performance when the operating
conditions change. This is done by the addition of an adjusting mechanism which monitors the
system, compares its status with the required one and adjusts the coefficients of the controller.

This is the broad subject of this thesis. In particular self-tuning broadband vibration control,
based on the maximisation of the power absorbed by the controller in several either semi-active
or active control configurations was investigated. The power absorbed was chosen as a cost
function for the implementation of self-tuning control because its estimation can be done using
signals available locally, within the controller, avoiding the use of extra sensors to monitor the

global status of the system under control.

The first application considered was the optimisation of the damping coefficient of a single end
grounded damper used to control the vibration of two coupled oscillators. One of the two
vibrating masses was subjected by a broadband disturbance while the damper was acting on the
other mass. If the two oscillators were connected by a spring, it has been demonstrated that the
maximisation of the power absorbed by the damper corresponds to the minimisation of the
kinetic energy of the excited mass. In the general case where the oscillator were coupled by a
spring and a damper, numerical results showed that maximising the power absorbed by the

damper approximately minimises the kinetic energy of the entire system.

The analysis was extended to a distributed multi degree of freedom system. Different
homogenous structures such as panels and beams were considered subjected to a broadband
disturbance and controlled by a velocity feedback using an ideal velocity sensor collocated with
a point force actuator. Different tuning strategies for the control gain of independent feedback
loops were compared, taking the minimisation of the Kinetic energy of the entire structure as a

benchmark. It would be inconvenient to use the kinetic energy as cost function in a practical
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self-tuning system because it is a global property and its measurement would require a dense
array of sensors over the whole structure. Tuning the feedback gains on this criterion thus
defeats the idea of having entirely locally-acting control loops. Two different tuning strategies
were considered: the maximisation of the power absorbed by the controller and the
maximisation of the control stability of the first mode of the structure. It was shown, by
numerical simulations, that the two strategies give similar results in terms of the broadband

attenuation of the structural response.

An advantage of using the mechanical power absorbed by the controller as a cost function in the
self-tuning process, is that it can be measured entirely locally. In this application the force was
generated by the ideal actuator and was made proportional to the measured velocity. The
absorbed power could thus be readily estimated from the mean square value of the measured
velocity and the feedback gain, thus providing a simple measurement of an entirely local
parameter that could be used to tune the gains. An algorithm was implemented to adjust the
control gains of independent control units implemented on a panel subject to broadband random

excitation. The adaptation was performed using the feedback signal only.

These theoretical studies constituted the base of the experimental implementation of
multichannel control of a clamped aluminium panel excited by a shaker fed with white noise.
Two control units were initially employed, each consisting in a voice coil actuator closely
collocated with an accelerometer. The coil was attached to the panel and the magnet was
mounted on a relatively rigid structure where the actuators could react the force off. Particular
care was taken in the design of the controller in order to guarantee the stability of the control
system for values of control gains higher than the one producing the transition in the control
action between optimum damping and pinning of the structure. The algorithm for the
maximisation of the power absorbed was experimentally implemented, achieving an overall
reduction of the panel’s response similar to the minimisation of the kinetic energy of the

structure.

Although the principle of self-tuning to maximise power absorption has been demonstrated
using reactive force actuators, it is often not possible to use reactive actuators in practice, since
there may be no solid structure to react the force against. Therefore simulations were carried out
with velocity feedback loop including an inertial electromagnetic actuator for broadband
vibration control. It was illustrated that maximising the absorbed power again provides a
reasonable approximation to minimising the kinetic energy of the host structure. One aspect of
self-tuning that becomes particularly important with use of inertial actuators is the need to avoid
feedback gains for which the system becomes unstable, since this will cause significant
enhancement of the vibration and, potentially, damage. The optimal feedback gain can be kept

well below the unstable limit provided the actuator resonance is well damped, although this is
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not always possible in practice. It was also shown that the characterisation of the actuator could
also be used to calculate the control force from the measured velocity and current, so that the

power can be estimated.

This type of active self-tuning control requires external energy, therefore a semi-active control
system was also considered. A model of a dynamic vibration absorber attached to a lightly
damped single degree of freedom system was used to compare the maximisation of the power
absorbed by the controller with the minimisation of the kinetic energy of the host structure. The
parameters involved in the optimisation were the frequency ratio of the natural frequencies of
the decoupled SDOF systems and their damping ratios. It was demonstrated analytically that the
two optimisations are exactly the same even when considerable damping was introduced in the

system under control.

A preliminary study of a self-tuning semi-active controller using electromechanical inertial
actuator was finally carried out. This system consisted of an electromechanical inertial
transducer with an adaptable electrical shunt that acted as a passive damper and also as a
potential source of electrical energy to drive the self-tuning circuit. The advantages of such a
device are that the changes in the shunt are relatively easy to implement, and that the power
dissipated by the shunt could be harvested to drive the self-tuning system. Simulation results
suggested that it may even be possible to use a measurement of the electrical power harvested as
a cost function to adapt the shunt. It was shown that for laboratory scale devices, the additional
damping provided by shunting the device was small compared with the inherent passive
damping of the open circuit device. It was also shown, however, that the additional damping
due to shunting the transducers normalised by the passive damping of the device, scales as the
square of its length scale. Thus although the effect of shunting the transducer is limited for
laboratory size transduces it may be more significant for large scale devices, for example in civil

engineering applications.

9.2. Suggestions for further work

Further work could progress in the directions listed below.

e Theoretical analysis of the maximisation of the power absorbed by the controller as a
tuning strategy in the presence of different types of broadband excitations (i.e.
Turbulent Boundary Layer).

e The study of alternative tuning algorithms, capable of continuously monitoring the
absorbed power, even after the algorithm has converged, to track changes in the
operating conditions. The development of the new algorithm should ideally overcome a
limitation of the current method, which is the need for synchronisation of the adaptation

when more than one control unit is used.
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Stability issues due to the frequency response of MEMS accelerometers used as
feedback sensors could potentially be solved by designing a compensator that increases
the gain margin in this case.

Experimental implementation of the self-tuning control for velocity feedback using
inertial actuators. For this application the adaptation is more complicated due to the
instability issues introduced by the dynamics of the actuators. This may involve a
modification of the algorithm to guarantee that the control gain never exceeds the
maximum stable value.

Problems related with instability of the controller due to the saturation of the
displacement of the proof mass of the actuator also have to be considered in the
experimental implementation of feedback control using inertial actuators.

Simulation studies and experiments could be carried out in semi-active control using
shunted inertial actuator for large scale actuators typically used in civil engineering
applications.



Appendix A: Case of a simplified two DOF
system controlled by a grounded damper

This section presents the formulation to obtain analytical expressions of the optimal mechanical
damping c; that minimises the kinetic energy of the mass m;, maximise the power absorbed of
damper 3 and minimise the total kinetic energy of the system in Figure A.1. Compared with the
case of a general two DOF system, the parameters ¢, and ks are set to zero.

k,
k,
mo W m
Cs
¢
X; X,
> >
1,
J

Figure A.1: Two DOF system controlled by a grounded damper with ¢, and ks equal zero

A.1 Analysis
Assuming ¢, and ks equal zero, the steady state response of the system can be expressed in terms
of the five dimensionless parameters defined by:
U =m,/my : mass ratio
v = w,/w,: natural frequency ratio

A = w/w,: forced frequency ratio

{, = ¢1/(2mqw,) : primary damping (A1)
¢, = ¢3/(2myw,) : secondary damping
where
W, = +/k,/m, : natural frequency of the host / primary system
(A.2)
wy =k, /m, : natural frequency of the DVA
The mobility function Y,, and ¥,, can be written in non-dimentional form as:
(A.3)

_ ~ . Bo+ (B, + (DB, + (1)°B;
= lem: %000 = 4 A G4, + O A, ¥ A,
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Co+ (GDC, + (GD?C, + (jA)3Cs

_ o A4
A= kimY;,(jA) = Ao+ GAOA, + (jA)?A, + (jA)3A; + (JA)*A, -

where:
Ao = w? By =0 Co=0
Ay =20,uv + 2(1/,11/2 + 2/121/3(2 B, = w? C, = w?
Ay = w? +p+ v + 40,0 p B, = 2{,uv C,=0
Az = 20,uv + 20,1 B; =n ;=0
Ay =y

This configuration has been proposed by Cheung et al. in 2011 [48] who found an analytical
expression of the optimum damping ratio ¢, that minimise the total displacement of the mass
m;. In this section analytical expressions of the damping ratio ¢, which minimise the kinetic
energy of the mass m; and minimise the total kinetic energy of the entire system when {; is

equal zero are derived.

A.2 Minimisation of the total kinetic energy and maximisation of the power absorbed
The damper in this case can either be adapted to minimise the kinetic energy of m,, or the total
kinetic energy of m, and m,, or to maximise the absorbed power. In this section we compare

these strategies

If the aim of the tuneable damper cz is to minimise the integral of the kinetic energy of the mass
m; calculated over the frequency-band +oo, the performance index to be minimised can be
defined by:

my E[|7, |2]

KT onSw, /K, (A5)

where E[ ] denotes the expectation value. The performance index Iy, represents the ratio of the
Kinetic energy of the mass m; to the excitation force with a uniform spectrum density S;. The
unit of S; is N°s/rad. The constant 2w, /k, is introduced to ensure that the performance index

is dimensionless. The mean squared value of the velocity of the primary mass can be written as:

400
E[#2] = walf Ifi|* da

myky (A.6)

—00

Substituting equation (A.6) in equation (A.5) yields:
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1 [t
Ig=— I|% da
k1 o f_m | | (A.7)

Thus, substituting equation (A.3) in (A.7) yields:

1 (*
Ly =—
a5

Equation (A.8) can be integrated using the formula in reference [22] leading to:

By + (jA)B;y + (jA)*B, + (jA)’B;
, — 3 7 A (A.8)
Ay + (VA + GO A, + (A As + (A)A,

W0+ (P + 4+ L+ VD)) +
(1 +2(-1+ Wv:+ (1 —pu+ vt +40v% + uv4)(§)
2(4v283¢, + S + C(w + 4(v + (1 + pv3)E2) + (A-9)
7,0,(1+2(=1+ wv? + (1 + p2)v* + 402 + h32)

k1 —

If the aim of the tuneable damper c; is to minimise the integral of the kinetic energy of the entire
system, and thus the kinetic energy of mass 1 plus the kinetic energy of mass 2 calculated over

the frequency-band +oo, the performance index to be minimised can be defined as:

_m1E[|7~71|2] mypE[|7, %]
K 2nSiwy/ky  2mS;wq/ky (A.10)

The mean squared value of the velocity of the mass m, can be written as:

Sy [
E[92] = f“]’(lj 1A da

myk, (A.11)
Substituting equation (A.11) in equation (A.10) yields:
1 2 B 2
Ikzlkl-l-lkz:Ef_w |H| dﬂ+Ef_m |A| di (A12)
Thus, using equation (A.4) the quantity I, can be written as:
L[] G GNG+ DG GG
Lo =— , — —3 — 7 A (A.13)
2n)_o [Ag + GDAL + GO A, + A A; + (A A,

Equation (A.13) can be integrated using the formula in reference [22] leading to:

w8, +vE,)
2(4v2830, + o0 + G + 4 + (1 + pv)E) (A14)
+0,0,(1+ 2(=1+ v + (1 + 2 )v* + 402 + whi3))

Iy, =

And thus substituting equations (A.9) and (A.14) in (A.12) leads to:
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0, +vQuvi +v(=2+ V2 + pu(2 + w?) + 409, +
401+ (1 + VAT, + 4v(L + wv)Ed)

T 204200, + wl v (v + 4(1 + (1 + mvAD) +

3,0,(1+2(=1+ wv2 + (1 + p?)v* + 4(v2 + w)2)

Iy

The power absorbed by the tuneable damper can be written as:
Sp3(w) = %Re{fzﬁz}
where the force f; is the force produced by the damper given by:
fq = cst
Substituting equation (A.17) in (A.16) the absorbed power becomes:
Spa(@) = 5 ol
In this case the non-dimensional performance index is defined by:

_ c3E[|7,]°]

P37 28w, Jky

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

which represents the ratio of power absorbed by the tuneable damper to that generated by the

excitation force with a spectrum density S¢ acting on a damper of value k;/w;. The mean

squared value of the relative velocity times the mechanical damping c; can be expressed as

follow:

~ Spwq e
GE[|7,°] = PR f |AI2dA
1 —o0

Thus the performance index becomes:

+o0
s = v | 1A

Substituting equation (A.4) in (A.21) 1,3 becomes:

B muv*, (¢, +v{,)

0 T T, ¢ i+ e+ 4+ L+ D)
+0,0,(1+ 2(=1+ v + (1 + p?)v* + 4(v2 + whid)

(A.20)

(A.21)

(A.22)

In order to minimise the kinetic energy of the mass m;, the following conditions have to be

satisfied:
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al
x, "
2
G) . (A.23)
v

while to minimise the total kinetic energy of the entire system the following conditions have to
be satisfy:

a0l
7, ="
2
al, (A.24)
— =0
v

Finally to maximise the total power absorbed by the tuneable damper the following conditions
have to be satisfy:

al
B _0
aq,
ol (A.25)
v
Differentiating the performance index Iy, expressed in equation (A.9) with respect to , and v,

and setting these equal to zero, yields to a pair of simultaneous equations:

—uve[uvA3E + 2uv3 00, + 03 — 2v205 4 2uvA3E + VAR — wvtE + vt — ARG

— apvACEGE — BVG G — BuvG 6 — V3L — 4uv*ef] = 0 A26a)

_IlV3{2 [#V3(12 +4¢,(; — 4V2{1{2 + 4’.[“/2(1(2 + ZIW4<1(2 + 8V2(13(2 + 5V{22 - 6‘/3(22
+6uv33E + V305 — pvSEE + Vi3 + 12vE¢E + 16v33E (3
+4uv33ECE + 24v2 005 + 8vHG 3 + 8uvt &5 + 12v30; + 4uvey]
=0

(A.28h)

Following the same procedure for I and Iy, the partial derivates of the performance index Iy

expressed in equation (A.15) are given by:

—uv3[{F = 2v237 + 2uvP3E +vAGE + uPVALE + VAL + 4SOl + 8V, + 8V,
+ 8330, +v2E — 2viEE 4+ 2uvi(E +vOGF + uPveEE +12vP(EEE (A274)
+4vAECE + 12uv* 0707 — 4viiy — 4uve(3] = 0
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—uv23[=30F + 2v20E — 2uv23E + VAT + pPviE — 4vEQE + 4uvSli, — 8V,
+5v207 — 6V + 6uv*(F + Vo0 + ptvedd — 4vACEEE + 12v* G
+4uv*iECE +16v30,05 + 8v30 35 + 8uvS i 33 + 12v4(3 + 4uv® (3]
=0

(A.29b)

and the partial derivates of the performance index I 3 expressed in equation (A.22) are given by:

WG [uv2EE + 2uv380y + CF — 2v20F + 2uvA3E + viCE — wv R + v — AR

— 4uVCFGE — Bv,53 — BuvAG, 8 — 4viE — auvie] = 0 (A282)

.UV3(1(2[HV3{12 +44,{, — 4’V2(1(2 + 4!“’2{152 + 2#*’451(2 + 8V2(13(2 + 5V(22 - 6V3{22
+6uv33Z +v50F — pvSEE + pPvieE + 12vE¢E + 16v3(E (3
+4uv33PF + 24v20 33 + 8vAG 03 4+ 8uvt( 33 + 120387 + 4uviz] (A.30b)
=0

Simultaneous equation (A.26) and (A.27) and (A.28) are all satisfied for ¢, =0 and v=0
corresponding to minimising I, and I, and maximise l,;. The other solutions can be found

setting to zero the terms in squared brackets. If ¢; # 0 the term in square brackets in equation

(A.26a) is equal to the term in square brackets in equation (A.28a) and the term in square
brackets in equation (A.26b) is equal to the term in square brackets in equation (A.28b) which
means that conditions for the minimisation of the kinetic energy of the mass m; are the same of

those for the maximisation of the total power absorbed.

The total kinetic energy of the system is minimised for a different value of C, and v, however, if
¢, is equal zero the primary system is undamped. Equations (A.26a) and (A.26b) for dl,/3(,
and dIy4/dv then reduce to:

1+ 2(-1+Wv?—1+pu—p*v* — 4> + w3 =0

S54+6(—1+Wvi—1+pu—p*v*+4v2@ +uvH)i5 =0 (A.29)
And equation (A.28a) and (A.28b) for a1, /d{, and a1 /dv then reduce to:
1+2(-1+wv? + A +p2)v* - 4(? + w33 =0
(A.30)

S5+6(-1+pvi+ A+ )vt+42@+wH)E =0

For the complexity of equations (A.29) and (A.30) it has not been possible to find explicitly
expression for ¢, and v. However, if the value of v is fixed the optimum damping that minimise

lxs is given by:
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\/1 = 2v% 4+ 2uv? + vt — vt + pPvt

¢ =
20ptkl \/m (A.31)

and the optimum damping that minimise Iy is given by:

\/1 = 2v% + 2uv? + vt + ptvt

$aoptk = m (A.32)

The difference between {yopec aNd {z0p1 IS given by:

1 | uv?

Caoptk ~ Szoptk1 = 2 11+ 02 (A.33)

Equation (A.33) shows that the difference between the two optimum values is smaller than 0.5
for all the value of u and v. Figure A.2 shows the two optimum values of the damping ratio

Caopt1 ANd {yopek @s function of the mass ratio u when v = 1.5. The plot shows that the

difference of two optimum values never exceeded 0.5.

25

:

— Sooptkt

== = Conpi _ -
"""" Saoptk” Szoptt o

Figure A.2: {oopua (Solid-line), Caopu (dashed line) and Caopi-C20ptka (dotted line) as function of the mass
ratio u when v = 1.5.

The performance index lp3, however, becomes equal to m if {; is exactly zero. The absorbed
power is then independent on ¢, and v, as can be seen from equation (A.28a) and equation

(A.28b), since they both are proportional to ;.
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Appendix B: Mathematical model of a
distributed structure controlled by multiple
velocity feedback loops

B.1 Natural frequencies and mode shapes for beams and panels

e Beam

The natural frequencies of a beam of length | with any type of boundary condition are given by:

EI
o, = |—kZ, where n=1,23,..

pA (B.1)

where E is Young’s modulus of the beam material, I is the second order moment of inertia of
the beam cross-section area A, p is the material’s density, and k,;, is a constant depending on

the boundary conditions.

Table B.1:Natural frequencies of a beam

Boundary conditions Wy,
n knbl
Simply supported ,2,... | nt
Clamped at both | 1 4.73004
ends 2 7.85320
3 10.9956
4 14.1372
5 17.2788
6,7,... | @Cn+ Dm/2
Cantilever 1 1.87510
2 4.69409
3 7.85476
4 10.9955
5 14.1372
6,7,... | Qn—1)m/2
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Table B.1 and 2 show the values of k,;, and the modeshapes respectively for a both ends

simply supported beam, both ends clamped beam and a cantilever beam. The modeshape are

normalised such that f; ¢?(x)dx = |

Table B.2: Characteristic beam functions

Boundary G135, With i = (n +1)/2 P25, () With j = n/2
conditions
Simply supported ¢n(x) = V2sin (nlnx)
at both ends '
clamped at both | , (-3 {cos [yi (li - %)] Pn(2) = ﬁ{cos [yf (lﬁ - %)]
ends ’ x 1 i x 1
ko (£-3) ey (23]
sin (%yi) sin (%yf)
k, = kn =
sinh (% yl) sinh (%yf)
with tan G yi) + tanh (%yi) =0 with tan (%yi) — tanh (% yi) =0

Cantilever beam $u(x) = VZ{cos [VZ‘—X] + cosh [V;—x] + Iy, sin [V?—x] — sinh [y;—x]}

_ siny, —sinhy,

= ith hy, =-1
cosy, —coshy, with cosy, coshy,

n

Note that the first values for y in Table B.2 can be determined using numerical root-finding
methods, where it is important to yield results with a high precision. For values larger than 10

the numerical methods can fail to determine the roots correctly. For i greater than 10, y; is given

by:

(4i + Dm for 1 1
— tan (EYi) — tanh (EYi) =0
(4i — Dm for 1 1
— tan (E”) — tanh (Eyi) =0
Qi-Dmn for cosy;coshy; = —1

2

e Plate

The natural frequencies of a panel of dimensions I, x I, with any type of boundary condition are

given by:
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3 Eh? T\ 2
Omn = 1251 — v?) (E) Qmn (B.2)

where g;nn = J Gx (M) + Gy (M) (Le/1y)* + 2(Le /1)) [VH (M) Hy (n) + (1 — )] (M)],, ()]

The constants Gy, Hy, J, and G,, H,, ], are given in Table B.2 for a all-sides simply supported

panel and a all-sides clamped panel.

Table B.3: Values of the constants Gy, Hyx and J.. He values of the constants G,, Hy and J, are the same
for equivalent boundary conditions

Boundary m G, H, Iy
conditions
Simply 1,2,3, ... m m? m?
supported
Clamped 1 1.506 1.248 1.248
2,3, ... mt L 121 4 121 1
2 (m+§> [ _(2m+1)n] (m+i) [ _(2m+1)7r]

The mass-normalised modeshapes ¢,,,,, (x, y) are given by:

¢mn(xv }’) = ¢m(x)¢n(Y) (B.3)

where mass-normalised characteristic beam mode functions are given in Table B.2.

B.2 Deterministic model of a distributed structure excited by a primary point force
and controlled by multiple velocity feedback loops

In this section, the implementation of R direct velocity feedback control loops on a distributed

lightly damped structure is considered. The velocities at the control positions and the control

forces are grouped into the following column vectors:

~ ragw)]
Ve = : ,
Per ) (4
_ fc1(fw)
ffo)=1| | (B.5)
fcR(iw)

where v, and f.. are the velocity and the force at r-th control position. The velocities at the

control positions, can be expressed in the following matrix form:
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Ve = e, (B.6)

where, in this case, ¢, is a (R X N) matrix whose rows are the modal vectors ¢, =

[Der1(%Y)  Dera(x,¥) - @ern(x,y)] at the r-th control position:
(0% be11(0Y)  Pe12(0y) o Pean(x,y)
$. = [ : = : , B7)
bR ber1(%,Y)  Per2(x,y) - Pern(X,Y) '

Also, a is the column vector with the first N modal excitation terms due to both primary and

control excitations given by:

a=4a.+4a, (B.8)

However, assuming multiple primary and multiple control forces these two vectors are given
by:

(B.9)
A = 0ecf. (B.10)
Q is the diagonal matrix of the resonant terms (,, given by:
= Jo
" My[w? — w? + j20,w,w] (B.11)

where M,, is n-th the modal mass, ¢, is the n-th viscous damping ratio and w,, is the n-th natural

frequency.

¢, is a (RxN) matrix whose rows are the modal vectors

bps = [Pps1 (X)) Gps2(x,y) - $psn(x,¥)] at the s-th primary position:

(O %1 ¢p1,1(x,y) P12 xy) - bp1n
bs=| ¢ |= : ' (B.12)
(I)PS ¢p5,1(x,y) ¢pS,2 y) - ¢pS,N )
Finally f, is the vector with the forces at the S primary positions:
_ fpl (Jw)
o=\ ol (B.13)
fps(jw)

If decentralised velocity feedback loops are implemented, then it is possible to write:
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fo = —Gv., (B.14)
where G is a diagonal matrix of the control gains relative to each single control loop:
91 0
G = ! (B.15)
0 Ir

Substituting equation (B.15), in equation (B.10) and then equations (B.9) and (B.10) in (B.8)
yields:
a=Qrf, - 0QPLGY,, (B.16)

which, after substitution into equation (B.6) and some further mathematical manipulations,
yields:

Ve = Qfp, (B.17)

where Q is given by:

~ ~ -1 ~
Q= [(I + ¢CQ¢ZG) ¢cﬂ¢£]- (B.18)
Thus, substituting (B.17) in (B.16) a becomes:
a=]J, (B.19)
where J is given by:

] = 0¢; — 0476Q, (B.20)

The transverse velocity at a generic point of the plate v(x, y, w) depends on both forces fp and

f., and it can be expressed with the following matrix equation:
(x,y, w) = byya = ¢xyifp (B.21)

Where @y = [Dry,1 (1Y) bxy2(x,¥) =+ dryn(x,¥)] is a row vector with the first N
natural modes of the plate at the generic (x,y) position on the plate. The instantaneous total
kinetic energy of the structure is given by the product of the mass structure per unit area and the

squared velocity integrated over the surface of the structure:

1
K@) = > fs phv?(x,y,t)ds (B.22)
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where S is the surface of the structure. Assuming ph to be constant over the surface of the

structure K (t) becomes:

1
K@) = Eph fs v?(x,y,t)ds (B.23)

The time-averaged total panel energy is given by:

_ 1 1"
_ - 2
Ry =z0h | 7| vCoy0deds (B.24)

Where T is a suitable period of time over which the mean squared velocity is estimated
Assuming time-harmonic vibration the time averaged integral can be rewritten in terms of the

magnitude of the complex velocity to give:

1

T
1
2 T 2
T fo v(x,y,t)dt 2IV(x,y.w)I (B.25)

which yields the time-averaged total kinetic energy of the panel as:

_ h
K=K(w) = %f 17(x,y, w)|*ds (B.26)
S

Substituting equation (B.21) in (B.26) and considering the orthogonality condition of the natural

modes yields:
ph [ ... o 1 ...
k) =7 | BT 0 Ty ds = 37" ®21)
The instantaneous total power absorbed by multiple feedback loops is given by:

1 1
P(®) = 57 (O)V(D) = 5 trace(f(OVE (©) (8.28)

and considering proportional control equation (20) can be rewritten as:

1
P(t) = Etrace(GvC ®vI()) (B.29)

The time-averaged total power absorbed is given by:

_ 1 1" T
P(O) = 5 trace(G; [ ve(OVI(©)dD) (8:30)
0
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Assuming time-harmonic vibration the time averaged integral can be rewritten in terms of the

magnitude of the complex velocity to give:

_ 1 B )

P = P((,l)) = ZtraCE(lec(x, 3z (l.))l ) (831)
which after substitution of equation (B.17) in (B.31) gives:

Pps(w) = %trace(GQQH), (B.32)

The individual power absorbed by the r-th control loop is given by the r-th diagonal term of the
matrix GQQ.

B.3 Stochastic model of a distributed structure excited by a rain on the roof
disturbance and controlled by multiple velocity feedback loops

In this section, the implementation of R direct velocity feedback control loops on a lightly

damped flexible structure subject to a random excitation ‘rain-on-the-roof” is considered.

When a distributed force is acted on the plate, the modal excitation term &, in equation (B.8)

becomes:

ap =04, (B.33)

where § = [F,(jo) F,(jo) -+ Fy(jw)]" is a column vector whose n-th term is the random

excitation on the n-th natural mode of the structure given by:

Ruw) = | gue)fey,w)ds ©30

where £ is the spatially random force acting on the structure. Thus, the same formulation as that
presented for the deterministic model can be used to derive the response of the structure under

control.

The velocities at control positions are given in equation (B.6) where the column vector a with

the first N modal excitation terms due to both random and control excitations, a, and a.
respectively is given by:

a=a.+904. (B.35)
Substituting equation (B.14) in (B.10) and then in (B.35) a can be written as:

a=Q¢lGv. + Q4. (B.36)
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Substituting equation (B.36) in (B.6) and some further mathematical manipulations, yields:

v. = 0Q4q,

(B.37)
where U is given by:
U=>1I+000{G) .. (B.38)
Substituting equation (B.37) in (B.36) a becomes:
a =Daq, (B.39)
where D is given by:
P
D=1-0¢’GU. (B.40)
The transverse velocity at a generic point of the structure v(x, y, w) can be written as:
7(x,y,0) = ¢yyd = ¢, DO (B.41)

It can be demonstrated, that the power spectral density of a generic signal x(t)is given by:

1
Sex(w) = lim E [;X “(w)X (w)] (B.42)

where X (w) is the finite Fourier transform of x(t) given by:
T

_1 jot
X(w)—%J; x(t)el* de (B.43)

and E[ ] denotes the expectation for an infinite sample length. Thus considering the general
formulation for the instantaneous total kinetic energy in equation (B.24), the power spectral
density of the total kinetic energy Sk, due to a time spatial stochastic disturbance over the

structure surface, can be written as:

1 : 1, _
Sk(w) = thfs 711_I)I;IOE [?v (x,y, w)0(x,y,w)|dS (B.44)

Substituting (B.41) in (B.44) and taking in to account the orthogonality of the modes, the power

spectral density of the kinetic energy of the structure becomes:

1 - 1 ~
Sk(w) = ZM trace (DﬂTli_r)lgoE fﬁﬁH] QHDH) (B.45)
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Using equation (B.34), the i,j term of the matrix Tlim E [% fjﬁH] can be expressed as:

Tli_r)gloE [% (7@7] = fs' fs" d)i(xl, y')qu(x”, y”) limE Ef(x',y', w)f(x”, y”, w)] ds'ds’. (B.46)

T—co

In case of ‘rain-on-the-roof” excitation, the cross-expectation value of equation (B.46) is equal
to one if x' = x"" and y’ = y" and zero otherwise. Thus, taking into account the orthogonality
of the modes, the expectation value in equation (B.46) is equal to the identity matrix. Therefore

equation (B.45) can be written as:
1 2 DOOHDPH
Sk(w) = 2 Ms trace(DQQYDH) (B8.47)

The power spectral density of total power absorbed by multiple decentralised control loops is

given by:
S _2 G lim E L gon
p(w) = Ztrace( Jim [TVV D (B.48)
And thus substituting equation (B.37) in (B.48), Sp (w) becomes:
1 2 MTOOHTTH
Sp(w) = 7 5% trace(GUQQ"T") (B.49)

The individual power absorbed by the r-th control loop is given by the r-th diagonal term of the

matrix GUQQUX.
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Appendix C: Results for single channel systems

This appendix reports all the results, for each individual control channel, of the open loop
frequency response function and simulated closed loop response. Figure C.1 shows the Bode
diagram while Figure C.2 and Figure C.3 shows the Nyquist plot of the measured open loop
FRF of the nine channels. Figure C.4 shows the simulated PSD of the Kinetic energy of panel
for different values of control gain obtained from measured responses. Finally, Figure C.5
shows the simulated frequency averaged Kinetic energy and power absorbed by each single

channel obtained from measured responses.
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Figure C.1: Open loop FRFs using B&K accelerometers as feedback sensors
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Figure C.2: Nyquist plots of the nine open loop sensor-actuator FRFs, acting alone, using B&K accelerometers
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Figure C.4: Simulated of the kinetic energy of the panel without control (solid line), minimising the total kinetic energy (dashed-line) and implementing the gain that
guarantees 6 dB gain margin from measured responses.
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Figure C.5: Simulated from measured response of the total kinetic energy of the panel and total power
absorbed a single channel control system.
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Appendix D: Measured closed loop responses
using control unit number 1

Experimental results for a single channel system using control unit number 1. The measured and
simulated PSD of the estimated kinetic energy is shown in Figure D.1, for the same condition as
in Figure 5.3 for control unit 1. Figure D.2 shows experimental and simulated total Kinetic

energy and power absorbed when control unit number 1 is used to control the response of the
panel.
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Figure D.1: PSD of the estimated kinetic energy of panel with no control (solid line), minimising the

estimated frequency averaged kinetic energy of the panel (dashed line) and high control gain (dotted line)
a) measured and b) simulated
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Figure D.2: a) experimental and b) simulated results of the normalised total kinetic energy of the panel
and c) experimental and d) simulated results of the total power absorbed as function of the control gain 2
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Appendix E: Impedances of an electromagnetic
Inertial actuator

In this appendix the analytical expression for the impedances used to describe the
electromechanical behaviour of an electromagnetic inertial actuator are derived. In Figure E.1 a

scheme of a one degree of freedom inertial actuator is shown.

¥

M

K% +c Tv
u¢ f¢

Figure E.1: Scheme of the electromagnetic inertial actuator

The open circuit mechanical impedance Zy,, is defined by:

f

Zio = .
mo = |, (E.1)

and can be derived from the equilibrium of the forces in Figure E.1 as follow:

_k + jwc(u — uy)

f (E.2)

jw
uy = f/joM (E.3)

where Kk is the stiffness of the actuator suspension, c is the internal damping of the transducer, u
is the velocity of the structure to which the actuator is attached, uy is the velocity of the moving
mass M. Substituting equation (E.3) in (E.2) Zm, can be written as:

[ joM(k + jwc)

Zmo ==

u  jwc+k— w?M (E4)

The transduction coefficient T, is defined as:

u i=0. (E5)



APPENDIX E

If the coil circuit is open the voltage v is produced by the electromagnetic coupling between the

permanent magnet and the coil given by:

v =Bl(u—uy) (E.6)

where B is the magnetic flux density of the magnet and | is the length of the coil and (u — uy)
is the relative velocity between the base of the actuator and the moving mass. Combining

equations (E.2) and (E.4), the relative velocity between the moving mass and the structure is

given by:
_ —w?*M
(= uy) = joc+k — wiM " (E.7)
Substituting equation (E.7) in (E.6) yields:
7, = pl— M
P jwe + k — w?M (E8)

However the two transduction coefficients have the same absolute value and their product is

negative real so that T; = —T,. Z, is the blocked electrical impedance defined as:

T = v
il (E9)
In this case the force generated by the actuator is given by the electromagnetic coupling
coefficient Bl times the current i or by the velocity of the moving mass times the mechanical

impedance of the actuator when u=0 and so:

. k .
f=Bli=(c +].z + joM)uy (E.10)

The voltage in the coil circuit is given by the current i times the electrical impedance of the

circuit plus the voltage generated by the relative motion of the magnet-coil and thus:

v = (R +jwL)i + Bluy (E.11)

where R is the electrical resistance and L the inductance of the coil. Combining Equation (E.10)

and (E.11) the blocked electrical impedance is given by:

S (1)
e = N Tk — WM (E.12)
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