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SELF-TUNING VIBRATION ABSORBERS  

by Michele Zilletti 

This thesis presents a theoretical and experimental study of self-tuning vibration control. 

Feedback design is often based on the assumption of time-invariance, which means that the 

controller has constant coefficients. Self-tuning control takes into account process changes in 

the response of the system under control by incorporating an adjusting mechanism which 

monitors the system, compares its status with the required one and adjusts the coefficients of the 

controller. In this thesis a self-tuning process is analysed for active and semi-active control of 

broadband vibration based on the maximisation of the power absorbed by the controller. The 

absorbed power can be locally estimated without using extra sensors to monitor the global 

response of the system under control. This is particularly advantageous in applications where 

many actuators are required, in which case each actuator and the collocated sensor can be 

treated as an independent self-tuneable unit. 

A theoretical analysis of vibration control using this approach is presented for lumped parameter 

systems and also for distributed systems, such as beam and panels. Different tuning strategies 

are compared in terms of the reduction of the global response of the system under control. An 

algorithm is then discussed that tunes the feedback gains of independent control units to 

maximise their individual absorbed powers. Experimental studies are then presented of a self-

tuning control system with two decentralised control units using velocity error signals and 

electromagnetic reactive actuators installed on an aluminium panel.  

In the second part of the thesis the analysis is extended to the use of inertial actuators. In this 

case the implementation of the self-tuning control based on the maximisation of the power 

absorbed is investigated using simulations of velocity feedback control and shunted inertial 

actuators.
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1. Introduction 

1.1. The need to control structural vibration 

Vibration occurs in most machines, structures and dynamic system and can be the cause of 

disturbance, damage or even destruction. At the extreme end of the vibration scale, an 

earthquake can have tragic consequences, being able to destroy entire cities. At the lowest end, 

vibrations produced by a vehicle or a home appliance can cause discomfort and reduce sales. 

Vibration control aims to reduce or modify the vibration of a mechanical system [1]. In the last 

few decades more and more attention has been devoted to vibration control and multi-million 

dollar industries have produced devices and materials for vibration control.  

Vibrations can have different characteristics in terms of frequency and magnitude. For example 

the range of frequencies most often associated with the effects of the whole human body 

vibration on health, activities and comfort is approximately 0.5-100 Hz. Typically frequencies at 

about 0.5 Hz can causes motion sickness. Vibrations at around 20 Hz are typically transmitted 

through the seat of a vehicle while the frequency transmitted by vibrating tools is around 100 

Hz. Depending on the magnitude of the vibration, the human body is generally more sensitive to 

low frequency vibrations [2]. 

Vibrations can have dangerous and destructive effects on mechanical systems. For example 

vibrations of high buildings and bridges due to the excitation produced by interaction with the 

wind or due to a strong earthquake can cause structural damage if the amplitude of the vibration 

excide a certain limit. In some cases, vibrations can also compromise the integrity of a 

component due to mechanical fatigue.  

In many engineering systems a source of discomfort is represented by air-borne and structure-

borne sound radiation. In particular, vibration of panels and shell structures may generate high 

levels of interior noise in transportation vehicles such as aircrafts, trains, helicopters, cars, etc. 

in the audio-frequency region, between about 0.02 and 20 kHz [1-3].  

Because of this broad variety of vibrations problems it is difficult to find general solutions and 

each problem needs to be carefully considered to understand the nature of the vibration. It is 

important to understand the source of the vibration, its magnitude and frequency at receiving 

location and the path along which the vibration reaches the receiving location. The approaches 

to vibration control are typically classified into three types: passive, semi-active and active. 
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This thesis manly concerns with the active control of thin lightly damped structures such as 

panels. In cases where the controller is tuned to absorb power, however, the system may be 

classed as semi-active. 

1.2. Passive vibration control 

Passive vibration control aims to reduce the response of a system by passively modifying its 

characteristics. The modifications can involve structural changes or the addition of passive 

elements in order to change the stiffness, damping and mass of the system under control. These 

modifications reduce the response of the structure to the forces imposed by an external 

disturbance.  Purely passive vibration control techniques do not require external power and are 

fixed at the time of implementation.  

There are different approaches in designing passive vibration control systems. The first attempt 

in reducing structural vibration is made in the design process. The design of a mechanical 

component or of the entire system can be optimised in order to reduce the vibration level, either 

minimising the vibration input of the disturbance or shifting the structural resonance frequencies 

away from the disturbance frequencies. This method requires an accurate model to predict the 

structural response and can only be applied during the design process.  

A second approach involves the use of localised devices placed in strategic locations on the 

structure in order to change a resonance frequency of the main system. A typical example of 

such a passive device consists of a single degree of freedom system, either tuned to a resonance 

frequency of the structure (vibration absorber) or at the disturbance frequency (vibration 

neutraliser) [3]. These systems can efficiently reduce the vibration level only at frequencies 

close to those it is tuned. 

In the case where the vibration is characterised by many resonances of the structure, a passive 

control solution could be to increase the damping of the system. Damping dissipates some of the 

vibration energy of the structure by transforming it into heat. A preliminary estimate of the 

structural damping already existing in the structure is necessary before any attempt to add extra 

damping is made. The most common technique to add damping is to attach, at strategic 

locations on the structure, highly damped materials, such as polymeric, to dissipate vibration 

energy. 

A fourth passive vibration control approach can be applied when one component of the system 

vibrates excessively due to high vibration level transmitted through a few connections points. 

The vibration of this part can then be efficiently reduced by isolating this path, for example by 

making the connections sufficient resilient. This technique is particularly suitable when delicate 

equipment have to be isolated from high vibration exposure.  
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In many applications passive vibration control can offer a satisfactory attenuation of the 

structural response, without excessive costs and with low maintenance requirements. The 

penalty for high levels of passive vibration control, however, can be a significant increase in 

weight and cost.  

The effectiveness of localised passive devices is also generally limited to the narrow frequency 

band for which these systems are designed and in some cases can even increase the vibration of 

the main system if the operational conditions changes. 

1.3. Semi-active vibration control 

A resonant passive device may not work if there is a change in the operating or environmental 

conditions. Real mechanical systems can be subjected to changes of these conditions and a 

resonant device can lose its effectiveness, or in the worst cases, can enhance the vibration level 

of the system under control. A semi-active system is a passive system in which the parameters 

of the passive device (damping, stiffness, etc.) can be changed over time in order to tune the 

controller and allow good reduction for a wide range of operational conditions. The stability of 

a semi-active system is guaranteed as the passive system can only absorb power, although the 

tuning mechanism could give rise to modulations of the vibration if it fails to converge. 

Many techniques to change the properties of passive systems have been developed, particularly 

to change the stiffness of a tuned device so that it can track changes in the excitation frequency. 

For example, the stiffness of pneumatic springs can be altered by changing the air pressure 

inside the device [4]. Another example using element of a shape memory alloy, whose Young 

modulus changes with temperature, and so can be controlled by adjusting the electrical current 

thorough it [5]. Other strategies of tuning the stiffness of a passive device involve changes in the 

geometric shape of the stiffness element, using piezoelectric actuators for example [6].  

Electro/magneto rheological fluids are type of fluids that increase their viscosity when exposed 

to an electric or magnetic field. They are used in magnetorheological dampers in which the 

magnetic field is produced using an electro magnet. The viscous damping of the device can be 

therefore changed by varying the current across the coil that generates the magnetic field [7]. 

They have been used as adaptive dampers on vehicles, to allow less damping on smoother road 

surfaces, and on washing machines, to control the drum vibration as its speed runs up through a 

resonance.  

Semi-active system can be implemented by shunting an electromechanical transducer with an 

electrical impedance that can be adapted. This approach has been used for both piezoelectric [8] 

and electromagnetic actuators [9, 10]. 
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1.4. Active vibration control 

Active vibration control can take many different forms, but the important components of any of 

them are a sensor, an electronic controller and an actuator. The sensor is used to detect the 

vibration, the controller manipulates the measured signal in a suitable way and the actuator 

applies a reacting force or moment to the system under control. Examples of actuators used in 

active control are: shakers, piezoelectric ceramics and magnetostrictive devices. A substantial 

advantage of an active control system is its adaptability to parameters changes of the system 

under control, which guarantees a better performance in a wider range of operating conditions 

compared with a passive one. Depending on the circumstances, active solutions may be cheaper 

or lighter then passive systems. In some applications active control systems can offer 

performances that no passive system can achieve, especially in controlling low frequency 

vibration. The drawback of an active system is that an external power supply is needed. 

Moreover active control is only effective in a given frequency band, generally at low 

frequencies, and can enhance the vibration level at other frequencies [7, 11]. 

Several control schemes have been proposed which can be broadly classified into two main 

families: feed-forward and feedback architectures.  

Feed-forward control is generally the most suitable control strategy when a reference signal is 

available that is strongly correlated with the disturbance. Feed-forward control was first design 

for active noise control [12], but applications in vibration control can also be found in [11, 13]. 

The reference signal measured by a sensor, is passed to an adaptive filter and then used to drive 

an‎actuator,‎which‎influences‎the‎system‟s‎response.‎The‎coefficients‎of‎the‎adaptive‎system are 

adjusted in order to minimise the error signal measured by sensors placed in one or more 

strategic locations. The idea is to produce a secondary disturbance to cancel the effect of the 

primary disturbance at the locations of the error sensors. This type of control strategy does not 

guarantee global control unless the response is dominated by a limited number of modes that are 

detected by the sensors. The implementation of this type of control does not need a detailed 

model of the system under control. The performance of a feed-forward control system relies on 

the delicate balance between the interaction of the primary and secondary sources, therefore the 

amplitude and phase of a feed-forward controller must be carefully adjusted. Thus, to guarantee 

a good performance of the controller, it is of crucial importance to use an efficient adaptive 

algorithm that tunes the feed-forward controller in real time [14]. 

When a reference signal is not available, for example when a mechanical system is subjected to 

a broadband random disturbance from many sources, the most suitable control strategy is 

feedback control. In feedback control, the control signal measured by a sensor is influenced by 

both the primary and secondary source and fed back to the actuator. In principle feedback 
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control can be used to control tonal disturbances as well, although, in general, fixed feedback 

controllers underperform compared to feed-forward systems [14].  

Multichannel vibration feedback control systems can be classified in two types. In the first one, 

all the actuators are driven by a single, centralised, controller, which uses the signals measured 

by all of the sensors. In general the number and type of actuators and sensor transducers is 

chosen in such a way as to measure and excite the vibration component of the structure to be 

controlled. Thus they do not need to be collocated and a different number of sensors and 

actuators may be used to selectively control different modes [7, 11, 15]. This arrangement is 

called centralised control; its design needs an accurate model of the plant responses in order to 

properly set the control functions and its implementation can be rather complicated. The plant 

responses are often derived from modal models, which are accurate only at low frequencies 

where the response of the structure is controlled by a small number of modes [15]. Thus the 

performance and stability of such a centralised control system can be affected by changes in the 

operation conditions of the structure (e.g. tensioning effects, temperature variations, etc.). Also 

failure of one control channel can disrupt the operation of the whole control system. 

The second multichannel control arrangement uses an equal number of sensors and actuators, 

which are arranged in pairs. Each sensor–actuator pair is treated as an independent control unit 

so that the error signal measured by one sensor is only used to drive the collocated actuator. The 

advantage of this decentralised control architecture is the simplicity of the control loops, which 

can be simple gains for ideal force actuators and velocity sensors, whose design does not rely on 

a model of the plant response [7, 16, 17]. Since such loops are unconditionally stable [18], the 

failure of one control unit has no effect on the stability of the other units. Thus decentralised 

control systems offer a more robust but less selective approach to control, which can be based 

on modular control units that are evenly scattered on the system to be controlled [17]. In fact a 

whole range of possible control architectures exist between the fully centralised and fully 

decentralised, which are often described as distributed [19].  

Conventional feedback design is usually based on the assumption of time-invariance, which 

means that the control system and the mechanism of generating the control signal have constant 

coefficients. In practice, however, systems parameters can change during time. The self-tuning 

controller philosophy takes into account process changes of the system with time by automatic 

adjustment‎ of‎ the‎ controller‟s‎ parameters to optimise the control performance. In self-tuning 

control, the adaptation mechanism often consists of identifying the system by measuring input 

and output data, compare the status of the system with the desired one and tuning the controller 

to achieve this condition [20]. This approach makes the system self-adaptable to a wide range of 

operating conditions and different configurations of the system under control. 
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An example could be an active control system for reducing the vibrations of an aircraft panel, to 

reduce the noise transmitted inside the cabin. The fuselage is excited by a broadband 

disturbance due to turbulent boundary layer or jet engines for example [13]. The pressurisation 

of the cabin during the flight can produce a change of the lower resonance frequencies of the 

panels by a factor of three [21]. A self-tuning controller can adapt to changes of the system 

under‎control,‎guaranteeing‎an‎optimal‎reduction‎of‎the‎panels‟‎vibration‎for‎different‎operating‎

conditions. Another advantage is that a generic control system could be used in the same 

configuration to control different structures (panel with different thickness for example) without 

requiring a redesign process. If a fully decentralised arrangement is used, global information on 

the response of system is not available at each independent control unit, and thus it is not 

possible to automatically tune the control units in such a way that overall vibration of a structure 

is minimised. In this thesis the possibility of self-tuning independent control units to obtain a 

global effect of minimising the spatially averaged vibration of a structure is investigated. 

1.5. Contributions of the thesis 

The novel contributions of this thesis are: 

 To demonstrate that for broadband excitation, tuning the damping of a dynamic 

vibration absorber to maximise its power absorption is exactly equivalent to tuning the 

damping to minimise the kinetic energy of a single degree of freedom host structure. 

 To propose a self-tuning strategy of decentralised velocity feedback loops based on the 

maximisation of the absorbed power, in which the tuning process only relies on the 

local feedback signal. 

 To assess the practical implementation of self-tuning decentralised velocity feedback 

control on a thin aluminium panel with multiple reactive actuators. 

 To investigate the maximisation of absorbed power as self-tuning strategy of 

decentralised velocity feedback loops using inertial actuators. 

 To provide a preliminary theoretical study to assess self-tuning broadband control of 

lightly damped structures using shunted electromagnetic inertial actuators. 

1.6. Structure of the thesis  

This thesis is organised in nine chapters. 

Chapter 1 provides a brief introduction on the motivations and technical background for 

passive, semi-active and active vibration control of mechanical systems. Also the original 

contributions of this research are summarised and the structure of this dissertation is outlined. 

Chapter 2 presents an analytical analysis of vibration control of lumped parameter systems 

subjected to a broadband disturbance and controlled by a tuneable damper. Two tuning 
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strategies are compared: the minimisation of the kinetic energy of the system and the 

maximisation of the power absorbed by the tuneable damper. Firstly, the simple case of a single 

degree of freedom system with a tuneable damper is considered. The analysis is then extended 

to a two degrees of freedom system consisting of two coupled oscillators. One of the two 

masses is subjected to a broadband disturbance and the vibration is controlled using a single end 

grounded damper acting on the other mass. An analytical expression of the optimal damping 

coefficient is found for the case where the two oscillators are connected by a spring and is 

presented in Appendix A. For the general case in which the two masses are connected by a 

spring and a damper, numerical simulations are carried out to compare the different tuning 

strategies. 

Chapter 3 considers the vibration control of distributed structures subjected to a broadband 

disturbance using decentralised velocity feedback loops consisting in ideal collocated sensor-

actuator pairs. This type of control approach corresponds on having a single end grounded 

damper attached to the structure at control positions. Different strategies of tuning the control 

gains of multiple feedback loops are compared. A self-tuning algorithm based on the 

maximisation of the individual power absorbed by each feedback loop is presented. The 

advantage of using the absorbed power as cost function to tune the control gain is that its 

estimation can be accomplished using the feedback signal only without requiring extra sensors 

to monitor the global response of the system. The formulation used to derive the mathematical 

model of lightly damped beams and panels controlled by a multichannel controller for 

deterministic and stochastic excitations is derived in Appendix B. 

Chapter 4 describes the experimental test rig built for the implementation of multichannel 

control of a clamped aluminium panel excited by a shaker fed with white noise. Nine control 

units are mounted on the panel each consisting in a voice coil actuator closely collocated with 

an accelerometer. Particular care is taken in the design of the controller in order to guarantee the 

stability of the control system for values of control gains higher than the one producing the 

transition in the control action between optimum damping and pinning of the structure. 

Simulations results of the closed loop response of the system based on measured open loop 

responses are presented in order to predict the performance of the control system. A complete 

set of measurement for nine single control channels of the measured open loop and simulated 

close loop responses is presented in Appendix C. 

Chapter 5 presents the experimental results for the implementation of the self-tuning control 

based of the maximisation of the power absorbed by the controller for single and two channels 

control system. The experimental results of the single channel control using one of the two 

control unit can be found in Appendix D.  
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Chapter 6 discusses simulations results of lightly damped panel controlled by a single velocity 

feedback loop which uses an inertial electromagnetic actuator when the structure is subject to a 

broadband disturbance. The need of using such inertial devices in vibration control arises from 

the fact that it is often not possible to use reactive actuator in practice, since there may be a solid 

structure to react the force against. It is illustrated that maximising the mechanical absorbed 

power provides a reasonable approximation to minimising the kinetic energy of the host 

structure. The problems arising from the instability caused by these devices are also discussed. 

The mechanical and electrical impedances of an inertial electromagnetic actuator are derived in 

Appendix E. 

Chapter 7 introduces the use of the dynamic vibration absorbers to control broadband 

vibration. The DVA is used here to control the vibration of a single degree of freedom system 

subject to broadband disturbance. The maximisation of the power absorbed by the DVA is 

compared to the minimisation of the kinetic energy of the host structure. The parameters 

involved in the optimisation are the frequency ratio of the natural frequencies of the decoupled 

SDOF systems and their damping ratios. It is demonstrated that the two tuning strategies are 

exactly the same. 

Chapter 8 presents preliminary studies of a self-tuning semi-active controller using 

electromechanical inertial actuator. The system consists of an electromechanical inertial 

actuator with an adaptable electrical shunt that acted as a passive damper and also as a source of 

electrical energy to drive the self-tuning circuit. 

Chapter 9 summarises the findings of this thesis and presents suggestions for further work. 

 



 

 

2. Comparison of tuning strategies for broadband 

control of lumped parameter systems 

In this chapter the broadband vibration control of lumped parameter systems using a tuneable 

damper is investigated. The aim is to compare two different control strategies: the minimisation 

of the total kinetic energy of the system and the maximisation of the total power absorbed by the 

tuneable damper. A single degree of freedom (SDOF) system excited by a broadband 

disturbance is initially considered. A two degree of freedom system is then considered, 

consisting of two coupled oscillators, one of which is subjected to a white noise disturbance and 

controlled by a tuneable damper acting on the other mass. Firstly, a simplified model is 

considered in which the two vibrating masses are connected by a spring. Secondly, a damper is 

added between the two masses. 

2.1. Broadband control of a single degree of freedom system 

In this section the broadband vibration control of a single degree of freedom system is 

considered. The system is composed by a vibrating mass m, a spring k and a viscous damper c 

as shown in Figure ‎2.1. The mechanical damping constant c can be varied.  

 

Figure ‎2.1: scheme of the single degree of freedom system with a tuneable damper.  

The mass is excited by a white noise external force fp. The equation of motion of the system can 

be written as: 

  ̈      ̇                
(‎2.1) 

where      is the displacement of the mass. The steady-state response of the oscillator is 

expressed assuming time-harmonic excitation for the time being of the form              

where   is the angular frequency and   √  . For brevity the time harmonic term          

will be omitted in the formulation which will be given in complex form. Therefore the time 
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harmonic displacement          ̃              and the force           ̃               

will be replaced by the frequency dependent complex displacement and the force phasors  ̃ and 

 ̃ . Throughout the thesis ~ will be used to identify complex, frequency-dependant functions. 

The displacement  ̃ is then given by: 

 ̃  
 ̃ 

          
 (‎2.2) 

Deriving equation (‎2.2) the velocity of the mass per unit input force can be written as: 

 ̃  
 ̃

 ̃ 
 

  

          
 

 (‎2.3) 

Assuming that the excitation force  ̃  is random with a power spectral density, PSD, of       

(with the unit of N
2
s/rad) the PSD of the kinetic energy of the moving mass is given by:  

      
 

 
 | ̃|

 
      (‎2.4) 

and substituting equation (‎2.3) in (‎2.4) yields: 

      
 

 
 |

  

          
|
 

     (‎2.5) 

where       is now assumed to be a constant,   , independent of frequency, corresponding to 

white noise force excitation. If the aim of the tuneable damper is to minimise the integral of the 

kinetic energy of the mass m for frequencies between   , so that the quantity to be minimised 

is given by: 

   ∫        
 

  

 
(‎2.6) 

Substituting equation (‎2.5) in (‎2.6) and using the integral tables given in reference [22] KE is 

given by: 

    
 

  
   (‎2.7) 

Figure ‎2.2 shows the total kinetic energy as function of the damping constant c. It is interesting 

to notice that the total kinetic energy of the mass does not depend on the value of m. As 

expected the total kinetic energy of the mass decreases as the mechanical damping increases. 
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Figure ‎2.2: Total kinetic energy of the vibrating mass as function of the mechanical damping c. 

For c equal zero the total kinetic energy tends to infinity since the system is undamped. For very 

high values of the control gain the effect of the controller is to stop the vibration of the mass so 

that its total kinetic energy tends to zero. This means that the overall response of the system is 

minimised when the value of c tends to infinity. 

An alternative strategy of tuning the damper to obtain broadband control of the mass m is to 

maximise the power absorbed by the tuneable damper given by: 

      
 

 
  { ̃

 

 
 ̃} 

(‎2.8) 

where 
*
 denotes the conjugate value of a complex number and  ̃  is the force produced by the 

damper given by: 

 ̃    ̃ (‎2.9) 

Substituting equation (‎2.9) in (‎2.8) and assuming the primary disturbance to have a constant 

spectrum equal to unity, the PSD of the absorbed power is given by: 

      
 

 
 | ̃|    (‎2.10) 

If the aim of the tuneable damper is to maximise the integral of the absorbed power between 

  , the quantity to be maximised is equal to: 

  ∫        
 

  

 
(‎2.11) 

Substituting equation (‎2.10) in (‎2.11) and using the integral tables given in reference [22] P is 

given by: 
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   (‎2.12) 

Equation (‎2.12) shows that for this simple system the absorbed power does not depend on the 

value of the mechanical damping c and so this cannot be used as strategy of tuning the damping 

in the system. In this case the mathematical solution seems to be in contrast with the physical 

explanation, that if c tends to infinity the velocity of the mass tends to zero and no power should 

be dissipated by the damper. If the power absorbed is numerically integrated over a finite 

frequency band, P can be expressed as: 

  
 

 
   ∫ | ̃|   

    

 

    ∑| ̃|    

 

   

 
(‎2.13) 

where     is the sampling circular frequency and      is the maximum frequency considered. 

The integration band can include only positive frequency value because  ̃      ̃    . 

Figure ‎2.3 shows the power absorbed integrated between 1 Hz-1 kHz (solid line), between 1 Hz-

10 kHz (dashed line), 1 Hz-100 kHz (dotted line) and 0-infinity when m is 1 Kg and k is 40 

N/m. The power absorbed is equal to        for low values of c. The plot also shows that for 

high value of c the absorbed power tends to zero if the integration frequency band is finite and it 

goes more rapidly to zero for smaller integration frequency bands.   

 

Figure ‎2.3: power absorbed by the damper as function of the mechanical damping c integrated between 0-

1kHz (solid line), 0-10 kHz (dashed line), 0-100 kHz (dotted line) and 0-infinity (faint line). 

The paradox between the mathematical and physically intuitive result is thus due to the infinite 

bandwidth assumed for the PSD of the applied force. This makes the single degree of freedom 

system a poor choice of model problem in this case. 
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2.2. Broadband control of a two degrees of freedom system 

In this section the broadband control of the two degrees of freedom system shown in Figure ‎2.4 

is analysed. The scheme shows a system comprising two coupled oscillators where m1,2 are the 

masses, k1,2,3 the stiffness of the springs and c1,2,3 are the damping constants. The external force 

fp is applied on mass 1. 

 

Figure ‎2.4: Two degrees of freedom system excited by a force fp. 

The equation of motion of the system shown in Figure ‎2.4 can be written in the matrix form as: 

  ̈      ̇                  
(‎2.14) 

Where M is the mass matrix, K is the stiffness matrix and C is the damping matrix 

given by: 

  [
   
   

],    [
        

        
],    *

        

        
+,    

(‎2.15) 

                 
  is the column vector containing the displacements of the two 

masses x1 and x2 and               is the column vector of primary excitation. 

Assuming the excitation to be harmonic for the time being and expressing the force 

and the steady-state response in exponential form, equation (‎2.14) becomes: 

 ̃ ̃   ̃   
(‎2.16) 

where  

 ̃               
(‎2.17) 

is the dynamic stiffness matrix. The solution of equation (‎2.16) can be obtained as: 

 ̃   ̃   ̃ 
(‎2.18) 

Integrating equation (‎2.18) to obtain the velocities yields: 

 ̃   ̃ ̃ 
(‎2.19) 
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where  ̃      ̃ and  ̃      ̃    is the mobility matrix. Using the expression of M, K 

and C of equations (‎2.15) the velocities per unit input force of the two masses are 

given by: 

 ̃   
        

 
                

                                 

 

 

 ̃   
        

 
                

                                 

 

 

(‎2.20) 

 

(‎2.21) 

where  

                  

                                 

                                      

                       

        

     

         

         

      

 

     

      

      

     

 

Two different configurations of the two degrees of freedom system of Figure ‎2.4 are considered 

in this section. In the first configuration the damper c2 is assumed to be zero, while in the second 

configuration all the parameters are different from zero. In both configurations the primary 

force, which is assumed to be white noise with a PSD of unity at all frequencies and the 

tuneable damper is the damper c3. Table ‎2.1 shows a summary of all the optimisation 

implemented on different configurations with the respective sections. 
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Table ‎2.1: summary of the different configurations of the two degrees of freedom considered in this 

section 

N. System’s 

Configurations 

Scheme Optimisation Subsection 

1. 

 

Two DOF system 

controlled by a 

grounded damper 
 

Minimisation of 

kinetic energy of 

m1 

2.2.1 

Maximisation of 

power absorbed 

by c3 

2. 

 

Case of a general two 

DOF system 

controlled by a 

grounded damper  

Minimisation of 

kinetic energy of 

m1 

2.2.2 

Minimisation of 

kinetic energy of 

the entire system 

Maximisation of 

power absorbed 

by c3 

2.2.1. Case of a simplify two DOF system controlled by a grounded damper 

The simplified two degrees of freedom system shown in Figure ‎2.5 is considered in 

this subsection.  

 

Figure ‎2.5: Two DOF system controlled by a single end grounded damper and c2=0 

For this configuration, with white noise force excitation, the    frequency integrated 

power input,    , to the system is independent of c3 [23]. The balance between the 

power input and out to the system is thus equal to:  

                
(‎2.22) 

where       is the power dissipated by damper 1 and       is the power dissipated by 

damper 3. Differentiating equation (‎2.22) with respect of c3 yields: 
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(‎2.23) 

The PSD of the power absorbed by the damper 1 is given by: 

       
 

 
  { ̃ 

  ̃ } (‎2.24) 

where  ̃
 
 is the force produced by the damper 1 given by: 

 ̃
 

    ̃  
(‎2.25) 

Substituting equation (‎2.25) in (‎2.24) and assuming white noise excitation, the PSD of 

the power absorbed by damper 1 can be written as: 

       
 

 
  | ̃  

|        
(‎2.26) 

and the PSD of the kinetic energy of mass 1 is given by: 

       
 

 
  | ̃  

|        
(‎2.27) 

where       is the PSD of the excitation force  ̃   From equations (‎2.26) and (‎2.27), 

the frequency averaged power absorbed by damper 1 and the total kinetic energy of 

mass m1 are given by: 

      
 

 
  ∫ | ̃  |

 
  

  

   

 

    
 

 
  ∫ | ̃  |

 
  

  

   

(‎2.28) 

 

 

 

(‎2.29) 

where       is now assumed to be unity. Equations (‎2.28) and (‎2.29) indicate that the 

power absorbed by damper 1 is proportional to the kinetic energy of mass 1 and thus 

also the derivative with respect of c3 of equation (‎2.28) is proportional to the 

derivative with the respect of c3 of the kinetic energy of mass 1. Thus equation (‎2.23) 

yields to 

      

   

  
    

   

 
(‎2.30) 

Equation (‎2.30) shows that setting the value of c3 to maximise the power dissipated by 

the damper 3, corresponds to minimise the kinetic energy of the mass m1.  
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Figure ‎2.6:    frequency integrated (a) kinetic energy of a two DOF system consisting in two coupled 

oscillators connected by a spring and (b) power absorbed by damper 3 as function of the mechanical 

damping c3. 

Figure ‎2.6(a) and (b) shows the simulated    frequency integrated kinetic energy of 

the system and power absorbed by the damper 3 as function of the mechanical 

damping c3. The parameters used in these simulations are listed in Table ‎2.2. The 

kinetic energy of the mass m1 is minimised for the same value of c3 (1.27 Ns/m) that 

maximises the power absorbed by damper 3. Analytical expressions for the optimal 

damping c3 are derived in Appendix A in the case of c2 and k3 equal zero. 

Table ‎2.2: physical parameters of the two degrees of freedom system 

     Kg 

       Kg 

       N/m 

     N/m 

       N/m 

        Ns/m 

     Ns/m 
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2.2.2.  Case of a general two DOF system controlled by a grounded damper 

The two degrees of freedom system considered in this subsection is shown in Figure ‎2.7. The 

integral of the total kinetic energy of the mass m1, the total kinetic energy of the entire system 

and the power absorbed by the tuneable damper are compared as tuning strategy of the 

mechanical damping c3. 

 

Figure ‎2.7: general two degrees of freedom system controlled by a single end grounded damper. 

Assuming the excitation being white noise, the kinetic energy of mass two, KE2 is given by: 

    
 

 
  ∫ | ̃  |

 
  

  

   
(‎2.31) 

In this general case the frequency integrated power input is not constant, therefore it is not 

guaranteed that the maximisation of the power absorbed correspond to the minimisation of the 

kinetic energy of the mass m1. Substituting the expression of the mobilities given in equations 

(‎2.20) and (‎2.21), when all the parameter of the system are different from zero, in equation 

(‎2.28), (‎2.29) and (‎2.31), KE1, KE2 and       can be written as: 

   

 

           
                         

(                             )           
              

                                                              

                                                 

   (                             )
 
     

(              )(                   )
 
 

                     

                               

                                      

 
(‎2.32) 
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(‎2.33) 

 

      

        
                                

   
                        

   (                             )
 
     

(              )(                   )
 
 

                     

                               

                                      

 

(‎2.34) 

The total kinetic energy of the system is given by the sum of the individual kinetic energy of the 

two masses leading to: 

  

 

           
                                                          

         
                    

                                 

  
                                                                 

                                                                      

   (                             )
 
    

 (                             )

                                    

                                                           
   

 

(‎2.35) 

Because of the complexity of these expressions it has not been possible to find analytical 

solutions for the various optimisations but to gain a better understanding of the physical 

behaviour of the system a specific case has been taken into account. The physical parameter of 

the system are summarised in Table ‎2.3. 

Table ‎2.3: physical parameters of the two degrees of freedom system 

     Kg 

       Kg 

       N/m 

     N/m 

       N/m 

        Ns/m 

        Ns/m 
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Figure ‎2.8 shows the PSD of the kinetic energy of the system for different values of c3. When c3 

is equal zero the response is characterised by two resonances (solid line). When c3 is increased 

the two resonances are gradually damped. The dashed and dash-dotted line in Figure ‎2.8 

represent the response of the system when the total kinetic energy is minimised and when the 

power absorbed by the tuneable damper is maximised respectively, while the dotted line shows 

the response when only the kinetic energy of the mass m1 is minimised. The plot shows that 

there is no much difference in the three optimisations in term of the total response of the system. 

For very high values of c3 the response is characterised by a single resonance. In this case the 

effect of the damper is to pin the mass m1 so that the system behaves like a single degree of 

freedom system.  

 

Figure ‎2.8: PSD of the total kinetic energy of the system when: c3=0 (solid line), KE in minimised 

(dashed line), Pabs3 is maximised (dash-dotted line), KE1 in minimised (dotted line) and c3=1000 Ns/m 

(faint line) 

 

Figure ‎2.9: total kinetic energy of the system (solid line) and kinetic energy of the mass m1 as function of 

the mechanical damping c3. 
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Figure ‎2.9 shows the total kinetic energy of the system (solid line) and the kinetic energy of the 

mass 1 (dashed line) normalised to the value of the kinetic energy for c3 equal zero as function 

of c3. The plot shows that both curves decrease when c3 is increased until they reach a minimum 

and start to increase again when c3 is further increased. The two curves are minimised for about 

the same value of c3. 

 

Figure ‎2.10: Total power absorbed by the tuneable damper as function of the mechanical damping c3. 

Figure ‎2.10 shows the power absorbed by the damper 3 as function of the mechanical damping 

c3. The plot shows that the power absorbed is zero when c3 is zero and increases when c3 is 

increased until it reaches a maximum. For very high values of c3 the power tends to zero. In this 

case the effect of the damper is to pin the second mass such that its velocity goes to zero and no 

power is absorbed. The maximum of the power absorbed by the tuneable damper roughly 

corresponds to the minimum of the total kinetic energy of the system and the kinetic energy of 

the mass m1.  

Table ‎2.4: optimal values of c3 and the corresponding attenuation in the total kinetic energy of the system. 

 Optimal values of c3 (Ns/m) Attenuation in the total kinetic energy 

of the system (KE) in dB 

Minimising KE 1.556 -13.1 

Maximising Pabs3 1.010 -12.7 

Minimising KE1 1.313 -13.0 

 

A summary of the optimal damping values together with the corresponding attenuation in the 

total kinetic energy of the system in dB are summarised in Table ‎2.4. Although the optimum 

values of c3 are slightly different, the attenuation in the total kinetic energy of the system is only 
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0.1 dB higher when the kinetic energy of the mass m1 is minimised and about 0.4 dB higher 

when the absorbed power is maximised. In the case of a general two degree of freedom system 

the maximisation of power absorbed as strategy of tuning a single-end grounded damper seems 

to be a good approximation for the minimisation of the kinetic energy of the entire system. 

2.3. Summary and Conclusions 

This chapter has presented a theoretical study of broadband vibration control of lumped 

parameter systems. Two control strategies have been compared: the minimisation of the total 

kinetic energy of the system under control and the maximisation of the power absorbed by a 

tuneable damper integrated over    frequency band. For a single degree of freedom system 

with a tuneable damper, the kinetic energy of the mass monotonically decreases when the 

damping increases, while the power absorbed by the damper tends to a finite value when the 

damping tends to infinity. This is in contrast with the more intuitive and physical explanation of 

zero absorbed power when the motion of the mass is constrained by the very high value of 

damping. This is due to the infinite bandwidth assumed for the PSD of the applied force, which 

makes the single degree of freedom system a poor choice of model problem in this case. 

A two degree of freedom system has also been considered, consisting of two coupled 

oscillators, one of which is subjected by a white noise disturbance and which is controlled by a 

tuneable damper acting on the other mass. A simplified model in which the two oscillators are 

connected by a spring has been analysed first. In this case it has been demonstrated that the 

maximisation of the power absorbed by the tuneable damper corresponds exactly with the 

minimisation of the kinetic energy of the excited mass.  

Finally a general two degree of freedom system in which the two masses are connected by a 

spring and a damper has been analysed. In this case no analytical expression of the optimal 

damping have been found but numerical simulation have shown that the values of damping that 

minimises the kinetic energy of the entire system, are very similar to those that minimises the 

kinetic energy of the excited mass and that maximises the power absorbed by the damper. In the 

next chapter the analysis will be extended to distributed multi-degree of freedom systems. 

 



 

 

3. Tuning strategies of decentralised velocity 

feedbacks for broadband control of distributed 

structures 

This chapter considers various tuning strategies for feedback control on distributed structures 

such as beams and panels. A model is first introduced for lightly damped flexible structures 

excited by a primary disturbance and controlled by multichannel decentralised velocity 

feedback loops. Different control strategies of tuning the control gains of each independent 

feedback loop are implemented with the aim of obtaining broadband control. The first strategy 

considered tunes the feedback control gains in order to minimise the frequency-averaged total 

kinetic energy of the structure. The overall kinetic energy is a global property, however, and its 

measurement would require a dense array of sensors over the whole structure. Tuning the 

feedback gains on this criterion thus defeats the idea of having entirely locally-acting control 

loops. A parameter that can be measured entirely locally, however, is the mechanical power 

absorbed by the control loop. The background in using the absorbed power as a tuning strategy 

is reviewed in the first section. In this application the force is generated by the ideal actuator and 

is made proportional to the measured velocity. The absorbed power can thus be readily 

estimated from the mean square value of the measured velocity and the feedback gain, thus 

providing a simple measurement of an entirely local parameter that could be used to tune the 

gains. These two tuning methods are compared when the structure is subject to broadband, 

narrow band and single frequency disturbance. 

A third tuning strategy considered is the maximisation of the control stability, which sets the 

control gains to maximise the damping ratio of a selected mode of the vibrating structure. In the 

last part of this chapter the performance of three tuning strategies are compered in controlling 

structural vibration of both a panel and a cantilever beam. 

3.1. Background in self-tuning control using power absorption  

In the last few years there has been much interest in developing strategies of self-tuning 

decentralised feedback loops. 

Elliott et al. [24] used a model of a thin aluminium plate controlled by an array of 4x4 direct 

velocity feedback loops to study the performance of the controller. The feedback gains were set 

to constant equal values while the total kinetic energy of the plate was monitored. It was found 

that as the control gain increases the total kinetic energy is attenuated providing active damping 

on the excited modes. As the control gain becomes very large, the action of the feedback loops 
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is to pin the plate at the control positions, so that the structure has a new set of lightly damped 

modes. As result the kinetic energy of the plate started to rise again as the feedback gain is 

increased. 

Another important finding of Elliott et al. [24] was that the optimum gain is approximately 

equal to the mobility of the infinite structure. It is interesting to note that this is a real, frequency 

independent quantity for a plate, but for a beam, it is frequency dependent and has real and 

imaginary components [25]. On the basis of this idea Engels et al. [26] estimated the optimum 

gain value from the frequency average of the real part of the control point mobility to self-tune 

the gain of the feedback control loop.  

However, in a totally decentralized architecture the optimum gain cannot be deduced from 

global quantity such as, for example, the total kinetic energy of the plate. Another proposed 

strategy to tune the gains of decentralized feedback loops is the maximisation of the power 

absorbed by the control system. The power absorbed is a local quantity since is calculated on 

the base of the velocity at control position, measured by the error sensor, and the actuation 

force. 

Experiments on active control of flexural wave power flow in structures were carried out by 

Redman - White et al. [27] who investigated active methods for reducing the magnitude of the 

vibrational power flow associated with the propagation of flexural waves in a beam. The two 

ends of the beam were terminated in sand boxes, which absorbed the vibrations, in order to 

simulate an infinite structure by avoiding reflection effects at the two ends of the beam. The 

beam was excited by a single frequency primary source located in the centre of the beam and 

controlled by a pair of closely spaced secondary control forces placed halfway between the 

primary excitation and the termination of a beam. The single frequency excitation signal was 

used as a reference for the secondary control sources in a feedforward control arrangement. The 

goal of the control system was to reduce the power flowing from the primary excitation into the 

section between the secondary source and the end of the beam. 36 dB of reduction in the power 

flowing between the control source and the end of the beam was achieved by maximising the 

power absorbed by the controller. This had the effect of simulating a perfectly absorbing 

termination such that the total power flowing downstream from the secondary source is 

controlled, while the power flowing from the primary source remains substantially unchanged. 

Guicking et al. [28] used an analog feedback using an accelerometer and an 

electromagnetic shaker to control the vibration of a cantilever beam. The clamped edge of the 

beam included an absorbing material to reduce reflections simulating a semi-infinite structure. 

The aim of the analog controller was to maximise the absorbed power when the structure is 

excited at a single frequency by matching the control point structural impedance. The secondary 

source was placed at the free edge of the beam and was able to absorb all the power flowing 
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from the primary source, avoiding reflections. The power was estimated by measuring both the 

velocity at the control position and the control force.  

Bardou et al. [29] further developed this approach by considering the two-dimensional 

vibration field on a plate using feedforward control. They compared two active control 

strategies in order to reduce the vibration of an infinite and a finite plate. The aim of the first 

one was to minimize the total power supplied to a plate while the aim of the second was to 

maximize the power absorbed by the secondary source. The work was focussed in the 

understanding of the physical limitations of using the two different strategies at single 

frequencies. A model of a plate excited by an array of single frequency primary forces and 

moments and controlled by an array of secondary forces and moments was considered. A 

general method was used for the calculation of the effect of minimizing the total power into the 

plate and the analytic results were obtained for different configurations of primary and 

secondary sources using combinations of moments and forces. In general the strategy where the 

total power produced by the primary and secondary sources is minimised provided the best 

control results. The other strategy where the power absorbed by the secondary sources is 

maximised produces rather different results for single frequency control, since the action of the 

control source tends to enhance the power input by the primary source and thus the total power 

in the structure tends to increase rather than decrease. 

Hirami [30] used the maximization of power absorbed to actively control the vibration of 

finite structure. The first analysis was conducted on a single degree of freedom (SDOF) mass-

spring-damping excited by a harmonic force. The vibration of the system was controlled using a 

velocity feedback loop with a complex control gain. It was shown that, in this case, the 

condition of maximum power absorption is not the same as that of the minimization of energy. 

For a real control feedback gain, it was shown that by maximizing the absorbed power the 

control gain converges to the magnitude of the mechanical input impedance of the system but 

the energy of the system is not minimized. The second example considered by Hirami [30] was 

a finite string in a steady state vibration condition when excited by a harmonic displacement at 

one end and controlled by a transversal force at the other end. The control force was set to be 

equal to the product of the velocity at that point and complex control function. The condition of 

maximum power absorption again tends to increase the total energy in the string, as it was found 

for SDOF system. Some attenuation was achieved when the excitation is close to a resonance 

frequency of the string. However, Hirami [30] showed that if the string is semi-infinite and the 

controller is placed at the end of it, the implementation of maximum power absorption is 

identical‎to‎adjust‎the‎control‎gain‎to‎equal‎the‎system‟s‎infinite‎impedance,‎avoiding‎reflection‎

from the control end, as already found by other authors. In the case of a finite string excited at 

its resonance frequency, if the control gain is increased the energy of the system increases as 
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soon as the primary source is subjected to reflected wave. Instead, when the control gain is set 

on the value that absorbs as much power as possible from the incident wave, the energy of the 

system results bounded. In practice, the best performance in the control of a finite system 

excited at a single frequency excitation appears to be achieved when the control gain is set on 

the optimum value of power absorption estimated for the infinite system. Since the power 

absorbed is a local quantity, an algorithm that self-tune the control feedback gain can be used to 

make the system adaptive. Experiments in this direction have been carried out by Hirami [31]. 

The control system undertakes two tasks at the same time. One is the measurement of the power 

absorbed by the controller using both, a force and velocity sensor and the other is to feed back 

the velocity signal to the actuator with a certain gain. The controller proposed used a gradient 

based algorithm that converges to the optimal feedback gain, which maximises the measured 

absorbed power. The algorithm was designed to adapt in a short time before the reflected wave 

reached the controller. The power absorbed is estimated by measuring both the control force and 

the velocity at control position. Experiments were carried out by Hirami [31] on a string excited 

at resonance and controlled by a shaker. The initial vibration level is reduced by 15dB after 

placement of the shaker which changes the modal response of the string and introduces passive 

damping. The active control produces a further 10 dB reduction. It was found that the optimum 

gain increases with the frequency and the peak of power absorbed becomes smoother. Also in 

the case of broadband excitation when a wide range of frequencies are excited, the algorithm 

converges to the optimal value of gain that maximise the power absorbed, giving good results.  

Sharp et al. [32] presented a method of reducing the sound power radiated by a vibrating 

structure using a feedback control system based on optimal power absorption, focusing on 

broadband frequency excitation. The optimal controller provides a casually constrained 

impedance match between the control system and structure, maximising the power flow 

between two systems. The structure used in this study was a simply supported beam. This 

control method gave a reduction of radiated sound power at all resonance frequency of the 

beam. The total kinetic energy of the beam was also reduced, demonstrating that the control 

system does not reduce only the vibration at control position but provide global vibration 

attenuation.  

Sharp et al. [32] also investigated the conditions under which the maximization of power 

absorption could lead to an increase in the energy in the system. The occurrence of this 

phenomenon is due to the secondary source driving the primary source to generate additional 

power in order to achieve greater power dissipation. Sharp et al. [32] however argues that as the 

predictability of the disturbance decreases, as the excitation bandwidth increases, it becomes 

less likely that the secondary source will influence the primary source and increase the total 

power input. 
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3.2. Broadband vibration control of a panel 

In this section the model of a simply supported panel subject to an external primary excitation is 

used to predict the structural response when controlled by direct velocity feedback loops. 

Different types of excitations are considered. The first one is a white noise force acting at a 

point of the panel. In this case the relative distance between the control location and the point of 

the application of the primary force will influence the performance of the controller. To 

overcome‎this‎effect,‎„rain-on-the-roof”‎primary‎excitation,‎consisting‎of‎a‎random‎distribution‎

of pressure in time and space, is considered. The effect of more than one channel control system 

is considered and in the last subsection the implementation of a self-tuning algorithm to 

maximise the power absorbed by each control loop is discussed. 

3.2.1. Fixed gain for broad frequency band control 

In this section, the implementation of a single direct velocity feedback control loop on a simply 

supported panel is considered. The feedback gain is fixed at a single, frequency independent, 

value. The feedback loop uses an ideal velocity sensor collocated with an ideal point force 

actuator. Since the sensor and actuator pair is dual and collocated the velocity feedback loop is 

unconditionally stable [18]. 

As shown in Figure ‎3.1, the origin O of the Cartesian co-ordinate system of reference (O, x, y, z) 

is assumed to be located at the top left corner of the panel with the z axis orthogonal to the 

surface of the panel. 

The primary harmonic force fp, which excited the panel, is located at point of coordinate (xp, yp), 

while the control force fc,  is located at point of coordinate (x1, y1). The geometric and physical 

parameters of the panel are summarized in Table ‎3.1 and the modal response of the panel is 

derived in Appendix B. 

 

Figure ‎3.1: Schema of simply supported panel excited by a primary force pf  with a collocated ideal 

velocity sensor and force actuator feedback control system. 
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Table ‎3.1: Geometric and physical parameters for the panel 

Parameter Value 

Dimensions lx× ly =0.414×0.314 m
2
 

Thickness h=0.001 m 

Position of the primary excitation (xp, yp)= (0.6 lx , 0.4 ly) 

Position of the control point (x1, y1)= (0.3 lx , 0.7 ly )
 

Mass density   2700 kg/m
3 

Young‟s‎modulus   7×10
10

 N/m
2 

Poisson ratio         

Loss factor      

 

Figure ‎3.2 shows the total flexural kinetic energy in the 10 Hz-1 kHz frequency range with no 

control (thick line) when the optimal control gain (     dB) that minimises the kinetic energy 

averaged between 1 Hz and 1000 Hz (dashed line) and when very high control gain (dotted line) 

are implemented. Figure ‎3.3 shows the normalised
†
 total flexural kinetic energy integrated 

between 10 Hz and 1kHz, for a range control gains between -25 dB and 100 dB (relative to 1 

Nsm
-1

 i.e. between 10
-1.5

 and 10
5
 Nsm

-1
). Figure ‎3.2 shows that for a moderate gain,  , the 

feedback loop effectively reduces the response at resonance frequencies. However, when a large 

feedback gain is implemented the response of the plate is no longer actively damped, but is 

characterised by a shifted set of resonances [33-35] due to the pinning of the structure at the 

control point. 

                                                      

† Normalized to the total kinetic energy when the feedback control loop is left open 
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Figure ‎3.2: PSD of the total flexural kinetic energy of the panel when it is excited by a unit primary force 

and the control gains of the feedback control system using a force actuator are set to be 0 Nsm-1 (solid line) 

36 Nsm-1 (dashed line) and 105 Nsm-1 (dotted line). 

As Figure ‎3.3 shows, there is an optimal value of the gain, between these two extremes, that 

reduces the kinetic energy substantially. 

 

Figure ‎3.3: averaged PSD of total kinetic energy in the frequency range 0-1 KHz of the panel with and 

without feedback control plotted against the control gain. The total kinetic energy is minimised for 

     Nms-1. 

The velocity feedback control loop with a collocated velocity sensor and force actuator pair 

provides sky-hook active damping, which absorbs power from the structure under control. Thus, 

it would be interesting to consider the optimal value of the control gain which maximises the 

power absorbed by the velocity feedback control loop and then to contrast the reduction of total 

flexural energy it produces with reference to the optimal case described above.  The PSD of the 

power absorbed by the feedback loop is given by: 
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    ̃  ̃ 

  . 
(‎3.1) 

Since the control force is proportional to the control velocity via the control gain  , the power 

absorbed can be written as: 

      
 

 
 | ̃ |

 . 
(‎3.2) 

An advantage of this strategy is that the power absorbed is a local quantity because, as shown 

by equation (‎3.2), it only depends on the control gain and the mean squared value of the velocity 

at control position and thus it would be rather easy to implement a control algorithm that sets 

the optimal gain that maximises the power absorbed by the controller. 

 

Figure ‎3.4: PSD of the power absorbed by the control feedback loop when it is excited by a unit primary 

force and the control gains of the feedback control system using a force actuator are set to be 0.001 Nsm-1 

(solid line) 36 Nsm-1 (dashed line) and 105 Nsm-1 (dotted line). 

Figure ‎3.4 shows the spectrum of the power absorbed by the control loop for three control gains. 

The thick line provides a benchmark reference of the power absorption produced by a very 

small gain of 0.001 Nsm
-1

. The dashed and dotted lines show the power absorbed when control 

gains are implemented that produce the spectra in Figure ‎3.2, plotted with the corresponding 

type of lines. 
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Figure ‎3.5: PSD of power absorbed averaged in the frequency range 1-0 kHz by the feedback control loop 

plotted against the control gain. The power absorbed is maximised for      Nsm-1. 

Figure ‎3.5 shows the total power absorbed, integrated between 10 and 1000 Hz, for a range 

control gains between -25 and 100 dB. Comparing Figure ‎3.3 and Figure ‎3.5 it is found that the 

maximum power absorbed by the control unit is produced by a similar gain that minimises the 

total kinetic energy of the plate. Thus the plots show a very interesting result: the control 

performance produced when the average power absorbed by the feedback loop is maximised is 

about the same as the one obtained minimising the averaged kinetic energy of the system. In 

other words, if a frequency-independent control gain is implemented, then the response of the 

panel is approximately minimised over a broad-frequency band when the control loop is set to 

maximise the power it absorbs.  

It also interesting to notice that the impedance of an infinite panel of the same thickness is about 

33.8 Nsm
-1

 which is approximately the same gain that minimises the total kinetic energy of the 

panel as shown in reference [24].  

The plots in Figure ‎3.6(a) and (b) show the normalised total kinetic energy and the total power 

absorbed by the feedback control loop integrated between 1 Hz and 1 kHz as function of the 

control gain when the controller is placed near the primary excitation. From these plots, it can 

be noted that if the distance between the control and the primary excitation points is reduced, 

the optimum value of control gain, which minimises the total kinetic energy, increases and 

produces‎much‎higher‎reduction‎in‎terms‎of‎the‎panel‟s‎response (about 16.5 dB).  
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Figure ‎3.6: Total kinetic energy and total power absorbed plotted against the control gain when the 

primary force is acted on (0.6lx,0.4ly) and the control point is a) (0.58lx,0.41ly). Total kinetic energy is 

minimised for       Nsm-1 and the total power absorbed is maximise for      Nsm-1. 

Figure ‎3.6(a) shows that when the control gain is greater than the optimal value, the total kinetic 

energy of the panel is about the same as that for the optimal control gain. This is due to the fact 

that as the control loop gets closer to the primary excitation, the best way to reduce the overall 

vibration of the plate is by pinning the excitation point so that very little residual vibration is 

allowed at the excitation point and thus very little energy is injected by the primary force to the 

plate. If, in an ideal condition, the control point and primary force are assumed to be at the same 

position on the plate, the optimum gain, which minimises the total kinetic energy, would tend to 

infinity, since the velocity at the control position would tend to zero. Thus no energy would be 

input to the plate and the total energy of the plate would go to zero. 

Comparing Figure ‎3.6(b) with Figure ‎3.5, the value of the control gain which maximises the 

power absorbed decreases when the distance between the primary force and control point is 

reduced. But, if the control system is tuned with the value of gain that maximises the power 

absorbed it still gives about 11 dB of reduction in terms of the total kinetic energy of the panel. 

This result demonstrates that the maximisation of the absorbed power gives acceptable level of 

performance even in the case where the primary and control points are close to each other, but 
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the difference in optimised gains larger as the control point approaches the single excitation 

point in this case. 

To make the control system insensitive to the distance between the primary and secondary 

force, a random distribution‎of‎pressure‎(i.e.‎„rain-on-the-roof‟)‎acting‎on‎the‎panel‟s‎surface‎has‎

been considered. The primary forces are spatially uncorrelated and have a power spectrum 

density that is constant in frequency (white noise) and in space (uniformity). The formulation 

for‎ multichannel‎ control‎ of‎ a‎ panel‎ subject‎ to‎ „rain-on-the-roof‟‎ excitation‎ is‎ derived‎ in‎

Appendix B. Figure ‎3.7 shows a scheme of the simply supported panel. The geometric and 

physical parameters for the plate and the position of the control point are summarized in 

Table ‎3.1. 

 

Figure ‎3.7: Schema of‎the‎simply‎supported‎plate‎subject‎to‎a‎random‎excitation‎”rain-on-the-roof”‎with‎a‎

collocated ideal velocity sensor and force actuator feedback control system. 

Figure ‎3.8 shows the PSD of the kinetic energy of the panel without control  (solid line) and 

when the frequency independent gain of the control loop is increased from a very small value  to 

higher values (dashed line,  faint line and dotted line, respectively). As already seen in the case 

of point force excitation, for small gains, the control loop produces active damping which 

reduces the response of the plate up to the third resonance frequency at about 120 Hz. The 

dashed line represents the response of the panel for the control gain that minimises the 

frequency averaged response of the panel. If the control gain exceeds this value, the response of 

the panel increases again, at other frequencies, eventually creating a new set of resonance 

frequencies due to active pinning [33-35].  
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Figure ‎3.8: PSD of the flexural kinetic energy of the plate when it is subject to a random excitation and 

the control gains of the feedback control system using a force actuator are set to be 0 Nsm-1 (solid line) 38 

Nsm-1 (dashed line) and 106 Nsm-1 (dotted line). 

 

Figure ‎3.9: PSD of the power absorbed by the control feedback loop when the plate is subjected to a 

broadband random excitation and the control gains of the feedback control system using a force actuator 

are set to be 0.001 Nsm-1 (solid line) 38 Nsm-1 (dashed line) and 105 Nsm-1 (dotted line). 

Figure ‎3.9 shows the PSD of power absorbed by the feedback loop when the control gain   is 

increased. The solid line provides a benchmark reference of the power absorbed for a very low 

value of feedback gain (0.001 Nsm
-1

). When the control gain is increased with the same values 

considered in Figure ‎3.8, the spectrum of the power absorbed increases until an optimum value 

of control gain (dashed line) is reached.  

When the gain is further increased, the power absorbed decreases again as the new set of 

resonances emerge (dotted line). This interesting result suggests that a good level of 

performance can be achieved by maximising the total power absorbed by the feedback loop over 

a wide frequency band.  
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Figure ‎3.10: PSD of average total kinetic energy in the frequency range 1Hk-1 KHz of the plate plotted 

against the control gain. The total kinetic energy in minimised for      Nsm-1. 

 

Figure ‎3.11: PSD of power absorbed in the frequency range 1Hk-1kHz by the feedback control loop 

plotted against the control gain. The total power absorbed is maximised for      Nsm-1. 

This observation is confirmed by the plots in Figure ‎3.10 and 11, which show the 1 Hz to 1 kHz 

frequency-integrated PSD of the total kinetic energy, normalised to the reference level without 

control, and the 1 Hz to 1 kHz frequency-integrated PSD of the total power absorbed, as a 

function of the control gain. 

The two plots show that as the feedback control gain   is raised, the frequency integrated 

kinetic energy initially decreases while the frequency integrated power absorbed initially 

increases. The minimum of the kinetic energy and the maximum of power absorbed are 

achieved at about the same control gain. At higher gains, the kinetic energy increases again and 

the power absorbed drops off.  
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Figure ‎3.12: PSD of  kinetic energy and power absorbed plotted against the control gain when the plate is 

subject to a random excitation and the control point is (0.8 lx, 0.01 ly). Total kinetic energy is minimised 

for      Nsm-1 and the total power absorbed is maximise for      Nsm-1.  

Figure ‎3.12 (a), (b) shows the PSD of the normalised total kinetic energy and the PSD of the 

power absorbed integrated between 1 and 1000 Hz plotted against the control gain when the 

controller is located near the edge of the panel. It can be noted that the optimum values of 

control gain, which minimise the PSD of the total kinetic energy and maximise the PSD of the 

power absorbed are still similar, but are higher than in the previous case. This is due to the fact 

that the control force is no longer‎ able‎ to‎ excite‎ the‎ plate‎ efficiently‎ and‎ that‎ the‎ plate‟s‎

impedance is larger close to the edge. In the case of deterministic excitation there is a strong 

dependence of the optimum gain on the distance between the primary and control force. In the 

case of random excitation, the controlled response of the panel is relatively independent of the 

position of the control force, except when it gets close to the edge of the plate [26]. 
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3.2.2. Fixed gain for narrowband control 

This section investigates how the frequency band-width of the random excitations influences the 

optimal value of control gain.  

Figure ‎3.13 shows the difference between the control gains that would produce maximum 

reduction of kinetic energy and maximum power absorption integrated over increasingly wider 

frequency bands between 1 Hz and 1 kHz, starting at lower frequency of 1 Hz.  

 

Figure ‎3.13: difference between the control gains minimising the kinetic energy and maximising the 

power absorption averaged over increasingly wider frequency bands between 1 and 1000 Hz. 

For small bandwidths the two control gains differ by about four orders of magnitude since the 

panel is stiffness controlled in this region and minimising the kinetic energy can be achieved by 

almost pinning the panel, whereas the absorbed power is maximised at much lower gains. 

However, when the bandwidth exceeds about 60 Hz, the difference between the two gains 

abruptly drops down to values between 0 and 20 dB. Figure ‎3.14 shows a similar graph for the 

difference between the reductions of kinetic energy that are produced with the two control gains 

and shows a similar transition at 60 Hz.  



3. TUNING STRATEGIES OF DECENTRALISED VELOCITY FEEDBACKS FOR BROADBAND CONTROL OF DISTRIBUTED STRUCTURES 

38 

 

Figure ‎3.14: difference between the kinetic energy maximising the power absorption and the minimum of 

kinetic energy achievable 

The 60 Hz cut-off frequency corresponds to the fundamental resonance frequency of the simply 

supported panel with the additional pinning constraint at the control position (the first peak of 

the dotted spectrum in Figure ‎3.8). This suggest that maximising the total power absorbed also 

minimises the kinetic energy provided the frequency range over which the two quantities are 

integrated includes at least the fundamental resonance of the plate response when the control 

unit pins the panel. In this case, the typical  and  shapes for the variations of kinetic energy 

and power absorbed as function of the control gain shown in Figure ‎3.10 and Figure ‎3.11 can be 

found. Figure ‎3.15 and Figure ‎3.16 show the total kinetic energy and total power absorbed as 

function of the control gain respectively averaged between 1-40 Hz. Figure ‎3.15 shows that the 

kinetic energy remains low at high gain, since the new resonance is outside this frequency band 

of integration, and the absorption peak does not occur at the same gain as the minimum kinetic 

energy. 
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Figure ‎3.15: Frequency averaged PSD of the kinetic energy plotted against the control gain, averaged 

from 1 to 40 Hz.  

 

Figure ‎3.16: Frequency averaged PSD of the power absorbed plotted against the control gain, averaged 

from 0 to 40 Hz. The absorbed power is maximised for for       dB 

3.2.3. Single frequency excitation 

All the results presented so far are related to broadband excitation, so that the total kinetic 

energy and power absorbed have been averaged over range of frequencies. In this section the 

two strategies of tuning the control gain are compared in the case of a single frequency 

excitation. Figure ‎3.17 shows the spectrum of the plate kinetic energy when excited one 

frequency at a time and there is no control (thick line) and when the control gain is set to either 

minimise the panel kinetic energy (dotted line) or maximise the power absorbed (dashed line) 

independently at each frequency. 
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Figure ‎3.17: Kinetic energy for single frequency excitation without control, as function of excitation 

frequency (solid line), with the gain adjusted at each excitation frequency to minimise the kinetic energy 

(dotted line) and with the gain adjusted at each excitation frequency to maximise the power absorbed 

(dashed line). 

The resulting frequency-dependent control gains for the two cases are shown in Figure ‎3.18. 

However it would not be possible to implement a broadband controller with frequency 

responses corresponding to either of these curves, since their phase response is zero and so their 

impulse responses would be symmetrical in the time domain and hence non-causal. Figure ‎3.17 

indicates that, as one would expect, the best control approach is produced when the feedback 

gain is adjusted to minimise the kinetic energy.  

 

Figure ‎3.18: optimum gain minimizing the total kinetic energy (dotted line) and maximizing the power 

absorbed (dashed line) for single frequency excitation 

The other approach, where the power absorbed by the control loop is maximised at each 

frequency independently, produces reductions of the kinetic energy only over small frequency 

bands. The resulting kinetic energy spectrum is characterised by resonance peaks and also new 
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peaks that occur in between two resonances. A detailed analysis of the response of the plate at 

the new peak at around 55 Hz, shows that the feedback loop reduces the error velocity to very 

low values by implementing the very large feedback gain seen in Figure ‎3.18 at this frequency, 

so that a new resonant mode is generated [33]. These single frequency simulations reinforce the 

requirement for a significant excitation bandwidth if minimisation of power absorbed is to be 

used to minimise kinetic energy. 

3.2.4. Broadband control using two feedback loops 

In this section the control effects of two feedback loops, with frequency independent gains, are 

investigated‎when‎the‎panel‎is‎subject‎to‎broadband‎„rain-on-the-roof‟‎excitation.‎The‎positions‎

of the two control points are given in Table ‎3.2 and they are a distance of about 0.3 m apart.  

Table ‎3.2: position of the two feedback loops 

Control position 1                     

Control position 2                      

 

 

Figure ‎3.19: 1Hz to 1 kHz frequency integrated a) PSD of total kinetic energy and b) PSD of total power 

absorbed by the two feedback loops as a function of the control gains g1 and g2. 

Figure ‎3.19 shows, as a function of the two feedback gains    and
 
  , the 1 Hz to 1 kHz 

integrated PSD of the total kinetic energy of the panel normalised to the reference PSD of 

kinetic energy without control and the 1 Hz to 1 kHz integrated PSD of the total power absorbed 

by the two control feedback loops. The plots show that the minimum total kinetic energy and 

the maximum power absorbed are given when the two feedback gains are similar to the values 

that they would have if they were controlling the vibration of the panel independently. 

Moreover, the minimum total kinetic energy and the maximum total power absorbed occur for a 

very similar pair of control gains. This suggests that controlling the response of the panel by 
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locally tuning each control loop to maximise its power absorbed in a wide range of frequencies 

can be extended to multiple feedback loops. Comparing Figure ‎3.10 with Figure ‎3.19(a) and 

Figure ‎3.11 with Figure ‎3.19(b), shows that using two feedback loops instead of one further 

reduces the total kinetic energy by about 1.5 dB and further increases the total power absorbed 

by about 1.5 dB.  

Figure ‎3.20 show the PSD, integrated between 1 Hz and 1 kHz, of the power absorbed by the 

individual feedback loops as functions of the feedback gains    and
 
  . The two plots show that 

the power absorbed by each control unit is reduced when the other control unit is tuned close to 

its optimal value, and the control gain that maximises the power absorbed by one control unit is 

influenced by the control gain in the other loop.  

 

Figure ‎3.20: 1 Hz to 1 kHz PSD of power absorbed by (a) control unit number 1 and (b) number 2 as a 

function of the control gains g1 and g2. 

The simultaneous maximisation of the local power in both control units, however, converges to 

the maximisation of the total absorbed power shown in Figure ‎3.19. The important aspect of the 

curves in Figure ‎3.20, as far as a practical adaptation algorithm is concerned, is that if one 

control gain is fixed, the local power absorbed by the other loop is still maximised by a single 

value of its control gain. It is thus possible to use gradient-based algorithms to adjust the 

individual control gains. 

3.2.5. Self-tuning algorithm to maximise the power absorbed by the controller 

The simulation study presented in the previous subsections has shown that, assuming broadband 

excitation, a similar control performance is achievable minimising the total kinetic energy of the 

plate or maximising the power absorbed by each of the feedback loops. This suggests that 

reductions in the overall vibration can be obtained by adapting the local feedback gains of the 

control units to maximise the total power absorbed by each control unit.  
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Figure ‎3.21: Scheme of a single self-tuning velocity feedback loop. 

Figure ‎3.21 shows a potential self-tuning scheme for a local feedback loop. Since the control 

force produced by the r-th feedback loop,    , is proportional to the velocity measured at the r-th 

control position,     via the control gain    then the power absorbed by the controller at a given 

frequency is proportional to the mean squared value of the control velocity via the control gain, 

as previously shown in equation (‎3.2) for a single channel. Thus an algorithm that adjusts the 

control gain to maximise the total power absorbed can be implemented using only the local 

velocity measured by the feedback sensor, the instantaneous value of which is used as the 

feedback signal.  

In this study, a simple algorithm that adjusts the control gain to maximise the total power 

absorbed by each loop has been investigated. The algorithm increases the control gain in each 

loop gradually from zero in fixed steps, then uses the calculated power absorbed to adapt the 

control gain. The algorithm at the q-th iteration can be written as: 

                                           
(‎3.3) 

where sgn[ ] signifies the sign of the parameter in brackets,    and are    the differences in 

power absorbed and control gain between two consecutive iterations with all other control gains 

in the other feedback controllers fixed. The parameter      is the step by which the gain is 

increased at the q-th iteration. When the power absorbed starts to decrease, the algorithm 

reduces the control gain by half a step and so      is given by: 

            
    

 
                (‎3.4) 

where the initial value of   for     must be specified. The error in the estimation of    after   

iterations is        and since      decreases in size with q, the algorithm converges to the 

optimum. If the conditions on the plate change, it is assumed that this can be detected and the 

value of      re-initialised so that the algorithm can adapt the gain to its new optimum value. 

When multiple feedback loops are tuned simultaneously, the power absorbed by one feedback 

loop is influenced by all the others, as shown in Subsection 3.2.4. Therefore, the individual 
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power absorbed by the r-th control loop must be re-estimated, keeping all the other gains 

constant, before the r-th control gain is varied. A limitation of this tuning algorithm is thus that 

global synchronization is required to ensure sequential tuning, even though each control loop is 

still tuned using only the signal of the collocated sensor in decentralised manner. It is not clear 

whether other control algorithms, which allow simultaneous adaptation of each control loop, 

could be used and thus avoids the need for global synchronisation of the tuning. It is also 

important to highlight that the broadband disturbance is assumed to be stationary during the 

adaptation so that a change in the absorbed power is only due to change in the control gain. 

3.2.6. 16 Self-tuning feedback loops 

In this section the effects of implementing 16 self-tuning feedback loops on the panel are 

investigated. Figure ‎3.22(a) shows the positions of the control points on the panel. 

Figure ‎3.22(b) shows the value of the control gains of each feedback loop after the self-tuning 

algorithm given in equations (‎3.3) and (‎3.4) has been used to tune all the feedback loops 

sequentially to maximise their power absorbed. The way this is achieved is that the gain on the 

first control loop is adjusted using equation (‎3.3), and then each of the other loops are adjusted, 

after which this sequence is repeated until the gains have converged. The gain distribution is 

symmetric, as expected, but within the range 27.5 to 33.8 Nms
-1

.  

 

Figure ‎3.22: a) Scheme of a plate with the control points disposition and (b) values of control gain, in 

Nsm-1, maximising the power absorbed of each control feedback loop, found using the self-tuning 

algorithm. 
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Figure ‎3.23: PSD of the total kinetic energy when g1-16    (solid line), the self-tuning algorithm is 

implemented (dashed line) and g1-16       Nsm-1 (dotted line). 

Figure ‎3.23 shows the PSD of‎the‎panel‟s‎kinetic‎energy‎without‎control‎(solid‎line),‎after‎the‎

self-tuning algorithm has been used to adapt the gain of each feedback loop (dashed line) and 

when the total kinetic energy is minimised off line using the same value of gain for each 

feedback loop (dotted line). Although the kinetic energy PSD is only shown up to an excitation 

frequency of 1 kHz in Figure ‎3.23, the simulations were performed with an excitation 

bandwidth up to 10 kHz. This is to include the new resonance frequencies that would be created 

with high gains in each of these 16 feedback loops, which may interfere with the adaptation 

process. The plot demonstrates that the self-tuning algorithm provides an overall reduction very 

close to the minimum that would be achieved if the total kinetic energy is minimised using 

equal control gains, yet only uses information local to the control loops.  

Figure ‎3.24 shows the convergence of the control gains   ,   ,    and    when adapted using 

the self-tuning algorithm (a) when their initial value is set on 0 and (b) when they are set to 

random values. In the simulations the initial value of alpha is set on 10 and the error on the 

estimation of   which is twice the minimum alpha is      . Figure ‎3.24 illustrates that the 

algorithm reliably converges to the correct optimum values, within these limits, whatever the 

initial conditions. 
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Figure ‎3.24: Convergence of control gains g1 solid line), g2 (dashed line) g5 (dotted line) and g6 (dash-dot 

line) (a) starting from 0 and (b) random values.  

Figure ‎3.25 shows the simulation results when the control unit 6, 10 and 12 fail after 5 iterations 

and the corresponding values of   are then set to zero. Comparing Figure ‎3.22(b) and 

Figure ‎3.25(a), the converged values of the control gains vary slightly from those above, but 

still maximise the power absorbed in the remaining units.  

 

Figure ‎3.25: (a) Control gains after convergence when the control unit 6, 10, and 12 fail after 5 iterations; 

(b) PSD of the total kinetic energy of the panel without control (solid line), using 16 self-tuning control 

loops (dashed line) and after failure of three control units (dot-dashed line). 

Figure ‎3.25(b) shows the PSD of the kinetic energy of the panel without control (solid line), 

using 16 self-tuning control units (dashed line) and after the convergence of the algorithm when 

the three control units fail (dot-dashed line). The plot shows that after the failure, the remaining 

feedback gains have been slightly adjusted, but a good reduction of vibration is still achieved 

over this frequency range. 
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3.3. Vibration control of a beam to maximise control stability 

This section considers the maximisation of control stability as a strategy of tuning the gain of an 

ideal single velocity feedback loop. The objective of stability maximisation criterion is to 

minimise the transient vibration of the system, and has been suggested as a tuning strategies by 

Preumont [7] and Engelen [36] for example. 

 

Figure ‎3.26: Block diagram of a single direct velocity feedback loop control implemented on the plate. 

The optimisation is achieved when the pole of a chosen mode of the closed loop frequency 

response function (FRF) of the control system is located as far as possible from the imaginary 

axis in the left-half of the s-plane so that the modal damping of that particular mode is 

maximised. 

Figure ‎3.26 shows the block diagram of the velocity feedback loop.  ̃   is the FRF between the 

control force,  ̃  and control velocity  ̃ ,  ̃   is FRF between the primary excitation  ̃  and 

control velocity and g is the control gain. A beam, with the characteristic listed in Table ‎3.3, is 

initially used as an example of a distributed structure in this section since it has more widely 

spaced resonances and the behaviour of the poles is easier to visualise. The expression of the 

FRFs can be found in reference [25]. The closed loop FRF is given by: 

 ̃    

 ̃    
 

 ̃     

    ̃     
   

(‎3.5) 

and thus, the characteristic equation is given by: 

    ̃       . 
(‎3.6) 

The root locus is a plot of the solution of the characteristic equation of the closed loop system 

when the control gain is varied between zero and infinity. The root locus is constructed knowing 
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the poles and zeros of the open loop FRF  ̃   which, for a lightly damped structure, can be 

written as [36]: 

 ̃      
 

 

∏   
  

   

∏   
  

   

∏ (     
 ) 

   

∏ (     
 ) 

   

 
(‎3.7) 

where s is the complex Laplace transform variable, k is the static stiffness of the structure at 

control position,    is the i-th complex resonance frequency,    is the i-th complex zero or anti-

resonance of the open loop FRF. As an example the cantilever beam of Figure ‎3.27 controlled 

by a single ideal velocity feedback loop is considered when the response of the beam is 

calculated, rain-on-the-roof excitation is assumed. 

 

Figure ‎3.27:‎Scheme‎of‎a‎cantilever‎beam‎subjected‎to‎„rain-on-the-roof‟‎excitation‎and‎controlled‎by‎a‎

single ideal velocity feedback 

Table ‎3.3: geometrical and physical characteristic of the beam: 

Parameter Value 

Dimensions l =0.31m 

Thickness 0.001 m 

Width d=0.025  

Mass density        kg/m
3 

Young‟s‎modulus           N/m
2
 

Poisson ratio         

Loss factor      
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Figure ‎3.28: root loci of characteristic equation for different position along the beam: a) 0.07 mm b) 0.18 

mm c) 0.25 mm d) 0.47 mm 

Figure ‎3.28 shows the root loci plot of the closed loop FRF for four different locations of the 

controller along the beam. The roots start at the poles of the open loop system when the 

feedback gain is zero and end up at the zeros of the open loop as the feedback gain tends to 

infinity [37]. All plots are characterised by an alternating succession of open loop poles and 

zeros near the imaginary axis. This is due to collocation of the actuator and sensor. The root-

locus plot is entirely located on the left hand side of the s-plane, since the system is 

unconditionally stable. Although only the root loci relative to the first two modes are shown, the 

first five modes in equation (‎3.7) have been taken into account in the simulations. The open 

loop poles of the system are independent of the location of the control loop but the open loop 

zeros change with this location. 

Figure ‎3.28(a) shows the root locus plot when the control position is located at x=0.07 m. The 

two poles move to the nearest zeros, which are closely spaced in this case, when the control gain 

is increased and they coincide with the zeros when the control gain tends to infinity. The zeros 

represent the natural frequency of the structure when pinned at the control position. 

Figure ‎3.28(b) shows the root locus plot when the controller is located at x=0.18 m. In this case 

the second pole does not move to the next zero but towards the origin of the s-plane when the 
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gain is increased. When the second pole is real, the second mode becomes critically damped. 

When the controller is located at x=0.25mm (Figure ‎3.28(c)), the distance between the first zero 

and the second pole becomes smaller than the distance between the first pole and origin, 

therefore the first pole moves towards the origin and the second pole moves to the first zero as 

the control gain is increased. Figure ‎3.28(d) shows the root locus plot when the control position 

is located near the tip of the beam. The root locus does not show substantial difference with the 

previous case. 

The uncontrolled response of a cantilever beam is characterised by well separated modes at low 

frequency, which have a magnitude that rapidly decreases with the frequency for a fixed loss 

factor. Therefore‎ a‎ good‎ broadband‎ attenuation‎ of‎ the‎ beam‟s‎ response‎ can‎ be‎ obtained‎ by‎

controlling only the first mode. The modal damping for a given control gain can be obtained 

from the root locus plot as the sine of the angle formed by the imaginary axis and the line 

connecting the origin of the s-plane to the point of the root locus corresponding to that particular 

gain. Figure ‎3.29 shows the root locus plot of the closed loop FRF relative to the first mode only 

when the controller is placed at x=0.18 m. The maximum damping achievable for the first mode 

is‎given‎by‎the‎sine‎of‎the‎angle‎β. 

 

Figure ‎3.29: root locus of the direct velocity feedback loop for the first mode at  control position 0.18 m 

The root locus plot of Figure ‎3.28 shows that it is not a simple matter to predict the trend of the 

root locus plot just knowing the position of the open loop zeros and poles. To compute the 

optimal value of the control gain, it is necessary to calculate the entire root locus. Therefore, the 

implementation of this strategy as a self-tuning control would first require the measurement of 

the open loop poles and zero of the structure from its measured frequency response, the 

computation of the root locus of the characteristic equation and, finally, the estimation of the 

optimal control gain.  
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Approximate values of the control gain that maximises the modal damping of the first mode 

can, however, be found in literature [7, 36]. Considering the root locus of the first mode in 

Figure ‎3.28, two distinct situations can be highlighted: in the first one the pole moves to the next 

highest zero (plot (a) and (b)) and in the second one the first pole moves to the origin of the s-

plane (plot (c) and (d)). In plots (a) and (b) the distance of the first pole to the first zero can be 

considered small compared to all the other poles and zeros. Therefore, equation (‎3.7) can be 

approximated, in the vicinity of the first pole, by only considering the contribution of the first 

mode, as: 

 ̃      
 

  

       
  

     
  

(‎3.8) 

where 

   
 

 

  
 

  
  

(‎3.9) 

Under this assumption, Engelen et al. [36] found an approximate solution of the maximum 

value of modal damping by solving equation (‎3.6) using a perturbation method, giving: 

      
     

   
 

(‎3.10) 

which correspond to an optimal gain of: 

     
 

 

  
 

  
 

√     

  
 (‎3.11) 

In the second case, when the pole moves towards the origin of the s-plane, the optimal gain is 

the smallest values that critically damp the first mode. No expressions for the optimal control 

gain have been found in literature for this specific case. However, Engelen et al. [36] have 

shown that setting the control gain using equation (‎3.11) gives a good approximation for the 

optimal gain, even if the controlled mode can be critically damped. Figure ‎3.30 shows a 

comparison of the optimal control gains for different location of the feedback loop along the 

beam obtained from equation (‎3.11) (solid line) and numerical simulations (dashed line). In the 

simulation the optimal control gain has been tuned to maximise the modal damping of the first 

mode or, in case the first mode can be critically damped, has been tuned to the minimum control 

gain for which critical damping is achieved. The plot show that the maximum difference in 

control gain using equation (‎3.11) and the numerical values is about 7 dB. 



3. TUNING STRATEGIES OF DECENTRALISED VELOCITY FEEDBACKS FOR BROADBAND CONTROL OF DISTRIBUTED STRUCTURES 

52 

 

Figure ‎3.30: optimal control gains for different position of the controller along the beam calculated with 

numerical simulations (solid line) and using equation (‎3.11) (dashed line). 

Similar strategy can be used to optimise the gain of a feedback controller on a panel, although 

the root locus diagram becomes more complicated due to the closer spacing between the modes. 

This makes the root loci very dependent on the position of the controller on the panel and 

requires some care in the selection of the locus whose real part is to be minimised. 

3.4. Comparison of different strategies of tuning single feedback loop 

In order to compare the three tuning strategies discussed in the previous sections, simulations 

have been carried out for different control loop locations on a cantilever beam subjected to rain-

on-the-roof excitation. In the simulations the first eleven modes of the beam have been taken in 

to account and the kinetic energy of the structure and the power absorbed by the controller have 

been averaged between 1Hz-1kHz. The optimal values of the control gains which maximise the 

control stability have been found numerically. For control location where the first mode can be 

critically damped, the minimum value of control gain for which critical damping is achieved is 

assigned. Figure ‎3.31 and Figure ‎3.32 shows the three values of the control gains and the 

corresponding reduction in the total kinetic energy found using the three optimisation strategies 

for different controller position along the beam. Although the optimal gains using the three 

optimisation methods can be quite different, the reductions in the total kinetic energy are very 

similar. The major differences can be observed near the clamped side of the beam where the 

maximisation of the power absorbed seems to underestimate the control gain compared with the 

other two. This is also the area where the smallest reduction in the total kinetic energy of the 

beam can be achieved because the modal amplitude of all the structural modes is small.  



 3. TUNING STRATEGIES OF DECENTRALISED VELOCITY FEEDBACKS FOR BROADBAND CONTROL OF DISTRIBUTED STRUCTURES 

53 

  

Figure ‎3.31: Values of the control feedback gain found using the three tuning strategies as function of the 

control point along a cantilever beam 

 

Figure ‎3.32: Reduction of total kinetic energy achieved using the three strategies as function of the 

control point along a cantilever beam 

Simulations have also been carried out to compare these three tuning strategies for control of  a 

simply‎ supported‎ panel‎ subject‎ to‎ „rain-on-the-roof‟‎ excitation.‎ Two‎ cases‎ have‎ been‎

considered: when the controller is moved along the x-axis at y=0.5ly and at y=0.25ly.  
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Figure ‎3.33: (a) and (b) optimal control gains and (c) and (d) reduction in the kinetic energy for the three 

tuning strategies on a panel when the controller moves along the x-axis at y=0.5ly and 0.25ly 

The optimal control values and corresponding reduction in terms of kinetic energy of the panel 

are shown in Figure ‎3.33 for the two cases.  

The plots show that although the optimal feedback gains are relatively independent on the 

position except near the boundaries, as observed by [26], the attenuation varies depending on 

which modes can be easily control by the actuator. A controller at the centre, for example, 

cannot control any even-even order modes. 

In the control of a panel the maximisation of control stability method seems to performance 

worse than in the case of a cantilever beam if compared with the minimisation of the kinetic 

energy‎ of‎ the‎ structure.‎ This‎ is‎ due‎ to‎ the‎ fact‎ that‎ the‎ uncontrolled‎ panel‟s‎ response‎ is‎

dominated by more modes at low frequency than the beam and this tuning method is optimised 

to control only the first structural mode. However the three methods give similar performance in 

terms of the total kinetic energy of the panel, as shown in the two bottom plots of Figure ‎3.33, 

provided the controller is not positioned to close to the edge of the panel. 
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3.5. Summary and conclusions 

This chapter has discussed the vibration control of flexible structures using self-tuning ideal 

velocity feedback loops. The total kinetic energy of the structure has been taken as a benchmark 

to compare two tuning strategies: the maximisation of the power absorbed by the controller and 

the maximisation of the control stability.  

The background in using the absorbed power as a tuning strategy has been reviewed in the first 

section. In the application considered here, the force is generated by the ideal actuator and is 

made proportional to the measured velocity. The absorbed power could thus be readily 

estimated from the mean square value of the measured velocity and the feedback gain, thus 

providing a simple measurement of an entirely local parameter that has been used to tune the 

gains. It has been shown that, for broadband disturbance, maximising the absorbed power 

approximately minimises the kinetic energy of the structure. For narrow-band and single 

frequency excitations, however, the maximisation of the power absorbed could increase the 

structural response. Simulations on the convergence of an algorithm to adjust the control gains 

of independent feedback loops have been carried out.  

The maximisation of the control stability as a further tuning strategy of the control gain of a 

single feedback loop has been considered in this chapter. A cantilever beam subjected to 

broadband excitation has been considered for this application. This control strategy aims to 

maximise the damping ratio of the first structural mode. The estimation of the optimal control 

gain has been made using the root locus plot of the closed loop response. It has been shown that 

the root locus plot changes depending on the position of the controller along the beam. 

Therefore the optimisation can be done after the entire root locus has been computed. To avoid 

this, approximate expression of the optimal control gain could be used instead. In this case the 

self-tuning procedure would require the measurement of the poles and zeros of the open loop 

structure and the estimation of the control gain. 

In the last section the two tuning strategies have been compared with the minimisation of the 

kinetic energy of the entire structure under control giving similar level of performance. 

The next two chapters will discuss the experimental implementation of self-tuning decentralised 

velocity feedback based on the maximisation of the power absorbed by the controller using 

reactive actuators. 

 





 

 

4. Design and testing of the experimental panel 

and the controller 

In this chapter the panel used for the experiments on decentralised velocity feedback using 

reactive actuators is described. The experimental panel is equipped with nine reactive 

electromagnetic actuators collocated with nine sensors. Two different types of sensors were 

used: B&K piezoelectric accelerometers and low cost MEMS accelerometers. All the 

components in the control loop are first described for each of the two configurations, including 

sensor-actuator pairs and control electronics.  

In the theoretical analysis in Chapter 3 it was possible to assume that the control loops were 

unconditionally stable, since ideal force actuators and velocity sensors were used. The dynamic 

response of the actuator and sensor in the experimental system can lead to instability for high 

feedback gains i. e. conditional stability. Particular care must thus be taken to assess the stability 

of the controller from the open loop frequency response before the closed loop frequency 

response is calculated. Simulations are then performed to predict the closed loop behaviour of 

the control system. The experimental results of closed loop control are left until Chapter 5. 

4.1. The experimental panel design 

The experimental panel demonstrator built for this study consists of a 1 mm thick rectangular 

aluminium panel with dimensions 0.412×0.312 m
2
. The panel is equipped with 9 miniature 

voice coils actuators, consisting of a coil and a permanent magnet. As shown in Figure ‎4.1 the 

actuators are placed between the panel and a frame which is used to react the force off. Since 

the coils are lighter than the magnets, they were attached to the panel, whereas the permanent 

magnets were attached to the relatively rigid frame. In this way the passive effect of the actuator 

on the panel is minimised. The reactive actuators were commercial coil and magnet device 

(H2W technologies, NCC01-04-001) and one is shown in Figure ‎4.2. 
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Figure ‎4.1: The prototype experimental panel; a) the lower clamping frame with the reactive frame 

mounted on top of the thick-walled Perspex box, b) aluminium panel with 9 B&K accelerometers. 

 

Figure ‎4.2: a) the miniature voice-coil actuator (H2W, NCC01-04-001) shown in comparison to a 

US$ quarter coin. 

Each of the nine coil and magnet pairs is equipped with an accelerometer closely located with 

the coil. Two configurations are analysed: in the first one the feedback sensor is a high-

performance piezoelectric accelerometer (B&K type 4375) shown in Figure ‎4.3(a), in the 

second one the feedback sensor is a MEMS accelerometer (Analog Devices ADXL103) shown 

in Figure ‎4.3(b).  
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Figure ‎4.3: a) the B&K accelerometer type 4375, b) the MEMS accelerometer chip connected to a 10×20 

mm2 board. 

As shown in Figure ‎4.1(b), the panel is clamped between two aluminium frames. The frames 

have a width of 32 mm, but they have different thicknesses: 25mm for the bottom frame and 10 

mm for the top one. The clamping frame and the panel are mounted on one side of a Perspex 

box, which was left open during the experiments to avoid strong coupling between the panel 

and the volumetric mode of the cavity.  

Table ‎4.1: Physical properties of the smart panel and transducers 

 Parameter Value 

Aluminium Panel 

Dimension (mm) 412×312 

Thickness(mm) 1 

Density (kg/m3) 2700 

Young‟s‎modulus‎(GPa) 70 

Poisson‟s‎ratio 0.33 

Perspex Box 

Box wall thickness (mm) 30 

Shaker position (x, y) (mm) (65, 93) 

Box inner dimension (mm) 412×312×400 

Accelerometer B&K 

Resonant frequency (KHz) 35 

Frequency bandwidth (Hz) 0.1 - 16500 

Model 4375 

Accelerometer MEMS 

Resonant frequency (KHz) 5.5 

Frequency bandwidth (Hz) 0.1 - 2500 

Model Analog Devices ADXL103 

Voice-coil actuator 

H2W Technologies 

Peak force (N) 0.9 

Outside Diameter (mm) 9.5 

Total length (mm) 12.7 

Coil mass (g) 1.2 

Resistance‎(Ω) 1.5 

Model NCC01-04-001 

EDVECO Force sensor Model 2312 

B&K charge amplifier Model 2635 

LDS Shaker Model V200 

LDS Power amplifier Model PA25E-CE 

 

The panel was excited by a shaker placed in the box. A force sensor was placed between the 

shaker and the panel to measure the primary force produced by the shaker. The physical 
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properties and geometry of the smart panel and the main characteristics of the transducers are 

summarised in Table ‎4.1.  

An initial set of measurements have been taken using B&K piezoelectric accelerometers as 

feedback sensors. The charge output of each B&K accelerometer was amplified using a charge 

amplifier (B&K type 2635). The charge amplifiers are equipped with a high pass filter with cut 

off frequency of 10 Hz and an electrical integrator in order to obtain a measurement of the 

velocity. An second set of measurements have been taken using nine low cost MEMS 

accelerometers mounted on an aluminium L support. The aim of these measurements is to test 

the possibility of using cheap and low performance accelerometers without compromising the 

control stability. The MEMS accelerometer is designed to measure vibration up to 2.5 kHz and 

has a resonant frequency of the seismic vibrating mass at 5.5 kHz.  These sensors need external 

power supply of 5 V and do not have a circuit to integrate the signal output to get a 

measurement of the velocity. An existing control box, designed in ISVR and manufactured for 

similar applications, has been used to supply power to the MEMS accelerometer, integrate and 

amplify the signal output. 

In both configurations, in order to measure the open loop frequency response functions (FRFs) 

using a twenty channels analyser (Data Physics Mobilyzer II), the actuators have been driven 

with a reference white noise signal, amplified by a LDS PA25E voltage amplifier. 

4.2. Response of the open loop system 

In this section the response of the controller for the configurations using B&K and MEMS 

accelerometers is described in detail. If the control-sensor pairs are dual and collocated, constant 

gain feedback loops are in theory unconditionally stable [18], since the phase of the open loop 

frequency response function, FRF, is confined between ±90º at all frequencies.  

 

Figure ‎4.4: Scheme of the panel with the positions of the 9 control units and position of the primary 

source, *. 

Unfortunately in a real system the actuators and sensors approximate ideal force and velocity 

transducers only for a certain frequency band. Moreover the presence of filters in feedback loop 
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may introduce phase shift which can limit the control gain before instability [38]. All the results 

shown in this section for the stability studies of the single channel system refer to the control 

unit number 5 of Figure ‎4.4.  

4.2.1. Response of the controller using B&K accelerometers 

In this section B&K accelerometers were used as sensors, since these have a good frequency 

response below resonance. In order to analyse the stability of the feedback loop when B&K 

accelerometers are used as feedback sensors, the control system has been notionally divided into 

the blocks shown in Figure ‎4.5 and the FRF of each component of the system has been 

measured. In this way it is easier to identify the effect of each element on the overall stability of 

the control loop. The reactive force actuators are made of miniature coil and magnet pairs, 

which have their own dynamics. The electrical admittance of the actuator, represented in 

Figure ‎4.5 by the first block, has been measured taking the voltage input signal U as reference 

and measuring the current I which is proportional to the force generated by the actuator [7].  

 

Figure ‎4.5: Schematic representation of all the components of each feedback loop using B&K 

accelerometers. 

The FRF in Figure ‎4.6 shows that the coil behaves like a low pass filter with a cut-off frequency 

of 7.3 kHz. The phase is about zero up to 200 Hz above which it starts to drop due to the 

inductance of the coil. The small peaks visible in the plot are due to the response of the panel 

which affect the electrical impedance of the actuator through the transduction coefficient [39]. 

The maximum phase lag, of about -70, occurs at around 8 kHz. 

 

Figure ‎4.6: Measured admittance of the actuator 
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The structural response is represented by the second block in Figure ‎4.5. Since the applied force 

is proportional to the current, the main part of the FRF curve in Figure ‎4.7 is what one would 

expect from the point excitation of a structure, with a phase between 0 and -180. The response 

is characterised by resonances followed by anti-resonances. An additional phase lag of 180º 

appears at around 35 kHz due to the natural frequency of the B&K accelerometer.  

 

Figure ‎4.7: Measured structural response at position 5. 

The output signal of the accelerometer is integrated to get a measurement of the velocity of the 

structure using the electrical integrator of the B&K charge amplifier. The measured FRF of the 

integrator in the charge amplifier is plotted in Figure ‎4.8 when the cut-off frequency of the high 

pass filter is set to 10 Hz. The plot shows that the integrator behaves almost like an ideal 

integrator over the frequency band of interest, producing the desired 90º phase shift.  

The amplifier used to amplify the sensors signal is the LDS PA25E voltage amplifier, its FRF is 

shown in Figure ‎4.9 when the amplification gain is set on the maximum value. The response of 

this amplifier is almost constant at all the frequencies except for the offset of a high pass filter 

with a cut-off frequency of 4 Hz.  
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Figure ‎4.8: Measured FRF of the B&K integrator 

 

Figure ‎4.9: Measured FRF of the LDS PA25E voltage amplifier 

Figure ‎4.10 shows the directly measured open loop FRF (solid line) and the one predicted using 

the individual measured responses of each element of Figure ‎4.5 (dashed line). The plot shows 

that the prediction is in reasonable experimental agreement with the measurement. The phase of 

the open loop FRF is confined between ±90º up 2.5 kHz. From about 2.5 kHz the phase excited 

-90º and starts to drop because of the phase lag introduced by all the component of controller. 

At 35 kHz a phase lag of -180º occurs due to the natural frequency of the sensor. 
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Figure ‎4.10: Measured open loop FRF of channel 5 (solid line) and predicted using the individual 

measured responses of each element of the feedback loop (dashed line). 

4.2.2. Response of the controller using MEMS accelerometers 

This section is focussed on the description of the controller using MEMS accelerometers 

following the same procedure of subsection 4.2.1. Figure ‎4.11 shows the block diagram of the 

second configuration of the controller. Each FRF of the components represents by the blocks in 

Figure ‎4.11 have been measured. The first and second blocks represent the electrical admittance 

of the actuator and the structural response already discussed in the previous section and plotted 

in Figure ‎4.6 and Figure ‎4.7. 

 

Figure ‎4.11: Schematic representation of all the components of each feedback loop using MEMS 

accelerometers 



 4. DESIGN AND TESTING OF THE EXPERIMENTAL PANEL AND THE CONTROLLER 

65 

 

Figure ‎4.12: Measured FRF of the MEMS accelerometer. 

The third block in Figure ‎4.11 represents the FRF of a MEMS accelerometer shown in 

Figure ‎4.12. The graph shows a phase response almost flat up to 2.5 kHz where it starts to drop.  

A phase delay of 180º with a peak in the magnitude is visible at around 5.5 kHz due to the 

resonance frequency of the seismic mass of accelerometer. An additional phase lag is due to the 

low pass filter mounted on the MEMS accelerometer with cut off frequency of 2.5 kHz. The 

smaller peaks at lower frequency are due to the resonance frequencies of the L support where 

the MEMS is attached. 

Finally, an integrator and an amplifier manufactured in ISVR have been included in the block 

diagram to complete the implementation of the velocity feedback loop. The front panel of the 

control box is shown in Figure ‎4.13. Each control channel has three checkpoints for monitoring 

the three stages in each channel: pre-integration, post-integration, and final, post-amplification 

check point.  

 

Figure ‎4.13: The front panel of the ISVR control box. 

Figure ‎4.14 and Figure ‎4.15 show the measured FRFs of integrator and the amplifier of the 

ISVR control box shown in Figure ‎4.13. The -3dB corner frequency of the integrator is about 4 

Hz. The amplifier is provided with a high pass filter with cut off frequency of 50 Hz which 

corresponds to a phase lag of 90º.  
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Figure ‎4.14: Measured FRF of the integrator of the ISVR controller. 

 

Figure ‎4.15: Measured FRF of the amplifier of the ISVR controller. 

Figure ‎4.16 shows the Bode diagram of the open loop FRF between the voltage of signal 

feeding the actuator and the integrated and amplified output of the MEMS accelerometer (dotted 

line), and the same FRF (solid line) predicted using the individual responses of each element in 

Figure ‎4.11. 

The plot shows that the prediction from the measured FRF of each component is in reasonable 

experimental agreement with the measurement. The phase of the open loop FRF is confined 

between ±90º up 500 Hz. From about 500 Hz the phase excited -90º and starts to drop because 

of the phase lag introduced by all the component of controller described so far. At 5.5 kHz a 

phase lag of -180º occurs due to the natural frequency of the MEMS.  
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Figure ‎4.16: Measured open loop FRF of channel 5 (solid line) and predicted using the individual 

measured responses of each element of the feedback loop (dashed line). 

4.3. Stability and performance analysis of single feedback loops 

In this chapter the stability of the two control systems described in section 4.2 is studied. The 

final aim of the experiment is to tune the control gain of each independent control unit in order 

to maximise their power absorbed without leading the system to instability. The stability of each 

control unit is therefore assessed using the Nyquist criterion and the closed loop response is 

simulated in MATALB. 

4.3.1. Stability and performance of single channel using B&K accelerometers 

Figure ‎4.17 (a) shows the Nyquist plot of the open loop FRF when the control gain is adjusted 

to have 6 dB gain margin. Figure ‎4.17(b) shows a zoom at the origin axis of the Nyquist plot of 

the sensor-actuator open loop FRF. The plot shows that the locus cross the left hand side of the 

diagram indicating that the system is only conditionally stable.  The gain margin is the 

maximum increase in gain that can be tolerated before the system gets unstable and is given by 

1/δ‎where‎δ‎is‎the‎distance indicated in Figure ‎3.17(b). 
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Figure ‎4.17: (a) Nyquist plot of the measured open loop FRF of channel 5 and (b) zoom at the origin 

using a B&K accelerometer 

In order to study the performance of the control system and to investigate how the control 

system influences the dynamic of the panel, a MATLAB simulation has been carried out based 

on the measured responses. Firstly, the response of the panel at the control positions subjected 

to the primary excitation has been measured. The panel has been excited by a shaker fed with 

white noise. The nine FRFs between the force applied by the shaker, measured by a force sensor 

and the velocities measured by the nine B&K accelerometers have been measured. Secondly, 

the nine FRFs between the voltage driving the reactive actuator and the nine velocities have 

been measured. This analysis has been carried out for the all loops but only the results relative 

to loop number 5 are discussed in this chapter. The complete set of results relative to all the 

channels can be found in Appendix C.  

The‎panel‟s‎PSD of the kinetic energy has been estimated as: 

      
 

  
∑ | ̃ |

 

 

   

  (‎4.1) 

where |  |
  is the mean squared value of the velocity measured by the r-th accelerometer, M is 

the mass of the panel and R is the number of the accelerometers. Equation (‎4.1) gives a good 

approximation of the kinetic energy of the panel in the frequency range where the distance 

between adjacent accelerometers positions is smaller than half wavelength. The aim of the 

controller is to reduce the structural response at low frequency, where the wavelength is large.  

Simulations of clamped-clamped aluminium panel of the same dimensions of the experimental 

panel and controlled by an ideal velocity feedback loop have been carried out. Figure ‎4.18 

shows PSD of the sum of the mean squared values of the velocities calculated in (a) 49 evenly 

separated locations and (b) calculated in five locations on the panel. The estimate of the kinetic 
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energy is plotted when the control gain is zero (solid line), when the total kinetic energy is 

minimised (dashed line) and for very high values of control gain (dotted line). Comparing the 

two plots similar responses can be observed although the contributions of some modes at higher 

frequencies are not visible when 5 monitoring positions are considered. This estimate of the 

kinetic energy of the panel is used here to evaluate the performance of the controller, even 

though it is not used in the tuning process. Since the structural response is dominated by the low 

frequencies modes, it can be concluded that nine monitoring positions is a reasonable number to 

obtain good estimation of the total response of the panel when one or two control units are used.  

 

Figure ‎4.18: Simulated PSD of the estimated kinetic energy of a panel with no control (solid line), 

minimising the estimated frequency averaged kinetic energy of the panel (dashed line) and high control 

gain (dotted line) simulated using (a) 47 monitoring locations (b) 5 monitoring position. 

 

Figure ‎4.19: Simulated PSD of the kinetic energy of the panel obtained from measured responses without 

control (solid line), minimising the total kinetic energy of the panel (dashed-line) and with 6 dB gain 

margin (dotted-line).    

Figure ‎4.19 shows the simulated PSD of kinetic energy of the panel without control, minimising 

the kinetic energy of the panel and when the control gain giving 6 dB gain margin is 
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implemented. The plot shows that the control unit is able to reduce the response of the panel at 

the first resonance frequency when the control gain is set to the value that minimises the 

frequency averaged kinetic energy of the panel. Implementing the control gain which guarantees 

6 dB gain margin, the response of the panel is slightly increased at higher frequency indicating 

that the control unit starts to pin the panel at the control position. Because control unit number 5 

is positioned in the centre of the panel only odd-odd modes can be controlled. 

 

Figure ‎4.20: Simulated frequency averaged PSD of the kinetic energy of panel obtained from measured 

responses as function of the control gain number 5. 

 

Figure ‎4.21: Simulated frequency averaged PSD of the power absorbed by control unit number 5 obtained 

from measured responses as function of the control gain number 5. 

This is confirmed by the plot of Figure ‎4.20 which shows the frequency averaged kinetic energy 

as function of the control gain. Figure ‎4.21 shows the simulated total power absorbed by the 

control unit as function of the control normalised to the value giving 6 dB gain margin. The plot 

shows that the power absorbed is maximised for a single value of control gain. Using B&K 
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accelerometers allow the system to reach the maximum of power absorbed before the system 

gets unstable. Moreover the value of gain that maximises the power absorbed is about the same 

as the one that minimises the total kinetic energy of the panel. 

 

Figure ‎4.22: Measured open loop FRF of channel 5 driving the actuator with a current (dashed line), 

driving the actuator with a voltage (solid line) 

Driving the actuator with a current eliminates the phase lag introduced by the electrodynamics 

behaviour of the actuator discussed in section 4.2.1. Figure ‎4.22 shows the open loop FRF 

driving the actuator with a current (dotted line) and open loop FRF driving the actuator with a 

voltage (solid line). The FRF is included between ±90 up to 5 kHz when the actuator is driven 

with a current while the phase starts to drop from 2.5 kHz in case of voltage driving. An abrupt 

phase lag with a peak in the magnitude is measured at about 35 kHz due to the resonance 

frequency of the accelerometer in both cases. The magnitude of the peak is much smaller in case 

of voltage driving because of the roll-off introduced by the coil of the actuator. Figure ‎4.23 

shows the Nyquist plot of the open loop FRF between the current driving the actuator and the 

velocity measured by the sensor for 6 dB gain margin. If this plot is compared with the Nyquist 

plot of FRF of the voltage-driven actuator in Figure ‎4.17, it is clear that that the system becomes 

unstable for much smaller value of control gain when driven by a current. In fact the reduction 

achievable at the first resonance frequency in the response at the control position in case of 

current-driven actuator is about 20 times smaller than the one achievable with a voltage-driven 

actuator. Even though a phase lag is introduced by the electrodynamics behaviour of the 

actuator when driving with a voltage, this also brings a roll-off which lowers the magnitude of 

the peak due to the resonant frequency of the accelerometer in the open loop FRF, so that the 

control system can tolerate higher gain before instability occurs. 
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Figure ‎4.23: zoom at origin of Nyquist plot of the open loop FRF of channel 5 when the actuator is driven 

with a current. 

4.3.2. Stability and performance of each channel 

The same simulation described in section 4.3.1 has been carried out for all the channels.  

Table ‎4.2: : value of control gains, normalised to that for a 6 dB gain margin, required to minimise the 

kinetic energy or maximise the power absorbed for each of the 9 control loops alone, and the 

consequential changes in kinetic energy. 

Ch. 

Feedback gain 

minimising 

kinetic energy 

(dB) 

Reduction in 

kinetic energy 

(dB) minimising 

the kinetic 

energy 

Feedback gain 

maximising the 

power absorbed 

(dB) 

Reduction in 

kinetic energy 

(dB) when 

maximising the 

power absorbed 

Ratio of gains 

maximising the 

power absorbed 

and minimising 

the kinetic energy 

Increase in kinetic 

energy (dB) due to 

maximisation of 

power compared 

with minimising 

kinetic energy 

1 -25.6 -1.6 -19.5 -1.3 0.8 0.3 

2 -25.5 -1.9 -17.9 -1.5 0.7 0.4 

3 -27.5 -1.5 -21.7 -1.2 0.8 0.3 

4 -35.2 -0.5 -19.1 1.2 0.5 1.7 

5 -19.5 -0.9 -21.2 -0.7 1.1 0.2 

6 -19.7 -1.3 -23.8 -1.3 1.2 0.04 

7 -12.8 -5.4 -21.0 -4.5 1.7 0.9 

8 -22.5 -2.3 -15.4 -1.9 0.7 0.3 

9 -26.0 -1.6 -20.1 -1.4 0.8 0.2 
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As shown in the Nyquist plots in Appendix C, all the single channels system are conditionally 

stable since the curves of the Nyquist plots enter in left hand side of the diagram but do not 

encircle the point (-1,0j). The control gains have been limited to be smaller than a certain values 

that lead the system to instability. The instability is mainly due to high frequency dynamic of 

the sensors.  

Table ‎4.2 lists the values of control gain normalised to the value of gain that guarantee 6 dB 

gain margin that minimises the kinetic energy of the panel and maximises the power absorbed 

with the respective reductions in kinetic energy. In general, the two strategies of tuning each 

control unit give similar values of control gain and small differences in the reduction of kinetic 

energy. 

Control unit number 4 seems to be rather different than the others and the maximisation of 

power absorbed seems to increase the overall kinetic energy of the panel by about 1 dB. It is not 

clear why this channel behaves so differently from the others.  Another particular case is 

represented by channel 7 which seems to be the most efficient, providing 5 dB of reduction in 

the total kinetic energy. This behaviour is due to the fact that channel 7 is the closest to the 

primary source, so that the primary excitation is not able to efficiently excite the panel when 

high values of control gain number 7 are implemented. The same behaviour has been predicted 

in simulation results described in Chapter 3. 

The sixth column of Table ‎4.2 shows the ratio between the control gain which minimises the 

total kinetic energy of the structure and the control gain which maximises the total power 

absorbed by the control unit. These values show that the ratio is higher or smaller than 1 

depending on the position of the control unit with respect of the edges of the plate and the 

primary excitation. 

4.3.3. Stability and performance of single channel using MEMS accelerometers 

The control unit considered here is again number 5 located in the centre of the panel. 

Figure ‎4.24 shows the Nyquist plot of the open loop FRF when the control gain is adjusted to 

have 6 dB gain margin. The graph shows that the system is conditionally stable. 
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Figure ‎4.24: (a) Nyquist plot of the measured open loop FRF of channel 5 and (b) zoom at the origin 

using a MEMS accelerometer 

 

Figure ‎4.25: Simulated PSD of the kinetic energy of the panel obtained from measured responses without 

control (solid-line) and with 6 dB gain margin (dashed-line)   

Figure ‎4.25 shows the PSD of kinetic energy of the panel without control and when the control 

gain giving 6 dB gain margin is implemented.   
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Figure ‎4.26: Simulated frequency averaged PSD of the kinetic energy of panel obtained from measured 

responses as function of the control gain number 5. 

 

Figure ‎4.27: Simulated frequency averaged PSD of the power absorbed by control unit number 5 obtained 

from measured responses as function of the control gain number 5. 

The effect of the controller when the maximum stable gain is implemented is to reduce the 

response of the panel at the first resonance. It is evident that the control unit is not able to pin 

the panel at the control position since new resonances are not visible in the structural response.  

This is confirmed by Figure ‎4.26 and Figure ‎4.27 which show the frequency averaged kinetic 

energy and the frequency averaged power absorbed as function of the control gain normalised to 

the value of gain giving 6 dB gain margin. From the plots it is clear that with this configuration 

it is not possible to reach the control gain which minimise the total kinetic energy of the panel 

or maximises the power absorbed by the control unit before the system gets unstable. From the 

analysis of this configuration carried out in section 4.2, it can be concluded that the control gain 

is manly limited by the phase lag introduced by the MEMS sensor. It may be possible to re-
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define the filters in the control loops to allow greater stable gains in the feedback controller, but 

this has not been attempted due to limitations of time. 

4.4. Stability and performance analysis of a nine channel control system 

In the third experiment performed within the scope of the stability investigation, the full 9×9 

matrix of the sensor actuator frequency response functions, H(jω), is analysed using the 

generalised Nyquist criterion [14]. In order to perform such an analysis, the 9×9 matrix of the 

FRFs have been measured. The matrix, H(jω),‎ is‎ a‎ fully‎ populated‎ matrix‎ of‎ the‎ frequency‎

response functions between the nine velocity sensors and the nine reactive actuators:  
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where  (
 

 
    )

   
 is the frequency response between the i-th velocity sensor and the j-th voltage 

driving the actuator. Assuming that the plant and the controller are individually stable, the 

generalised Nyquist criterion states [14] that the closed loop system is stable if and only if, for a 

stable open loop system, the locus of the determinant of the measured difference matrix, 

                    , where in this case G is the diagonal matrix of equal control gains, 

does‎not‎encircle‎or‎passes‎through‎the‎origin,‎as‎the‎angular‎frequency,‎ω‎,‎varies‎between‎−‎∞‎

and‎+∞.‎The‎determinant‎      can be also written as the product of its eigenvalues to express 

the single polar plot defined by the locus of       as series of more simple polar plots. The 

determined D can be written as [14]: 

                                            
(‎4.3) 

where        are the eigenvalues of the matrix       . The locus of equation (‎4.3) does not 

enclose the origin, provided that the locus of none of the eigenvalues, called characteristic loci, 

encircle the (-1,0j) point. In the general case of a multichannel system, the Nyquist criterion is 

not as simple to interpret as in the single channel case, since varying the control gains of 

different channel independently, the loci not only get bigger but they change their shape. Thus it 

is difficult to obtain a clear geometric guide to the relative stability system. Figure ‎4.28 shows 

the characteristic loci for the 9 channels control system. In the case considered here, however, 

with decentralised control using equal feedback gains, the magnitude of each eigenvalue is 

proportional to the feedback gain so each characteristic locus can be interpreted as a single-

channel Nyquist plot with the whole system being unstable if any one of these is unstable. 
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Figure ‎4.28: Measured characteristic loci of the nine channels control system 

 

 

Figure ‎4.29: Simulations of the Convergence of algorithm to maximise the individual power absorbed by 

nine control units. 
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In order to evaluate the performance of the nine channels control system a MATLAB simulation 

has been carried out. Using the algorithm described in Chapter 3, the all nine control gains of 

the nine independent control units have been sequentially adjusted to maximise their power 

absorbed in a numerical simulation. Figure ‎4.29 shows the convergence of the control gains as 

function of the number of iterations.  

In Table ‎4.3 are shown the values of control gains which maximise the power absorbed by each 

control unit normalised to the value of the control gain that guarantees 6 dB gain margin. 

Table ‎4.3: Values of the control gains which maximise the power absorbed by each control unit 

Ch. 1 2 3 4 5 6 7 8 9 

gopt (dB) -18.0   -21.0   -18.7   -20.6   -19.2   -20.1   -24.9   -22.9   -19.5 

 

Figure ‎4.30 shows the kinetic energy of the panel without control (solid line), when the power 

absorbed by each of the nine control unit is maximised (dashed line) and when the control gain 

that guarantees 6 dB gain margin is implemented (dotted line). The estimation of the kinetic 

energy of the panel is not accurate in this case because it has been estimated using the control 

velocities only. For this reason the pinning effect, when the maximum stable gain is 

implemented, cannot be seen. In order to get a better estimation, measurements in other 

positions on the panel are required. However, the plot shows that a reduction of the response of 

the panel up to 1 kHz can be achieved maximising the power absorbed by each control unit. The 

overall estimated reduction in terms of total kinetic energy of the panel is about 12 dB. 

 

Figure ‎4.30: Simulated PSD of the kinetic energy of the panel obtained from measured responses without 

control (solid-line) maximising the individual power absorbed by nine feedback loops (dotted line) and 

with 6 dB gain margin (dashed-line).  
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4.5. Summary and conclusions 

This chapter has described the panel for the experiments on decentralised velocity feedback 

using electromagnetic reactive actuators. The experimental panel is equipped with nine reactive 

actuators closely collocated with nine sensors. Two different types control configurations using 

two different sensors were tested: high performance B&K accelerometers and low cost MEMS 

accelerometers. All the components of the controller for the two configurations have also been 

described. The stability of the two configurations was assessed using the Nyquist criterion and 

simulations on the closed loop response were carried out. It was found that for the first 

configuration the control system is able to start to pin the panel and therefore the absorbed 

power is maximised before the system becomes unstable. For the configuration using MEMS 

accelerometers the system becomes unstable before the maximum of the power absorbed by the 

controller is reached. In the implementation of the self-tuning algorithm based on the 

maximisation of the absorbed power, described in Chapter 3, it is assumed that the absorbed 

power is maximised for a value of control gain smaller than the maximum stable one. Therefore 

the control configuration using B&K accelerometers has been chosen to carry out the 

experiments for the real time control presented in the next chapter.  





 

 

5. Experimental implementation of self-tuning 

control 

In this chapter experimental results on the performance of the control system are presented. 

Firstly, real time control with a single control unit is investigated by measuring the estimated 

kinetic energy of the panel and the power absorbed by the controller for wide range of the 

feedback gain. Secondly, results on a two channel control system, are discussed in order to 

verify possible interaction between control units. In the last section the algorithm to maximise 

the power absorbed by each of the two control units, as described in Chapter 3, is 

experimentally implemented. 

5.1. Experimental setup of a self-tuning control unit 

Figure ‎5.1 shows a scheme of the experimental setup of the self-tuning control unit. The 

velocity signal was amplified using a power amplifier and fed back to the voice-coil actuator. 

The gain of the amplifier was set to the maximum value. A digital taper-potentiometer was used 

to attenuate the velocity signal fed back to the actuator. The potentiometer is composed of 256 

resistive sections, so that between each resistive section and both ends of the potentiometer are 

outputs tap points.  

 

Figure ‎5.1: Scheme of an experimental self-tuning control unit 

The tap point of the resistive array is set by an 8-bit digital control signal. The control of the 

device was accomplished via a 3-wire serial port interface using the digital output of a data 

acquisition device. The attenuation provided by the potentiometer was in the range 0 dB to -50 

dB with 256 possible linear steps. However, only 23 steps where selected in order to have 2dB 

attenuation between successive steps.  
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The resolution in the attenuation was limited by the level of noise in the velocity signal. The 

solid line in Figure ‎5.2 shows the theoretical values of dB attenuation while the dots shows the 

23 measured values of dB attenuation considered during the experiments as function of the 

wiper‟s‎position. 

 

Figure ‎5.2: Attenuation introduced by the potentiometer in decibel against the position of the wiper. 

For direct local velocity feedback, the secondary force at each position, fr, is proportional to the 

measured velocity, vr, in each channel via a feedback gain   . The power absorbed by this 

controller is then given by:  

The system is made self-tuning by using the algorithm described in Chapter 3. The algorithm 

sequentially varies the control gain of each loop, estimates the absorbed power and adapts the 

control gain to maximise this power. The velocity waveform is directly fed back to the actuator 

but the power is estimated off line, using the mean square velocity, and the control gain is 

changed in response to this estimate. Thus the tuning does not introduce any phase lag in the 

feedback. 

 

 

 

 

 

 

       
 

 
  { ̃ 

  ̃ }  
 

 
  | ̃ |

  (‎5.1) 
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Table ‎5.1: specifications of the acquisition device and the potentiometer 

 Parameter Specification 

Data acquisition device 

Manufacturer Measurement Computing 

Model USB-1408FS 

Number of analogue inputs 4 

Input ranges ±2 V 

Maximum sample frequency 48 kHz 

Resolution 14-bits 

Number of digital output 16 

Potentiometer 

Manufacturer Maxim 

Model DS1267 

Digital steps 256 

Attenuation range -50 - 0 dB 

 

The panel was excited with a shaker, fed with white noise signal in the frequency band of 10-

1000 Hz. The velocity measured by the sensor was acquired for 10 seconds and sampling 

frequency of 3 kHz using the analogue input of the data acquisition device. The main 

specification of the data acquisition device and the potentiometer are summarised in Table ‎5.1. 

The acquired velocity signal was digitally filtered with a high-pass filter with a cut off 

frequencies of 52 Hz. The filter reduces the noise level at low frequency and the mains at 50 Hz, 

especially for high values of control gain when the measured velocity is very low. The power 

was calculated as the mean product of the measured velocity signal and the signal driving the 

actuator. This was implemented by taking the product of the pre-attenuation velocity signal and 

the post-attenuation velocity signal (see Figure ‎5.1). The control algorithm iteratively changes 

the attenuation, estimates the power and adapts towards the attenuation that maximises the 

power absorbed by the control unit, as described in Chapter 3.   

5.2. Performance with real time control using a single control unit 

In this section results for real time control using control unit number 5 are discussed although 

results for real time control using control unit number 1 can be found in Appendix D. 

Figure ‎5.3(a), shows the power spectral density (PSD) of the kinetic energy of the structure 

from the measured velocities of the panel, estimated from the integrated outputs of the 9 

accelerometers, for different values of control gain corresponding to 0, -15 and -50 decibels of 

attenuation in the signal fed back to the actuator. Figure ‎5.3(b) shows the same results obtained 
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from numerical simulations of clamped-clamped aluminium panel of the same dimensions when 

the kinetic energy is calculated as the sum of the mean squared velocities at the position of the 

nine accelerometers using the mathematical model described in Chapter 3.  

 

Figure ‎5.3: PSD of the estimated kinetic energy of panel with no control (solid line), minimising the 

estimated frequency averaged kinetic energy of the panel (dashed line) and high control gain (dotted 

line) a) measured and b) simulated 

The masses of the sensors and the coil have also been included in the model. The modal 

damping used in the simulations has been estimated from experimental results as 2% for the 

first mode and 1% for all the others. The results show that the response of the panel is 

characterised by distinct lightly damped resonances at low frequencies. The dashed line in 

Figure ‎5.3(a) and (b) represents the response of the panel for the control gain that minimises the 

frequency averaged response of the panel. If the control gain exceeds this value, the response of 

the panel increases again (dotted-line), at other frequencies, eventually creating a new set of 

resonance frequencies. As already seen in Chapter 3, this is due to the fact that the control loop 

is pinning the panel at a control position and thus the resonance frequencies of the point-

constrained clamped panel are shifted up. Since the control unit is placed in the centre of the 

panel only the first mode is most influenced by the controller and the first resonance due to the 

pinning appears at around 136 Hz. The peak at about 17 Hz, when the control gain is set at the 

maximum (dotted-line), is probably due to loss of accuracy of the sensor at low frequency.  

The measured and simulated results are different in a number of aspects, however. The 

measured resonance frequencies of the uncontrolled structure are lower than the resonances 

calculated in the simulation. This is because the experimental boundary conditions do not 

produce perfect clamping. The experimental panel is clamped between two aluminium frames 

fixed with screws and has the first resonance frequency at about 58 Hz, compared with a 

calculated value of 62 Hz with fully clamped edges, although the results are close enough to 

make the comparison useful. 
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Figure ‎5.4: a) experimental and b) simulated results of the normalised total kinetic energy of the panel 

and c) experimental and d) simulated results of the total power absorbed as function of the control gain 5.  

To obtain broadband control, the estimated kinetic energy and power absorbed by the controller 

have been averaged over the frequency band from 10 to 1000 Hz. Figure ‎5.4(a) shows the 

measured total kinetic energy of the panel, normalised to the total kinetic energy without 

control, plotted against the feedback gain, which is normalised by the maximum gain used in the 

experiment, while Figure ‎5.4(c) shows the measured total power absorbed by the control unit. 

The measurement units of the absorbed power have been omitted because the control gain used 

to estimate the absorbed power is the measured attenuation introduced by the potentiometer, not 

the real overall value of gain as shown in Figure ‎5.1. The experimental results show that the 

optimum value of the control gain which minimises the total kinetic energy is about -13 dB and 

produces a reduction in total kinetic energy of about -2.4 dB. The control gain which maximises 

the total power absorbed is about -17 dB and produces a reduction in the total kinetic energy of 

the panel of about -2.2 dB. Therefore, maximising the absorbed power produces a global 

structural response which is only about 0.2 dB higher than when the global response itself is 

minimised. This suggests that a good level of performance can be achieved with broadband 

excitation by maximising the power absorbed by the controller. Moreover the gradient of the 

total kinetic energy is very small around its minimum which means that a small error in the 
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tuning of the control gain it does not significantly affect the total response of the structure. 

Figure ‎5.4(b) and (d) shows the same results obtained from numerical simulations. The control 

gain in the simulation is normalised to the maximum control gain used in the experiments. 

Simulation and experimental results are in reasonable agreement. The major difference is that 

the maximum reduction in the response of the panel in simulation is about -1.6 dB, which is 1.8 

dB less than the reduction achieved in the experiments. This could be due to the fact that the 

control unit in the experimental setup is not placed exactly symmetrically compared with the 

actual modal shapes, so that the control unit in the experimental setup is able to marginally 

control modes that are uncontrollable in the simulations.  

5.3. Performance with real time control using two control units 

In this section the real time control of a two channels control system is discussed. In this case 

the estimated total kinetic energy of the structure and the total power absorbed by the two 

control units have been measured for a wide range of combination of the two control gains. 

Figure ‎5.5(a) shows the total kinetic energy of the panel, estimated as the sum of mean squared 

velocities measured by the nine monitoring sensors normalised to the estimate total kinetic 

energy without control, while Figure ‎5.5(c) shows the total power absorbed by the two control 

units as a function of the two control gains. In this section, the power absorbed is normalised to 

the power absorbed when the two control gains are both set to -12 dB in order to make the 

comparison between experiential and theoretical results easier. The experimental results show 

that the combination of feedback gains that achieves a maximisation of total power absorbed by 

the two control units corresponds reasonably well to those that result in the minimisation of the 

total kinetic energy of the structure. A detailed analysis of Figure ‎5.5(a) and (c) shows that the 

minimum of the kinetic energy is about -3.7 dB when the two control gains are set to -17 and -

15 dB. The power absorbed by the two control units produces a reduction of -3.5 dB in the total 

kinetic energy of the panel when the two control gains are set to -15dB and -15dB. These results 

suggest that, for broadband disturbances, controlling the response of the panel by locally tuning 

each‎control‎loop‎to‎maximise‎its‎own‎absorbed‎power‎results‎in‎global‎reduction‎of‎the‎panel‟s 

response, as seen earlier in Chapter 3. Moreover, the total kinetic energy of the panel as a 

function of the two control gains has a gradient that is low around its minimum; therefore a 

small error in the tuning of the two control gains has negligible effect on the total structural 

response. Experimental results are in reasonable agreement with the simulation results shown in 

Figure ‎5.5(b) and (d). A summary of the comparison between experimental and simulation 

results is shown in Table ‎5.2. 
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Figure ‎5.5: a) experimental and b) simulated results of the normalised total kinetic energy of the panel 

and c) experimental and d) simulated results of the total power absorbed as function of the two control 

gains. 

Table ‎5.2: Comparison between experimental and simulation results for the two channels control system 

 Experimental results Simulation results 

Minimising 

Kinetic Energy 

g1=-15 dB  g5=-17 dB g1=-14 dB  g5=-18 dB 

Reduction in KE =-3.7 Reduction in KE =- 5.4 dB 

Maximising 

Power 

g1=-15 dB g5=-15 dB g1=-18 dB g5=-16 dB 

Reduction in KE =-3.5 dB Reduction in KE =-5.3 dB 

Figure ‎5.6 shows the measured (on the left) and simulated (on the right) values of the individual 

power absorbed by the two control units as function of the two control gains. The results show 

that the power absorbed by each control unit is reduced when both control units are tuned to 
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their combined optimal values, compared with the power absorbed when they are individually 

tuned in the absence of the other. 

 

Figure ‎5.6: a) and c) experimental and b) and d) numerical results of the individual total power absorbed 

by control unit 1 and 5 as function of the two control gains.   

The simultaneous maximisation of the local power in both control units, however, converges to 

the maximisation of the total absorbed power, as shown in Figure ‎5.5(d). An important aspect of 

the experimental curves in Figure ‎5.6, as far as a practical algorithm is concerned, is that if all 

the other control gains are fixed, the local power absorbed by one loop is still maximised by a 

single value of its control gain. Thus the adaptation can be performed as long as the estimation 

of the power absorbed by one channel is made when the control gain of the other is not varied. 

The self-tuning algorithm described in Chapter 3 can be used to sequentially adjust the 

individual control gains.  

5.4. Experimental implementation of the self-tuning control algorithm 

The experimental results presented in sections 5.2 and 5.3 have shown that for broadband 

stationary excitation a similar control performance is achieved minimising the total kinetic 

energy of the plate or maximising the power absorbed by each of the feedback loops. This 



 5. EXPERIMENTAL IMPLEMENTATION OF SELF-TUNING CONTROL 

89 

suggests that reductions in the overall vibration can be obtained by adapting the local feedback 

gains of the control units to maximise the total power absorbed by each control unit. In this 

section the performance of the algorithm to maximise the power absorbed by each of the two 

control units is described. 

 

Figure ‎5.7: convergence of the self-tuning algorithm a) starting from g1=-50 dB and g5=-50 dB and b) 

starting from g1=-50 dB and g5=-25 dB 

Figure ‎5.7 shows the convergence of the algorithm in terms of the two control gains when their 

initial values are a) both set to -50 dB and b) when the control gain 1 is set to -50 dB and control 

gain 5 is set to -25‎dB.‎In‎ this‎example,‎ the‎ initial‎value‎of‎α,‎which‎ is‎ the‎step‎by‎which‎ the‎

attenuation is decreased at the first iteration, is 13 dB and each iteration takes about 20 seconds. 

The algorithm is programmed to stop adjusting when α becomes smaller than 2 dB, which is the 

limit of resolution in this case. As shown in section 5.3 the optimum control gains which 

maximises the total absorbed power are g1=-15dB and g5=-15dB. Figure ‎5.7shows that the final 

setting of the two control gains in both cases is within ±4 dB of their optimum, a range of 

feedback gains that would result in a maximum error in the minimisation of the total kinetic 

energy of the structure of about 0.5 dB. Higher precision in the adaptation is difficult to achieve 

with the current arragement due to noise in the measurement of the control velocity.  

Figure ‎5.7(a) shows that the algorithm converges after 22 iterations to -15dB of attenuation for 

both channels. Figure ‎5.7(b) shows that the algorithm converges after 21 iterations to -15dB for 

channel 1 and -13dB for channel 5. When multiple feedback units are tuned simultaneously, the 

power absorbed by one control unit is influenced by the other, as seen in section 5.3. Therefore, 

the individual power absorbed by one control unit must be re-estimated, keeping the other gain 

constant, before this control gain is varied. One limitation of the current algorithm is thus that 

some global synchronisation is required for multichannel control systems to ensure the loops 

adapt sequentially. It may be possible to communicate the measured absorbed power between 

units, which would allow more global tuning strategies. Another limitation is that the level of 
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disturbance is assumed to be constant from one step to the next so that the measured change in 

power is due to the change in gain rather than a change in disturbance. The performance of this 

self-tuning system could also be improved by reducing the noise in the measurements, so that a 

shorter acquisition time would be required to obtain the same accuracy.  

 

Figure ‎5.8: measured PSD of the kinetic energy of the panel without control (solid line), after the 

algorithm has converged (dashed-line) and implementing the maximum control gains on both channels 

(dotted-line). 

Figure ‎5.8 shows the PSD of the measured kinetic energy of the panel for the uncontrolled 

structure (solid line), when the power absorbed by the two control units is maximised (dashed 

line) and when the maximum control gains are implemented. The plot shows that the response 

of the structure is damped at the first few resonances when the power absorbed by each control 

unit is maximised and the first mode is fully controlled. For very high control gain the two 

control units are able to begin to pin the panel, so that new resonances appears in the spectrum 

of the structural response (dotted-line). If all nine control units installed on the panel were used, 

it would be necessary to include additional monitoring sensors in the estimation of‎the‎panel‟s‎

kinetic energy to correctly account for the modes generated when the controller pins the 

structure at the control positions. 

The use of more than two control units has been discussed in Chapter 3 for a panel subjected to 

a‎ broadband‎ „rain‎ on the‎ roof‟‎ excitation.‎ The‎ following‎ simulations‎ using‎ nine‎ self-tuning 

control units have been carried out when the panel is excited by a point force. Figure ‎5.9(a) 

shows the positions of the nine control units and monitoring positions while Figure ‎5.9(b) shows 

the values of the control gains of each unit after the self-tuning algorithm based on the 

maximisation of the absorbed power has converged.  
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Figure ‎5.9: (a) Scheme of the panel with the control positions (o) and monitoring positions (*); (b) values 

of the control gains in dB that maximise the power absorbed of each control unit. P indicates the position 

of the primary excitation. 

Figure ‎5.10 shows‎the‎PSD‎of‎the‎panel‟s‎kinetic‎energy‎without‎control‎(solid‎line),‎when‎the‎

power absorbed by each control unit is individually maximised (dashed line), and when the 

kinetic energy is minimised using the same value of gain for each feedback loop (dotted-line). A 

total of 49 evenly separated velocity measurement locations have been monitored so that the 

kinetic energy of the panel is correctly estimated when the feedback loops implement very large 

feedback gains so that the panel is pinned at the control positions. 

 

Figure ‎5.10: PSD of the total kinetic energy when g= 0 (solid line), the self-tuning algorithm is 

implemented (dashed line) and g1-9=-13.0 dB (dotted line). 

In the uncontrolled response of the panel (solid line) the contributions of some higher 

frequencies modes are greater when 49 instead of 9 velocities are considered. Although the PSD 

of the kinetic energy is shown up to 1 kHz the simulations have been performed with an 

excitation band up to 10 kHz to include the new resonances that would be created when high 

values of control gains are implemented. The plot shows that a very similar response is obtained 
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maximising the power absorbed by each control unit compared with the minimisation of the 

kinetic energy of the panel using equal gains. The overall reduction obtained from 1 Hz to 1 

kHz normalised by the total kinetic energy of the panel without control after the self-tuning 

algorithm has converged is about 7.4 dB while the one obtained minimising the overall kinetic 

energy of the panel is about 8.1 dB. The use of nine feedback loops improves the performance 

of the control system providing 4 dB reduction in the total structural response more than the two 

channels controller described in section 5.3. Figure ‎5.11 show the convergence of the algorithm 

for the nine control gains tuning all control unit sequentially. In the simulations the initial value 

of the step by which the control gain is increased is 10 and the error in the estimation of the 

optimal control gain is ±0.2. Figure ‎5.11 shows that the algorithm converges to the optimum 

between these limits. 

 

Figure ‎5.11: convergence of the control gains of the nine control units 

5.5. Summary and conclusions 

This chapter has presented an experimental implementation of multiple channel velocity 

feedback loops on a panel. Experimental results have shown that, for broadband excitation, the 

maximisation of the power absorbed gives good level of performance in practice if compared 

with the minimisation of the kinetic energy of the structure. The transition in the control action 

between optimum damping and pinning of the structure has been experimentally demonstrated. 

The implementation of a simple algorithm to adjust the control gains in a multichannel 
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configuration for a stationary disturbance has shown that each control unit can be made self-

tuneable. A limitation of this algorithm is that a synchronisation in the tuning of multiple 

control units is required since the power absorbed by one feedback loop is influenced by all the 

others. Moreover, the current algorithm stops to monitor the absorbed power after the algorithm 

has converged being unable to track changes in the operating conditions.  

A drawback of the electromagnetic reactive actuators used in these experiments is that they need 

a structure to react the force off. In the next part of the thesis the more convent inertial actuators 

are considered. 

 





 

 

6. Maximisation of power absorbed using an 

inertial actuator in a velocity feedback loop 

Although the principle of self-tuning to maximise power absorption has been demonstrated 

using reactive force actuators, it is often not possible to use these in practice, since there may be 

no solid structure to react the force off.  

This chapter presents a preliminary study for the use of the more practical inertial actuators to 

control a lightly damped panel using a single velocity feedback. Inertial actuators react the 

generated force off a proof mass and have been widely used for active vibration control [7]. 

Above their natural frequency they can behave very much like ideal force actuators over a 

frequency band of several decades, before higher order resonances interfere with their dynamics 

[40]. When inertial actuator are employed, however, the feedback control loop is no longer 

unconditionally stable, even under ideal conditions, since the 180º phase shift in the response of 

the actuator below its natural frequency will give rise to low frequency instabilities if the 

feedback gain is too high.  

6.1. Two port network of an electromechanical inertial actuator 

The transducer assumed here to control the vibration of a structure is an electromagnetic inertial 

actuator. In such transducers the mechanical system is fully coupled with the electrical system, 

and these two coupled reactions can make the model complicated. In this section the 

mathematical model of an inertial actuator is derived. A two-port model of the actuator has been 

used to describe the electromechanical behaviour of the transducer when the actuator is attached 

to a generic structure [39]. Figure ‎6.1 shows the two-port model of the transducer. The 

mechanical system, to which the transducers is attached, is represented by its blocked force  ̃  

and its mechanical impedance  ̃  .  ̃   represents the open circuit mechanical impedance of 

the actuator and  ̃   is the blocked electrical impedance of the transducer.  ̃  and  ̃  are the 

transduction coefficients that quantify the electromechanical coupling.  ̃  describes the current 

produced per unit velocity when  ̃  equal zero and  ̃  describes the force produced per unit 

electric current when  ̃   is equal zero. 
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Figure ‎6.1: A two-port network model of a transducer. 

From Figure ‎6.1, the following relations between the mechanical quantities (velocity  ̃ and 

force  ̃) and electrical quantities (voltage  ̃ and current  ̃) can be written: 

 ̃   ̃   ̃   ̃  ̃ 
(‎6.1) 

 ̃   ̃  ̃   ̃   ̃ 
(‎6.2) 

Analytical expressions for the impedances and transduction coefficients are derived in 

Appendix E for a single degree of freedom inertial actuator. The force,  ̃ generated by the 

actuator on the structure can be expressed as: 

 ̃   ̃   ̃   ̃  
(‎6.3) 

where  ̃   is the structural impedance and  ̃  is the blocked force necessary to pin the structure 

at control position. The velocity at control position can be written as: 

  ̃   ̃  ̃   ̃   ̃   (‎6.4) 

where  ̃  is the mobility at control position,  ̃   is the cross mobility between the location of the 

primary excitation  ̃  and the control location. Setting equation (‎6.4) to zero the resulting force 

 ̃  is given by: 

 ̃   
 ̃  

 ̃ 

 ̃   (‎6.5) 

6.2. Velocity feedback using a current-driven inertial actuator 

For a velocity feedback control using a current-driven inertial actuator, the current  ̃ is 

proportional to the velocity  ̃ via a control gain –g, and thus: 

 ̃     ̃ 
(‎6.6) 
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Substituting equation (‎6.6) in (‎6.1) and (‎6.2) the voltage  ̃ and the force  ̃ become: 

where  ̃  is the total mechanical impedance presented by the transducer. In order to simulate 

the response of a lightly damped structure controlled by a velocity feedback using a current-

driven inertial actuator the model derived in Chapter 3 for an ideal point force actuator can be 

used by substituting the real frequency independent control gain with the complex impedance 

 ̃ . Substituting equations (‎6.3) in (‎6.8),  ̃  can be written as: 

 ̃  
 

   ̃   ̃    ̃  

 ̃   (‎6.9) 

Substituting equation (‎6.9) in (‎6.6),  ̃ is given by: 

 ̃  
  

   ̃   ̃    ̃  

 ̃   
(‎6.10) 

The force   ̃ can be obtained by substituting equation (‎6.9) in (‎6.8) giving:  

 ̃  
   ̃   ̃  

   ̃   ̃    ̃  

 ̃   (‎6.11) 

The mechanical power absorbed by the controller is given by: 

      
 

 
  { ̃ ̃ }  

(‎6.12) 

substituting equations (‎6.11) and (‎6.9) in (‎6.12) yields: 

      
       ̃   ̃    

 |   ̃   ̃    ̃  |
 | ̃ |

 
  (‎6.13) 

6.3. Stability of a feedback loop using a current-driven inertial actuator 

The stability of the control system is assessed using the Nyquist criterion. The open loop 

frequency response function for a single control channel can be derived from the velocity 

response at the control position in absence of primary excitation: 

 ̃    ̃    ̃    ̃  

 ̃  (   ̃   ̃  ) ̃   ̃  ̃  

 

(‎6.7) 

 

 

(‎6.8) 



6. MAXIMISATION OF POWER ABSORBED USING AN INERTIAL ACTUATOR IN A VELOCITY FEEDBACK LOOP 

98 

 ̃    ̃  ̃ . 
(‎6.14) 

Assuming that a current proportional to the velocity signal is fed back to the actuator, equation 

(‎6.8) can be substituted in equation (‎6.14) giving: 

 ̃   ̃   ̃  ̃   ̃  ̃   ̃   ̃  ̃, 
(‎6.15) 

where the term  ̃  ̃ has been included to take into account the effect of the base mass of the 

actuator whose impedance is  ̃      . Thus substituting equation (‎6.6) in equation (‎6.15) 

the open loop frequency response function can be written as:  

 ̃  
 ̃

 ̃
  

 ̃  ̃ 

   ̃  ̃    ̃  ̃ 

  
(‎6.16) 

Figure 6.2 shows the bode diagram of the open loop FRF of the current-drive inertial actuator, 

with the parameter listed in Table 6.1 used to control the simply supported panel of Chapter 3. 

The parameter of the inertial actuators were based on [41] but with stiffness modified to give 

lower natural frequency. 

Table ‎6.1: characteristic of the inertial actuator 

Parameter Value 

Electrical resistance of the coil   R=2.7 Ω 

Base disc mass  Mw=9.5 g 

Proof mass Ma=24 g 

Spring Stiffness  Ka=100 N/m 

Natural frequency     10 Hz 

Viscous damping coefficient Ca=1.96 N/ms
-1

 

Viscous damping coefficient    0.63 

Transduction coefficient Bl=2.6 NA
-1 
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Figure ‎6.2: Open loop frequency response function of a current driven inertial actuator 

Figure ‎6.2 shows a phase lag of 180º at round 10 Hz due to the resonance of the inertial 

actuator. For higher frequencies the actuator behaves like and ideal velocity feedback using a 

point actuation force with the phase response between -270º and -450º.  

Figure ‎6.3 shows the Nyquist plot of the open loop FRF. The locus crosses the left hand side of 

the diagram indicating that the loop is only conditionally stable. In this case the gain margin, 

which represents the maximum gain that can be implemented before the system gets unstable, is 

about 34 dB. 

 

Figure ‎6.3: Nyquist plot of the open loop frequency response function of a current driven inertial actuator 

Improvements in the stability can be achieved by using actuators with low natural frequency 

compared with the first structural resonance and with a relatively high internal damping. The 

level of damping of the inertial actuator chosen in the example might be difficult to achieve in 

practice. A natural frequency of 10 Hz also requires the use of a very soft suspensions, which 
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could cause high static displacement of the proof mass and likely stroke saturation for sudden 

changes of the primary disturbance leading the system to instability [42]. These slightly 

unrealistic parameters have been chosen for these simulations to have a more stable controller in 

order to gain a better understanding on the possibility to use the maximisation of power 

absorbed by the controller as a self-tuning strategy when an inertial actuator is employed. A 

practical possibility to increase the stability of the controller is to use an analogue compensator 

that shifts the apparent natural frequency of the inertial actuator at lower frequency as described 

in reference [43]. 

6.4. Minimisation of the kinetic energy and the maximisation of absorbed power using 

an inertial actuator 

In‎ this‎ section‎ simulation‎ results‎ of‎ a‎ simply‎ supported‎ panel‎ subjected‎ to‎ „rain-on-the-roof‟‎

excitation and controlled by a single velocity feedback control unit consisting of an inertial 

actuator collocated with an ideal velocity sensor are presented. The inertial actuator is driven 

with a current proportional to the measured velocity. The characteristics of the actuator are 

listed in Table ‎6.1. Figure ‎6.3 shows the kinetic energy of the panel used in Chapter 3 for 

increasing values of control gain g. The response of the panel is damped, even when the 

feedback gain is zero, due to the passive loading of the actuator, which acts primarily as a 

passive damper above its natural frequency. As the feedback gain is increased, significant 

attenuation is initially obtained at the first few panel resonances. 

 

Figure ‎6.4:‎PSD‎of‎the‎panel‟s‎kinetic‎energy‎with‎a‎local‎velocity‎feedback‎controller‎driving‎the‎inertial‎

actuator with a current proportional to the velocity before placing the actuator (faint line) when feedback 

gain is g=0 (solid-line), g=11 Asm-1 (dashed line), and g=51.4 Asm-1 (dotted line). 

At higher gains, however, as well as the additional resonances due to pinning starting to appear, 

there is also significant enhancement of the vibration at the natural frequency of the actuator, 

due to the positive feedback in this frequency region caused by the phase response of the 
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actuator (dotted-line). The feedback gain in this case, in which the actuator is driven by a 

current, has units of Asm
-1

, but since the assumed transduction coefficient, Bl, is 2.6 NA
-1

, it has 

a similar numerical value to that used in Chapter 3. 

 

Figure ‎6.5: Total kinetic energy of the panel (a) and power absorbed by the controller (b) as function of 

feedback gain for a local velocity feedback controller driving an inertial actuator with a natural frequency 

of 10 Hz (solid line). 

The total kinetic energy of the panel and local absorbed power is plotted as a function of 

feedback gain in Figure ‎6.5(a) and (b) for this case. These graphs are similar to those obtained 

for a point force actuator in Chapter 3, up until the critical gain is approached, for which the 

system becomes unstable. At low control gains, however the kinetic energy, normalised by that 

before the actuator is attached is reduced by about 2 dB and the power absorbed by the 

controller no longer tends to zero. This is because the passive response of the inertial actuator 

still dissipates mechanical power even when the actuator is undriven. As the feedback gain is 

increased towards the value for which the system becomes unstable, however, the kinetic energy 

becomes very large and the power absorbed becomes negative. 
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The frequency domain results are not valid for higher feedback gains. It is striking how quickly 

these curves deviate from those using an ideal force actuator as the instability is approached. 

As equation (‎6.2) shows, the control force is no longer directly proportional to the input signal 

when using an inertial actuator, since the actuator has its own dynamics. In order to calculate the 

local power absorbed by the actuator, as the product of the force it produces multiplied by the 

local velocity, it is thus necessary to calculate an estimate of the force,  ̂, using estimates of the 

blocked response and undriven impedance  ̂  and
 
 ̂  , so that: 

as illustrated in Figure ‎6.6. This figure shows how this estimate of the absorbed power can be 

used to tune the feedback gain g. A compensator,  , is also included before the actuator, which 

is assumed to be unity here, but in general could be used to lower the apparent natural frequency 

of the actuator [43], in which case  ̂  would need to be estimated with this compensator in 

place, but  ̂   is unaffected. 

 

Figure ‎6.6: Self-tuning arrangement for direct velocity feedback with an inertial actuator in which C is a 

compensator for the actuator, and 2T̂  and moẐ  are filters representing the blocked response and the 

mechanical impedance of the actuator and compensator, used to estimate the applied force, f̂ . 

 

 ̂   ̂  ̃   ̂   ̃  
(‎6.17) 
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Figure ‎6.7: Blocked Frequency response of an inertial actuator, modelled as a single degree of freedom 

system with the parameters shown in table 1 (solid line) and with  20% variations in its natural 

frequency and damping. +20% ωa  +20% ζa (dashed line), +20% ωa -20% ζa (dotted line), -20% ωa +20%ζa 

(dash-dotted line), -20% ωa  -20% ζa (faint line). 

One of the potential dangers in this approach is that the actuator dynamics are never known 

perfectly, and may change with time or operating temperature. A series of further simulations 

have thus been conducted with 20% deviations in either the modelled natural frequency or 

modelled damping ratio of the actuator. Figure ‎6.7 shows the blocked actuator response  ̂   for 

various modifications of    and   .  

 

Figure ‎6.8: power absorbed by the controller as function of feedback gain for a local velocity feedback 

controller driving an inertial actuator with a natural frequency of 10 Hz (solid line). Also plotted is the 

estimated power absorbed when the actuator model is incorrectly identified+20% ωa  +20% ζa (dashed 

line), +20% ωa -20% ζa (dotted line), -20% ωa +20 ζa (dash-dotted line), -20% ωa  -20% ζa (faint line). 

The effect of these deviations in the modelled response on the estimated absorbed power are 

also plotted in Figure ‎6.8, which shows that although the estimated power is somewhat in error 
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for low feedback gains, it retains the same shape near its peak as that with an accurate estimate 

of applied force and can thus still be reliably used to tune the feedback gain.  

When the feedback gain is very close to instability, however, and the estimated natural 

frequency of the actuator is below the true value, there is a sharp spike in the estimated absorbed 

power. The true force is then very close to being out of phase with the input signal, i, but the 

estimated force will have less phase shift, since the phase of the estimated actuator response is 

lower than the true value, as can be seen in Figure ‎6.7. The estimated absorbed power thus 

becomes greater than the true power, since the large force and input signal appear to be closer to 

being in phase. This effect should not prevent the convergence of a practical controller, 

however, since it occurs so close to the point of instability, which the controller must in any 

case steer clear of at all cost. 

The adaptation algorithm used to adjust the feedback gain based on the estimated power 

absorbed would thus have to be carefully designed not to stray too close to the unstable region. 

This is particularly important if the inertial actuator did not have such a low natural frequency, 

compared with the first structural resonance, as that assumed above. In that case, the maximum 

in the power absorption curve with an ideal force actuator could occur at a significantly higher 

feedback gain than the stability limit, so that the optimal feedback gain with the inertial actuator 

is very close to the limit of stability. This is illustrated in Figure ‎6.9, in which the actuator 

stiffness is increased so that its natural frequency is changed from 10 Hz to 20 Hz, which also 

changes the damping ratio from 0.63 to 0.35. 
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Figure ‎6.9: Total kinetic energy of the panel (a), and power absorbed by the controller (b) as a function of 

feedback gain for a local velocity feedback controller driving an inertial actuator with a natural frequency 

of 20 Hz. Also plotted is the estimated power absorbed when the actuator model is incorrectly identified;  

+20% ωa  +20% ζa (dashed line), +20% ωa -20% ζa (dotted line), -20% ωa +20% ζa (dash-dotted line), -20% 

ωa  -20% ζa (faint line). 

The ratio of the maximum, stable feedback gain,     , to the optimum feedback gain,     , can 

be estimated by using the expression for these quantities derived in [17], which are: 

where M is the mass of the panel, ω1 its first natural frequency, M1 the apparent mass associated 

with the first mode at this frequency, assumed to be approximately M/π, and ωa and    are the 

natural frequency and damping ratio of the actuator, so that: 

     
       

 

  
 

     
    

 
 

(‎6.18) 

 

 

(‎6.19) 
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This ratio is greater than unity in the simulations presented here when the actuator natural 

frequency is 10 Hz, as in Figure ‎6.5, but less than unity when the actuator natural frequency is 

20 Hz, as in Figure ‎6.9. The right hand side of this equation thus provides a convenient rule of 

thumb for estimating how well suited a given inertial actuator is for controlling a panel with 

given natural frequency.  

6.5. Summary and conclusions 

Simulation with a velocity feedback loop including an inertial electromagnetic transducer have 

been used to illustrate that the maximisation of absorbed mechanical power again provides a 

reasonable approximation to the minimisation of the kinetic energy of the host structure. Care 

must be taken to ensure the feedback gain is below that which causes instability in this case. 

The minimum feedback gain can be increased either by lowering the natural frequency of the 

actuator or using an electrical compensator in the feedback loop. The characterisation of the 

actuator can also be used to calculate the applied force from the measured current and velocity, 

so that the absorbed power can again be estimated in practice. Pressures of time prevented an 

experimental investigation of such a control system. 

The feedback control system described in this chapter requires the use of external power to 

drive the inertial actuator. In the next chapter the use of an idealised semi-active inertial 

actuator, often called dynamic vibration absorber, will be considered in controlling broadband 

vibration of a single degree of freedom system, which does not require an external power 

supply. 

 

    

    
   

  

  
 

(‎6.20) 



 

 

7. Broadband vibration control using a dynamic 

vibration absorber  

This chapter presents the broadband vibration control of a single degree of freedom system 

using a dynamic vibration absorber.  Dynamic vibration absorbers are single degree of freedom 

systems whose natural frequency is tuned to suppress the vibration at its point of attachment of 

a host structure. Tuning of a dynamic vibration absorber has previously been considered to 

minimise the kinetic energy of the host structure and here, after a brief review, the maximisation 

of the power dissipation within the absorber is also considered. 

7.1. The dynamic vibration absorber 

A widely used passive and semi-active device is the dynamic vibration absorber (DVA). Since 

its invention, in 1911 by Fhram [44], this devices have been widely studied. The DVA can be 

tuned in two different ways depending on the application. The first way of operating such a 

device aims to suppress the vibration only at a particular forcing frequency, in which case the 

device‟‎ s natural frequency is tuned to this excitation frequency.  The damping of the device 

should then be as low as possible, so that it presents the greatest impedance to the host structure 

at the operating frequency.  The device is then often known‎ as‎ a‎ “vibration‎ neutraliser”,‎ and‎

considerable ingenuity has been put into tuning the device to track variations in the excitation 

frequency [6, 45, 46]. 

Alternatively the device can be used to attenuate the vibration due to a particular mode of the 

structure over a range of frequencies, when it is sometimes‎referred‎to‎as‎a‎“tuned‎mass‎damper”‎

[3].  The optimum tuning of the natural frequency and damping ratio of the device then become 

less obvious and depend on exactly how the optimisation criterion is defined. The selected mode 

of the host structure is generally modelled as a single degree of freedom system for this 

optimisation,‎often‎without‎any‎inherent‎damping.‎Different‎optimisations‎of‎DVA‟s‎parameters‎

for broadband frequency excitation have been proposed [47-54] and will be reviewed in greater 

detailed in the next section.  

There is a vast literature on DVAs and although we do not aim to present a complete literature 

review, which is attempted in reference [45, 46], it is instructive to consider few examples of 

DVAs installed on different civil, maritime and mechanical systems. 

One application of DVAs is to control the wind induced vibration of pipelines above the Arctic 

Circle as described in references [45, 55]. Figure ‎7.1 shows a scheme of the pipeline with a 

DVA per span attached. 
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Figure ‎7.1: Pipeline with one DVA per span (figure taken from [55]) 

The vibration of the pipeline are characterised by cyclic lift force due to the vortex shedding 

phenomenon. For a span between 12 and 18 m as many as ten modes of the structure can be 

excited depending on the wind. This vibration can cause damage at the connections of the pipes 

due to mechanical fatigue.  

 

Figure ‎7.2: The DVA configuration to damp the pipeline vibration (figure taken from [55]) 

A dynamic vibration absorber has been designed with a resonance in this frequency region. Due 

to the severe environmental conditions at the Arctic Circle the design of a DVA to prevent 

changes of the stiffness and damping of the device can be difficult task. However if a change in 

the operation conditions could mistune the absorber by slightly changing its stiffness, the very 

high modal density of the pipeline ensures that the natural frequency of the DVA will always be 

near or at the resonance of the pipeline. Figure ‎7.2 shows a configuration of the dynamic 

vibration absorber, which has a mass of between 23 to 34 Kg, suspended using a series of 

elastomeric components in shear deformation. The modular design of the suspension allows 

changes in the damping and stiffness of individual devices. With use of DVAs in this 
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application, the root mean squared value of the displacement of the pipeline has been reported to 

be reduced by a factor of seven [45]. In this application the properties of the device are not 

controlled over time and so it is entirely passive. 

As second example of a purely passive control using vibration absorbers is the Millennium 

footbridge in London. During the opening day the bridge presented high level of vibrations and 

after two days of limited access was closed. Modifications of the structure were implemented 

for a total cost of 5 million pounds and the bridge reopened after two years. The excitation to 

which the bridge is exposed are mainly due to the people walking on it. This produces a 

repeating pattern of vertical force but also a sideway force due the swing of the human body. 

The typical footfall rate for a normal walking is around 2 steps per second but in large crowds 

this rate can drop to 1.4 steps per second or lower. Thus the forcing frequency is generally in the 

region of 1.2–2.2 Hz. Since alternate footsteps apply forces in opposite lateral directions, the 

lateral forcing frequencies are half of footfall rate, in the range of 0.6–1.1 Hz. On the 

Millennium Bridge, even the lowest lateral mode at 0.475 Hz was excited. These low 

frequencies were excited by pedestrians adapting their gait to the vibration of the bridge by 

adopting a zigzag walk to help them balance [56, 57]. 

In the case of Millennium Bridge, a passive modification was studied and implemented to solve 

the problem. Two possible solutions were considered [58]. The first was to move the low 

resonances of the bridge in a frequency region away from the excitation frequency, by 

increasing the stiffness of the bridge. It was calculated that an increasing of the stiffness by 

seven times was necessary to fix the problem. It was then clear that a more suitable approach 

was to damp the structure. The vibration problem was finally fixed using 37 viscous dampers to 

attenuate lateral vibration modes of the bridge and 50 tuned mass damper 26 of which were used 

to damp the vertical modes of the bridge and 24 to control lateral modes. Even though vertical 

vibrations were not observed during initial opening of the bridge, the tuned mass dampers were 

installed as a precaution. 

 

Figure ‎7.3: Millennium Bridge London (right picture) with DVA mounted beneath the deck to reduce its 

vibration level (left picture) from [59]. 
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The vibration absorbers comprise masses between 1 and 3t supported on compression springs 

[58]. Viscous damping is provided by the presence of a paddle connected to the mass and 

suspended in a pot of viscous fluid. Figure ‎7.3 shows a picture of the millennium bridge in 

London and a DVA mounted beneath the deck.  

An application of DVAs is to control the vibration of marine diesel engines [60]. In most cases, 

a practical means to reduce vibration is simply to detune the lowest natural frequencies away 

from the main dynamic excitation frequencies. This can be achieved by intervening on the 

mounts of heavy structures built on the engine which severely influence the whole dynamic of 

the system. The turbocharger of a Diesel engine can have a dominant effect on the global 

vibration of the engine due to its large mass. For new designs a firing order can be introduced to 

change the excitation forces at certain harmonic frequency. These solutions are hard to be 

implemented on existing engines already in operation. The company Wärtsiliä has reduced the 

vibrations mounting on their diesel engines using passive tuned vibration absorber [60]. The 

vibration control of an engine has to be effective on a wide frequency band and has to be 

capable to operate for thousands of running hours without maintenance. A prototype of the 

DVA is shown in Figure ‎7.4.  The absorbed developed by Wärtsiliä consists of a vibrating mass 

disc supported by steel springs. Both are located in a cylindrical steel frame filled with damping 

oil.‎All‎ the‎absorber‟s‎parameters,‎damping,‎stiffness‎and‎mass,‎can‎be‎separately‎adjusted‎for‎

individual devices. The damping can by regulated by changing the oil flow inside the absorber. 

The analysis to design the vibration absorber starts with the measurements of the engine 

response and its structural modes. These measurements allow finding the theoretical best 

position and the direction of the absorber to obtain the best reduction of the overall vibration of 

the engine. For example on a 9 cylinder four stroke Wärtsiliä 46 engine, the most efficient mode 

to be controlled was identified as the first torsional mode at 29 Hz.  

 

Figure ‎7.4: DVA to control the vibration of a Diesel engine from [60] 

The absorbed was tuned at this excitation frequency and damping was chosen to obtain a 

broadband control. In this way the absorber could reduce the vibration level at more than one 
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harmonic order. Vibrations at all the three major excitation harmonics were reduced in both 

transversal and longitudinal directions. 

An application of DVAs in which they are used as a semi-active device is the structural 

vibration control in aeronautic engineering. Aircraft engines can induce significant vibration 

into the fuselage. For example, jet engines produce vibrations that propagate through the 

structure which can cause considerable noise inside the cabin.  

Adaptive tuneable vibration absorbers have been used to control the noise in the aft cabin of 

Douglas Aircraft DC9-V [13, 61, 62]. This aircraft is powered by two jet engines mounted to 

the aft fuselage structure. This causes the engine vibration to be transmitted to the fuselage 

radiating a high level of noise inside the cabin.  

 

Figure ‎7.5: Adaptive vibration absorber mounted on the engine yokes of a Douglas DC9 aircraft from 

[61].  

These two engines can generate a tonal excitation at their rotational speed and higher 

harmonics. Initially, Douglas placed four vibration absorbers on each engine as shown in 

Figure ‎7.5. They were tuned to neutralise the vibration transmission at the rotation frequency of 

the engines at the cruise speed. However, the frequency of the engine induced vibrations 

changes with the engine speed and the stiffness of the suspension of the absorber changed with 

the age of the device and operating temperature so that the vibration absorbers could be 

mistuned. For these reasons a semi-active device that can adapt to changes of the operating 

conditions was designed by Barry Controls and Hood Technology. The suspension of the DVA 

comprises two circular parallel rings connected with a plurality of flexible rods. An electrical 

motor is used to change the compression or tension on the rods in order to change the stiffness 

of the suspension and thus the natural frequency of the DVA. The DVAs are tuned 

independently during the flight by a controller. It is reported in reference [13] that 25 dB 

reduction at the noisiest seat are achieved at the engine tones and the system is able to adapt 

over the rpm range of 65-100 %. 
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7.2. Background in tuning the Dynamic vibration absorber 

A survey of tuning criterion for dynamic vibration absorbers when used as tuned mass dampers 

has been presented by Asami [47], and some of the results from this paper are presented in 

Table ‎7.1.  The original optimisation criterion used by Omondroyd and Den Hartog 1928 [63] 

was that the magnitude of the displacement was equal at the two peaks in the coupled 

displacement response after the device has been attached.  This is also known as mini-max or 

H∞ optimisation.  Another optimisation criterion would be to minimise the mean square 

displacement of the host structure when excited by a random force of uniform power spectral 

density, as first proposed by Crandall and Mark in 1963 [49] and also now known as H2 

optimisation.  A third possibility is to adjust the natural frequency and damping of the device 

such that the poles of the overall system have the greatest negative value, so that the transient 

response decays as quickly as possible.  Asami et al. [47] attribute this result in Table ‎7.1 to 

Yamaguchi in 1988 [52], although the same criterion was also considered by Miller and 

Crawley in 1985 [51]. Krenk in 2005 [53] proposed a further method to tune the parameters of a 

DVA. He tuned the frequency ratio of the two decoupled oscillators using the same criterion 

proposed by Omondroyd and den Hartog [63] and proposed a new criterion for the optimal 

damping ratio. The damping ratio was chosen by simultaneously minimising the displacement 

of the main mass and the relative displacement of the two masses calculated at the natural 

frequency of the system when the damper was blocked.  
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Table ‎7.1: optimisation criteria of the dynamic vibration absorber on a lightly damped SDOF system.      

is the optimal damping ratio of the DVA and      is the optimal frequency ratio of the natural frequencies of the two 

uncoupled systems. 

 
Optimisation 

criterion 
Performance index Objective Proposed by: Optimal parameters 

1 
   

Optimisation 
      |

  

   
|
   

 

Minimise the 

maximum 

displacement of 

the primary mass 

Ormondroyd 

& Den Hrtong 

1928 [63] 

     √
  

      
 

     
 

   
 

2 

   

 Optimisation 

of the mean 

squared 

displacement 

   
    

  

       
  

Minimise the total 

displacement of 

the primary mass 

over all frequency 

Iwata 1982 

[64], 

Warburton 

1982 [54]  

     √
       

           
 

     
 

   
√

   

 
 

3 
Stability 

Maximisation 
                

Minimise the 

transient vibration 

of the system  

Miller et 

al.1985 [51] 

Yamaguchi 

1988 [52], 

     √
 

   
 

     
 

   
 

4 

   

Minimisation 

of relative 

displacement 

      |
  

   
|
   

 

     

 |
     

   
|
   

 

Minimisation of 

displacement  of 

the main mass and 

relative 

displacement   

Krenk 2005 

[53] 

     √
 

      
 

     
 

   
 

5 

   

Minimisation 

of kinetic 

energy 

   
   ̇ 

  

         
 

Minimise the total 

kinetic energy of 

the primary mass 

over all 

frequencies 

Warburton 

1982 [54] 

     
√ 

 
 

     
 

√   
 

6 

   

Maximisation 

of the 

absorbed 

power 

    
    | ̇   ̇ |

  

         
 

Minimise the total 

kinetic energy of 

the primary mass 

over all 

frequencies 

This study 

     
√ 

 
 

     
 

√   
 

He also demonstrate that for the frequency tuning proposed by Omondroyd and den Hartog 

[63], the complex locus of the natural frequencies has a bifurcation point corresponding to the 

maximum damping of the two modes. For lower damping ratio the two modes have the same 

modal damping. Warburton in 1982 [54] proposed the minimisation of the frequency averaged 

kinetic energy of the host structure as a tuning criterion. 

In this section we consider a further criterion on which to optimise a dynamic vibration absorber 

based on the maximisation of the power dissipated by the absorber. It is found for a damped 

host structure, sometimes also called primary structure that the maximisation of the power 
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absorbed by the damper corresponds to the minimisation of the kinetic energy of the host 

structure. 

7.3. Analysis 

Figure ‎7.6 shows a scheme of a single degree of freedom system with a DVA. The primary 

system is subjected to a random excitation fp, which is assumed to have a flat power spectral 

density and v1 and v2 are the velocities of mass m1 and m2. 

 

Figure ‎7.6: Scheme of the SDOF system with the DVA 

Setting c3 and k3 to zero in equations (‎2.20) and (‎2.21), the velocities per unit input 

force of the two masses are given by: 
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(‎7.1) 

 

 

 

 

 

(‎7.2) 

The steady state response of the system can be expressed in terms of the five dimensionless 

parameters defined by: 

        : mass ratio 

        : natural frequency ratio 

      : forced frequency ratio 

 
 

          
  : primary damping 

 
 

          
  : secondary damping 

 

(‎7.3) 
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where  

   √      : natural frequency of the host / primary system 

    √      : natural frequency of the DVA 
(‎7.4) 

The five dimensionless coefficients defined in equations (‎7.3) and (‎7.4) can be written as: 

    
      

     
   

  
    

  
    

  
   

 

     
   

  
    

 

 
 

        
    

  
    

 

 
 

        
    

  
    

  

(‎7.5) 

and thus a generic dimensionless term can be written as: 

         
   

 
        

             
  

            
  

          
  

       
  

   
 
   

(‎7.6) 

Each of the coefficient in equations (‎7.1) and (‎7.2) can be expressed in non-dimensional form 

by setting each of them equal to equation (‎7.6) and solving for the parameters a, b, c, d, e, f, so 

that equations (‎7.1) and (‎7.2) can be written as: 

 ̃  √     ̃       
                         

                                 
 

 ̃  √     ̃       
                         

                                 
 

(‎7.7) 

 

(‎7.8) 

where 
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7.4. Minimisation of the total kinetic energy and maximisation of the power absorbed 

If the aim of the DVA is to minimise the integral of the kinetic energy of the primary mass 

calculated over the frequency-band   , the performance index to be minimised can be defined 

by: 

   
    | ̃ |

  

         

 
(‎7.9) 

where E[ ] denotes the expectation value. The performance index Ik represents the ratio of the 

kinetic energy of the primary system to the excitation force with a uniform spectrum density 

     . The unit of      is N
2
s/rad. The constant         is introduced to ensure that the 

performance index is dimensionless. The mean squared value of the velocity of the primary 

mass can be written as: 

  | ̃ |
   

    

    

∫ | ̃|
 

  

  

   
(‎7.10) 

Substituting equation (‎7.10) in equation (‎7.9) yields: 

   
 

  
∫ | ̃| 

  

  

   
(‎7.11) 

Thus, substituting equation (‎7.7) in (‎7.11) yields: 

   
 

  
∫ |

        
 
                

        
 
                        

|

 

  

  

  

 (‎7.12) 

Equation (‎7.12) can be integrated using the formula in reference [22] leading to: 

   
 
 
   

 
              

 
   

 
                     

 
 
 
   

   
 
    

 
                   

 
 
 
   

 
                        

  
 
      

 
 
 
    

 (‎7.13) 

On the other end the power absorbed by the DVA is the power dissipated by the damper c2 and 

so the absorbed power can be written as:    

      
 

 
  { ̃

 

 
  ̃   ̃  } 

(‎7.14) 

Where * denotes complex conjugate and the force  ̃  is the force produced by the damper given 

by: 

 ̃
 

     ̃   ̃   
(‎7.15) 
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Substituting equation (‎7.15) in (‎7.14) the absorbed power becomes: 

      
 

 
  | ̃   ̃ |

  
(‎7.16) 

In this case the non-dimensional performance index is defined by: 

    
    | ̃   ̃ |

  

        

 
(‎7.17) 

which represents the ratio of power absorbed by the DVA to that generated by excitation force 

with a spectrum density Sf acting on a damper of value      . The mean squared value of the 

relative velocity times the mechanical damping c2 can be expressed as follow: 

    | ̃   ̃ |
   

    

  

  
 
  ∫ | ̃   ̃|   

  

  

 
(‎7.18) 

Thus the performance index becomes: 

     
 
  ∫ |

        
 
                

        
 
                        

|

 

  
  

  

 (‎7.19) 

where  

           

           

           

           

The integral over the frequency band between    of equation (‎7.19) can be calculated using 

the expression given in reference [22], leading to: 

    
   

 
    

 
   

 
ζ
 
    ζ

 
 ζ

 
     

 
         

   
 
    

 
                   

 
 
 
   

 
                        

  
 
      

 
 
 
    

 

(‎7.20) 

Although the denominators in equations (‎7.13) and (‎7.20) are the same, the dependence of their 

numerators on    and   is clearly different. 

In order to minimise the total kinetic energy of the primary mass m1, the following conditions 

have to be satisfied: 
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{
 

 
     

   

  
 

  

   

  
  

 
(‎7.21) 

while to maximise the total power absorbed by the DVA the following conditions have to be 

satisfy: 

{
 

 

     

    

  
 

  

    

  
  

 
(‎7.22) 

Differentiating the performance index Ik expressed in equation (‎7.13) with respect to ζ  and  , 

and setting these equal to zero, yields a pair of simultaneous equations: 
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(‎7.23a) 

 

 

 

 

 

(7.23b) 

Following the same procedure, the partial derivatives of the performance index Ip2 expressed in 

equation (‎7.20) are given by: 

        
            

     
       

                              

             
            

      
         

      
           

   

 

 
 
  [  

 
           

 
    

 
      

 
                               

   
 
 
 
     

 
                           

 
     

 
   

   
 
 
 
     

 
          ]    

(‎7.24a) 

 

 

(7.24b) 

Simultaneous equation (‎7.23) and (‎7.24) are both satisfied for ζ    and     corresponding 

to maximising Ik and Ip2. The other solutions can be found setting to zero the terms in squared 

brackets. If ζ    the term in square brackets in equation (‎7.23a) is equal to the term in square 

brackets in equation (‎7.24a) and the term in square brackets in equation (‎7.23b) is equal to the 
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term in square brackets in equation (‎7.24b), which means that minimising the total kinetic 

energy and maximising the total power absorbed give the same solution.  

If ζ  is equal zero the primary system is undamped. Equations (‎7.23a) and (‎7.23b) for         

and         then reduce to: 

       ζ 
               

        ζ 
                

(‎7.25) 

Solving the two equations simultaneously the two positive real optimal values of        and      

are obtained as: 

{
 

 

     
 
    

 
√ 

 

     
 

√   

 
(‎7.26) 

The optimal condition in equations (‎7.26) is the same as in reference [54] although it has been 

independently derived because the result was unknown to the author at the time this research 

was carried out. In this case the performance index Ip2, however, becomes equal to     if    is 

exactly zero. The absorbed power is then independent of    and  , as can be seen from equation 

(‎7.23a) and equation (‎7.23b), since they both are proportional to ζ . Provided that ζ  has a very 

small value thus singular condition will not occur, these optimum values of    and   will be the 

same for maximising power absorption as ζ  tends to zero.  

7.5. Comparison of tuning strategies 

Figure ‎7.7 shows the performance index Ip2 as function of    when   is equal      (top plot) and 

Ip2 as function of   when    is equal ζ     (bottom plot) for different values of the primary 

damping ration   . The plot shows that when    is equal zero the absorbed power is constant. 

The absorbed power has a maximum provided    has a finite value. 
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Figure ‎7.7: Ip2 as function of ζ2 when    νopt (top plot) and Ip2 as function of    when ζ2   ζ2opt (bottom 

plot) for      . 

 

Figure ‎7.8: Ik as function of ζ2 when    νopt (top plot) and Ik as function of    when ζ2   ζ2opt (bottom 

plot) for      . 

Figure ‎7.8 shows the performance index Ik as function of    when   is equal      (top plot) and 

Ik as function of   when    is equal ζ     (bottom plot) for different values of the primary 

damping ration   . The plot shows that Ik is minimised for a single value of    and  . As    is 

increased the gradient of Ik around the minimum decreases. 

Figure ‎7.9(a) and (b) show the PSD of the velocity and displacement respectively of the primary 

mass in dimensionless form for five different strategies of tuning the DVA. In Figure ‎7.9(a) the 

area under the curve is minimised when the minimisation of kinetic energy is implemented. 

Figure ‎7.9(b) show that the    optimisation set the two peaks at the minimum magnitude and 

the area under the curve is minimised when the H2 optimisation is implemented. The 
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minimisation stability optimisation is not designed to minimise the steady state response but 

only the transient response. 

(a)

 

(b)

 

Figure ‎7.9: Optimal PSD a) of the dimensionless velocity and b) the displacement of the primary mass in 

dimensionless form when the four different criteria are implemented (ζ1   ,      ) 

Figure ‎7.10 and Figure ‎7.11 show the optimal values of the frequency ratio and the damping 

ratio as function of the mass ratio for five different tuning strategies. The five tuning strategies 

give similar optimal values when   is small. For grater values of   the optimal conditions 

diverges. It is interesting to notice that for the minimisation of kinetic energy the optimal 

damping always increases for increasing values of  . For all the other strategies the optimal 

damping ratio converges to a finite value. 

 

Figure ‎7.10: Optimal frequency ratio ν‎as‎function‎of‎the‎mass‎ratio‎μ‎for‎the 5 different tuning strategies 
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Figure ‎7.11: Optimal damping ratio ζ2 as‎function‎of‎the‎mass‎ratio‎μ‎for‎the 5 different tuning strategies 

 

Figure ‎7.12: Performance index Ik as function of the‎mass‎ratio‎μ‎for‎the 5 different tuning strategies 

Figure ‎7.12 shows the performance index Ik as function of the mass ratio   when the optimal 

values for the different strategies are implemented. The curves in Figure ‎7.12 are obtained 

substituting the optimal value in Table ‎7.1 in equation (‎7.13). The plot shows that the lowest 

curve is the one obtained when the DVA is set to minimise the kinetic energy of the primary 

mass as one would expect. 

7.6. Effect of damping in the host structures 

It has not been possible to solve equations (‎7.23a) and (‎7.24a) when ζ    in order to find 

analytical expression for       and     . 

In this case only an approximate solution of the location of the minimum of the total kinetic 

energy and thus the maximum of the total absorbed power can be found using the perturbation 

method. First of all it is assumed that the primary damping    is so small that it is regarded as a 
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perturbation. To emphasize that    is small a new symbol   instead of the parameter    is 

introduced: 

 
 

   
(‎7.27) 

Next, the solutions of equation (‎7.23a) and (‎7.24a) (which it has been shown to be the same if 

ζ   ) are assumed in the form of a power series of  : 

            
    

               
    

(‎7.28) 

Finally, equations (‎7.28) is substituted into equations (‎7.23), and collect terms of like powers of 

  and equate them to zero (starting with the constant terms, the terms containing  , the terms 

containing   , and so on) so that the equation is satisfied for all values of  . As a result, we have 

a series of equations from which we can determinate the unknown coefficients in equation 

(‎7.28) successively. The zero-order approximation leads to the result where    and     are the 

optimal values found in equations (‎7.26) when     . Equating first order terms to zero, yields 

to: 

  ζ  
           

  ζ  
           

(‎7.29) 

where 

        

   √          ⁄ √    

      √    

    √       

           

     √      ⁄  

In equations (‎7.29) the values of    and ζ   have been already substituted. The solution of 

equitation (‎7.29) is given by:  

   
√ 

    
 

ζ
  

 
  

 √   
 

(‎7.30) 

The first order approximate solution of equations (‎7.23) and (‎7.24) is therefore given by: 
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√   
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ζ
    
  

√ 

 
  

 

  

 √   
 

(‎7.31) 

Figure ‎7.13(a) and (b) show the performance indexes Ik and Ip2 as function of the damping ratio 

   and the frequency ratio   respectively when        and      . Figure ‎7.13 shows that Ik 

has a global minimum which corresponds to the global maximum of Ip2 represented‎by‎○.‎‎The‎

symbol  × in Figure ‎7.13(a) and (b) mark the position of the optimum conditions when ζ    

while‎□‎mark‎the‎first‎order‎approximate‎optimum‎given‎by‎equation‎(‎7.31).  

 

Figure ‎7.13: a) Ik and b) Ip2 when ζ1      and      . The solutions given by equations (‎7.26) are 

shown as ×, the approximate solutions given in equation (‎7.31) are shown as □,‎and‎the‎true‎minimum‎

and‎maximum‎are‎shown‎as‎○ 

7.7. Summary and conclusions 

This chapter has discussed the use of a DVA for broadband control of a single degree of 

freedom system. It has been shown that even if the damping of the host structure is not very 

light, the ratio of natural frequencies and absorbed damping ratio that maximise the power 

dissipation in the damper are the same as those that minimise the kinetic energy of the host 

structure. If the power dissipation in the damper could be measured and the disturbance was 

stationary, the DVA could be made self-tuneable.  This might be important if the damping 

mechanism of the absorber was level dependant, if it incorporated an element of coulomb 

damping for example, when subject to different disturbances. One way of implementing a 

dynamic vibration absorber with a variable damping is by using a shunted electromagnetic 

inertial actuator. In next chapter a preliminary study of broadband vibration control using such a 

device will be discussed. 

 



 

 

8. Self-tuning and power harvesting with 

electromagnetic actuators 

In Chapter 6 self-tuning of a direct velocity feedback control to reduce the response of a lightly 

damped structure, has been discussed. However, the implementation of the velocity feedback 

and the self-tuning requires energy. In this chapter the possibility is considered of using an 

electromagnetic transducer with an adaptable electrical load connected in series with the coil 

(this configuration is often called shunted electromagnetic transducer) that acts both as a passive 

damper and also as a source of electrical energy to drive the self-tuning circuit which makes the 

system energetically self-sufficient. In the first part of this chapter simulation results on reactive 

shunted actuators are presented then the case of an inertial shunted transducers is considered. 

8.1. Regenerative system for vibration control 

A regenerative vibration control system is defined as one that can extract and store vibrational 

energy from the system and use this energy to do useful work [65]. A necessary condition for a 

regenerative system to be passive is to absorb more energy than it is ever delivered to the 

system, so that the average over time absorbed power is positive. In the case of a shunted 

transducer the useful work can provide damping, and thus the system could also be termed 

semi-active. The use of shunted inertial actuators for vibration control was investigated in 

references [9] and [10] making the shunt adaptive, but in both of these papers the aim was to 

control a single mode with a largely reactive shunt impedance rather than to optimally add 

damping. It was shown in reference [66] that the power harvested by a shunted inertial actuator 

attached to a beam is maximised for a single value of the resistive shunt impedance when the 

beam is excited at its first natural frequency. In this chapter, shunted electromechanical 

actuators are considered for the control of vibration on different lightly damped structures when 

excited by a broadband disturbance. The power harvested by the control system could be used 

to drive a self-tuning circuit, which is designed to automatically adjust the shunt to minimise the 

vibration of the structure. The total kinetic energy of the structure averaged over the frequency 

is taken as the benchmark to evaluate two other self-tuning strategies: the maximisation of the 

total mechanical power absorbed by the control system and maximisation of the electrical power 

harvested by shunt. Two types of actuators are considered: shaker and inertial actuator. The first 

one produces a force reacting off a rigid structure while the second reacts off a moving mass. In 

the last part of this chapter the use of shunted inertial actuator as dynamic vibration absorbed to 

control the vibration of single degree of freedom system is considered. 
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8.2. Mathematical model for a shunted electromagnetic actuator 

The behaviour of a shunted electromagnetic actuator can be described using the two port model 

derived in the Chapter 6. In the case of a shunted electromagnetic transducer the voltage u 

across the external load can be written as: 

where  ̃  is the electrical impedance of the shunt. Substituting equation (‎8.1) in (‎6.1) and (‎6.2) 

the current  ̃ and the force  ̃are given by: 

so that the total mechanical impedance of the transducer can be derived from equation (‎8.3) as: 

Substituting equations (‎6.3) in (‎8.3) the velocity  ̃ can be written as: 

 ̃  
 ̃    ̃ 

  ̃  ̃  ( ̃    ̃ )( ̃    ̃  )
 ̃   (‎8.5) 

Substituting equation (‎8.5) in (‎8.2), the current  ̃ is given by: 

 ̃  
 ̃ 

  ̃  ̃  ( ̃    ̃ )( ̃    ̃  )
 ̃   (‎8.6) 

The force  ̃ can be obtained by substituting equation (‎8.5) in (‎8.3) giving:  

 ̃  
  ̃  ̃  ( ̃    ̃ ) ̃  

  ̃  ̃  ( ̃    ̃ )( ̃    ̃  )
 ̃   (‎8.7) 

Substituting equations (‎8.5) and (‎8.7) in (‎6.12) the mechanical power absorbed can be written 

as: 

 ̃    ̃  ̃  
(‎8.1) 

 ̃  
  ̃ 

 ̃    ̃ 

 ̃  

 ̃  ( ̃   
  ̃  ̃ 

 ̃    ̃ 

)  ̃ 

(‎8.2) 

 

 

(‎8.3) 

 ̃

 ̃
  ̃   ̃   

 ̃  ̃ 

 ̃    ̃ 

  
(‎8.4) 
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    ̃  

 |  ̃  ̃  ( ̃    ̃ )( ̃    ̃  )|
 | ̃ |

 
  

(‎8.8) 

The electrical power dissipated in the electrical impedance  ̃ , which is also the power that can 

be potentially harvested, is given by: 

      
 

 
    ̃ ̃   

| ̃| 

 
    ̃    (‎8.9) 

Substituting equation (‎8.6) in (‎8.9) yields: 

      
| ̃ |

 
    ̃  

 |  ̃  ̃  ( ̃    ̃ )( ̃    ̃  )|
 | ̃ |

 
  

(‎8.10) 

8.3. Broadband vibration control using a shunted shaker  

In this section the use of a shunted shaker for broadband control of lightly damped structures is 

investigated. The effect of the shaker on a vibrating structure can be described using the two 

port model derived in the previous section. Assuming that a shaker is modelled as a single 

degree of freedom system and is reacting off a rigid structure, the open loop mechanical 

impedance  ̃  , the blocked electrical impedance  ̃   and the transduction coefficient  ̃  and  ̃  

can be calculated as:  

where Ms, Ks and Cs are‎ the‎ moving‎ mass,‎ the‎ suspension‟s‎ stiffness‎ and‎ the‎ mechanical‎

damping of the shaker, R and L are the resistance and the inductance of the coil, B is the 

manganic flux of the permanent magnet and l is the length of the coil. Substituting equations 

(‎8.11), (‎8.12) and (‎8.13) in equation (‎8.4), the mechanical impedance of the shunted shaker 

becomes: 

 ̃        
  

  
      (‎8.11) 

 ̃           
(‎8.12) 

           
(‎8.13) 

 ̃

 ̃
  ̃       

  

  
    

     

    
  (‎8.14) 
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Two commercial devices have been selected and simulations have been carried out to predict 

their mechanical impedance. The first is a V201 shaker made by LDS which has a conventional 

suspension; the second is a coil and magnate device in which the coil is free to move in the 

magnet. The main parameters of the two shakers are listed in Table ‎8.1.  

Table ‎8.1: Main parameters of two different reactive actuators 

 LDS V201 
H2W Technologies 

HCC10-15-023-1X 

Open circuit 

mechanical damping 
1.85 ~0 

Close circuit 

mechanical damping 
17.33 13.87 

Open circuit damping 

ratio 
8% 0% 

Close circuit damping 

ratio 
8.37  

Suspension‟s‎stiffness‎

(N/m) 
6650 0 

Moving mass (Kg) 0.020 0.056 (coil) 

Bl (N/A) 5.13 10.2 

Electrical  

resistance‎(Ω) 
1.7 7.5 

 

Figure ‎8.1 shows the simulated mechanical impedance of the two shunted shakers. The arrows 

in the plots indicate increasing values of the resistive load in the shunt.  

 

Figure ‎8.1: Mechanical impedances of (a) LDS V201, and (b) the H2W Technologies shaker 

Figure ‎8.1(a) shows the mechanical impedance of the LDS shaker. In the plot different 

frequency regions can be observed. A low frequency region, where the impedance is stiffness 

controlled and total impedance  ̃ can be approximated as         ; A frequency region around 
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the natural frequency of the shaker where the total impedance  ̃  is damping controlled and can 

be approximated as: 

where RL is the resistive load. A high frequency region where the impedance is mass control and 

the total impedance  ̃  can be approximated as     . 

The maximum damping produced by the shunted shaker is reached when RL is equal zero and 

therefore depends on the value of the transduction coefficient Bl and the internal electrical 

resistance of the coil. Approximating the impedance of the shaker by         at low frequency 

and by        at high frequency, the region where the shaker behaves approximately like a 

damper is given by the difference between the frequencies at which |       | is equal    and at 

which |    | is equal to   : 

which, for the LDS shaker, is from about       to        when RL is equal zero. 

Figure ‎8.1(b) shows the mechanical impedance of the H2W shunted actuator for different values 

of the resistive load RL. This shaker is not equipped with a suspension so its mechanical 

impedance is not stiffness control at low frequency. At high frequency the mechanical 

impedance of the H2W shunted shaker is mass controlled and is independent on the value of the 

resistive load. At low frequency the force generated by the shaker is proportional to the value of 

the shunt and increases as the resistive load decreases. Using equation (‎8.16) the frequency 

region where the shaker is capable to produce damping on the structure to which it is attached is 

from 0 Hz up to       when RL is equal zero. 

8.3.1. Control of a beam using a shunted shaker 

In this subsection simulation results are presented of an aluminium simply supported beam 

excited by broadband white noise point force and controlled by a H2W shunted shaker. A 

scheme of the beam with the shaker is shown in Figure ‎8.2 where fp is the primary excitation. 

Table ‎8.2 summarises the physical and geometrical parameters of the simply supported beam. 

The dimensions of the beam have been chosen such that the first two structural resonances are 

well below 39 Hz where the shunted shaker behaves like a damper. 

      
     

    
 (‎8.15) 

  

  
    

  

  
 (‎8.16) 
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Figure ‎8.2: Simply supported beam excited by the primary force fp and controlled by a shaker  

 

Assuming the coil is attached to the structure and this has mass Ms, the mechanical impedance 

of the shunted shaker in this case is:  

Table ‎8.2: Geometrical and physical parameters of the beam. 

Value Parameter 

Dimensions l =1 m 

Thickness h=0.001 m 

Width d=0.03 m 

Mass density ρ=2700 kg/m3 

Young‟s‎modulus E=7×1010
 N/m2 

Poisson ratio ν1=0.33 

Loss Factor η=0.01 

Primary source position  0.4×l 

Secondary source position  0.7×l 

 

Figure ‎8.3 shows the PSD of the kinetic energy of the beam for different value of the resistive 

load impedance RL. The faint line in the plot shows the PSD of the kinetic energy of the beam 

before the actuator is attached to the structure. For very high values of the resistive load RL 

(solid line), only little damping is added but the resonances of the beam are shifted down in 

frequency compared with the beam without the actuator attached due to the added mass of the 

coil.  

 ̃          
     

    
  (‎8.17) 
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Figure ‎8.3: PSD of the kinetic energy of the beam without actuator (faint line), when the actuator is 

attached but open circuit (solid line), minimising the total kinetic energy (dashed line) and for the actuator 

short circuit (dotted line). 

When RL is decreased from a very high value, the effect of the shaker is to damp the first two 

resonances of the beam (dashed line). At higher frequency the value of the shunt does not 

influence the response of the beam. When RL is equal zero, so the actuator is short circuit, the 

effect of the shaker begins to pin the beam at the position where it is attached so that the kinetic 

energy of the beam increases in the frequency region around the second resonance (dotted line). 

 

Figure ‎8.4: Total kinetic energy of the beam averaged over 0-800 Hz, normalised to that before the 

actuator is attached as function of decreasing value of RL (solid line) and when the internal resistance of 

the actuator is set to zero (dashed line).  
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Figure ‎8.4 shows the total kinetic energy of the beam averaged over a frequency band between 

0-800 Hz as function of decreasing value of the resistive load RL. The total kinetic energy is 

normalised by the total kinetic energy of the beam before the shaker is attached, thus, about -3 

dB of global reduction are due to the mass of the shaker. The graph shows that the effect of the 

shunted shaker is to reduce the total response of the beam as the load RL is decreased until it 

reaches an optimum value for RL of about 20 Ω. For lower values of RL the effect of the shaker 

is to constrain the motion of the beam at control position and approximate a pinned boundary 

condition so that the total response increases again. The dashed line in Figure ‎8.4 shows the 

total kinetic energy of the beam in the ideal case of internal resistance of the actuator equal zero. 

From equation (‎8.17) it can be seen that in the case R and RL are both equal zero, the mechanical 

impedance of the actuator tends to infinity. This means that the controller is able to pin the 

structure at control position behaving like an ideal skyhook damper. 

 

Figure ‎8.5: total absorbed power averaged over 1-800 Hz as function of the decreasing value of the 

resistive load RL 

Figure ‎8.5 shows the mechanical power absorbed by the shaker averaged between 0-800 Hz as 

function of RL. The plot shows that for very high values of RL the absorbed power goes to zero. 

When RL is decreased the absorbed power increases until it reaches a maximum when RL is 

about 12 Ω. The maximum of absorbed power roughly corresponds to the minimum of kinetic 

energy so that maximising the absorbed power almost minimises the overall vibration of the 

structure. When RL is further decreases the power absorbed by the shunted shaker decreases. 

The absorbed power could be estimated by measuring the velocity and estimating the control 

force using equation (‎8.3). If the adaptation of the electrical load is made automatically the 

system could adapt itself to the optimum. The self-tuning could thus be accomplished with a 

single accelerometer. In principle, the velocity could also be deduced from the voltage and 

current in the coil, if a sufficiently accurate model of the transducer was available. 



 8. SELF-TUNING AND POWER HARVESTING WITH ELECTROMAGNETIC ACTUATORS 

133 

Figure ‎8.6 shows the power dissipated by the shunt transducer, which is also the power that 

could be potentially harvested as function of the electrical load RL. As one would expect the 

harvested power by the shunt is zero when RL is zero and is again zero for high value of RL, 

which means the circuit is open. However, the plot shows that the harvested power is 

maximised by a single value of the electric load and the maximum roughly corresponds to the 

minimum of kinetic energy.  

 

Figure ‎8.6: total harvested power averaged over 1-800 Hz as function of the decreasing value of the 

resistive load RL 

This suggests that instead of using the mechanical power absorbed by the transducer as the cost 

function to be maximised in the self-tuning adaptation, the harvested electrical power could be 

used instead. The harvested electrical power is proportional to the mean square voltage across 

the coil divided by the resistance of the electrical load RL and is thus very simple to estimate. 

The power absorbed by the shunt could also potentially be used to power the circuit used for the 

self-tuning system, so that no external power would be required. Table ‎8.3 shows a comparison 

between the minimisation of the total kinetic energy of the panel and the other two self-tuning 

strategies. Although the optimal values of RL are different for the three strategies, the global 

reduction in terms of kinetic energy of the beam is only 0.1 dB less for the maximisation of the 

mechanical power absorption and 0.3 dB for the maximisation of the harvested power. 
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Table ‎8.3: comparison between maximisation of kinetic energy, maximisation the total absorbed and 

harvested power 

 RL (Ω) 
Attenuation in kinetic 

energy (dB) 

Absorbed power 

(W/N2) 

Harvested power 

(W/N2) 

Minimisation of 

kinetic energy 
20 -8.5 41.9 30.5 

Maximisation of 

absorbed mechanical 

power 
12 -8.4 42.0 25.9 

Maximisation of 

harvested electrical 

power 
49 -8.2 39.0 33.8 

 

The simulation results shown so far assume that the structure under control has the first two 

natural frequencies well below the upper frequency of damping control in Figure ‎8.1, of 39 Hz 

(i.e.         and         after the shaker has been attached in this case) which implies a 

very long and thin beam. The response of such a structure may be difficult to measure because 

of the very low natural frequencies. 

8.4. Vibration control using a shunted inertial actuator 

The use of a shunted shaker for vibration control assumes the presence of a rigid structure where 

the actuator can react off. In this section, the more practical case of a shunted inertial actuator 

for vibration control is considered. The actuator produces a force on the structure by reacting off 

a moving mass. The dynamic behaviour of the actuator thus limits the frequency band where it 

behaves like a damper when is shunted with a pure resistive load. The first part of this section 

discusses the possibility of using a shunted actuator to optimally control the broadband vibration 

of lightly damped structures. In this case it is necessary that the first resonance of the structure 

is in the frequency region where the actuator behaves like a damper. In the second part the 

possibility of using a shunted inertial actuator as vibration absorber is investigated. 

8.4.1. Broadband vibration control using a shunted inertial actuator 

The two port network model derived in Chapter 6 is used here to describe the behaviour of the 

shunted inertial actuator. All the impedances relative to an inertial actuator are derived in 

Appendix E. The characteristics of the actuator used to carry out the simulations are listed in 

Table ‎8.4. The natural frequency of the actuator is 10 Hz, but the transduction coefficient Bl is 

assumed to be somewhat greater than that of the commercial actuators considered below in 

order to emphasis the effect of the shunt. The base mass of the actuator is considered to be 

negligible. This ideal case is considered in order to get a better understanding of the behaviour 

of a shunted electromagnetic inertial actuator for broadband control of lightly damped 

structures.  
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Table ‎8.4: Assumed parameters of an idealised inertial actuator 

Electrical‎resistance‎(Ω)‎‎R 3 

Mechanical stiffness (N/m) Ka 2000 

Open circuit mechanical damping (N/ms-1) Ca 1.26 

Closed circuit mechanical damping (N/ms-1) C‟ 534 

Open Circuit damping  ratio    0.02 

Close circuit damping ratio   
 8.5 

Vibrating mass (Kg) Ma 0.5 

Base mass (Kg) Mw 0 

Electromagnetic transducer constant (N/A) Bl 40 

Natural frequency (Hz)    10 

 

Figure ‎8.7 shows the simulated open circuit mechanical impedance,  ̃  . The plot shows that 

 ̃   presents a resonance due to the natural frequency of the actuator at 10 Hz and is equal to 

the mechanical damping of the actuator c at high frequency.  

 

Figure ‎8.7: open circuit mechanical impedance moZ
~

 of the idealised inertial actuator 
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Figure ‎8.8: transduction frequency response function 1

~
T . 

Figure ‎8.8 shows the transduction coefficient  ̃  which now has a non-trivial frequency response 

as derived in Appendix E. The graph again shows a resonance at 10 Hz with a phase shift of 

180
o
. At higher frequency the phase goes to zero and  ̃  is real and equal to Bl. Figure ‎8.9 shows 

the blocked electrical impedance,  ̃   of the actuator. The graph shows a peak at 10 Hz and 

from about 400 Hz  ̃   is equal to the electrical resistance of the coil.  

 

Figure ‎8.9: blocked electrical impedance ebZ
~

 of the idealised inertial actuator 

Substituting the expressions of the  ̃  ,  ̃ ,  ̃   and  ̃   for an inertial actuator given in 

Appendix E in equation (‎8.4) and after some algebraic manipulations, the total mechanical 

impedance  ̃ ,  presented by the shunted transducer can be expressed as: 

 ̃  
             

            
   

(‎8.18) 
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where                    is the close circuit mechanical damping assuming the shunt 

ZL is resistive, RL. Equation (‎8.18) is of the same form of the open loop mechanical impedance 

of the actuator (equation (‎E.4)) but with a modified damping constant that depends on the 

transduction coefficient Bl and the total electrical resistance (internal electrical resistance of the 

coil plus the electrical resistive load). The damping ratio of the shunted actuator is given by: 

Figure ‎8.10(a) shows the total mechanical impedance of the actuator  ̃ ,  when          , so 

that the closed loop damping ratio of the actuator    is about 0.07.  

 

Figure ‎8.10: a) total mechanical impedance mZ
~

 of the idealised inertial actuator for ζa      and for b) 

ζa     . 

In Figure ‎8.10(a) four different frequency regions can be observed. A low frequency 

region, where the impedance is mass controlled and total impedance  ̃  can be 

approximated as     ; A frequency region around the natural frequency of the 

actuator   , where the total impedance  ̃  is damping controlled so that  ̃  can be 

approximated as       ; a frequency region between    and   , where the 

impedance is stiffness control and the total impedance  ̃  can be approximated as 

        and finally a high frequency region where the total impedance  ̃  can be 

approximated as   . This occurs when   is greater than   , which is the cut-off 

frequency above which the actuator behaves like a damper and is equal to: 

   
  

 √    

   
(‎8.19) 

   
 

  
 

  

   
  

(‎8.20) 
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If       , this cut-off frequency corresponds to the natural frequency of the actuator and 

becomes smaller than    if       . Figure ‎8.10(b) shows the total mechanical impedance  ̃  

when          so that        and in this case only two different frequency regions are 

important. The plot shows that at low frequencies the impedance is mass controlled and can be 

approximate as     . At higher frequencies the actuator behaves like a damper with 

mechanical damping equal to   . The transition between these two regions now happens at the 

new cut-off frequency    given by:  

For completeness Figure ‎8.11 shows the total impedance of the actuator  ̃  for many different 

values of RL. The electrical load RL is varied from zero to 10
5
 Ohm. The arrow in Figure ‎8.11 

indicates increasing values of RL. The graph shows that when RL=0 the cut off-frequency 

beyond which the impedance is dominated by the damping,   , is about 180 kHz. As the 

resistive load increases the cut off frequency    decreases and becomes equal to the natural 

frequency of the actuator when        , so that   =1/2. If RL is further increased    

becomes smaller than natural frequency of the actuator and the cut-off frequency now 

becomes   , beyond which the actuator again behaves like a damper. It should be noted that it 

has been assumed that the coil has no inductance, which would limit the value of |  ̃ | at high 

frequencies if RL was small. 

 

Figure ‎8.11: Total impedance mZ
~

of the actuator varying RL from 0 to 105 Ω. 

 

   
  

  
 

(‎8.21) 
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Figure ‎8.12: cut-off frequency of the idealised actuator as function of decreasing values of RL 

Figure ‎8.12 shows the cut-off frequency of the idealised actuator as function of decreasing 

values of RL. The plot shows that for high values of the resistive load the cut-off frequency,   , 

beyond which the actuator behaves like a damper, is around 250 Hz. As RL is decreased the cut-

off frequency decreases, and for RL about 50   the cut off frequency    becomes equal to the 

natural frequency of the actuator. For lower values of the resistive load,    is greater than 1/2 

and the cut-off frequency    increases again.  

In the frequency region where the total mechanical impedance of the actuator is real the control 

system behaves like a skyhook damper of damping constant given by: 

Equation (‎8.22) shows that the damping provided to the structure can vary from a minimum of 

  , the internal damping of the actuator if RL is very high to               when RL is zero. 

This means that the maximum damping achievable depends on the dimensionless parameter 

            which suggests that the performance of the transducer increases for well coupled 

actuator with a strong magnet and low internal resistance, as also derived in the power 

harvesting analysis in reference [66]. The effect of various actuator design choices and this 

important non-dimensional parameter will now be briefly explained. The value of the magnetic 

flux B depends on the type of material used to build the permanent magnet. Materials with high 

magnetic saturation values, such as Ne-Fe-B, have to be chosen [67]. The resistance of the coil 

depends on its length and is therefore given by:  

 ̃

 ̃
   (  

     

        
)  

(‎8.22) 
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where    is‎ the‎ resistivity‎ of‎ the‎ coil‟s‎ material‎ and‎ Q is the cross section of the wire. 

Substituting equation (‎8.23) into equation (‎8.22) in the case when       gives an expression 

of the maximum damping that can be produced by the actuator as: 

A scheme of the cross section of a permanent magnet with the coil is shown in Figure ‎8.13. 

 

Figure ‎8.13: Scheme of the cross-section of permanent magnet and the coil 

The length of the wire is given by: 

where N is the number of turns in the horizontal direction, K is the number of turns in the 

vertical direction, p is the average diameter of the coil and d is the diameter of the wire. Both 

equation (‎8.25) and (‎8.26) can be simplified leading to: 

The total number of turns can be written as: 

    

 

 
   

(‎8.23) 

    
     

    

  
   

(‎8.24) 

     (∑     
     

 

   
 ∑     

     

 

   
 )  if N is odd 

(‎8.25) 

     (∑   
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 )  if N is even 

(‎8.26) 

        
(‎8.27) 
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where it is assumed that the coil fills the entire area A inside the magnet. Substituting equation 

(‎8.28) in (‎8.27) and then in (‎8.24) the maximum mechanical damping generated by the shunted 

inertial actuator can be written as: 

Equation (‎8.29) shows that     
  does not depend on the number of turns of the coil but only on 

the magnetic flux, the geometry of the permanent magnet and the resistivity of the wire. It is 

also interesting to estimate how the additional damping due to a shunted electromagnetic device 

scales with the size of the device. We can write equation (‎8.29) as:  

where the second term is equal to the non-dimensional parameter             defined above, 

which is equal to the additional electromagnetic damping divided by the mechanical damping of 

the device. The saturated flux density in the ferrous parts of the actuator limits the value of B, 

which is thus reasonably independent of scaling, as is the material resistivity,   . The way in 

which the mechanical damping scales depends to some extent on the detailed mechanism of 

damping, but can generally be assumed to scale as [L
2
] [68] where scaling notation described by 

Madou (1997) [69] has been used. In equation (‎8.30) A and p clearly scale as [L
2
] and [L

1
], so 

that the normalised electromagnetic damping,            , must scale as [L
2
]. The 

effectiveness of such an electromagnetic damper thus improves greatly as the size of the device 

gets larger. 

A number of commercial inertial actuators have been considered for an experimental study. 

Table ‎8.5 summarised the main parameters of different actuators manufactured by different 

companies.  

 

 

 

   
 

 
   

(‎8.28) 
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(‎8.30) 
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Table ‎8.5: Physical parameters of inertial actuators 

 ULTRA 
IV40 Data 

Physics 

Motran 

IFX30-100 

Mcromega 

IA-01 

Electrical 

resistance‎(Ω) 
3.15 1.5 1.63 3 

Mechanical 

stiffness (N/m) 
110,190 58,517 20,600 95.62 

Open circuit 

mechanical 

damping (N/ms-1) 

9.4 16 44 1.40 

Closed circuit 

mechanical 

damping (N/ms-1) 

25.4 36.9 105.34 2.25 

Open Circuit 

damping  ratio 
3% 3% 20% 40% 

Close circuit 

damping ratio  
7.2% 6.9% 48% 64% 

Vibrating mass 

(Kg) 
0.28 1.21 0.58 0.032 

Base mass (Kg) 0.14 ? 0.36 0.053 

Mass ratio 2  1.6 0.6 

Electromagnetic 

transducer 

constant Bl (N/A) 

7.1 5.6 10.1 1.6 

Natural frequency 

(Hz) 
99.8 35 30 8.7 

Cut-off frequency 

(Hz) 
2,000 1,000 100 300 

(Bl)2/(cR)  1.7 1.3 1.42 0.6 

 

Figure ‎8.14 shows the open circuit mechanical impedance (solid line) and the closed circuit 

mechanical impedance (dashed line) of the four inertial actuators of Table ‎8.5. It is interesting to 

notice that the dimensionless parameter (Bl)2
/(cR) is only of order 1 for the four actuators in 

Table ‎8.5. For the inertial actuator used in the simulations in Chapter 6 this parameter was about 

1.9 and for the ideal actuator of Table ‎8.4 is about 423. 

According to equation (‎8.20), the mechanical impedance of the ULTRA actuator (top left plot) 

shows a cut-off frequency from which the actuator starts to behave like a damper of about 1.6 

kHz, when RL is equal 10
6
 Ω, and about 714 Hz, when RL is zero. The Data physics actuator 

(top right plot) shows a cut-off frequency where the actuator starts to behave like a damper of 

about 583 Hz when RL is equal 10
6
 Ω and about 250 Hz when RL is zero. In the of case the 

Motran actuator the cut-off frequency from which the actuator behaves like a damper is about 

75 Hz when RL is equal 10
6
 Ω (dashed line) and is about 31.2 Hz when RL is equal zero (solid 

line). 
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As show in Table ‎8.5, the MICROMEGA inertial actuator can provide the highest close circuit 

damping ratio and it is the only model to have it greater than 1/2. Its cut-off frequency is about 

10.9 Hz according to equation (‎8.20) when RL is equal 10
6
 and is about 11.2 Hz according to 

equation (‎8.21) when RL is equal zero. 

 

 

Figure ‎8.14: Calculated mechanical impedance of four commercial actuators when open circuit (dashed 

line) and short circuit (solid line). These are:  Ultra actuator (top left plot), Data physics actuator (top 

right plot), Motran actuator (bottom left plot) and Micromega (bottom right plot) 

8.4.2. Broadband control of a cantilever beam using a shunted inertial actuator 

This section discusses the vibration control of a cantilever beam, excited by a broadband white 

noise point force using a shunted inertial actuator. 

The damping ratio of the first mode of the beam when the actuator is shunted with a resistive 

load is given by:  

ζ  
  

     
 

(‎8.31) 

where    is the close circuit mechanical damping provided by the actuator,    is the first 

resonance of the beam.    is the apparent mass of the first mode which depends on the position 
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of the actuator on the structure. The modal point response of an undamped structure at control 

position can be written as [25]:    

 ̃  ∑
        

 

     
     

 

   

 
(‎8.32) 

where        is the r-th modeshape calculated at control position,    is the coordinate of the 

control position along the beam,    is the modal mass,    is the r-th natural frequency and R is 

the number of modes taken into account. The contribution of the first mode can be seen as the 

response of a single degree of freedom system having the same natural frequency of the first 

resonance of the structure and an apparent mass equal to the ratio between the modal mass and 

the mode shape squared calculated at control position. The apparent mass at the tip of a 

cantilever beam is given by Ms/4 where Ms is the total mass of the beam. Since the first 

resonance of beam is very well separated from higher resonances, the contribution of higher 

modes does not significantly affect the response at low frequency. If the aim of the controller is 

to critically damp the first structural mode (ζ   ), setting equation (‎8.31) equal one, the 

mechanical damping    must be given by: 

         
(‎8.33) 

Substituting equation (‎8.33) in (‎8.21) and assuming a damping ratio of the inertial actuator    to 

be greater than 0.5, the cut-off frequency above which the actuator behaves like a damper,   , 

is given by: 

      

  

  
  

(‎8.34) 

Thus the ratio between the first natural frequency of the beam and the natural frequency of the 

actuator is given by: 

  

  
 

 

 

  

  
  

(‎8.35) 

Substituting the expression of the apparent mass when the actuator is placed at the tip of a 

cantilever beam in equation (‎8.35) yields: 

  

  
    

(‎8.36) 

where   is the ratio between the moving mass of the actuator Ma and the total mass of the 

structure Ms. Assuming    , the first natural frequency of the beam has to be twice the cut-off 
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frequency where the actuator starts to behave like a damper in order to critically damp the first 

mode of the beam. 

The following simulation results are carried out on a cantilever beam using the ideal inertial 

actuator of Table ‎8.4, with a natural frequency of 10 Hz. The geometrical and physical 

parameters of the beam are summarised in Table ‎8.6. 

Table ‎8.6: Geometrical and physical parameters of the cantilever beam. 

Value Parameter 

Dimensions l=0.38 m 

Thickness h=0.016 m 

Width d=0.03 m 

Mass density ρ=2700 kg/m3 

Young‟s‎modulus E=7×1010
 N/m2 

Poisson ratio ν1=0.33 

Loss Factor η=0.01 

Mass of the beam M=0.5 Kg 

  1 

Primary source position l/2 

Secondary source position  l 

1st natural frequency ω1=90 Hz 

 

The mass of the cantilever beam has been chosen to have    . The ideal inertial actuator is 

placed at the tip of a cantilever beam. The maximum mechanical damping that can be generated 

by the shunted inertial actuator is about 535 N/m/s and from Figure ‎8.12 the maximum cut-off 

frequency    above which the actuator behaves like a shy hook damper is about 180 Hz. The 

first natural frequency of the structure has to be twice the cut-off frequency of the actuator and 

therefore, for this ideal actuator, it is necessary that           to critically damp the first 

mode. In this example the first natural frequency of the beam is much higher than the natural 

frequency of the actuator and the open circuit mechanical damping is low, therefore the passive 

dynamic of the actuator marginally influence the response of the beam.  

The faint line in Figure ‎8.15 shows the kinetic energy of the beam before the actuator is placed 

on the beam. When the actuator is shunted with a very high resistance the response of the beam 

is slightly more damped at the resonance frequencies due to the passive effect of the actuator. 

As the resistive load RL is decreased the actuator provides damping to the structure so that the 
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first few resonances of the structure are very well damped (dashed line). When the shunting 

resistance is zero the electromagnetic coupling is so strong that the relative motion between the 

coil and the magnet teds to zero and the first natural frequency of the structure is shifted at 

lower frequency due to the additional mass of the magnet (solid line). 

 

Figure ‎8.15: PSD of the kinetic energy of the beam without actuator (faint line), when the actuator is 

attached but open circuit (dotted line), minimising the total kinetic energy (dashed line) and for the 

actuator short circuit (solid line). 

 

Figure ‎8.16: Total kinetic energy of the panel normalised by that one before the actuator is attached as 

function of decreasing values of RL. 

Figure ‎8.16 shows the total kinetic energy of beam for different values of the resistive load RL. 

The total kinetic energy of the beam presents an optimum value when RL of‎about‎6.3‎Ω‎giving‎

an overall reduction of about -11 dB. For lower values of RL the effect is to begin to pin the 

relative motion between the magnet and the coil of the actuator so that the total response of the 

structure increases again.  
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Figure ‎8.17: Total mechanical power absorbed by the shunted actuator as function of decreasing values of 

RL. 

Figure ‎8.17 shows the mechanical power dissipated by the inertial actuator as function of the 

resistive load RL. When the actuator is shunted with a very high resistance the mechanical power 

dissipated does not go to zero because of the internal damping of the actuator. When RL is 

decreased the power absorbed increases until it reaches a maximum. If RL is further increased 

the absorbed power decreases again. The maximum of the mechanical absorbed power roughly 

corresponds with the minimum of the total kinetic energy of the beam. An algorithm that 

changes the electrical resistance RL, estimates the mechanical absorbed power and converge to 

its maximum could be implemented to make the system self-tuneable with the aim of 

minimising the overall structural vibration. 

Figure ‎8.18 shows the power dissipated by the resistive load, which is also the power that could 

be potentially harvested as function of decreasing values of RL. As one would expect the power 

dissipated by the shunt is zero when RL is equal zero and is again zero for very high values of RL 

which means that the circuit is open. The harvested power is maximised when RL is about 21.2 

Ω‎which‎ is‎ a‎quite‎different‎value‎ compared‎with‎ the‎minimisation‎of‎ the‎kinetic‎ energy‎ and‎

maximisation of the absorbed power. 
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Figure ‎8.18: Total power harvested by the shunted transducer as function of decreasing values of RL. 

Table ‎8.7 shows a comparison between the minimisation of the total kinetic energy of the panel 

and the other two self-tuning strategies. Although the optimal values of RL are different for the 

three strategies, the global reduction in terms of kinetic energy of the beam is only 0.1 dB less 

for the maximisation of the mechanical power absorption. When the harvested power is 

maximised the reduction in the total kinetic energy of the beam is about 1 dB less compared 

with the minimisation of the kinetic energy. In this case the maximisation of the harvested 

power gives good performance compared with the minimisation of the kinetic energy of the 

structure. 

Table ‎8.7: comparison between maximisation of kinetic energy, maximisation the total absorbed and 

harvested power 

 RL (Ω) 
Attenuation in kinetic 

energy (dB) 

Absorbed power 

(W/N2) 

Harvested power 

(W/N2) 

Minimisation of 

kinetic energy 
6.3 -11.2 2.42 1.63 

Maximisation of 

absorbed power 
8.4 -11.1 2.43 1.77 

Maximisation of 

harvested power 
21.2 -10 2.31 1.99 

 

However, if a commercial actuator is considered, the transduction coefficient Bl is usually much 

lower than the one considered in the simulations. Moreover if the base mass of the inertial 

actuator is taken into account equation (‎8.35) becomes: 

  
 

  
 

 

 

  

     
 (‎8.37) 
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where   
  is the first natural frequency of the beam with the base mass of the actuator Mw 

attached. In this case, setting equation (‎8.37) equal to two so that the frequency where the 

actuator starts to behave like a damper is half of the first natural frequency of the beam, the 

mass of the beam is equal to          . For all the actuators in Table ‎8.5       

    is less than zero.  

This result suggests that with the commercial actuators considered it is impossible to use a 

shunted device to critically damp the first mode of a cantilever beam.  

8.4.3. Broadband control of a panel using a shunted inertial actuator 

In this section the possibility of broadband control of a panel using a shunted inertial actuator is 

investigated. The optimal value of a skyhook damper to obtain a broadband control for a finite 

plate roughly corresponds to the impedance of an infinite plate of the same thickness [17] which 

is given by: 

where h is the thickness of the panel, E is‎ the‎Young‟s‎module,‎  is the density and    the 

Poisson‟s‎ coefficient‎ of‎ the‎ panel‟s‎ material.‎ Substituting‎ equation‎ (‎8.38) in (‎8.21) and 

assuming that the damping ratio of the shunted inertial actuator    to be greater than 0.5 the cut 

off frequency above which the actuator behaves like a damper is given by: 

The first natural frequency of a simply supported panel is given by: 

where, the panel has been considered square and of side L. From equation (‎8.39) and (‎8.40) the 

ratio between the first natural frequency of the panel and the natural frequency of the actuator is 

given by: 

        √
  

       
  

 
(‎8.38) 
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(‎8.39) 

      (
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√
 

       
   

 
(‎8.40) 
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where Ms is the mass of the panel. Equation (‎8.41) shows that if     the first natural 

frequency of the panel has to be about 2.4 times the cut-off frequency from which the actuator 

behaves like a damper to optimally control the vibration of the structure.  

If the base mass of the actuator is taken into account, equation (‎8.41) can be written as: 

where    
  is the first natural frequency of the panel with the base mass of the actuator    

attached. If             is set to one so that the    
  is about 2.4 times   ,    is equal to 

     . For the Micromega actuator, which is the only one to have the closed loop 

mechanical damping grater that 0.5, the moving mass minus the base mass is less than zero. 

This demonstrates that it is impossible to optimally control the broadband vibration of a plate 

using a shunted commercial actuator listed in Table ‎8.5. 

8.4.4. Shunted inertial actuator used as dynamic vibration absorber (DVA) 

A shunted inertial actuator can be used as a dynamic vibration absorber (DVA) if it is tuned at 

the natural frequency of system under control. The mechanical damping of a shunted inertial 

actuator can be changed by varying the value of the resistive load of the shunt. In Chapter 7 the 

optimal damping ratio of a DVA that minimises the total kinetic energy of an undamped SDOF 

system was found to be √    where   is the mass ratio between the mass under control and the 

moving mass of the DVA when the frequency ratio between DVA and the SDOF is set to 

  √   . For a lightly damped SDOF system, the same expression of the optimal damping 

ratio and frequency ratio can be used with good approximation. If a shunted inertial actuator is 

to be used to control a SDOF system, the value of optimal mechanical damping ratio has to be 

greater than the open circuit mechanical damping ratio of the actuator,       and smaller than 

the close circuit mechanical damping ratio,         to be able to minimise the overall kinetic 

energy of the mass under control. Thus: 

      
√ 

 
        (‎8.43) 

   

  
 

  

 

  

  
      

(‎8.41) 

   
 

  
    

  

     
 

(‎8.42) 
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Substituting the expression of the mass ratio in equation (‎8.43) the mass of the SDOF cannot 

excide the limit values given by: 

  

       
 

    
  

        
 
 

(‎8.44) 

where Ms is the mass of the SDOF system. Table ‎8.8 lists the limiting values of the controllable 

mass Ms for the four inertial actuators of Table ‎8.5. The table shows that for the first two 

actuators (ULTRA and Data Physics) the mass Ms is high compared to the moving mass of the 

actuator. As shown in Chapter 7 the performance of the DVA decreases for high values of   and 

thus the performance of the first two actuators would be very low. For the Micromega actuator 

it is not possible to control a single degree of freedom system because the base mass is already 

bigger than Ms.  

Table ‎8.8: limit values of the mass of the SDOF system to be controlled with different commercial inertial 

actuators  

Actuator Mass of the SDOF system under control (Kg) 

ULTRA 13.3 < Ms < 97.7 

IV40 Data Physics 62.9 < Ms < 334.7 

Motran IFX30-100 0.6 < Ms < 3.6 

Micromega IA-01 0.02 < Ms < 0.05 

 

The Motran actuator can be used to minimise the kinetic energy of a SDOF system having a 

vibrating mass between 0.6 Kg and 3.6 Kg. Figure ‎8.19 shows the kinetic energy of a SDOF 

system having a mass of 2 Kg so that    , a stiffness of 9.16×10
4
 N/m and damping ratio of 

2%. The stiffness has been chosen such that the frequency ratio between the actuator and SDOF 

system is given by    √   . The faint line in Figure ‎8.19 shows the kinetic energy of SDOF 

with no actuator. The dotted line shows the kinetic energy of SDOF system when the actuator is 

attached but open circuit. If the electric load is decreased the two resonances of the system are 

more damped (dashed line) and when the RL is zero the response of SDOF shows a single 

natural frequency because the electromagnetic coupling is so strong that the relative velocity 

between the mass of SDOF system and the mass of the DVA tends to zero. 
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Figure ‎8.19: PSD of the kinetic energy of the SDOF actuator (faint line), when the actuator is attached but 

open circuit (dotted line), for the optimal tuning (dashed line) and for the actuator short circuit (solid line). 

Figure ‎8.20 shows kinetic energy of the SDOF system integrated between 1 Hz and 1 kHz 

normalise to the total kinetic energy of system before the DVA is attached. When the coil circuit 

is open circuit, the total kinetic energy is attenuated by 31.3 dB because of the passive effect of 

the actuator. As the RL is decreased the total kinetic energy starts to decrease until it reaches a 

minimum when RL is about 4.93 Ω.‎If‎RL is further decreased the total kinetic energy increases 

again. The extra attenuation due to the resistive shunt is, however only about 0.2 dB. 

 

Figure ‎8.20: 1 Hz-10 kHz integrated kinetic energy of the SDOF system normalised to that without the 

actuator attached as function of decreasing value of RL normalised to the kinetic energy of the SDOF 

system before the actuator is placed 

Figure ‎8.20 shows the integrated mechanical power absorbed by the shunted inertial actuator 

given by: 
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  (  
     

    
)∫ |  |   

    

 

 
(‎8.45) 

where uR is the relative velocity of the two masses. As shown in equation (‎8.45), when the coil 

circuit is open (    ) the absorbed power is quite high because the open circuit mechanical 

damping c of the Motran actuator is high.  

 

Figure ‎8.21: 1 Hz-10 kHz integrated mechanical power absorbed by the shunted inertial actuator as 

function of decreasing values of RL 

 

Figure ‎8.22: 1 Hz-10 kHz integrated power harvested by the shunted inertial actuator as function of 

decreasing values of RL 

The mechanical power absorbed is maximised when RL is equal 5.05 Ω. In Chapter 7 it has been 

shown that the minimum of the total kinetic energy and the maximum of the power absorbed 

correspond if they are both integrated over and infinite frequency band. In this case the 

numerical integration is made over a finite frequency band therefore the value of RL that 
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minimise the total kinetic energy and value of RL that maximise the power absorbed are slightly 

different. The current circulating in the coil  ̃ is proportional to the relative velocity vr and is 

given by: 

 ̃  
   

    
 ̃  

(‎8.46) 

The power dissipated by the shunt is given by the value of the shunt resistance times the mean 

squared value of the current  ̃ integrated over the frequency which leads to: 

   
  

      
 
     ∫ | ̃ |   

    

 

 
(‎8.47) 

Figure ‎8.22 shows the power dissipated the shunt which is also the power that can be potentially 

harvested. The plot shows that the harvested power is zero when the circuit is open and is again 

zero when RL is equal zero as one would expect. When RL is equal 2.53 Ω‎the‎harvested‎power‎

is maximised.  

Comparing equation (‎8.45) and (‎8.47) it is evident that the mechanical absorbed power and the 

harvested power are maximised for a different value of RL. Although from the simulation results 

the values of RL that maximise the mechanical absorbed power and maximise the harvested 

power are very close, the attenuation in the total kinetic energy is about the same for the two 

method of tuning the DVA as shown in Table ‎8.9.  

Table ‎8.9: comparison between three different strategies of tuning the DVA 

 

RL (Ω) 

Attenuation in the 

kinetic energy of the 

SDOFs (dB) 

Minimisation of the 

kinetic energy of the 

SDOFs 

4.93 -31.78 

Maximisation of the 

mechanical absorbed 

power 

5.05 -31.78 

Maximisation of the 

harvested power 
2.53 -31.74 

8.5.  Summary and conclusions 

This chapter provides a preliminary discussion of shunted electromagnetic transduces as 

tuneable damping elements. The potential advantage of such device are that the changes to the 

electrical shunt impedance are relatively easy to implement, and that the power that would 

otherwise be dissipated in the shunt could, potentially, be harvested to provide power for the 
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tuning circuit. It may be even possible to use a measurement of the electrical power harvested as 

cost function with which to adapt the shunt impedance. This would provide an attractive self-

powering and self-tuning damping device. 

A two port network formulation has been used to analyse the behaviour of both reactive and 

inertial electromagnetic shunted transducers. Simulations have than been performed of 

laboratory-scale devices, with masses of less than about 1 Kg, used to control idealised 

structures such as beams and panels. Although the analysis is interesting, the final predicted 

results have generally been disappointing, with the additional reductions in structural response 

due to shunting the device being small relative to the reductions due to the inherent passive 

behaviour of the devices themselves when they are open circuit. For this reason, and in the 

interests of time, this concept has not been explored experimentally. 

It has been shown, however, that the additional damping due to shunting the transducer 

normalised by the passive damping of the device, scales as the square of the length-scale. Thus 

although the effects predicted using laboratory-scale devices are modest, they would be much 

more significant for the very large electromagnetic devices used to control the motion in civil 

engineering structures and that large arrays of miniaturised devices  would be less effective than 

a single larger device. 





 

 

9. Conclusions and suggestions for further work 

9.1. Conclusions 

Vibration control systems can be classified as passive or active, depending on whether or not 

external power is required. A passive system that can change its properties during time is often 

defined as semi-active. An advantage of semi-active and active control system is that they can 

adapt themselves to operate in different environmental and operating conditions.  

Conventional control design is often based on a time-invariant assumption for the system and 

signals under consideration, which means that the control system and the mechanism of 

generating the control signal have constant coefficients. In self-tuning systems, control and 

signal processing algorithms have coefficient which can vary with time so that the controller can 

change its parameters in order to maintain a required performance when the operating 

conditions change. This is done by the addition of an adjusting mechanism which monitors the 

system, compares its status with the required one and adjusts the coefficients of the controller. 

This is the broad subject of this thesis. In particular self-tuning broadband vibration control, 

based on the maximisation of the power absorbed by the controller in several either semi-active 

or active control configurations was investigated. The power absorbed was chosen as a cost 

function for the implementation of self-tuning control because its estimation can be done using 

signals available locally, within the controller, avoiding the use of extra sensors to monitor the 

global status of the system under control.  

The first application considered was the optimisation of the damping coefficient of a single end 

grounded damper used to control the vibration of two coupled oscillators. One of the two 

vibrating masses was subjected by a broadband disturbance while the damper was acting on the 

other mass. If the two oscillators were connected by a spring, it has been demonstrated that the 

maximisation of the power absorbed by the damper corresponds to the minimisation of the 

kinetic energy of the excited mass. In the general case where the oscillator were coupled by a 

spring and a damper, numerical results showed that maximising the power absorbed by the 

damper approximately minimises the kinetic energy of the entire system.  

The analysis was extended to a distributed multi degree of freedom system. Different 

homogenous structures such as panels and beams were considered subjected to a broadband 

disturbance and controlled by a velocity feedback using an ideal velocity sensor collocated with 

a point force actuator. Different tuning strategies for the control gain of independent feedback 

loops were compared, taking the minimisation of the kinetic energy of the entire structure as a 

benchmark. It would be inconvenient to use the kinetic energy as cost function in a practical 
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self-tuning system because it is a global property and its measurement would require a dense 

array of sensors over the whole structure. Tuning the feedback gains on this criterion thus 

defeats the idea of having entirely locally-acting control loops. Two different tuning strategies 

were considered: the maximisation of the power absorbed by the controller and the 

maximisation of the control stability of the first mode of the structure. It was shown, by 

numerical simulations, that the two strategies give similar results in terms of the broadband 

attenuation of the structural response.  

An advantage of using the mechanical power absorbed by the controller as a cost function in the 

self-tuning process, is that it can be measured entirely locally. In this application the force was 

generated by the ideal actuator and was made proportional to the measured velocity. The 

absorbed power could thus be readily estimated from the mean square value of the measured 

velocity and the feedback gain, thus providing a simple measurement of an entirely local 

parameter that could be used to tune the gains. An algorithm was implemented to adjust the 

control gains of independent control units implemented on a panel subject to broadband random 

excitation. The adaptation was performed using the feedback signal only.  

These theoretical studies constituted the base of the experimental implementation of 

multichannel control of a clamped aluminium panel excited by a shaker fed with white noise. 

Two control units were initially employed, each consisting in a voice coil actuator closely 

collocated with an accelerometer. The coil was attached to the panel and the magnet was 

mounted on a relatively rigid structure where the actuators could react the force off. Particular 

care was taken in the design of the controller in order to guarantee the stability of the control 

system for values of control gains higher than the one producing the transition in the control 

action between optimum damping and pinning of the structure. The algorithm for the 

maximisation of the power absorbed was experimentally implemented, achieving an overall 

reduction‎ of‎ the‎ panel‟s‎ response‎ similar‎ to‎ the‎ minimisation‎ of‎ the‎ kinetic‎ energy‎ of‎ the‎

structure. 

Although the principle of self-tuning to maximise power absorption has been demonstrated 

using reactive force actuators, it is often not possible to use reactive actuators in practice, since 

there may be no solid structure to react the force against. Therefore simulations were carried out 

with velocity feedback loop including an inertial electromagnetic actuator for broadband 

vibration control. It was illustrated that maximising the absorbed power again provides a 

reasonable approximation to minimising the kinetic energy of the host structure. One aspect of 

self-tuning that becomes particularly important with use of inertial actuators is the need to avoid 

feedback gains for which the system becomes unstable, since this will cause significant 

enhancement of the vibration and, potentially, damage. The optimal feedback gain can be kept 

well below the unstable limit provided the actuator resonance is well damped, although this is 
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not always possible in practice. It was also shown that the characterisation of the actuator could 

also be used to calculate the control force from the measured velocity and current, so that the 

power can be estimated.  

This type of active self-tuning control requires external energy, therefore a semi-active control 

system was also considered. A model of a dynamic vibration absorber attached to a lightly 

damped single degree of freedom system was used to compare the maximisation of the power 

absorbed by the controller with the minimisation of the kinetic energy of the host structure. The 

parameters involved in the optimisation were the frequency ratio of the natural frequencies of 

the decoupled SDOF systems and their damping ratios. It was demonstrated analytically that the 

two optimisations are exactly the same even when considerable damping was introduced in the 

system under control.  

A preliminary study of a self-tuning semi-active controller using electromechanical inertial 

actuator was finally carried out. This system consisted of an electromechanical inertial 

transducer with an adaptable electrical shunt that acted as a passive damper and also as a 

potential source of electrical energy to drive the self-tuning circuit. The advantages of such a 

device are that the changes in the shunt are relatively easy to implement, and that the power 

dissipated by the shunt could be harvested to drive the self-tuning system. Simulation results 

suggested that it may even be possible to use a measurement of the electrical power harvested as 

a cost function to adapt the shunt. It was shown that for laboratory scale devices, the additional 

damping provided by shunting the device was small compared with the inherent passive 

damping of the open circuit device. It was also shown, however, that the additional damping 

due to shunting the transducers normalised by the passive damping of the device, scales as the 

square of its length scale. Thus although the effect of shunting the transducer is limited for 

laboratory size transduces it may be more significant for large scale devices, for example in civil 

engineering applications. 

9.2. Suggestions for further work 

Further work could progress in the directions listed below. 

 Theoretical analysis of the maximisation of the power absorbed by the controller as a 

tuning strategy in the presence of different types of broadband excitations (i.e. 

Turbulent Boundary Layer). 

 The study of alternative tuning algorithms, capable of continuously monitoring the 

absorbed power, even after the algorithm has converged, to track changes in the 

operating conditions. The development of the new algorithm should ideally overcome a 

limitation of the current method, which is the need for synchronisation of the adaptation 

when more than one control unit is used. 
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 Stability issues due to the frequency response of MEMS accelerometers used as 

feedback sensors could potentially be solved by designing a compensator that increases 

the gain margin in this case. 

 Experimental implementation of the self-tuning control for velocity feedback using 

inertial actuators. For this application the adaptation is more complicated due to the 

instability issues introduced by the dynamics of the actuators. This may involve a 

modification of the algorithm to guarantee that the control gain never exceeds the 

maximum stable value.  

 Problems related with instability of the controller due to the saturation of the 

displacement of the proof mass of the actuator also have to be considered in the 

experimental implementation of feedback control using inertial actuators.  

 Simulation studies and experiments could be carried out in semi-active control using 

shunted inertial actuator for large scale actuators typically used in civil engineering 

applications.



 

 

Appendix A: Case of a simplified two DOF 

system controlled by a grounded damper 

This section presents the formulation to obtain analytical expressions of the optimal mechanical 

damping c3 that minimises the kinetic energy of the mass m1, maximise the power absorbed of 

damper 3 and minimise the total kinetic energy of the system in Figure ‎A.1. Compared with the 

case of a general two DOF system, the parameters c2 and k3 are set to zero. 

 

Figure ‎A.1: Two DOF system controlled by a grounded damper with c2 and k3 equal zero 

A.1 Analysis 

Assuming c2 and k3 equal zero, the steady state response of the system can be expressed in terms 

of the five dimensionless parameters defined by: 

        : mass ratio 

        : natural frequency ratio 

      : forced frequency ratio 

 
 

          
  : primary damping 

 
 

          
  : secondary damping 

 

(‎A.1) 

where  

   √      : natural frequency of the host / primary system 

    √      : natural frequency of the DVA 
(‎A.2) 

The mobility function  ̃   and  ̃   can be written in non-dimentional form as: 

 ̃  √     ̃       
        

 
                

                                 
 

(‎A.3) 
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  (‎A.4) 

where: 

       

     
 
     

 
          

 
 

                
 
 
 
   

     
 
     

 
  

     

     

       

     
 
   

     

 

     

       

     

     

 

This configuration has been proposed by Cheung et al. in 2011 [48] who found an analytical 

expression of the optimum damping ratio    that minimise the total displacement of the mass 

m1. In this section analytical expressions of the damping ratio    which minimise the kinetic 

energy of the mass m1 and minimise the total kinetic energy of the entire system when    is 

equal zero are derived.  

A.2 Minimisation of the total kinetic energy and maximisation of the power absorbed 

The damper in this case can either be adapted to minimise the kinetic energy of   , or the total 

kinetic energy of    and   , or to maximise the absorbed power. In this section we compare 

these strategies 

If the aim of the tuneable damper c3 is to minimise the integral of the kinetic energy of the mass 

m1 calculated over the frequency-band   , the performance index to be minimised can be 

defined by: 

    
    | ̃ |

  

         

 
(‎A.5) 

where E[ ] denotes the expectation value. The performance index Ik1 represents the ratio of the 

kinetic energy of the mass m1 to the excitation force with a uniform spectrum density Sf. The 

unit of Sf is N
2
s/rad. The constant         is introduced to ensure that the performance index 

is dimensionless. The mean squared value of the velocity of the primary mass can be written as: 

   ̃ 
   

    

    

∫ | ̃|
 

  

  

   
(‎A.6) 

Substituting equation (‎A.6) in equation (‎A.5) yields: 
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(‎A.7) 

Thus, substituting equation (‎A.3) in (‎A.7) yields: 
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 (‎A.8) 

Equation (‎A.8) can be integrated using the formula in reference [22] leading to: 
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(‎A.9) 

If the aim of the tuneable damper c3 is to minimise the integral of the kinetic energy of the entire 

system, and thus the kinetic energy of mass 1 plus the kinetic energy of mass 2 calculated over 

the frequency-band   , the performance index to be minimised can be defined as: 

   
    | ̃ |

  

         

 
     | ̃ |

  

         

 
(‎A.10) 

The mean squared value of the velocity of the mass m2 can be written as: 

   ̃ 
   

    

    

∫ | ̃|
 

  

  

   
(‎A.11) 

Substituting equation (‎A.11) in equation (‎A.10) yields: 
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∫ | ̃| 

  

  

   
(‎A.12) 

Thus, using equation (‎A.4) the quantity Ik2 can be written as: 

    
 

  
∫ |
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 (‎A.13) 

Equation (‎A.13) can be integrated using the formula in reference [22] leading to: 

    
     

 
   

 
 

      
 
  

 
     

 
   

 
                   

 
  

  
 
 
 
                                

 
   

 

(‎A.14) 

And thus substituting equations (‎A.9) and (‎A.14) in (‎A.12) leads to: 
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 (‎A.15) 

The power absorbed by the tuneable damper can be written as: 

       
 

 
  { ̃

 

 
 ̃ } 

(‎A.16) 

where the force  ̃  is the force produced by the damper given by: 

 ̃
 

    ̃  
(‎A.17) 

Substituting equation (‎A.17) in (‎A.16) the absorbed power becomes: 

       
 

 
  | ̃ |

  
(‎A.18) 

In this case the non-dimensional performance index is defined by: 

    
    | ̃ |

  

        

 
(‎A.19) 

which represents the ratio of power absorbed by the tuneable damper to that generated by the 

excitation force with a spectrum density Sf acting on a damper of value      . The mean 

squared value of the relative velocity times the mechanical damping c3 can be expressed as 

follow: 

    | ̃ |
   

    

  

  
 
  ∫ | ̃|   

  

  

 
(‎A.20) 

Thus the performance index becomes: 

     
 
  ∫ | ̃|   

  

  

 
(‎A.21) 

Substituting equation (‎A.4) in (‎A.21) Ip3 becomes: 

    
     

 
  

 
   

 
 

      
 
  

 
     

 
   

 
                   

 
  

  
 
 
 
                                

 
   

 

(‎A.22) 

In order to minimise the kinetic energy of the mass m1, the following conditions have to be 

satisfied: 
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(‎A.23) 

while to minimise the total kinetic energy of the entire system the following conditions have to 

be satisfy: 

{
 

 
     

   

  
 

  

   

  
  

 
(‎A.24) 

Finally to maximise the total power absorbed by the tuneable damper the following conditions 

have to be satisfy: 

{
 

 

     

    

  
 

  

    

  
  

 
(‎A.25) 

Differentiating the performance index Ik1 expressed in equation (‎A.9) with respect to ζ  and  , 

and setting these equal to zero, yields to a pair of simultaneous equations: 

          
             

       
        

      
       

        
     

   
 

       
   

        
          

       
        

     

 

            
                                       

        
       

 

       
      

       
        

       
   

        
   

 

       
   

          
         

          
        

        
  

   

 

(‎A.26a) 

 

 

 

(A.28b) 

 

 

Following the same procedure for Ik and Ip3, the partial derivates of the performance index Ik 

expressed in equation (‎A.15) are given by: 

       
       

        
      

        
       

               
         

   

       
        

       
        

      
        

        
   

 

      
   

         
   

       
        

     

 

 

 

(‎A.27a) 
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(A.29b) 

and the partial derivates of the performance index Ip3 expressed in equation (‎A.22) are given by: 

           
             

       
        

      
       

        
     

   
 

       
   

        
          

       
        

     

 

             
                                       

        
       

 

       
      

       
        

       
   

        
   

 

       
   

          
         

          
        

        
  

   

(‎A.28a) 

 

 

 

 

(A.30b) 

Simultaneous equation (‎A.26) and (‎A.27) and (‎A.28) are all satisfied for ζ    and     

corresponding to minimising Ik1 and Ik and maximise Ip3. The other solutions can be found 

setting to zero the terms in squared brackets. If ζ    the term in square brackets in equation  

(‎A.26a) is equal to the term in square brackets in equation (‎A.28a) and the term in square 

brackets in equation (‎A.26b) is equal to the term in square brackets in equation (‎A.28b) which 

means that conditions for the minimisation of the kinetic energy of the mass m1 are the same of 

those for the maximisation of the total power absorbed.  

The total kinetic energy of the system is minimised for a different value of  ζ  and  , however, if 

ζ  is equal zero the primary system is undamped. Equations (‎A.26a) and (‎A.26b) for          

and          then reduce to: 

                                
    

                                 
    

(‎A.29) 

And equation (‎A.28a) and (‎A.28b) for         and         then reduce to: 

                                
    

                                 
    

(‎A.30) 

For the complexity of equations (‎A.29) and (‎A.30) it has not been possible to find explicitly 

expression for  ζ  and  . However, if the value of   is fixed the optimum damping that minimise 

Ik1 is given by: 
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(‎A.31) 

and the optimum damping that minimise Ik is given by: 

 
     

 
√                  

√        
 

(‎A.32) 

The difference between        and        is given by: 
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 (‎A.33) 

Equation (‎A.33) shows that the difference between the two optimum values is smaller than 0.5 

for all the value of    and  . Figure ‎A.2 shows the two optimum values of the damping ratio  

       and        as function of the mass ratio   when      . The plot shows that the 

difference of two optimum values never exceeded 0.5.  

 

Figure ‎A.2: ζ2optk1 (solid-line), ζ2optk (dashed line) and ζ2optk-ζ2optk1 (dotted line) as function of the mass 

ratio   when      . 

The performance index Ip3, however, becomes‎ equal‎ to‎ π‎ if‎   is exactly zero. The absorbed 

power is then independent on    and  , as can be seen from equation (‎A.28a) and equation 

(‎A.28b), since they both are proportional to ζ . 

 





 

 

Appendix B: Mathematical model of a 

distributed structure controlled by multiple 

velocity feedback loops  

B.1 Natural frequencies and mode shapes for beams and panels 

 Beam 

The natural frequencies of a beam of length l with any type of boundary condition are given by: 

    √
  

  
   

                                             
(‎B.1) 

where‎E‎is‎Young‟s‎modulus‎of‎the‎beam‎material,‎I‎is‎the‎second‎order‎moment‎of‎inertia‎of‎

the beam cross-section area A,   is the‎material‟s‎density,‎and‎    is a constant depending on 

the boundary conditions.  

Table ‎B.1:Natural frequencies of a beam 

Boundary conditions    

       

Simply supported 1,‎2,‎…    

Clamped at both 

ends 

1 

2 

3 

4 

5 

6,‎7,‎… 

4.73004 

7.85320 

10.9956 

14.1372 

17.2788 

          

Cantilever 1 

2 

3 

4 

5 

6,‎7,‎… 

1.87510 

4.69409 

7.85476 

10.9955 

14.1372 
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Table ‎B.1 and 2 show the values of       and the modeshapes respectively for a both ends 

simply supported beam, both ends clamped beam and a cantilever beam. The modeshape are 

normalised such that ∫        
 

 
   

Table ‎B.2: Characteristic beam functions  

Boundary 

conditions 

            with                       with       

Simply supported 

at both ends 

      √    (
   

  
) 

clamped at both 

ends 
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Cantilever beam       √ {   [
   

  
]      [

   

  
]       [

   

  
]      [

   

  
]} 

   
            

            

                     

Note that the first values for   in Table ‎B.2 can be determined using numerical root-finding 

methods, where it is important to yield results with a high precision. For values larger than 10 

the numerical methods can fail to determine the roots correctly. For i greater than 10,    is given 

by: 

       

 
 

for 
   (

 

 
  )      (

 

 
  )    

       

 
 

for 
   (

 

 
  )      (

 

 
  )    

       

 
 

for                

 

 Plate 

The natural frequencies of a panel of dimensions lx × ly with any type of boundary condition are 

given by: 
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    √
   

         
(
 

  
)
 

    (‎B.2) 

where     √  
       

                                                   . 

The constants   ,   ,    and   ,   ,    are given in Table ‎B.2 for a all-sides simply supported 

panel and a all-sides clamped panel. 

Table ‎B.3: Values of the constants Gx, Hx and Jx. He values of the constants Gy, Hy and Jy are the same 

for equivalent boundary conditions 

Boundary 

conditions 

           

Simply 

supported 

1,‎2,‎3,‎…         

Clamped 1 

2,‎3,‎… 

1.506 

  
 

 
 

1.248 

(  
 

 
)

 

[  
 

       
] 

1.248 

(  
 

 
)

 

[  
 

       
] 

The mass-normalised modeshapes          are given by: 

                    
(‎B.3) 

where mass-normalised characteristic beam mode functions are given in Table ‎B.2.  

B.2 Deterministic model of a distributed structure excited by a primary point force 

and controlled by multiple velocity feedback loops 

In this section, the implementation of R direct velocity feedback control loops on a distributed 

lightly damped structure is considered. The velocities at the control positions and the control 

forces are grouped into the following column vectors:  

 ̃  [
 ̃      

 
 ̃      

], 
(‎B.4) 

 ̃      [
 ̃      

 
 ̃      

], 
(‎B.5) 

where     and      are the velocity and the force at r-th control position. The velocities at the 

control positions, can be expressed in the following matrix form: 
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 ̃     ̃, 
(‎B.6) 

where, in this case,    is a      
 

matrix whose rows are the modal vectors     

                                      at the r-th control position: 

   [
   

 
   

]  [

                     

 
                     

    

          

          
], 

(‎B.7) 

Also,  ̃ is the column vector with the first N modal excitation terms due to both primary and 

control excitations given by: 

 ̃   ̃   ̃  
(‎B.8) 

However, assuming multiple primary and multiple control forces these two vectors are given 

by: 

 ̃   ̃  
  ̃  

(‎B.9) 

 ̃   ̃  
  ̃  

(‎B.10) 

  is the diagonal matrix of the resonant terms    given by: 

 ̃  
  

     
             

 
(‎B.11) 

where    is n-th the modal mass,    is the n-th viscous damping ratio and    is the n-th natural 

frequency. 

   is a        matrix whose rows are the modal vectors 

                                       at the s-th primary position: 

   [

   

 
   

]  [

                     

 
                     

    

     

          
]. 

(‎B.12) 

Finally    is the vector with the forces at the S primary positions: 

 ̃  [

 ̃      

 
 ̃      

],  
(‎B.13) 

If decentralised velocity feedback loops are implemented, then it is possible to write: 
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 ̃     ̃ , 
(‎B.14) 

where   is a diagonal matrix of the control gains relative to each single control loop: 

  [

   

 
   

], 
(‎B.15) 

Substituting equation (‎B.15), in equation (‎B.10) and then equations (‎B.9) and  (‎B.10) in  (‎B.8) 

yields: 

 ̃   ̃  
  ̃   ̃  

   ̃ ,  
(‎B.16) 

which, after substitution into equation (‎B.6) and some further mathematical manipulations, 

yields: 

 ̃   ̃ ̃ , 
(‎B.17) 

where  ̃ is given by: 

 ̃   (     ̃  
  )

  
   ̃  

  . (‎B.18) 

Thus, substituting  (‎B.17) in  (‎B.16)  ̃ becomes: 

 ̃   ̃ ̃ , 
(‎B.19) 

where  ̃ is given by: 

 ̃   ̃  
   ̃  

   ̃, 
(‎B.20) 

The transverse velocity at a generic point of the plate          depends on both forces  ̃  and 

 ̃ , and it can be expressed with the following matrix equation: 

 ̃            ̃      ̃ ̃  
(‎B.21) 

Where                                           is a row vector with the first N 

natural modes of the plate at the generic (     position on the plate. The instantaneous total 

kinetic energy of the structure is given by the product of the mass structure per unit area and the 

squared velocity integrated over the surface of the structure: 

     
 

 
∫   
 

            (‎B.22) 
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where S is the surface of the structure. Assuming    to be constant over the surface of the 

structure      becomes: 

     
 

 
  ∫            

 

 (‎B.23) 

The time-averaged total panel energy is given by: 

 ̅    
 

 
  ∫

 

 
∫               

 

  

 (‎B.24) 

Where T is a suitable period of time over which the mean squared velocity is estimated 

Assuming time-harmonic vibration the time averaged integral can be rewritten in terms of the 

magnitude of the complex velocity to give: 

 

 
∫            

 

 

 
 

 
| ̃       |  

(‎B.25) 

which yields the time-averaged total kinetic energy of the panel as: 

 ̅       
  

 
∫ | ̃       |   
 

 (‎B.26) 

Substituting equation (‎B.21) in (‎B.26) and considering the orthogonality condition of the natural 

modes yields: 

     
  

 
∫  ̃ 

  ̃    
     ̃ ̃   

 

 
 

 
  ̃  ̃  (‎B.27) 

The instantaneous total power absorbed by multiple feedback loops is given by: 

     
 

 
          

 

 
             

      (‎B.28) 

and considering proportional control equation (20) can be rewritten as: 

     
 

 
              

      (‎B.29) 

The time-averaged total power absorbed is given by: 

 ̅    
 

 
       

 

 
∫        

      
 

 

  
(‎B.30) 
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Assuming time-harmonic vibration the time averaged integral can be rewritten in terms of the 

magnitude of the complex velocity to give: 

 ̅       
 

 
       | ̃        |   (‎B.31) 

which after substitution of equation  (‎B.17) in  (‎B.31) gives: 

        
 

 
        ̃ ̃  , 

(‎B.32) 

The individual power absorbed by the r-th control loop is given by the r-th diagonal term of the 

matrix   ̃ ̃ . 

B.3 Stochastic model of a distributed structure excited by a rain on the roof 

disturbance and controlled by multiple velocity feedback loops 

In this section, the implementation of R direct velocity feedback control loops on a lightly 

damped flexible structure subject to a random excitation „rain-on-the-roof‟ is considered.  

When a distributed force is acted on the plate, the modal excitation term  ̃  in equation (‎B.8) 

becomes: 

 ̃   ̃ ̃, 
(‎B.33) 

where  ̃    ̃      ̃          ̃        is a column vector whose n-th term is the random 

excitation on the n-th natural mode of the structure given by: 

 ̃      ∫         ̃         
 

  (‎B.34) 

where  ̃ is the spatially random force acting on the structure. Thus, the same formulation as that 

presented for the deterministic model can be used to derive the response of the structure under 

control. 

The velocities at control positions are given in equation (‎B.6) where the column vector  ̃ with 

the first N modal excitation terms due to both random and control excitations,  ̃  and  ̃  

respectively is given by: 

 ̃   ̃   ̃ ̃. 
(‎B.35) 

 Substituting equation (‎B.14) in (‎B.10) and then in (‎B.35) a can be written as: 

 ̃   ̃  
   ̃   ̃ ̃. 

(‎B.36) 
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Substituting equation (‎B.36) in (‎B.6) and some further mathematical manipulations, yields: 

 ̃   ̃ ̃ ̃, 
(‎B.37) 

where  ̃ is given by: 

 ̃        ̃  
         (‎B.38) 

Substituting equation (‎B.37) in (‎B.36)  ̃ becomes: 

 ̃   ̃ ̃ ̃, 
(‎B.39) 

where  ̃ is given by: 

 ̃     ̃  
   ̃. 

(‎B.40) 

The transverse velocity at a generic point of the structure          can be written as: 

 ̃            ̃      ̃ ̃ ̃ 
(‎B.41) 

It can be demonstrated, that the power spectral density of a generic signal     is given by: 

          
   

 [
 

 
         ] (‎B.42) 

where      is the finite Fourier transform of      given by: 

     
 

  
∫           

 

 

 
(‎B.43) 

and E[ ] denotes the expectation for an infinite sample length. Thus considering the general 

formulation for the instantaneous total kinetic energy in equation (‎B.24), the power spectral 

density of the total kinetic energy   , due to a time spatial stochastic disturbance over the 

structure surface, can be written as: 

      
 

 
  ∫    

   
 [

 

 
 ̃         ̃       ]   

 

 (‎B.44) 

Substituting (‎B.41) in (‎B.44) and taking in to account the orthogonality of the modes, the power 

spectral density of the kinetic energy of the structure becomes: 

      
 

 
       ( ̃ ̃    

   
 [

 

 
 ̃ ̃ ]  ̃  ̃ ) (‎B.45) 
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Using equation (‎B.34), the i,j term of the matrix    
   

 *
 

 
 ̃ ̃ + can be expressed as: 

   
   

 *
 

 
 ̃  ̃ 

 +   ∫ ∫  
 
(     ) 

 
(       )    

   
 *

 

 
 ̃(       ) ̃(         )+

            . 
(‎B.46) 

In case of „rain-on-the-roof‟ excitation, the cross-expectation value of equation (‎B.46) is equal 

to one if        and        and zero otherwise. Thus, taking into account the orthogonality 

of the modes, the expectation value in equation (‎B.46)  is equal to the identity matrix. Therefore 

equation (‎B.45) can be written as: 

      
 

 
         ( ̃ ̃ ̃  ̃ ) (‎B.47) 

The power spectral density of total power absorbed by multiple decentralised control loops is 

given by: 

      
 

 
     (    

   
 [

 

 
 ̃ ̃ ]) (‎B.48) 

And thus substituting equation (‎B.37) in (‎B.48),       becomes: 

      
 

 
        (  ̃ ̃ ̃  ̃ ) (‎B.49) 

The individual power absorbed by the r-th control loop is given by the r-th diagonal term of the 

matrix   ̃ ̃ ̃  ̃ .  





 

 

Appendix C: Results for single channel systems 

 

This appendix reports all the results, for each individual control channel, of the open loop 

frequency response function and simulated closed loop response. Figure ‎C.1 shows the Bode 

diagram while Figure ‎C.2 and Figure ‎C.3 shows the Nyquist plot of the measured open loop 

FRF of the nine channels. Figure ‎C.4 shows the simulated PSD of the kinetic energy of panel 

for different values of control gain obtained from measured responses. Finally, Figure ‎C.5 

shows the simulated frequency averaged kinetic energy and power absorbed by each single 

channel obtained from measured responses.  
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Figure ‎C.1: Open loop FRFs using B&K accelerometers as feedback sensors



 APPENDIX C 

181 

 

 

Figure ‎C.2: Nyquist plots of the nine open loop sensor-actuator FRFs, acting alone, using B&K accelerometers 
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Figure ‎C.3: Zoom at the origin of the Nyquist plots of nine open loop sensor-actuator FRFs, acting alone, using 

B&K accelerometers
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Figure ‎C.4: Simulated of the kinetic energy of the panel without control (solid line), minimising the total kinetic energy (dashed-line) and implementing the gain that 

guarantees 6 dB gain margin from measured responses. 
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Figure ‎C.5: Simulated from measured response of the total kinetic energy of the panel and total power 

absorbed a single channel control system.   



 

 

Appendix D: Measured closed loop responses 

using control unit number 1 

Experimental results for a single channel system using control unit number 1. The measured and 

simulated PSD of the estimated kinetic energy is shown in Figure ‎D.1, for the same condition as 

in Figure ‎5.3 for control unit 1. Figure ‎D.2 shows experimental and simulated total kinetic 

energy and power absorbed when control unit number 1 is used to control the response of the 

panel. 

 

 

 

Figure ‎D.1: PSD of the estimated kinetic energy of panel with no control (solid line), minimising the 

estimated frequency averaged kinetic energy of the panel (dashed line) and high control gain (dotted line) 

a) measured and b) simulated 
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Figure ‎D.2: a) experimental and b) simulated results of the normalised total kinetic energy of the panel 

and c) experimental and d) simulated results of the total power absorbed as function of the control gain 2 

. 



 

 

Appendix E: Impedances of an electromagnetic 

inertial actuator 

In this appendix the analytical expression for the impedances used to describe the 

electromechanical behaviour of an electromagnetic inertial actuator are derived. In Figure ‎E.1 a 

scheme of a one degree of freedom inertial actuator is shown.  

 

Figure ‎E.1: Scheme of the electromagnetic inertial actuator 

The open circuit mechanical impedance Zmo is defined by: 

    
 

 
|
   

  
(‎E.1) 

 and can be derived from the equilibrium of the forces in Figure ‎E.1 as follow: 

  
           

  
 

         

(‎E.2) 

 

(‎E.3) 

where k is the stiffness of the actuator suspension, c is the internal damping of the transducer, u 

is the velocity of the structure to which the actuator is attached, uM is the velocity of the moving 

mass M.  Substituting equation (‎E.3) in (‎E.2) Zmo can be written as:  

    
 

 
 

          

         
 

(‎E.4) 

The transduction coefficient T1 is defined as: 

   
 

 
|
   

  
(‎E.5) 
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If the coil circuit is open the voltage v is produced by the electromagnetic coupling between the 

permanent magnet and the coil given by: 

           
(‎E.6) 

where B is the magnetic flux density of the magnet and l is the length of the coil and        

is the relative velocity between the base of the actuator and the moving mass. Combining 

equations (‎E.2) and (‎E.4), the relative velocity between the moving mass and the structure is 

given by: 

       
    

         
   

(‎E.7) 

Substituting equation (‎E.7) in (‎E.6) yields:  

     
    

         
 

(‎E.8) 

However the two transduction coefficients have the same absolute value and their product is 

negative real so that        . Zeb is the blocked electrical impedance defined as: 

   
 

 
|
   

  
(‎E.9) 

In this case the force generated by the actuator is given by the electromagnetic coupling 

coefficient Bl times the current i or by the velocity of the moving mass times the mechanical 

impedance of the actuator when u=0 and so: 

         
 

  
        

(‎E.10) 

 

The voltage in the coil circuit is given by the current i times the electrical impedance of the 

circuit plus the voltage generated by the relative motion of the magnet-coil and thus:  

                
(‎E.11) 

where R is the electrical resistance and L the inductance of the coil. Combining Equation (‎E.10) 

and (‎E.11) the blocked electrical impedance is given by: 

          
       

         
 

(‎E.12) 
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