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ABSTRACT 

ACOUSTIC FEATURES OF PIANO SOUNDS 

by Christos Karatsovis 

To date efforts of music transcription indicate the need for modelling the data signal in a 

more comprehensive manner in order to improve the transcription process of music 

performances. This research work is concerned with the investigation of two features 

associated with the reproduced sound of a piano; the inharmonicity factor of the piano 

strings and the double decay rate of the resulting sound.  Firstly, a simple model of the 

inharmonicity is proposed and the factors that affect the modelled signal are identified, 

such as the magnitude of the inharmonicity, the number of harmonics, the time 

parameter, the phase characteristics and the harmonic amplitudes.  A formation of a so-

called “one-sided” effect appears in simulated signals, although this effect is obscured in 

real recordings potentially due to the non-uniformly varying amplitudes of the harmonic 

terms.  This effect is also discussed through the use of the cepstrum by analysing real 

piano note recordings and synthesized signals.  The cepstrum is further used to describe 

the effect of the coupled behaviour of two strings through digital waveguides.  Secondly, 

the double decay rate effect is modelled through coupled oscillators and digital 

waveguides.  A physical model of multiple strings is also presented as an extension to the 

simple model of coupled oscillators and various measurements on a real grand piano are 

carried out in order to investigate the coupling mechanism between the strings, the 

soundboard and the bridge.  Finally, a model, with reduced dimensionality, is proposed to 

represent the signal model for single and multiple notes formulated around a Bayesian 

framework.  The potential of such a model is illustrated with the transcription of simple 

examples of real monophonic and polyphonic piano recordings by implementing the 

Metropolis-Hastings algorithm and Gibbs sampler for multivariate parameter estimation. 
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Chapter 1 

Project introduction 

 

1.1 Introduction 

In all civilisations, music represents an important form of expression.  In western 

cultures, the written form of music, by means of a written score or a manuscript, plays 

a central role in the way of allowing composers to share their intentions and 

communicate them with performing musicians. 

Music transcription is the process of converting a live or recorded performance into a 

written score.  Different information is represented in a score: the notes associated 

with their pitch, the duration, the tempo and dynamics.  This information, in 

conjunction with the individual skills of the performing musician, can give rise to 

different interpretations.  As a matter of fact, the personal interpretation of a musical 

piece can differentiate a masterful from a poor performance. 

Historically, the problem of automatic music transcription relating to pitch 

identification has been in existence for many decades now.  It is considered to be a 

multidisciplinary task blending different areas of science, art and engineering, such as 

signal processing, psychoacoustics, and musical acoustics. 

Music instruments that can only play a single note at a time are called monophonic, 

whereas instruments that can play a multitude of notes are called polyphonic.  These 

two different types of instrument require different techniques when transcribing music 

performances.  Monophonic performances are relatively straightforward to analyse, 

whilst polyphonic performances are more involved since a multitude of notes can 

share a number of same harmonics and therefore make the transcription process 

difficult to implement in practice.  Standard frequency analysis techniques in the latter 

case are not always adequate. 

The original motivation for this research work was to develop a novel technique for 

automatically transcribing polyphonic performances specifically written for the piano. 
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In the literature, many methods have been proposed for transcribing different music 

performances, some more successful than others as will be discussed later in detail.  

Some methods utilise sophisticated signal processing methods, where statistical prior 

knowledge of the music is incorporated in a model, whilst others propose methods of 

“training” the data through a set of parameters.  Other methods implement 

psychoacoustic models for emulating the ability of the human ear to distinguish 

between different sounds.  Finally, there are methods that may combine a number of 

the above methods. 

The majority of these methods and techniques use relatively simple forms of 

describing the signal, whereas only a few incorporate some of the unique physical 

characteristics relating to the sound reproduction mechanism of a music instrument, 

such as the inharmonicity factor relating to the bending stiffness found in piano 

strings.  These simple signal models may be regarded as an oversimplification of the 

true representation of the actual reproduced sound rendering the transcription process 

difficult, if not impossible. 

Therefore, it has become more evident over the years that more effort should be 

placed on understanding the complex mechanism of sound generation in polyphonic 

instruments through the investigation of some of their unique physical characteristics.  

The focus of this research work is to assess in particular the sound generation 

mechanism of the piano, as an important example of polyphonic music instrument, 

rather than proposing yet another music transcription method for polyphonic music. 
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1.2 Approaches and difficulties of automatic music transcription 

In this section, an attempt is made to briefly reveal the difficulties experienced by the 

different approaches in the automatic transcription of music and will make it evident 

as to why the need of modelling the physics of the signal in a more comprehensive 

matter is important to the transcription process.  A more detailed description of the 

different methods and limitations of transcribing monophonic and polyphonic music 

performances is presented in chapter 2. 

The methods and techniques in automatic music transcription can be categorised in 

many different ways.  We have chosen to present them in three broad groups, i.e. 

neural network, probabilistic and blind separation methods.  Hybrid methods may 

combine any of the three groups. 

 

1.2.1 Auditory perception 

The trained ear of a musician is capable of distinguishing between different notes and 

different instruments in a recording. However, the combined processing mechanism 

of the human ear coupled with that of the brain is not yet fully understood. 

In simple terms, the functionality of the human ear is divided into two main parts 

(Klapuri and Virtanen, 2008).  First, the signal is passed through a number of band 

pass filters or “channels” (approximately 100 in number) that are used to represent the 

frequency response (or selectivity) of the human ear.  Second, the signal in each 

channel produces the neural impulses to the auditory nerve associated with the 

different hair cells and sound is ultimately perceived by the brain. 

It is believed that the auditory information associated with pitch identification takes 

place both in each auditory channel and then combined across all channels 

(Cheveigné, 1999).  In the past, a model was developed as a means of emulating the 

functionality of the human ear (Meddis, 1986).  In particular, the harmonic deduction, 

i.e. the identification of the harmonics, can be based on a filter bank by splitting the 

signal into several frequency channels, and then the output of each channel can be 

coupled to Meddis’s model of hair cell induction.  Meddis and Hewitt (1990) have in 
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fact proposed a process by which autocorrelation functions are computed in each 

channel of the inner ear and then they are summed across all the channels in order to 

predict the maximum of the autocorrelation function representing the perceived pitch. 

However, despite significant efforts in developing even more accurate pitch 

perception models over the years, there are still functions in the auditory perception 

mechanism that are not yet fully understood. 

 

1.2.2 Neural network methods 

The automatic music transcription method utilising a neural network formalism is 

based on an iterative training process for the parameter estimation.  These methods 

normally use a segmentation routine in the form of an average Short Time Fourier 

Transform (STFT) feeding a blackboard system (Bello et al., 2000).  The blackboard 

system would consist of the database with all the hypotheses of the model, the 

scheduler and the knowledge sources executing the required actions.  Polyphonic 

music transcription is not successful with this method when there is strong harmonic 

overlap.  Most of these methods are focused on revealing the frequency information 

of the signal, despite the main physical phenomena taking place in the time domain.  

However, some more advanced neural network models take into account some of the 

physical characteristics of the music instrument, such as the piano.  For instance, in 

one of the methods (Ortiz-Berenguer et al., 2005), 88 patterns are used, one for each 

piano note, in a neural network training process coupled with a simple acoustical 

model of the piano.  In this model, the bending stiffness of the strings, or 

inharmonicity, of the piano is also modelled as part of the process. Training is carried 

out on a few notes to compute their associated inharmonicity factors and then a model 

is used to obtain the interpolated values of the inharmonicity factor for the remaining 

notes of the piano. 

An automatic music transcription technique could also be used as a combination of a 

comprehensive auditory model with a neural network framework (Marlot, 1999 and 

2001).   However, such hybrid models, although very comprehensive and useful, are 

limited to the interpretation of the output of the signal and do not assess the sound at 

its origin point before being perceived as an auditory signal. 
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1.2.3 Probabilistic methods 

Another method of music transcription is the one in which the emphasis is placed on 

probabilistic methods, such as Bayesian and Markov Chain Monte Carlo (MCMC) 

techniques.  In particular, the parameters of an unknown number of notes with an 

unknown number of harmonics, based on Bayesian formalism, is calculated by 

allowing prior knowledge about the nature of the data to be incorporated into the 

model.  The data is modelled in frames and joint parameter estimation can be 

performed across multiple adjacent frames for obtaining estimates of notes, music 

intervals and chords (Walmsley et al., 1999).  The majority of these methods utilise a 

fairly basic model for the description of the signal.  They are primarily based on the 

principles of the generalised linear model.  For instance, the signal is modelled as a 

sum of sine and cosine waves with random Gaussian noise. 

More advanced attempts have been implemented in a time-varying amplitude process 

for each harmonic present in the signal and their inharmonic relationship (Godsill and 

Davy, 2002; Davy and Godsill, 2002).  Such representations may considerably 

increase the dimensionality of the model rendering it expensive to compute 

numerically.  These methods are most accurate in transcribing monophonic 

performances, as well as having some success in transcribing polyphonic 

performances.  Limited success in the case of certain music intervals, such as octaves 

and fifths, is achieved due to the considerable overlap of the shared harmonics of the 

notes (Godsill and Davy, 2002; Davy and Godsill, 2002). 

 

1.2.4 Blind separation methods 

Over the years, “blind” separation techniques, such as Independent Component 

Analysis (ICA) and “sparse coding”, have been gaining ground as a means of 

obtaining the parameters from mainly mixed observations, e.g. polyphonic 

performances, where there is no statistical (or prior) knowledge of any of the signals 

(Klapuri and Virtanen, 2008). 

In the basic form of ICA, the mixed signal is analysed in the time-frequency domain 

using typical time-frequency analysis techniques, such as the STFT.  The weighted 
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sum of the basis spectra that represent the mixed signal (including a “noise” term) can 

be analysed to obtain musically important information, such as the fundamental 

frequency of the signal (Klapuri and Virtanen, 2008).  A special case of ICA, is sparse 

coding, where a cost function can be minimised to obtain the frequencies in the signal 

provided the data can be modelled in terms of a small number of active elements 

chosen out of a large set. 
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1.3 Main themes of the project 

Significant effort has been placed in the development and understanding of music 

transcription models based on signal processing approaches, such as Bayesian, neural 

network and blind separation methods, as mentioned briefly in the previous sections.  

Most methods employ simplistic models to describe the sound reproduction 

mechanism of a piano and very little emphasis has been placed on the development of 

a comprehensive physical model of a piano based on its rather unique sound 

reproduction features that could in turn be used in a transcription method. 

In the past, the characteristic features associated with the mechanism of sound 

reproduction of the piano have been addressed and investigated by many authors.  

These features concern the interaction between the hammers and strings of a piano 

and the different sound produced due to different playing dynamics (Helmholtz, 1877; 

Askenfelt and Jansson, 1988; Hall, 1987), the inharmonicity in piano strings 

(Fletcher, 1964; Taylor, 1965; Rossing, 1990), and the double decay rate 

characteristics of piano notes (Weinreich, 1977; Naganuma et al., 2004; Tanaka et al., 

1999; Nishiguchi et al., 2003 and 2004). 

This research serves as a basis for a further investigation of some of these acoustic 

features through a new perspective.  In particular, novel observations are made 

regarding the inharmonicity factor of piano strings and the importance of the double 

decay rate in piano notes, as well as appropriate analytical models are developed for 

these features combining dynamics theory, signal processing techniques and real 

experimental data.  These modelled features may be used as part of a newly proposed 

signal model, based on a Bayesian formalism framework, which could ultimately be 

incorporated in a more comprehensive transcription method in the future.  The 

proposed signal model is brought together in chapter 5 of this research. 
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1.4 Original contributions 

The following original contributions for the candidature for a research degree at the 

University of Southampton are summarised below: 

• This work is mainly focused in describing “imperfections” in piano sounds. 

These imperfections may constitute part of a more comprehensive signal 

model as a means of potentially improving the transcription accuracy in 

monophonic and polyphonic music performances.  This conceptual approach 

may be extended to other instruments provided other characteristic 

imperfections are identified. 

• The effect of inharmonicity, found in piano strings, is therefore modelled as a 

means of providing a more comprehensive signal model for representing the 

reproduced sound of a piano.  Novel observations and analytical formulations 

associated with the inharmonicity are also presented in the time and frequency 

domain in order to further unravel its effect on the reproduced sound. 

• The effect of the double decay rate is modelled and presented as a means of 

understanding the resulting piano sound.  This effect is discussed in the 

frequency and time domain through the modelling of coupled oscillators.  

Also, a physical modelling extension is presented for the total number of 

strings present in a piano instrument. 

• The coupling mechanism between the string, the bridge and the soundboard of 

the piano is investigated through measurements carried out on a real grand 

piano.  Observations associated with this complicated coupling mechanism are 

presented and compared with theoretical formulations. 

• A signal model is proposed for single and multiple piano notes in a 

probabilistic Bayesian framework, the dimensionality of which is considerably 

smaller than existing attempts in the literature (Godsill and Davy, 2002; Davy 

and Godsill, 2002).  Indeed, in the existing literature, a “de-tuning” parameter 

is used for each individual harmonic present in the signal due to their non-

integer frequency spacing relative to the fundamental frequency.  Hence, for N 

number of harmonics, there will be N de-tuning parameters that need to be 
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computed.  However, in this research, we propose a single inharmonicity 

factor for all N harmonics. 

• The potential of such a model is illustrated with the transcription of simple 

real monophonic and polyphonic piano recordings.  Multivariate estimation of 

the parameter space is achieved through the implementation of novel criteria 

embedded in known algorithms, such as the Metropolis-Hastings (M-H) 

algorithm and Gibbs sampler. 
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1.5 Conclusions 

This chapter has provided the introduction and rationale for the project.  The original 

objective was to develop a method for automatically transcribing polyphonic music 

performances for the piano.  However, it has become clear from the literature that 

there is little to suggest that certain important features of the piano have been 

considered in detail in the signal models of the transcription methods.  This may 

explain, to a certain extent, the poor success rate of the different methods of 

polyphonic music transcription as will be discussed in chapter 2. 

The focus of this research work in the next chapters would be to further investigate 

some of the important features of the piano instrument, such as the inharmonicity and 

the double decay rate effect associated with the sound generation mechanism of a 

piano through the use of modelling and experimental validation.  A newly proposed 

signal model, based on Bayesian formalism, will be discussed in chapter 5 following 

these investigations. 
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Chapter 2 

Existing knowledge review 

 

2.1 Introduction 

This chapter provides an overview of the methods of automatic music transcription 

found in the literature and presents the various important acoustic features associated 

with the piano’s sound generation mechanism as discussed by other authors in the 

past. 

This chapter is divided into two main sections.  The first section describes the 

methods of automatic music transcription with special emphasis on the problem of 

octave detection and the lack of physical modelling in those methods, whilst the other 

section describes the acoustic features of the sound generation mechanism of the 

piano through the hammer-string interaction, the radiation from the soundboard, the 

inharmonicity found in pianos strings, the double decay rate effect and the modelling 

methods of dynamically coupled strings. 
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2.2 The problem of octave detection in musical signals 

Pitch recognition of monophonic music is fairly straightforward, since there is no 

need to identify notes with shared harmonics (or also referred to as “partials” in the 

literature).  On the other hand, polyphonic music is a very complex subject since a 

multitude of notes can share a number of coincident harmonics.  The most 

problematic musical interval for transcription is the octave.  This is a musical interval 

between two notes played simultaneously in which the fundamental frequency and the 

harmonics of the higher note coincide with all the harmonics of the lower note. In the 

latter case, a simple analysis of the Fourier spectrum of the signal is not sufficient to 

separate the notes and transcribe them into a written form.  Also, the task of 

polyphonic music transcription can become even more difficult when trying to 

differentiate instruments that are being played simultaneously in a music piece. 

Many methods have been proposed and developed in order to solve the problem of 

polyphonic music transcription.  However, the separation of notes in an octave has not 

been resolved yet despite considerable effort.  As a result, the octave detection 

problem has become one of the ultimate challenges in polyphonic music transcription. 
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2.3 Methods of automatic music transcription 

2.3.1 Early approach 

Moore (1977) researched the transcription of music played by two instruments.  The 

method he developed was able to detect the notes played by the two instruments, 

although there were restrictions since the instruments were not allowed to “cross”.  

This meant that the fundamental frequency of a note played on one instrument was 

not allowed to be greater, at any given time, than the fundamental frequency of the 

played note on the other instrument.  The detection of an octave interval using 

Moore’s method was not possible. 

 

2.3.2 Neural network approach 

Bello et al. (2000) suggested a method based on neural network formalism in order to 

analyse simple polyphonic tracks.  The method uses a segmentation routine in the 

form of an average STFT feeding a blackboard system.  The blackboard system 

consists of the database with the hypotheses of the model, the scheduler, and the 

knowledge sources executing the intending actions.  One of the knowledge sources is 

a network chord recogniser.  The authors stated that octave detection was not possible 

with this method due to the high number of coincident harmonics associated with this 

musical interval. 

Chien et al. (2002) suggested another method, based on a neural network formalism, 

for octave detection in the case of the piano instrument.  In this method a constant Q 

time-frequency analysis method is implemented via a nonorthonormal discrete 

wavelet transform.  A Support Vector Machine (SVM) technique is used as an octave 

detector in the system.  By implementing this method for the transcription of 

polyphonic music, 3 out of 4 octaves are recognised showing the potential success of 

this method in octave detection. 

Marlot (1999) also developed a chord recognition method for the piano instrument 

based on neural network formalism.  The training set is a large database, which was 

developed by gathering recordings of single piano notes covering the whole playing 
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range of the piano at different dynamic levels.  These recordings were generated 

through commercially available CD audio recordings and several synthesizer sounds.  

The chords were then generated from the individual note recordings. As far as the 

neural network architecture is concerned, four different feed forward neural networks 

were tested in this method; multi-layer perceptrons, radial basis function networks, 

SVMs and time-delay networks.  Again, the octave detection problem was not 

successfully resolved due to the high number of coincident harmonics in the octave 

music intervals.  Marlot (2001) also suggested another transcription method called 

SONIC by using an auditory model based on Meddis’s theory (1986).  The latter 

theory describes the simulation of the basilar membrane in the inner ear using a bank 

of filters.  A filter bank effectively splits the auditory signal into frequency channels.  

The output of the auditory model is an autocorrelogram representing the signal with 

respect to time, channel centre frequency and autocorrelation lag.  Autocorrelograms 

can be summed up to estimate the periodicity in a signal and hence explain the pitch 

perception of the human ear.  In Marlot’s method the auditory model is combined 

with adaptive oscillators instead, formed into networks, in order to determine 

harmonics in a music piece.  The conclusion from this method is that the vast majority 

of errors are associated with misjudged repeated notes and octave intervals. 

Pertusa et al. (2005) suggested an interesting transcription method based on the 

identification of a pattern of a given instrument in the frequency domain.  In 

particular, band-grouped spectrograms of polyphonic music performances are 

combined with time-delay neural networks for obtaining estimates.  In this way, a 

complex auditory model and a signal processing method is avoided.  A learning 

algorithm with these grouped spectral bands is used to detect polyphonic 

performances, where a dynamic neural network is employed for the note detection 

and characterisation process.  Four categories of timbre have been investigated in this 

method; sinusoidal, sawtooth, clarinet and Hammond organ waveshapes.  A near 

perfect accuracy with this transcription method is achieved for recognising these 

specific instrument categories.  Note that all four categories are characterised by 

sounds that are nearly stable in time along the duration of a note.  On the other hand, 

the sound of a piano has time-varying amplitude characteristics due to its transient 

nature, so the transcription with this method may be limited. 
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Poliner et al. (2006) have proposed a transcription method of combining probabilistic 

methods with neural network formalism.  In this method, SVM classifiers with 

Hidden Markov Models (HMM) are combined in order to transcribe both synthesized 

and real piano recordings.  In particular, the classifier outputs of the SVM are 

temporally smoothed by an HMM as part of a post-processing stage.  Over two thirds 

of the transcription results are accurate with this method.  The advantage of this 

method is that it does not require prior knowledge of how the harmonic features of the 

signal are represented in the model.  This feature of this method minimises the 

analysis time of the music transcription process, but perhaps at the expense of 

accuracy.  Physical modelling could potentially improve the accuracy of this 

particular music transcription method through the use of a more comprehensive signal 

model. 

 

2.3.3 Probabilistic approach 

In this section, the probabilistic approach is investigated in more detail as opposed to 

the neural network methods in which mere ‘training’ of the data is normally 

performed.  One of the main aims of this research project is to aid in the development 

of a more comprehensive signal model, hence the understanding of the probabilistic 

methods offers perhaps a more effective approach to achieve this. 

Many authors have suggested the parameter estimation of monophonic and 

polyphonic music performances through the use of probabilistic models.  This section 

is primarily focused on the use of a Bayesian formalism allowing prior knowledge 

about the nature of the data to be incorporated into the transcription model.  The 

majority of these models simplify the representation of the signal as a sum of 

sinusoids. 

An explanation of Bayesian formalism is presented in Appendix A. 

In particular, Walmsley et al. (1999) suggested a method of estimating the parameters 

of an unknown number of notes with an unknown number of harmonics based on 

Bayesian formalism allowing prior knowledge about the nature of the data.  This 

approach is based on the use of a harmonic model in order to estimate parameters, 
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such as the fundamental frequency and detect the model order, such as the number of 

concurrently sounding notes and the number of harmonics in each one. 

The data is segmented into frames di of length 
iM  during which the data is 

considered stationary.  Each frame consists of a maximum number of R notes and 

each note r consists of the fundamental frequency r

iω , number of harmonics r

iH  and 

the harmonic amplitudes r

ib .  Each note can also be switched in and out of the model 

using a binary indicator variable r

iλ . 

The parameter estimation is based on MCMC methods using the Metropolis-Hastings 

(M-H) algorithm to produce the maximum posterior parameter estimation.  A number 

of transition kernels are proposed to explore the parameter space.  The recognition of 

octaves and fifths is not successful with this method. 

The model is constructed in terms of the generalised linear model with the addition of 

matrix ie  with random entries chosen from a normal distribution with zero mean, 

standard deviation one, and having variance 2

ei
σ .  The formulation representing the 

generalised linear model is given by 

∑
=

+=
R

r

rrr

i

1
iiii ebGd λ  

where r

iG  is the harmonic basis matrix of the model. 

The likelihood function )( 2

e

r

i i
σ,Θp id of the above model can be maximised in order to 

estimate the note parameters { }rr

i

r

i

r

i

r

i ,H,ω,Θ ibλ= .  However, this method does not 

account for any prior knowledge of the parameters.  A prior knowledge is 

incorporated into the model using a set of “hyperparameters” { }r

Θ∆ . In this model, 

these so-called block hyperparameters, rν  and 2

ωrσ , represent the spread of the pitch 

over a data block and rΛ  denotes whether the note is active over each data block. 

Various types of prior distribution are chosen for the model 

)( r
p ib , ),( r

iHp  ( ),i
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ω
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ei
σp , )( r
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The joint posterior distribution of the model would be 

( )id2

e

r

θ

r

i i
σ,∆,Θp  ∝  ( )2

e

r

θ

r

i i
σ,∆,Θp ( )∏ =

f

i

M

i

2

e

r

i σ,Θp
1 id  

The joint posterior density is difficult to optimise analytically and therefore a more 

appropriate numerical approach is considered.  The M-H algorithm is used to model 

the successive states of the Markov chain, where the final state of the chain is used to 

estimate the parameters in question. 

The M-H acceptance function for a parameter space Θ  can be written as follows 

),)T(p(

),)T(p(
,Q

*kk

k**

*k

ΘΘΘ

ΘΘΘ
=ΘΘ

d

d
)(  

where )( *k
,T ΘΘ  produces a proposal state *Θ  from the current state kΘ  that is 

accepted with probability ( )( )*,,1min ΘΘk
Q .  The rationale for the acceptance function 

is discussed further in Appendix A. 

The state space move is proposed with the use of local and global transition kernels.  

Global kernels will move the Markov chain into high probabilistic regions, whilst 

local ones will obtain more accurate parameter estimation. 

Local kernels are simply random perturbations about the current value of the M-H 

acceptance function. 

In terms of global kernels, the independence sampler is used to define a proposal 

distribution ( )**r
Hωr .  The proposal distribution of the latter sampler mimics the 

target posterior distribution having a high acceptance function, rather depending on 

the current state.  So, the distribution would have its modes in similar locations to the 

posterior density.  The modes of this distribution are the fundamental frequencies of 

the signal and in turn the harmonic amplitudes are calculated from a least-squares 

projection of the model.  A multiple step is also used to overcome problems with 

octaves that rise due to harmonic overlap by carrying out a joint move for the 

following parameters of note r: { }{ }iHω,ν r

i

rr

i

r ,, ib .  In that way, the kernel traverses 

harmonically related modes of the posterior distribution. 
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The above model is used on a recording, where major chords and octaves may be 

detected, although the recognition process becomes very difficult when octaves and 

chords are played together due to the large number of common harmonics. 

Davy et al. (2002) re-developed the latter model by implementing a time-varying 

amplitude process for each of the harmonics present in the signal.  Further flexibility 

was also incorporated into the process by modelling non-stationary error and 

inharmonicity in the signal, through the use of a parameter named “de-tuning”.  The 

estimation of the parameters was obtained by using a reversible jump MCMC 

algorithm. 

Results with this method have been reported for monophonic and polyphonic music 

transcriptions.  In the latter case, the successful transcription of polyphonic music 

consisting of a 2-note mixture of a saxophone and a trumpet, with different 

fundamental frequencies, has been reported. 

Leistikow et al. (2004) developed a Bayesian framework model for identifying music 

intervals and chords operating on single-frame STFT peaks.  In principal, the pitch 

component information is evaluated by an MCMC approach accounting for 

overlapping harmonics and spurious peaks.  To obtain the posterior probability 

estimates, the input signals are derived by mixing several single-note piano recordings 

with additive Gaussian noise.  None of the unique acoustic features of the piano 

instrument are modelled in this method.  The estimated posterior densities of the 

parameter space are accurate, although the effect of overlapping harmonics, especially 

in octave intervals, has an effect in the estimation process.  Also, the results are 

sensitive to user specific settings (noise variance scaling, spectral decay parameter 

and sampling distribution) for the chosen examples.  The authors suggest the 

enlargement of the MCMC parameter space and the learning of the user defined 

parameter settings may be carried out using the Expectation-Maximisation (EM) 

technique. 

More recent efforts by Peeling et al. (2007) proposed another probabilistic approach, 

where peaks detected in the frequency domain spectrum of a chord are modelled as 

realisations of a non-homogeneous Poisson point process.  In particular, the number 

of peaks that are detected by a STFT is modelled as a Poisson random variable and 
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hence the likelihood function may easily be formulated without associating peaks to 

particular note fundamentals or harmonics.  As an effect, the computational 

complexity of a full probabilistic model is avoided and the transcription accuracy can 

be high according to the authors.  In general, successful results have been reported 

with this method for up to a 4-note mixture recording, although there were notes 

associated with octave music intervals that were not accurately transcribed. 

 

2.3.4 Blind separation approach 

In the case of blind source separation techniques, such as ICA, there is the assumption 

of statistical independence of sources.  In our case, these sources may represent the 

notes of an instrument as part of monophonic or polyphonic music performances. 

In simple terms, the signal is modelled as a collection of STFT spectra.  The signal is 

represented as the weighted sum of the basis spectra including a “residual”, i.e. a 

noise-related, parameter (Klapuri and Virtanen, 2008).  Each pitch value would 

correspond to a different spectrum.  “Components” are therefore formed which 

represent instances of the basis spectrum and the time-varying pitch.  A collection of 

such components ultimately represent the mixed signal.  The components are further 

analysed in order to obtain musically important information, such as their onset and 

offset times, and the fundamental frequency of the signal (Klapuri and Virtanen, 

2008). 

Another technique linked to ICA is called “sparse coding”, where the signal is 

modelled in terms of a small number of active elements chosen out of a large set and a 

cost function can be minimised to estimate the desired parameters.  Learning can also 

be employed, where a linear generative model is used and the observed data is 

represented as a weighted sum of elements chosen from a “dictionary” of available 

“features” or “atoms” (Abdallah and Plumbley, 2006).  In such techniques, a cost 

function can be minimised as a means of estimating the frequencies in the data.  

However note that the data might not be sparse enough, where several components 

might not be active in order to yield meaningful frequency estimates (Abdallah and 

Plumbley, 2006). 
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Like other methods reviewed in this chapter, where the STFT spectra is used, blind 

source separation methods cannot necessarily model features of the reproduced sound.  

As a result, this might limit the success rates of the transcription of music 

performances with these methods. 
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2.4 Features of the sound generation mechanism of the piano 

The sound generation mechanism of a piano is complicated and there have been many 

attempts in describing its intricate elements through various methods and techniques.  

First, the pianist by depressing a piano key will trigger a hammer and that in turn will 

interact with the string, then the vibration of the string will propagate along its length 

and will interact with the piano bridge.  Finally, the sound will radiate from the 

soundboard (Aramaki et al., 2001). 

The piano was invented in 1709 by the Italian Bartolomeo Cristofori and its modern 

form was finalised around the middle of the nineteenth century (Taylor, 1965).  The 

piano is also perhaps the most versatile musical instrument of all.  It is capable of 

delivering both monophonic and polyphonic music performances with a vast range of 

dynamics.  As mentioned earlier, the piano is also an instrument that covers a large 

frequency range of about eight octaves.  This corresponds to a range of fundamental 

frequencies from 27.5 Hz to 4,186 Hz.  The sound quality of a piano depends on the 

type of piano, that is being either an upright or a concert grand, the level of 

craftsmanship, sophistication and design that goes into each one and the proper tuning 

of it. 

The piano normally consists of 88 keys, although some concert grands may have 

more.  The piano falls into the category of percussive instruments since the note is 

produced by percussive means.  The sound of piano note is of a transient nature and 

initiates with a violent percussive attack, when a hammer strikes a string, followed by 

a decay of vibration (Taylor, 1965).  Figure 2.1 shows a simplified version of the 

action mechanism associated with the sound generation mechanism of a vibrating 

piano string: 

 

 

 

 

Figure 2.1 – The mechanism of piano sound reproduction 
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From Figure 2.1, it can be seen that the string is anchored to the large cast iron frame 

of the piano.  On one side, it is anchored to the frame by means of using an “agrafe” 

or a “capo d’ astro”.  A “tuning pin” is used to adjust the tension for tuning purposes.  

On the other side, it is fixed to the frame by means of a “hitch pin”.  Note that the 

bridge strongly couples the vibrating string with the soundboard.  The soundboard is 

the main source of sound radiation from the musical instrument, as is the top wooden 

plate of string instruments, such as the guitar, the violin, the viola and so forth.  For 

that reason also, the choice of wood and the shape of the soundboard is of great 

importance when determining its final tonal characteristics (Taylor, 1965).  Normally, 

the soundboard is made of 1 cm thick spruce with ribs in the cross-grain direction, in 

order to stiffen it (Rossing, 1990). 

When a piano key is depressed, the damper resting on the string will be raised and the 

hammer will strike the corresponding string, setting it into a free vibrating motion.  As 

a result, vibrations of the string will be transmitted from the bridge to the soundboard 

of the piano and sound will be produced. 

The 88 piano keys correspond to an excess of 200 strings.  This is because most of the 

notes have more than a single string attached to them.  The reason for having multiple 

strings for a single note is mainly because the sound associated with that note would 

be “weak” otherwise.  This happens in the case of the treble notes corresponding to 

high frequency notes.  These notes do not have very long strings and therefore the 

restorative energy associated with these shorter vibrating strings is not sufficient to 

produce a well-defined sound.  On the other hand, bass notes can be as long as 2 

metres and can have enough energy to produce sound before ultimately being 

amplified by the soundboard. 

 

2.4.1 Hammer-string interaction 

One of the most controversial topics of discussion has always been how far can the 

influence of a performer be stretched when a tone is produced by means of depressing 

a key.  It is believed that it is not very likely that the performer can have any further 

control over the hammer other than the velocity with which it strikes the key of a 
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piano (Taylor, 1965).  It is also accepted that the greater the dynamics, i.e. the greater 

force when striking a key, the greater the number of harmonics produced in that way. 

This effect can be seen by examining the Fourier transform of piano note C1, played at 

two different dynamic levels, specifically “piano” and “fortissimo”.  The results of 

such an analysis are shown in Figure 2.2.  Note that the Fourier analysis is carried out 

on two different 10 sec recordings sampled at 44.1 kHz.  The recordings were derived 

from a currently discontinued sample-based library named “Gigastudio, version 3” 

(originally trademarked by Tascam), which contains real piano note recordings of a 

“Kawai” grand piano. 
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Figure 2.2 – Magnitude of a single FFT of the sound of a depressed piano note at two 

different dynamic levels (fortissimo and piano) 

From the Figure 2.2, it can be seen that in the case of the fortissimo, the piano key is 

depressed with a large force so that higher harmonics manifest themselves from about 

3,200 Hz and above in contrast to the piano case, where the key is depressed in a 

more gentle manner. 

This is because when a key is struck with a greater force, or in other words with 

greater dynamics, then the velocity of the triggered hammer is greater and the contact 
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time of the hammer with the strings will decrease.  Shorter contact time will result in 

a greater number of harmonics being produced.  Hence, there is a direct relationship 

between the contact time of the hammer and string with the hammer velocity at 

different dynamic levels (Askenfelt and Jansson, 1988). 

Consequently, the independent control of the loudness and the harmonic content 

cannot be achieved at the same time (Taylor, 1965). 

The interaction between the hammer and string of a piano has been a topic of 

discussion for over a century now (Helmholtz, 1877).  In general, hard and narrow 

hammers produce a -6 dB/octave spectrum envelope at high frequencies, whereas in 

the case where the mass of the hammer is less than the mass of the string, the high 

frequencies will attenuate with a -12 dB/octave roll-off (Hall, 1987). 

Chaigne and Askenfelt (1994) have modelled the vibration of a string in a piano, 

when there is a frequency dependent loss and nonlinear hammer excitation.  Boutillon 

(1987) explained this interaction between a piano hammer and a string by modelling 

the hammer as a point mass and the felt as a hysteretic spring. Through a number of 

experiments and investigations, the following relationship was obtained for the 

hammer force F  on the felt as a function of the compression of the felt 

( )a
yaF ∆=  

where a is an empirically derived coefficient and y∆  is the change in the compression 

of the felt. 

In simple terms, this model is an effective way of modelling the interaction between 

the hammer and the strings through the nonlinear and hysteretic compliance of the felt 

when in contact with the strings. 

Finally, the dynamic behaviour of the soundboard can be described through the 

equations of motion for a thin orthotropic plate, where the two principle axes of the 

elastic constant tensor lie in the plane of the board (Giordano et al., 2004). 
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2.4.2 Inharmonicity 

In the case of an “idealised” vibrating string, where the only force controlling its 

motion is the tension, the frequencies of the fundamental and harmonics for clamped 

ends are given from the following formula (Blevins, 1979) 

02

1
nf

A

T

l
nfn ==

ρ
    (2.4.2 – 1) 

where T, l, ρ and A are the tension force, length, linear density and cross-sectional 

area of the vibrating string. 0f  is the fundamental frequency and n is an integer 

number representing the harmonic number. 

From equation (2.4.2 – 1), it can be seen that the resulting harmonics will be exact 

multiples of the fundamental frequency.  However, piano strings are made of high 

strength steel wires in order to sustain high dynamic levels when keys are depressed 

by a performer.  In practice, strings also have bending stiffness as well as tension and 

that affects the way harmonics manifest themselves in the frequency domain 

specifically.  The inharmonicity factor, which is a result of the bending stiffness of a 

string, is given by (Fletcher, 1964) 
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=     (2.4.2 – 2) 

where E is the Young’s modulus of elasticity and K is its radius of gyration. 

Equation (2.4.2– 2) for the inharmonicity parameter B can alternatively be written as 

follows (Nishiguchi, 2004) 
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=     (2.4.2– 3) 

where d is the diameter of the string. 

From equation (2.4.2 – 3), it can be deduced that the inharmonicity B related to the 

bending stiffness of the string, is greater in the case of short strings for a given radius 

and tension as opposed to long strings for the same radius and tension.  Also, the 
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inharmonicity B of the string increases sharply with its radius and is more noticeable 

in the case of the bass strings since their radius is larger as opposed to the strings in 

the high frequency register.  A way of reducing the inharmonicity effect in the low 

frequency register is by making the string less stiff, by means of one or two layers of 

wrapped strings as opposed to using solid strings. 

For a piano string, which is displaced a distance y at the position x, the equation 

governing the motion of the piano string is given by (Fletcher, 1964) 
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where y takes the form 
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where C and k are constants determined from the boundary and initial conditions. 

Also, the terms 
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 represent the restoring force due to 

tension T and the restoring force due to the elastic stiffness respectively. 

The general solution of equation (2.4.2 – 4) is 

[ ])2sin()2sin()2cos()2cosh( 24122311
2

xkAxkAxkAxkAey
ftj πππππ +++= −  (2.4.2 – 6) 

where 1A , 2A , 3A  and 4A  represent the amplitudes of the general solution and four 

possible values of k for any possible frequency f can be defined as follows 

1kk ±=  and 2jkk ±=  

The general solution of equation (2.4.2 – 6) can be solved for different boundary 

conditions, such as pinned-pinned or clamped-clamped conditions. 

Assuming that the origin of the x -axis is at the centre of the piano string and that the 

two string ends are defined at 
2

l
x =  and 

2

l
x −=  respectively, in the case of pinned-

pinned boundary conditions 
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and for zero values of 2A , 4A  (even functions), the boundary conditions will fit if 1A  

is also zero and 0cos =klπ .  The following formula can be obtained for each value k 

(Fletcher, 1964; Nishiguchi, 2004; Ortiz-Berenguer et al., 2005) 
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Equation (2.4.2 – 7) describes in a very simple form the real frequencies of a piano 

string, where its ends are fixed, but not clamped (Ortiz-Berenguer et al., 2005).  In 

particular, it can be seen that the harmonics of a piano note do not manifest 

themselves at exact multiples of the fundamental frequency of the string due to the 

additional inharmonicity parameter B associated with the string. 

The value of inharmonicity B in the case of a real piano typically may vary between 

410−  and 210−  (Fletcher, 1964). It is also worth noting that the inharmonicity value 

will be different for different pianos due to the different selection of strings and level 

of craftsmanship. 

Equation (2.4.2 – 7), which represents the exact solution, it can also by approximated 

using Taylor’s expansion series as follows 
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If 12 <<Bn , then only the first two terms of the binomial expansion may be used as 

an approximation, in which case 
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The percentage error derived from this approximation as a function of the harmonic 

order for typical values of the inharmonicity B can be calculated as 

%  100,

n

eapproximatnn

f

ff
Error

−
=    (2.4.2 – 9) 



Acoustic Features of Piano Sounds  Chapter 2 

 28 

By using equation (2.4.2 – 9), it can be calculated that for relatively high values of 

inharmonicity B, i.e. 210− , the percentage error can be over 25% for predicting the 

frequency of the 20th harmonic.  Therefore, if one was interested in representing the 

signal model accurately, even for the first 10 to 20 harmonics, then the exact solution 

should be used rather than the approximate solution of Taylor’s expansion series. 

Another interesting feature is that the piano strings held by the bridge are not fixed 

and their behaviour also depends on the mechanical impedance of the soundboard, 

hence resulting in a higher or lower vibrating frequency of a piano string than that for 

fixed ends (Ortiz-Berenguer et al., 2005).  In particular, if the mechanical impedance 

of the soundboard has a positive imaginary value, i.e. mass-like impedance, then the 

resulting frequency would be slightly higher than expected.  On the other hand, in the 

case where the mechanical impedance of the soundboard has a negative imaginary 

value, i.e. compliance-like impedance, then the resulting frequency will be lower than 

expected. 

A small amount of inharmonicity is desirable in pianos.  For example, synthesized 

piano notes having harmonics at exact multiples of the fundamental frequency tend to 

lack subjective “warmth” (Rossing, 1990). 

Finally, Appendix B provides a short description of the tuning process based on the 

‘circle of fifths’.  However, in the particular case of the piano, these musical intervals 

should be ‘stretched’ further and not tuned to their “tempered” values in order to 

minimise beating between notes due to the presence of inharmonicity in the piano 

strings. 

 

2.4.3 Double decay rate 

When a piano key is depressed and a sound is heard, a careful examination of the 

time-history of that note shows a two-stage decay rate; the first stage has a rapid roll-

off, whilst the second decay rate has a much slower roll-off resulting into what is 

called the “aftersound” of a piano note (Weinreich, 1977).  This is illustrated in Figure 
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2.3 through a simulation as will be presented later in chapter 41.  In Figure 2.3, the 

natural logarithm of the instantaneous amplitude of a typical piano note as a function 

of time, which was recorded at 44.1 kHz using samples from the “Gigastudio” library, 

is shown: 
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Simulation of the double decay rate effect

Decay 1

Decay 2

Figure 2.3 – Modelling of the characteristic double decay rate effect 

There are mainly two factors believed to be associated with the double decay rate or 

compound decay characteristic of the sound of a piano note; the polarisation of the 

strings and, mainly, the coupling effect between different strings comprising a single 

note. 

 

2.4.3.1 Polarisation of piano strings 

An experiment was carried out (Weinreich, 1977) and the sound pressure level was 

plotted when a sound was produced by a single string of a piano note.  The piano 

                                                 
1 Note also that the “dip” at around 0.35 sec in this particular example is explained in section 4.2.3.1 of 

chapter 4, where the characteristics of the double decay rate are discussed in more detail. 
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string was freely vibrating at its fundamental frequency, as measured by a 

microphone.  A two-stage or compound decay was revealed; in the first stage the 

sound pressure level starts at a high level and decays quickly afterwards, whilst in the 

second stage, the sound pressure level takes over at a lower level and decays more 

slowly. 

The same phenomenon was observed by using a vibration pickup, where two 

electrodes measured the string at an angle of 45 degrees to the vertical and horizontal 

directions (Weinreich, 1977).  From this experiment, it was deduced that the vertical 

motion of the string is associated with the fast decay, whilst the slower decay is 

associated with the horizontal motion of the string. Hence, it is believed that the two-

stage decay phenomenon is closely associated with the piano string polarisation, 

where the superposition of two different decay rates produces the overall compound 

effect (Weinreich, 1977). 

In simple physical terms, energy is transferred from the string to the soundboard via 

the bridge in both the vertical and horizontal polarisations, despite the primary 

excitation of the piano hammer is in the vertical direction.  Also, there is a moment 

excitation at the bridge, which may further contribute to the transfer of energy in both 

directions. Therefore, since the soundboard is relatively compliant to out-of-plane 

motion, energy will be transferred from the vertical motion of the string to the vertical 

motion of the soundboard at a high rate resulting in a fast decay.  On the other hand, 

the soundboard is stiffer in the horizontal direction and energy is transferred at a much 

lower rate resulting in a lower decay rate. 

In terms of modelling the polarisation of the piano strings, a model has been 

suggested in which forces and velocities in the dynamical system correspond to 

currents and voltages as part of an equivalent electrical circuit analogy (Naganuma et 

al., 2004). In this method, a string is modelled in both the vertical and horizontal 

directions when coupled with a soundboard.  The soundboard is modelled as a spring 

and a dashpot connected in series, whilst the horizontal and vertical directions of the 

string are also modelled as masses connected to a spring and a dashpot.  Coupling is 

modelled as an idealised transformer.  This model can be used to explain the slight 

different frequencies associated with the vertical and horizontal polarisation of the 

string (Tanaka et al., 1999). 
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Other modelling techniques have shown the importance of coupling the vertical and 

the horizontal motion of a string at the bridge with the soundboard (Nishiguchi et al., 

2003 and 2004).  From finite element simulations of a string, it has been demonstrated 

that the motion of the string is significantly different to that of the soundboard.  In this 

model, a pair of orthogonally oriented springs and a rotational angle were employed 

for the two different directions of the motion of the string. 

 

2.4.3.2 Coupling of piano strings 

The notes of a piano are normally made using a pair or a triplet of strings.  These 

coupled strings are slightly mistuned from each other by much less than 1 Hz.  It has 

been shown that the mistuning of a group of strings comprising a piano note affects 

the decay characteristics of the produced sound (Weinreich, 1977).  For instance, 

when two or three strings of a group are struck, they are initially in-phase and so all 

will force the bridge up or down at the same time.  This will result in a fast decay of 

the energy.  However as the note continues to decay, the phase relationships change 

since the strings are slightly mistuned from each other and they are no longer working 

together to move the bridge.  Ultimately, according to Weinreich, the strings will be 

out-of-phase and the rate of decay of energy will be lower resulting in a slower decay.  

However, this is not a complete description because of the additional presence of 

moment excitation in a coupled dynamic system.  Note that as the mistuning 

increases, the phase difference between the strings also increases and for large phase 

differences, beats can be heard.  A piano tuner can adjust the tuning between a group 

of strings in order to alter the characteristics of the double decay sound of a piano 

note. 

Other authors (Hundley at al., 1978) showed that there is a change in rate of energy 

transfer from the multiple-string source to the bridge during the transition from an 

initial in-phase condition to a later out-of-phase condition. 

It has also been shown (Nakamura, 1988) that the coupling between a pair of strings is 

dependent on two factors, i.e. the degree of mistuning and the ratio of soundboard 

impedance to string impedance. 
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Another factor that contributes to the double decay effect is any hammer 

imperfections that may be present in the piano (Weinreich, 1977).  Hammer 

imperfections can result in string amplitudes that are not absolutely equal.  For 

instance, suppose that initially the struck strings are in phase but with the first string 

having larger amplitude than the second one due to a hammer irregularity.  The 

motion of the strings start to decay and when the amplitude of the second string with 

the lower initial amplitude approaches zero, the bridge continues to move because it is 

still being forced to do so by the first string with the higher initial amplitude.  

Subsequently, the second string does not reach zero amplitude but it actually starts to 

build up vibration in the opposite phase by absorbing energy from the bridge.  

Ultimately, the motions are anti-symmetric giving rise to a compound decay effect. 

Modelling of coupled piano strings can be based on the principles of digital 

waveguides. In these methods, a digital waveguide model simulates the wave 

propagation equation for a string when bounded in a medium called the resonator.  

Aramaki et al. (2001) modelled the vibration of two coupled strings using digital 

waveguides only for vertical motions and carried out a parameter estimation of the 

amplitude, frequencies and damping factors of the strings.  This type of modelling is 

discussed in more detail in chapter 3. 

Finally, Bensa et al. (2003) described the problem of coupled piano strings as an 

initial-boundary value problem permitting stable finite difference schemes.  The 

model can then be related to a digital waveguide model.  An experiment was also 

carried out by estimating parameters for a grand piano using a laser Doppler 

vibrometer.  In this particular method, the stiffness parameter of the strings was 

calculated along with the fundamental frequencies and the inharmonicity factor.  The 

time evolution of amplitudes of the first six harmonics of a piano note was also 

deduced where the double decay rate and beating effect were evident. 
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2.5 Conclusions 

This chapter has provided a literature overview of the methods of monophonic and 

polyphonic music transcription, as well as presented the unique acoustic features 

associated with the sound generation mechanism of the piano. 

Early approaches utilised simple frequency analysis techniques with successful results 

in the case of monophonic performances, whilst more recent neural network 

approaches have had mixed results for transcribing monophonic and polyphonic 

performances.  Similarly, some evidence has shown that Bayesian approaches have 

been successful in transcribing monophonic performances and with some success in 

transcribing polyphonic performances.  Blind separation methods in the form of ICA 

or sparse coding have been gaining more ground over recent years especially in the 

case of transcribing polyphonic music performances. 

The drawback with most of the above methods, apart from the blind separation 

methods where there is no explicit representation of the signal model, is the simplistic 

representation of the signal model, especially in the case of the piano in which the 

sound generation mechanism is non-trivial.  Hence, a conjecture is considered where a 

more detailed representation of the signal is required in order to improve the accuracy 

of the transcription methods.  As a result, the interaction of the hammer with the piano 

string, and the concept of inharmonicity and double decay rate effect have been 

presented. 

It was shown that the inherent bending stiffness in the piano strings leads to the 

inharmonicity effect in which the harmonics are not exact multiples of the 

fundamental frequency of a piano note.  The unique double decay rate effect found in 

pianos was attributed to two main factors, i.e. the vertical and horizontal polarisation 

of the piano string and the multiple, slightly de-tuned from each other, strings coupled 

through the soundboard. Finally, the dynamic behaviour of coupled strings was 

briefly discussed through the use of digital waveguide techniques. 
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Chapter 3 

Inharmonicity effect 

 

3.1 Introduction 

In this research we investigate two of the most important features that define the piano 

sound; the inharmonicity and the double decay rate.  Potentially, these features could 

be used as part of a comprehensive signal model for transcribing music performances 

in the future.  This chapter concentrates on the inharmonicity and the double decay 

rate effect is discussed later in chapter 4. 

This chapter presents a simple analytical model of a vibrating piano string in the 

presence of inharmonicity and discusses the various factors that affect its response, 

such as the magnitude of the inharmonicity factor, the number of harmonics present in 

the modelled signal, and the evolution of the modelled signal with time.  The effect of 

different phase and amplitude characteristics in the modelled signal are also 

discussed. 

This chapter also presents novel observations associated with the inharmonicity of 

piano strings for synthesized and real recordings through the use of the cepstrum.  The 

cepstrum is further employed to describe the separation of the response of the strings 

from the soundboard and the response of multiple strings is discussed through the use 

of digital waveguides and the cepstrum.  The closure of this chapter naturally leads to 

chapter 4 discussing further the effect of coupling between oscillators and the 

modelling of the double decay rate effect. 
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3.2 Inharmonicity model 

3.2.1 Theoretical representation 

In the piano instrument, the fundamental and harmonics of a vibrating string are given 

by equation (2.4.2 – 7) 

Bnnffn

2
0 1+=     (3.2.1 – 1) 

where B is the inharmonicity associated with the bending stiffness of the vibrating 

piano string. 

If 0=B , then 0nffn = , where 0f  is the fundamental frequency in the absence of 

inharmonicity and the harmonics are integer multiples of 0f .  However, if 0≠B , as 

in the case of real strings, then the fundamental frequency is no longer 0f  but 1f  

(Ortiz-Berenguer et al., 2005) 

Bff += 101  

and the harmonics are no longer exact multiples of the fundamental frequency. 

Figure 3.1 shows the spacing between the fundamental and first two harmonics in the 

case of a non-zero value of B , where a form of “frequency dilation” takes place 

relative to the case of 0=B : 

Figure 3.1 – Spacing of non-integer harmonics 

Indeed, from Figure 3.1, the spacing between the different harmonics increases with 

frequency due to the inharmonicity factor B. 

0f  
1=n  2=n  3=n  

Bf +10  Bf 412 0 +  Bf 913 0 +  

Amplitude 
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The response )(tx  of a vibrating piano string can be modelled as a simple 

superposition of N  number of harmonics with the fundamental frequency, then based 

on equation (3.2.1 – 1) 

( )[ ]∑
=

++=
N

n

nn tBnfntx
1

5.02
0 12sin)( φπα   (3.2.1 – 2) 

where nα  and nφ  represent the amplitude and phase terms of the n
th harmonic 

respectively.  For convenience at this stage, no damping is included. 

Alternatively, equation (2.4.2 – 8) is recalled, which is the approximate form of 

equation (3.2.1 – 1) for 1<<B  









+=

2
1

2

0,

Bn
nff eapproximatn    (3.2.1 – 3) 

Equation (3.2.1 – 2) can then be approximated as 

∑
=







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++=
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nn t
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nftx
1
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2

(2sin)( φπα  

[ ]∑
=

+++=
N

n

nnn BtnfntfBtnfntftx
1

3
00

3
00 )sin()2cos()cos()2sin()( πφππφπα  (3.2.1 – 4) 

In an analogy to an “amplitude modulation” effect, the following can be deduced from 

equation (3.2.1 – 4): 

the terms )2sin( 0 nntf φπ +  and )2cos( 0 nntf φπ +  represent the “carrier” of the signal 

that are amplitude modulated by )cos( 3
0 Btnfπ  and )sin( 3

0 Btnfπ  terms respectively.  

These modulations are slowly varying if 13 <<Bn . 

Equation (3.2.1 – 4) represents a “Priestley-type” interpretation in which a signal of 

the form )(tx  is amplitude modulated according to the following relationship 

(Priestley, 1981) 

ωωω ω
dXetAtx

tj )(),()( ∫=  
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where ),( ωtA  represents the “modulator” and the term tj
e

ω  represents the “carrier” of 

the signal. 

 

3.2.2 Numerical simulations 

This section is divided into five subsections, in which various factors are discussed 

that affect the modelled response of a vibrating piano string with the presence of 

inharmonicity factor B.  These factors are: the magnitude of the inharmonicity, the 

number of harmonics present in the modelled signal, the evolution of the modelled 

signal as a function of time, the phase characteristics in the modelled signal and the 

effect of different amplitudes. 

 

3.2.2.1 Effect of inharmonicity factor B 

Equation (3.2.1 – 2) is recalled 

( )[ ]∑
=

++=
N

n

nn tBnfntx
1

5.02
0 12sin)( φπα  

For the purpose of these simulations, it is assumed that 
nα  amplitudes are constant 

and that 2πφ =n . Therefore, 

( )[ ]∑
=

+=
N

n

n tBnfntx
1

5.02
0 12cos)( πα  

where )(tx  is made up of cosine terms and so is an even function of t.  Note that we 

only plot the above equation function for 0≥t . 

Figure 3.2 is obtained showing the response of a vibrating piano string with and 

without the presence of inharmonicity B for the first 10 terms (fundamental frequency 

and nine harmonics): 
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Figure 3.2 – Modelled response )(tx  for different values of the inharmonicity factor B, 

0=B  and 410−=B  for 10=N  

One-sided effect 

From Figure 3.2, it can be seen that the modelled signal with 0=B  effectively is the 

sum of a Fourier series of a periodic function.  Note that the spacing between two 

successive main lobes (or high peaks) is 5 ms corresponding to the fundamental 

frequency of 200 Hz used in the signal.  On the other hand, the modelled response 

with 410−=B  represents a signal that changes with time and the presence of 

inharmonicity gives rise to a feature that we refer to as a “one-sided” effect in the 

modelled signal.  For the purpose of this research, the latter name is proposed in 

relation to the formation of a strong non-symmetrical response relative to the main 

lobe structure of the signal.  In particular, the signal generally retains a repetitive type 

structure, whereas the structure to the left (before) of a main lobe starts to increase 

with time.  However, this effect is obscured in an actual piano note recording, as will 

be shown in section 3.2.2.5 for reasons explained later.  Therefore, it is important to 

investigate this effect further since it may be part of the sound reproduction 

mechanism of a piano note and could perhaps be part of the sound perception 

mechanism. 
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Additionally, a pole/zero map of the Laplace transform signal shown in Figure 3.2 is 

plotted in Figure 3.3 below.  This is shown for the case of 10=N  and 0=B : 
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Figure 3.3 – Pole/zero mapping on the s-plane of the modelled response )(tx  for 

0=B  and 10=N  

From Figure 3.3, it can be seen that the poles and zeros all lie on the imaginary axis as 

there is no damping in the modelled response. 

For further insight, the pole/zero map of the inharmonic signal, i.e. for 0≠B , 

demonstrates a “distortion” of the location of the poles/zeros that lie on the imaginary 

axis when compared with the pure harmonic signal, i.e. for 0=B .  In particular, by 

increasing the value of B, the poles/zeros move apart on the imaginary axis.  A 

pole/zero map, which demonstrates this effect, is plotted in Figure 3.4 for the case of 

10=N  and 210−=B : 
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Figure 3.4 – Pole/zero mapping on the s-plane of the modelled response )(tx  for 

210−=B and 10=N  

Also, an interesting feature, which does not correspond to a real physical system, is 

that for negative values of B , the one-sided lobe structure will shift from the left-

hand side to the right-hand side of the main lobe structure as shown in Figure 3.5 

below.  Note that this is not a physically realisable solution since the bending 

stiffness, and hence the inharmonicity factor B, in piano strings would always be a 

non-negative value: 



Acoustic Features of Piano Sounds  Chapter 3 

 42 

0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036
-20

-10

0

10

20

30

40

Time [sec]

M
a
g
n
it
u
d
e

Modelled response x(t) for N = 10

 

 

B = 0

B = -10-4

Main

lobe

One-sided

effect

 

Figure 3.5 – Modelled response )(tx  for different values of the inharmonicity factor B, 

0=B  and 410−−=B  for 10=N  

Finally, the effect of increasing the magnitude of inharmonicity factor B is illustrated 

in Figure 3.6: 
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Figure 3.6 – Modelled response )(tx  by varying the inharmonicity factor B , 

410−=B  and 
4104 −×=B  for 10=N  
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In this particular example, the magnitude of the inharmonicity was quadrupled and the 

effect of one-sided energy was observed in Figure 3.6.  From the latter figure, it can 

be seen that as the magnitude of the inharmonicity factor increases, so as the signal 

will be modulated further.  Hence, the effect of the one-sided energy will become 

more pronounced for higher values of B used in equation (3.2.1 – 2). 

 

3.2.2.2 Effect of harmonic number N 

In this subsection, the effect of increasing the number of harmonics N is demonstrated 

as shown in Figure 3.7.  In particular, response )(tx  is modelled with 10 and 20 terms 

respectively for a typical value of inharmonicity, i.e. 410−=B : 
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Figure 3.7 – Modelled response )(tx  by varying the harmonic number N, 

10=N  and 20=N  for 410−=B  

From Figure 3.7, it can be seen that by increasing the number of harmonics N, the 

effect of one-sided behaviour response will be more pronounced in the modelled 

signal since the resulting modulation effect will increase as described in equation 
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(3.2.1 – 2).  However, this may be unrealistic in real recordings since all harmonics 

may not have the same amplitudes.  This is discussed in more detail in section 3.2.2.5, 

where the effect of various amplitudes for the different harmonic terms is 

demonstrated. 

 

3.2.2.3 Effect of time parameter t 

Another feature of the modelled signal represented by equation (3.2.1 – 2) is that 

changes in the response of the signal will be dramatic as time increases.  So far, we 

have looked at the response of a single piano string for low-time regions, normally up 

to about 0.04 seconds.  Figure 3.8 depicts the response of )(tx  for different times in 

the signal, for the same number of harmonics and the same inharmonicity factor B : 
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Figure 3.8 – Modelled response )(tx  depicted at different times 

for 10=N  and 410−=B  

From Figure 3.8, it can be seen that dramatic changes in the response of the modelled 

signal will result as time increases.  This is because by increasing the time parameter 

variable of equation (3.2.1 – 2), the signal will be modulated further. 
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Given that the repetitive harmonic structure is a feature of a periodic signal (classical 

Fourier series), then the question lies on whether an inharmonic signal with non-

equally spaced harmonic structure is periodic or not and under what conditions. 

Initially, a signal )(tx  with two frequencies, 1f  and 2f , are combined as 

)2sin()2sin()( 21 tftftx ππ +=    (3.2.2.3 – 1) 

Hence, under what conditions is the above signal periodic? i.e. one is interested in 

finding the period T of the signal so that 

)()( Ttxtx +=     (3.2.2.3 – 2) 

Let now 0=t  for convenience, equation (3.2.2.3 – 2) can be written as 

0)2sin()2sin()( 21 =+= TfTftx ππ   (3.2.2.3 – 3) 

Equation (3.2.2.3 – 3) is satisfied for 

ππ nTf 22 1 =  and ππ mTf 22 2 =  

where m and n are integers. 

Hence, 

m

n

f

f
=

2

1     (3.2.2.3 – 4) 

Case 1 

Assume that the ratio of frequencies 1f  and 2f  corresponds to a fraction of two 

integer numbers, i.e. a rational number. For example, 1401 =f  Hz and 1502 =f  Hz. 

According to equation (3.2.2.3 – 4), 14=n  and 15=m .  Therefore, the signal is 

periodic with 1.0=T  sec. 

Case 2 

Assume now that 4.1411020 4
1 ≈×=f  Hz and 1502 =f  Hz.  According to equation 

(3.2.2.3 – 4), 1414≈n  and 1500=m . So, the period would be 10≈T  sec.  However 

strictly speaking, there are no true integer solutions for m and n that satisfy equation 

(3.2.2.3 – 4), hence, the signal does not have a period, i.e. it is non-periodic. 
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This simple argument can be extended to a sum of multiple frequencies present in the 

modelled signal, i.e. 

∑
=

=
N

n

ntftx
1

)2sin()( π  

where each frequency ratio should be rational.  So, extending this to account for the 

inharmonicity factor B, each ratio  

Bmm

Bnn

2

2

1

1

+

+
 

should also correspond to a rational number for all pairs m , n . 

If the above conditions are met, then the signal is periodic. However, this is a 

condition, which is unlikely to be met, so for all practical purposes the modelled 

signal is considered as non-periodic. 

 

3.2.2.4 Effect of phase 

Up to now, we have assumed a constant phase term, 2πφ =n , in equation (3.2.1 – 2), 

which would correspond to cosine components (even functions). However, in general, 

nφ  may differ from this. 

Let us therefore consider how the choice of 
nφ  affects the shape of the signal. 

For 2πφ =n  and 0=nφ , Figures 3.9 and 3.10 are obtained: 
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Figure 3.9 – Modelled response )(tx  for 10=N  and 2πφ =n  
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Figure 3.10 – Modelled response )(tx  for 10=N  and 0=nφ  
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Figures 3.9 and 3.10 represent the cosine and sine components of the modelled signal 

)(tx  and the phase relationship between all the N terms is fixed (or constant).  This 

means that the one-sided effect is related to the non-integer spacing of the harmonics 

relative to the fundamental frequency and not to the phase of the modelled 

components.  However, note that a positional shift of the inharmonic signal relative to 

the pure harmonic signal is observed. 

Also, equation (3.2.1 – 2) is simulated for the cosine terms with a randomly chosen 

phase term, which may vary between 0 and π/4, i.e. ∈radn,φ  [0, π/4] 

( )[ ]∑
=

++=
N

n

radnn tBnfntx
1

,

5.02
0 12cos)( φπα  

This signal is shown in Figure 3.11, where the one-sided effect can still be observed: 
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Figure 3.11 – Modelled response )(tx  for 10=N  and ∈radn,φ  [0, π/4] 

From Figure 3.11, it can be seen that by randomising the phase by a small amount, the 

one-sided effect is still evident.  However, note that if the phase term is completely 

randomised, i.e. ∈radn,φ  [0, 2π], the signal becomes random and no such one-sided 

structure can then be seen. 
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3.2.2.5 Effect of amplitude 

So far, numerical simulations of equation (3.2.1 – 2) were based on the assumption 

that the harmonic amplitudes nα  are constant, so in this section the amplitudes of the 

harmonics are varied uniformly and non-uniformly as described below. 

 

Uniformly varying amplitudes 

The amplitudes of the harmonic terms are expressed as a ratio of n1  and a damping 

term nζ  is also included.  This is to represent a case where the amplitudes of the 

higher frequencies contribute less than the lower frequencies (Cemgil et al., 2008) 
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1

5.02
0 12sin)( φπ

ζ

  (3.2.2.5 – 1) 

Note that the phase term is constant, i.e. 2πφ =n
.  Figure 3.12 is obtained: 
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Figure 3.12 – Modelled response )(tx  with uniformly varying amplitudes using 

 equation (3.2.2.5 – 1) for 10=N  and 
410−=B  
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From Figure 3.12, it can be seen that the varying amplitudes of the form n1  have a 

“low pass” effect on the modelled signal, where the high frequency modulation effect 

associated with the one-sided energy is partially filtered out, but its main asymmetric 

one-sided structure is yet retained. 

 

Non-uniformly varying amplitudes 

Equation (3.2.2.5 – 1) can also be written as  

( )[ ]∑
=

− ++=
N

n

n

t
tBnfnnetx n

1

5.02
0 12sin)()( φπαζ   (3.2.2.5 – 2) 

where the amplitudes )(nα  can now vary non-uniformly as in the case of a real signal 

and 2πφ =n  as before. 

For this particular example, the amplitudes of the harmonics where chosen from a real 

piano note recording C3 sampled at 44.1 kHz using the “Gigastudio” sample library.  

The modelled response )(tx  is shown in Figure 3.13 by using equation (3.2.2.5 – 2): 
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Figure 3.13 – Modelled response )(tx  with non-uniformly varying amplitudes using 

 equation (3.2.2.5 – 2) for 10=N  and 410−=B  
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From Figure 3.13, it can be seen that for non-uniformly varying amplitudes, the one-

sided effect is obscured. 

The modelled response )(tx  of equation (3.2.2.5 – 2) is also plotted for higher times, 

where the one-sided effect is still obscured, although there is some indication of a 

temporal variation/modulation relative to the main lobe structure of the modelled 

signal.  This is shown in Figure 3.14: 
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Figure 3.14 – Modelled response )(tx  with non-uniformly varying amplitudes using 

equation (3.2.2.5 – 2) for 10=N  and 
410−=B  

Finally, Figures 3.15 and 3.16 below compare the time histories of a modelled piano 

note C3 using equation (3.2.2.5 – 2) and a real recording of that note (band-passed for 

the first 10 terms) over a typically long time window, i.e. for. 72.065.0 ≤≤ t : 
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Figure 3.15 – Time history of modelled piano note C3 
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Figure 3.16 – Time history of real piano note recording C3 
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From Figures 3.15 and 3.16, it can be seen that the one-sided effect is obscured since 

both signal representations have non-uniformly varying amplitudes, as discussed 

before.  This perhaps explains why the one-sided effect is not apparent when 

observing the real time histories of piano note recordings.  Also, there are differences 

in the temporal structure between the modelled and the real piano note recording 

meaning that our model does not perfectly represent the true signal.  Finally, from a 

perception point of view, the one-sided effect may not be perceived due to the phase 

insensitivity of the hearing mechanism. 
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3.3 Cepstrum analysis 

In this section, the cepstrum is introduced in order to further unravel the structure of 

piano sounds.  So far, one has simply considered only the response )(tx  of a vibrating 

string with or without inharmonicity, but in reality the string is also coupled directly 

with the soundboard of the piano, which ultimately radiates the reproduced sound.  

Hence, it is in the direct interests of this research to further formulate the coupling of 

the vibrating piano string with the main mechanism of sound radiation, which is the 

soundboard. 

 

3.3.1 Concept 

One way of analysing compound signals is the cepstrum.  In principle, the cepstrum is 

a “homomorphic” operator by which convolved signals in the time domain can be 

converted to additions.  In this way, two different components of a composite signal 

can be separated out in the “pseudo-time” domain and can be analysed on an 

individual basis. 

The mathematical expression of the complex cepstrum, ),(ˆ tx  of a signal is defined as 

follows 

[ ]∫
+∞

∞−

= dfefXtx
ftj π2)(ln)(ˆ    (3.3.1 – 1) 

So, the complex cepstrum of a signal is defined as the inverse Fourier transform of the 

natural logarithm of the Fourier transform of signal )(tx .  Note that the complex 

cepstrum retains the phase structure of the signal. 

In order to appreciate the merits of using the cepstrum of a signal for analysis, one has 

to understand the basic mechanism of homomorphic processing.  A homomorphic 

process is a method by which a composite signal can be decomposed into a series of 

simpler operations.  For example in the case of the cepstrum, suppose that a 

composite signal )(tstot  consists of two simpler signals )(1 ts  and )(2 ts , which are 

convolved in the time domain 
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)()()( 21 tstststot ∗=     (3.3.1 – 2) 

Equation (3.3.1 – 2) in the frequency domain may be written as 

)()()( 21 fSfSfS tot =     (3.3.1 – 3) 

By then taking the logarithms of either side of equation (3.3.1 – 3), the product of the 

two signals in the frequency domain becomes an addition 

[ ] [ ] [ ])(ln)(ln)(ln 21 fSfSfS tot +=    (3.3.1 – 4) 

By applying the inverse Fourier transforms on equation (3.3.1 – 4), the signals may 

now be separated, although there is no guarantee for this, in the inverse-log-frequency 

or the pseudo-time domain and can be analysed on a separate basis 

[ ]{ } [ ]{ } [ ]{ })(ln)(ln)(ln 2
1

1
11

fSFfSFfSF tot

−−− +=  

 

)(ˆ)(ˆ)(ˆ 21 tstststot +=     (3.3.1 – 5) 

where )(1̂ ts , )(ˆ2 ts and )(ˆ tstot  are the complex cepstra of signals )(1 ts , )(2 ts  and )(tstot  

respectively. 

 

3.3.2 Application to piano signals 

The sound of a piano note can be regarded as the convolution of the output from the 

vibrating strings with the soundboard and bridge response. 

In the simple case, the sound of a single piano note is produced by the hammer 

exciting the string, which is then amplified by the soundboard.  Figure 3.17 shows a 

schematic layout of the sound generation mechanism of a single piano note: 
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Figure 3.17 – Schematic layout of sound generation mechanism of a single piano note 

The following hypothesis is made in the case of the piano instrument (Karatsovis et 

al., 2006): the soundboard has a broad spectral response (Giordano, 1997 and 1998) 

and consequently a cepstrum that predominantly contains its information in the low 

“quefrencies” (or low-time regions).  This hypothesis is supported by experimental 

work on a real grand piano and described later in chapter 4 (ref: Figure 4.15).  On the 

other hand, the vibrating strings give rise to a series of impulses in the pseudo-time 

domain due to the relative periodicity of the harmonics associated with the vibrating 

length of the strings.  These impulses will manifest themselves in the higher 

quefrencies (or high-time regions) and the vibrating strings will therefore be well 

separated from cepstral coefficients associated with the soundboard.  The above 

hypothesis is demonstrated mathematically in section 3.3.3. 

The resulting piano sound )(ty  is the convolved impulse response of the soundboard, 

)(th , with the response of a vibrating piano string, )(tx  

)()()( txthty ∗=     (3.3.2 – 1) 

Also, the resulting response of the vibrating piano string )(tx  is the convolution of the 

impulse response of the string, )(tg , with the hammer excitation )(te  

)()()( tetgtx ∗=     (3.3.2 – 2) 

Equation (3.3.2 – 1) due to (3.3.2 – 2) becomes 

)()()()( tetgthty ∗∗=    (3.3.2 – 3) 

By taking the Fourier transforms on either side of equation (3.3.2 - 3) 

)()()()( fEfGfHfY =    (3.3.2 – 4) 
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By taking the natural logarithms on either side of equation (3.3.2 – 4) 

)(ln)(ln)(ln)(ln fEfGfHfY ++=   (3.3.2 – 5) 

Finally, by taking the inverse Fourier transforms of equation (3.3.2 – 5), one obtains 

the following complex cepstrum representation as follows 

)(ˆ)(ˆ)(ˆ)(ˆ tetgthty ++=    (3.3.2 – 6) 

where )(ˆ ty , )(ˆ th , )(ˆ tg , )(ˆ te  are the complex cepstra of the resulting piano sound, the 

soundboard response, the piano string impulse response and the excitation force 

respectively. 

As one can observe from equation (3.3.2 – 6), the resulting piano sound may be 

divided into separate components with the help of the complex cepstrum, so they can 

be treated separately for further analysis. 

As a result, cepstrum analysis can be used in complicated signals, which are rich in 

harmonics, in order to extract periodicities associated with them, and could ultimately 

be used to decouple the response of the vibrating strings from the response of the 

soundboard (Karatsovis et al., 2006).  The character of the cepstrum of real piano 

notes can also be used to describe the phenomenon of inharmonicity associated with 

the vibrating strings shown earlier in the numerical simulations of section 3.2.2. 

 

3.3.3 Analytical formulations 

It is convenient to carry out any formulations in discrete time.  The cepstrum )(ˆ nx  

can therefore be defined for sequence )(nx  as 

[ ]{ })(ln)(ˆ 1
zXZnx

−=  

Assume now that the string response is periodic, i.e. there is no inharmonicity, and the 

excitation of a single string results in its fundamental and exact harmonic frequencies.  

The single string response )(np  in the discrete time with period n0 is 
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)()( 0knnpnp +=  

where k is an integer. 

Let us also assume that there is an exponential decay )(nm  uniform for all 

components, so the modulated response of the string )(nx  is 

)()()( npnmnx =     (3.3.3 – 1) 

We will model the period signal )(np  as a delta train convolved with an n0 length 

sequence )(0 np , so equation (3.3.3 – 1) becomes 

( )∑ −∗=
k

knnnpnmnx 00 )()()( δ    (3.3.3 – 2) 

Assuming that )(nm  is sufficiently slowly varying over one period, then the delta 

train is modulated directly by )(nm , hence in the complex frequency domain, 

equation (3.3.3 – 2) becomes 
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zknmzPzX 0)()()( 00    (3.3.3 – 3) 

Assuming )(nm  is an exponential decay of the form n
anm =)( , equation (3.3.3 – 3) 

becomes 
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1
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=    (3.3.3 – 4) 

In the cepstrum domain, equation (3.3.3 – 4) becomes 
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Therefore, the cepstrum of the overall response )(ˆ ny  of equation (3.3.2 – 1) will lead 

to equation (3.3.3 – 5) as follows 
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It has therefore been shown analytically from equation (3.3.3 – 5) that the cepstrum of 

the response )(ˆ ny  approximately consists of the cepstrum of the soundboard )(ˆ nh , 

the cepstrum of the periodic shape )(ˆ 0 np  and a train of amplitude-decaying spikes 

)(ˆ ni  of the form 
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nn
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nnani
nn

n δδδ  (3.3.3 – 6) 

The above formulation demonstrates the original hypothesis (Karatsovis et al., 2006). 

However, normally in computational simulations, as will be shown in section 3.3.4 

later, there is always the effect of windowing )(nw  on the total response )(ny  that 

has not yet been accounted for. This can be realised through 

)()()( nynwnyw =     (3.3.3 – 7) 

where 

elsenw

Mnnw

0)(

101)(

=

−≤≤=
 

where M is the data length. 

Equation (3.3.3 – 7) can now be written as 

{ }[ ])()()()()( npnmnhnwnyw ∗=  

The windowed train of spikes )(niw  of the form )()()( ninwniw =  is written as a finite 

sum 



Acoustic Features of Piano Sounds  Chapter 3 

 60 

( )∑
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w knnni
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0)( δ     (3.3.3 – 8) 

where 10 −= MPn  

By taking transforms in the complex frequency domain, equation (3.3.3 – 8) becomes 
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By taking natural logarithms on either side of equation (3.3.3 – 9), one obtains 
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By taking the frequency domain version of equation (3.3.3 – 10) and by setting 

∆= ωjez , one obtains the following equation 
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The finite inverse transform of equation (3.3.3 – 11) for each term would be of the 

form 

)( qtkdee tjqj −≈∫
− δωωω  

where ,...3,2, 000 nnnq =  and ,...
3

1
,

2

1
,1=k  

Ultimately, the windowed train spikes in the pseudo-time domain will be of the 

following form (set also 1=∆  for convenience) 
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From equation (3.3.3 – 12), one can deduce that the amplitude of spikes is 

diminishing and is symmetric of the form 
x

x)sin(
. 

However, in the case of a vibrating piano string with inherent inharmonicity B , the 

above analysis is not valid since 

)()( 0knnpnp +≠  

One may now recall our simple model of a vibrating piano string with inherent 

inharmonicity as described in equation (3.2.1 – 2) 
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+=
N

n

tBnfntx
1

5.02
0 12sin)( π  

where n in the above equation reflects the harmonic number. 

Equation (3.2.1 – 2) may be written in the discrete domain as 

∑
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nmmx
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]sin[)(    (3.3.3 – 13) 

where ( ) 5.02
0 12 Bnfnn +=Ω π .  The Z-transform of each term of equation (3.3.3 – 13) 

can be calculated 
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However, equation (3.3.3 – 14) is only the Z-transform of one term only, so one needs 

to compute the Z-transform of all the terms of equation (3.3.3 – 13) and then compute 

the natural logarithm of the total sum 
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It has not been possible to compute analytically equation (3.3.3 – 15), although 

computer simulations were carried out in the next section as a means of investigating 

the resulting features of a signal with inherent inharmonicity. 
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3.3.4 Computational demonstrations 

In this section, the concept of cepstrum is used to further unravel the structure of a 

real piano note recording with inherent inharmonicity and the structure of a 

synthesized periodic signal with and without inharmonicity present.  These 

computational demonstrations naturally follow from the analytical formulations 

earlier on in order to reveal features of the signals in the time domain, where the 

sound reproduction mechanism actually takes place. 

In particular, the use of the real (or power) cepstrum, ),(ˆ txreal  is used for the 

computational demonstrations in this section where 

[ ]∫
+∞

∞−

= dfefXtx
ftj

real

π2)(ln)(ˆ    (3.3.4 – 1) 

So, the real cepstrum of a signal is defined as the inverse Fourier transform of the 

natural logarithm of the magnitude of the Fourier transform of the signal. 

A real single piano note C3 was recorded at 44.1 kHz and analysed in terms of its 

power spectrum and real cepstrum.  Note that the piano note was analysed using a 

single FFT over the whole 10 second recording using the “Gigastudio” sample library.  

The results are illustrated in Figure 3.18: 
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Figure 3.18 – FFT and cepstrum analysis of a real piano note C3 

It can be seen from the FFT of the recorded signal of Figure 3.18 that the fundamental 

frequency of piano note C3 is 130.5 Hz and its harmonics are non-integer multiples of 

this value due to the inharmonicity factor inherent in the real piano note recording. 

Additionally, from these measurements, one can identify that there are amplitude 

decaying impulses every 7.6 ms in the real cepstrum of Figure 3.18.  These impulses 

in the cepstral domain are related to the fundamental frequency of piano note C3 

(≈1/130.5). 

We now zoom further around the first 7.6 ms of the pseudo-time domain of the 

cepstrum as shown in Figure 3.19: 
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Figure 3.19 – Expanded view of the real cepstrum of Figure 3.18 

From Figure 3.19, it can be observed that there is some indication of a one-sided 

effect in relation to the main lobe of the signal similar to the effect observed in section 

3.2.2.  The one-sided effect is attributed to the inharmonicity, i.e. the non-equal 

spacing of the harmonic frequencies as discussed earlier. 

The effect of one-sided energy manifests itself more clearly by constructing an 

artificial signal by replacing the peak values of the power spectrum with delta 

functions of constant magnitude and replacing the noise floor of the signal by a 

constant value.  The real cepstrum of this artificial signal can then be computed.  The 

new synthesized signal is marked in red in Figure 3.20: 
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Figure 3.20 – FFT and real cepstrum of synthesized signal 

By zooming in on two typical peaks of the synthesized signal in the pseudo-time 

domain, Figure 3.21 is obtained: 
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Figure 3.21 – Expanded view of the real cepstrum of Figure 3.20 
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From Figure 3.21, a clear time-evolving one-sided effect can be seen as also 

demonstrated in section 3.2.2. 

Now, by replacing the peaks of the power spectrum of the original signal with a series 

of delta functions of constant magnitude, but this time being spaced at exact 

multiplies of the fundamental frequency, the inharmonicity is “removed” from the 

original signal.  The real cepstrum of this new signal can then be computed and is 

shown in Figure 3.22: 
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Figure 3.22 – FFT and real cepstrum of new synthesized signal 

From Figure 3.22, it can be seen that there is only symmetric energy spreading 

through windowing and the one-sided effect is absent. 

As a final concluding remark, the above analytical and computational investigations 

support the deduction that the energy in the high-time regions is believed to be 

associated with the response of the vibrating string of a piano, manifesting as a series 

of impulses in both the time and pseudo-time domains, whereas the dynamic response 

of the soundboard features in the low-time regions of the pseudo-time domain due to 

its broad dynamic response. Indeed, the response of the soundboard is broadband 
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above around 200 Hz and can be modelled as a linear filter having the characteristics 

described in the papers by Giordano (1997 and 1998).  In particular, the soundboard 

can be modelled as a lumped parameter model with well defined modes of vibration 

up to 200 Hz, whereas its behaviour exhibits a multi-modal or broadband behaviour 

above that frequency according to Moore et al. (2006).  This argument is further 

supported by experimental work on a grand piano described in chapter 4. 



Acoustic Features of Piano Sounds  Chapter 3 

 68 

3.4 Response of multiple piano strings 

So far, only the response of a single piano string when coupled with the soundboard 

has been investigated.  As mentioned earlier, the middle and higher piano notes would 

tend to group a pair or a triplet of strings to a single piano note.  The coupling of the 

strings of the same note would therefore occur through the bridge. 

The coupling mechanism of multiple strings (or oscillators) is discussed in more detail 

in chapter 4, where analytical and computational formulations are presented as part of 

the unique double decay rate effect in the piano instrument.  In this section, the 

coupling mechanism is investigated through the use of digital waveguides and the 

properties of the cepstrum. 

 

3.4.1 Digital waveguide representation 

In a simple digital waveguide representation, a vibrating piano string is modelled in 

such a way so that filter K represents the dissipation (modulus) and the dispersion 

(phase) phenomena and filter D represents the propagation time for the string 

vibration reflecting a pure delay.  E and S are the hammer excitation and response of 

the modelled string respectively (Aramaki et al., 2001) 

Figure 3.23 – Digital waveguide model representation of a single piano string 

The transfer function of such a model is 
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where )(sφ  is the Laplace transform of the phase and the above model can further be 

extended to two coupled strings in this research work, where 1C  and 2C  represent the 

coupling factors at the attachment points between the bridge and the two strings as 

shown in Figure 3.24: 

Figure 3.24 – Digital waveguide model representation of two coupled piano strings 

where 
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From Figure 3.24, one may obtain the following relationships for the response of 

strings 1s  and 2s  respectively 

[ ]









=

+=

1122

2211

SCGS

SCEGS
    (3.4.1 – 2) 

The response 1S  can be written as 

[ ]121211 SGCCEGS +=  

2121

1
1 1 GGCC

EG
S

−
=     (3.4.1 – 3) 

Also, the response 2S  due equation (3.4.1 – 3) can be written as 
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2121

211
2 1 GGCC

EGGC
S

−
=     (3.4.1 – 4) 

Let us now assume that the total response, totS , of the two coupled strings is a linear 

sum of the motion of the two strings with constant coefficients 1a  and 2a  respectively 

2211 SaSaStot +=     (3.4.1 – 5) 

Equation (3.4.1 – 5) due to (3.4.1 – 3) and (3.4.1 – 4) becomes 

[ ]
2121

21211

1 GGCC

EGCaaG
Stot

−

+
=    (3.4.1 – 6) 

Equation (3.4.1 – 6) represents the total resulting response of two piano strings 

coupled through the bridge. 

 

3.4.2 Case studies 

One utilises the homomorphic properties of the cepstrum of the total signal, 
totS , by 

first taking the natural logarithms on either side of equation (3.4.1 – 6) 

]1ln[ln]ln[lnln 212121211 GGCCEGCaaGStot −−+++=  (3.4.2 – 1) 

The above equation consists of three separate terms: 

the first term, “ 1ln G ” is simply related to response 1S  of string 1. 

the second term, “ ]ln[ 2121 GCaa + ”, may be approximated with a Taylor’s series 

expansion as follows 

21
1

2
121

1
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121

1

2
1 ln1lnln1ln GC
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a
aGC
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a +≈








++=
















+  (3.4.2 – 2) 

providing there is “weak” coupling only, i.e. 11 <<C . 
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The third term of equation (3.4.2 – 1), “ ]1ln[ 2121 GGCC− ”, may also be approximated 

with a Taylor’s series expansion 

21212121 ]1ln[ GGCCGGCC −≈−    (3.4.2 – 3) 

providing there is also “weak” coupling, i.e. 1, 21 <<CC . 

Equation (3.4.2 – 1) due to (3.4.2 – 2) and (3.4.1 – 3) can now be written as 

212121
1

2
11 lnlnlnln GGCCEGC

a

a
aGStot ++++=   (3.4.2 – 5) 

Two cases are explored below. 

 

Case 1 

In the previous sections of this chapter, one has modelled the response of a single 

vibrating string with the presence of inharmonicity.   So, if there is no coupling, i.e. 

021 == CC  and there is no response from the second string, i.e. 02 =G , then 

equation (3.4.2 – 5) can be reduced to 

EaGStot lnlnlnln 11 ++=    (3.4.2 – 6) 

By taking the inverse Fourier transforms on either side of equation (3.4.2 – 5), one 

obtains 

[ ] [ ] [ ] [ ]EFaFGFSF tot lnlnlnln 1
1

1
1

11 −−−− ++=  

 

EaGStot
ˆˆˆˆ

11 ++=     (3.4.2 – 7) 

Equation (3.4.2 – 7) represents the response 1G  of a single vibrating string with 

inharmonicity in the pseudo-time domain, where a series of repetitive impulses will 

manifest in the higher-time regions, as discussed previously.  The cepstrum of the 

hammer excitation, Ê , simply denotes an impulse and 1â  has no real contribution to 

the total response. 
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Case 2 

In the more complex case, where there is weak coupling and both of the strings 

vibrate, then the total resulting response of the cepstrum, totŜ , is different. By taking 

the inverse Fourier transforms on either side of equation (3.4.2 – 5), one obtains 

[ ]2121
1

21
1

21
11 ˆˆˆˆ GGCCFGC

a

a
FaEGStot

−− +







+++=   (3.4.2 – 8) 

From the resulting total response of the two weakly coupled strings, as described in 

equation (3.4.2 – 8), one can deduce the following contributions for each term 

individually: 

the terms 1Ĝ  and Ê  are simply the cepstra of response 1S  and hammer excitation E , 

respectively, as discussed before.  In other words, Ê  is simply a pulse in the pseudo-

time domain, whereas 1Ĝ  represents the response of string 1S .  Also, 1â  has no real 

contribution to the total response since it merely represents the cepstrum of a constant 

coefficient. 

the term 






−
21

1

21
GC

a

a
F  represents the response of the second string modified by the 

coupling term 1C  and the constant coefficients 1a  and 2a . 

Finally, the term [ ]2121
1

GGCCF
−  represents the convolved responses of the two 

strings, 1S  and 2S , modified by both coupling terms 1C  and 2C . 
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3.5 Conclusions 

In this chapter, the effect of inharmonicity has been presented through a set of novel 

demonstrations and analytical formulations.  The inharmonicity may be one of the key 

features of further unravelling the problem of music transcription and might provide 

an additional important parameter in the development of a more comprehensive signal 

model. 

A simple model for a single vibrating piano string with inherent inharmonicity was 

proposed.  Through the numerical simulations of such a signal, one showed how the 

response changed by varying five factors; the magnitude of the inharmonicity factor 

B , the number of harmonics N present in the modelled signal, the time parameter t, 

the phase characteristics and the amplitude of harmonics.  From these investigations, 

it was shown that there is a so-called “one-sided” effect, as a direct result of the non-

integer spacing of the harmonic components (relative to the fundamental frequency) 

with uniformly varying amplitudes added to the modelled signal. However, the effect 

of one-sided energy was shown that it is actually obscured in real piano note 

recordings, since the amplitudes of the harmonic terms vary non-uniformly.  Also, the 

phase characteristics of the harmonics of the signal in real recordings may be totally 

random and hence may further obscure the one-sided effect associated with the 

inharmonicity.  As a result, such an effect may not be perceived by the human 

auditory system. 

The cepstrum has also been utilised to reveal a similar, strong, one-sided energy 

effect.  Indeed, real single piano recordings and synthesized signals were analysed and 

there was evidence that one-sided energy occurs in relation to the main lobes, when a 

train of spikes are non-equally spaced in the frequency domain.  On the other hand, a 

synthesized signal with equally-spaced spikes showed no such effect. 

As far as the analytical formulations are concerned using the cepstrum, it was possible 

to derive representations for the resulting sound of a piano note without the 

inharmonicity factor (periodic signal) into separate components (response of string, 

and soundboard). The difficulties of deriving similar analytical representations of the 

modelled signal with the inharmonicity were also discussed.  In any case, the use of 

the cepstrum has enabled us to substantiate an earlier hypothesis (Karatsovis et 
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al., 2006), where the soundboard would have a broad spectral response and 

consequently a cepstrum that predominantly contains its information in the low 

“quefrencies” (or low-time regions), whereas a vibrating piano string would give rise 

to a series of impulses in the pseudo-time domain manifesting themselves in the 

higher quefrencies (or high-time regions).  Note also that response of the vibrating 

string will be well separated from cepstral coefficients associated with the soundboard 

due to the homomorphic properties of the cepstrum. 

Finally, the response of multiple piano strings was discussed through the use of digital 

waveguides and analysis was carried out for two weakly coupled vibrating piano 

strings using the cepstrum.  This leads naturally to the next big topic of this research 

work, which is the effect of the coupling mechanism between oscillators and the 

modelling of the double decay rate effect. 
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Chapter 4 

Double decay rate effect 

 

4.1 Introduction 

The double decay rate effect is the second feature that is discussed in this research 

since its use could potentially aid further in understanding the sound generation 

mechanism of the piano. 

This chapter initially presents a simple analytical model of the double decay rate that 

can be observed in piano recordings through the properties of coupled oscillators.  

The model is developed for the response of two masses connected through linear 

coupling. Each mass can either represent the vertical (or horizontal) motion of one 

string coupled with the response of a second string through the bridge, or the 

modelled masses can represent the coupled vertical and horizontal motions of one 

string only.  Analogies of this general model of coupled oscillators are drawn from the 

formulation of digital waveguides as shown in chapter 3.  Furthermore, numerical 

simulations are carried out in attempt to replicate the double decay rate effect found in 

real piano recordings in the case of identical and mistuned oscillators. 

A physical model is also developed to describe the dynamics of more than two strings 

coupled through the bridge of a piano.  This type of physical modelling is based on a 

frequency domain mobility-based method providing an extension to the general model 

of coupled oscillators. 

Finally, the coupling of the piano strings with the bridge and the soundboard is further 

investigated by carrying out vibration measurements on a real grand piano. 
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4.2 Coupled oscillators 

As mentioned and illustrated earlier in section 2.4.3, a careful examination of the time 

history (shown at a particular frequency) of a piano note recording reveals a two-stage 

decay rate; the first stage has a rapid roll-off, whilst the second decay rate has a much 

slower roll-off resulting into what is called the “aftersound” of a piano note 

(Weinreich, 1977).  This compound phenomenon is known as the double decay rate 

effect.  There are mainly two factors believed to be associated with the double decay 

rate of the sound of a piano note; first, the polarisation of the strings (vertical and 

horizontal motion) and second, the coupling effect between different strings of the 

same piano note.  The model developed in this chapter can ultimately be used to 

describe both of these factors. 

 

4.2.1 The general model 

Single piano notes mainly comprise two or three strings grouped together.  The 

complete response of three masses, m1, m2 and m3, representing three vibrating strings 

in the vertical and horizontal motions (two polarisations) is shown in Figure 4.1: 

 

 

 

 

 

 

 

 

Figure 4.1 – Coupled six-degree-of-freedom-system with motion represented both in 

the vertical and horizontal directions 
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where m1, m2 and m3 are the same for all three strings, and the stiffness terms may 

vary between the three strings: k1, k2, k3 and k4 represent the stiffness in the vertical 

polarisation, k5, k6, k7 and k8 represent the stiffness in the horizontal polarisation, also 

c1, c2, c3 and c4 represent the damping in the vertical polarisation, c5, c6, c7 and c8 

represent the damping in the horizontal polarisation, x1, y1, z1 represent the 

displacement of masses m1, m2 and m3 in the vertical polarisation, x2, y2, z2 represent 

the displacement of masses m1, m2 and m3 in the horizontal polarisation, Fx1, Fy1, Fz1 

represent the forces acting on masses m1, m2 and m3 in the vertical polarisation and 

Fx2, Fy2, Fz2 represent the forces acting on masses m1, m2 and m3 in the horizontal 

polarisation. 

The additional dashed arrows represent the coupling of each mass in any polarisation 

with every other mass in any polarisation. The coupling between two masses (or 

oscillators) can normally be expressed with a stiffness and a damping parameter. 

The above full model is appropriate to be solved either analytically or numerically.  

However, in our case the objective is to derive simpler relationships of the coupled 

motion of the strings in order to understand the mechanism of coupling and the double 

decay rate effect. 

Let us now consider a simple two-degree-of-freedom system dynamic model as 

shown in Figure 4.2.  In this particular example, each mass can either represent the 

vertical (or horizontal) motion of one string coupled with the response of a second 

string through the bridge, or the modelled masses can represent the coupled vertical 

and horizontal motions of one string only.  The two masses, mass m1 and m2, are 

connected through coupling of a spring with stiffness kc and a dashpot with viscous 

damping cc representing the properties of the bridge.  Displacement responses x, y 

represent the displacement for each mass due to forces F1 and F2 respectively: 
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Figure 4.2 – Coupled two-degree-of-freedom-system 

The equation of motion for mass 1m  is 

1111 Fykycxkxcxkxcxm cccc ++=++++ &&&&&   (4.2.1 – 1) 

Defining the following parameters 

1
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m

k
=ω , 

1

2
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m

kc=ω , 
1

1
112

m

c
=ωζ , 

1
332

m

cc=ωζ  (4.2.1 – 2) 

By taking Laplace transforms, and using the substitutions given in (4.2.1 – 2), 

equation (4.2.1 – 1) becomes 

( ) ( )[ ] [ ]
1

12
333

2
333

2
111

2 )(
)(2)(22

m

sF
sYssXsss ++=++++ ωωζωωζωωζ  (4.2.1 – 3) 

Similarly, for mass m2, the equation of motion is 

2222 Fxkxcykycykycym cccc ++=++++ &&&&&   (4.2.1 – 4) 

Hence, 

( ) ( )[ ] [ ]
2
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444

2
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2
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2 )(
)(2)(22
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sXssYsss ++=++++ ωωζωωζωωζ  (4.2.1 – 5) 

Now introduce the following substitutions 
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 (4.2.1 – 6) 

Using system of equations (4.2.1 – 6), equations (4.2.1 – 3) and (4.2.1 – 5) can be 

written as 
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where )()()()()( sssss δβγα −=∆ .  Recalling equation (C – 1) of Appendix C, the 

coefficients of the 4th order polynomial, which represent the polynomial ( )s∆ , are 

11 =A  
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The roots of )(s∆  can now be used to calculate the damping and natural frequencies 

of the coupled oscillators, and the numerators in (4.2.1 – 7) reflect the “participation” 

of each mode in the response of )(tx  and )(ty .  By taking the inverse Laplace 

transform of system of equations (4.2.1 – 7), one can now obtain the responses, )(tx  

and )(ty , of the two coupled masses respectively 

( ) ( ) ( ) ( ){ }2
11

1
11 *)(*)(*)()( FLsLFLsLtgtx

−−−− += βγ  (4.2.1 – 8) 

( ) ( ) ( ) ( ){ }2
11

1
11 *)(*)(*)()( FLsLFLsLtgty

−−−− += αδ  (4.2.1 – 9) 
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where 








∆
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1
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s
Ltg , i.e. this is the impulse response corresponding to the transfer 

function of 
1

( )s∆
.  In particular, 
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where 
aω , 

bω  are the roots of )(s∆  that can be found as per equation (C – 1) and 
aζ , 

bζ  are the damping ratios for each mode of the dynamic system that control the 

different decay rates.  So, by using partial fractions, one can use equation (4.2.1 – 10) 

to describe the two different modes of the coupled dynamic system as follows 









++

+
= −

)2(
)(

22

1
1

aaa ss

BAs
Ltg

ωωζ
 is mode 1 of the coupled system 

and 









++

+
= −

22

1
2 2

)(
bbb ss

DCs
Ltg

ωωζ
 is mode 2 of the coupled system 

Alternatively to equations (4.2.1 – 8) and (4.2.1 – 9), the total forced responses 

)(tx and )(ty  can be found by directly solving for the coupled second order 

differential equations (4.2.1 – 1) and (4.2.1 – 4) directly.  Specifically, the following 

can be written 
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A set of reduced ordinary differential equations can therefore be used to numerically 

solve for )(tx , )(tx& , )(ty  and )(ty& , as shown in equation (4.2.1 – 11) in state space 

form 
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This formulation will be used later to demonstrate the effect of the double decay rate 

in the case of coupled oscillators in the time domain. 

 

4.2.2 Digital waveguide model analogy 

As mentioned in the previous section, the general model of coupled oscillators, can 

either be used to model the vertical (or horizontal) motion of one string coupled with 

the response of a second string through the bridge, or can be used to model the 

coupled vertical and horizontal motions of one string only. 

This section draws analogies with the digital waveguide model, as described in 

section 3.4, for the response of one string, coupled with another, due to a single force 

excitation. 

One recalls equation (4.2.1 – 3), which is the equation of motion of mass 1m  (for 

example representing the response of one string for a single polarisation) 
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Recalling (4.2.1 – 5), which is the equation of motion of mass 2m  (for example 

representing the response of a second string in the same polarisation) 
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Introducing the following substitutes 
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   (4.2.2 – 1) 

Equations (4.2.1 – 3) and (4.2.1 – 5) can be written as 
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Since there is only one force exciting one of the strings, one sets 02 =F .  Hence, the 

response of one string, as described in (4.2.2 – 2), can be written 
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Recalling equation (3.4.1 – 3) representing the response, 1S  of one coupled string in 

terms of an equivalent digital waveguide representation 
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xx

   (4.2.2 – 6) 

Equation (4.2.2 – 5) becomes 

)(
)()()()()()(

)()(
)(1 sE

sHsCsHsCsHsH

sCsH
sS

xyyxyx

yy

++

+
=  (4.2.2 – 7) 

Equations (4.2.2 – 4) and (4.2.2 – 7) are therefore identical, so the simple coupled 

model of two strings is equivalent to the digital waveguide representation as discussed 

in section 3.4. 
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4.2.2.1 Identical oscillators 

In the case of two identical oscillators, one writes 

)()()( sHsHsH yx ==  and )()()( sCsCsC yx ==  (4.2.2.1 – 1) 

Therefore, equation (4.2.2 – 7) becomes 

)(
)()(2)(

)()(
)( 21 sE

sHsCsH

sCsH
sS

+

+
=    (4.2.2.1 – 2) 

The roots of the denominator of equation (4.2.2.1 – 2) define the dynamics of the 

coupled system, i.e. 

( ) 0)(2)()( =+ sCsHsH    (4.2.2.1 – 3) 

Equation (4.2.2.1 – 3) can be factorised into two terms 

0)( =sH  and 0)(2)( =+ sCsH  

This shows that the coupling of two identical oscillators will result in two modes; one 

of which is identical to the uncoupled mode. 

Assuming for convenience that 1)( =sE  (unit impulse force) and by the taking 

inverse Laplace transforms of equation (4.2.2.1 – 2), one obtains 










+
+

+
= −

)(2)(

1

)(

)(

)(2)(

1
)( 1

1
sCsHsH

sC

sCsH
Lts  (4.2.2.1 – 3) 

where the term 










++
=








= −−

)2(

)(

)(

)(
)(

2
00

2
111

1
ωζω ss

sN
L

sH

sC
Ltr  

represents one mode in the response of )(1 ts , which has the same properties as that of 

the uncoupled mode. 

Further, the term 
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
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
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= −−
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)( 22
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ccc ss

sN
L
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ωωζ
 

represents the second coupled mode in the response of )(1 ts . 

This can also be demonstrated with a simple example of two identical oscillators with 

the same uncoupled damping 

17321 == ωω .2 rad/s with 1.021 == cc  Ns/m 

and the coupling parameters of the bridge are 100=ck  N/m and 1=cc  Ns/m. 

Solving for equation (C - 1), one can obtain the coupled frequencies, cc ,2,1 ,ωω  and 

damping ratios, cc ,2,1 ,ζζ  of the dynamic system (“c” subscript denotes the coupled 

parameter).  The solutions are two quadratic pairs represented by solution T 









±−

±−
=

i

i
T

2.1735.0

6.1785.10
    (4.2.2.1 – 4) 

Hence, from the two solution pairs of equation (4.2.2.1 – 4), one obtains respectively 
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
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

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=−

=

6.1781

5.10
2
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
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
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



=−

=

2.1731

5.0
2
,2,2

,2,2

cc

cc

ζω

ωζ
  (4.2.2.1 – 5) 

Solving for the system of equations (4.2.2.1 – 5), one obtains the properties of the two 

modes of the system 

=c,1ω 178.9 rad/ with 06.0,1 =cζ  

=c,2ω 173.2 rad/s with 003.0,2 =cζ  

Ratio of damping terms between the two coupled modes: 20
,2

,1 =
c

c

ζ

ζ
 

Therefore, despite the coupling between the two strings, one of the resulting coupled 

modes will be identical to that of the uncoupled mode.  In physical terms, there is 
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symmetry in the system and the two strings will move together in-phase through the 

coupling of the bridge, which acts as rigid link. 

Finally, the ratio of damping terms between the two coupled modes is 20 times larger 

than that of the uncoupled modes, which means that there are two very different decay 

rates.  This may ultimately result in the characteristic double decay rate of the 

reproduced piano sound, when both of these modes are appropriately excited. 

 

4.2.2.2 Mistuned oscillators 

In the case of two “mistuned” oscillators, one introduces a small change )(sΣ  in the 

system response.  The word “mistuning” is used when the fundamental frequencies of 

two strings may vary by a small amount. One can write 

)()()( ssHsH xy Σ+=  

Note that the coupling in both masses is identical 

)()()( sCsCsC yx ==  

Equation (4.2.2 – 7) becomes 

)(
)]()(2)[()]()()[(

)()()(
)(1 sE
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sS

xxx
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Σ++Σ+
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)()()]()()][()([

)()()(
)(1 sE
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sS

xxx

x

++Σ+

+Σ+
=  (4.2.2.2 – 1) 

Assuming for convenience that 1)( =sE  (unit impulse force) and by taking inverse 

Laplace transforms of equation (4.2.2.2 – 1) 









+Σ+

++Σ+
= − )]()([

)()()]()(][)([

1
)( 1

1 sCsH
sHsCsCsHsH

LtS x

xxx

(4.2.2.2 – 2) 



Acoustic Features of Piano Sounds  Chapter 4 

 86 

From the above formulation, it is not obvious analytically which are the modes of the 

coupled dynamical system and how they interact with each other, so a numerical 

example is presented later in section 4.2.3.2. 

In a simple example of two mistuned oscillators, one assumes that the oscillators 

differ by about 1 rad/s (or about 0.2 Hz) 

2.1721 =ω  rad/s and 2.1731 =ω  rad/s with 1.021 == cc  Ns/m 

As before, the coupling parameters of the bridge are 100=ck  N/m and 1=cc  Ns/m. 

Solving equation (C – 1), one obtains the properties of the two modes of the system 

=c,1ω 178.4 rad/ with 06.0,1 =cζ  

=c,2ω 172.7 rad/s with 003.0,2 =cζ  

Ratio of damping terms between the two coupled modes: 20
,2

,1
=

c

c

ζ

ζ
 

Hence, in the case of the mistuned oscillators, both of the natural frequencies of the 

coupled modes will differ from the values for the uncoupled system.  The ratio of 

damping terms between the two coupled modes is again 20 times larger than that of 

the uncoupled modes, which means that there are two different decay rates as before. 

 

4.2.3 Double decay rate demonstrations 

In this section, one illustrates the effect of double decay rate, as captured in a typical 

piano note recording, using the Hilbert transform.  Further numerical simulations are 

carried out in an attempt to replicate this effect in the case of mistuned coupled 

oscillators representing real piano strings. 
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4.2.3.1 Effect in a real piano recording 

In this section, the double decay of a typical piano note recording is observed through 

the use of the Hilbert transform.  The Hilbert transform, )(ˆ tf , can be used to generate 

the analytical representation of a signal, )(tf  

∫
+∞

∞−
−

= τ
τ

τ

π
d

t

f
tf

)(1
)(ˆ     (4.2.3.1 – 1) 

The analytic form of a signal is complex valued and the “instantaneous” amplitude of 

the signal can be defined as the amplitude of the analytic signal and can be used to 

calculate the decay rates in the time domain. 

Figure 4.3 shows the evaluated instantaneous amplitude of a real piano note C3, which 

was sampled at 44.1 kHz, at the fundamental and first two harmonic frequencies using 

recordings from the “Gigastudio” sample library.  The acoustic signal was passed 

through band pass filters centered at the fundamental and the first two harmonic 

frequencies respectively with a selected 40 Hz bandwidth.  Then, the instantaneous 

amplitudes were obtaining by evaluating the Hilbert transforms for each of these 

filtered signals, as shown on a natural log scale: 
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Figure 4.3 – Double decay rates of piano note C3 
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From Figure 4.3, it can be seen that for the fundamental and first harmonic frequency 

there is a relatively fast decay up to about 2.2 s and 3 s respectively, followed by a 

slower decay.  However, in the case of the second harmonic, the first decay rate may 

only seem to last about 0.2 s and then it is followed by a much longer second decay 

rate.  Therefore, it can be deduced that the double decay rate characteristics will be 

different for the different frequency terms (fundamental and harmonics).  In addition, 

it is not understood how the decaying rates of the different frequency terms contribute 

to the way the overall note is perceived (Weinreich, 1977). 

Finally, the “dips” at the point where the second decay rate takes over from the first 

decay rate of each frequency can be attributed to the local destructive interference 

between the two different modes of the acoustic response forming a local minimum 

(Weinreich, 1977).  Mathematically, it can be proved that the resulting “dip” may be a 

function of the mistuning relationship between two oscillators.  A simple example is 

illustrated below. 

To demonstrate this, one considers two coupled oscillators with frequencies 1ω  and 

2ω , where ωωω ∆+= 12  ( ω∆  representing the mistuning parameter).  Consider also 

that the amplitudes and damping factors of the two oscillators are identical.  The 

resulting response )(ts  would be 

ttts )sin()sin()( 11 ωωω ∆++=   (4.2.3.1 – 1) 

Alternatively, equation (4.2.3.1 – 1) can be written as 

( ) )sin()cos()cos(1)sin()( 11 ttttts ωωωω ∆+∆+=  (4.2.3.1 – 2) 

Equation (4.2.3.1 – 2) is zero provided 

πω =∆ t  

Therefore, a “dip” will form in the time domain response when 

ω

π

∆
=t  
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From Figure 4.3, it can be deduced that a dip at about 2 sec would be associated with 

a 2π  mistuning relationship between two coupled oscillators. 

 

4.2.3.2 Simulations 

This section presents numerical simulations associated with identical and mistuned 

oscillators with the same physical properties as described in sections 4.2.2.1 and 

4.2.2.2 respectively.  The objective of these investigations is to deduce which factors 

promote the appearance of the double decay rate.  Solving for the reduced ordinary 

differential equations, as described in (4.2.1 – 11), one can therefore obtain the 

separate decay rates associated with coupled masses, m1 and m2, in the time domain. 

Initially, the masses are excited with equal amplitudes and in-phase forces.  These 

mistuned oscillators have the same physical properties as presented in section 4.2.2.2.  

The forcing characteristics are similar to half-sine pulses representing the excitation 

of the hammer acting on the strings.  Figure 4.4 shows the response of the coupled 

masses in the case of mistuned oscillators on a natural log scale: 
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Figure 4.4 – Decay rates of mistuned coupled oscillators when both masses are 

excited with equal amplitude and in-phase forces 



Acoustic Features of Piano Sounds  Chapter 4 

 90 

From Figure 4.4, it can be seen that there is no clearly identifiable double decay effect 

despite the ratio of the damping terms of the coupled modes is 20 times higher than 

the uncoupled one as discussed in section 4.2.2.2.  However, as mentioned in section 

2, an out-of-phase relationship between two coupled strings may promote the 

appearance of double-decay rate (Weinreich, 1977; Hundley at al., 1978).  In order to 

induce a phase difference in our simple model, the two mistuned oscillators are 

excited with equal amplitude, but out-of-phase forces (simplification of the true 

physics of the real dynamical system).  Figure 4.5 is obtained: 
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Figure 4.5 – Decay rates of mistuned coupled oscillators when both masses are 

excited with equal amplitude and out-of-phase forces 

From Figure 4.5, a clear formation of the double decay rate effect is observed for 

mass m2 (the one with the opposite force excitation applied to).  The latter figure 

resembles the effect observed in the case of a real piano recording as shown earlier in 

Figure 4.3.  Indeed, from Figure 4.5, it can be seen from the response of mass m2 that 

there is a fast decay rate up to about 0.42 s followed by a second, much slower, decay 

rate lasting over a period of 1.5 s in total. 
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Note also that the resulting double decay rate effect will be dependant upon the 

“participation” of each mode, which in turn is dependent on the initial conditions and 

boundary conditions of the model. 

Additionally, Figure 4.6 is also obtained showing the response of masses m1 and m2 in 

the case of identical oscillators having the same physical properties as presented in 

section 4.2.2.1 earlier.  Note that the resulting responses of mass m1 and m2 are almost 

identical as shown in Figure 4.6: 
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Figure 4.6 – Decay rates of identical coupled oscillators when both masses are 

excited with equal amplitude and out-of-phase forces 

From Figure 4.6, it can be seen that despite the out-of-phase excitation forces acting 

on the identical oscillators, there seems to be only a single identifiable decay rate, 

which lasts about 0.7 s and after that the responses dip into the simulated noise floor 

associated with the numerical estimation process. 

From the above investigations, it can therefore be deduced that both the phase 

difference between two coupled oscillators and the relative mistuning between the 

two can promote the clear appearance of a double decay rate effect. 
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4.4 Physical modelling of multiple strings 

This section is used to describe a physical model representing the dynamics of N 

strings coupled with the bridge of a piano.  This type of physical modelling 

effectively represents a further extension of the generalised model of coupled 

oscillators and is a frequency domain mobility-based method.  The following analysis 

is partially based on the modelling of coupled strings connected to a vibrating body in 

which the body is represented by a beam clamped at both ends (Carrou et al., 2004).  

Note that only the vertical motion of the strings and the bridge are modelled here, 

although the physical model can be extended for the horizontal motion too. 

 

4.4.1 General model of N number of strings 

A frequency domain model with N strings, which are attached to a pinned-pinned 

beam representing the bridge, is discussed using a mobility-based approach.  Figure 

4.7 describes such a coupled dynamical system: 
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Figure 4.7 – Diagram of forces and velocities in the case of N number of vibrating piano 

strings when coupled with a finite length beam 

 

1pF , 
2pF  and 

npF  are the external forces applied at the strings, BpF
1

, BpF
2

 and Bpn
F  

are the internal forces acting on the strings at the attachment points with the beam, 

whilst 
1BF  and 

2BF  and 
nBF  are the internal forces acting on the beam.  1

1

s

p
V , 2

2

s

pV  and 

n

n

s

pV   are the velocities of the strings due to 
1pF , 

2pF  and 
npF . Finally, 1

1
s

V , 2
2
s

V  and 

3s

nV  are the common velocities with 1V , 2V  and nV  acting on the strings and the beam. 

The general formulation of the mobility response Y  (ratio of velocity over force) for 

N strings can be expressed as follows.  Note that the subscripts of ns

xxY
21

 refer to the 

mobility between points 1x  and 2x  and the superscript refers to a particular string 
ns  

of the modelled physical system 
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One can therefore obtain the velocity response of any string ns  at any point x along its 

length according to 

n

nn

n

n

n s

xpp

s

nxBp

s

x YFYFV +=    (4.4.1 – 1) 

The above generalisation is important since the piano consists in excess of 200 strings 

mainly grouped in pairs or triplet of strings for the 88 piano notes.  The following 

section investigates the response of a pair of coupled strings in the frequency domain. 

 

4.4.2 Response of a pair of strings 

4.4.2.1 The model 

Normally, in the second octave from the lower octave register of the piano and above, 

pairs of strings are used for the notes, whilst for higher octaves, triplets of strings are 

used to make up the piano notes. 

From equation (4.4.1 – 1) and in the case of a pair of strings, one can obtain the 

response of strings 1s  and 2s  at any point x along their length as follows 

1

11

1

1

1
1

s

xAA

s

xBA

s

x YFYFV +=     (4.4.2.1 – 1) 

2

22

2

2

2
2

s

xAA

s

xBA

s

x YFYFV +=    (4.4.2.1 – 2) 

where 
1AF  and 

2AF  can take any amplitude and phase form, for instance unity or zero 

and are applied at points 11 Ap =  and 22 Ap =  of the two strings. 
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1s

xV  and 2s

xV  should also exhibit coupled resonances due to both strings and also due 

to the beam dynamics. 

Note that an alternative modelling approach is presented in Appendix D by working 

out the boundary conditions for the respective equations of motion of the beam and 

the two strings. 

In the simple case of a single string s  attached to the beam, one needs to calculate the 

following point and/or transfer mobilities 

( )∑
∞

= −+
=

1
22 )1(

)()(
21

n snssss

jnsinss

xx
jlS

yy
jY

ωηωρ

ϕϕ
ω   (4.4.2.1 – 3) 

where ρs, Ss, ls and ηs denote the density, the cross-sectional surface area, the length 

and the loss factor of the material of the string respectively.  n denotes the mode shape 

number of mode )( ynsϕ  of the string and the modes are given (Gardonio and Brennan, 

2004) 

yky nsns sin2)( =ϕ , where n = 1, 2… and 
s

ns
l

n
k

π
=  

The natural frequencies of string s  (assuming no bending stiffness or inharmonicity 

factor B) can also be found from 

s

b

ns
l

cnπ
ω =  

where 
ρ

T
cb =  , ρ is the mass per unit length of the string and T is the tension of the 

string. 

Note also that principle of reciprocity implies that s

xx

s

xx YY
1221

= . 

 

4.4.2.2 Numerical simulations 

The dynamical behaviour of two strings attached to a finite length beam can be 

simulated numerically using equations (4.4.2.1 – 1) to (4.4.2.1 – 3).  Suppose that the 

strings are slightly mistuned by about 2 percent (= 0.2 Hz) as shown before in section 
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4.2.2.2 but their natural frequencies are set higher, i.e. their natural frequencies are 

224.4 Hz and 224.6 Hz, as in the case of a real piano, and suppose that only string 1s  

is excited by a unit input force.  Figure 4.8 below shows the resonance frequencies of 

the coupled dynamical system for the forced response including that of the finite 

length beam at 726.1 Hz. 
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Figure 4.8 – Frequency response of the coupled dynamic system at application point 

1A  of force 
1AF  on string 1s  and response of string 2s  at point 2A  

Consider now the power input into the two strings and the beam by exciting string 1s  

only.  The time-average power input into strings 1s  and 2s  are respectively 
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1 s
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where *1

1

s

AV is the complex conjugate of velocity of string s1 at point 1A  of the applied 

force 
1AF , and *

2
2s

V is the complex conjugate velocity of string s2 at the attachment 
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The time-average power into the beam is 

{ }*
2

*
1 21

Re
2
1

VFVFP BBbeam +=    (4.4.2.2 – 2) 

where *
1V  and *

2V  are the complex conjugate velocities of the beam at the attachment 

points with strings 1s  and 2s  
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Using equations (4.4.2.2 – 1) and (4.4.2.2 – 2), Figure 4.9 can be obtained that shows 

the power into the driven string 1s  and also the power transferred into the beam and 

string 2s : 
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Figure 4.9 - Power input for two coupled strings and a finite length beam 

From Figure 4.9, it can be seen that most of the power input dissipates through the 

material damping of the string and relatively less will be transmitted through the 

coupling to the beam and the other string.  However, the above model does not 

account for acoustic radiation losses.  The acoustic radiation will primarily be related 

to the soundboard, which is discussed in the next section. 
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4.5 Experiments on the coupling of strings with the soundboard 

So far, the importance of mistuning between strings of the same piano note and the 

double decay rate effect has been investigated.  In this section, vibration 

measurements on a real grand piano are carried out in order to further investigate the 

coupling of the piano string with the bridge and the soundboard in the vertical and 

horizontal directions through the measurement of transfer mobilities.  Also, in this 

section, one attempts to approximately correlate measured point mobilities of the 

ribbed soundboard and bridge with known theoretical formulations for such built up 

structures. 

 

4.5.1 Transfer mobilities 

Measurements were carried out at various locations on the bridge and the soundboard 

of a ‘Kawai’ baby grand piano using a PCB instrumented hammer, Type 086C03, and 

a PCB accelerometer connected to a high-end data acquisition system (B&K, Type B-

frame) using the B&K PULSE software.  Transfer mobilities between the bridge and 

the soundboard were measured to investigate the energy transfer between a vibrating 

piano string and a soundboard in the horizontal and vertical directions. 

The excitation at the bridge represented the direct excitation of a piano string acting 

on the bridge and the response was initially measured vertically on the soundboard 

with the accelerometer.  However, since it was not possible to measure the response 

of the soundboard in the horizontal direction due to space constraints, the excitation 

was provided horizontally by the hammer and the response was again measured 

vertically at the same point on the soundboard.  The methods of excitation and 

response measurement are illustrated in Figure 4.10: 
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Figure 4.10 – Transfer function measurements between bridge and soundboard 

for vertical and horizontal hammer excitations.  Response is always measured 

vertically on the soundboard with an accelerometer. 

Figure 4.11 below shows a typical transfer function measurement between the bridge 

and the soundboard for the horizontal and vertical hammer excitations: 
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Figure 4.11 – Transfer function measurement for the vertical and horizontal hammer 

excitations.  Response is always measured vertically on the soundboard with an 

accelerometer. 
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From Figure 4.11, it can be seen that the measured vertical response on the 

soundboard, due to a horizontal excitation, can be up to 20 dB lower than its response 

due to a vertical excitation for frequencies up to about 1,000 Hz.  This interesting 

finding suggests that an excitation in one direction might induce a small response in 

the other direction too.  As a result, one may suggest that the response of a piano 

string in one direction will be cross-coupled with response of the soundboard in the 

other direction. 

 

4.5.2 Point mobilities 

Point mobilities at the soundboard and bridge were also carried out in the vertical 

direction.  A typical such measurement on the bridge is shown in Figure 4.12: 

 

Figure 4.12 – Typical point mobility measurement at the bridge of the piano 

 

Figures 4.13 and 4.14 below show typical point mobility measurements at the bridge 

and the soundboard respectively: 
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Figure 4.13 – Typical measured point mobility at the bridge close to piano note D3.  

First two resonances at 167 Hz and 224 Hz in the dynamical system are indicated. 
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Figure 4.14 – Typical measured point mobility on the soundboard.  First two 

resonances at 167 Hz and 224 Hz in the dynamical system are indicated. 

From Figures 4.13 and 4.14, it can be seen that the first resonance frequency, 

measured either at the bridge or the soundboard, is centered at 167 Hz and it is in this 

view that this resonance relates to the first resonance frequency of the soundboard.  
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Note that Giordano (1997 and 1998) previously measured the first resonance 

frequency at 100 Hz for a larger grand piano, therefore the higher resonance 

frequency is a consequence of the smaller size of the piano.  Also, the fact that the 

first resonance associated with the soundboard can be measured directly both on the 

bridge and the soundboard, it implies that the bridge and the soundboard are strongly 

coupled. 

In order to understand further the response of such a complicated coupled dynamical 

system, one can attempt to correlate the measured point mobilities of the ribbed 

soundboard and bridge with known theoretical formulations for such built up 

structures.  This is undertaken in the following section. 

 

4.5.3 Theoretical considerations 

The power P that enters a homogeneous dynamical system, such as a plate or a beam 

of mass m, which is excited by a point force with frequency band ω∆  is proportional 

to the modal density )(ωdn  and the mean-squared force 2F  in that frequency band 

(ESDU 04010, 2004) 

( ) )(22 ωπ dnmFP =  

( )∞= YFP Re2  

where ( )∞YRe  is the real part of the point mobility of an infinite system averaged over 

the frequency band and space and is independent of the boundary conditions.  Note 

that for a homogeneous structure, such as a finite isotropic plate, the point mobility 

can be approximated by that of the infinite structure. 

In the case of a real piano, the mechanism of sound radiation is related to the dynamic 

behaviour of the bridge coupled with the ribbed soundboard. 

The theoretical point mobility of an infinite beam for flexural wave motion under a 

force excitation is 
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ωρS

kj
Y b

4

)1( −
=∞     (4.5.3 – 1) 

where the complex wavenumber ( ) 25.05.0 EISkb ρω= , and ρ, S, E and I are the 

density, cross-sectional area, Young’s modulus of elasticity and second moment of 

area of the structure, respectively. 

On the other hand, for longitudinal wave motion, the point mobility of an infinite 

beam is constant and independent of frequency 

ρES
Y

2

1
=∞      (4.5.3 – 2) 

Similarly, the point mobility of an infinite plate due to flexural excitation by a point 

force is independent of frequency and is of the form 

hD
Y

ρ8

1
=∞      (4.5.3 – 3) 

where h  is the thickness of the plate, 
)1(12 2

3

ν−
=

Eh
D  and ν  is the Poisson’s ratio. 

However, in the case of the piano, motion will be complicated due to the coupling of 

the glued bridge on the soundboard and its ribs.  An approximate response, divided 

into two “regions” can be obtained by considering the effect of a “grillage of beams” 

on a plate as described by Pinnington (1988).  This is demonstrated in the measured 

data in Figure 4.15, where the fluctuating measured pointed mobility on the 

soundboard, as shown in Figure 4.14, may be approximated with these two regions 

(regions 1 and 2): 
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Figure 4.15 – Typical measured point mobility on the soundboard with two 

approximate regions (fitted regions of Figure 4.14) 

In the case of the piano, the beams are the stiffeners of the soundboard and for 

simplicity one may also assume that the soundboard and the glued bridge are acting as 

one system instead of being treated separately.  According to the theory of such built 

up structures, at low frequencies, up to roughly the first flexural resonance of the 

soundboard, the system will act as a spring of stiffness k, so the point mobility will 

sharply increase over that frequency range, as seen in Region 1 of Figure 4.15.  

However, for higher frequencies, the point mobility will reach roughly a constant 

value (Region 2) and may be approximated by that of an infinite plate as described 

earlier in equation (4.5.3 – 3).  In the fact, the response of the soundboard at high 

frequencies will be broad, as discussed in chapter 3 and by other authors (Giordano 

1997 and 1998), resulting in a multi-modal, Statistical Energy Analysis (SEA) type 

response.  This further justifies that the cepstrum of the response of the soundboard 

would appear in the low-time regions, as originally speculated in chapter 3 

(Karatsovis et al., 2006). 
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4.6 Conclusions 

This chapter presents a simple analytical model for describing the effect of the double 

decay rate as can be observed in a real piano recording.  The model was developed 

upon the response of two masses connected through linear coupling.   In this model, 

each mass can either represent the vertical (or horizontal) motion of one string 

coupled with the response of a second string through the bridge, or the modelled 

masses can represent the coupled vertical and horizontal motions of one string only. 

It was shown that the formulation of the general model of coupled oscillators is 

identical to the formulation of digital waveguides as shown in chapter 3.  Also, from 

numerical simulations in the time domain, it was possible to clearly replicate the 

double decay rate effect in the case of mistuned oscillators, when there is an out-of-

phase relationship between the two.  From these investigations, one deduced that the 

phase difference between the two oscillators and the relative mistuning between the 

two can promote the appearance of a double decay rate effect. 

A physical model was also developed to describe the dynamics of multiple strings as 

an extension to the general model of coupled oscillators.  The example of two coupled 

strings, slightly mistuned, of a piano note and coupled with a finite length beam was 

also illustrated.  Furthermore, a power flow analysis was carried out by exciting one 

string and evaluating the power that goes into the other string and the beam.  From 

this investigation, it was shown that most of the power input dissipates through the 

material damping of the string and subsequently less will be transmitted through the 

coupling to the beam and the other string. 

Measurements were also carried out on a real baby grand piano in order to further 

understand the coupling mechanism between the soundboard, the bridge and the 

string.  Transfer mobility measurements were carried out in order to deduce how the 

energy is transferred in the vertical and horizontal directions.  It was found that an 

excitation in one direction might also induce a small response in the other direction.  

As a result, one may suggest that the response of a piano string in one direction will 

be cross-coupled with response of the soundboard in the other direction. 
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Finally, point mobility measurements were carried out on the bridge and the 

soundboard in order to deduce the response of such a complicated dynamical system.  

From these investigations, it was found that the first resonance of the soundboard can 

be measured both on the bridge and the soundboard since they are coupled.  These 

dynamics of such a system were further explained through the use of theoretical 

mobilities.  Indeed, such a dynamical system may be approximated with the response 

of a grillage of beams mounted on plate.  Two important frequency regions exist; for 

low frequencies, the system will act as a spring of a given stiffness and for higher 

frequencies, the point mobility will reach a constant average value approximating the 

point mobility of an infinite plate.  At high frequencies, a multi-modal behaviour of 

the soundboard will result in a broad, SEA-type behaviour further justifying our 

original hypothesis that the soundboard appears in the low-time regions of the 

cepstrum as outlined in chapter 3. 
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Chapter 5 

Proposed signal model in a Bayesian formalism 

 

5.1 Introduction 

The main themes of this research have been the analytical formulation and 

computational demonstrations of two of the most important features that characterise 

the piano sound; the inharmonicity and the double decay rate effect. 

This chapter initially introduces a very basic form of modelling a piano note, as part 

of an early prototype model, which is described in section 5.2.  The remainder of this 

chapter presents the pitch estimation of simulated and real monophonic and 

polyphonic piano note recordings using a more comprehensive model and a more 

elaborate algorithm implementation, which could ultimately be used in future music 

transcription methods. 

In the past, most efforts in the development of music transcription methods for 

monophonic and polyphonic music performances had been focused on the analysis 

and interpretation of recordings without necessarily considering the complex nature of 

the modelled sound.  Such methods tend to employ a simplistic representation of the 

signal.  On the other hand, in this research, a potentially more detailed signal model 

representation of the piano sound, in particular, is proposed, so that it may ultimately 

form the basis of an improved transcription method in the future. 

In this chapter, a signal model, based mainly on the properties of the inharmonicity 

effect is proposed, which can be used in a probabilistic Bayesian formalism 

framework, similar to the one adopted earlier by Godsill and Davy (2002). A 

monophonic model representing single notes and a polyphonic signal model 

representing a multitude of notes, such as music intervals, are proposed.  The 

advantage of the proposed models is that their dimensionality may be reduced when 

compared to the existing models by Godsill and Davy, hence potentially rendering 

them less computationally expensive. 



Acoustic Features of Piano Sounds  Chapter 5 

 108 

The potential of the proposed models are illustrated with the transcription of simple 

examples of real monophonic and polyphonic piano recordings by implementing the 

M-H algorithm and Gibbs sampler for directly estimating the fundamental frequency 

and inharmonicity factor of each individual piano note. 

The proposed signal models and recordings used are deliberately chosen to be limited 

(relative to a full music piece) to gain confidence in the methodology.  A full 

transcription method is not within this scope. 
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5.2 Early prototype model 

In this section, a model of the sound of a piano note is presented which does not 

include the effect of the inharmonicity or the double decay rate as discussed in 

chapters 3 and 4, respectively. The harmonic components are assumed to be integer 

multiples of the fundamental frequency and damping is not considered in this model. 

The use of the M-H algorithm in conjunction with a Bayesian formalism framework 

can be used as a method to estimate the frequency of components in signals with 

random Gaussian noise.  In later sections of this chapter, the implementation of the 

M-H algorithm for multi-variate parameter estimation, e.g. frequency and 

inharmonicity, will be discussed in more depth and detail. 

The M-H algorithm has its origins back in the ‘50s and was proposed by Metropolis et 

al. (1953) and developed subsequently by Alder and Wainwright (1959) in the field of 

molecular dynamics, where the energy of a molecule may be predicted based only on 

the last collision by forming of what is called a “Markov” chain.  The M-H algorithm 

can be used to model the successive states of a Markov chain, where the final state of 

the chain is used to estimate the parameter space, e.g. the energy of a molecule in a 

gas.  In this research, the M-H algorithm may be used to obtain the successive states 

of a parameter space related to the signal model of an automatic music transcription 

model, namely the fundamental frequency associated with a piano note. 

A piano note can be described in its very basic form as a simple superposition of the 

fundamental frequency and its integer multiple harmonic terms 

[ ]∑
=

+=
N

n

nn tfntx
1

02sin)( φπα    (5.2 – 1) 

where N  is the number of modelled terms (harmonics and fundamental frequency) 

and the phase term nφ  in equation (5.2 – 1) can be implemented by including a cosine 

component 
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N

n

n 0
1

0 2cos2sin)( πβπα +=∑
=

  (5.2 – 2) 
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where nα  and nβ  are the amplitude terms of the sine and cosine components. 

An explanation of Bayesian formalism is presented in Appendix A. 

Therefore, equation (5.2 – 2) in terms of the generalised linear model can be written 

as 

eGbd +=  

where d is an 1×M  data matrix ( M  is the data length of the signal representing only 

one single frame of the recording), b is an 1×L  (or equivalent to 12 ×N ) matrix 

containing the amplitudes of the sine and cosine components of the estimated 

frequency, and e is an 1×M  matrix containing random Gaussian noise entries.  

Finally, G is an LM ×  (or equivalent to NM 2× ) matrix of the basis functions 

defined by the parameters of a piano note. 

Equation (A – 9) is recalled, which describes the probability density of 0f  based on a 

Bayesian description of the signal (Ó Ruanaidh and Fitzgerald 1996) 

[ ]
)det(
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ML

ωp

−
−−

∝   (5.2 – 3) 

Expression (5.2 – 3) describes a t-distribution probability function and will peak at the 

most probable value of 0f  of the G matrix. 

The M-H algorithm can be used to produce random sequences of samples from given 

densities in order to obtain the parameters of a signal.  In particular, suppose that iX  

is the i
th element of a random walk and that the next variate iY  in the random 

sequence is produced by simply adding a random perturbation factor iξ  to iX  of 

mean zero and standard deviation one 

iii XY ξ+=     (5.2 – 4) 

In a very basic algorithm implementation, expression (5.2 – 3) can be used to draw 

probability densities for steps of iX  and iY  representing single frequency estimates 

for a model with one term N  only (or equivalent to 2=L ) 
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where 
iXG  and 

iYG  
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The condition on which iY  is accepted instead of iX  is defined by the M-H 

acceptance function Q  
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The magnitude of equation (5.2 – 6) is very small, e.g. of the order of over 10-300 

(smallest number that can be calculated in MATLAB software package), which can 

cause numerical underflow problems.  To avoid this, equation (5.2 – 6) is re-written in 

terms of logarithms, then set of equations (5.2 – 5) are combined, and finally the 

exponential value of the acceptance function is calculated 
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Let us now assume ε is a uniform variable drawn over the range [0,1].  If ε<Q, then 

ii YX =+1 .  Otherwise, if ε>Q, then ii XX =+1 . 

The process is iterative and a sufficiently large number of iterations is required to 

obtain accurate estimates of the frequency of a signal component. 

In the following example, a single piano note C4
2 is transcribed, where an estimate of 

the fundamental frequency and the first two harmonics is obtained sequentially.  The 

                                                 
2 The piano is an instrument that covers a large frequency range, typically of more than seven musical 

octaves, i.e. from A0 to C8.  Therefore, the subscript denotes the note of a particular octave.  Figure B.1 

of Appendix B also shows typical fundamental frequencies associated with different notes of a piano. 
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upper frame of Figure 5.1 shows the time history of the recorded note, whilst the 

lower frame shows the evolution of the parameter estimates (frequencies of the 

harmonics and the fundamental frequency) against iteration number.  The real piano 

note was recorded at 44.1 kHz sampling frequency using the “Gigastudio” sample 

library: 
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Figure 5.1 – Parameter space estimation for a real piano note recording C4 

As it can be seen from Figure 5.1, the initial frequency estimate was set around 

200 Hz and 1000 iterations were employed in order to deduce at which point the M-H 

algorithm reaches a constant state.  Note that the algorithm in this very basic form 

requires a good initial estimate.  The implementation of a more elaborate algorithm 

with an arbitrary initial value is discussed later in section 5.5.1. 

The fundamental, first and second harmonic frequencies of the recorded piano note 

were estimated as 262 Hz, 527 Hz and 790 Hz respectively. 

These estimates were obtained sequentially, i.e. 1000 iterations were employed for the 

fundamental frequency and 1000 iterations more for each harmonic in turn.  In 

particular, once the first frequency is estimated, then the second frequency estimate is 
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initialised at twice the first estimate and a further 1000 iterations are used in the 

estimation process.  Finally, the third frequency estimate is initialised at three times 

the first estimate and a 1000 more iterations are carried out.  Therefore, each time, this 

simple process involves the estimation of a single frequency component for a model 

with one term only, i.e. for 1=N , as discussed before. 

A polyphonic example is now considered, e.g. an octave interval of concurrently 

played notes C3 and C4.  Note that the octave interval was analysed with the same 

algorithm as the one used for the single piano note C4.  Figure 5.2 shows the time 

series data and results of the analysis: 
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Figure 5.2 – Parameter space estimation for a real recorded octave interval C3 - C4 

From Figure 5.2, the frequency estimates were sequentially computed as 131 Hz, 

261 Hz, 392 Hz and 524 Hz, which could either be harmonics of note C3 or of note 

C4.  As a result, one needs to introduce a method for differentiating between multiple 

notes with commonly shared harmonics.  In the next sections of this chapter, the 

inharmonicity factor and the double decay rate are used to describe monophonic and 

polyphonic piano note signals.  The separation of two different notes comprising a 
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polyphonic music example can be assisted through the introduction of a different 

inharmonicity factor for each single piano note.  In this way, the overlap between 

harmonics of different notes is reduced, easing the resolution of problems associated 

with transcribing music intervals. 
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5.3 Proposed model parameters 

In chapters 3 and 4, the inharmonicity and double decay rate effect of piano notes 

were discussed, respectively, in order to further unravel the importance of these 

features mainly from a physical modelling point of view.  These features might also 

form an important part of the auditory perception mechanism in terms of how piano 

sounds are perceived by humans and what information is extracted (or used) by the 

listener. 

Therefore, the parameters that are used to describe the double decay rate and 

inharmonicity are incorporated into the proposed signal models of monophonic and 

polyphonic music.  These models form the basis of the Bayesian framework. 

 

5.3.1 Inharmonicity 

The inharmonicity effect, as discussed in chapter 3 through analytical and numerical 

formulations, is the basis of our proposed signal model.  As mentioned in section 

2.4.2, the response )(tx  of a vibrating piano string is a superposition of the 

fundamental and non-integer harmonic frequencies due to the inharmonicity B found 

in the piano strings.  Equation (2.4.2 – 7) is recalled 

Bnnffn

2
0 1+=  

The following conjecture is considered: supposing that each note can be represented 

by a fundamental frequency 0f , which is associated with the “pitch” of a note and the 

inharmonicity factor B , then the extraction of these two parameters may help in 

uniquely characterising either single or multiple notes in a recording.  The above 

assumption forms the core of our proposed signal transcription model. 
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5.3.2 Double decay rate 

The characteristics of the double decay rate were discussed in chapter 4 through 

analytical and numerical demonstrations using the concept of coupled oscillators. 

Since in a music passage the played notes might be either short or long in duration, 

the following conjecture is considered:  the damping of the frequency component 

amplitudes of a note may represent either the slow decay rate for played notes lasting 

long in a music performance, or the fast decay rate in the case of a fast music passage.  

The reason being that fast music passages might only contain the beginning of the 

played music corresponding to the first (or fast) decay of the note, where the piano 

hammer has just set the piano string to vibrate, but quickly stopped by the damper 

mechanism of the piano.  On the other hand, longer lasting music passages may be 

dominated by the second (or slower) decay rate, where the damper mechanism has not 

yet stopped the vibrating piano string by allowing the sound to develop further the 

characteristic effect of “aftersound” associated with the second decay rate. 

The proposed model may include both possibilities: played notes may last over a long 

and/or a short period of time.  Note that for the purpose of our numerical simulations 

and the transcription examples of single and multiple notes, the damping factors nζ  

are set to zero.  The reason for setting the damping factors nζ  to zero is for simplicity, 

but also mainly due to the fact that the data is analysed over a small time window of 

the order of 100 ms during which the decay of the amplitude is expected to be very 

small. 

Although not shown, the damping factors nζ  may, alternatively, be treated as 

nuisance parameters in the Bayesian model and then integrated out. 

The above model parameter assumptions lead naturally to the next section, where the 

inharmonicity B and the double decay rate, through the damping factors nζ  of the 

different frequency components, are incorporated into the proposed model based on 

Bayesian formalism. 
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5.4 Proposed signal models 

5.4.1 Monophonic case 

The proposed signal model in the case of single piano notes is discussed in this 

section. 

Equation (3.2.1 – 2) is recalled describing the inharmonicity effect in a signal and an 

additional damping term nζ  is included.  According to our previous conjecture, nζ  

may represent the slow and/or fast decay rate of each modelled frequency 
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5.02
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The phase term nφ  in equation (5.4.1 – 1) can be implemented by including a cosine 

component 
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 (5.4.1 – 2) 

where 
nα  and 

nβ  are the amplitude terms of the sine and cosine components, and 
n

ζ  

is the decay rate of each harmonic term. 

Equation (5.4.1 – 2) in terms of the generalised linear model can be written as 

eGbd +=  

where d is an 1×M  data matrix. 

b is a 1×L  (or equivalent to 12 ×N ) matrix containing the amplitudes associated with 

the fundamental frequency and harmonics of the sine and cosine components 

[ ]T
NN βββααα ............ 2121=b  

e is an 1×M  matrix containing random Gaussian noise entries. 

Finally, G is an LM ×  (or equivalent to NM 2× ) matrix of the basis functions 

containing the parameters of a single piano note and can be written as 
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Consider an existing Bayesian model (Godsill and Davy, 2002; Davy and Godsill, 

2002) for a single note 

∑
=

+++=
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n

nnnn tfntfntx
1

00 ]2)sin[(]2)cos[()( πδβπδα  (5.4.1 – 3) 

where nα  and nβ  are the respective amplitudes of the sine and cosine components, 

and 
nδ  is called the “de-tuning” parameter associated with each harmonic of a single 

piano note. 

Clearly, the model of a single piano note of equation (5.4.1 – 3) has higher 

dimensionality than the proposed one of equation (5.4.1 – 2) since there is a different 

inharmonicity (or so-called “de-tuning”) parameter nδ  for each harmonic component 

making the estimation of the parameter space potentially more computationally 

expensive.  Contrary, the proposed model presented in equation (5.4.1 – 2) involves 

the estimation of only one inharmonicity parameter B  for each single piano note. 
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5.4.2 Polyphonic case 

In the case of multiple piano notes, such as music intervals and chords, our proposed 

model can further be expanded for an R number of concurrent notes. 

Equation (5.4.1 – 2) can be extended to equation (5.4.2 – 1) as follows 
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where each note r  has its own set of parameters. 

From a practical implementation point of view, the dimensions of the amplitude 

matrix b would be 1×⋅ LR  (or equivalent to 12 ×⋅ NR ) and matrix G would be 

LRM ⋅×  (or equivalent to NRM 2⋅× ) containing the basis functions of the 

parameters of R notes present in the data. 

The polyphonic model of Davy and Godsill (2002) can be expressed as 

∑∑
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,0,,,0,, ]2)sin[(]2)cos[()( πδβπδα  (5.4.2 – 2) 

The dimensionality of the model described by equation (5.4.2 – 2) is again higher than 

that of the proposed model described by equation (5.4.2 – 1).  Specifically, equation 

(5.4.2 – 2) depends on estimating RN ⋅  number of parameters compared to the R  

number of parameters for our proposed polyphonic model of equation (5.4.2 – 1). 
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5.5 Algorithm implementation for automatic music transcription 

The theoretical foundation of our proposed automatic music transcription method is 

based on the use of the M-H algorithm and Gibbs sampler for multivariate parameter 

estimation.  The implementation of these algorithms is discussed in the following 

sections in detail. 

 

5.5.1 Implementation for estimating parameter f0 

Equation (5.2 – 3) which represents a “cost function” of a t-distribution function can 

also be used to obtain estimates of more than one parameters, i.e. 0f  and/or B 

parameters. 

One may now assume a simple example of a modelled signal, as described earlier 

from equation (5.4.1 – 2) 
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where the data is generated over 100 ms with 2000 =f  Hz, 5=N  and 410−=B . 

The logarithm of the cost function, described by equation (5.2 – 3), is plotted in 

Figure 5.3 for a range of fundemental frequency 0f  estimates, for a known value of 

inharmonicity B.  Additionally, Figure 5.4 shows an expanded region around the peak 

at 200 Hz of Figure 5.3. 

Note that the negative values of the cost function arise because of the use of 

logarithms in order to avoid issues with numerical underflow: 
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Figure 5.3 – Cost function for a range of fundamental frequencies 0f  given a known 

value of inharmonicity B 
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Figure 5.4 – Expanded section view of Figure 5.3 
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From Figures 5.3, it can be seen that the cost function will have many probable 

solutions represented as local peaks in the t-distribution function.  For instance, 

solutions will be evident at 200 Hz (fundamental frequency) and any subsequent 

harmonics, such as at 400 Hz, etc.  Also, there will be local optima at multiples and 

submultiples of the most probable solution (200 Hz), such as at 100 Hz, 150 Hz, etc. 

Therefore, one needs to devise an effective algorithm of obtaining only an estimate of 

the fundamental frequency by ignoring other locally optimal solutions.  The following 

steps have been devised and form the basis of any subsequent implementation of the 

M-H algorithm for obtaining estimates of the fundamental frequency 0f .  The walks 

of the M-H algorithm are therefore implemented in this particular way, where X  and 

Y  represent estimates of 0f : 

1a. For 80% of the time, suppose that iX  is the ith element of a random 

walk and that the next variate iY  in the random sequence is produced 

by simply adding a random perturbation factor iξ  to iX  of mean zero 

and standard deviation one 

iii XY ξ+=  

1b. For the remaining 20% of the time, the algorithm may randomly follow 

two different directions: 

• 50% of the time, the current iY  estimate is multiplied by a 

random integer. 

• 50% of the time, the current iY  estimate is divided by a 

random integer. 

The reason behind this decision step is to check whether the estimate is a 

multiple or a sub-multiple of the fundamental frequency.  The additional 

advantage of this algorithm implementation compared to the original one 

presented in section 5.2 is that the initial parameter estimate can now be of an 

arbitrary value and hence there is no need to have any prior knowledge about 

the pitch of the transcribed note. 
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Note that there are additional checks implemented in the algorithm to stop 

division if the frequency estimate is below the lowest fundamental frequency 

of a piano, e.g. below 27.5 Hz, or it stops multiplication if the fundamental is 

too high, e.g. above 4,186 Hz (typical frequency range of a piano is also 

shown in Figure B.1 of Appendix B). 

2. There are now two possibilities; either the proposed random variate 
iY  is 

accepted, or it is rejected and iX  is repeated.  The condition on which iY  

is accepted instead of 
iX  is defined by the acceptance function Q  of 

equation (5.2 – 6).  Let us assume ε is a uniform variable drawn over the 

range [0,1].  If ε<Q, then ii YX =+1 .  Otherwise, if ε>Q, then ii XX =+1 . 

Steps 1 and 2 are repeated, until the M-H algorithm reaches an equilibrium state, 

where the estimated fundamental frequency 0f  is almost constant.  A flow chart is 

added here showing a single iteration of the algorithm in its basic form: 

 

 

 

 

 

 

 

 

5.5.2 Implementation for estimating parameter B 

Assume now for the same signal that the fundamental frequency 0f  is known, but in 

this instance the inharmonicity factor B is unknown.  The cost function of equation 

(5.2 – 3) for a range of inharmonicity B estimates is shown in Figure 5.5: 
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Figure 5.5 – Cost function for a range of inharmonicity factors B given a known value 

of fundamental frequency 0f  

From Figure 5.5, it can be seen that the cost function only has a single peak at the 

correct value, i.e. 410−=B .  Therefore, the implementation of the algorithm for 

calculating the inharmonicity factor B would be much simpler than that of the 

fundamental frequency 0f . 

In particular, the algorithm for calculating the inharmonicity factor B is similar to the 

one presented in the previous section, although it does not require random 

multiplications or divisions of the estimates since there is simply only one peak in the 

cost function as shown in Figure 5.5. 

 

5.5.3 Implementation for simultaneously estimating f0 and B 

The cost function for a range of values of the fundamental frequency 0f  and the 

inharmonicity factor B is shown in Figure 5.6.  In this particular case, the parameter 

space that needs to be calculated has two dimensions; 0f  and B.  The cost functions 
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shown in Figures 5.3 and 5.5 represent slices through the two-dimensional cost 

function as illustrated in Figure 5.6: 

 

Figure 5.6 – Cost function for a range of fundamental frequency 0f  and 

inharmonicity B estimates 

From Figure 5.6, it can be seen that the cost function peaks at the most probable pair 

of estimates.  In this case at 2000 =f  Hz and 410−=B , which correspond to the 

values used to generate the data. 

The challenge now is to implement an algorithm for multivariate estimation, i.e. 

where the estimation of the fundamental frequency 0f  and B takes place in one 

algorithm.  The Gibbs sampler is proposed based on extensive work by Geman and 

Geman (1984) and Gelfand and Smith (1990) in the field of image restoration 

processing and statistical data analysis respectively. 

The main principle behind the Gibbs sampler of drawing samples from a multivariate 

density is to break down the problem into one of drawing successive samples from 

densities of smaller dimensionality (Ó Ruanaidh and Fitzgerald, 1996). 
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An iterative cyclic pattern can used by assuming a parameter space { }ii
Bf ,0=Θ , 

where the i superscript denotes the i
th iteration of the iterative process.  The 

superscript “0” denotes the initial estimates of 0f  and B. 

1st iteration: 

( ) 1
0

0
0 , fdBfp →  

( ) 11
0 , BdfBp →  

2nd iteration: 

( ) 2
0

1
0 , fdBfp →  

( ) 22
0 , BdfBp →  

j
th iteration: 

( ) ii fdBfp 0
1

0 , →−  

( ) ii BdfBp →,0  

Therefore, for each estimate of the fundamental frequency 0f , an estimate of the 

inharmonicity factor B is drawn, which in turn is used to draw another estimate of 0f  

and so forth. 

Note that the steps for the Gibbs sampler are based on the implementation of the M-H 

algorithm for univariate estimates of the fundamental frequency 0f  and inharmonicity 

factor B as described previously in sections 5.5.1 and 5.5.2 respectively. 
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5.6 Automatic music transcription examples 

Monophonic and polyphonic example cases are presented here using simulated 

signals and real piano recordings, where M-H algorithm steps are used to compute the 

successive states of the Gibbs sampler for multivariate parameter estimation as 

discussed in the previous section. 

 

5.6.1 Simulated monophonic signals 

A piano note is simulated based on our proposed model, as described by equation 

(5.4.1 – 2) 
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The fundamental frequency is set to 261.6 Hz representing note C4, as typically 

shown in Figure B.1 of Appendix B, the inharmonicity factor is typically set to 

2.5x10-4 representing a typical value for a piano note (Fletcher, 1964), and term N is 

set to 5. 

The data is generated over a 100 ms time period.  Note that other authors (Godsill and 

Davy, 2002; Davy and Godsill, 2002) have used smaller “frames” of the order of 

20 ms. 

By employing the Gibbs sampler, as described in section 5.5.3, simultaneous 

parameter estimation of the fundamental frequency and inharmonicity factor B can be 

obtained.  A typical such run is shown in Figure 5.7: 
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Figure 5.7 – Parameter space estimation for simulated single piano note C4 based on 

Gibbs sampler 

From Figure 5.7, it can be seen that the estimate of the fundamental frequency is 

accurately predicted after about 250 iterations at 261.6 Hz.  As discussed in section 

5.5.1, the advantage of the implemented algorithm is that there is no need to have a 

prior idea of the “pitch” of the transcribed note.  In fact, the starting estimate is chosen 

arbitrarily by the implemented algorithm, which in this case was selected at 5,750 Hz, 

making the method of frequency estimation applicable to any unknown note. 

As far as the estimate of the inharmonicity factor B is concerned, this is also 

accurately predicted over a longer number of iterations, i.e. just under 1,000.  Note 

that in the case of estimating B, the initial estimate is not chosen arbitrarily, but rather 

is set to the lowest typical value of B, i.e. 10-4.  Also, note that the performance of the 

algorithm may be improved further by discarding negative intermediate estimates for 

the inharmonicity as shown in Figure 5.7. 

Finally, since the steps of the M-H algorithm are drawn randomly, it was found that 

the results from repeated estimates (about 20 in total) of the inharmonicity factor B on 
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the same data set exhibit a 12% variation, whereas the variability in the estimation of 

0f  is very small of the order of up to 2%. 

 

5.6.2 Real monophonic piano recording signals 

In this section, real monophonic piano notes were transcribed with our proposed 

model as before.  Recordings of real piano notes were carried out at 44.1 kHz using 

samples from the “Gigastudio” sample library. 

In this example, a real piano note C4, with a fundamental frequency of about 261 Hz, 

is attempted to be transcribed.  Figure 5.8 shows the evolution of the estimates for the 

fundamental frequency and inharmonicity factor against the number of iterations 

using the Gibbs sampler: 
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Figure 5.8 – Parameter space estimation for a real piano note recording C4 based on 

Gibbs sampler 
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From Figure 5.8, it can be seen that the estimates of the fundamental frequency and 

the inharmonicity factor B are predicted after about 250 iterations of the algorithm by 

returning estimates close to 261 Hz and 2.7x10-4 respectively. 

The procedure is repeated on two more notes, i.e. G4 with fundamental frequency of 

about 392 Hz and C5 with a fundamental frequency of about 523 Hz.  Table 1 

summarises the results showing the estimated fundamental frequencies and the four 

harmonics that can be derived from the simple model of inharmonicity 

Bnnffn

2
0 1+=  

where for 1=n , the fundamental frequency is, strictly speaking, no longer 0f  but 1f  

due to the inherent inharmonicity in the strings (Ortiz-Berenguer et al., 2005) 

Bff += 101  

Table 5.1 is shown below: 

Piano 

Note 

f1 

[Hz] 

1st 

harmonic 

[Hz] 

2nd 

harmonic 

[Hz] 

3rd 

harmonic 

[Hz] 

4th 

harmonic 

[Hz] 

Inharmonicity 

B 

C4 261.4 523 785 1047.6 1311.1 2.7x10-4 

G4 391.8 784.3 1177.7 1572.6 1969.5 4.3x10-4 

C5 523.5 1048.3 1576 2107.8 2645.2 8.9x10-4 

Table 5.1 –Automatic music transcription of real single piano note recordings using 

the Gibbs sampler 

From Table 5.1, it can be seen that the estimates of the three fundamental frequencies 

are accurate when compared with typically expected values found in a piano 

instrument.  Also, it can be seen that the inharmonicity factor will increase with the 
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fundamental frequency or “pitch” of the piano note, as expected (Fletcher, 1964).  

Indeed, this observation is in line with equation (2.4.2 – 3) as discussed earlier 

2

43

64Tl

Ed
B

π
=  

where for example the inharmonicity is greater in the case of short strings (high 

frequency notes) for a given radius and tension as opposed to long strings (low 

frequency notes) for the same radius and tension. 

This was a demonstration of a successful transcription of real monophonic piano notes 

with the implementation of our algorithms. 

 

5.6.3 Simulated polyphonic signals 

A music interval is the simplest form of polyphonic music, where two notes are 

played together.  One may recall equation (5.4.2 – 1), which may be used to describe 

an 2=R  number of concurrent notes 
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A typical music interval, C4 to G4, is simulated based on the above proposed model. 

The fundamental frequencies are set to 261.6 Hz for C4 and 392 Hz for G4, whereas 

the inharmonicity factors of each note are set to 2.5x10-4 and 4.0x10-4, respectively. 

By employing the Gibbs sampler, as described in section 5.5.3, simultaneous 

successful parameter estimation of the fundamental frequency and inharmonicity 

factor B can be obtained.  This is shown in Figure 5.9: 
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Figure 5.9 – Parameter space estimation for two simulated piano notes based on 

Gibbs sampler 

 

5.6.4 Real polyphonic piano recording signals 

For the purpose of this exercise, music intervals are generated by combing the real 

monophonic recordings, which represent the individual notes, in a number of music 

interval combinations.  Then, the fundamental frequencies and inharmonicity factors 

of the constituent notes are estimated. 

In particular, it has been shown from the literature overview in chapter 2 that the most 

difficult music intervals to transcribe are those where the notes have a large number of 

shared harmonics.  These are known as “consonant” intervals as opposed to 

“dissonant” intervals, where there is very little overlap between the shared harmonics 

of the involved notes. 

The most consonant music intervals are: the “unison” (duplicated note; i.e. a “pseudo-

interval”) and the “octave” (where the highest note in the interval approximately 
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shares its fundamental frequency and its entire harmonics with the lowest note).  

Other consonant intervals exist such as the “perfect fifth” (having a 3:2 approximate 

integer ratio of harmonics between two notes) and the “perfect fourth” (having a 4:3 

approximate integer ratio of harmonics between two notes).  Note that the signal 

discussed in section 5.6.3 was an example of a simulated “perfect fifth” interval. 

Figure 5.10 shows the automatic music transcription of a real perfect fifth music 

interval (C4 – G4) for a known number of transcribed notes: 
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Figure 5.10 – Parameter space estimation for a typical music interval, C4 – G4 

(perfect fifth), from real piano note recordings based on Gibbs sampler 

From Figure 5.10, it can be seen that the estimates of the fundamental frequencies of 

the above perfect fifth music interval are successfully predicted at around 261 Hz and 

392 Hz.  These estimates hardly differ from the estimates of the single transcribed 

notes as shown earlier in Table 5.1. 

However, as far as the estimated inharmonicity factors are concerned for the above 

perfect fifth music interval (C4 – G4), parameter B of note C4 is predicted at around 

2.5x10-4, which is 7% different when compared with parameter B of the single 
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transcribed note C4 as shown earlier in Table 5.1, i.e. B = 2.7x10-4.  Also, parameter B 

of note G4 from the same polyphonic transcription is estimated at 5.9x10-4, which is 

37% different when compared with parameter B of the single transcribed note G4 as 

shown earlier in Table 5.1, i.e. B = 4.3x10-4. 

In another example of polyphonic transcription, it was found that for the transcribed 

octave music interval C4 – C5, parameter B of note C4 is predicted at around 4.0x10-4, 

which is 48% different when compared with parameter B of the single transcribed 

note C4 as shown earlier in Table 5.1, i.e. B = 2.7x10-4.  Also, parameter B of note C5 

from the same polyphonic transcription is estimated at 1.1x10-3, which is 24% 

different when compared with parameter B of the single transcribed note C5 as shown 

earlier in Table 5.1, i.e. B = 8.9x10-4. 

The majority (3 out of 4) of the above discrepancies in the estimation of the 

inharmonicity factors B of the two music intervals (C4 – G4 and C4 – C5) is higher 

than the expected 12% variation, which is related to the randomness of the estimation 

process of the inharmonicity factor as discussed in section 5.6.1. 

Table 5.2 below summarises the above results of the two polyphonically transcribed 

music intervals (C4 – G4 and C4 – C5) by presenting their estimated fundamental 

frequencies and inharmonicity factors, along with their respective changes3 shown in 

the parentheses, when compared with those in Table 5.1: 

Music interval 

(note 1-note 2) 
Type 

f1 of note 1 

[Hz] 

Inharmonicity B 

of note 1 

f1 of note 2 

[Hz] 

Inharmonicity B 

of note 2 

C4-G4 
Perfect 

fifth 

261.4 

(0% change) 

2.5x10-4 

(7% change) 

392.1 

(-0.08% change) 

5.9x10-4 

(-37% change) 

C4-C5 Octave 
260.2 

(0.5% change) 

4.0x10-4 

(-48% change) 

522.8 

(0.1% change) 

1.1x10-3 

(-24% change) 

Table 5.2 – Automatic music transcription of real polyphonic piano note recordings 

using the Gibbs sampler 

                                                 
3 Positive and negative percentile changes indicate a reduction and an increase respectively in the 

estimates when directly compared with the estimates of single transcribed notes. 
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The reason for the large discrepancies of the inharmonicity estimates between the 

monophonically and polyphonically transcribed notes is perhaps due to the fact that in 

the case of a polyphonic transcription, more parameters are fitted over the same length 

of data and as a result the variability in the parameter estimation will be larger than in 

the case of a monophonic transcription.  However, more work needs to be carried out 

in this field to understand, or support, the reason for such a discrepancy. 

Note that it has to be said that the estimation of the inharmonicity factor in the case of 

simulated polyphonic signals is very accurate since the model accurately fits the 

generated data as shown earlier in section 5.6.3. 

The question is therefore how important is the accurate estimation of the 

inharmonicity factor B for calculating the fundamental frequency and the associated 

harmonics of a real piano note. 

Assume now that one is interested in calculating the difference between the frequency 

estimates in the case of monophonically and polyphonically transcribed notes for the 

first five N terms. 

In this particular case, the value of the inharmonicity factor, in the case of a 

polyphonic transcription, is chosen to be 48% higher than that of the monophonic 

transcription.  This percentage reflects the largest discrepancy as shown earlier in 

Table 5.2.  Note also that the magnitude of the inharmonicity factor B is of the order 

of 10-4.  The following formula may be used to estimate the percentage difference in 

the frequency estimates 

%  100
,

,,

monophonicn

polyphonicnmonophonicn

f

ff
difference

−
=   (5.6.4 – 1) 
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Figure 5.11 – Percentage difference in the frequency estimates between a 

monophonically and polyphonically transcribed piano note C4 with a 48% 

discrepancy in the values of the inharmonicity factor B, which are of the order of 10
-4 

Figure 5.11 shows that the percentage difference of the resulting first five harmonic 

terms (including the fundamental frequency) between the monophonically and 

polyphonically transcribed piano note C4 is less than 0.5%, which can be regarded as 

negligible. 

However in the hypothetical case, where the value of the estimated inharmonicity 

factor B is of the order of 10-2, which is typically the highest value of inharmonicity 

found in a piano (Fletcher, 1964), the difference in estimating the resulting harmonic 

terms can be of a measurable magnitude.  This is shown in Figure 5.12: 
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Figure 5.12 – Percentage difference in the frequency estimates between a 

monophonically and polyphonically transcribed piano note C4 with a 48% 

discrepancy in the values of the inharmonicity factor B, which are of the order of 10
-2 

From Figure 5.12, it can be seen that for large values of the inharmonicity factor, i.e. 

of the order of 10-2, there would be a percentage difference of up to 8% when 

calculating the first five terms of a polyphonically transcribed piano note. 

As an overall remark, it can be deduced that the estimation of the inharmonicity factor 

from real polyphonic recordings may differ significantly from the estimate of the real 

monophonic recordings.  As a result, for very large values of the inharmonicity factor, 

a relatively large difference in the estimation of the harmonics terms between the 

monophonically and polyphonically transcribed notes may result. 

As a final remark, the results from the transcription examples presented in this 

research were promising, but the transcription model is simple and has not been 

generalised for an unknown number of notes present in a recording.  Future work is 

encouraged to consider the varying model dimensionality. 
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5.7 Model performance 

In this section, the performance characteristics of our algorithm implementation for 

the parameter space estimation are discussed in relation to two topics. 

First, the inharmonicity factor B is estimated for a typical piano note over different 

time windows of the same recording in order to deduce how well the model fits the 

data.  Second, one of the objectives of this research work has been the development of 

a signal model, which has smaller dimensionality than existing models in the 

literature (Godsill and Davy, 2002; Davy and Godsill, 2002).  Hence, the potentially 

reduced computational expense of our proposed signal model is discussed in relation 

to the model of Godsill and Davy (2002) through simple numerical demonstrations. 

 

5.7.1 Parameter B estimation across successive time windows 

In order to provide further insight into the accuracy of the proposed model across 

successive time windows of a typical piano note recording, the monophonic model of 

a single note was employed for estimating parameter B.  For the purpose of this 

analysis, a 1 sec recording of a piano note C4 was divided into 10 successive time 

windows of 100 ms duration each. 

Figure 5.13 illustrates the variation in estimating the inharmonicity factor in each 

different time window of the same recording: 
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Figure 5.13 – Estimated inharmonicity factor B for a single piano note C4 across 

successive time windows of the same recording 

From Figure 5.13, it can be seen that the inharmonicity factor B estimate in the first 

frame of the data, between 0 ms and 100 ms, is considerably different than the 

estimates in time windows above 200 ms.  This is expected since the initial attack of 

the piano note is contained within this frame, whereas our model does not account for 

this feature. 

For higher-time windows, e.g. between 200 ms and 600 ms, the inharmonicity factor 

does not vary significantly, although above 600 ms it starts to roll off considerably.  

This might be due to the fact that the time-varying amplitudes of the signal are not 

accurately represented by the model throughout the recording (potential existence of a 

non-linear mechanism affecting the amplitudes of the signal). 
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5.7.2 Computational expense 

As it has been discussed earlier, our proposed signal model has smaller 

dimensionality, since we are only interested in computing R  inharmonicity factors for 

R number of notes, as opposed to the estimation of RN ⋅  inharmonicity (or so-called 

“de-tuning”) parameters according to Godsill and Davy (2002). 

In this section, we simply demonstrate the potential computational savings with our 

proposed model when compared to the existing model by Godsill and Davy.  In 

particular, the two different signal models are used within a Gibbs sampler 

implementation and the parameter estimation space is simply timed for a fixed number 

of iterations.  Note that the accuracy of the estimates from the two different models is 

not discussed in this research. 

Table 5.3 below shows the additional computational expense from the model of Davy 

and Godsill as a function of N  terms for a fixed number of iterations when 

transcribing a single piano note: 

Additional computational 

expense 

[time percentage] 

Number of terms 

N 

32% 3 

47% 4 

58% 5 

Table 5.3 – Additional computational expense of model by Godsill and Davy 

From Table 5.3, it can be seen that as the number of harmonics increases, so as the 

additional computational expense increases (between about 11% and 15% for every 
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additional term)4.  This is due to the fact that each harmonic term will be associated 

with a different inharmonicity parameter and therefore there will be additional 

computational steps in the Gibbs sampler as the number of harmonics increases. 

                                                 
4 Note that for N = 1, the existing model by Godsill and Davy performs marginally better than the 

proposed one.  This is probably due to the fact that the proposed and the existing models are 

implemented slightly differently within Matlab numerical software. 
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5.8 Conclusions 

Signal models based on Bayesian formalism were proposed for describing the sound 

of a piano by employing an inharmonicity parameter and decay rates for either single 

or multiple piano notes. 

In particular, the proposed models for the monophonic and polyphonic cases were 

based on the description of notes with superimposed fundamental and harmonic 

frequencies including the inharmonicity factor inherently present in the piano strings.  

The fast and/or slow decay rate of the resulting sound can also be incorporated in the 

model through the simple use of a damping parameter term depending on whether the 

transcribed music passage/note is short or long in duration.  However, in our analysis 

the damping parameters were set to zero since the data is analysed over a small time 

window during which the decay of the amplitude is expected to be very small. 

It was demonstrated that the proposed models in this research are potentially more 

computationally attractive when compared with existing models in the literature 

(Godsill and Davy, 2002; Davy and Godsill, 2002). Indeed, the latter models would 

use a different inharmonicity parameter for each harmonic component of each note 

making the estimation of the parameter space more computationally expensive, 

whereas our proposed models involve only one inharmonicity parameter for each 

piano note. 

A computational route for calculating the desired parameter space, such as the 

fundamental frequency and inharmonicity factor of each transcribed piano note, was 

outlined by utilising the M-H algorithm and Gibbs sampler for multivariate parameter 

estimation.  Examples of monophonic and polyphonic music transcription were also 

featured and discussed. 

The estimation of the inharmonicity factor from real polyphonic recordings may differ 

from the estimate of real monophonic recordings.  This may be due to the fact that in 

the case of a polyphonic transcription, more parameters are fitted over the same length 

of data and as a result the variability in the parameter estimation will be larger than in 

the case of a monophonic transcription.  Hence, for very large values of the 
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inharmonicity factor, a relatively large discrepancy in the estimation of the harmonics 

terms may result from this. 

It has been shown that the estimation of the inharmonicity factor B may vary across 

successive sections of the same recording.  In particular, the biggest discrepancy is 

found when analysing a section of the recording where the attack of the note is 

included, i.e. at the beginning of the recording between 0 ms and 100 ms.  This is 

expected since our proposed model does not account for this feature.  Further 

discrepancies may be identified as moving closer to end of the recording.  This might 

be due to the fact that the time-varying amplitudes of the signal are not accurately 

represented by the model throughout the recording. 

The transcription results using the proposed signal models that are presented in this 

research are encouraging rather than comprehensive.  Future studies could explore 

and compare this approach with other known methods in the literature.  Also, the 

transcription model presented has not been generalised for an unknown number of 

notes present in a real recording.  The model should consider the increased 

dimensionality of the model through the use of a more generic framework. 
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Chapter 6 

Overall conclusions 

 

6.1 Final remarks 

This research has concentrated on the investigation of two important features of the 

sound reproduction mechanism of the piano instrument through analytical 

formulations and numerical investigations.  First, the inharmonicity associated with 

the piano strings, which results in the formation of non-integer spaced harmonics 

relative to the fundamental frequency of the playing note, was discussed.  Second, the 

double decay rate effect was discussed, where the time-varying reproduced sound 

initially has a fast decay rate characteristic followed by a much slower decay rate 

(also known as “aftersound”). 

Since the inharmonicity and double decay rate effect form an integral part of the 

sound reproduction mechanism of the piano, then one may assume that these features 

may also need to be incorporated into a signal model to aid in music transcription. 

Chapters 1 and 2 provide the introduction to this research work by mainly presenting 

the existing knowledge on the inharmonicity and double decay rate effect.  Also, since 

the original motivation behind this research work was the development of an 

automatic music transcription method, a review of the different transcription methods 

was carried out, mainly in relation to neural network, probabilistic and blind 

separation methods. 

Chapters 3, 4 and 5 provide the original contributions of this research.  In particular, 

in chapters 3 and 4, the inharmonicity and the double decay rate features are discussed 

through analytical formulations and numerical demonstrations, whilst in chapter 5, 

signal models for monophonic and polyphonic music performances are proposed 

based on the latter features.  These models are presented in a probabilistic Bayesian 

framework and transcription examples of simulated and real piano note recordings are 

demonstrated through the use of the Metropolis-Hastings (M-H) algorithm and Gibbs 

sampler for multivariate parameter estimation. 
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6.1.1 Inharmonicity 

The following can be concluded from chapter 3 in relation to the inharmonicity factor 

B of piano strings: 

• The numerical simulations of a vibrating piano string with inharmonicity 

showed a characteristic “one-sided” effect in the time domain, as a result of 

the non-integer spacing of the harmonic components of the modelled signal in 

relation to the fundamental frequency.  The latter name was derived from the 

formation of a strong non-symmetrical response relative to the main lobe 

temporal structure of the signal, which represents the fundamental frequency 

of the vibrating string. 

• The one-sided effect is not present in the case when the inharmonicity factor is 

set to zero.  The modelled signal with 0=B  is simply the sum of a Fourier 

series of a periodic function.  However, in general, the signal with non-zero 

inharmonicity is not periodic, unless each ratio of the modelled frequencies is 

a rational number. 

• The response of the modelled signal with inharmonicity is dependant on five 

different parameters: the magnitude of the inharmonicity factor, the number of 

harmonics present in the modelled signal, the time parameter, the amplitude of 

harmonics and the phase characteristics.  Generally speaking, an increase in 

any of the five parameters results in a stronger manifestation of the one-sided 

effect. 

• The modelled signal of a vibrating piano string was directly compared with the 

time history of a real piano note recording.  From these investigations, it was 

shown that the presence of one-sided structure is dependent on how the 

amplitude of the harmonic terms varies.  In the case of non-uniformly varying 

amplitudes, this effect is obscured both in simulated and real piano note 

recordings. 

• Further analysis work was presented using the cepstrum in order to reveal a 

one-sided effect due to the inharmonicity factor present in simulated and real 

piano note recordings.  Once again, the non-integer spacing of the manifesting 
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harmonics was acknowledged to be the main reason for this characteristic 

effect through numerical demonstrations. 

• Analytical formulations were presented using the homomorphic properties of 

the cepstrum in order to derive representations of the resulting sound, with and 

without inharmonicity, of a piano note into separate components (response of 

a vibrating piano string and soundboard).  The cepstrum has been used to 

consider a conjecture (Karatsovis et al., 2006), where the soundboard would 

have a broad spectral response and consequently a cepstrum that 

predominantly contains its information in the low “quefrencies” (or low-time 

regions), whereas a vibrating piano string would give rise to a series of 

impulses in the pseudo-time domain manifesting themselves in the higher 

quefrencies (or high-time regions). 

• The coupled response of two vibrating piano strings was also discussed 

through both the use of digital waveguides and the cepstrum.  This work 

naturally led to the next chapter, where the coupling mechanism was discussed 

in more detail. 

• From the analytical and numerical demonstrations in this chapter, it was 

possible to show the importance of the inharmonicity in the reproduced sound 

mechanism of a piano note.  Therefore, it was decided that this parameter 

should form an integral part of any proposed signal model in the future. 

 

6.1.2 Double decay rate 

The following can be concluded from chapter 4 in relation to the double decay rate 

effect of the reproduced sound: 

• Coupled oscillators were used to demonstrate the effect of double decay rate 

as observed in real piano note recordings.  It was also shown that the 

analytical formulation of two coupled oscillators is identical to the analogous 

formulation of digital waveguides as shown in chapter 3. 
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• From numerical simulations, it was possible to show that in the case of two 

identical oscillators, representing a group of two identically-tuned piano 

strings that may form a piano note, one of the resulting coupled modes will be 

identical to that of the uncoupled mode.  In physical terms, there is symmetry 

in the system and the two masses will move together in-phase through the 

coupling of the bridge, which acts as rigid link connection between the two 

masses.  Also, the ratio of the damping terms between the two coupled modes 

will be larger when compared with that of the uncoupled modes.  This may 

ultimately result in the characteristic double decay rate of the reproduced 

piano sound, when both of these modes are appropriately excited. 

• In the case of mistuned oscillators, it was possible to clearly replicate the 

double decay rate effect, when there is an out-of-phase relationship between 

the two, following work by other authors (Weinreich, 1977; Hundley at al., 

1978).  It was therefore deduced that the phase difference between the two 

oscillators and their relative mistuning can promote the appearance of a double 

decay rate effect. 

• The double decay rate effect is different for the various harmonic terms 

(fundamental and harmonics).  However, it is still not well understood how the 

decaying rates of the different harmonic terms contribute to the way the 

overall sound is perceived (Weinreich, 1977). 

• There is normally a “dip” in the response of a vibrating piano string at the 

point where the second (or slower) decay rate takes over from the first (or fast) 

decay.  It was simply shown analytically that the resulting dip would be a 

direct function of the mistuning relationship between two oscillators. 

• A physical model was developed to describe the dynamics of multiple strings 

coupled with a piano bridge as an extension to the general model of coupled 

oscillators.  Through the use of this model, it was possible to simulate the 

response of two mistuned strings of a piano note coupled with a finite length 

beam in the frequency domain. 
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• Power flow analysis was carried out by exciting one string and evaluating the 

power that goes into the other string and the beam.  It was demonstrated that 

most of the power input dissipates through the material damping of the string 

and subsequently less will be transmitted through the coupling to the beam and 

the other string. 

• Measurements were also carried out on a real grand piano in order to 

understand further the coupling mechanism between the soundboard, the 

bridge and a piano string.  From the measurement of transfer mobilities, it was 

found that an excitation in one direction might also induce a small response in 

the other direction.  As a result, this might mean that the response of a piano 

string in one direction may be “cross-coupled” with response of the 

soundboard in the other direction. 

• The dynamics of such a complicated system (piano strings, soundboard and 

bridge) were further explained through the use of simple theoretical mobilities 

for such built-up structures.  Such a system may be approximated with the 

response of a grillage of beams mounted on plate, where two important 

frequency regions exist. At low frequencies, the system will act as a spring of 

a given stiffness and at higher frequencies, the point mobility will reach a 

constant average value approximating the point mobility of an infinite plate.  

Note that at high frequencies, a multi-modal behaviour of the soundboard will 

result in a broad, Statistical Energy Analysis (SEA) type behaviour.  The latter 

argument further justifies our original hypothesis that the soundboard appears 

in the low quefrencies or low-time regions of the cepstrum as initially 

discussed in chapter 3 (Karatsovis et al., 2006).  These theoretical 

observations are backed by measuring the real point mobilities directly on the 

soundboard and the bridge of a grand piano. 

 

6.1.3 Proposed signal model 

The following can be concluded from chapter 5 in relation to our proposed signal 

model: 
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• The proposed signal model may incorporate both the inharmonicity and the 

double decay rate of piano notes, as described earlier in chapters 3 and 4, 

based in a Bayesian formalism framework.  Using the proposed model, it is 

possible to account for both monophonic and polyphonic music performances. 

• The modelling of the inharmonicity factor forms the core of our proposed 

model by using a very simple formulation, where the harmonics are non-

integer multiples of the fundamental frequency (or pitch) of the piano note. 

• The use of the double decay rate can be incorporated in the model through a 

damping term for the different frequency components of the piano sound.  It 

was proposed that depending on the time duration of the performed notes, the 

damping factor of the frequency components of a note may either represent the 

slow decay rate for played notes lasting long in a music performance, or the 

fast decay rate in the case of fast music passages. 

• The rationale for our simple transcription method is based on the following 

conjecture: supposing that each note can be represented by a single 

inharmonicity factor B and a fundamental frequency 0f , then the joint 

extraction of these two parameters might help in uniquely characterising either 

single or multiple notes in a recording. 

• The amplitudes of the sine and cosine components of the proposed Bayesian 

model are integrated out as nuisance parameters, whereas the damping decay 

rates of the sine and cosine components are set to zero.  This is due to the fact 

that the data is analysed over a small time window of the order of 100 ms 

during which the decay of the amplitudes is expected to be very small. 

• The computational route for estimating the desired parameter space, such as 

the fundamental frequency and inharmonicity factor of each transcribed piano 

note, was outlined by utilising the M-H algorithm and Gibbs sampler for 

multivariate parameter estimation.  Examples of monophonic and polyphonic 

music transcription were presented and discussed with emphasis on “difficult” 

music intervals (octaves and perfect fifths), where there is a large number of 

commonly shared harmonics between two notes. 
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• The estimation of the inharmonicity factor from real polyphonic recordings 

may differ significantly from the estimate of real monophonic recordings.  

This may be due to the fact that in the case of a polyphonic transcription, more 

parameters are fitted over the same length of data and as a result the variability 

in the parameter estimation will be larger than in the case of a monophonic 

transcription.  As a result, for large values of the inharmonicity of the order of 

10-2 (typical highest value according to Fletcher, 1964), a relatively large 

variation in the estimation of the harmonics terms between the 

monophonically and polyphonically transcribed notes may result from this. 

• The estimation of the inharmonicity factor B may vary across successive time 

windows of the same recording.  This might be due to the fact that our 

proposed model might not accurately represent the time-varying 

characteristics of a real note throughout the recording (potentially an existence 

of a non-linear mechanism in the response).  Note also that the biggest 

discrepancy is observed when analysing a section of the recording where the 

attack of the note is included.  This is expected since our proposed model does 

not account for this feature. 

• It was possible to compare our proposed model in this research with previous 

models in the literature (Godsill and Davy, 2002; Davy and Godsill, 2002) in 

terms of their computational expense.  Indeed, the above models in the 

literature require the estimation of a different inharmonicity, or so-called “de-

tuning” parameter, for each harmonic component of a single note.  Hence, for 

N number of terms, there will be N de-tuning parameters that need to be 

computed, whereas, in this research, we propose a model with a single 

inharmonicity factor for all N terms. 

• In general, the transcription examples presented in this research were 

successful, but the transcription model is simple and has not been generalised 

for an unknown number of notes present in a recording.  However, this 

generalisation is possible in practice with the implementation of a Reversible 

Jump Markov Chain Monte Carlo (RJMCMC) method, where the 

dimensionality of the model may vary (Green, 1995). 
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6.2 Future work 

The following can be proposed for future work following our investigations on the 

acoustic features of piano sounds: 

• This work was focused in describing the unique “imperfections” in piano 

sounds, which may form the basis of a signal model in a music transcription 

method.  In particular, the inharmonicity, which is associated with the bending 

stiffness of the piano strings, formed the main core of this research work 

underlying the importance of an accurate and more comprehensive signal 

model.  This concept could further be extended to other instruments provided 

other similar imperfections are identified and subsequently modelled.  

Therefore, despite our proposed signal model is potentially more 

computationally attractive than existing models in the literature, it is yet less 

generic since it only covers the piano instrument. 

• The results following the automatic music transcription of music intervals 

seem to be encouraging, although the transcription model presented in this 

research is simple and has not been generalised for an unknown number of 

notes present in a recording.  This generalisation is possible with the 

development of an appropriate RJMCMC method, where the dimensionality of 

the parameter space may vary.  In particular, the latter method is a variant of 

the MCMC method, where a model indicator is introduced and the resulting 

Markov chain simulations may jump between models of different dimensions 

by forming samples from the posterior density estimates. 

• There seems to be a discrepancy in the computation of the inharmonicity 

factor between monophonically and polyphonically transcribed notes.  This is 

believed to be associated with the fact that in the case of a polyphonic 

transcription, more parameters are fitted over the same length of data and as a 

result the variability in the parameter estimation will be larger than in the case 

of a monophonic transcription.  However, there may be other reasons behind 

this computational discrepancy, which have not been addressed in this 

research.  More work needs to be carried out in this field to understand, or 

support, the reason for such a discrepancy. 
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• Music transcription is the process of converting a live or recorded 

performance into a written score, where other types of information are 

required apart from the pitch of the notes, such as the duration, the tempo and 

the dynamics of the played notes. The transcription task in this research has 

been restricted to the identification of only two parameters; the fundamental 

frequency and the inharmonicity factor of single or multiple notes. Therefore, 

more effort should be placed in the future in order to transcribe other 

meaningful musical information. 

• The current research work has only considered the transcription of a few 

music intervals between the middle and the high frequency register of the 

piano.  A more extensive frequency range should be considered in future work 

to cover a broader range of notes.  Also, a more comprehensive ‘bank’ of 

audio information is proposed in order to test the model for a larger number of 

different music interval combinations. 

• The transcription of 2-note mixture, which is the simplest form of polyphonic 

music, should further be extended to a higher number of note mixtures, e.g. 4, 

6 or even 8-note mixtures to represent more appropriately performances of 

real polyphonic music pieces. 

• The current proposed model does not account for different music instruments 

that might be playing together at any given time, which is typical in an 

orchestral piece (this task is also related to instrument classification). 

• Other, perhaps more important, non-musical applications may be considered 

using similar probabilistic Bayesian frameworks of analysis, such as the 

source separation of signals in hearing aids.  Analogously, the principle is the 

same since in the automatic music transcription one is interested in separating 

the individual notes of a polyphonic music recording. 
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Appendix A 

 

Bayesian formalism 

It is useful to define data in terms of a linear combination of a basis function with a 

Gaussian noise component when this is possible.  This is known as the general linear 

model of a signal and can be written in the matrix form 

eGbd +=  

where d is an 1×M  matrix containing the data points of the signal, G is an LM ×  

matrix of the basis functions containing the parameters of the signal, b is an 1×L  

matrix containing any linear coefficient corresponding to each particular column of 

G matrix, and e is an 1×M  matrix containing random Gaussian noise components. 

The advantage of using the general linear model in signal analysis is that the 

parameters of a signal can be inferred when combined with common probabilistic 

methods such as Bayesian analysis, maximum likelihood estimation and MCMC 

methods. 

A method of estimating the parameters of the G matrix, consisting of a parameter set 

of ω , of the model is to develop a method that incorporates any information on the 

likelihood function and any information on the state of knowledge about the 

parameters before the data is observed.  The latter descriptor is called the prior 

probability density function and is supposed to represent the user's state of 

uncertainty about the parameter vector ω  of the signal.  So, one could obtain the 

posterior density function that describes the data after being deduced.  This is the 

basis of Bayesian analysis. 

In the case of the general linear model, Bayesian formalism can be summarised into 

a single expression 

( ) ( )
)(

)(
,,

d

b,ω,b,ω,d
dbω

p

σpσp
σp =    (A – 1) 
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where )( σp b,ω,d  is the chosen likelihood function, )( σp b,ω,  conveys the prior 

knowledge about the probable values of the parameters before the data is observed, 

)(dp  is called the evidence and only has a normalising effect, and )( db,ω, σp  is the 

joint posterior density of ω , b and σ given d. 

Note that σ denotes the standard deviation of the Gaussian noise component induced 

into the signal. 

The likelihood function can mathematically be defined as follows  

)( d;b,ω, σp  = )( σp b,ω,d     (A – 2) 

For additive noise, the above equation can be written as 

)( σp b,ω,d  = p(e)    (A – 3) 

Also, if e is considered to be composed of many independent identical distributed 

components M , then by summing them, equation (A – 3), for a Gaussian process, 

can be written as follows 

)( σb,ω,dp  = p(e) = 



















−
∑

=
−

2
1

2

22

2
exp)2(

σ
πσ

M

i

iM e

  (A – 4) 








 −−
−=

−

2
22

2

)()(
exp)2()(

σ
πσσ

GbdGbd
b,ω,d

TM

p  (A – 5) 

From equation (A – 2) there are certain parameters that are of no interest to us. In 

particular, σ and b are generally of little importance and one aims to remove them 

from the posterior probability density function to yield information solely on the 

parameters ω  of the G matrix.  These unwanted parameters are called nuisance 

parameters and can be integrated out via a marginalisation procedure. 

One can integrate the posterior density function with respect to b and σ,  so that only 

the set of parameters ω  remains 
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∫∫= σσ d)()( dbdb,ω,dω pp    (A – 6) 

Assuming also that the probability density function can be written as 

)()()()( σσ pppp bωb,ω, =    (A – 7) 

Equation (A – 1) due to equation (A – 6) and (A – 7) becomes 

∫∫= σ
σσ

d
)(

)()()()(
)( db

d

bωb,ω,d
dω

p

pppp
p   (A – 8) 

Equation (A – 8) due to (A – 5) becomes 

σσπσ σ dppe
p

p
p

T
M

dbb
d

ω
dω

GbdGbd

)()()2(
)(

)(
)(

22

)()(

22

∫∫
−−−−

=  

Solving the above indefinite integral by assigning Jeffrey’s prior to σ and uniform 

priors to b, which is an 1×L  matrix, one can obtain the following expression for an 

estimate of the posterior density of ω  (Ó Ruanaidh and Fitzgerald, 1996) 

[ ]
)det(

)(
2

GG

dGG)G(Gddd
d

T

T1TTT
ML

ωp

−
−−

∝    (A – 9) 

The above expression is a student’s t-distribution probability function and peaks at 

the most probable value of ω  of the G matrix.  Note also that the shape of the 

marginal density is more important than its size and there is no need to find the 

constant of proportionality in the above equation.  The probability density will peak 

at the most probable value of the parameters of the G matrix of the signal 

irrespective of any multiplicative factor. 

The above expression (A – 9) can be used to obtain probability densities for a pair of 

successive states in a “Markov” chain, where the next probable value Y of the 

desired parameter is dependant upon its previous value X.  The acceptance function 

of whether the next value is accepted or rejected can be defined by the ratio of the t- 

distribution probability densities functions, )(Xp  and )(Yp , as follows 
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)(

)(
),(

Xp

Yp
YXQ =  

where Q  is known as the acceptance function and depending on the returning value 

of the ratio, the next value is either accepted or rejected.  Note that in the case of 

implementing the Metropolis-Hastings (M-H) algorithm for estimating a parameter 

space, probable values for the next states of the Marlov chain could randomly be 

drawn using a sample space with random Gaussian distribution having zero mean 

and standard deviation one.  So, if for example, the ratio Q of the acceptance 

function is equal to or over unity, then this means that the randomly drawn estimate 

matches closely the statistical properties of the data (or the signal), therefore its 

drawn value is accepted and the next state of the Markov chain would move closer to 

target parameter value of the signal. 
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Appendix B 

 

Tuning on the equal temperament scale 

Nowadays in western music the use of the “equal temperament” scale is universal.  

This consists of twelve equal semitones, which make up an octave.  The frequency 

ratio of the lower note in the octave with the corresponding higher note in the octave 

would have a ratio of 1:2.  The smallest musical interval k on the equal temperament 

scale would be 

1.0595212 ==k     (B – 1) 

This forms the basis of tuning on the equal temperament scale.  With such a method, 

organs can exactly be tuned, whilst in the case of the piano or the harpsichord, where 

the inharmonicity of the strings plays an important role, the tuned musical intervals 

should be “stretched” further as it will be discussed later. 

So, the general process of tuning to the equal temperament scale is based around the 

“circle of fifths”.  A fifth musical interval, or a ratio of 3:2, consists of seven 

semitones and therefore that would correspond to a ratio of 

4983.1)059.1( 7 =     (B – 2) 

The tuning of an octave follows the process below: 

• C4, which is middle C5, is set to, say, 260.97 Hz by using a tuning fork.  The 

higher note of the fifth interval would be G4, which corresponds to 391.01 Hz 

(260.97 x 1.0597).  Based on Helmholtz’s theory, second order beats will be 

heard when the frequencies of two tones 1f  and 2f  are similar but not 

exactly the same.  In particular, if δ+= 12 f
m

n
f , then δm  beats would 

                                                 
5 The numeric subscript index refers to the note of an associated octave on a music keyboard.  Higher 

notes on the keyboard will be associated with higher octaves on the keyboard. 
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occur per second.  Therefore, in the case of a mistuned fifth, as in the case of 

C4 with G4 



























=

+=

4983.1

2
2

3

1

2

12

f

f

ff δ

10017.0 f=⇔ δ   (B – 3) 

Therefore, 10034.0 f  beats can be heard per second. 

So, with 97.2601 =f , the rate of beats would be about 0.89 Hz or 8.9 beats per 

10 seconds. 

• The next fifth interval would be G4 to D5 with a rate of beat of 1.33 beats per 

second. 

• After tuning to D5, then we tune an octave lower, i.e. for the musical interval 

of D4 to A4. 

• The circle of fifths would eventually stop at C5, having tuned the whole 

musical scale from C4 to C5. 

The complete circle of fifths would therefore follow the tuning succession as below: 

 

Fifth Interval Beat Frequency [Hz] 

C4 - G4 0.8873 
G4 - D5 1.3294 
D4 - A4 0.9960 
A4 - E5 1.4923 
E4 - B4 1.1179 
B3 - F4# 0.8375 

F4# - C5# 1.2548 
C4# - G4# 0.9401 
G4# - D5# 1.4085 
D4# - A4# 1.0552 
A4# - F5 1.5810 
F4 - C5 1.1844 

Table B.1 – Tuning intervals and associated beat frequencies 
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Over the tuning process a metronome can be used to count beats.  For example, 

when counting the beats for the musical interval C4 to G4 the metronome can be set 

to 0.8873 x 60 = 53 ticks per minute. 

The tuning of the piano, based on the method as just described, is not satisfactory to 

the trained ear of a musician, because of the inharmonicity of the strings as 

mentioned earlier.  The tuning process then becomes much more complicated and 

lies beyond the scope of this work.  However as a general rule, when tuning in fifths 

in a piano, the intervals are “stretched” in order to minimise beating between notes.  

The similar applies to the octave tuning method in a piano.  So, if the higher note on 

the octave is tuned at exactly twice the fundamental frequency of the lower one, then 

beating will occur since their harmonics will not be an exact match due to the 

inharmonicity factor associated with the strings.  In order to avoid this, the higher 

note is tuned to the first harmonic of the lower note (Ortiz-Berenguer et al., 2005).  

As a result, the octave is “stretched” above its “well-tempered” value but the beating 

effect is minimised to a level, which is satisfactory providing a well-defined and 

clear sound. 

Finally, a typical frequency range of a piano instrument is shown below, where all 

the 88 notes are associated with a “pitch” or a fundamental frequency.  In the case of 

the piano instrument, the pitch may typically vary from 27.5 Hz up to about 

4,186 Hz as shown in Figure B.1: 
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Figure B.1 – Piano keyboard range as a function of the fundamental frequency 

(reproduced from “about.com” in relation to the scientific pitch notation of the piano) 

 



Acoustic Features of Piano Sounds  Appendix C 

 163 

Appendix C 

 

Roots of quadratic equation 

One is interested in obtaining the roots of )(s∆  as follows 

0)()()()()( =−=∆ sssss δβγα  

⇔  

[ ] [ ] [ ] [ ] 022)2()2()2()2( 2
444

2
333

2
444

2
222

22
333

2
111

2 =+⋅+−++++⋅++++ ωωζωωζωωζωωζωωζωωζ ssssssss  

By expanding the above expression and re-arranging the terms in a descending order 

of a 4th order polynomial of the form 

054
2

3
3

2
4

1 =++++ AsAsAsAsA    (C – 1) 

One obtains 

...4 +s  
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2

2
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Hence, one can solve equation (C – 1) numerically to deduce the natural frequencies 

and damping factors of a coupled dynamical system. 
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Appendix D 

 

Alternative modelling of a pair of piano strings coupled with bridge 

An alternative modelling approach for free vibration is presented here by working 

out the boundary conditions for the respective equations of motion of the beam and 

the two strings.  The beam is pinned-pinned and the strings are fixed on one end: 

 

 

 

 

 

 

 

Figure D.1 – Two strings coupled with a beam 

The equations of motion for the three-part beam and the strings would be the 

following: 

For the three-part beam 

( ) ( ) ( )1

1 4321)( xxktjkxtjkxtjkxtj

b eeAeeAeAeAxW
−−−+ +++= ωωωω  

( ) ( ) ( )12

2 4321)( xxxktjxktjxktjxktj

b eeBeeBeBeBxW
+−′′−′−′+ +++=′ ωωωω  

where 1xxx −=′  

( ) ( ) ( )2

3 4321)( xxktjxktjxktjxktj

b eeCeeCeCeCxW
+−′′′′−′′−′′+ +++=′′ lωωωω  

b1 

11 sly =

 

0=x  0=′x  

b3 

12 xxx −=′

 
0=′′x  

b2 

2
2 s

ly =

 

1xx =

 
2xlx −=′′  
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where 2xxx −=′′  

For the two strings 

( ) ( )1111

1 211)(
yktjyktj

s

ss eDeDyW
+−

+=
ωω

 

( ) ( )2222

2 212 )(
yktjyktj

s

ss eEeEyW
+−

+=
ωω

 

16 boundary conditions for these equations were identified 
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02
1

1 =′=
=→

x
b

xx
b MM  (D – 7) 

03
12

2 =′′−=′
=→

x
b

xxx
b MM    (D – 8) 

0
01

=→
=x

bW  (D – 9) 

0
2

3
=→

−=′′ xlx
bW  (D – 10) 

0
11

1
=→

= sly
sW  (D – 11) 



Acoustic Features of Piano Sounds  Appendix D 

 167 

0
22

2
=→

= sly
sW  (D – 12) 

0
01

=→
=x

bM   (D – 13) 

0
2

3
=→

−=′′ xlx
bM   (D – 14) 

01
0

1

1

1
1

12

=
==′ ∂

∂
=−→

y

s

s
xx

b
x

b
y

W
TQQ    (D – 15) 

02
0

2

2

2
12

23

=
−=′=′′ ∂

∂
=−→

y

s

s
xxx

b
x

b
y

W
TQQ   (D – 16) 

Equation (D – 1) gives 

( ) 012111
43214321 =−−−−+++ +−−− xxkkxjkxjkx
eBBBBAeAeAeA  

Equation (D – 2) gives 

( ) ( ) ( ) ( ) 02121212
43214321 =−−−−+++ +−−−−−− xkxxkxxjkxxjk
eCCCCBeBeBeB

l  

Equation (D – 3) gives 

( ) 0214321
12 =−−+++ +−

DDeBBBB
xxk  

Equation (D – 4) gives 

( ) 0214321
2 =−−+++ +−

EEeCCCC
xk l  

Equation (D – 5) gives 

( ) 012111
43214321 =−++−+−− +−−− xxkkxjkxjkx
eBBjBjBAeAejAejA  

Equation (D – 6) gives 

( ) ( ) ( ) ( ) 02121212
43214321 =−++−+−− +−−−−−− xkxxkxxjkxxjk
eCCjCjCBeBejBejB

l  

Equation (D – 7) gives 
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( )12111
43214321
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Equation (D – 8) gives 
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Equation (D – 9) gives 
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Therefore, one can now solve for 

0)det( =A  

where A matrix is formed from equations (D – 1) to (D – 16), in order to obtain the 

natural frequencies of the coupled dynamical system in question. 
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