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ABSTRACT

ACOUSTIC FEATURES OF PIANO SOUNDS
by Christos Karatsovis

To date efforts of music transcription indicate the need for modelling the data signal in a
more comprehensive manner in order to improve the transcription process of music
performances. This research work is concerned with the investigation of two features
associated with the reproduced sound of a piano; the inharmonicity factor of the piano
strings and the double decay rate of the resulting sound. Firstly, a simple model of the
inharmonicity is proposed and the factors that affect the modelled signal are identified,
such as the magnitude of the inharmonicity, the number of harmonics, the time
parameter, the phase characteristics and the harmonic amplitudes. A formation of a so-
called “one-sided” effect appears in simulated signals, although this effect is obscured in
real recordings potentially due to the non-uniformly varying amplitudes of the harmonic
terms. This effect is also discussed through the use of the cepstrum by analysing real
piano note recordings and synthesized signals. The cepstrum is further used to describe
the effect of the coupled behaviour of two strings through digital waveguides. Secondly,
the double decay rate effect is modelled through coupled oscillators and digital
waveguides. A physical model of multiple strings is also presented as an extension to the
simple model of coupled oscillators and various measurements on a real grand piano are
carried out in order to investigate the coupling mechanism between the strings, the
soundboard and the bridge. Finally, a model, with reduced dimensionality, is proposed to
represent the signal model for single and multiple notes formulated around a Bayesian
framework. The potential of such a model is illustrated with the transcription of simple
examples of real monophonic and polyphonic piano recordings by implementing the

Metropolis-Hastings algorithm and Gibbs sampler for multivariate parameter estimation.
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Chapter 1

Project introduction

1.1 Introduction

In all civilisations, music represents an important form of expression. In western
cultures, the written form of music, by means of a written score or a manuscript, plays
a central role in the way of allowing composers to share their intentions and

communicate them with performing musicians.

Music transcription is the process of converting a live or recorded performance into a
written score. Different information is represented in a score: the notes associated
with their pitch, the duration, the tempo and dynamics. This information, in
conjunction with the individual skills of the performing musician, can give rise to
different interpretations. As a matter of fact, the personal interpretation of a musical

piece can differentiate a masterful from a poor performance.

Historically, the problem of automatic music transcription relating to pitch
identification has been in existence for many decades now. It is considered to be a
multidisciplinary task blending different areas of science, art and engineering, such as

signal processing, psychoacoustics, and musical acoustics.

Music instruments that can only play a single note at a time are called monophonic,
whereas instruments that can play a multitude of notes are called polyphonic. These
two different types of instrument require different techniques when transcribing music
performances. Monophonic performances are relatively straightforward to analyse,
whilst polyphonic performances are more involved since a multitude of notes can
share a number of same harmonics and therefore make the transcription process
difficult to implement in practice. Standard frequency analysis techniques in the latter

case are not always adequate.

The original motivation for this research work was to develop a novel technique for

automatically transcribing polyphonic performances specifically written for the piano.
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In the literature, many methods have been proposed for transcribing different music
performances, some more successful than others as will be discussed later in detail.
Some methods utilise sophisticated signal processing methods, where statistical prior
knowledge of the music is incorporated in a model, whilst others propose methods of
“training” the data through a set of parameters. Other methods implement
psychoacoustic models for emulating the ability of the human ear to distinguish
between different sounds. Finally, there are methods that may combine a number of

the above methods.

The majority of these methods and techniques use relatively simple forms of
describing the signal, whereas only a few incorporate some of the unique physical
characteristics relating to the sound reproduction mechanism of a music instrument,
such as the inharmonicity factor relating to the bending stiffness found in piano
strings. These simple signal models may be regarded as an oversimplification of the
true representation of the actual reproduced sound rendering the transcription process

difficult, if not impossible.

Therefore, it has become more evident over the years that more effort should be
placed on understanding the complex mechanism of sound generation in polyphonic
instruments through the investigation of some of their unique physical characteristics.
The focus of this research work is to assess in particular the sound generation
mechanism of the piano, as an important example of polyphonic music instrument,

rather than proposing yet another music transcription method for polyphonic music.
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1.2 Approaches and difficulties of automatic music transcription

In this section, an attempt is made to briefly reveal the difficulties experienced by the
different approaches in the automatic transcription of music and will make it evident
as to why the need of modelling the physics of the signal in a more comprehensive
matter is important to the transcription process. A more detailed description of the
different methods and limitations of transcribing monophonic and polyphonic music

performances is presented in chapter 2.

The methods and techniques in automatic music transcription can be categorised in
many different ways. We have chosen to present them in three broad groups, i.e.
neural network, probabilistic and blind separation methods. Hybrid methods may

combine any of the three groups.

1.2.1 Auditory perception

The trained ear of a musician is capable of distinguishing between different notes and
different instruments in a recording. However, the combined processing mechanism

of the human ear coupled with that of the brain is not yet fully understood.

In simple terms, the functionality of the human ear is divided into two main parts
(Klapuri and Virtanen, 2008). First, the signal is passed through a number of band
pass filters or “channels” (approximately 100 in number) that are used to represent the
frequency response (or selectivity) of the human ear. Second, the signal in each
channel produces the neural impulses to the auditory nerve associated with the

different hair cells and sound is ultimately perceived by the brain.

It is believed that the auditory information associated with pitch identification takes
place both in each auditory channel and then combined across all channels
(Cheveigné, 1999). In the past, a model was developed as a means of emulating the
functionality of the human ear (Meddis, 1986). In particular, the harmonic deduction,
i.e. the identification of the harmonics, can be based on a filter bank by splitting the
signal into several frequency channels, and then the output of each channel can be

coupled to Meddis’s model of hair cell induction. Meddis and Hewitt (1990) have in



Acoustic Features of Piano Sounds Chapter 1

fact proposed a process by which autocorrelation functions are computed in each
channel of the inner ear and then they are summed across all the channels in order to
predict the maximum of the autocorrelation function representing the perceived pitch.
However, despite significant efforts in developing even more accurate pitch
perception models over the years, there are still functions in the auditory perception

mechanism that are not yet fully understood.

1.2.2 Neural network methods

The automatic music transcription method utilising a neural network formalism is
based on an iterative training process for the parameter estimation. These methods
normally use a segmentation routine in the form of an average Short Time Fourier
Transform (STFT) feeding a blackboard system (Bello et al., 2000). The blackboard
system would consist of the database with all the hypotheses of the model, the
scheduler and the knowledge sources executing the required actions. Polyphonic
music transcription is not successful with this method when there is strong harmonic
overlap. Most of these methods are focused on revealing the frequency information
of the signal, despite the main physical phenomena taking place in the time domain.
However, some more advanced neural network models take into account some of the
physical characteristics of the music instrument, such as the piano. For instance, in
one of the methods (Ortiz-Berenguer et al., 2005), 88 patterns are used, one for each
piano note, in a neural network training process coupled with a simple acoustical
model of the piano. In this model, the bending stiffness of the strings, or
inharmonicity, of the piano is also modelled as part of the process. Training is carried
out on a few notes to compute their associated inharmonicity factors and then a model
is used to obtain the interpolated values of the inharmonicity factor for the remaining

notes of the piano.

An automatic music transcription technique could also be used as a combination of a
comprehensive auditory model with a neural network framework (Marlot, 1999 and
2001). However, such hybrid models, although very comprehensive and useful, are
limited to the interpretation of the output of the signal and do not assess the sound at

its origin point before being perceived as an auditory signal.
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1.2.3 Probabilistic methods

Another method of music transcription is the one in which the emphasis is placed on
probabilistic methods, such as Bayesian and Markov Chain Monte Carlo (MCMC)
techniques. In particular, the parameters of an unknown number of notes with an
unknown number of harmonics, based on Bayesian formalism, is calculated by
allowing prior knowledge about the nature of the data to be incorporated into the
model. The data is modelled in frames and joint parameter estimation can be
performed across multiple adjacent frames for obtaining estimates of notes, music
intervals and chords (Walmsley ef al., 1999). The majority of these methods utilise a
fairly basic model for the description of the signal. They are primarily based on the
principles of the generalised linear model. For instance, the signal is modelled as a

sum of sine and cosine waves with random Gaussian noise.

More advanced attempts have been implemented in a time-varying amplitude process
for each harmonic present in the signal and their inharmonic relationship (Godsill and
Davy, 2002; Davy and Godsill, 2002). Such representations may considerably
increase the dimensionality of the model rendering it expensive to compute
numerically.  These methods are most accurate in transcribing monophonic
performances, as well as having some success in transcribing polyphonic
performances. Limited success in the case of certain music intervals, such as octaves
and fifths, is achieved due to the considerable overlap of the shared harmonics of the

notes (Godsill and Davy, 2002; Davy and Godsill, 2002).

1.2.4 Blind separation methods

Over the years, “blind” separation techniques, such as Independent Component
Analysis (ICA) and “sparse coding”, have been gaining ground as a means of
obtaining the parameters from mainly mixed observations, e.g. polyphonic
performances, where there is no statistical (or prior) knowledge of any of the signals

(Klapuri and Virtanen, 2008).

In the basic form of ICA, the mixed signal is analysed in the time-frequency domain

using typical time-frequency analysis techniques, such as the STFT. The weighted
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sum of the basis spectra that represent the mixed signal (including a “noise” term) can
be analysed to obtain musically important information, such as the fundamental
frequency of the signal (Klapuri and Virtanen, 2008). A special case of ICA, is sparse
coding, where a cost function can be minimised to obtain the frequencies in the signal
provided the data can be modelled in terms of a small number of active elements

chosen out of a large set.
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1.3 Main themes of the project

Significant effort has been placed in the development and understanding of music
transcription models based on signal processing approaches, such as Bayesian, neural
network and blind separation methods, as mentioned briefly in the previous sections.
Most methods employ simplistic models to describe the sound reproduction
mechanism of a piano and very little emphasis has been placed on the development of
a comprehensive physical model of a piano based on its rather unique sound

reproduction features that could in turn be used in a transcription method.

In the past, the characteristic features associated with the mechanism of sound
reproduction of the piano have been addressed and investigated by many authors.
These features concern the interaction between the hammers and strings of a piano
and the different sound produced due to different playing dynamics (Helmholtz, 1877;
Askenfelt and Jansson, 1988; Hall, 1987), the inharmonicity in piano strings
(Fletcher, 1964; Taylor, 1965; Rossing, 1990), and the double decay rate
characteristics of piano notes (Weinreich, 1977; Naganuma et al., 2004; Tanaka et al.,

1999; Nishiguchi et al., 2003 and 2004).

This research serves as a basis for a further investigation of some of these acoustic
features through a new perspective. In particular, novel observations are made
regarding the inharmonicity factor of piano strings and the importance of the double
decay rate in piano notes, as well as appropriate analytical models are developed for
these features combining dynamics theory, signal processing techniques and real
experimental data. These modelled features may be used as part of a newly proposed
signal model, based on a Bayesian formalism framework, which could ultimately be
incorporated in a more comprehensive transcription method in the future. The

proposed signal model is brought together in chapter 5 of this research.
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1.4 Original contributions

The following original contributions for the candidature for a research degree at the

University of Southampton are summarised below:

e This work is mainly focused in describing “imperfections” in piano sounds.
These imperfections may constitute part of a more comprehensive signal
model as a means of potentially improving the transcription accuracy in
monophonic and polyphonic music performances. This conceptual approach
may be extended to other instruments provided other characteristic

imperfections are identified.

e The effect of inharmonicity, found in piano strings, is therefore modelled as a
means of providing a more comprehensive signal model for representing the
reproduced sound of a piano. Novel observations and analytical formulations
associated with the inharmonicity are also presented in the time and frequency

domain in order to further unravel its effect on the reproduced sound.

e The effect of the double decay rate is modelled and presented as a means of
understanding the resulting piano sound. This effect is discussed in the
frequency and time domain through the modelling of coupled oscillators.
Also, a physical modelling extension is presented for the total number of

strings present in a piano instrument.

® The coupling mechanism between the string, the bridge and the soundboard of
the piano is investigated through measurements carried out on a real grand
piano. Observations associated with this complicated coupling mechanism are

presented and compared with theoretical formulations.

e A signal model is proposed for single and multiple piano notes in a
probabilistic Bayesian framework, the dimensionality of which is considerably
smaller than existing attempts in the literature (Godsill and Davy, 2002; Davy
and Godsill, 2002). Indeed, in the existing literature, a “de-tuning” parameter
is used for each individual harmonic present in the signal due to their non-
integer frequency spacing relative to the fundamental frequency. Hence, for N

number of harmonics, there will be N de-tuning parameters that need to be
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computed. However, in this research, we propose a single inharmonicity

factor for all N harmonics.

e The potential of such a model is illustrated with the transcription of simple
real monophonic and polyphonic piano recordings. Multivariate estimation of
the parameter space is achieved through the implementation of novel criteria
embedded in known algorithms, such as the Metropolis-Hastings (M-H)

algorithm and Gibbs sampler.
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1.5 Conclusions

This chapter has provided the introduction and rationale for the project. The original
objective was to develop a method for automatically transcribing polyphonic music
performances for the piano. However, it has become clear from the literature that
there is little to suggest that certain important features of the piano have been
considered in detail in the signal models of the transcription methods. This may
explain, to a certain extent, the poor success rate of the different methods of

polyphonic music transcription as will be discussed in chapter 2.

The focus of this research work in the next chapters would be to further investigate
some of the important features of the piano instrument, such as the inharmonicity and
the double decay rate effect associated with the sound generation mechanism of a
piano through the use of modelling and experimental validation. A newly proposed
signal model, based on Bayesian formalism, will be discussed in chapter 5 following

these investigations.

10
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Chapter 2

Existing knowledge review

2.1 Introduction

This chapter provides an overview of the methods of automatic music transcription
found in the literature and presents the various important acoustic features associated
with the piano’s sound generation mechanism as discussed by other authors in the

past.

This chapter is divided into two main sections. The first section describes the
methods of automatic music transcription with special emphasis on the problem of
octave detection and the lack of physical modelling in those methods, whilst the other
section describes the acoustic features of the sound generation mechanism of the
piano through the hammer-string interaction, the radiation from the soundboard, the
inharmonicity found in pianos strings, the double decay rate effect and the modelling

methods of dynamically coupled strings.

11
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2.2 The problem of octave detection in musical signals

Pitch recognition of monophonic music is fairly straightforward, since there is no
need to identify notes with shared harmonics (or also referred to as “partials” in the
literature). On the other hand, polyphonic music is a very complex subject since a
multitude of notes can share a number of coincident harmonics. The most
problematic musical interval for transcription is the octave. This is a musical interval
between two notes played simultaneously in which the fundamental frequency and the
harmonics of the higher note coincide with all the harmonics of the lower note. In the
latter case, a simple analysis of the Fourier spectrum of the signal is not sufficient to
separate the notes and transcribe them into a written form. Also, the task of
polyphonic music transcription can become even more difficult when trying to

differentiate instruments that are being played simultaneously in a music piece.

Many methods have been proposed and developed in order to solve the problem of
polyphonic music transcription. However, the separation of notes in an octave has not
been resolved yet despite considerable effort. As a result, the octave detection

problem has become one of the ultimate challenges in polyphonic music transcription.

12
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2.3 Methods of automatic music transcription

2.3.1 Early approach

Moore (1977) researched the transcription of music played by two instruments. The
method he developed was able to detect the notes played by the two instruments,
although there were restrictions since the instruments were not allowed to “cross”.
This meant that the fundamental frequency of a note played on one instrument was
not allowed to be greater, at any given time, than the fundamental frequency of the
played note on the other instrument. The detection of an octave interval using

Moore’s method was not possible.

2.3.2 Neural network approach

Bello er al. (2000) suggested a method based on neural network formalism in order to
analyse simple polyphonic tracks. The method uses a segmentation routine in the
form of an average STFT feeding a blackboard system. The blackboard system
consists of the database with the hypotheses of the model, the scheduler, and the
knowledge sources executing the intending actions. One of the knowledge sources is
a network chord recogniser. The authors stated that octave detection was not possible
with this method due to the high number of coincident harmonics associated with this

musical interval.

Chien et al. (2002) suggested another method, based on a neural network formalism,
for octave detection in the case of the piano instrument. In this method a constant Q
time-frequency analysis method is implemented via a nonorthonormal discrete
wavelet transform. A Support Vector Machine (SVM) technique is used as an octave
detector in the system. By implementing this method for the transcription of
polyphonic music, 3 out of 4 octaves are recognised showing the potential success of

this method in octave detection.

Marlot (1999) also developed a chord recognition method for the piano instrument
based on neural network formalism. The training set is a large database, which was

developed by gathering recordings of single piano notes covering the whole playing

13
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range of the piano at different dynamic levels. These recordings were generated
through commercially available CD audio recordings and several synthesizer sounds.
The chords were then generated from the individual note recordings. As far as the
neural network architecture is concerned, four different feed forward neural networks
were tested in this method; multi-layer perceptrons, radial basis function networks,
SVMs and time-delay networks. Again, the octave detection problem was not
successfully resolved due to the high number of coincident harmonics in the octave
music intervals. Marlot (2001) also suggested another transcription method called
SONIC by using an auditory model based on Meddis’s theory (1986). The latter
theory describes the simulation of the basilar membrane in the inner ear using a bank
of filters. A filter bank effectively splits the auditory signal into frequency channels.
The output of the auditory model is an autocorrelogram representing the signal with
respect to time, channel centre frequency and autocorrelation lag. Autocorrelograms
can be summed up to estimate the periodicity in a signal and hence explain the pitch
perception of the human ear. In Marlot’s method the auditory model is combined
with adaptive oscillators instead, formed into networks, in order to determine
harmonics in a music piece. The conclusion from this method is that the vast majority

of errors are associated with misjudged repeated notes and octave intervals.

Pertusa et al. (2005) suggested an interesting transcription method based on the
identification of a pattern of a given instrument in the frequency domain. In
particular, band-grouped spectrograms of polyphonic music performances are
combined with time-delay neural networks for obtaining estimates. In this way, a
complex auditory model and a signal processing method is avoided. A learning
algorithm with these grouped spectral bands is used to detect polyphonic
performances, where a dynamic neural network is employed for the note detection
and characterisation process. Four categories of timbre have been investigated in this
method; sinusoidal, sawtooth, clarinet and Hammond organ waveshapes. A near
perfect accuracy with this transcription method is achieved for recognising these
specific instrument categories. Note that all four categories are characterised by
sounds that are nearly stable in time along the duration of a note. On the other hand,
the sound of a piano has time-varying amplitude characteristics due to its transient

nature, so the transcription with this method may be limited.

14
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Poliner et al. (2006) have proposed a transcription method of combining probabilistic
methods with neural network formalism. In this method, SVM classifiers with
Hidden Markov Models (HMM) are combined in order to transcribe both synthesized
and real piano recordings. In particular, the classifier outputs of the SVM are
temporally smoothed by an HMM as part of a post-processing stage. Over two thirds
of the transcription results are accurate with this method. The advantage of this
method is that it does not require prior knowledge of how the harmonic features of the
signal are represented in the model. This feature of this method minimises the
analysis time of the music transcription process, but perhaps at the expense of
accuracy. Physical modelling could potentially improve the accuracy of this
particular music transcription method through the use of a more comprehensive signal

model.

2.3.3 Probabilistic approach

In this section, the probabilistic approach is investigated in more detail as opposed to
the neural network methods in which mere ‘training’ of the data is normally
performed. One of the main aims of this research project is to aid in the development
of a more comprehensive signal model, hence the understanding of the probabilistic

methods offers perhaps a more effective approach to achieve this.

Many authors have suggested the parameter estimation of monophonic and
polyphonic music performances through the use of probabilistic models. This section
is primarily focused on the use of a Bayesian formalism allowing prior knowledge
about the nature of the data to be incorporated into the transcription model. The
majority of these models simplify the representation of the signal as a sum of

sinusoids.
An explanation of Bayesian formalism is presented in Appendix A.

In particular, Walmsley et al. (1999) suggested a method of estimating the parameters
of an unknown number of notes with an unknown number of harmonics based on
Bayesian formalism allowing prior knowledge about the nature of the data. This

approach is based on the use of a harmonic model in order to estimate parameters,
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such as the fundamental frequency and detect the model order, such as the number of

concurrently sounding notes and the number of harmonics in each one.

The data is segmented into frames d; of length M, during which the data is
considered stationary. Each frame consists of a maximum number of R notes and

each note r consists of the fundamental frequency @’ , number of harmonics H; and
the harmonic amplitudes b;. Each note can also be switched in and out of the model

using a binary indicator variable A .

The parameter estimation is based on MCMC methods using the Metropolis-Hastings
(M-H) algorithm to produce the maximum posterior parameter estimation. A number
of transition kernels are proposed to explore the parameter space. The recognition of

octaves and fifths is not successful with this method.

The model is constructed in terms of the generalised linear model with the addition of

matrix e; with random entries chosen from a normal distribution with zero mean,
standard deviation one, and having variance ¢’ . The formulation representing the

generalised linear model is given by

d, = iz;(;”b; +e,
r=1

where G/ is the harmonic basis matrix of the model.

The likelihood function p(di|@i’,ai ) of the above model can be maximised in order to

estimate the note parameters @ = {/1,’ o ,H',b;] } However, this method does not
account for any prior knowledge of the parameters. A prior knowledge is

incorporated into the model using a set of “hyperparameters” {Ag}. In this model,
these so-called block hyperparameters, v" and 0'5) ., represent the spread of the pitch

over a data block and A" denotes whether the note is active over each data block.
Various types of prior distribution are chosen for the model

pby), p(H)), p(/lfA’), (o]

v’,cir), p(ai), p(A) and p(v").
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The joint posterior distribution of the model would be
p(@ir’Ag’Uf, ‘di) e p(@ir’dor’ai ) HZI/ p(di‘@ir’o-j, )

The joint posterior density is difficult to optimise analytically and therefore a more
appropriate numerical approach is considered. The M-H algorithm is used to model
the successive states of the Markov chain, where the final state of the chain is used to

estimate the parameters in question.

The M-H acceptance function for a parameter space ® can be written as follows

. p(ela)re e
@",@' =
o6 : p(©'d)1(6",0")

where T(©",®") produces a proposal state ® from the current state ®° that is

accepted with probability min(l, Q(@k ,0 )) The rationale for the acceptance function

is discussed further in Appendix A.

The state space move is proposed with the use of local and global transition kernels.
Global kernels will move the Markov chain into high probabilistic regions, whilst

local ones will obtain more accurate parameter estimation.

Local kernels are simply random perturbations about the current value of the M-H

acceptance function.

In terms of global kernels, the independence sampler is used to define a proposal

distribution r(a)’* H ) The proposal distribution of the latter sampler mimics the

target posterior distribution having a high acceptance function, rather depending on
the current state. So, the distribution would have its modes in similar locations to the
posterior density. The modes of this distribution are the fundamental frequencies of
the signal and in turn the harmonic amplitudes are calculated from a least-squares
projection of the model. A multiple step is also used to overcome problems with
octaves that rise due to harmonic overlap by carrying out a joint move for the

following parameters of note r: {v’,{wi’ b H i’]i}. In that way, the kernel traverses

harmonically related modes of the posterior distribution.
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The above model is used on a recording, where major chords and octaves may be
detected, although the recognition process becomes very difficult when octaves and

chords are played together due to the large number of common harmonics.

Davy et al. (2002) re-developed the latter model by implementing a time-varying
amplitude process for each of the harmonics present in the signal. Further flexibility
was also incorporated into the process by modelling non-stationary error and
inharmonicity in the signal, through the use of a parameter named “de-tuning”. The
estimation of the parameters was obtained by using a reversible jump MCMC

algorithm.

Results with this method have been reported for monophonic and polyphonic music
transcriptions. In the latter case, the successful transcription of polyphonic music
consisting of a 2-note mixture of a saxophone and a trumpet, with different

fundamental frequencies, has been reported.

Leistikow et al. (2004) developed a Bayesian framework model for identifying music
intervals and chords operating on single-frame STFT peaks. In principal, the pitch
component information is evaluated by an MCMC approach accounting for
overlapping harmonics and spurious peaks. To obtain the posterior probability
estimates, the input signals are derived by mixing several single-note piano recordings
with additive Gaussian noise. None of the unique acoustic features of the piano
instrument are modelled in this method. The estimated posterior densities of the
parameter space are accurate, although the effect of overlapping harmonics, especially
in octave intervals, has an effect in the estimation process. Also, the results are
sensitive to user specific settings (noise variance scaling, spectral decay parameter
and sampling distribution) for the chosen examples. The authors suggest the
enlargement of the MCMC parameter space and the learning of the user defined
parameter settings may be carried out using the Expectation-Maximisation (EM)

technique.

More recent efforts by Peeling et al. (2007) proposed another probabilistic approach,
where peaks detected in the frequency domain spectrum of a chord are modelled as
realisations of a non-homogeneous Poisson point process. In particular, the number

of peaks that are detected by a STFT is modelled as a Poisson random variable and
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hence the likelihood function may easily be formulated without associating peaks to
particular note fundamentals or harmonics. As an effect, the computational
complexity of a full probabilistic model is avoided and the transcription accuracy can
be high according to the authors. In general, successful results have been reported
with this method for up to a 4-note mixture recording, although there were notes

associated with octave music intervals that were not accurately transcribed.

2.3.4 Blind separation approach

In the case of blind source separation techniques, such as ICA, there is the assumption
of statistical independence of sources. In our case, these sources may represent the

notes of an instrument as part of monophonic or polyphonic music performances.

In simple terms, the signal is modelled as a collection of STFT spectra. The signal is
represented as the weighted sum of the basis spectra including a “residual”, i.e. a
noise-related, parameter (Klapuri and Virtanen, 2008). Each pitch value would
correspond to a different spectrum. “Components” are therefore formed which
represent instances of the basis spectrum and the time-varying pitch. A collection of
such components ultimately represent the mixed signal. The components are further
analysed in order to obtain musically important information, such as their onset and
offset times, and the fundamental frequency of the signal (Klapuri and Virtanen,

2008).

Another technique linked to ICA is called “sparse coding”, where the signal is
modelled in terms of a small number of active elements chosen out of a large set and a
cost function can be minimised to estimate the desired parameters. Learning can also
be employed, where a linear generative model is used and the observed data is
represented as a weighted sum of elements chosen from a “dictionary” of available
“features” or “atoms” (Abdallah and Plumbley, 2006). In such techniques, a cost
function can be minimised as a means of estimating the frequencies in the data.
However note that the data might not be sparse enough, where several components
might not be active in order to yield meaningful frequency estimates (Abdallah and

Plumbley, 2006).
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Like other methods reviewed in this chapter, where the STFT spectra is used, blind
source separation methods cannot necessarily model features of the reproduced sound.
As a result, this might limit the success rates of the transcription of music

performances with these methods.
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2.4 Features of the sound generation mechanism of the piano

The sound generation mechanism of a piano is complicated and there have been many
attempts in describing its intricate elements through various methods and techniques.
First, the pianist by depressing a piano key will trigger a hammer and that in turn will
interact with the string, then the vibration of the string will propagate along its length
and will interact with the piano bridge. Finally, the sound will radiate from the

soundboard (Aramaki et al., 2001).

The piano was invented in 1709 by the Italian Bartolomeo Cristofori and its modern
form was finalised around the middle of the nineteenth century (Taylor, 1965). The
piano is also perhaps the most versatile musical instrument of all. It is capable of
delivering both monophonic and polyphonic music performances with a vast range of
dynamics. As mentioned earlier, the piano is also an instrument that covers a large
frequency range of about eight octaves. This corresponds to a range of fundamental
frequencies from 27.5 Hz to 4,186 Hz. The sound quality of a piano depends on the
type of piano, that is being either an upright or a concert grand, the level of
craftsmanship, sophistication and design that goes into each one and the proper tuning

of it.

The piano normally consists of 88 keys, although some concert grands may have
more. The piano falls into the category of percussive instruments since the note is
produced by percussive means. The sound of piano note is of a transient nature and
initiates with a violent percussive attack, when a hammer strikes a string, followed by
a decay of vibration (Taylor, 1965). Figure 2.1 shows a simplified version of the
action mechanism associated with the sound generation mechanism of a vibrating

piano string:

Agrafe/

. . Capo d” Astro Piano string Bridge
Tuning pin Hitch pin

Soundboard

Hammer attack

Figure 2.1 — The mechanism of piano sound reproduction
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From Figure 2.1, it can be seen that the string is anchored to the large cast iron frame
of the piano. On one side, it is anchored to the frame by means of using an “agrafe”
or a “capo d’ astro”. A “tuning pin” is used to adjust the tension for tuning purposes.
On the other side, it is fixed to the frame by means of a “hitch pin”. Note that the
bridge strongly couples the vibrating string with the soundboard. The soundboard is
the main source of sound radiation from the musical instrument, as is the top wooden
plate of string instruments, such as the guitar, the violin, the viola and so forth. For
that reason also, the choice of wood and the shape of the soundboard is of great
importance when determining its final tonal characteristics (Taylor, 1965). Normally,
the soundboard is made of 1 cm thick spruce with ribs in the cross-grain direction, in

order to stiffen it (Rossing, 1990).

When a piano key is depressed, the damper resting on the string will be raised and the
hammer will strike the corresponding string, setting it into a free vibrating motion. As
a result, vibrations of the string will be transmitted from the bridge to the soundboard

of the piano and sound will be produced.

The 88 piano keys correspond to an excess of 200 strings. This is because most of the
notes have more than a single string attached to them. The reason for having multiple
strings for a single note is mainly because the sound associated with that note would
be “weak” otherwise. This happens in the case of the treble notes corresponding to
high frequency notes. These notes do not have very long strings and therefore the
restorative energy associated with these shorter vibrating strings is not sufficient to
produce a well-defined sound. On the other hand, bass notes can be as long as 2
metres and can have enough energy to produce sound before ultimately being

amplified by the soundboard.

24.1 Hammer-string interaction

One of the most controversial topics of discussion has always been how far can the
influence of a performer be stretched when a tone is produced by means of depressing
a key. It is believed that it is not very likely that the performer can have any further

control over the hammer other than the velocity with which it strikes the key of a
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piano (Taylor, 1965). It is also accepted that the greater the dynamics, i.e. the greater

force when striking a key, the greater the number of harmonics produced in that way.

This effect can be seen by examining the Fourier transform of piano note C;, played at
two different dynamic levels, specifically “piano” and “fortissimo”. The results of
such an analysis are shown in Figure 2.2. Note that the Fourier analysis is carried out
on two different 10 sec recordings sampled at 44.1 kHz. The recordings were derived
from a currently discontinued sample-based library named “Gigastudio, version 3”
(originally trademarked by Tascam), which contains real piano note recordings of a

“Kawai” grand piano.

Fast Fourier Transform of a C1 piano note
10 T T T

—— fortissimo |
— piano —
4 p!

10* £ : 1

=

Magnitude

| ‘\lk'p m,m. I]Mw i

0 1 O‘OO 2000 3000 4000 50‘00 6000
Frequency [Hz]
Figure 2.2 — Magnitude of a single FFT of the sound of a depressed piano note at two

different dynamic levels (fortissimo and piano)

From the Figure 2.2, it can be seen that in the case of the fortissimo, the piano key is
depressed with a large force so that higher harmonics manifest themselves from about
3,200 Hz and above in contrast to the piano case, where the key is depressed in a

more gentle manner.

This is because when a key is struck with a greater force, or in other words with

greater dynamics, then the velocity of the triggered hammer is greater and the contact
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time of the hammer with the strings will decrease. Shorter contact time will result in
a greater number of harmonics being produced. Hence, there is a direct relationship
between the contact time of the hammer and string with the hammer velocity at

different dynamic levels (Askenfelt and Jansson, 1988).

Consequently, the independent control of the loudness and the harmonic content

cannot be achieved at the same time (Taylor, 1965).

The interaction between the hammer and string of a piano has been a topic of
discussion for over a century now (Helmholtz, 1877). In general, hard and narrow
hammers produce a -6 dB/octave spectrum envelope at high frequencies, whereas in
the case where the mass of the hammer is less than the mass of the string, the high

frequencies will attenuate with a -12 dB/octave roll-off (Hall, 1987).

Chaigne and Askenfelt (1994) have modelled the vibration of a string in a piano,
when there is a frequency dependent loss and nonlinear hammer excitation. Boutillon
(1987) explained this interaction between a piano hammer and a string by modelling
the hammer as a point mass and the felt as a hysteretic spring. Through a number of
experiments and investigations, the following relationship was obtained for the

hammer force F on the felt as a function of the compression of the felt
F =a(Ay)’

where a is an empirically derived coefficient and Ay is the change in the compression

of the felt.

In simple terms, this model is an effective way of modelling the interaction between
the hammer and the strings through the nonlinear and hysteretic compliance of the felt

when in contact with the strings.

Finally, the dynamic behaviour of the soundboard can be described through the
equations of motion for a thin orthotropic plate, where the two principle axes of the

elastic constant tensor lie in the plane of the board (Giordano et al., 2004).
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2.4.2 Inharmonicity

In the case of an “idealised” vibrating string, where the only force controlling its
motion is the tension, the frequencies of the fundamental and harmonics for clamped

ends are given from the following formula (Blevins, 1979)

1 |T
—n— = 242-1

where T, [, p and A are the tension force, length, linear density and cross-sectional

area of the vibrating string. f, is the fundamental frequency and n is an integer

number representing the harmonic number.

From equation (2.4.2 — 1), it can be seen that the resulting harmonics will be exact
multiples of the fundamental frequency. However, piano strings are made of high
strength steel wires in order to sustain high dynamic levels when keys are depressed
by a performer. In practice, strings also have bending stiffness as well as tension and
that affects the way harmonics manifest themselves in the frequency domain
specifically. The inharmonicity factor, which is a result of the bending stiffness of a

string, is given by (Fletcher, 1964)

2 2

p="EAK" (2.4.2-2)
Tl

where E is the Young’s modulus of elasticity and K is its radius of gyration.

Equation (2.4.2- 2) for the inharmonicity parameter B can alternatively be written as

follows (Nishiguchi, 2004)

(2.4.2-3)

where d is the diameter of the string.

From equation (2.4.2 — 3), it can be deduced that the inharmonicity B related to the
bending stiffness of the string, is greater in the case of short strings for a given radius

and tension as opposed to long strings for the same radius and tension. Also, the
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inharmonicity B of the string increases sharply with its radius and is more noticeable
in the case of the bass strings since their radius is larger as opposed to the strings in
the high frequency register. A way of reducing the inharmonicity effect in the low
frequency register is by making the string less stiff, by means of one or two layers of

wrapped strings as opposed to using solid strings.

For a piano string, which is displaced a distance y at the position x, the equation

governing the motion of the piano string is given by (Fletcher, 1964)

5 5 5
- EAKZ[ &f J + T( (gczy J = p( &zy J 2.4.2-4)

where y takes the form
y= Ce* =127 2.4.2-5)

where C and k are constants determined from the boundary and initial conditions.

2

4
Also, the terms T(a—Zj and — FAK 2(5—i}j represent the restoring force due to
ox ox

tension T and the restoring force due to the elastic stiffness respectively.

The general solution of equation (2.4.2 — 4) is
y =e ™[ A cosh(27k x) + A, cos(27k,x) + A, sin(27k,x) + A, sin(27k,x)]  (2.4.2 - 6)

where A ,A,,A;, and A, represent the amplitudes of the general solution and four

possible values of k for any possible frequency f can be defined as follows
k =%k, and k =% jk,

The general solution of equation (2.4.2 — 6) can be solved for different boundary

conditions, such as pinned-pinned or clamped-clamped conditions.

Assuming that the origin of the x-axis is at the centre of the piano string and that the
: . [ [ : . :
two string ends are defined at x = > and x =—— respectively, in the case of pinned-

pinned boundary conditions
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and for zero values of A,, A, (even functions), the boundary conditions will fit if A

is also zero and coszkl =0. The following formula can be obtained for each value k

(Fletcher, 1964; Nishiguchi, 2004; Ortiz-Berenguer et al., 2005)

f, =nfV1+n’B (2.42-17)

Equation (2.4.2 — 7) describes in a very simple form the real frequencies of a piano
string, where its ends are fixed, but not clamped (Ortiz-Berenguer et al., 2005). In
particular, it can be seen that the harmonics of a piano note do not manifest
themselves at exact multiples of the fundamental frequency of the string due to the

additional inharmonicity parameter B associated with the string.

The value of inharmonicity B in the case of a real piano typically may vary between
10~ and 107> (Fletcher, 1964). It is also worth noting that the inharmonicity value
will be different for different pianos due to the different selection of strings and level

of craftsmanship.

Equation (2.4.2 — 7), which represents the exact solution, it can also by approximated

using Taylor’s expansion series as follows

1 2 4n2
£, =nf,(1+n’B) znf{l+%— ”f +}

If n’B<<1, then only the first two terms of the binomial expansion may be used as

an approximation, in which case

n’B
fn,appmximate = nf()(l + 2 j (2-4.2 - 8)

The percentage error derived from this approximation as a function of the harmonic

order for typical values of the inharmonicity B can be calculated as

% Error = @mo (2.42-9)
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By using equation (2.4.2 — 9), it can be calculated that for relatively high values of

inharmonicity B, i.e. 107, the percentage error can be over 25% for predicting the
frequency of the 20™ harmonic. Therefore, if one was interested in representing the
signal model accurately, even for the first 10 to 20 harmonics, then the exact solution

should be used rather than the approximate solution of Taylor’s expansion series.

Another interesting feature is that the piano strings held by the bridge are not fixed
and their behaviour also depends on the mechanical impedance of the soundboard,
hence resulting in a higher or lower vibrating frequency of a piano string than that for
fixed ends (Ortiz-Berenguer et al., 2005). In particular, if the mechanical impedance
of the soundboard has a positive imaginary value, i.e. mass-like impedance, then the
resulting frequency would be slightly higher than expected. On the other hand, in the
case where the mechanical impedance of the soundboard has a negative imaginary
value, i.e. compliance-like impedance, then the resulting frequency will be lower than

expected.

A small amount of inharmonicity is desirable in pianos. For example, synthesized
piano notes having harmonics at exact multiples of the fundamental frequency tend to

lack subjective “warmth” (Rossing, 1990).

Finally, Appendix B provides a short description of the tuning process based on the
‘circle of fifths’. However, in the particular case of the piano, these musical intervals
should be ‘stretched’ further and not tuned to their “tempered” values in order to
minimise beating between notes due to the presence of inharmonicity in the piano

strings.

2.4.3 Double decay rate

When a piano key is depressed and a sound is heard, a careful examination of the
time-history of that note shows a two-stage decay rate; the first stage has a rapid roll-
off, whilst the second decay rate has a much slower roll-off resulting into what is

called the “aftersound” of a piano note (Weinreich, 1977). This is illustrated in Figure
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2.3 through a simulation as will be presented later in chapter 4'. In Figure 2.3, the
natural logarithm of the instantaneous amplitude of a typical piano note as a function
of time, which was recorded at 44.1 kHz using samples from the “Gigastudio” library,

is shown:

Simulation of the double decay rate effect
-5

Magnitude

Time tSec]
Figure 2.3 — Modelling of the characteristic double decay rate effect

There are mainly two factors believed to be associated with the double decay rate or
compound decay characteristic of the sound of a piano note; the polarisation of the
strings and, mainly, the coupling effect between different strings comprising a single

note.

2.4.3.1 Polarisation of piano strings

An experiment was carried out (Weinreich, 1977) and the sound pressure level was

plotted when a sound was produced by a single string of a piano note. The piano

! Note also that the “dip” at around 0.35 sec in this particular example is explained in section 4.2.3.1 of

chapter 4, where the characteristics of the double decay rate are discussed in more detail.
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string was freely vibrating at its fundamental frequency, as measured by a
microphone. A two-stage or compound decay was revealed; in the first stage the
sound pressure level starts at a high level and decays quickly afterwards, whilst in the
second stage, the sound pressure level takes over at a lower level and decays more

slowly.

The same phenomenon was observed by using a vibration pickup, where two
electrodes measured the string at an angle of 45 degrees to the vertical and horizontal
directions (Weinreich, 1977). From this experiment, it was deduced that the vertical
motion of the string is associated with the fast decay, whilst the slower decay is
associated with the horizontal motion of the string. Hence, it is believed that the two-
stage decay phenomenon is closely associated with the piano string polarisation,
where the superposition of two different decay rates produces the overall compound

effect (Weinreich, 1977).

In simple physical terms, energy is transferred from the string to the soundboard via
the bridge in both the vertical and horizontal polarisations, despite the primary
excitation of the piano hammer is in the vertical direction. Also, there is a moment
excitation at the bridge, which may further contribute to the transfer of energy in both
directions. Therefore, since the soundboard is relatively compliant to out-of-plane
motion, energy will be transferred from the vertical motion of the string to the vertical
motion of the soundboard at a high rate resulting in a fast decay. On the other hand,
the soundboard is stiffer in the horizontal direction and energy is transferred at a much

lower rate resulting in a lower decay rate.

In terms of modelling the polarisation of the piano strings, a model has been
suggested in which forces and velocities in the dynamical system correspond to
currents and voltages as part of an equivalent electrical circuit analogy (Naganuma et
al., 2004). In this method, a string is modelled in both the vertical and horizontal
directions when coupled with a soundboard. The soundboard is modelled as a spring
and a dashpot connected in series, whilst the horizontal and vertical directions of the
string are also modelled as masses connected to a spring and a dashpot. Coupling is
modelled as an idealised transformer. This model can be used to explain the slight
different frequencies associated with the vertical and horizontal polarisation of the

string (Tanaka et al., 1999).
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Other modelling techniques have shown the importance of coupling the vertical and
the horizontal motion of a string at the bridge with the soundboard (Nishiguchi et al.,
2003 and 2004). From finite element simulations of a string, it has been demonstrated
that the motion of the string is significantly different to that of the soundboard. In this
model, a pair of orthogonally oriented springs and a rotational angle were employed

for the two different directions of the motion of the string.

2.4.3.2 Coupling of piano strings

The notes of a piano are normally made using a pair or a triplet of strings. These
coupled strings are slightly mistuned from each other by much less than 1 Hz. It has
been shown that the mistuning of a group of strings comprising a piano note affects
the decay characteristics of the produced sound (Weinreich, 1977). For instance,
when two or three strings of a group are struck, they are initially in-phase and so all
will force the bridge up or down at the same time. This will result in a fast decay of
the energy. However as the note continues to decay, the phase relationships change
since the strings are slightly mistuned from each other and they are no longer working
together to move the bridge. Ultimately, according to Weinreich, the strings will be
out-of-phase and the rate of decay of energy will be lower resulting in a slower decay.
However, this is not a complete description because of the additional presence of
moment excitation in a coupled dynamic system. Note that as the mistuning
increases, the phase difference between the strings also increases and for large phase
differences, beats can be heard. A piano tuner can adjust the tuning between a group
of strings in order to alter the characteristics of the double decay sound of a piano

note.

Other authors (Hundley at al., 1978) showed that there is a change in rate of energy
transfer from the multiple-string source to the bridge during the transition from an

initial in-phase condition to a later out-of-phase condition.

It has also been shown (Nakamura, 1988) that the coupling between a pair of strings is
dependent on two factors, i.e. the degree of mistuning and the ratio of soundboard

impedance to string impedance.
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Another factor that contributes to the double decay effect is any hammer
imperfections that may be present in the piano (Weinreich, 1977). Hammer
imperfections can result in string amplitudes that are not absolutely equal. For
instance, suppose that initially the struck strings are in phase but with the first string
having larger amplitude than the second one due to a hammer irregularity. The
motion of the strings start to decay and when the amplitude of the second string with
the lower initial amplitude approaches zero, the bridge continues to move because it is
still being forced to do so by the first string with the higher initial amplitude.
Subsequently, the second string does not reach zero amplitude but it actually starts to
build up vibration in the opposite phase by absorbing energy from the bridge.

Ultimately, the motions are anti-symmetric giving rise to a compound decay effect.

Modelling of coupled piano strings can be based on the principles of digital
waveguides. In these methods, a digital waveguide model simulates the wave
propagation equation for a string when bounded in a medium called the resonator.
Aramaki et al. (2001) modelled the vibration of two coupled strings using digital
waveguides only for vertical motions and carried out a parameter estimation of the
amplitude, frequencies and damping factors of the strings. This type of modelling is

discussed in more detail in chapter 3.

Finally, Bensa er al. (2003) described the problem of coupled piano strings as an
initial-boundary value problem permitting stable finite difference schemes. The
model can then be related to a digital waveguide model. An experiment was also
carried out by estimating parameters for a grand piano using a laser Doppler
vibrometer. In this particular method, the stiffness parameter of the strings was
calculated along with the fundamental frequencies and the inharmonicity factor. The
time evolution of amplitudes of the first six harmonics of a piano note was also

deduced where the double decay rate and beating effect were evident.
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2.5 Conclusions

This chapter has provided a literature overview of the methods of monophonic and
polyphonic music transcription, as well as presented the unique acoustic features

associated with the sound generation mechanism of the piano.

Early approaches utilised simple frequency analysis techniques with successful results
in the case of monophonic performances, whilst more recent neural network
approaches have had mixed results for transcribing monophonic and polyphonic
performances. Similarly, some evidence has shown that Bayesian approaches have
been successful in transcribing monophonic performances and with some success in
transcribing polyphonic performances. Blind separation methods in the form of ICA
or sparse coding have been gaining more ground over recent years especially in the

case of transcribing polyphonic music performances.

The drawback with most of the above methods, apart from the blind separation
methods where there is no explicit representation of the signal model, is the simplistic
representation of the signal model, especially in the case of the piano in which the
sound generation mechanism is non-trivial. Hence, a conjecture is considered where a
more detailed representation of the signal is required in order to improve the accuracy
of the transcription methods. As a result, the interaction of the hammer with the piano
string, and the concept of inharmonicity and double decay rate effect have been

presented.

It was shown that the inherent bending stiffness in the piano strings leads to the
inharmonicity effect in which the harmonics are not exact multiples of the
fundamental frequency of a piano note. The unique double decay rate effect found in
pianos was attributed to two main factors, i.e. the vertical and horizontal polarisation
of the piano string and the multiple, slightly de-tuned from each other, strings coupled
through the soundboard. Finally, the dynamic behaviour of coupled strings was

briefly discussed through the use of digital waveguide techniques.
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Chapter 3

Inharmonicity effect

3.1 Introduction

In this research we investigate two of the most important features that define the piano
sound; the inharmonicity and the double decay rate. Potentially, these features could
be used as part of a comprehensive signal model for transcribing music performances
in the future. This chapter concentrates on the inharmonicity and the double decay

rate effect is discussed later in chapter 4.

This chapter presents a simple analytical model of a vibrating piano string in the
presence of inharmonicity and discusses the various factors that affect its response,
such as the magnitude of the inharmonicity factor, the number of harmonics present in
the modelled signal, and the evolution of the modelled signal with time. The effect of
different phase and amplitude characteristics in the modelled signal are also

discussed.

This chapter also presents novel observations associated with the inharmonicity of
piano strings for synthesized and real recordings through the use of the cepstrum. The
cepstrum is further employed to describe the separation of the response of the strings
from the soundboard and the response of multiple strings is discussed through the use
of digital waveguides and the cepstrum. The closure of this chapter naturally leads to
chapter 4 discussing further the effect of coupling between oscillators and the

modelling of the double decay rate effect.
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3.2 Inharmonicity model

3.2.1 Theoretical representation

In the piano instrument, the fundamental and harmonics of a vibrating string are given

by equation (2.4.2 —7)

f,=nfN1+n’B (3.21-1)

where B is the inharmonicity associated with the bending stiffness of the vibrating

piano string.

If B=0, then f, =nf,, where f; is the fundamental frequency in the absence of
inharmonicity and the harmonics are integer multiples of f,. However, if B#0, as
in the case of real strings, then the fundamental frequency is no longer f, but f,

(Ortiz-Berenguer et al., 2005)
fi=fV1+B

and the harmonics are no longer exact multiples of the fundamental frequency.

Figure 3.1 shows the spacing between the fundamental and first two harmonics in the
case of a non-zero value of B, where a form of “frequency dilation” takes place

relative to the case of B=0:

Amplitude
A

f1+B  2£,\1+4B  3£,\1+9B

Figure 3.1 — Spacing of non-integer harmonics

Indeed, from Figure 3.1, the spacing between the different harmonics increases with

frequency due to the inharmonicity factor B.
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The response x(f) of a vibrating piano string can be modelled as a simple

superposition of N number of harmonics with the fundamental frequency, then based

on equation (3.2.1 -1)

x(t) = iaﬂ sin[nz;gfo (1+nB) 1+ ¢n] (3.2.1-2)

n=1
where «, and ¢, represent the amplitude and phase terms of the n™ harmonic

respectively. For convenience at this stage, no damping is included.

Alternatively, equation (2.4.2 — 8) is recalled, which is the approximate form of

equation (3.2.1 - 1) for B<<1

2
f;z,approximate = nfo(l + %J (3.2.1 - 3)

Equation (3.2.1 — 2) can then be approximated as

n

n=1

(1) = ﬁ: a, sin[2zzfo (n+ éB )+ 4

x(t) = ﬁ: a, [sin27f,nt + @, ) cos(af,n* Br) +cos2af nt + ¢, )sin(af,n’Br)|  (3.2.1-4)

n=1

In an analogy to an “amplitude modulation” effect, the following can be deduced from

equation (3.2.1 — 4):

the terms sin(27fnt+¢@,) and cos(2af,nt +¢@,) represent the “carrier” of the signal
that are amplitude modulated by cos(#f,n’Bt) and sin(zf,n’Bt) terms respectively.

These modulations are slowly varying if n’B <<1.

Equation (3.2.1 — 4) represents a “Priestley-type” interpretation in which a signal of
the form x(¢) is amplitude modulated according to the following relationship

(Priestley, 1981)

x(t) = j A(t, 0)e’™ X (w)d®
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where A(f,w) represents the “modulator” and the term e represents the “carrier” of

the signal.

3.2.2 Numerical simulations

This section is divided into five subsections, in which various factors are discussed
that affect the modelled response of a vibrating piano string with the presence of
inharmonicity factor B. These factors are: the magnitude of the inharmonicity, the
number of harmonics present in the modelled signal, the evolution of the modelled
signal as a function of time, the phase characteristics in the modelled signal and the

effect of different amplitudes.

3.2.2.1 Effect of inharmonicity factor B

Equation (3.2.1 - 2) is recalled
N 5
n=>Ye, sin[n27y‘0 (1+n°B) 1+ %]
n=1

For the purpose of these simulations, it is assumed that ¢, amplitudes are constant

and that ¢, = 7z/2. Therefore,

x(t) = ﬁ:a” cos[nzz;f(, (1+ nZB)"‘Sr]

n=1

where x(t) is made up of cosine terms and so is an even function of 7. Note that we

only plot the above equation function for > 0.

Figure 3.2 is obtained showing the response of a vibrating piano string with and
without the presence of inharmonicity B for the first 10 terms (fundamental frequency

and nine harmonics):
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Modelled response x(t) for N = 10
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Figure 3.2 — Modelled response x(t) for different values of the inharmonicity factor B,

B=0 and B=10"" for N =10

One-sided effect

From Figure 3.2, it can be seen that the modelled signal with B =0 effectively is the
sum of a Fourier series of a periodic function. Note that the spacing between two
successive main lobes (or high peaks) is 5 ms corresponding to the fundamental
frequency of 200 Hz used in the signal. On the other hand, the modelled response
with B=10"" represents a signal that changes with time and the presence of
inharmonicity gives rise to a feature that we refer to as a “one-sided” effect in the
modelled signal. For the purpose of this research, the latter name is proposed in
relation to the formation of a strong non-symmetrical response relative to the main
lobe structure of the signal. In particular, the signal generally retains a repetitive type
structure, whereas the structure to the left (before) of a main lobe starts to increase
with time. However, this effect is obscured in an actual piano note recording, as will
be shown in section 3.2.2.5 for reasons explained later. Therefore, it is important to
investigate this effect further since it may be part of the sound reproduction
mechanism of a piano note and could perhaps be part of the sound perception

mechanism.
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Additionally, a pole/zero map of the Laplace transform signal shown in Figure 3.2 is

plotted in Figure 3.3 below. This is shown for the case of N =10 and B =0:

x 10 Pole-Zero map

Imaginary part

Figure 3.3 — Pole/zero mapping on the s-plane of the modelled response x(t) for

B=0and N =10

From Figure 3.3, it can be seen that the poles and zeros all lie on the imaginary axis as

there is no damping in the modelled response.

For further insight, the pole/zero map of the inharmonic signal, i.e. for B#0,
demonstrates a “distortion” of the location of the poles/zeros that lie on the imaginary
axis when compared with the pure harmonic signal, i.e. for B=0. In particular, by
increasing the value of B, the poles/zeros move apart on the imaginary axis. A
pole/zero map, which demonstrates this effect, is plotted in Figure 3.4 for the case of

N =10 and B=107:
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x 10* Pole-Zero map
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Figure 3.4 — Pole/zero mapping on the s-plane of the modelled response x(t) for

B=10"%and N =10

Also, an interesting feature, which does not correspond to a real physical system, is
that for negative values of B, the one-sided lobe structure will shift from the left-
hand side to the right-hand side of the main lobe structure as shown in Figure 3.5
below. Note that this is not a physically realisable solution since the bending
stiffness, and hence the inharmonicity factor B, in piano strings would always be a

non-negative value:
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Modelled response x(t) for N = 10
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Figure 3.5 — Modelled response x(t) for different values of the inharmonicity factor B,
B=0and B=-10"" for N =10
Finally, the effect of increasing the magnitude of inharmonicity factor B is illustrated

in Figure 3.6:

Modelled response x(t) for B = 104 and N = 10
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Modelled response x(t) for B = 4x10* and N = 10
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Figure 3.6 — Modelled response x(t) by varying the inharmonicity factor B,

B=10"" and B=4x10"" for N =10
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In this particular example, the magnitude of the inharmonicity was quadrupled and the
effect of one-sided energy was observed in Figure 3.6. From the latter figure, it can
be seen that as the magnitude of the inharmonicity factor increases, so as the signal
will be modulated further. Hence, the effect of the one-sided energy will become

more pronounced for higher values of B used in equation (3.2.1 - 2).

3.2.2.2 Effect of harmonic number N

In this subsection, the effect of increasing the number of harmonics N is demonstrated

as shown in Figure 3.7. In particular, response x(¢) is modelled with 10 and 20 terms

respectively for a typical value of inharmonicity, i.e. B=107":

Modelled response x(t) for B = 104 and N = 10
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Modelled response x(t) for B = 10 and N = 20
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Figure 3.7 — Modelled response x(t) by varying the harmonic number N,

N =10 and N =20 for B=10"

From Figure 3.7, it can be seen that by increasing the number of harmonics N, the
effect of one-sided behaviour response will be more pronounced in the modelled

signal since the resulting modulation effect will increase as described in equation
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(3.2.1 - 2). However, this may be unrealistic in real recordings since all harmonics
may not have the same amplitudes. This is discussed in more detail in section 3.2.2.5,
where the effect of various amplitudes for the different harmonic terms is

demonstrated.

3.2.2.3 Effect of time parameter ¢

Another feature of the modelled signal represented by equation (3.2.1 — 2) is that
changes in the response of the signal will be dramatic as time increases. So far, we
have looked at the response of a single piano string for low-time regions, normally up

to about 0.04 seconds. Figure 3.8 depicts the response of x(¢#) for different times in

the signal, for the same number of harmonics and the same inharmonicity factor B':

Modelled response x(t) for B = 10'4, N = 10 for low-time regions
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Figure 3.8 — Modelled response x(t) depicted at different times

for N=10 and B=10""

From Figure 3.8, it can be seen that dramatic changes in the response of the modelled
signal will result as time increases. This is because by increasing the time parameter

variable of equation (3.2.1 — 2), the signal will be modulated further.
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Given that the repetitive harmonic structure is a feature of a periodic signal (classical
Fourier series), then the question lies on whether an inharmonic signal with non-

equally spaced harmonic structure is periodic or not and under what conditions.

Initially, a signal x(¢#) with two frequencies, f, and f,, are combined as
x(t) =sin(27ft) + sin(27f,t) 3.2.23-1)

Hence, under what conditions is the above signal periodic? i.e. one is interested in

finding the period T of the signal so that
x(t)=x(t+T) 3.2.2.3-2)
Let now ¢t =0 for convenience, equation (3.2.2.3 — 2) can be written as
x(t) =sin(2af,T) + sin(27f,T) =0 3.2.2.3-3)
Equation (3.2.2.3 - 3) is satisfied for

27T =2n7 and 27f,T = 2mx

where m and n are integers.

Hence,

% = (3223 -4)
5 m

Case 1
Assume that the ratio of frequencies f, and f, corresponds to a fraction of two
integer numbers, i.e. a rational number. For example, f, =140 Hz and f, =150 Hz.

According to equation (3.2.2.3 — 4), n=14 and m=15. Therefore, the signal is

periodic with T =0.1 sec.

Case 2

Assume now that f, =4/20x10* =141.4 Hz and f, =150 Hz. According to equation
3.2.2.3-4), n=1414 and m =1500. So, the period would be T =10 sec. However

strictly speaking, there are no true integer solutions for m and n that satisfy equation

(3.2.2.3 - 4), hence, the signal does not have a period, i.e. it is non-periodic.
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This simple argument can be extended to a sum of multiple frequencies present in the

modelled signal, i.e.

x(t) = i sin(27f 1)

n=1

where each frequency ratio should be rational. So, extending this to account for the

inharmonicity factor B, each ratio

n1+n’B
mv1+m’B

should also correspond to a rational number for all pairs m, n.

If the above conditions are met, then the signal is periodic. However, this is a
condition, which is unlikely to be met, so for all practical purposes the modelled

signal is considered as non-periodic.

3.2.2.4 Effect of phase

Up to now, we have assumed a constant phase term, ¢, = 7/2, in equation (3.2.1 - 2),

which would correspond to cosine components (even functions). However, in general,

¢, may differ from this.
Let us therefore consider how the choice of ¢, affects the shape of the signal.

For ¢, =7/2 and ¢, =0, Figures 3.9 and 3.10 are obtained:
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Figure 3.9 — Modelled response x(t) for N =10 and ¢, = n/2
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Figure 3.10 — Modelled response x(t) for N =10 and ¢, =0
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Figures 3.9 and 3.10 represent the cosine and sine components of the modelled signal

x(¢) and the phase relationship between all the N terms is fixed (or constant). This

means that the one-sided effect is related to the non-integer spacing of the harmonics
relative to the fundamental frequency and not to the phase of the modelled
components. However, note that a positional shift of the inharmonic signal relative to

the pure harmonic signal is observed.

Also, equation (3.2.1 — 2) is simulated for the cosine terms with a randomly chosen

phase term, which may vary between 0 and n/4, i.e. ¢, ., € [0, n/4]

(1) = ﬁan cos[n27;fo (1+n°B)f 1+ ¢n,md]
n=1

This signal is shown in Figure 3.11, where the one-sided effect can still be observed:

Modelled response x(t) for N = 10
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Figure 3.11 — Modelled response x(t) for N =10 and ¢, ,,, € [0, n/4]

From Figure 3.11, it can be seen that by randomising the phase by a small amount, the
one-sided effect is still evident. However, note that if the phase term is completely

randomised, i.e. ¢, ., € [0, 2x], the signal becomes random and no such one-sided

structure can then be seen.
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3.2.2.5 Effect of amplitude

So far, numerical simulations of equation (3.2.1 — 2) were based on the assumption
that the harmonic amplitudes ¢, are constant, so in this section the amplitudes of the

harmonics are varied uniformly and non-uniformly as described below.

Uniformly varying amplitudes

The amplitudes of the harmonic terms are expressed as a ratio of 1/n and a damping
term ¢, is also included. This is to represent a case where the amplitudes of the

higher frequencies contribute less than the lower frequencies (Cemgil et al., 2008)

=&t
(1) = ﬁ: ¢ , sin[n27y”0 (1+n°B) t+¢, ] (3.225-1)
n=1

Note that the phase term is constant, i.e. ¢, = 7z/2. Figure 3.12 is obtained:

Modelled response x(t) for B = 10 and N = 10 with uniformly varying amplitudes
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Figure 3.12 — Modelled response x(t) with uniformly varying amplitudes using

equation (3.2.2.5 - 1) for N =10 and B=10""
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From Figure 3.12, it can be seen that the varying amplitudes of the form 1/n have a

“low pass” effect on the modelled signal, where the high frequency modulation effect
associated with the one-sided energy is partially filtered out, but its main asymmetric

one-sided structure is yet retained.

Non-uniformly varying amplitudes

Equation (3.2.2.5 — 1) can also be written as

N
x(6) = e an)sin [nzzzfo (1+nB) 1+ ¢n] (3.2.2.5-2)
n=1
where the amplitudes @(n) can now vary non-uniformly as in the case of a real signal

and @, = /2 as before.

For this particular example, the amplitudes of the harmonics where chosen from a real
piano note recording C; sampled at 44.1 kHz using the “Gigastudio” sample library.

The modelled response x(¢) is shown in Figure 3.13 by using equation (3.2.2.5 — 2):

Modelled response x(t) for B = 10 and N = 10 with non-uniformly varying amplitudes
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Figure 3.13 — Modelled response x(t) with non-uniformly varying amplitudes using

equation (3.2.2.5 = 2) for N =10 and B=10""
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From Figure 3.13, it can be seen that for non-uniformly varying amplitudes, the one-

sided effect is obscured.

The modelled response x(t) of equation (3.2.2.5 — 2) is also plotted for higher times,
where the one-sided effect is still obscured, although there is some indication of a
temporal variation/modulation relative to the main lobe structure of the modelled

signal. This is shown in Figure 3.14:

Modelled response x(t) for B = 10* and N = 10 with non-uniformly varying amplitudes
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Figure 3.14 — Modelled response x(t) with non-uniformly varying amplitudes using

equation (3.2.2.5 =2) for N =10 and B=10""

Finally, Figures 3.15 and 3.16 below compare the time histories of a modelled piano
note C; using equation (3.2.2.5 — 2) and a real recording of that note (band-passed for

the first 10 terms) over a typically long time window, i.e. for.0.65 <t < 0.72:
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From Figures 3.15 and 3.16, it can be seen that the one-sided effect is obscured since
both signal representations have non-uniformly varying amplitudes, as discussed
before. This perhaps explains why the one-sided effect is not apparent when
observing the real time histories of piano note recordings. Also, there are differences
in the temporal structure between the modelled and the real piano note recording
meaning that our model does not perfectly represent the true signal. Finally, from a
perception point of view, the one-sided effect may not be perceived due to the phase

insensitivity of the hearing mechanism.
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3.3 Cepstrum analysis

In this section, the cepstrum is introduced in order to further unravel the structure of
piano sounds. So far, one has simply considered only the response x(¢) of a vibrating
string with or without inharmonicity, but in reality the string is also coupled directly
with the soundboard of the piano, which ultimately radiates the reproduced sound.
Hence, it is in the direct interests of this research to further formulate the coupling of
the vibrating piano string with the main mechanism of sound radiation, which is the

soundboard.

3.3.1 Concept

One way of analysing compound signals is the cepstrum. In principle, the cepstrum is
a “homomorphic” operator by which convolved signals in the time domain can be
converted to additions. In this way, two different components of a composite signal
can be separated out in the “pseudo-time” domain and can be analysed on an

individual basis.

The mathematical expression of the complex cepstrum, x(t), of a signal is defined as

follows
i) = f In[X (f)]e?*™df (3.31-1)

So, the complex cepstrum of a signal is defined as the inverse Fourier transform of the

natural logarithm of the Fourier transform of signal x(z). Note that the complex

cepstrum retains the phase structure of the signal.

In order to appreciate the merits of using the cepstrum of a signal for analysis, one has
to understand the basic mechanism of homomorphic processing. A homomorphic
process is a method by which a composite signal can be decomposed into a series of
simpler operations. For example in the case of the cepstrum, suppose that a

composite signal s, () consists of two simpler signals s,(#) and s,(¢), which are

tot

convolved in the time domain
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Sior (1) = 8,(£) % 5, (1) (3.3.1-2)
Equation (3.3.1 - 2) in the frequency domain may be written as
S ) =8(F)S,(f) (3.3.1-3)

By then taking the logarithms of either side of equation (3.3.1 — 3), the product of the

two signals in the frequency domain becomes an addition
in[s,,,(H]=1nlS,()]+nls,(f)] (3.3.1-4)

By applying the inverse Fourier transforms on equation (3.3.1 — 4), the signals may
now be separated, although there is no guarantee for this, in the inverse-log-frequency

or the pseudo-time domain and can be analysed on a separate basis

Fin[S,, (A= F'{n[s (H T+ F{in[S, (]}

8, (1) =5,(t) + 5,(1) (3.3.1-5)

A

where §,(7), §,(t)and §,,(t) are the complex cepstra of signals s,(¢), s,(¢) and s,,(?)

tot

respectively.

3.3.2 Application to piano signals

The sound of a piano note can be regarded as the convolution of the output from the

vibrating strings with the soundboard and bridge response.

In the simple case, the sound of a single piano note is produced by the hammer
exciting the string, which is then amplified by the soundboard. Figure 3.17 shows a

schematic layout of the sound generation mechanism of a single piano note:
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g() h(1)

e(t) x(1) y(1)
—> String » Soundboard >
Hammer Sound

Excitation

Figure 3.17 — Schematic layout of sound generation mechanism of a single piano note

The following hypothesis is made in the case of the piano instrument (Karatsovis et
al., 2006): the soundboard has a broad spectral response (Giordano, 1997 and 1998)
and consequently a cepstrum that predominantly contains its information in the low
“quefrencies” (or low-time regions). This hypothesis is supported by experimental
work on a real grand piano and described later in chapter 4 (ref: Figure 4.15). On the
other hand, the vibrating strings give rise to a series of impulses in the pseudo-time
domain due to the relative periodicity of the harmonics associated with the vibrating
length of the strings. These impulses will manifest themselves in the higher
quefrencies (or high-time regions) and the vibrating strings will therefore be well
separated from cepstral coefficients associated with the soundboard. The above

hypothesis is demonstrated mathematically in section 3.3.3.

The resulting piano sound y(¢) is the convolved impulse response of the soundboard,

h(t), with the response of a vibrating piano string, x(t)

y(0) = h(t) * x(1) (332-1)

Also, the resulting response of the vibrating piano string x(¢) is the convolution of the

impulse response of the string, g(#), with the hammer excitation e(t)

x(t)=gt)*e(t) 3.3.2-2)

Equation (3.3.2 — 1) due to (3.3.2 — 2) becomes

(1) = h(t) * g(t) * e(t) 3.3.2-3)

By taking the Fourier transforms on either side of equation (3.3.2 - 3)

Y(f)=H(G(E(S) (3.3.2-4)
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By taking the natural logarithms on either side of equation (3.3.2 — 4)

Y (f)=InH(f)+InG(f)+InE(f) (3.32-5)

Finally, by taking the inverse Fourier transforms of equation (3.3.2 — 5), one obtains

the following complex cepstrum representation as follows
O =ht) + (1) + (1) (3.3.2-6)

where (1), ﬁ(t) , &(1), e(t) are the complex cepstra of the resulting piano sound, the

soundboard response, the piano string impulse response and the excitation force

respectively.

As one can observe from equation (3.3.2 — 6), the resulting piano sound may be
divided into separate components with the help of the complex cepstrum, so they can

be treated separately for further analysis.

As a result, cepstrum analysis can be used in complicated signals, which are rich in
harmonics, in order to extract periodicities associated with them, and could ultimately
be used to decouple the response of the vibrating strings from the response of the
soundboard (Karatsovis et al., 2006). The character of the cepstrum of real piano
notes can also be used to describe the phenomenon of inharmonicity associated with

the vibrating strings shown earlier in the numerical simulations of section 3.2.2.

3.3.3 Analytical formulations

It is convenient to carry out any formulations in discrete time. The cepstrum x(n)

can therefore be defined for sequence x(n) as

x(n)=z{n[X D]}

Assume now that the string response is periodic, i.e. there is no inharmonicity, and the
excitation of a single string results in its fundamental and exact harmonic frequencies.

The single string response p(n) in the discrete time with period ny is
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p(n) = p(n+kn,)
where k is an integer.

Let us also assume that there is an exponential decay m(n) uniform for all

components, so the modulated response of the string x(n) is
x(n) =m(n) p(n) 3.3.3-1)

We will model the period signal p(n) as a delta train convolved with an ny length

sequence p,(n), so equation (3.3.3 — 1) becomes
x(n) = m(n) p,(n) * z S(n—kn,) 3.33-2)
k

Assuming that m(n) is sufficiently slowly varying over one period, then the delta
train is modulated directly by m(n), hence in the complex frequency domain,

equation (3.3.3 — 2) becomes

X(2) = Po(z)Z{m(n)Z S(n - kn, )}

X (2)=P(2)Y mn)Y 8n—kny)z™
n k

X (2) = B(2))_ m(kny)z™" (3.33-3)

Assuming m(n) is an exponential decay of the form m(n) =a", equation (3.3.3 — 3)

becomes

X =R (@)

1
X(Z):P()(Z)m (3.3.3-4)

In the cepstrum domain, equation (3.3.3 — 4) becomes

#(n) = po(n)+Z“{1n 1 — }
1_ a (]Z 0
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2n, 3n,

Sn—2n,)+

x(n)=p,(n)+a™o(n—ny)+ 5 3

o(n—3n,)+...

Therefore, the cepstrum of the overall response y(n) of equation (3.3.2 — 1) will lead

to equation (3.3.3 — 5) as follows

2n,
a

2

3n,

3

y(n) = ﬁ(n)+ po(m)+a"™d(n—ny)+ : o(n—2n,)+ a o(n—3ny)+...(3.3.3-5)

It has therefore been shown analytically from equation (3.3.3 — 5) that the cepstrum of
the response y(n) approximately consists of the cepstrum of the soundboard ﬁ(n) ,

the cepstrum of the periodic shape p,(n) and a train of amplitude-decaying spikes

i(n) of the form

2ny 3ng

a

o(n—2ny)+ a

f(n)za"“é‘(n—no)+ 5 3

S(n—-3n)+... (3.3.3-6)

The above formulation demonstrates the original hypothesis (Karatsovis et al., 2006).

However, normally in computational simulations, as will be shown in section 3.3.4

later, there is always the effect of windowing w(n) on the total response y(n) that

has not yet been accounted for. This can be realised through

v, (n) =w(n)y(n) 3.3.3-7)
where

wn)=1 0<n<<M -1

w(n)=0 else
where M is the data length.

Equation (3.3.3 — 7) can now be written as
¥, () = w(m)[h(n) *{m(n) pm)}]

The windowed train of spikes i, (n) of the form i (n) =w(n)i(n) is written as a finite

sum
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i, (n)= zpl S(n—kn,) (3.3.3-8)

k=0
where Pny=M -1

By taking transforms in the complex frequency domain, equation (3.3.3 — 8) becomes

P
IW(Z) — Z Z—kno

k=0

1— -(M-1)
IW(Z)zlz—

—ny

3.3.3-9)

By taking natural logarithms on either side of equation (3.3.3 — 9), one obtains

[ ] Z—Zno Z—Sno 1) Z—Z(M—l) Z—3(M—l)
In|7 =lz"+ + +.. =z T+ + 3.3.3-10
L(2) [z 5 3 } {z 3 3 } ( )

By taking the frequency domain version of equation (3.3.3 — 10) and by setting

z=e’™, one obtains the following equation

-2 janA

_ e 6—3 jangA . e—2jaA(M—1) e—3_jaA(M—1)
7, (2)]=| 7™ +——+ T I At (3.33-11)

2 3 2

The finite inverse transform of equation (3.3.3 — 11) for each term would be of the

form

j e =kt —q)

where g=n,,2n,,3n,,... and k=1,

geee

N | =
W | =

Ultimately, the windowed train spikes in the pseudo-time domain will be of the

following form (set also A =1 for convenience)

i, (t)=w(t—-n,) +%w(t— 2n,) +%w(t -3n,)+... (3.3.3-12)
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From equation (3.3.3 — 12), one can deduce that the amplitude of spikes is

TR . . sin(x
diminishing and is symmetric of the form () .
X

However, in the case of a vibrating piano string with inherent inharmonicity B, the

above analysis is not valid since
p(n) # p(n+kn,)

One may now recall our simple model of a vibrating piano string with inherent

inharmonicity as described in equation (3.2.1 - 2)
N . 205
x(t)= Zsm[nZ@fo (1 +n B) t]
n=1

where 7 in the above equation reflects the harmonic number.

Equation (3.2.1 — 2) may be written in the discrete domain as

x(mA) = isin[Q”mA] (3.33-13)

n=1

0.5

where Q =n27f (1 + nzB) . The Z-transform of each term of equation (3.3.3 — 13)
can be calculated

7 'sin(Q, A)

[s1n( 2 )] z72=277" cos(2,A) +1

3.3.3-14)

However, equation (3.3.3 — 14) is only the Z-transform of one term only, so one needs
to compute the Z-transform of all the terms of equation (3.3.3 — 13) and then compute

the natural logarithm of the total sum

InX(z)=In
. Zl 2727 cos(QA) +1

N -1

¢ Sin(€2,4) } (33.3-15)
It has not been possible to compute analytically equation (3.3.3 — 15), although
computer simulations were carried out in the next section as a means of investigating

the resulting features of a signal with inherent inharmonicity.
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3.3.4 Computational demonstrations

In this section, the concept of cepstrum is used to further unravel the structure of a
real piano note recording with inherent inharmonicity and the structure of a
synthesized periodic signal with and without inharmonicity present.  These
computational demonstrations naturally follow from the analytical formulations
earlier on in order to reveal features of the signals in the time domain, where the

sound reproduction mechanism actually takes place.

In particular, the use of the real (or power) cepstrum, x,,(t), is used for the

computational demonstrations in this section where
B (0= [In]X (1)l df (334-1)
So, the real cepstrum of a signal is defined as the inverse Fourier transform of the

natural logarithm of the magnitude of the Fourier transform of the signal.

A real single piano note Cs was recorded at 44.1 kHz and analysed in terms of its
power spectrum and real cepstrum. Note that the piano note was analysed using a
single FFT over the whole 10 second recording using the “Gigastudio” sample library.

The results are illustrated in Figure 3.18:
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Time history of piano note C3
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Figure 3.18 — FFT and cepstrum analysis of a real piano note C3

It can be seen from the FFT of the recorded signal of Figure 3.18 that the fundamental
frequency of piano note C3 is 130.5 Hz and its harmonics are non-integer multiples of

this value due to the inharmonicity factor inherent in the real piano note recording.

Additionally, from these measurements, one can identify that there are amplitude
decaying impulses every 7.6 ms in the real cepstrum of Figure 3.18. These impulses

in the cepstral domain are related to the fundamental frequency of piano note C;

(=1/130.5).

We now zoom further around the first 7.6 ms of the pseudo-time domain of the

cepstrum as shown in Figure 3.19:
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Real cepstrum of piano note C3
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Figure 3.19 — Expanded view of the real cepstrum of Figure 3.18

From Figure 3.19, it can be observed that there is some indication of a one-sided
effect in relation to the main lobe of the signal similar to the effect observed in section
3.2.2. The one-sided effect is attributed to the inharmonicity, i.e. the non-equal

spacing of the harmonic frequencies as discussed earlier.

The effect of one-sided energy manifests itself more clearly by constructing an
artificial signal by replacing the peak values of the power spectrum with delta
functions of constant magnitude and replacing the noise floor of the signal by a
constant value. The real cepstrum of this artificial signal can then be computed. The

new synthesized signal is marked in red in Figure 3.20:
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Fast Fourier transform of piano note C and synthesized signal
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Figure 3.20 — FFT and real cepstrum of synthesized signal

By zooming in on two typical peaks of the synthesized signal in the pseudo-time

domain, Figure 3.21 is obtained:
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Figure 3.21 — Expanded view of the real cepstrum of Figure 3.20
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From Figure 3.21, a clear time-evolving one-sided effect can be seen as also

demonstrated in section 3.2.2.

Now, by replacing the peaks of the power spectrum of the original signal with a series
of delta functions of constant magnitude, but this time being spaced at exact
multiplies of the fundamental frequency, the inharmonicity is “removed” from the
original signal. The real cepstrum of this new signal can then be computed and is

shown in Figure 3.22:

Fast Fourier transform of piano note C3 and synthesized signal
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Figure 3.22 — FFT and real cepstrum of new synthesized signal

From Figure 3.22, it can be seen that there is only symmetric energy spreading

through windowing and the one-sided effect is absent.

As a final concluding remark, the above analytical and computational investigations
support the deduction that the energy in the high-time regions is believed to be
associated with the response of the vibrating string of a piano, manifesting as a series
of impulses in both the time and pseudo-time domains, whereas the dynamic response
of the soundboard features in the low-time regions of the pseudo-time domain due to

its broad dynamic response. Indeed, the response of the soundboard is broadband
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above around 200 Hz and can be modelled as a linear filter having the characteristics
described in the papers by Giordano (1997 and 1998). In particular, the soundboard
can be modelled as a lumped parameter model with well defined modes of vibration
up to 200 Hz, whereas its behaviour exhibits a multi-modal or broadband behaviour
above that frequency according to Moore et al. (2006). This argument is further

supported by experimental work on a grand piano described in chapter 4.
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3.4 Response of multiple piano strings

So far, only the response of a single piano string when coupled with the soundboard
has been investigated. As mentioned earlier, the middle and higher piano notes would
tend to group a pair or a triplet of strings to a single piano note. The coupling of the

strings of the same note would therefore occur through the bridge.

The coupling mechanism of multiple strings (or oscillators) is discussed in more detail
in chapter 4, where analytical and computational formulations are presented as part of
the unique double decay rate effect in the piano instrument. In this section, the
coupling mechanism is investigated through the use of digital waveguides and the

properties of the cepstrum.

3.4.1 Digital waveguide representation

In a simple digital waveguide representation, a vibrating piano string is modelled in
such a way so that filter K represents the dissipation (modulus) and the dispersion
(phase) phenomena and filter D represents the propagation time for the string
vibration reflecting a pure delay. E and S are the hammer excitation and response of

the modelled string respectively (Aramaki et al., 2001)

E

Figure 3.23 — Digital waveguide model representation of a single piano string

The transfer function of such a model is

S(a)) 3 |K(w)|e_j(a’0—¢(a’))

Glor= E() 1-|K(@)e’
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where @(s) is the Laplace transform of the phase and the above model can further be
extended to two coupled strings in this research work, where C, and C, represent the

coupling factors at the attachment points between the bridge and the two strings as

shown in Figure 3.24:

G
E S
7‘(\ > » D > K 17‘
NRe i) '
A
A4
CZ CI
A
G,
S
< ’ DZ < KZ <+«
| y

Figure 3.24 — Digital waveguide model representation of two coupled piano strings

— DlKl
" 1-DK,
— D2K2
> 1-D,K,

1
where

From Figure 3.24, one may obtain the following relationships for the response of

strings s, and s, respectively

S, =GI|E+C,S
\=G[E+CS,] G41-2)
S, =G,GS,
The response S, can be written as
S, =G[E+C,CG,S,]
= __GE (3.41-3)
1-CC,GG,

Also, the response S, due equation (3.4.1 — 3) can be written as

69



Acoustic Features of Piano Sounds Chapter 3

C,G,G,E

=172 3.4.1-4
* 1-¢,C,G,G, ( )

Let us now assume that the total response, S, ,, of the two coupled strings is a linear

tot

sum of the motion of the two strings with constant coefficients @, and a, respectively
S, =aS, +a,S, (3.41-5)
Equation (3.4.1 — 5) due to (3.4.1 — 3) and (3.4.1 — 4) becomes

_G [a1 +a,CG, ]E
o 1-CC,GG,

3.41-6)

Equation (3.4.1 — 6) represents the total resulting response of two piano strings

coupled through the bridge.

3.4.2 Case studies

One utilises the homomorphic properties of the cepstrum of the total signal, S, ,, by

tot

first taking the natural logarithms on either side of equation (3.4.1 — 6)
InS,, =InG, +In[q, +a,C,G,]+InE —In[l-C,C,G,G,] 342-1)
The above equation consists of three separate terms:

the first term, “In G, ” is simply related to response S, of string 1.

the second term, “In[a, +a,C,G,]”, may be approximated with a Taylor’s series

expansion as follows

1{%@+%qgﬂ=m%+m®+ﬂ0ﬁ4zm%+%cpz (3.4.2-2)

1 a 1

providing there is “weak” coupling only, i.e. C, <<1.
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The third term of equation (3.4.2 — 1), “In[l - C,C,G,G,]”, may also be approximated

with a Taylor’s series expansion
In[l-C,C,GG,]=-CC,GG, 3.42-3)
providing there is also “weak” coupling, i.e. C,,C, <<1.

Equation (3.4.2 — 1) due to (3.4.2 — 2) and (3.4.1 — 3) can now be written as

InS,, =InG, +Ina, +2C,G, +In E + C,C,GG, (3.42-5)
a

1

Two cases are explored below.

Case 1
In the previous sections of this chapter, one has modelled the response of a single
vibrating string with the presence of inharmonicity. So, if there is no coupling, i.e.

C,=C, =0 and there is no response from the second string, i.e. G, =0, then

equation (3.4.2 — 5) can be reduced to

InS,, =InG, +Inag, +InE (3.4.2-6)

By taking the inverse Fourier transforms on either side of equation (3.4.2 — 5), one

obtains

F'[InS,,|=F'[InG, |+ F'[Ing]+ F'[InE]

tot

S =G +a,+E (3.4.2-7)
Equation (3.4.2 — 7) represents the response G, of a single vibrating string with

inharmonicity in the pseudo-time domain, where a series of repetitive impulses will

manifest in the higher-time regions, as discussed previously. The cepstrum of the
hammer excitation, E, simply denotes an impulse and @, has no real contribution to

the total response.
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Case 2

In the more complex case, where there is weak coupling and both of the strings

vibrate, then the total resulting response of the cepstrum, S, is different. By taking

tot

the inverse Fourier transforms on either side of equation (3.4.2 — 5), one obtains

%

=G +E+a + F—{ CIGZ} +F'[c,C,GG,] (3.4.2-8)

q

From the resulting total response of the two weakly coupled strings, as described in
equation (3.4.2 — 8), one can deduce the following contributions for each term

individually:

the terms Gl and E are simply the cepstra of response §, and hammer excitation E,
respectively, as discussed before. In other words, E is simply a pulse in the pseudo-

time domain, whereas G, represents the response of string S,. Also, 4, has no real

contribution to the total response since it merely represents the cepstrum of a constant

coefficient.

the term F™' {& CIGZ} represents the response of the second string modified by the
a,

coupling term C, and the constant coefficients a, and a,.

Finally, the term F~'[C,C,G,G,]| represents the convolved responses of the two

strings, S, and S, , modified by both coupling terms C, and C,.
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3.5 Conclusions

In this chapter, the effect of inharmonicity has been presented through a set of novel
demonstrations and analytical formulations. The inharmonicity may be one of the key
features of further unravelling the problem of music transcription and might provide
an additional important parameter in the development of a more comprehensive signal

model.

A simple model for a single vibrating piano string with inherent inharmonicity was
proposed. Through the numerical simulations of such a signal, one showed how the
response changed by varying five factors; the magnitude of the inharmonicity factor
B, the number of harmonics N present in the modelled signal, the time parameter ¢,
the phase characteristics and the amplitude of harmonics. From these investigations,
it was shown that there is a so-called “one-sided” effect, as a direct result of the non-
integer spacing of the harmonic components (relative to the fundamental frequency)
with uniformly varying amplitudes added to the modelled signal. However, the effect
of one-sided energy was shown that it is actually obscured in real piano note
recordings, since the amplitudes of the harmonic terms vary non-uniformly. Also, the
phase characteristics of the harmonics of the signal in real recordings may be totally
random and hence may further obscure the one-sided effect associated with the
inharmonicity. As a result, such an effect may not be perceived by the human

auditory system.

The cepstrum has also been utilised to reveal a similar, strong, one-sided energy
effect. Indeed, real single piano recordings and synthesized signals were analysed and
there was evidence that one-sided energy occurs in relation to the main lobes, when a
train of spikes are non-equally spaced in the frequency domain. On the other hand, a

synthesized signal with equally-spaced spikes showed no such effect.

As far as the analytical formulations are concerned using the cepstrum, it was possible
to derive representations for the resulting sound of a piano note without the
inharmonicity factor (periodic signal) into separate components (response of string,
and soundboard). The difficulties of deriving similar analytical representations of the
modelled signal with the inharmonicity were also discussed. In any case, the use of

the cepstrum has enabled us to substantiate an earlier hypothesis (Karatsovis et
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al.,2006), where the soundboard would have a broad spectral response and
consequently a cepstrum that predominantly contains its information in the low
“quefrencies” (or low-time regions), whereas a vibrating piano string would give rise
to a series of impulses in the pseudo-time domain manifesting themselves in the
higher quefrencies (or high-time regions). Note also that response of the vibrating
string will be well separated from cepstral coefficients associated with the soundboard

due to the homomorphic properties of the cepstrum.

Finally, the response of multiple piano strings was discussed through the use of digital
waveguides and analysis was carried out for two weakly coupled vibrating piano
strings using the cepstrum. This leads naturally to the next big topic of this research
work, which is the effect of the coupling mechanism between oscillators and the

modelling of the double decay rate effect.
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Chapter 4

Double decay rate effect

4.1 Introduction

The double decay rate effect is the second feature that is discussed in this research
since its use could potentially aid further in understanding the sound generation

mechanism of the piano.

This chapter initially presents a simple analytical model of the double decay rate that
can be observed in piano recordings through the properties of coupled oscillators.
The model is developed for the response of two masses connected through linear
coupling. Each mass can either represent the vertical (or horizontal) motion of one
string coupled with the response of a second string through the bridge, or the
modelled masses can represent the coupled vertical and horizontal motions of one
string only. Analogies of this general model of coupled oscillators are drawn from the
formulation of digital waveguides as shown in chapter 3. Furthermore, numerical
simulations are carried out in attempt to replicate the double decay rate effect found in

real piano recordings in the case of identical and mistuned oscillators.

A physical model is also developed to describe the dynamics of more than two strings
coupled through the bridge of a piano. This type of physical modelling is based on a
frequency domain mobility-based method providing an extension to the general model

of coupled oscillators.

Finally, the coupling of the piano strings with the bridge and the soundboard is further

investigated by carrying out vibration measurements on a real grand piano.
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4.2 Coupled oscillators

As mentioned and illustrated earlier in section 2.4.3, a careful examination of the time
history (shown at a particular frequency) of a piano note recording reveals a two-stage
decay rate; the first stage has a rapid roll-off, whilst the second decay rate has a much
slower roll-off resulting into what is called the “aftersound” of a piano note
(Weinreich, 1977). This compound phenomenon is known as the double decay rate
effect. There are mainly two factors believed to be associated with the double decay
rate of the sound of a piano note; first, the polarisation of the strings (vertical and
horizontal motion) and second, the coupling effect between different strings of the
The model developed in this chapter can ultimately be used to

same piano note.

describe both of these factors.

4.2.1 The general model

Single piano notes mainly comprise two or three strings grouped together. The
complete response of three masses, m;, m, and m;, representing three vibrating strings

in the vertical and horizontal motions (two polarisations) is shown in Figure 4.1:

X; yi <1
ki v k2 > & v ke
Vertical
meort ilocr[zl: — m EEAVAVANEE m; VAVAVANEE m;z
— ] 1
¢ 24| e T s AAA s
Fx; Fy, Fz;
X2 Y2 22
ks ve[ ks yv[ k7 v > ks
Horizontal
;l;ltzlzrrlla m YN :|/VV\_ m; —
— —— H—
Cs AL, o L ¢ AL,
Fx, Fy; Fz3

Figure 4.1 — Coupled six-degree-of-freedom-system with motion represented both in

the vertical and horizontal directions
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where m;, m, and m; are the same for all three strings, and the stiffness terms may
vary between the three strings: k; k2, k3 and k4 represent the stiffness in the vertical
polarisation, ks, ks, k7 and kg represent the stiffness in the horizontal polarisation, also
¢y, ¢z, ¢3 and ¢4 represent the damping in the vertical polarisation, cs, ¢, ¢7 and cg
represent the damping in the horizontal polarisation, x; y;, z; represent the
displacement of masses m;, m; and m; in the vertical polarisation, x, y», z» represent
the displacement of masses m;, m, and m; in the horizontal polarisation, Fy;, Fy;, F;
represent the forces acting on masses m;, m, and m; in the vertical polarisation and
Fy2, Fy2, F represent the forces acting on masses m;, m; and m;3 in the horizontal

polarisation.

The additional dashed arrows represent the coupling of each mass in any polarisation
with every other mass in any polarisation. The coupling between two masses (or

oscillators) can normally be expressed with a stiffness and a damping parameter.

The above full model is appropriate to be solved either analytically or numerically.
However, in our case the objective is to derive simpler relationships of the coupled
motion of the strings in order to understand the mechanism of coupling and the double

decay rate effect.

Let us now consider a simple two-degree-of-freedom system dynamic model as
shown in Figure 4.2. In this particular example, each mass can either represent the
vertical (or horizontal) motion of one string coupled with the response of a second
string through the bridge, or the modelled masses can represent the coupled vertical
and horizontal motions of one string only. The two masses, mass m; and m;, are
connected through coupling of a spring with stiffness k. and a dashpot with viscous
damping c, representing the properties of the bridge. Displacement responses x, y

represent the displacement for each mass due to forces F; and F, respectively:
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Cy I—P Ce I—> ()

Figure 4.2 — Coupled two-degree-of-freedom-system
The equation of motion for massm, is
mi+cex+kx+cx+kx=cy+ky+F 4.21-1)
Defining the following parameters

a)12 :£’ w32 = £, , 28,0, :i’ 28, =L 4.2.1-2)

m, m, m, m,

By taking Laplace transforms, and using the substitutions given in (4.2.1 — 2),

equation (4.2.1 — 1) becomes

[ + 28 @5 + @} )+ 2L 05 + @2 )X (5) = 28 0,5 + @02 Jr () + % 4.2.1-3)
1
Similarly, for mass m,, the equation of motion is
my+c,y+k,y+cy+ky=cit+kx+F, 4.2.1-4)
Hence,
(52 + 28,05 + @)+ 28,0, + @2 )Y (5) = |2 0,5 + @ Jx (5) + Ffﬂ—(” (4.2.1-5)

2

Now introduce the following substitutions
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a(s) = (s’ +2{ 05 + @) + (25 ,0,5 + @]
B(s)= Qo5 + @)
()= (s* +28,0,5 + @) + (25 0,5 + @]) 4.2.1-6)
O(s)= 2L, w,s + @} )
E(S) _ Fl(s),E(s) — Fz(s)

m, m,

Using system of equations (4.2.1 — 6), equations (4.2.1 — 3) and (4.2.1 — 5) can be

written as

1 _ _
X (s) —E[V(S)Fl(s)"‘ﬂ(s)Fz]

| B - 4.2.1-7)
Y(s) =——[8(s)F (s) + a(s)F, |
A(s)

where A(s) = a(s)y(s)— f(s)d(s). Recalling equation (C - 1) of Appendix C, the

coefficients of the 4™ order polynomial, which represent the polynomial A(s), are

A =1
A, =20,0,+2¢,0,+2¢ 0, +2{, @,
A =0+, +4 0,0, +4 0,0, + o +4{ 0.0 ,0, +4{ 0.0 0, + & -4, 0.0 0,
A, =20 0w +2{00; + 20,0 + 200,07 +2{,0,0; +2{,0,0;...
28,00 +2{ 0,0 - 20 w0, ~20.{,0,

A= 0003 + 070 + 0705

The roots of A(s) can now be used to calculate the damping and natural frequencies

of the coupled oscillators, and the numerators in (4.2.1 — 7) reflect the “participation”

of each mode in the response of x(#) and y(¢). By taking the inverse Laplace
transform of system of equations (4.2.1 — 7), one can now obtain the responses, x(t)

and y(?), of the two coupled masses respectively

x(0)= gL (r())* L' (F,)+ L (B(s))* L (F, )} (4.2.1-8)
y(0) = g0 L (8()* L (F )+ L ()= L (F, )} (4.21-9)
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where g(t) = L'{ﬁ} , .. this is the impulse response corresponding to the transfer
s

function of L In particular,
A(s)

g)=L" L 4.2.1 -10)
(s

2120 o, s+ @ Ns® +28, 0,5+ @) )

where @,, @, are the roots of A(s) that can be found as per equation (C - 1) and ¢,
¢, are the damping ratios for each mode of the dynamic system that control the

different decay rates. So, by using partial fractions, one can use equation (4.2.1 — 10)

to describe the two different modes of the coupled dynamic system as follows

As+ B
(s> +20 @5+ @)

g, (= L_l{ } is mode 1 of the coupled system

and

Cs+D
s> +2¢,0,5 + @]

g,(H)= L'l{ } is mode 2 of the coupled system

Alternatively to equations (4.2.1 — 8) and (4.2.1 — 9), the total forced responses

x(t)and y(¢) can be found by directly solving for the coupled second order

differential equations (4.2.1 — 1) and (4.2.1 - 4) directly. Specifically, the following

can be written

m 0 || X N cte, —c, | x . ki+k, -k x| | K
0 m2 y _Cc C2+Cc y _kc k2+kc y - F2
A set of reduced ordinary differential equations can therefore be used to numerically

solve for x(¢), x(¢), y(¢t) and y(¢), as shown in equation (4.2.1 — 11) in state space

form
X 0 1 0 0 X 0
d| x| [k +k)[m (e, +c)/m, k. /m, c,/my i | R | (4.2.1-11)
dr|y| 0 0 0 1 y| |0
kc/mz Cc/mz —(k, +k, )/m2 —(c, +c, )/m2 y F,
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This formulation will be used later to demonstrate the effect of the double decay rate

in the case of coupled oscillators in the time domain.

4.2.2 Digital waveguide model analogy

As mentioned in the previous section, the general model of coupled oscillators, can
either be used to model the vertical (or horizontal) motion of one string coupled with
the response of a second string through the bridge, or can be used to model the

coupled vertical and horizontal motions of one string only.

This section draws analogies with the digital waveguide model, as described in
section 3.4, for the response of one string, coupled with another, due to a single force

excitation.

One recalls equation (4.2.1 — 3), which is the equation of motion of mass m, (for

example representing the response of one string for a single polarisation)

[(52 +20,@5 + a)lz)"" (2§3(03S + @ )]X ()= [2;3a)3s + CO?}Y(S) + 55

m,

Recalling (4.2.1 - 5), which is the equation of motion of mass m, (for example

representing the response of a second string in the same polarisation)

F, (s
[+ 26,015+ )+ e+ 2y 0=t + il )= B
2
Introducing the following substitutes
H (5)=5"+2{ s +
H (s)=s"+20,0,5 + 0, 4.22-1)

C.(s) =205 + a)zz
C,(s)=20,0,5+ @,

Equations (4.2.1 — 3) and (4.2.1 — 5) can be written as
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X(s)=— Sy HG 4.22-2)
H (s)+C.(s) H (s)+C (s)

visy=— 0%y BG 4.22-3)
H ,(s)+C,(s) H,(s)+C,(5)

Since there is only one force exciting one of the strings, one sets F, =0. Hence, the

response of one string, as described in (4.2.2 — 2), can be written

H, (5)+C,(s)

X(s)=
H (S)H (s)+ C,(s)H (5)+ C (s)H (5)

F(s)  (422-4)

Recalling equation (3.4.1 — 3) representing the response, S, of one coupled string in

terms of an equivalent digital waveguide representation

S,(s)= G ($)E(s) (4.2.2 - 5)
1-C,(5)C,(5)G,(5)G,(s)
where E(s)= F(s).
Introducing the following substitutions
G (s) = ;
SUTH (5)+Cl(s)
1
G2 (S) = m (4.2.2 - 6)
Ci(5)=C,(5),C,(s5) =C ()
Equation (4.2.2 — 5) becomes
S,(s) = H,)+C, () E(s) 4.22-7)

H (s)H (s)+C.(s)H (s)+C (s)H (s)

Equations (4.2.2 — 4) and (4.2.2 — 7) are therefore identical, so the simple coupled
model of two strings is equivalent to the digital waveguide representation as discussed

in section 3.4.
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4.2.2.1 Identical oscillators
In the case of two identical oscillators, one writes

H (s)=H (s)=H(s) and C.(s)=C,(s)=C(s) (42.2.1-1)
Therefore, equation (4.2.2 — 7) becomes

H(s)+C(s)
H*(s)+2C(s)H ()

S, (s)= E(s) 4.2.2.1-2)

The roots of the denominator of equation (4.2.2.1 — 2) define the dynamics of the
coupled system, i.e.
H(s)(H(s)+2C(s))=0 (4.2.2.1-3)
Equation (4.2.2.1 — 3) can be factorised into two terms
H(s)=0 and H(s)+2C(s)=0

This shows that the coupling of two identical oscillators will result in two modes; one

of which is identical to the uncoupled mode.

Assuming for convenience that E(s)=1 (unit impulse force) and by the taking

inverse Laplace transforms of equation (4.2.2.1 - 2), one obtains

1 N C(s) 1
H(s)+2C(s) H(s) H(s)+2C(s)

5,(t) = L‘{ } (4.2.2.1-3)

where the term

rl(t):L‘{C(s)}:L‘l{ _ N }
H(s) (s* +20w,s + wy)

represents one mode in the response of s,(#), which has the same properties as that of

the uncoupled mode.

Further, the term
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rz(t)=L_l{—l }:L_l[ 2 (o) 2}
H(s)+2C(s) (s*+2 ws+ )

represents the second coupled mode in the response of s,(¢).

This can also be demonstrated with a simple example of two identical oscillators with

the same uncoupled damping
@, = @, =173 2 rad/s with ¢, =c, =0.1 Ns/m

and the coupling parameters of the bridge are k, =100 N/m and ¢, =1 Ns/m.

Solving for equation (C - 1), one can obtain the coupled frequencies, @, ,®,,  and
damping ratios, ¢ ,{,. of the dynamic system (“c” subscript denotes the coupled

parameter). The solutions are two quadratic pairs represented by solution T

—10.5£178.6i
T = 4.2.21-4)
-0.5+173.2i

Hence, from the two solution pairs of equation (4.2.2.1 — 4), one obtains respectively

@ =105 @, =05
{ ;l,c l,c } and{ gz’c 2.e } (4.2.2.1—5)

@ A1-¢7. =178.6 @, \1-¢;. =1732

Solving for the system of equations (4.2.2.1 — 5), one obtains the properties of the two

modes of the system

@, =178.9 rad/ with ¢, . =0.06

@,, =173.2 rad/s with ¢, =0.003

2,¢

Ratio of damping terms between the two coupled modes: =20

Therefore, despite the coupling between the two strings, one of the resulting coupled

modes will be identical to that of the uncoupled mode. In physical terms, there is
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symmetry in the system and the two strings will move together in-phase through the

coupling of the bridge, which acts as rigid link.

Finally, the ratio of damping terms between the two coupled modes is 20 times larger
than that of the uncoupled modes, which means that there are two very different decay
rates. This may ultimately result in the characteristic double decay rate of the

reproduced piano sound, when both of these modes are appropriately excited.

4.2.2.2 Mistuned oscillators

In the case of two “mistuned” oscillators, one introduces a small change X(s) in the

system response. The word “mistuning” is used when the fundamental frequencies of

two strings may vary by a small amount. One can write
H (s)=H (s)+X(s)
Note that the coupling in both masses is identical

C.(s)=C (5)=C(s)

Equation (4.2.2 — 7) becomes

55 = H.(s)+X(s) + C(s) £
H (s)[H, (s)+X(s)]+ C(s)[2H (s) + X(s)]
S,(s) = H () + X(s) + C(s) E(s)  (4222-1)

[H,.(s) +Z($)][H (s)+ C(s)]+ C(s)H .(s)

Assuming for convenience that E(s) =1 (unit impulse force) and by taking inverse

Laplace transforms of equation (4.2.2.2 — 1)

- 1
S,@t)=L [[Hx(s) FXIH () + C)l + COYH (s) [H (s)+X+C(s)] |(4.2.2.2-2)
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From the above formulation, it is not obvious analytically which are the modes of the
coupled dynamical system and how they interact with each other, so a numerical

example is presented later in section 4.2.3.2.

In a simple example of two mistuned oscillators, one assumes that the oscillators

differ by about 1 rad/s (or about 0.2 Hz)
w, =172.2 rad/s and @, =173.2 rad/s with ¢, =c, =0.1 Ns/m
As before, the coupling parameters of the bridge are k, =100 N/m and ¢, =1 Ns/m.

Solving equation (C — 1), one obtains the properties of the two modes of the system

o, =178.4 rad/ with ¢, =0.06

@, =172.7 rad/s with ¢, . =0.003

Ratio of damping terms between the two coupled modes: i =20
2,c

Hence, in the case of the mistuned oscillators, both of the natural frequencies of the
coupled modes will differ from the values for the uncoupled system. The ratio of
damping terms between the two coupled modes is again 20 times larger than that of

the uncoupled modes, which means that there are two different decay rates as before.

4.2.3 Double decay rate demonstrations

In this section, one illustrates the effect of double decay rate, as captured in a typical
piano note recording, using the Hilbert transform. Further numerical simulations are
carried out in an attempt to replicate this effect in the case of mistuned coupled

oscillators representing real piano strings.
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4.2.3.1 Effect in a real piano recording

In this section, the double decay of a typical piano note recording is observed through
the use of the Hilbert transform. The Hilbert transform, f (1), can be used to generate

the analytical representation of a signal, f(¢)
fo=L[L240 @.23.1-1)

The analytic form of a signal is complex valued and the “instantaneous” amplitude of
the signal can be defined as the amplitude of the analytic signal and can be used to

calculate the decay rates in the time domain.

Figure 4.3 shows the evaluated instantaneous amplitude of a real piano note Cj, which
was sampled at 44.1 kHz, at the fundamental and first two harmonic frequencies using
recordings from the “Gigastudio” sample library. The acoustic signal was passed
through band pass filters centered at the fundamental and the first two harmonic
frequencies respectively with a selected 40 Hz bandwidth. Then, the instantaneous
amplitudes were obtaining by evaluating the Hilbert transforms for each of these
filtered signals, as shown on a natural log scale:

Double decay rate effect of piano note C3

Fundamental
1st harmonic
2nd harmonic

Magnitude

Time [sec]

Figure 4.3 — Double decay rates of piano note C;
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From Figure 4.3, it can be seen that for the fundamental and first harmonic frequency
there is a relatively fast decay up to about 2.2 s and 3 s respectively, followed by a
slower decay. However, in the case of the second harmonic, the first decay rate may
only seem to last about 0.2 s and then it is followed by a much longer second decay
rate. Therefore, it can be deduced that the double decay rate characteristics will be
different for the different frequency terms (fundamental and harmonics). In addition,
it is not understood how the decaying rates of the different frequency terms contribute

to the way the overall note is perceived (Weinreich, 1977).

Finally, the “dips” at the point where the second decay rate takes over from the first
decay rate of each frequency can be attributed to the local destructive interference
between the two different modes of the acoustic response forming a local minimum
(Weinreich, 1977). Mathematically, it can be proved that the resulting “dip” may be a
function of the mistuning relationship between two oscillators. A simple example is

illustrated below.

To demonstrate this, one considers two coupled oscillators with frequencies @, and
w,, where @, =@, + A« (Aw representing the mistuning parameter). Consider also

that the amplitudes and damping factors of the two oscillators are identical. The

resulting response s(t) would be
s(t) =sin(awyt) +sin(@, + Aw)t 4.23.1-1)
Alternatively, equation (4.2.3.1 — 1) can be written as
s(t) = sin(wlt)(l + cos(Aa)t))+ cos(a@t)sin(Aat) 4.231-2)
Equation (4.2.3.1 - 2) is zero provided
Aat=r

Therefore, a “dip” will form in the time domain response when
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From Figure 4.3, it can be deduced that a dip at about 2 sec would be associated with

a 7/2 mistuning relationship between two coupled oscillators.

4.2.3.2 Simulations

This section presents numerical simulations associated with identical and mistuned
oscillators with the same physical properties as described in sections 4.2.2.1 and
4.2.2.2 respectively. The objective of these investigations is to deduce which factors
promote the appearance of the double decay rate. Solving for the reduced ordinary
differential equations, as described in (4.2.1 — 11), one can therefore obtain the

separate decay rates associated with coupled masses, m; and m;, in the time domain.

Initially, the masses are excited with equal amplitudes and in-phase forces. These
mistuned oscillators have the same physical properties as presented in section 4.2.2.2.
The forcing characteristics are similar to half-sine pulses representing the excitation
of the hammer acting on the strings. Figure 4.4 shows the response of the coupled
masses in the case of mistuned oscillators on a natural log scale:

Response of mistuned oscillators, m, and m,

[ [
response X of mass m

Magnitude

Magnitude

Time [Sec]

Figure 4.4 — Decay rates of mistuned coupled oscillators when both masses are

excited with equal amplitude and in-phase forces
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From Figure 4.4, it can be seen that there is no clearly identifiable double decay effect
despite the ratio of the damping terms of the coupled modes is 20 times higher than
the uncoupled one as discussed in section 4.2.2.2. However, as mentioned in section
2, an out-of-phase relationship between two coupled strings may promote the
appearance of double-decay rate (Weinreich, 1977; Hundley at al., 1978). In order to
induce a phase difference in our simple model, the two mistuned oscillators are
excited with equal amplitude, but out-of-phase forces (simplification of the true

physics of the real dynamical system). Figure 4.5 is obtained:

Response of mistuned oscillators, m, and m,

T T T T
i i i

response X of mass m

Magnitude

Magnitude

Time [Sec]

Figure 4.5 — Decay rates of mistuned coupled oscillators when both masses are

excited with equal amplitude and out-of-phase forces

From Figure 4.5, a clear formation of the double decay rate effect is observed for
mass m; (the one with the opposite force excitation applied to). The latter figure
resembles the effect observed in the case of a real piano recording as shown earlier in
Figure 4.3. Indeed, from Figure 4.5, it can be seen from the response of mass m, that
there is a fast decay rate up to about 0.42 s followed by a second, much slower, decay

rate lasting over a period of 1.5 s in total.
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Note also that the resulting double decay rate effect will be dependant upon the
“participation” of each mode, which in turn is dependent on the initial conditions and

boundary conditions of the model.

Additionally, Figure 4.6 is also obtained showing the response of masses m; and m; in
the case of identical oscillators having the same physical properties as presented in
section 4.2.2.1 earlier. Note that the resulting responses of mass m; and m, are almost

identical as shown in Figure 4.6:

Response of identical oscillators, m, and m,

1

response x of mass m

Magnitude

Magnitude

Time [Sec]

Figure 4.6 — Decay rates of identical coupled oscillators when both masses are

excited with equal amplitude and out-of-phase forces

From Figure 4.6, it can be seen that despite the out-of-phase excitation forces acting
on the identical oscillators, there seems to be only a single identifiable decay rate,
which lasts about 0.7 s and after that the responses dip into the simulated noise floor

associated with the numerical estimation process.

From the above investigations, it can therefore be deduced that both the phase
difference between two coupled oscillators and the relative mistuning between the

two can promote the clear appearance of a double decay rate effect.
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4.4 Physical modelling of multiple strings

This section is used to describe a physical model representing the dynamics of N
strings coupled with the bridge of a piano. This type of physical modelling
effectively represents a further extension of the generalised model of coupled
oscillators and is a frequency domain mobility-based method. The following analysis
is partially based on the modelling of coupled strings connected to a vibrating body in
which the body is represented by a beam clamped at both ends (Carrou et al., 2004).
Note that only the vertical motion of the strings and the bridge are modelled here,

although the physical model can be extended for the horizontal motion too.

4.4.1 General model of N number of strings

A frequency domain model with N strings, which are attached to a pinned-pinned
beam representing the bridge, is discussed using a mobility-based approach. Figure

4.7 describes such a coupled dynamical system:

string s String §» string sy

and in terms of velocities:
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string §; string s String Sp

Figure 4.7 — Diagram of forces and velocities in the case of N number of vibrating piano

strings when coupled with a finite length beam

F,, F, and F, are the external forces applied at the strings, F,,, F,, and F, ,
are the internal forces acting on the strings at the attachment points with the beam,
whilst F, and F, and Fj are the internal forces acting on the beam. V;l, V> and
! 1 >
V* are the velocities of the strings due to F,, Fand F, . Finally, V|, V;* and
Pn P P2 Pn

V'’ are the common velocities with V,, V, and V, acting on the strings and the beam.

n

The general formulation of the mobility response Y (ratio of velocity over force) for

N strings can be expressed as follows. Note that the subscripts of Yx‘j';z refer to the
mobility between points x, and x, and the superscript refers to a particular string s,

of the modelled physical system

s T 70 7 r s T
Yy +Y, Y, Y, FmB _Ylpll Fpl
Sy _V5
Y21 Yzz' +Y22 an FPzB Y2P2 sz
Sy Y5
L Ynl Yn2 Ynn + Yrm a _FPnB a L ann Fpn _

So,
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_ T P, -1 r s .
FmB ' +Y, Y, Y, _Ylpll Fm
P} S
FPzB Y, Yo +Y, .. .. Y, - YZ;Z sz
S, _V5n
_FI’nB i L Ynl Yn2 Ynn + Ynn _ L ann FI’n a

One can therefore obtain the velocity response of any string s, at any point x along its

length according to
sz,, — FpHBYnic” + Fp,, Y;:x (4.4.1 - 1)

The above generalisation is important since the piano consists in excess of 200 strings
mainly grouped in pairs or triplet of strings for the 88 piano notes. The following

section investigates the response of a pair of coupled strings in the frequency domain.

4.4.2 Response of a pair of strings

4.4.2.1 The model

Normally, in the second octave from the lower octave register of the piano and above,
pairs of strings are used for the notes, whilst for higher octaves, triplets of strings are

used to make up the piano notes.

From equation (4.4.1 — 1) and in the case of a pair of strings, one can obtain the

response of strings s, and s, at any point x along their length as follows
Vi=F, Y +F, Y 44.21-1)
V;z — FAZBYZSJ? + FA2 YA‘; 44.2.1-2)

where F, and F, can take any amplitude and phase form, for instance unity or zero

and are applied at points p, = A, and p, = A, of the two strings.
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V' and V> should also exhibit coupled resonances due to both strings and also due

to the beam dynamics.

Note that an alternative modelling approach is presented in Appendix D by working
out the boundary conditions for the respective equations of motion of the beam and

the two strings.

In the simple case of a single string s attached to the beam, one needs to calculate the

following point and/or transfer mobilities

s . - qons(yi)¢ns(yj)

Y' =iw 44.2.1-3
SIS @ (Ut ) -a) ( )

where oy, S;, [; and 77, denote the density, the cross-sectional surface area, the length
and the loss factor of the material of the string respectively. n denotes the mode shape

number of mode ¢, (y) of the string and the modes are given (Gardonio and Brennan,

2004)

qo,,s(y)=\/5sinkmy,wheren =1,2...and k,, :’;—ﬂ

The natural frequencies of string s (assuming no bending stiffness or inharmonicity

factor B) can also be found from

where ¢, = \/z , p 1s the mass per unit length of the string and T is the tension of the
Yol
string.

Note also that principle of reciprocity implies that Y, =Y/

XXt

4.4.2.2 Numerical simulations

The dynamical behaviour of two strings attached to a finite length beam can be
simulated numerically using equations (4.4.2.1 — 1) to (4.4.2.1 — 3). Suppose that the

strings are slightly mistuned by about 2 percent (= 0.2 Hz) as shown before in section
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4.2.2.2 but their natural frequencies are set higher, i.e. their natural frequencies are
224.4 Hz and 224.6 Hz, as in the case of a real piano, and suppose that only string s,
is excited by a unit input force. Figure 4.8 below shows the resonance frequencies of

the coupled dynamical system for the forced response including that of the finite

length beam at 726.1 Hz.

Response of two strings
10

I
I
l
10 +---- :————4————4————#———

I

Velocity [m/sec]

string Si [

string S,

| | | | |

| | | | |

| | | | |

| | | | |

L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Frequency [Hz]

Figure 4.8 — Frequency response of the coupled dynamic system at application point

A, of force F, onstring s, and response of string s, at point A,

Consider now the power input into the two strings and the beam by exciting string s,

only. The time-average power input into strings s, and s, are respectively

P, = %RG{FAI Vy'yand P, = %RG{FMV;*} 4.4.22-1)

where VASII* is the complex conjugate of velocity of string s; at point A, of the applied
force F, , and V,>"is the complex conjugate velocity of string s, at the attachment

point with the beam when F, =0

5% % 5 *yrs) sp% 5 5y
Vil =F,pY, +F Y, and V,® =F, Y,
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The time-average power into the beam is

P

beam

- %Re{FBIVI* +F, V) (4.4.2.2-2)

where V," and V, are the complex conjugate velocities of the beam at the attachment

points with strings s, and s,

m _| F {YS le}
V; FBz YZ*I Y;Z
Using equations (4.4.2.2 — 1) and (4.4.2.2 — 2), Figure 4.9 can be obtained that shows

the power into the driven string s, and also the power transferred into the beam and

string s, :
2 Power input for two strings and a finite length beam

z

5

o

£

9]

]

o

a
string s
strings, [
finite beam

|

L L
400 500 800 900 1000

Frequency [Hz]

Figure 4.9 - Power input for two coupled strings and a finite length beam

From Figure 4.9, it can be seen that most of the power input dissipates through the
material damping of the string and relatively less will be transmitted through the
coupling to the beam and the other string. However, the above model does not
account for acoustic radiation losses. The acoustic radiation will primarily be related

to the soundboard, which is discussed in the next section.
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4.5 Experiments on the coupling of strings with the soundboard

So far, the importance of mistuning between strings of the same piano note and the
double decay rate effect has been investigated. In this section, vibration
measurements on a real grand piano are carried out in order to further investigate the
coupling of the piano string with the bridge and the soundboard in the vertical and
horizontal directions through the measurement of transfer mobilities. Also, in this
section, one attempts to approximately correlate measured point mobilities of the
ribbed soundboard and bridge with known theoretical formulations for such built up

structures.

4.5.1 Transfer mobilities

Measurements were carried out at various locations on the bridge and the soundboard
of a ‘Kawai’ baby grand piano using a PCB instrumented hammer, Type 086C03, and
a PCB accelerometer connected to a high-end data acquisition system (B&K, Type B-
frame) using the B&K PULSE software. Transfer mobilities between the bridge and
the soundboard were measured to investigate the energy transfer between a vibrating

piano string and a soundboard in the horizontal and vertical directions.

The excitation at the bridge represented the direct excitation of a piano string acting
on the bridge and the response was initially measured vertically on the soundboard
with the accelerometer. However, since it was not possible to measure the response
of the soundboard in the horizontal direction due to space constraints, the excitation
was provided horizontally by the hammer and the response was again measured
vertically at the same point on the soundboard. The methods of excitation and

response measurement are illustrated in Figure 4.10:
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Figure 4.10 — Transfer function measurements between bridge and soundboard

for vertical and horizontal hammer excitations. Response is always measured

vertically on the soundboard with an accelerometer.

Figure 4.11 below shows a typical transfer function measurement between the bridge

and the soundboard for the horizontal and vertical hammer excitations:
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Figure 4.11 — Transfer function measurement for the vertical and horizontal hammer

excitations. Response is always measured vertically on the soundboard with an

accelerometer.
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From Figure 4.11, it can be seen that the measured vertical response on the
soundboard, due to a horizontal excitation, can be up to 20 dB lower than its response
due to a vertical excitation for frequencies up to about 1,000 Hz. This interesting
finding suggests that an excitation in one direction might induce a small response in
the other direction too. As a result, one may suggest that the response of a piano
string in one direction will be cross-coupled with response of the soundboard in the

other direction.

4.5.2 Point mobilities

Point mobilities at the soundboard and bridge were also carried out in the vertical

direction. A typical such measurement on the bridge is shown in Figure 4.12:

Figure 4.12 — Typical point mobility measurement at the bridge of the piano

Figures 4.13 and 4.14 below show typical point mobility measurements at the bridge

and the soundboard respectively:
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Figure 4.13 — Typical measured point mobility at the bridge close to piano note Dj.

First two resonances at 167 Hz and 224 Hz in the dynamical system are indicated.
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Figure 4.14 — Typical measured point mobility on the soundboard. First two

resonances at 167 Hz and 224 Hz in the dynamical system are indicated.

From Figures 4.13 and 4.14, it can be seen that the first resonance frequency,
measured either at the bridge or the soundboard, is centered at 167 Hz and it is in this

view that this resonance relates to the first resonance frequency of the soundboard.
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Note that Giordano (1997 and 1998) previously measured the first resonance
frequency at 100 Hz for a larger grand piano, therefore the higher resonance
frequency is a consequence of the smaller size of the piano. Also, the fact that the
first resonance associated with the soundboard can be measured directly both on the
bridge and the soundboard, it implies that the bridge and the soundboard are strongly

coupled.

In order to understand further the response of such a complicated coupled dynamical
system, one can attempt to correlate the measured point mobilities of the ribbed
soundboard and bridge with known theoretical formulations for such built up

structures. This is undertaken in the following section.

4.5.3 Theoretical considerations

The power P that enters a homogeneous dynamical system, such as a plate or a beam

of mass m, which is excited by a point force with frequency band A is proportional
to the modal density n,(w) and the mean-squared force F’ in that frequency band

(ESDU 04010, 2004)
P=F*(z/2m)n,(w)

P=F?Re(Y.)

where Re(Y_) is the real part of the point mobility of an infinite system averaged over

the frequency band and space and is independent of the boundary conditions. Note
that for a homogeneous structure, such as a finite isotropic plate, the point mobility

can be approximated by that of the infinite structure.

In the case of a real piano, the mechanism of sound radiation is related to the dynamic

behaviour of the bridge coupled with the ribbed soundboard.

The theoretical point mobility of an infinite beam for flexural wave motion under a

force excitation is
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()

453-1
- ise ( )

where the complex wavenumber k, = "’ (pS / EI )0‘25, and p, S, E and [ are the

density, cross-sectional area, Young’s modulus of elasticity and second moment of

area of the structure, respectively.

On the other hand, for longitudinal wave motion, the point mobility of an infinite

beam is constant and independent of frequency

_ 1
© 2S.\Ep

4.5.3-2)

Similarly, the point mobility of an infinite plate due to flexural excitation by a point

force is independent of frequency and is of the form

1
Y = 4.5.3-3)
8\ Dph
E 3
where 4 is the thickness of the plate, D = m and v is the Poisson’s ratio.
i 4

However, in the case of the piano, motion will be complicated due to the coupling of
the glued bridge on the soundboard and its ribs. An approximate response, divided
into two “regions” can be obtained by considering the effect of a “grillage of beams”
on a plate as described by Pinnington (1988). This is demonstrated in the measured
data in Figure 4.15, where the fluctuating measured pointed mobility on the
soundboard, as shown in Figure 4.14, may be approximated with these two regions

(regions 1 and 2):
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Figure 4.15 — Typical measured point mobility on the soundboard with two

approximate regions (fitted regions of Figure 4.14)

In the case of the piano, the beams are the stiffeners of the soundboard and for
simplicity one may also assume that the soundboard and the glued bridge are acting as
one system instead of being treated separately. According to the theory of such built
up structures, at low frequencies, up to roughly the first flexural resonance of the
soundboard, the system will act as a spring of stiffness k, so the point mobility will
sharply increase over that frequency range, as seen in Region 1 of Figure 4.15.
However, for higher frequencies, the point mobility will reach roughly a constant
value (Region 2) and may be approximated by that of an infinite plate as described
earlier in equation (4.5.3 — 3). In the fact, the response of the soundboard at high
frequencies will be broad, as discussed in chapter 3 and by other authors (Giordano
1997 and 1998), resulting in a multi-modal, Statistical Energy Analysis (SEA) type
response. This further justifies that the cepstrum of the response of the soundboard
would appear in the low-time regions, as originally speculated in chapter 3

(Karatsovis et al., 2006).

104



Acoustic Features of Piano Sounds Chapter 4

4.6 Conclusions

This chapter presents a simple analytical model for describing the effect of the double
decay rate as can be observed in a real piano recording. The model was developed
upon the response of two masses connected through linear coupling. In this model,
each mass can either represent the vertical (or horizontal) motion of one string
coupled with the response of a second string through the bridge, or the modelled

masses can represent the coupled vertical and horizontal motions of one string only.

It was shown that the formulation of the general model of coupled oscillators is
identical to the formulation of digital waveguides as shown in chapter 3. Also, from
numerical simulations in the time domain, it was possible to clearly replicate the
double decay rate effect in the case of mistuned oscillators, when there is an out-of-
phase relationship between the two. From these investigations, one deduced that the
phase difference between the two oscillators and the relative mistuning between the

two can promote the appearance of a double decay rate effect.

A physical model was also developed to describe the dynamics of multiple strings as
an extension to the general model of coupled oscillators. The example of two coupled
strings, slightly mistuned, of a piano note and coupled with a finite length beam was
also illustrated. Furthermore, a power flow analysis was carried out by exciting one
string and evaluating the power that goes into the other string and the beam. From
this investigation, it was shown that most of the power input dissipates through the
material damping of the string and subsequently less will be transmitted through the

coupling to the beam and the other string.

Measurements were also carried out on a real baby grand piano in order to further
understand the coupling mechanism between the soundboard, the bridge and the
string. Transfer mobility measurements were carried out in order to deduce how the
energy is transferred in the vertical and horizontal directions. It was found that an
excitation in one direction might also induce a small response in the other direction.
As a result, one may suggest that the response of a piano string in one direction will

be cross-coupled with response of the soundboard in the other direction.
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Finally, point mobility measurements were carried out on the bridge and the
soundboard in order to deduce the response of such a complicated dynamical system.
From these investigations, it was found that the first resonance of the soundboard can
be measured both on the bridge and the soundboard since they are coupled. These
dynamics of such a system were further explained through the use of theoretical
mobilities. Indeed, such a dynamical system may be approximated with the response
of a grillage of beams mounted on plate. Two important frequency regions exist; for
low frequencies, the system will act as a spring of a given stiffness and for higher
frequencies, the point mobility will reach a constant average value approximating the
point mobility of an infinite plate. At high frequencies, a multi-modal behaviour of
the soundboard will result in a broad, SEA-type behaviour further justifying our
original hypothesis that the soundboard appears in the low-time regions of the

cepstrum as outlined in chapter 3.
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Chapter 5

Proposed signal model in a Bayesian formalism

5.1 Introduction

The main themes of this research have been the analytical formulation and
computational demonstrations of two of the most important features that characterise

the piano sound; the inharmonicity and the double decay rate effect.

This chapter initially introduces a very basic form of modelling a piano note, as part
of an early prototype model, which is described in section 5.2. The remainder of this
chapter presents the pitch estimation of simulated and real monophonic and
polyphonic piano note recordings using a more comprehensive model and a more
elaborate algorithm implementation, which could ultimately be used in future music

transcription methods.

In the past, most efforts in the development of music transcription methods for
monophonic and polyphonic music performances had been focused on the analysis
and interpretation of recordings without necessarily considering the complex nature of
the modelled sound. Such methods tend to employ a simplistic representation of the
signal. On the other hand, in this research, a potentially more detailed signal model
representation of the piano sound, in particular, is proposed, so that it may ultimately

form the basis of an improved transcription method in the future.

In this chapter, a signal model, based mainly on the properties of the inharmonicity
effect is proposed, which can be used in a probabilistic Bayesian formalism
framework, similar to the one adopted earlier by Godsill and Davy (2002). A
monophonic model representing single notes and a polyphonic signal model
representing a multitude of notes, such as music intervals, are proposed. The
advantage of the proposed models is that their dimensionality may be reduced when
compared to the existing models by Godsill and Davy, hence potentially rendering

them less computationally expensive.
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The potential of the proposed models are illustrated with the transcription of simple
examples of real monophonic and polyphonic piano recordings by implementing the
M-H algorithm and Gibbs sampler for directly estimating the fundamental frequency

and inharmonicity factor of each individual piano note.

The proposed signal models and recordings used are deliberately chosen to be limited
(relative to a full music piece) to gain confidence in the methodology. A full

transcription method is not within this scope.
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5.2 Early prototype model

In this section, a model of the sound of a piano note is presented which does not
include the effect of the inharmonicity or the double decay rate as discussed in
chapters 3 and 4, respectively. The harmonic components are assumed to be integer

multiples of the fundamental frequency and damping is not considered in this model.

The use of the M-H algorithm in conjunction with a Bayesian formalism framework
can be used as a method to estimate the frequency of components in signals with
random Gaussian noise. In later sections of this chapter, the implementation of the
M-H algorithm for multi-variate parameter estimation, e.g. frequency and

inharmonicity, will be discussed in more depth and detail.

The M-H algorithm has its origins back in the ‘50s and was proposed by Metropolis et
al. (1953) and developed subsequently by Alder and Wainwright (1959) in the field of
molecular dynamics, where the energy of a molecule may be predicted based only on
the last collision by forming of what is called a “Markov” chain. The M-H algorithm
can be used to model the successive states of a Markov chain, where the final state of
the chain is used to estimate the parameter space, e.g. the energy of a molecule in a
gas. In this research, the M-H algorithm may be used to obtain the successive states
of a parameter space related to the signal model of an automatic music transcription

model, namely the fundamental frequency associated with a piano note.

A piano note can be described in its very basic form as a simple superposition of the

fundamental frequency and its integer multiple harmonic terms
N
x(t) = @, sin[n27f,t + ¢, ] (52-1)
n=1

where N is the number of modelled terms (harmonics and fundamental frequency)

and the phase term ¢, in equation (5.2 — 1) can be implemented by including a cosine

component

x(t) = ian sin[n27f,t|+ B, cos[n2f,t] (5.2-2)

n=1
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where ¢, and [, are the amplitude terms of the sine and cosine components.

An explanation of Bayesian formalism is presented in Appendix A.

Therefore, equation (5.2 — 2) in terms of the generalised linear model can be written

as
d=Gb+e

where d is an M X1 data matrix (M is the data length of the signal representing only
one single frame of the recording), b is an LXx1 (or equivalent to 2N X1) matrix
containing the amplitudes of the sine and cosine components of the estimated
frequency, and e is an M X1 matrix containing random Gaussian noise entries.
Finally, G is an M XL (or equivalent to M X2N) matrix of the basis functions

defined by the parameters of a piano note.

Equation (A —9) is recalled, which describes the probability density of f,, based on a

Bayesian description of the signal (O Ruanaidh and Fitzgerald 1996)

ld'd-d"G(G GG d] *
Jdet(G"G)

p(wld) (5.2-3)

Expression (5.2 — 3) describes a t-distribution probability function and will peak at the

most probable value of f, of the G matrix.

The M-H algorithm can be used to produce random sequences of samples from given

densities in order to obtain the parameters of a signal. In particular, suppose that X,
is the i" element of a random walk and that the next variate Y, in the random
sequence is produced by simply adding a random perturbation factor & to X, of

mean zero and standard deviation one
Y= X, +¢ (5.2-4)

In a very basic algorithm implementation, expression (5.2 — 3) can be used to draw

probability densities for steps of X, and Y, representing single frequency estimates

for a model with one term N only (or equivalentto L=2)
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2-M 2-M
0'd-d"G, (G1Gy)'GLdl > 0'a-da'6, G16,)'6Ld[: (5.2-5)

p(X,) e \/det(G;GXi 5 p(Y)) e \/det(G;GYi )
where Gy and Gy
[sin(27X1,)  cos(27X t,) | [ sin27Y1)  cos(2aVp,) |
Gy, = Gy, =
_sin(27'£Xl.tM) cos(27'£X,.tM ) | _sin(27.ZY,-tM) COS(2;[YitM )|

The condition on which Y, is accepted instead of X, is defined by the M-H

acceptance function Q

p(Y;)

X,Y,)=
o1 p(X;)

5.2-6)
The magnitude of equation (5.2 — 6) is very small, e.g. of the order of over 10>
(smallest number that can be calculated in MATLAB software package), which can
cause numerical underflow problems. To avoid this, equation (5.2 — 6) is re-written in
terms of logarithms, then set of equations (5.2 — 5) are combined, and finally the

exponential value of the acceptance function is calculated

2-M)

Q(X,,Y,)=exp[Tln[de—dTGyl (G} G,) "G} dl-In[,[det(G}, G ) 2-M)

1= nd'd-d'G, (G1G, ) 'G{d]-In] det(G:Gx.)]}

Let us now assume € is a uniform variable drawn over the range [0,1]. If e<Q, then

X,,, =Y. Otherwise, if €>Q, then X, =X,

The process is iterative and a sufficiently large number of iterations is required to

obtain accurate estimates of the frequency of a signal component.

In the following example, a single piano note C,’ is transcribed, where an estimate of

the fundamental frequency and the first two harmonics is obtained sequentially. The

% The piano is an instrument that covers a large frequency range, typically of more than seven musical
octaves, i.e. from A, to Cg. Therefore, the subscript denotes the note of a particular octave. Figure B.1

of Appendix B also shows typical fundamental frequencies associated with different notes of a piano.
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upper frame of Figure 5.1 shows the time history of the recorded note, whilst the
lower frame shows the evolution of the parameter estimates (frequencies of the
harmonics and the fundamental frequency) against iteration number. The real piano

note was recorded at 44.1 kHz sampling frequency using the “Gigastudio” sample

library:
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Figure 5.1 — Parameter space estimation for a real piano note recording Cy

As it can be seen from Figure 5.1, the initial frequency estimate was set around
200 Hz and 1000 iterations were employed in order to deduce at which point the M-H
algorithm reaches a constant state. Note that the algorithm in this very basic form
requires a good initial estimate. The implementation of a more elaborate algorithm

with an arbitrary initial value is discussed later in section 5.5.1.

The fundamental, first and second harmonic frequencies of the recorded piano note

were estimated as 262 Hz, 527 Hz and 790 Hz respectively.

These estimates were obtained sequentially, i.e. 1000 iterations were employed for the
fundamental frequency and 1000 iterations more for each harmonic in turn. In

particular, once the first frequency is estimated, then the second frequency estimate is
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initialised at twice the first estimate and a further 1000 iterations are used in the
estimation process. Finally, the third frequency estimate is initialised at three times
the first estimate and a 1000 more iterations are carried out. Therefore, each time, this
simple process involves the estimation of a single frequency component for a model

with one term only, i.e. for N =1, as discussed before.

A polyphonic example is now considered, e.g. an octave interval of concurrently
played notes C; and C4. Note that the octave interval was analysed with the same
algorithm as the one used for the single piano note Cs. Figure 5.2 shows the time

series data and results of the analysis:
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Figure 5.2 — Parameter space estimation for a real recorded octave interval Cs - Cy4

From Figure 5.2, the frequency estimates were sequentially computed as 131 Hz,
261 Hz, 392 Hz and 524 Hz, which could either be harmonics of note Cs or of note
C4. As aresult, one needs to introduce a method for differentiating between multiple
notes with commonly shared harmonics. In the next sections of this chapter, the
inharmonicity factor and the double decay rate are used to describe monophonic and

polyphonic piano note signals. The separation of two different notes comprising a
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polyphonic music example can be assisted through the introduction of a different
inharmonicity factor for each single piano note. In this way, the overlap between
harmonics of different notes is reduced, easing the resolution of problems associated

with transcribing music intervals.
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5.3 Proposed model parameters

In chapters 3 and 4, the inharmonicity and double decay rate effect of piano notes
were discussed, respectively, in order to further unravel the importance of these
features mainly from a physical modelling point of view. These features might also
form an important part of the auditory perception mechanism in terms of how piano
sounds are perceived by humans and what information is extracted (or used) by the

listener.

Therefore, the parameters that are used to describe the double decay rate and
inharmonicity are incorporated into the proposed signal models of monophonic and

polyphonic music. These models form the basis of the Bayesian framework.

5.3.1 Inharmonicity

The inharmonicity effect, as discussed in chapter 3 through analytical and numerical
formulations, is the basis of our proposed signal model. As mentioned in section

2.4.2, the response x(t) of a vibrating piano string is a superposition of the

fundamental and non-integer harmonic frequencies due to the inharmonicity B found

in the piano strings. Equation (2.4.2 — 7) is recalled

f,= nf0V1+n2B

The following conjecture is considered: supposing that each note can be represented

by a fundamental frequency f;,, which is associated with the “pitch” of a note and the

inharmonicity factor B, then the extraction of these two parameters may help in
uniquely characterising either single or multiple notes in a recording. The above

assumption forms the core of our proposed signal transcription model.
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5.3.2 Double decay rate

The characteristics of the double decay rate were discussed in chapter 4 through

analytical and numerical demonstrations using the concept of coupled oscillators.

Since in a music passage the played notes might be either short or long in duration,
the following conjecture is considered: the damping of the frequency component
amplitudes of a note may represent either the slow decay rate for played notes lasting
long in a music performance, or the fast decay rate in the case of a fast music passage.
The reason being that fast music passages might only contain the beginning of the
played music corresponding to the first (or fast) decay of the note, where the piano
hammer has just set the piano string to vibrate, but quickly stopped by the damper
mechanism of the piano. On the other hand, longer lasting music passages may be
dominated by the second (or slower) decay rate, where the damper mechanism has not
yet stopped the vibrating piano string by allowing the sound to develop further the

characteristic effect of “aftersound” associated with the second decay rate.

The proposed model may include both possibilities: played notes may last over a long
and/or a short period of time. Note that for the purpose of our numerical simulations

and the transcription examples of single and multiple notes, the damping factors ¢,
are set to zero. The reason for setting the damping factors ¢, to zero is for simplicity,

but also mainly due to the fact that the data is analysed over a small time window of
the order of 100 ms during which the decay of the amplitude is expected to be very

small.

Although not shown, the damping factors ¢ may, alternatively, be treated as

n

nuisance parameters in the Bayesian model and then integrated out.

The above model parameter assumptions lead naturally to the next section, where the

inharmonicity B and the double decay rate, through the damping factors ¢, of the

different frequency components, are incorporated into the proposed model based on

Bayesian formalism.
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5.4 Proposed signal models

5.4.1 Monophonic case

The proposed signal model in the case of single piano notes is discussed in this

section.

Equation (3.2.1 - 2) is recalled describing the inharmonicity effect in a signal and an

additional damping term ¢, is included. According to our previous conjecture, ¢,

may represent the slow and/or fast decay rate of each modelled frequency

N 0.5
x0)=Y ene sin[n2ﬂfo (1+nB) 1+ ¢”] (5.4.1-1)

n=1
The phase term ¢, in equation (5.4.1 — 1) can be implemented by including a cosine

component

x(t) = iane_g sin[nzy;fo 1+ nzB)"‘Sz]+ cos[n27g‘0 (1+ nzB)"‘St] (5.4.1-2)

n=l1

where @, and [, are the amplitude terms of the sine and cosine components, and ¢

is the decay rate of each harmonic term.

Equation (5.4.1 — 2) in terms of the generalised linear model can be written as
d=Gb+e

where d is an M X1 data matrix.

bisa Lx1 (or equivalent to 2N x1) matrix containing the amplitudes associated with

the fundamental frequency and harmonics of the sine and cosine components

b=le, @ .. .. ay B B .. .. B

eisan M X1 matrix containing random Gaussian noise entries.

Finally, G is an M XL (or equivalent to M x2N ) matrix of the basis functions

containing the parameters of a single piano note and can be written as
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¢ sin(oar, (4 B)) e sinldar, (14 4B)) o o e sin(vogp, 1+ M2B)
¢ sinlaag, (1 BY*n,) e S sinldar, (14 4BY%s) o o e sinlvagg, (L4 N2B)
G =
L sinloar, (14 B) 1y, ) ¢ sinlang, (14 4B)0r,) o oo e O sin(vo2 1+ N7B) 1, )
e_g‘r' cos(27y‘0 (l + B)O'stl) e_;zr' cos(479‘0 (l + 4B)0'5t1) € cos N27rf, (1 + NZB)O’5 t |
Pl cos(27g‘0 (1+B)” tz) Pt cos(47g‘0 (1+4B)” tz) e €5 cOS N2xf, (1 + NZB)O‘5 ,
eig' IM cos<27y”0 (1 + B)O‘StM ) eigzt'W 005(479”0 (1 + 43)0‘5 ty ) BRP L cos(Ni;fO (1 + NZB)O‘SIM )_

Consider an existing Bayesian model (Godsill and Davy, 2002; Davy and Godsill,
2002) for a single note

N
x(1) =Y &, cos[(n+8,)27f,t]+ B, sin[(n+ &,)27f,t] (5.41-3)

n=1

where @, and [, are the respective amplitudes of the sine and cosine components,
and J, is called the “de-tuning” parameter associated with each harmonic of a single

piano note.

Clearly, the model of a single piano note of equation (5.4.1 — 3) has higher
dimensionality than the proposed one of equation (5.4.1 — 2) since there is a different
inharmonicity (or so-called “de-tuning”) parameter ¢, for each harmonic component
making the estimation of the parameter space potentially more computationally
expensive. Contrary, the proposed model presented in equation (5.4.1 — 2) involves

the estimation of only one inharmonicity parameter B for each single piano note.
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5.4.2 Polyphonic case

In the case of multiple piano notes, such as music intervals and chords, our proposed

model can further be expanded for an R number of concurrent notes.

Equation (5.4.1 — 2) can be extended to equation (5.4.2 — 1) as follows

x(t) = i ﬁ a, e sin [nZigCOJ (1+n2B, )O‘Sz]+ B, e cos[nzﬂfw (1+n°B, )O‘Sz] (5.42-1)

r=1 n=1
where each note r has its own set of parameters.

From a practical implementation point of view, the dimensions of the amplitude
matrix b would be R-LXx1 (or equivalent to R-2N x1) and matrix G would be
MXxR-L (or equivalent to M XR-2N) containing the basis functions of the

parameters of R notes present in the data.

The polyphonic model of Davy and Godsill (2002) can be expressed as

R N
x()=Y> @, cosl(n+8, )2af, 11+ B, sin[(n+ 6, )27, 1]  (5.4.2-2)

r=1 n=1
The dimensionality of the model described by equation (5.4.2 — 2) is again higher than
that of the proposed model described by equation (5.4.2 — 1). Specifically, equation
(5.4.2 - 2) depends on estimating N - R number of parameters compared to the R

number of parameters for our proposed polyphonic model of equation (5.4.2 — 1).
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5.5 Algorithm implementation for automatic music transcription

The theoretical foundation of our proposed automatic music transcription method is
based on the use of the M-H algorithm and Gibbs sampler for multivariate parameter
estimation. The implementation of these algorithms is discussed in the following

sections in detail.

5.5.1 Implementation for estimating parameter f,

Equation (5.2 — 3) which represents a “cost function” of a t-distribution function can

also be used to obtain estimates of more than one parameters, i.e. f, and/or B

parameters.

One may now assume a simple example of a modelled signal, as described earlier

from equation (5.4.1 — 2)
N
(1) = Z%e{"’ sin [n27yfo (1 + nzB)O'St]+ ,Bne_{"t cos[n27;f0 (1 + nzB)O‘St]
n=1

where the data is generated over 100 ms with f, =200 Hz, N =5 and B=10".

The logarithm of the cost function, described by equation (5.2 — 3), is plotted in

Figure 5.3 for a range of fundemental frequency f, estimates, for a known value of

inharmonicity B. Additionally, Figure 5.4 shows an expanded region around the peak

at 200 Hz of Figure 5.3.

Note that the negative values of the cost function arise because of the use of

logarithms in order to avoid issues with numerical underflow:
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Figure 5.3 — Cost function for a range of fundamental frequencies f, given a known

value of inharmonicity B
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Figure 5.4 — Expanded section view of Figure 5.3
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From Figures 5.3, it can be seen that the cost function will have many probable
solutions represented as local peaks in the t-distribution function. For instance,
solutions will be evident at 200 Hz (fundamental frequency) and any subsequent
harmonics, such as at 400 Hz, etc. Also, there will be local optima at multiples and

submultiples of the most probable solution (200 Hz), such as at 100 Hz, 150 Hz, etc.

Therefore, one needs to devise an effective algorithm of obtaining only an estimate of
the fundamental frequency by ignoring other locally optimal solutions. The following
steps have been devised and form the basis of any subsequent implementation of the

M-H algorithm for obtaining estimates of the fundamental frequency f,. The walks

of the M-H algorithm are therefore implemented in this particular way, where X and

Y represent estimates of f;:

1.. For 80% of the time, suppose that X, is the i element of a random
walk and that the next variate Y, in the random sequence is produced
by simply adding a random perturbation factor & to X, of mean zero

and standard deviation one
=X+ C:l:i

1. For the remaining 20% of the time, the algorithm may randomly follow

two different directions:

® 50% of the time, the current Y, estimate is multiplied by a

random integer.

® 50% of the time, the current Y, estimate is divided by a

random integer.

The reason behind this decision step is to check whether the estimate is a
multiple or a sub-multiple of the fundamental frequency. The additional
advantage of this algorithm implementation compared to the original one
presented in section 5.2 is that the initial parameter estimate can now be of an
arbitrary value and hence there is no need to have any prior knowledge about

the pitch of the transcribed note.
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Note that there are additional checks implemented in the algorithm to stop

division if the frequency estimate is below the lowest fundamental frequency

of a piano, e.g. below 27.5 Hz, or it stops multiplication if the fundamental is

too high, e.g. above 4,186 Hz (typical frequency range of a piano is also

shown in Figure B.1 of Appendix B).

2. There are now two possibilities; either the proposed random variate Y; is

accepted, or it is rejected and X, is repeated. The condition on which Y,

is accepted instead of X, is defined by the acceptance function Q of

equation (5.2 — 6). Let us assume € is a uniform variable drawn over the

range [0,1]. If e<Q, then X, , =Y,. Otherwise, if €>Q, then X, , =X,

Steps 1 and 2 are repeated, until the M-H algorithm reaches an equilibrium state,

where the estimated fundamental frequency f; is almost constant. A flow chart is

added here showing a single iteration of the algorithm in its basic form:
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5.5.2 Implementation for estimating parameter B
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Assume now for the same signal that the fundamental frequency f; is known, but in

this instance the inharmonicity factor B is unknown. The cost function of equation

(5.2 - 3) for a range of inharmonicity B estimates is shown in Figure 5.5:
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Cost function

0.1 02 03 04 05 06 07 08 09 1
Candidate inharmonicity 6 x 10°

Figure 5.5 — Cost function for a range of inharmonicity factors B given a known value

of fundamental frequency f,

From Figure 5.5, it can be seen that the cost function only has a single peak at the

correct value, i.e. B=10"". Therefore, the implementation of the algorithm for

calculating the inharmonicity factor B would be much simpler than that of the

fundamental frequency f; .

In particular, the algorithm for calculating the inharmonicity factor B is similar to the
one presented in the previous section, although it does not require random
multiplications or divisions of the estimates since there is simply only one peak in the

cost function as shown in Figure 5.5.

5.5.3 Implementation for simultaneously estimating f, and B

The cost function for a range of values of the fundamental frequency f, and the

inharmonicity factor B is shown in Figure 5.6. In this particular case, the parameter

space that needs to be calculated has two dimensions; f, and B. The cost functions
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shown in Figures 5.3 and 5.5 represent slices through the two-dimensional cost

function as illustrated in Figure 5.6:
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Figure 5.6 — Cost function for a range of fundamental frequency f, and

inharmonicity B estimates

From Figure 5.6, it can be seen that the cost function peaks at the most probable pair

of estimates. In this case at f, =200 Hz and B=10"", which correspond to the

values used to generate the data.

The challenge now is to implement an algorithm for multivariate estimation, i.e.
where the estimation of the fundamental frequency f, and B takes place in one
algorithm. The Gibbs sampler is proposed based on extensive work by Geman and
Geman (1984) and Gelfand and Smith (1990) in the field of image restoration

processing and statistical data analysis respectively.

The main principle behind the Gibbs sampler of drawing samples from a multivariate
density is to break down the problem into one of drawing successive samples from

densities of smaller dimensionality (O Ruanaidh and Fitzgerald, 1996).
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An iterative cyclic pattern can used by assuming a parameter space ®={f0i ,Bi},

where the i superscript denotes the i" iteration of the iterative process. The

superscript “0” denotes the initial estimates of f, and B.
1* iteration:
p(fo|B0’d)% fo
plBlf,.d)—B'

d - .
2" jteration:

P(B|f02 > d)—>’Bz
7™ iteration:
R
plifB™d)— 1
p(Blfi.d)—B'

Therefore, for each estimate of the fundamental frequency f,, an estimate of the
inharmonicity factor B is drawn, which in turn is used to draw another estimate of f;

and so forth.

Note that the steps for the Gibbs sampler are based on the implementation of the M-H

algorithm for univariate estimates of the fundamental frequency f,, and inharmonicity

factor B as described previously in sections 5.5.1 and 5.5.2 respectively.
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5.6 Automatic music transcription examples

Monophonic and polyphonic example cases are presented here using simulated
signals and real piano recordings, where M-H algorithm steps are used to compute the
successive states of the Gibbs sampler for multivariate parameter estimation as

discussed in the previous section.

5.6.1 Simulated monophonic signals

A piano note is simulated based on our proposed model, as described by equation

(5.41-2)

N
NOEDN T sin[nZﬂfO (1+ nZB)"‘St]+ Pl cos[nZly‘O (1+ nzB)"‘Sz]
n=1
The fundamental frequency is set to 261.6 Hz representing note Ci, as typically
shown in Figure B.1 of Appendix B, the inharmonicity factor is typically set to
2.5x10™ representing a typical value for a piano note (Fletcher, 1964), and term N is

set to 5.

The data is generated over a 100 ms time period. Note that other authors (Godsill and
Davy, 2002; Davy and Godsill, 2002) have used smaller “frames” of the order of
20 ms.

By employing the Gibbs sampler, as described in section 5.5.3, simultaneous
parameter estimation of the fundamental frequency and inharmonicity factor B can be

obtained. A typical such run is shown in Figure 5.7:
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Parameter space estimation
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Figure 5.7 — Parameter space estimation for simulated single piano note C4 based on

Gibbs sampler

From Figure 5.7, it can be seen that the estimate of the fundamental frequency is
accurately predicted after about 250 iterations at 261.6 Hz. As discussed in section
5.5.1, the advantage of the implemented algorithm is that there is no need to have a
prior idea of the “pitch” of the transcribed note. In fact, the starting estimate is chosen
arbitrarily by the implemented algorithm, which in this case was selected at 5,750 Hz,

making the method of frequency estimation applicable to any unknown note.

As far as the estimate of the inharmonicity factor B is concerned, this is also
accurately predicted over a longer number of iterations, i.e. just under 1,000. Note
that in the case of estimating B, the initial estimate is not chosen arbitrarily, but rather
is set to the lowest typical value of B, i.e. 10™. Also, note that the performance of the
algorithm may be improved further by discarding negative intermediate estimates for

the inharmonicity as shown in Figure 5.7.

Finally, since the steps of the M-H algorithm are drawn randomly, it was found that

the results from repeated estimates (about 20 in total) of the inharmonicity factor B on
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the same data set exhibit a 12% variation, whereas the variability in the estimation of

fo 1s very small of the order of up to 2%.

5.6.2 Real monophonic piano recording signals

In this section, real monophonic piano notes were transcribed with our proposed
model as before. Recordings of real piano notes were carried out at 44.1 kHz using

samples from the “Gigastudio” sample library.

In this example, a real piano note C4, with a fundamental frequency of about 261 Hz,
is attempted to be transcribed. Figure 5.8 shows the evolution of the estimates for the
fundamental frequency and inharmonicity factor against the number of iterations

using the Gibbs sampler:

Parameter space estimation

Predicted frequency [Hz]

Predicted inharmonicity

|
l
- L |
0 500 1000 1500 2000 2500 3000
Number of iterations

Figure 5.8 — Parameter space estimation for a real piano note recording C4 based on

Gibbs sampler
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From Figure 5.8, it can be seen that the estimates of the fundamental frequency and
the inharmonicity factor B are predicted after about 250 iterations of the algorithm by

returning estimates close to 261 Hz and 2.7x10™ respectively.

The procedure is repeated on two more notes, i.e. G4 with fundamental frequency of
about 392 Hz and Cs with a fundamental frequency of about 523 Hz. Table 1
summarises the results showing the estimated fundamental frequencies and the four

harmonics that can be derived from the simple model of inharmonicity
f, =nf,N1+n’B

where for n =1, the fundamental frequency is, strictly speaking, no longer f, but f,

due to the inherent inharmonicity in the strings (Ortiz-Berenguer et al., 2005)

fi=fN1+B

Table 5.1 is shown below:

lst 2nd 3rd 4th
Piano fi Inharmonicity
harmonic harmonic harmonic harmonic
Note [Hz] B
[Hz] [Hz] [Hz] [Hz]

Cy 261.4 523 785 1047.6 1311.1 2.7x10*

Gy 391.8 784.3 1177.7 1572.6 1969.5 4.3x10*

Cs 523.5 1048.3 1576 2107.8 2645.2 8.9x10*

Table 5.1 —Automatic music transcription of real single piano note recordings using

the Gibbs sampler

From Table 5.1, it can be seen that the estimates of the three fundamental frequencies
are accurate when compared with typically expected values found in a piano

instrument. Also, it can be seen that the inharmonicity factor will increase with the
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fundamental frequency or “pitch” of the piano note, as expected (Fletcher, 1964).

Indeed, this observation is in line with equation (2.4.2 — 3) as discussed earlier

3 74
B:ﬂdf
647!

where for example the inharmonicity is greater in the case of short strings (high
frequency notes) for a given radius and tension as opposed to long strings (low

frequency notes) for the same radius and tension.

This was a demonstration of a successful transcription of real monophonic piano notes

with the implementation of our algorithms.

5.6.3 Simulated polyphonic signals

A music interval is the simplest form of polyphonic music, where two notes are
played together. One may recall equation (5.4.2 — 1), which may be used to describe

an R =2 number of concurrent notes

2 N
0 =33 a, e " sin [n27y“(,,r(l +n’B, )"‘St]+ e ! cos[nZlg“O,r (1+n°B, )"‘Sz]
r=1 n=1
A typical music interval, C4 to Gy, is simulated based on the above proposed model.
The fundamental frequencies are set to 261.6 Hz for C4 and 392 Hz for G4, whereas

the inharmonicity factors of each note are set to 2.5x10 and 4.0x10™, respectively.

By employing the Gibbs sampler, as described in section 5.5.3, simultaneous
successful parameter estimation of the fundamental frequency and inharmonicity

factor B can be obtained. This is shown in Figure 5.9:
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Parameter space estimation
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Figure 5.9 — Parameter space estimation for two simulated piano notes based on

Gibbs sampler

5.6.4 Real polyphonic piano recording signals

For the purpose of this exercise, music intervals are generated by combing the real
monophonic recordings, which represent the individual notes, in a number of music
interval combinations. Then, the fundamental frequencies and inharmonicity factors

of the constituent notes are estimated.

In particular, it has been shown from the literature overview in chapter 2 that the most
difficult music intervals to transcribe are those where the notes have a large number of
shared harmonics. These are known as “consonant” intervals as opposed to
“dissonant” intervals, where there is very little overlap between the shared harmonics

of the involved notes.

The most consonant music intervals are: the “unison” (duplicated note; i.e. a “pseudo-

interval”) and the “octave” (where the highest note in the interval approximately
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shares its fundamental frequency and its entire harmonics with the lowest note).
Other consonant intervals exist such as the “perfect fifth” (having a 3:2 approximate
integer ratio of harmonics between two notes) and the “perfect fourth” (having a 4:3
approximate integer ratio of harmonics between two notes). Note that the signal

discussed in section 5.6.3 was an example of a simulated “perfect fifth” interval.

Figure 5.10 shows the automatic music transcription of a real perfect fifth music

interval (C4 — Gy) for a known number of transcribed notes:

Parameter space estimation
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Figure 5.10 — Parameter space estimation for a typical music interval, C4— G4

(perfect fifth), from real piano note recordings based on Gibbs sampler

From Figure 5.10, it can be seen that the estimates of the fundamental frequencies of
the above perfect fifth music interval are successfully predicted at around 261 Hz and
392 Hz. These estimates hardly differ from the estimates of the single transcribed

notes as shown earlier in Table 5.1.

However, as far as the estimated inharmonicity factors are concerned for the above
perfect fifth music interval (C4 — G4), parameter B of note Cy4 is predicted at around

2.5x10™, which is 7% different when compared with parameter B of the single
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transcribed note C4 as shown earlier in Table 5.1, i.e. B = 2.7x10™, Also, parameter B
of note G4 from the same polyphonic transcription is estimated at 5.9x10™, which is
37% different when compared with parameter B of the single transcribed note Gy as

shown earlier in Table 5.1, 1.e. B= 4.3x10™,

In another example of polyphonic transcription, it was found that for the transcribed
octave music interval C4 — Cs, parameter B of note C is predicted at around 4.0x10™,
which is 48% different when compared with parameter B of the single transcribed
note C4 as shown earlier in Table 5.1, i.e. B = 2.7x10™, Also, parameter B of note Cs
from the same polyphonic transcription is estimated at 1.1x107, which is 24%
different when compared with parameter B of the single transcribed note Cs as shown

earlier in Table 5.1, 1.e. B = 8.9x10™,

The majority (3 out of 4) of the above discrepancies in the estimation of the
inharmonicity factors B of the two music intervals (C4 — G4 and C4 — Cs) is higher
than the expected 12% variation, which is related to the randomness of the estimation

process of the inharmonicity factor as discussed in section 5.6.1.

Table 5.2 below summarises the above results of the two polyphonically transcribed
music intervals (C4 — G4 and C4 — Cs) by presenting their estimated fundamental
frequencies and inharmonicity factors, along with their respective changes3 shown in

the parentheses, when compared with those in Table 5.1:

Music interval T fi1 of note 1 Inharmonicity B f1 of note 2 Inharmonicity B
ype
(note 1-note 2) [Hz] of note 1 [Hz] of note 2
CoG Perfect 261.4 2.5x10* 392.1 5.9x10*
o fifth | (0% change) (7% change) | (-0.08% change) | (-37% change)
260.2 4.0x10* 522.8 1.1x1073
C4-Cs Octave

(0.5% change)

(-48% change)

(0.1% change)

(-24% change)

Table 5.2 — Automatic music transcription of real polyphonic piano note recordings

using the Gibbs sampler

Positive and negative percentile changes indicate a reduction and an increase respectively in the

estimates when directly compared with the estimates of single transcribed notes.
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The reason for the large discrepancies of the inharmonicity estimates between the
monophonically and polyphonically transcribed notes is perhaps due to the fact that in
the case of a polyphonic transcription, more parameters are fitted over the same length
of data and as a result the variability in the parameter estimation will be larger than in
the case of a monophonic transcription. However, more work needs to be carried out

in this field to understand, or support, the reason for such a discrepancy.

Note that it has to be said that the estimation of the inharmonicity factor in the case of
simulated polyphonic signals is very accurate since the model accurately fits the

generated data as shown earlier in section 5.6.3.

The question is therefore how important is the accurate estimation of the
inharmonicity factor B for calculating the fundamental frequency and the associated

harmonics of a real piano note.

Assume now that one is interested in calculating the difference between the frequency
estimates in the case of monophonically and polyphonically transcribed notes for the

first five N terms.

In this particular case, the value of the inharmonicity factor, in the case of a
polyphonic transcription, is chosen to be 48% higher than that of the monophonic
transcription. This percentage reflects the largest discrepancy as shown earlier in
Table 5.2. Note also that the magnitude of the inharmonicity factor B is of the order
of 10™. The following formula may be used to estimate the percentage difference in

the frequency estimates

% di]?erence — fn,manaphanic - f‘n,palyplmnic 100 (5.6.4 _ 1)

‘fn,mmmplmnic
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% diff. between mono. & poly. transcribed note C4 with B = 2.7x10™* & B = 4.0x10™* resp.
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Figure 5.11 — Percentage difference in the frequency estimates between a
monophonically and polyphonically transcribed piano note C4 with a 48%

discrepancy in the values of the inharmonicity factor B, which are of the order of 1 0

Figure 5.11 shows that the percentage difference of the resulting first five harmonic
terms (including the fundamental frequency) between the monophonically and
polyphonically transcribed piano note Cj is less than 0.5%, which can be regarded as

negligible.

However in the hypothetical case, where the value of the estimated inharmonicity
factor B is of the order of 107, which is typically the highest value of inharmonicity
found in a piano (Fletcher, 1964), the difference in estimating the resulting harmonic

terms can be of a measurable magnitude. This is shown in Figure 5.12:
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% diff. between mono. & poly. transcribed note C4 with B = 2.7x1072 & B = 4.0x102 resp.
1

% difference

Harmonic number

Figure 5.12 — Percentage difference in the frequency estimates between a
monophonically and polyphonically transcribed piano note C4 with a 48%

discrepancy in the values of the inharmonicity factor B, which are of the order of 1 0?

From Figure 5.12, it can be seen that for large values of the inharmonicity factor, i.e.
of the order of 107 there would be a percentage difference of up to 8% when

calculating the first five terms of a polyphonically transcribed piano note.

As an overall remark, it can be deduced that the estimation of the inharmonicity factor
from real polyphonic recordings may differ significantly from the estimate of the real
monophonic recordings. As a result, for very large values of the inharmonicity factor,
a relatively large difference in the estimation of the harmonics terms between the

monophonically and polyphonically transcribed notes may result.

As a final remark, the results from the transcription examples presented in this
research were promising, but the transcription model is simple and has not been
generalised for an unknown number of notes present in a recording. Future work is

encouraged to consider the varying model dimensionality.
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5.7 Model performance

In this section, the performance characteristics of our algorithm implementation for

the parameter space estimation are discussed in relation to two topics.

First, the inharmonicity factor B is estimated for a typical piano note over different
time windows of the same recording in order to deduce how well the model fits the
data. Second, one of the objectives of this research work has been the development of
a signal model, which has smaller dimensionality than existing models in the
literature (Godsill and Davy, 2002; Davy and Godsill, 2002). Hence, the potentially
reduced computational expense of our proposed signal model is discussed in relation

to the model of Godsill and Davy (2002) through simple numerical demonstrations.

5.7.1 Parameter B estimation across successive time windows

In order to provide further insight into the accuracy of the proposed model across
successive time windows of a typical piano note recording, the monophonic model of
a single note was employed for estimating parameter B. For the purpose of this
analysis, a 1 sec recording of a piano note C4 was divided into 10 successive time

windows of 100 ms duration each.

Figure 5.13 illustrates the variation in estimating the inharmonicity factor in each

different time window of the same recording:
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x 10 Estimated parameter B for note C, over successive time windows
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Figure 5.13 — Estimated inharmonicity factor B for a single piano note C4 across

successive time windows of the same recording

From Figure 5.13, it can be seen that the inharmonicity factor B estimate in the first
frame of the data, between 0 ms and 100 ms, is considerably different than the
estimates in time windows above 200 ms. This is expected since the initial attack of
the piano note is contained within this frame, whereas our model does not account for

this feature.

For higher-time windows, e.g. between 200 ms and 600 ms, the inharmonicity factor
does not vary significantly, although above 600 ms it starts to roll off considerably.
This might be due to the fact that the time-varying amplitudes of the signal are not
accurately represented by the model throughout the recording (potential existence of a

non-linear mechanism affecting the amplitudes of the signal).
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5.7.2 Computational expense

As it has been discussed earlier, our proposed signal model has smaller
dimensionality, since we are only interested in computing R inharmonicity factors for
R number of notes, as opposed to the estimation of N - R inharmonicity (or so-called

“de-tuning”) parameters according to Godsill and Davy (2002).

In this section, we simply demonstrate the potential computational savings with our
proposed model when compared to the existing model by Godsill and Davy. In
particular, the two different signal models are used within a Gibbs sampler
implementation and the parameter estimation space is simply timed for a fixed number
of iterations. Note that the accuracy of the estimates from the two different models is

not discussed in this research.

Table 5.3 below shows the additional computational expense from the model of Davy
and Godsill as a function of N terms for a fixed number of iterations when

transcribing a single piano note:

Additional computational
Number of terms
expense
N
[time percentage]

32% 3
47 % 4
58% 5

Table 5.3 — Additional computational expense of model by Godsill and Davy

From Table 5.3, it can be seen that as the number of harmonics increases, so as the

additional computational expense increases (between about 11% and 15% for every
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additional term)4. This is due to the fact that each harmonic term will be associated
with a different inharmonicity parameter and therefore there will be additional

computational steps in the Gibbs sampler as the number of harmonics increases.

* Note that for N = 1, the existing model by Godsill and Davy performs marginally better than the
proposed one. This is probably due to the fact that the proposed and the existing models are

implemented slightly differently within Matlab numerical software.
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5.8 Conclusions

Signal models based on Bayesian formalism were proposed for describing the sound
of a piano by employing an inharmonicity parameter and decay rates for either single

or multiple piano notes.

In particular, the proposed models for the monophonic and polyphonic cases were
based on the description of notes with superimposed fundamental and harmonic
frequencies including the inharmonicity factor inherently present in the piano strings.
The fast and/or slow decay rate of the resulting sound can also be incorporated in the
model through the simple use of a damping parameter term depending on whether the
transcribed music passage/note is short or long in duration. However, in our analysis
the damping parameters were set to zero since the data is analysed over a small time

window during which the decay of the amplitude is expected to be very small.

It was demonstrated that the proposed models in this research are potentially more
computationally attractive when compared with existing models in the literature
(Godsill and Davy, 2002; Davy and Godsill, 2002). Indeed, the latter models would
use a different inharmonicity parameter for each harmonic component of each note
making the estimation of the parameter space more computationally expensive,
whereas our proposed models involve only one inharmonicity parameter for each

piano note.

A computational route for calculating the desired parameter space, such as the
fundamental frequency and inharmonicity factor of each transcribed piano note, was
outlined by utilising the M-H algorithm and Gibbs sampler for multivariate parameter
estimation. Examples of monophonic and polyphonic music transcription were also

featured and discussed.

The estimation of the inharmonicity factor from real polyphonic recordings may differ
from the estimate of real monophonic recordings. This may be due to the fact that in
the case of a polyphonic transcription, more parameters are fitted over the same length
of data and as a result the variability in the parameter estimation will be larger than in

the case of a monophonic transcription. Hence, for very large values of the
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inharmonicity factor, a relatively large discrepancy in the estimation of the harmonics

terms may result from this.

It has been shown that the estimation of the inharmonicity factor B may vary across
successive sections of the same recording. In particular, the biggest discrepancy is
found when analysing a section of the recording where the attack of the note is
included, i.e. at the beginning of the recording between 0 ms and 100 ms. This is
expected since our proposed model does not account for this feature. Further
discrepancies may be identified as moving closer to end of the recording. This might
be due to the fact that the time-varying amplitudes of the signal are not accurately

represented by the model throughout the recording.

The transcription results using the proposed signal models that are presented in this
research are encouraging rather than comprehensive. Future studies could explore
and compare this approach with other known methods in the literature. Also, the
transcription model presented has not been generalised for an unknown number of
notes present in a real recording. The model should consider the increased

dimensionality of the model through the use of a more generic framework.
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Chapter 6

Overall conclusions

6.1 Final remarks

This research has concentrated on the investigation of two important features of the
sound reproduction mechanism of the piano instrument through analytical
formulations and numerical investigations. First, the inharmonicity associated with
the piano strings, which results in the formation of non-integer spaced harmonics
relative to the fundamental frequency of the playing note, was discussed. Second, the
double decay rate effect was discussed, where the time-varying reproduced sound
initially has a fast decay rate characteristic followed by a much slower decay rate

(also known as “aftersound”).

Since the inharmonicity and double decay rate effect form an integral part of the
sound reproduction mechanism of the piano, then one may assume that these features

may also need to be incorporated into a signal model to aid in music transcription.

Chapters 1 and 2 provide the introduction to this research work by mainly presenting
the existing knowledge on the inharmonicity and double decay rate effect. Also, since
the original motivation behind this research work was the development of an
automatic music transcription method, a review of the different transcription methods
was carried out, mainly in relation to neural network, probabilistic and blind

separation methods.

Chapters 3, 4 and 5 provide the original contributions of this research. In particular,
in chapters 3 and 4, the inharmonicity and the double decay rate features are discussed
through analytical formulations and numerical demonstrations, whilst in chapter 5,
signal models for monophonic and polyphonic music performances are proposed
based on the latter features. These models are presented in a probabilistic Bayesian
framework and transcription examples of simulated and real piano note recordings are
demonstrated through the use of the Metropolis-Hastings (M-H) algorithm and Gibbs

sampler for multivariate parameter estimation.
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6.1.1 Inharmonicity

The following can be concluded from chapter 3 in relation to the inharmonicity factor

B of piano strings:

e The numerical simulations of a vibrating piano string with inharmonicity
showed a characteristic “one-sided” effect in the time domain, as a result of
the non-integer spacing of the harmonic components of the modelled signal in
relation to the fundamental frequency. The latter name was derived from the
formation of a strong non-symmetrical response relative to the main lobe
temporal structure of the signal, which represents the fundamental frequency

of the vibrating string.

* The one-sided effect is not present in the case when the inharmonicity factor is
set to zero. The modelled signal with B=0 is simply the sum of a Fourier
series of a periodic function. However, in general, the signal with non-zero
inharmonicity is not periodic, unless each ratio of the modelled frequencies is

a rational number.

e The response of the modelled signal with inharmonicity is dependant on five
different parameters: the magnitude of the inharmonicity factor, the number of
harmonics present in the modelled signal, the time parameter, the amplitude of
harmonics and the phase characteristics. Generally speaking, an increase in
any of the five parameters results in a stronger manifestation of the one-sided

effect.

e The modelled signal of a vibrating piano string was directly compared with the
time history of a real piano note recording. From these investigations, it was
shown that the presence of one-sided structure is dependent on how the
amplitude of the harmonic terms varies. In the case of non-uniformly varying
amplitudes, this effect is obscured both in simulated and real piano note

recordings.

e Further analysis work was presented using the cepstrum in order to reveal a
one-sided effect due to the inharmonicity factor present in simulated and real

piano note recordings. Once again, the non-integer spacing of the manifesting
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harmonics was acknowledged to be the main reason for this characteristic

effect through numerical demonstrations.

Analytical formulations were presented using the homomorphic properties of
the cepstrum in order to derive representations of the resulting sound, with and
without inharmonicity, of a piano note into separate components (response of
a vibrating piano string and soundboard). The cepstrum has been used to
consider a conjecture (Karatsovis et al., 2006), where the soundboard would
have a broad spectral response and consequently a cepstrum that
predominantly contains its information in the low “quefrencies” (or low-time
regions), whereas a vibrating piano string would give rise to a series of
impulses in the pseudo-time domain manifesting themselves in the higher

quefrencies (or high-time regions).

The coupled response of two vibrating piano strings was also discussed
through both the use of digital waveguides and the cepstrum. This work
naturally led to the next chapter, where the coupling mechanism was discussed

in more detail.

From the analytical and numerical demonstrations in this chapter, it was
possible to show the importance of the inharmonicity in the reproduced sound
mechanism of a piano note. Therefore, it was decided that this parameter

should form an integral part of any proposed signal model in the future.

6.1.2 Double decay rate

The following can be concluded from chapter 4 in relation to the double decay rate

effect of the reproduced sound:

Coupled oscillators were used to demonstrate the effect of double decay rate
as observed in real piano note recordings. It was also shown that the
analytical formulation of two coupled oscillators is identical to the analogous

formulation of digital waveguides as shown in chapter 3.
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e From numerical simulations, it was possible to show that in the case of two
identical oscillators, representing a group of two identically-tuned piano
strings that may form a piano note, one of the resulting coupled modes will be
identical to that of the uncoupled mode. In physical terms, there is symmetry
in the system and the two masses will move together in-phase through the
coupling of the bridge, which acts as rigid link connection between the two
masses. Also, the ratio of the damping terms between the two coupled modes
will be larger when compared with that of the uncoupled modes. This may
ultimately result in the characteristic double decay rate of the reproduced

piano sound, when both of these modes are appropriately excited.

e In the case of mistuned oscillators, it was possible to clearly replicate the
double decay rate effect, when there is an out-of-phase relationship between
the two, following work by other authors (Weinreich, 1977; Hundley at al.,
1978). It was therefore deduced that the phase difference between the two
oscillators and their relative mistuning can promote the appearance of a double

decay rate effect.

e The double decay rate effect is different for the various harmonic terms
(fundamental and harmonics). However, it is still not well understood how the
decaying rates of the different harmonic terms contribute to the way the

overall sound is perceived (Weinreich, 1977).

e There is normally a “dip” in the response of a vibrating piano string at the
point where the second (or slower) decay rate takes over from the first (or fast)
decay. It was simply shown analytically that the resulting dip would be a

direct function of the mistuning relationship between two oscillators.

¢ A physical model was developed to describe the dynamics of multiple strings
coupled with a piano bridge as an extension to the general model of coupled
oscillators. Through the use of this model, it was possible to simulate the
response of two mistuned strings of a piano note coupled with a finite length

beam in the frequency domain.
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6.1.3

Power flow analysis was carried out by exciting one string and evaluating the
power that goes into the other string and the beam. It was demonstrated that
most of the power input dissipates through the material damping of the string
and subsequently less will be transmitted through the coupling to the beam and

the other string.

Measurements were also carried out on a real grand piano in order to
understand further the coupling mechanism between the soundboard, the
bridge and a piano string. From the measurement of transfer mobilities, it was
found that an excitation in one direction might also induce a small response in
the other direction. As a result, this might mean that the response of a piano
string in one direction may be ‘“cross-coupled” with response of the

soundboard in the other direction.

The dynamics of such a complicated system (piano strings, soundboard and
bridge) were further explained through the use of simple theoretical mobilities
for such built-up structures. Such a system may be approximated with the
response of a grillage of beams mounted on plate, where two important
frequency regions exist. At low frequencies, the system will act as a spring of
a given stiffness and at higher frequencies, the point mobility will reach a
constant average value approximating the point mobility of an infinite plate.
Note that at high frequencies, a multi-modal behaviour of the soundboard will
result in a broad, Statistical Energy Analysis (SEA) type behaviour. The latter
argument further justifies our original hypothesis that the soundboard appears
in the low quefrencies or low-time regions of the cepstrum as initially
discussed in chapter 3 (Karatsovis et al, 2006). These theoretical
observations are backed by measuring the real point mobilities directly on the

soundboard and the bridge of a grand piano.

Proposed signal model

The following can be concluded from chapter 5 in relation to our proposed signal

model:
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e The proposed signal model may incorporate both the inharmonicity and the
double decay rate of piano notes, as described earlier in chapters 3 and 4,
based in a Bayesian formalism framework. Using the proposed model, it is

possible to account for both monophonic and polyphonic music performances.

¢ The modelling of the inharmonicity factor forms the core of our proposed
model by using a very simple formulation, where the harmonics are non-

integer multiples of the fundamental frequency (or pitch) of the piano note.

e The use of the double decay rate can be incorporated in the model through a
damping term for the different frequency components of the piano sound. It
was proposed that depending on the time duration of the performed notes, the
damping factor of the frequency components of a note may either represent the
slow decay rate for played notes lasting long in a music performance, or the

fast decay rate in the case of fast music passages.

e The rationale for our simple transcription method is based on the following
conjecture: supposing that each note can be represented by a single

inharmonicity factor B and a fundamental frequency f,, then the joint

extraction of these two parameters might help in uniquely characterising either

single or multiple notes in a recording.

e The amplitudes of the sine and cosine components of the proposed Bayesian
model are integrated out as nuisance parameters, whereas the damping decay
rates of the sine and cosine components are set to zero. This is due to the fact
that the data is analysed over a small time window of the order of 100 ms

during which the decay of the amplitudes is expected to be very small.

e The computational route for estimating the desired parameter space, such as
the fundamental frequency and inharmonicity factor of each transcribed piano
note, was outlined by utilising the M-H algorithm and Gibbs sampler for
multivariate parameter estimation. Examples of monophonic and polyphonic
music transcription were presented and discussed with emphasis on “difficult”
music intervals (octaves and perfect fifths), where there is a large number of

commonly shared harmonics between two notes.
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The estimation of the inharmonicity factor from real polyphonic recordings
may differ significantly from the estimate of real monophonic recordings.
This may be due to the fact that in the case of a polyphonic transcription, more
parameters are fitted over the same length of data and as a result the variability
in the parameter estimation will be larger than in the case of a monophonic
transcription. As a result, for large values of the inharmonicity of the order of
107 (typical highest value according to Fletcher, 1964), a relatively large
variation in the estimation of the harmonics terms between the

monophonically and polyphonically transcribed notes may result from this.

The estimation of the inharmonicity factor B may vary across successive time
windows of the same recording. This might be due to the fact that our
proposed model might not accurately represent the time-varying
characteristics of a real note throughout the recording (potentially an existence
of a non-linear mechanism in the response). Note also that the biggest
discrepancy is observed when analysing a section of the recording where the
attack of the note is included. This is expected since our proposed model does

not account for this feature.

It was possible to compare our proposed model in this research with previous
models in the literature (Godsill and Davy, 2002; Davy and Godsill, 2002) in
terms of their computational expense. Indeed, the above models in the
literature require the estimation of a different inharmonicity, or so-called “de-
tuning” parameter, for each harmonic component of a single note. Hence, for
N number of terms, there will be N de-tuning parameters that need to be
computed, whereas, in this research, we propose a model with a single

inharmonicity factor for all N terms.

In general, the transcription examples presented in this research were
successful, but the transcription model is simple and has not been generalised
for an unknown number of notes present in a recording. However, this
generalisation is possible in practice with the implementation of a Reversible
Jump Markov Chain Monte Carlo (RIMCMC) method, where the

dimensionality of the model may vary (Green, 1995).
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6.2

Future work

The following can be proposed for future work following our investigations on the

acoustic features of piano sounds:

This work was focused in describing the unique “imperfections” in piano
sounds, which may form the basis of a signal model in a music transcription
method. In particular, the inharmonicity, which is associated with the bending
stiffness of the piano strings, formed the main core of this research work
underlying the importance of an accurate and more comprehensive signal
model. This concept could further be extended to other instruments provided
other similar imperfections are identified and subsequently modelled.
Therefore, despite our proposed signal model is potentially more
computationally attractive than existing models in the literature, it is yet less

generic since it only covers the piano instrument.

The results following the automatic music transcription of music intervals
seem to be encouraging, although the transcription model presented in this
research is simple and has not been generalised for an unknown number of
notes present in a recording. This generalisation is possible with the
development of an appropriate RIMCMC method, where the dimensionality of
the parameter space may vary. In particular, the latter method is a variant of
the MCMC method, where a model indicator is introduced and the resulting
Markov chain simulations may jump between models of different dimensions

by forming samples from the posterior density estimates.

There seems to be a discrepancy in the computation of the inharmonicity
factor between monophonically and polyphonically transcribed notes. This is
believed to be associated with the fact that in the case of a polyphonic
transcription, more parameters are fitted over the same length of data and as a
result the variability in the parameter estimation will be larger than in the case
of a monophonic transcription. However, there may be other reasons behind
this computational discrepancy, which have not been addressed in this
research. More work needs to be carried out in this field to understand, or

support, the reason for such a discrepancy.
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® Music transcription is the process of converting a live or recorded
performance into a written score, where other types of information are
required apart from the pitch of the notes, such as the duration, the tempo and
the dynamics of the played notes. The transcription task in this research has
been restricted to the identification of only two parameters; the fundamental
frequency and the inharmonicity factor of single or multiple notes. Therefore,
more effort should be placed in the future in order to transcribe other

meaningful musical information.

e The current research work has only considered the transcription of a few
music intervals between the middle and the high frequency register of the
piano. A more extensive frequency range should be considered in future work
to cover a broader range of notes. Also, a more comprehensive ‘bank’ of
audio information is proposed in order to test the model for a larger number of

different music interval combinations.

e The transcription of 2-note mixture, which is the simplest form of polyphonic
music, should further be extended to a higher number of note mixtures, e.g. 4,
6 or even 8-note mixtures to represent more appropriately performances of

real polyphonic music pieces.

¢ The current proposed model does not account for different music instruments
that might be playing together at any given time, which is typical in an

orchestral piece (this task is also related to instrument classification).

e Other, perhaps more important, non-musical applications may be considered
using similar probabilistic Bayesian frameworks of analysis, such as the
source separation of signals in hearing aids. Analogously, the principle is the
same since in the automatic music transcription one is interested in separating

the individual notes of a polyphonic music recording.
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Appendix A

Bayesian formalism

It is useful to define data in terms of a linear combination of a basis function with a
Gaussian noise component when this is possible. This is known as the general linear

model of a signal and can be written in the matrix form
d=Gb+e

where d is an M x1 matrix containing the data points of the signal, G is an M XL
matrix of the basis functions containing the parameters of the signal, b is an Lx1
matrix containing any linear coefficient corresponding to each particular column of

G matrix, and e is an M X1 matrix containing random Gaussian noise components.

The advantage of using the general linear model in signal analysis is that the
parameters of a signal can be inferred when combined with common probabilistic
methods such as Bayesian analysis, maximum likelihood estimation and MCMC

methods.

A method of estimating the parameters of the G matrix, consisting of a parameter set
of ®, of the model is to develop a method that incorporates any information on the
likelihood function and any information on the state of knowledge about the
parameters before the data is observed. The latter descriptor is called the prior
probability density function and is supposed to represent the user's state of
uncertainty about the parameter vector @ of the signal. So, one could obtain the
posterior density function that describes the data after being deduced. This is the

basis of Bayesian analysis.

In the case of the general linear model, Bayesian formalism can be summarised into

a single expression

)= p(djo, b, o) p(e,b, o)
p(d)

plo,b,old (A-1)
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where p(d|(o,b,a) is the chosen likelihood function, p(®,b,0) conveys the prior

knowledge about the probable values of the parameters before the data is observed,

p(d) is called the evidence and only has a normalising effect, and p(®,b, a|d) is the

joint posterior density of @, b and o given d.

Note that o denotes the standard deviation of the Gaussian noise component induced

into the signal.

The likelihood function can mathematically be defined as follows
p(®,b,a3d) = p(d®,b,0) (A-2)
For additive noise, the above equation can be written as
p(dje,b,0) = p(e) (A-3)

Also, if e is considered to be composed of many independent identical distributed
components M , then by summing them, equation (A - 3), for a Gaussian process,

can be written as follows

M

2
M Zef
p(do,b,0) = p(e) = (2707) ? exp| - v (A-4)

M T
p (d|")’ b,0) = 270°) * exp{— - sz)o_(zd —-Gb)

}(A—S)

From equation (A - 2) there are certain parameters that are of no interest to us. In
particular, o and b are generally of little importance and one aims to remove them
from the posterior probability density function to yield information solely on the
parameters @ of the G matrix. These unwanted parameters are called nuisance

parameters and can be integrated out via a marginalisation procedure.

One can integrate the posterior density function with respect to b and o, so that only

the set of parameters @ remains
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p(e|d) = [[ p(o,b,cld)dbdo (A -6)
Assuming also that the probability density function can be written as
p(®,b,0) = p(®) p(b) p(0) A-7)
Equation (A - 1) due to equation (A — 6) and (A — 7) becomes

p(dje,b,0) p(w) p(b) p(c)
p(d)

plold) =[] dbdo (A-8)

Equation (A - 8) due to (A —5) becomes

-M —(d-Gb)’ (d-Gb)

el =L [[ero) 2 e popioio

Solving the above indefinite integral by assigning Jeffrey’s prior to ¢ and uniform
priors to b, which is an Lx1 matrix, one can obtain the following expression for an

estimate of the posterior density of @ (O Ruanaidh and Fitzgerald, 1996)

l0'd-d"G(G'G) "G d] *
Jdet(G™G)

plafd) o (A-9)

The above expression is a student’s t-distribution probability function and peaks at
the most probable value of @ of the G matrix. Note also that the shape of the
marginal density is more important than its size and there is no need to find the
constant of proportionality in the above equation. The probability density will peak
at the most probable value of the parameters of the G matrix of the signal

irrespective of any multiplicative factor.

The above expression (A —9) can be used to obtain probability densities for a pair of
successive states in a “Markov” chain, where the next probable value Y of the
desired parameter is dependant upon its previous value X. The acceptance function
of whether the next value is accepted or rejected can be defined by the ratio of the t-

distribution probability densities functions, p(X) and p(Y), as follows
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p(Y)

X.Y)=
o( )p(X)

where Q is known as the acceptance function and depending on the returning value

of the ratio, the next value is either accepted or rejected. Note that in the case of
implementing the Metropolis-Hastings (M-H) algorithm for estimating a parameter
space, probable values for the next states of the Marlov chain could randomly be
drawn using a sample space with random Gaussian distribution having zero mean
and standard deviation one. So, if for example, the ratio Q of the acceptance
function is equal to or over unity, then this means that the randomly drawn estimate
matches closely the statistical properties of the data (or the signal), therefore its
drawn value is accepted and the next state of the Markov chain would move closer to

target parameter value of the signal.
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Appendix B

Tuning on the equal temperament scale

Nowadays in western music the use of the “equal temperament” scale is universal.
This consists of twelve equal semitones, which make up an octave. The frequency
ratio of the lower note in the octave with the corresponding higher note in the octave
would have a ratio of 1:2. The smallest musical interval k on the equal temperament

scale would be

k=42 =1.0595 B-1)

This forms the basis of tuning on the equal temperament scale. With such a method,
organs can exactly be tuned, whilst in the case of the piano or the harpsichord, where
the inharmonicity of the strings plays an important role, the tuned musical intervals

should be “stretched” further as it will be discussed later.

So, the general process of tuning to the equal temperament scale is based around the
“circle of fifths”. A fifth musical interval, or a ratio of 3:2, consists of seven

semitones and therefore that would correspond to a ratio of
(1.059)” =1.4983 B-2)
The tuning of an octave follows the process below:

e (4 which is middle CS, is set to, say, 260.97 Hz by using a tuning fork. The
higher note of the fifth interval would be G4, which corresponds to 391.01 Hz
(260.97 x 1.0597). Based on Helmholtz’s theory, second order beats will be

heard when the frequencies of two tones f; and f, are similar but not

exactly the same. In particular, if f, =2 fi+0, then md beats would
m

> The numeric subscript index refers to the note of an associated octave on a music keyboard. Higher

notes on the keyboard will be associated with higher octaves on the keyboard.
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occur per second. Therefore, in the case of a mistuned fifth, as in the case of

C,4 with G4

3
fz :Efl +26
<:>5=0.0017f1 B-3)
£=1.4983

1

Therefore, 0.0034 f, beats can be heard per second.

So, with f, =260.97, the rate of beats would be about 0.89 Hz or 8.9 beats per

10 seconds.

¢ The next fifth interval would be G4 to D5 with a rate of beat of 1.33 beats per

second.

e After tuning to Ds, then we tune an octave lower, i.e. for the musical interval

of D4 to Aa.

e The circle of fifths would eventually stop at Cs, having tuned the whole

musical scale from C4 to Cs.

The complete circle of fifths would therefore follow the tuning succession as below:

Fifth Interval Beat Frequency [Hz]
Cs-Gy 0.8873
G4 - Ds 1.3294
Dy - A4 0.9960
Ay -Es 1.4923
E,- By 1.1179
Bs - Fq# 0.8375

F# - Cs# 1.2548
Cy#t - Gu#t 0.9401
Gu# - Ds# 1.4085
D# - As#t 1.0552
Au#t - Fs 1.5810
F, - Cs 1.1844

Table B.1 — Tuning intervals and associated beat frequencies
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Over the tuning process a metronome can be used to count beats. For example,
when counting the beats for the musical interval C4 to G4 the metronome can be set

to 0.8873 x 60 = 53 ticks per minute.

The tuning of the piano, based on the method as just described, is not satisfactory to
the trained ear of a musician, because of the inharmonicity of the strings as
mentioned earlier. The tuning process then becomes much more complicated and
lies beyond the scope of this work. However as a general rule, when tuning in fifths
in a piano, the intervals are “stretched” in order to minimise beating between notes.
The similar applies to the octave tuning method in a piano. So, if the higher note on
the octave is tuned at exactly twice the fundamental frequency of the lower one, then
beating will occur since their harmonics will not be an exact match due to the
inharmonicity factor associated with the strings. In order to avoid this, the higher
note is tuned to the first harmonic of the lower note (Ortiz-Berenguer et al., 2005).
As a result, the octave is “stretched” above its “well-tempered” value but the beating
effect is minimised to a level, which is satisfactory providing a well-defined and

clear sound.

Finally, a typical frequency range of a piano instrument is shown below, where all
the 88 notes are associated with a “pitch” or a fundamental frequency. In the case of
the piano instrument, the pitch may typically vary from 27.5 Hz up to about
4,186 Hz as shown in Figure B.1:

161



Acoustic Features of Piano Sounds Appendix B
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Figure B.1 — Piano keyboard range as a function of the fundamental frequency

(reproduced from “about.com” in relation to the scientific pitch notation of the piano)

162



Acoustic Features of Piano Sounds Appendix C

Appendix C

Roots of quadratic equation
One is interested in obtaining the roots of A(s) as follows
A(s) = a(s)y(s)— B(s)(s) =0
=
[s* +20 05+ ) + @05 + D) (52 + 28, 0,5+ ) + 2L 00,5+ @)= 20,5 + 02| 24, 0,5+ @2 =0

By expanding the above expression and re-arranging the terms in a descending order

of a 4™ order polynomial of the form

Ast+ AP +A ST +A s+ A =0 (C-1)
One obtains

28,0, 428 0, + 28 0, + 2 0, )57 ...

2 2 2 2 2
@} + @} 4L Lo, ¥ 4L 0L 0, + 07 +AL,0,0,0, +4,0,0,0,+ 0] — 400,00, + .
et [2{,0),0)22 +20,0,0; +2,0,07 + 2L, 0,07 +20 ,0,0; +2{,0,0; +28,0,0; +2{,0,0; -2{,0,0; - 20,0, ls+...

et @+ R+ 2 |=0

Hence, one can solve equation (C — 1) numerically to deduce the natural frequencies

and damping factors of a coupled dynamical system.
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Appendix D

Alternative modelling of a pair of piano strings coupled with bridge

An alternative modelling approach for free vibration is presented here by working
out the boundary conditions for the respective equations of motion of the beam and

the two strings. The beam is pinned-pinned and the strings are fixed on one end:

/

b; b, b3

x=0 x=x,xX=0 X=x,-x x"=0 x'=l-x,

Figure D.1 — Two strings coupled with a beam

The equations of motion for the three-part beam and the strings would be the

following:

For the three-part beam

Wb (x):Alej(al+kx)+Azej(a)t7kx)+Ae]wt kx+Aejat k(x— *1)
Wb (X’) — Blej(a)t+kx') +Bze‘j(at—kx') +B eja)t —kx” +B e/at k(x x2+x1)
where x = x—x,

m)} (x”) — Clej(a)tJrloc”) + Czej(atfloc”) + C e]wt —kx” + C4 jat k(x” /+X2)
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where x”=x—x,
For the two strings
_ j(“*ksl N ) j(“*kq N )
WS1 (y)=De +D,e
‘A/S2 (yz) — Elej(“t*kxz)’z) + Ezej(a’Hkxzh)
16 boundary conditions for these equations were identified
SW,| =W, | D-1)
- %2 X'=x,—x - by| -0 (D - 2)
=W |, =Wl (D-3)
->W, o =Wl D-4)
ow ow
—— | = | (D-5)
ox - ox o
o,
- =a%; (D - 6)
ax X=x—x, ax =0
_>1\41;1 _ :1\41;2 0 D-7)
- Mb2 X'=x,—x - by x"=0 (D - 8)
—>Wh1 :0:0 (D_9)
W, = 0 D-10)
>W,| =0 D -11)
Py =l
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—W,| , =0 D-12)
Y2=ls,
M, =0 (D -13)
-M,| =0 (D - 14)
oW,
-0,/ -9, e Ty ‘ (D - 15)
1 n=0
oW,
2O, . =T, ay” (D - 16)
. 2 y,=0

Equation (D - 1) gives
Ae™ + Ae ™ 4 Ae™ + A, —B —B,—B,— B¢ =0
Equation (D - 2) gives
B 4 B em) Bt B €~ C, - C,—C T =0
Equation (D - 3) gives
B +B,+B,+B,e" ™ _p -D, =0
Equation (D - 4) gives
C,+C,+C,+C,e ™™ _E —E, =0
Equation (D - 5) gives
jAE™ — jAe — Ae™ + A, — jB, + jB, + B, — B,e" ™) =
Equation (D - 6) gives
jBe" ) — jBe M) _ B o)y B O+ C, 4 Cy = Cet T =0

Equation (D —7) gives
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—Ae™ — AT 4 Ae™ + A, + B, + B, — B, — B¢ )
Equation (D - 8) gives
—Be*e) — M) 4 B et Bt €+ C, - € - e T =0

Equation (D - 9) gives

A+A+A+Ae™ =0
Equation (D - 10) gives

Cie™™) 4 C e M=) 4 e 2 ¢, =0

Equation (D - 11) gives

Dle_jk"lé“'1 +Dzejk“"€"1 =0
Equation (D - 12) gives

Ee ™' 1 E e’ =
Equation (D - 13) gives

—A-A+A+A =0
Equation (D - 14) gives
—CeU) e M) L et Lo = 0

Equation (D - 15) gives

EI|jieAe™ — jCAe ™ + K Ae™ — kP A, — KB, + jK°B,~°B, +K’B" ™" 4T jk D,~T, jk D,]=0

Equation (D - 16) gives

Ell- jK'C + JKC, ~ K C 4 KC,e ) 4 jEBe ) — ji B o) 1 kB o) _°B, 4T, jk E,~T,_jk, E, =0
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Therefore, one can now solve for
det(A)=0

where A matrix is formed from equations (D — 1) to (D — 16), in order to obtain the

natural frequencies of the coupled dynamical system in question.
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