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Abstract

The scalar dissipation rate and the scalar variance are important modeling parameters in
large eddy simulations (LES) of reacting flows. Approaches ranging from constant coefficient
algebraic equations to transport equations with complex closure models have been proposed
to describe these parameters. While currently available approaches capture many of the
physics behind the dissipation and variance, their modeling remains challenging. Here, two
direct numerical simulations (DNS) are used to analyze LES dissipation rate and variance
models, and to propose a new model for the dissipation rate that is based on a transport
equation. The first DNS that is considered is a non-premixed auto-igniting CoHy jet flame
simulation performed by Yoo et al. (Proc. Comb. Inst., 2010). An LES of this case is run
using algebraic models for the dissipation rate and variance. It is shown that the algebraic
models do not accurately reproduce the subfilter DNS fields. This motivates the introduc-
tion of a transport equation model for the LES dissipation rate. Closure of the equation
is addressed by formulating a new adapted dynamic approach. This approach borrows dy-
namically computed information from LES quantities that, unlike the dissipation rate, do
not reside on the smallest flow length scales. The adapted dynamic closure is analyzed by
considering a second DNS of scalar mixing in homogeneous isotropic turbulence. Data from
this second DNS is used to confirm that the adapted dynamic procedure successfully closes
the dissipation rate equation over a wide range of LES filter widths. The first reacting jet
case is then returned to and used to test the LES transport equation models. These models
are shown to predict the dissipation rate and variance fields more accurately than the the
algebraic LES models.
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1. Introduction

Scalar dissipation rates and subfilter scalar variances are critical modeling parameters
in large eddy simulations (LES) of reacting flows. In some reacting flow models such as
the flamelet approach [1, 2, 3] and the conditional moment closure approach [4, 5], these
parameters are explicitly used to calculate filtered quantities. In other reacting flow models
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such as transported density function approaches [6], the importance of the variance and
dissipation rate is embedded in model variables such as mixing coefficients [7]. - A variety
of models that attempt to describe the scalar dissipation rate and scalar variance have been
proposed. Many have been designed to operate within a Reynolds averaged framework, and
have been subsequently adopted for use in LES. Dissipation rate and variance models can
be categorized according to whether they are based on an algebraic equation or a transport
equation. Algebraic models for the variance [8, 9, 10, 11, 12] and the dissipation rate [8, 13,
14] directly describe the modeled parameter using information about the local scalar field
and filter width, and have the advantage of being conceptually simple and computationally
inexpensive. Transport equation models for the variance [12, 15, 16] and for the dissipation
rate [17, 18, 19] offer different advantages: they do not forcibly assume that production and
dissipation processes are in equilibrium, they produce fields that are less noisy than algebraic
models, and they incorporate a wider range of physics. Nonetheless, transport equation
approaches are sensitive to the descriptions used to model unclosed subfilter terms, and
the performance of these equations is not always superior to the performance of algebraic
models [12]. For example, the closure of these transport equations may be strongly affected
by the details and accuracy of the numerical method that is used. Consequently, many
uncertainties continue to surround the modeling of scalar variance and dissipation.

These uncertainties are important because reacting LES results have been proven sen-
sitive to the scalar variance and dissipation rate. For example, Domingo et al. [16] tested
two forms of an algebraic model for the progress variable dissipation rate in an LES of a
lifted jet. It was observed that changing the form of the subfilter dissipation rate closure
led to significant changes in the predictions of minor species such as CO. Thme et al. [20],
considering the same case, demonstrated that the flame’s lift-off height would change as a
function of the model assumptions used in the calculation of the subfilter progress variable
variance. Finally, Pitsch [21] found that improved descriptions of the mixture fraction dissi-
pation rate in an LES of a steady non-premixed flame led to improved predictions of several
minor species. Even in the context of a rather stable flame, sensitivities to the modeling of
local scalar dissipation could be demonstrated.

Two observations can be extracted from these examples. First, improvements in vari-
ance and dissipation rate LES models are expected to significantly improve the quality of
reactive flow predictions. Second, significant ambiguity exists regarding how these improve-
ments should be pursued. The goal of this work is to further address these modeling needs
by making use of newly available reacting direct numerical simulation data, and by propos-
ing a new LES closure model. The discussion will proceed as follows. This introduction
forms section 1 of the paper, and in section 2 baseline models for the scalar dissipation
rate and scalar variance are reviewed. A reacting DNS case is introduced in section 3. The
performance of LES subfilter algebraic models is described and discussed in section 4. In
section 5, a new closure for the dissipation rate transport equation is formally developed.
This development process introduces a second DNS of scalar mixing in homogeneous tur-
bulence. Finally, the new closure model is applied in additional simulations of the reacting
jet in section 6. Conclusions and a summary are provided in section 7.

2. Modeling Background
The scalar dissipation rate xz of a scalar Z whose diffusivity is Dy can be written
Xz =2Dy |VZ]. (1)
When an LES filter is applied to this quantity, the filtered dissipation rate is found,

Xz =2Dz|VZP?, (2)



where the () operator denotes spatial filtering. The subfilter scalar variance is typically
calculated using density weighted filtering that will be denoted by the tilde operator (™).
This subfilter variance is

Zf3, =22~ (2)*. (3)
2.1. Algebraic Models
Algebraic LES models for , can be formulated using a variety of parameters [14]. The
simplest and most widely used formulation separates the dissipation rate into resolved and
subfilter components [13],
Xz =2[Dz+D)) |VZP, (4)

where the filtered molecular diffusivity D is associated with the resolved dissipation, and
the turbulent diffusivity D; is associated with the subfilter dissipation. This model intro-
duces no unknown coefficients, as the turbulent diffusivity is already available from the
solution of the underlying scalar’s transport equation. In all calculations shown here, D; is
calculated by applying a dynamic Smagorinsky model to the relevant scalar and then using
Lagrangian averaging [22].
Algebraic LES models for the subfilter scalar variance can also take many forms [9, 10,
11]. The most widely used form relates the variance to gradients of the resolved scalar field,
Z}, = Cyar A* [V Z]%. (5)
The A parameter in Eq. (5) is the LES filter width. This model introduces a unique
coefficient that can also be dynamically calculated using a variety of methods [3, 11]. In all
calculations shown here, C4;- is determined using the dynamic ‘LED’ procedure of Balarac
et al. [11] and Lagrangian averaging [22].

2.2. Transport Equation Models

In a fully resolved setting, exact transport equations can be written for both the dissi-
pation rate and the scalar variance. In the context of LES, however, several of the terms
that appear in these equations require closure models. Here, the exact dissipation rate and
variance equations are introduced first. The effect that a filtering operator has on these
equations is then considered.

In reacting flows, the transport equation for x z includes terms that depend on gradients
of diffusivity and density. When this equation is solved in LES, these terms all require
closure. To limit the appearance of unclosed terms, a transport equation for |V Z|?, rather
than for 7, is considered. Letting D/Dt denote the material derivative, this equation is
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The (a) and (b) terms in Eq. (6) describe the production and dissipation, respectively, of the
scalar dissipation rate. The (¢) through (e) terms describe the effects of changes in density
and diffusivity, and reduce to zero when p and Dz are constant. Once solved, the |VZ|?
quantity from Eq. (6) can be multiplied with Dz to determine x .

Applying an LES density weighted filter to Eq. (6) results in a transport equation for

the term |VZ|2. It will be assumed that correlations between mixture fraction gradients
and the scalar diffusivity are small, so that this term can be similarly multiplied with the
filtered diffusivity to compute the dissipation rate,

2D, [VZE ~ 2D 4V Z]2. (7)

Analysis from other researchers suggests that the density weighting which differentiates the
filtering of |VZ|? and |VZ|? can be neglected on the grounds that it has a relatively small

influence [23]. Calculations of both |VZ|? and |[VZ|? in the DNS that will be introduced in
section 3 confirmed this finding: dissipation rates computed using these differently weighted
scalar gradients could not be statistically distinguished. Therefore, the density weighted

term |V Z|2? will be used to calculate dissipation rates in the remainder of the study.

The equation for the filtered term |VZ|? may now be written,
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where the standard turbulent diffusivity model has been invoked to describe subfilter scalar
flux,

PDus ~(V2?) = Py V2T — pus V2 )
Ly
The (a) through (e) terms in Eq. (8) are unclosed. Sanders et al. [19] provides a thorough
review of the relevant closure modeling for Reynolds averaged approaches. In LES, it can
be argued that there is a need for somewhat different closures. This issue will be further
addressed in section 5.

The subfilter scalar variance can be solved for in a number of different ways. Based on
Kaul et al.’s observations [12], a transport equation for Z? will be used here. In an unfiltered
sense, Z2 obeys the equation

Doy _ 0 0 e
i (pZ?) = o, (pDZaxj (z )) P Xz (10)



After LES filtering, the equation becomes

D / 0 ~ 0 =
= (72) = == 3Dz + D)5 (22) ) =7 Xz 11
D (p oz, (p( z+ t)axj( )) P Xz (11)
Equation (11) is noteworthy because it does not add to the closure modeling problem.
Rather, if the scalar dissipation rate Yz has been closed, then Eq. (11) is closed. Once

solved, Eq. (11) can be used to calculate the subfilter variance Z;’J?s using Eq. (3). It

should be noted that numerical errors in the Z2 equation can have a significant influence on
these variance predictions, and that the consideration of these errors is a subject of current
research efforts.

3. Auto-Igniting Jet

3.1. DNS Description

The primary DNS case that will be used to assess the dissipation and variance models
is an auto-igniting slot jet. This ethylene fueled flame was originally the subject of a DNS
study by Yoo et al. [24]. A schematic of the flame is shown in Fig. 1, where velocity
contours are plotted on the left and temperature contours are plotted on the right. The
central fuel jet has a bulk velocity of 220 m/s, a temperature of 550 K, and a composition
of 82% Ny and 18% CyHy by volume. This central jet stream is denoted by the mixture
fraction composition Z = 1. The co-flow that surrounds the central jet consists of 100%
air at a temperature of 1550 K. The air co-flow enters the domain at a bulk velocity of 20
m/s, and this air stream is denoted by a mixture fraction of Z = 0. No nozzle separates
the main jet and co-flow; rather, the velocity, temperature, and composition profiles are
prescribed to smoothly transition between Z = 0 and Z = 1 according to the functions
listed in reference [24].
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Figure 1: The ethylene flame DNS. Left: axial velocity contours; Right: temperature contours.

The total width of the central jet is H = 0.002 m, and the domain size is 15H x 20H x 3H
in the downstream, cross-stream, and periodic directions, respectively. This same domain
size will be used in all of the LES simulations shown below. The jet Reynolds number
associated with the DNS conditions is 10,000, and the DNS is run at atmospheric pressure.
The stoichiometric mixture fraction that results from the use of the diluted ethylene fuel



stream is Z4 = 0.27. The DNS mesh consists of 1.3 billion cells, and the simulation required
approximately 14 million CPU hours of run time.

Chemistry in the flame is described using a 22 species ethlyene mechanism [24] that was
reduced from a larger hydrocarbon mechanism. This same 22 species mechanism will be
used in all of the modeled LES calculations that are shown.

Turbulence is introduced into the jet DNS by extracting velocity information from a
single realization of a homogeneous isotropic turbulence (HIT) field, and then superimposing
this information on a bulk velocity profile at the inlet of the jet simulation. The turbulence
field was synthesized by specifying length scales, magnitudes of velocity fluctuations, and
the spectral energy density [25]. As time advances in the reacting jet DNS, the plane from
which turbulence data is taken in the HIT field also advances. In the calculations shown
below, the HIT data is filtered for LES using a filter width A. The A parameter is set as
the characteristic length scale that describes the LES mesh cells spanning the jet inlet. The
filter width therefore changes between the coarse and fine LES simulations in conjunction
with the mesh resolution. The LES-filtered HIT data is injected into the LES simulations
as a boundary condition.

3.2. LES Combustion Model

Although combustion modeling is not the focus of this work, the combustion model that
is employed in the LES will be briefly reviewed. In all LES simulations of the jet DNS,
combustion is described using an unsteady flamelet approach similar to that of Thme and
See [20] and Pitsch [26]. The model is implemented by first solving the unsteady flamelet
equations [1, 27] for the species ¢,

0(dr) _ 1 pxz ¢k
or _Lek 2 6Z2

(12)

, 1 < 1 1) i {3(0)(2) Xz 9(pDz)
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In Eq. (12) Z is the mixture fraction variable and Ley is the Lewis number of the k'*
species. The initial conditions of the species ¢ in Eq. (12) are linear profiles representing
non-reactive mixing between Z = 0 and Z = 1. The dissipation rate appearing in the

equation is modeled as
e f(Zref>

) (13)
where f is a prescribed function of Z [1]. Unsteady flamelet solutions are generated for
a variety of reference scalar dissipation rates. They are then tabulated as a function of
Z, Xzref, and the progress variable C, which is defined as the sum of four species mass
fractions,

C =Yny,0+Yu, +Yco + Yco,.- (14)

This progress variable behaves as a time-like coordinate in flamelet space. A series of reacting
large eddy simulations have revealed that differential diffusion effects are important in the
jet DNS, and non-unity Lewis numbers are therefore used for all species in the flamelet
calculations. The Lewis numbers of the filtered mixture fraction and progress variable
scalars that are transported in the LES calculations are set to unity.

Once generated, the unsteady solutions are convoluted with presumed PDF's for appli-
cation in the LES. A beta PDF is presumed to describe Z, while a delta PDF is presumed
to describe Xz rey. Additionally, it is assumed that a single unsteady flamelet solution is
representative of the conditions in an LES mesh cell. Consequently, only the mean value
of the progress variable is needed for modeling [3]. These assumptions lead to a tabulated
LES chemistry database of the form

b = gk(zyﬁ,XZ,reﬁé) (15)



where ¢ is any reacting quantity of interest. The reference dissipation rate can be deter-
mined from the local unconditional LES dissipation rate Y, by filtering Eq. (1),

f(Zier)
2

where f(Z) is determined by convoluting the function f(Z) with a beta PDF.

Filtered C and Z scalars are transported in the LES, and the scalar dissipation rate
and subfilter variance are calculated using models from section 2. The tabulated chemistry
database from Eq. (15) is accessed during the LES to determine chemical information such
as the density and the progress variable source term.

XZyret = Xz * s (16)

3.8. LES Description

Two LES runs are performed using different mesh resolutions. The first mesh consists
of 1 million (1M) cells, and corresponds to an LES filter width to Kolmogorov scale ratio of
approximately A/n = 8. The second LES mesh consists of 23 million (23M) cells, and the
corresponding length scale ratio is A/n = 4.5. These ratios are approximate because mesh
stretching is used in both the DNS and LES, and because the turbulence intensity varies
along the cross-stream direction. In regions surrounding the jet inlet and shear layer, the
mesh stretching is weak and adjacent cell widths differ by less than one percent.

The DNS data is filtered for comparison with LES using coarse and fine filter widths
that correspond to the 1 million cell and 23 million cell LES meshes, respectively. The filter
widths (A) are determined by calculating the average characteristic LES cell length scale in
the region spanning +2 jet widths from the centerline and +8 jet widths downstream from
the inlet. The calculated A values are then set to weakly increase in the downstream and
radial directions in accordance with the LES mesh stretching.

Vervisch et al. [28] suggest that LES variance models should be tested at filter widths
that are significantly smaller than time averaged scalar structures. If this condition is met,
it can be safely assumed that interactions between the LES filtering operator and the time
averaging operator do not affect scalar variance budgets. Both the coarse and fine LES
ratios that are tested in this study were found to satisfy this condition with respect to the
width of the time averaged mixture fraction shear layer profile.

The LES simulations are performed using a parallel finite-difference code [29]. The code
is advanced in time using a Crank-Nicolson-type implicit scheme that is temporally second
order accurate. Spatial gradients in the code are calculated using conservative schemes that
are second order accurate for velocities and third order accurate for scalars. A conservative
formulation is expected to be important for subfilter variance models based on Z and Z2
transport equations, because small differences in scalar magnitudes will affect scalar variance
predictions to leading order. The code is run as a low Mach flow solver, so that a Poisson
equation can be solved for the pressure variable to enforce conservation of mass.

Time averaged mixture fraction and velocity fields from the DNS and both LES cases
are plotted in Fig. 2. The LES generally agrees well with the DNS, although two notable
errors can be observed. The first is that the LES slightly under-predicts the width of the jet
at the X/H=3 station. This error is seen to decrease with increasing LES mesh resolution,
suggesting that it is attributable to the subfilter velocity model. The second error occurs
at the X/H=12 station where the LES over-predicts the width of the jet. This second error
is less sensitive to LES resolution and is the product of a slight vortex shedding instability
that can be observed at downstream locations in the contour plots shown below in Fig. 3.
The over-prediction of the downstream jet width is partly a function of the LES model’s
treatment of cross stream boundary conditions, and of the jet entrainment that results from
this boundary treatment. The shedding instability that causes the error may be inhibited in



the DNS by compressibility effects [30] which are not captured by the LES low Mach solver.
While noteworthy, these errors have only a marginal impact on the LES model’s treatment
of subfilter variance and dissipation.
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Figure 2: Downstream velocity (left) and mixture fraction (right) results in the reacting jet. DNS (e e e); 1
million cell LES ( ); 23 million cell LES (— — —).

4. Algebraic Model Performance

Figure 3 presents fields from the 1 million cell and 23 million cell LES runs alongside
DNS fields that are filtered using the A from the 1 million cell LES. The filtered mixture
fraction is plotted along with the algebraically modeled dissipation rate from Eq. (4) and
the algebraically modeled subfilter scalar variance from Eq. (5). The Z field in the higher
resolution LES is seen to capture significantly more flow structure than the lower resolution
LES. Consequently, the burden on the subfilter models is eased in the higher resolution data
set. The 1 million cell LES is therefore viewed as the primary subfilter modeling challenge.

Figure 4 compares the algebraically modeled scalar dissipation rate from Eq. (4) with
the filtered dissipation rate from the DNS. All quantities are time averaged, as represented
by the (-) operator. Figure 4(a) shows X, as a function of the cross-stream coordinate
at various downstream planes, while Fig. 4(b) shows the mixture fraction conditioned X,
in those same planes. The algebraic model’s representation of %, is shown to be quite
poor. At both LES resolutions, the model regularly under-predicts X, from the DNS.
In the lower resolution case in particular, the under-predictions are order-of-magnitude
differences. Because ignition is sensitive to local dissipation, these errors lead to significant
under-predictions of the flame lift-off height. Although the X, predictions are improved
when the LES resolution is increased, differences between the high and low resolution LES
indicate that the algebraic model is undesirably sensitive to the filter size.

Resolved and subfilter contributions to the LES algebraic %, model are separated and
compared with DNS data in Fig. 5. Both LES filter widths are considered. The resolved
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Figure 3: LES algebraic model results. Left column: DNS fields filtered using the 1M cell LES filter width;
Middle column: 1M cell LES; Right column: 23M cell LES. Upper row: Z contours; Middle row: X, from

Eq. (4); Lower row: Z;’f2$ from Eq. (5).

component of dissipation is calculated as (21_?Z|VZ |2) while the subfilter component is cal-
culated as (2D4[VZ|2 — 2D 4|V Z[2) and <2Dt|VZ|2> in the DNS and LES, respectively.
Figure 5(a) plots the dissipation rate components that are associated with the coarse filter
width. At this filter resolution, the resolved dissipation from the filtered DNS (solid black
circles) and subfilter dissipation from the filtered DNS (open blue circles) are comparable in
magnitude. Subfilter dissipation modeling therefore plays an important role in the 1 million
cell LES, even though the Reynolds number of the case is not representative of realistic
combustor conditions. The resolved DNS dissipation rate is reasonably well described by
the resolved component of the LES model (black solid line), at least in the rich part of the
flame where turbulence is most intense. The subfilter LES dissipation (blue dashed line),
however, universally underestimates the subfilter dissipation seen in the DNS. This subfilter
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Figure 4: Algebraic X, model results in the reacting jet, plotted in both (a) physical and (b) conditional
space. DNS (e @ @); 1 million cell LES ( ); 23 million cell LES (— — —).
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Figure 5: Budget of the algebraic X ; model in the reacting jet. Resolved dissipation from the filtered
DNS (e @ @) and the algebraic LES model ( ) is compared with subfilter dissipation from the filtered
DNS (o 0o0) and the algebraic LES model (— — —) at the: (a) 1 million cell filter width; (b): 23 million cell
filter width.

modeling error is responsible for the bulk of the error in the total modeled dissipation rate.

Figure 5(b) demonstrates that the subfilter component of the algebraic model performs
poorly even when the filter width is decreased. In spite of this poor performance, the
total dissipation rate is predicted more accurately (see Fig. 4). The explanation for the
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improvement is that the dissipation rate budget shifts from the subfilter scales to the resolved
scales as the filter width is decreased. The importance of the subfilter model therefore
reduces in importance. Dissipation rate predictions in the 23 million cell LES can therefore
be said to improve relative to the 1 million cell LES predictions in spite of, and not because
of, subfilter model performance.

Three distinct sources of error can influence the subfilter dissipation rate that is predicted
by the algebraic model. A first source of error is that the equilibrium assumption used to
derive the algebraic model [13] may be locally violated. A second source of error is that
even a perfectly predicted turbulent diffusivity may not describe the variance production
term appearing in the equilibrium assumption. A third source of error is that the turbulent
diffusivity in the production term may not be correctly modeled by a dynamic Smagorinsky
approach. If either of the first two sources of error dominate the behavior of the algebraic
model, then higher accuracy can be obtained only if the model form shown in Eq. (4) is
changed. If the third source of error is dominant, however, then accuracy might be improved
by using a different description of the turbulent diffusivity D;.

Time averaged diffusivities from the LES and DNS are plotted in Fig. 6 to determine the
importance of these different sources of error. The turbulent diffusivity D; that is calculated
from the exact subfilter mixture fraction flux in the DNS is plotted using solid circles, while
the modeled turbulent diffusivity from LES is plotted as a dashed line. The coarse and
fine filter widths are considered in Figs. 6(a) and 6(b), respectively. For comparison, the
molecular diffusivity Dy from the LES is plotted as a solid line.

T reoa M0 — 4 Llen
[@-05 [prmseoreiFassnsssatestossnnge, = ~ le-05
g eee 1
leO6g | | | *3 le-0
le-04 M = L0 le-04

1e-05k

._.
Q@

(e
G

Diff. [m%/s] Diff. [m*/s] Diff. [m
. 2 . 2 . 2
Diff. [m*/s] Diff. [m*/s] Diff. [m’/s]

ol oo vowd o bodvl ool oo bl

1e-06 1e-06 3
le-04 /=0 le-04 E
le-0SE — — — _ e le-05 F === -
N F \ E N\ 3
lecO6F | | e, | leO6f | | + Y, |
02 04 06 08 02 04 06 08
Cross Stream Coordinate, Y / H Cross Stream Coordinate, Y / H

(a) 1 million cell LES filtter width (b) 23 million cell LES filtter width

Figure 6: Time averaged diffusivities in the reacting jet. The turbulent diffusivity D; from the filtered DNS
(e @ @) is compared to the D; from the LES Smagorinsky model (— — —) and the molecular diffusivity Dz
( ). (a): 1 million cell filter width; (b): 23 million cell filter width.

The diffusivity data demonstrates that the algebraic model’s under-prediction of subfilter
dissipation cannot be attributed to an incorrectly predicted turbulent diffusivity. At values
of the cross stream coordinate greater than Y/H=0.5, the LES turbulent diffusivity is greater
than or equal to the diffusivity calculated from the DNS, regardless of the filter size. In
these regions, a perfectly predicted turbulent diffusivity would lower the algebraic subfilter
dissipation rate predictions in Fig. 5 even further away from the calculated DNS values.
The only regions where the LES model under-predicts the turbulent diffusivity are located
near the inlet at cross stream coordinates of less than Y/H=0.4. These regions correspond
to the innermost portion of the jet shear layer, where the mixture fraction field is still fairly
uniform and the dissipation rate is relatively small. Even in these regions, the turbulent
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diffusivity is under-predicted by a factor of no more than three. This difference cannot be
used to explain the order of magnitude subfilter dissipation errors that are present in Fig. 5.
Consequently, the accuracy of the subfilter dissipation model can be improved only if the
form of this model is changed.

Figures 7 and 8 compare scalar variance predictions from the LES cases with the corre-
sponding variance data from the DNS. Figure 7(a) plots the time averaged resolved variance,
(Z2) - (Z)?, associated with the coarse LES filter, while Fig. 7(b) plots the variance infor-

mation that is resolved in when the finer LES filter is used. The subfilter variance (2;\’]@
that is associated with these two filter widths is plotted in Figure 8. '
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Figure 7: Resolved scalar variance results, (Z2) - (Z)2, from the filtered DNS (o ® o) and from the LES
( ) at the: (a) 1 million cell LES filter width; (b): 23 million cell LES filter width.

Scalar variance in the coarse mesh LES is similar to dissipation in that the resolved com-
ponent of the variance is adequately captured, while the subfilter variance is not. Specifically,
the subfilter algebraic variance model under-predicts the DNS data by as much as an order
of magnitude. Under-predictions are more pronounced near the jet inlet, where the mixture
fraction shear layer is transitioning from a laminar inlet profile to a fully turbulent mixing
layer. The algebraic variance model performs more accurately at the finer LES resolution,
and Fig. 8(a) indicates that even the subfilter variance is well predicted beyond the X/H=6
station. Under-predictions on the order of 100% are still observed near the jet inlet, however.

5. An Adapted Dynamic LES Closure For The Dissipation Equation

The algebraic dissipation rate and variance models that have been presented have been
shown to be subject to several shortcomings. These shortcomings should not to be in-
terpreted to mean that algebraic models are incapable of describing subfilter quantities.
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Figure 8: Subfilter variance results, <2?/’J?S), from the filtered DNS (o @ o) and LES algebraic model (——)
at the: (a) 1 million cell LES filter width; (b): 23 million cell LES filter width.

Rather, the observed shortcomings are specific to the particular algebraic model realization
that is considered here. One means of addressing these errors would be to adjust the form
of the algebraic model equation [10, 14]. Here, however, the transport equations that were
shown in section 2 are considered as a means of improving dissipation and variance predic-
tions. The use of transport equations allows the importance of production and dissipation
imbalances to be explici/tl\y/ accounted for. This section addresses the closure of the LES

transport equation for |[VZ|2, shown in Eq. (8). Once closed, this equation can be used to
calculate the dissipation rate %' ,, which in turn can be used to close the transport equation

for the Z?2 variable that appears in Eq. (11).

5.1. Production And Dissipation Closure Assumptions

Five unclosed terms labeled (a) through (e) appear in the dissipation rate equation,
Eq. (8). The two most important of these are the production and dissipation terms. They
are split into resolved and subfilter components for use in LES,

(0w, 07 0z (0w 0Z 9Z
_2/)(3%' Oz; 3%) =% <8mj Oz 8%) +Poss (17)
2 N2 oo\ 2
=~ 82Z 2 ~ aZZ
—2pD = —2pD Q.. )
’ Z<axlaxj> pez <8x18xj> sfs ( 8)
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Following Reynolds averaged modeling approaches such as those reviewed by Sanders [19,
31], the subfilter production and dissipation terms will be written for LES as

, 1/2
P Cyop [ A vz — vz 19
sfs — Uprd - P A'Vt l | | | ) ( )
_ Dy (== ~ o\ 2
Qups = Cais 7+ == - (V2P = |VZI?) . (20)
sfs

Cprq and Cy;, are model coefficients, and Z g/]?s is the subfilter scalar variance that is modeled
either algebraically or with a transport equation. v; is the turbulent viscosity that, in the
following sections, will be calculated using a dynamic Smagorinsky model with Lagrangian
averaging [22]. The u3/A term in the production model can be viewed as the subfilter
momentum dissipation, ea. In the homogeneous DNS calculations presented next, w3 is
calculated by estimating a velocity fluctuation from the calculated subfilter kinetic energy.
In the LES calculations of the reacting jet that are shown later, u/3 /A is calculated following
Deardorft [32] as

ul /L8P g 2

A A At
Any similar model could be used to describe u/y, if desired. The LES subfilter production
term that results from the use of Deardorff’s model is

_ 32y = ~
Puss = Cpra- 7+ =z - (V212 = IVZP). (22)

(21)

It will be assumed that the remaining (¢) through (e) terms in Eq. (8) are of less im-
portance on subfilter scales. This assumption can be argued for on the grounds that the
mixture fraction Z, mixture fraction gradient 0Z/dx;, and molecular diffusivity D are ex-
pected to be less correlated with one another than the quantities in terms (a) and (b) are.
The subfilter modeling of terms (¢) through (e) will therefore be neglected in the remainder
of the study. This is an important assumption that should be revisited in future work.
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5.2. Modeled LES Scalar Dissipation Equation

—_~—

These dissipation closure assumptions lead to the following form of the |V Z]|? equation,

D 0 ~ 0
Y (5 2y = 9 [+ v 2
by (AIVZP) = 5 (P(Dz+Dt) 5 (V7 )) (23)
o (95 0Z 02
p 8333‘ 833, al‘j
~ 2
~ 027
— 9D
z <3I13I]>

2000Z (0 [~ O ~
2o (o (P52

+26(p752) aZ( 027 )

Bxl- 8x2 ijaxj
,02 02 <82<pﬁz>>

8:@- ale &maxj
_ 32y = ~
+Cpra- -y (V212 = [VZP2)
D — N2
~Cuis 7 == (V2P - IVZ?) .
24

Once closed, |VZ|? from Eq. (23) is multiplied with D to determine ¥ ,. This X, value
can then be used as the source term in the subfilter variance equation, Eq. (11). The only
remaining barrier to implementation of the transport equation models for the dissipation
and variance is the specification of Cpq and Cy;s.

5.8. Scalar Mizing Turbulence Database

Closure models for C,.q and Cy;s are especially difficult to develop because most of
the dissipation rate’s energetic content exists on the smallest scales of a flow. This small
scale content inhibits the accuracy of traditional dynamic LES approaches for describing
model coefficients, which tend to extrapolate information from large resolved scales to small
unresolved scales. When the large scales contain negligible amounts of information relative
to the small scales, the extrapolation procedure ceases to aid in modeling. Alternatives to
the traditional dynamic algorithm are therefore needed.

The evaluation of Cl.q and Cg;s will be investigated using a second database of direct
numerical simulations that describe conserved scalar mixing in the presence of forced, con-
stant density, homogeneous isotropic turbulence. This second set of DNS data was originally
developed in order to study probability distribution functions describing multi-scalar mix-
ing [33]. These DNS cases are run on a 5123 computational mesh and are forced using the
scheme of Rosales and Meneveau [34] to a Reynolds number of approximately Rey=100.
Scalar fields are then initialized in the domain according to the procedure of Eswaran et
al. [7]. This initialization procedure first sets the scalar field to have a single, constant value
over the entire DNS domain. A series of integral scale patches are then identified [7], and
the scalar field within these patches is set to a second constant value. In scalar phase space,
these initial fields are characterized by a double delta function, where the two delta func-
tion peaks are located at the background and patch scalar values, respectively. The DNS
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Figure 9: Typical planes from two of the the 5123 scalar mixing homogeneous turbulence DNS runs [33],
showing contours of the conserved scalar.

simulation is then continued, and the scalar fields are allowed to mix towards homogeneity.
Further details regarding the scalar mixing DNS can be found in references [33, 35].

Data is extracted from the homogeneous DNS for analysis at one eddy turnover time
after the scalar field is initialized. Typical contour planes that show the scalar field at this
point in time appear in Fig. 9. This scalar data is filtered for analysis using clipped Gaussian
filter kernels [36]. The filtering is performed at a variety of filter widths, and model results
are parameterized by these widths. The filtered data can be used to assess the accuracy of
models for Cp,q and Cyg;s.

Unlike the reacting jet DNS that was introduced in section 3, the homogeneous DNS
allows field data to be analyzed over a wide range of LES filter widths. The reacting jet
imposes an upper limit on LES filter widths because any LES of a jet case must adequately
resolve the momentum profile that form across the jet. Conversely, LES filter widths in
the homogeneous DNS are only limited by the maximum size of the domain. A subfilter
model should ideally be valid over a wide range of LES filter widths. Filter ratios up to
A/n = 128 are therefore analyzed in the homogeneous case, even though this same range of
filters cannot be reasonably tested in a posteriori LES of the reactive jet case.

5.4. Model Coefficient PDFs

Figure 10 shows the PDFs that describe the distribution of the model coefficient Cp,q
after one eddy turnover time in the scalar mixing DNS. This coefficient is evaluated at each
location in the homogeneous DNS domain using the formula

_ 1/2 (9,045 0Z 0Z _ 95 du 9Z dZ
Cprd =

7 ()2 (V212 - |V 2P) .

PDF's of the coefficient are constructed for a given filter size by binning results from the
entire domain.

Figure 10 shows that the C).q PDF is uni-modal. Additionally, the value of the model
coeflicient is reasonably filter independent: PDFs associated with different filter widths
have approximately the same mean, and relax towards a single value as the filter width
increases. Cprq is therefore reasonably represented by a single, filter-independent constant.
In agreement with several Reynolds averaged modeling approaches [19], Fig. 10 indicates
that this coefficient should have a value of unity. The value C},.q = 1.0 is therefore adopted.
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Figure 10: PDFs of the model coefficient Cp,.q from Eq. (23), evaluated from the homogeneous scalar mixing
DNS. The PDFs are parameterized by the LES filter width, A.

PDFs of the model coefficient Cy;s are shown in Fig. 11. Cy;s is calculated at each
location in the DNS domain as

— [ N2 - = \2
223, 202 (524) "~ 29Dz (524 |

2Dy (@TQ - |VZ|2)2

(25)

dis =

The PDFs in Fig. 11 are again unimodal, but the value of Cy;; is filter dependent. As the LES
filter width increases, Cy;s increases. Consequently, this coefficient cannot be described as
a single value. Filter dependencies such as these are often dealt with by employing dynamic
models. As discussed above, however, the dynamic procedure is not applicable to quantities
like |[VZ|? whose energy content exists on small flow scales.
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Figure 11: PDFs of Cyg;s from Eq. (23), evaluated from the homogeneous scalar mixing DNS. The PDFs are
parameterized by the LES filter width A.
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5.5. Adapted Dynamic LES Closure

Here an alternative to the traditional dynamic approach is proposed. This alternative
is rooted in the recognition that many turbulence modeling coefficients respond similarly to
changes in the local intensity of turbulence. For example, if the passage of a turbulent eddy
increases the local turbulent scalar flux, the scalar variance might be expected to increase in
the same way. Similarly, a flow event that causes the local scalar variance to increase might
also increase the local dissipation rate. Viewed from the reverse perspective, subfilter model
coefficients should tend toward zero in flow regions that laminarize or that are adjacent to
walls.

The idea of the adapted dynamic closure is to take information from quantities that
are amenable to dynamic calculations, and to apply that information to other quantities
that are not similarly amenable. This projection of information is useful because small scale
quantities are, like large scale quantities, sensitive to local turbulence. Information regarding
local turbulence can be used to increase the accuracy of a model coefficient regardless of
where the modeled quantity’s spectrum peaks.

This projection of information is possible because an appropriate value of the model
coefficient must exist. Indeed, the problem with applying a standard dynamic procedure
to small scale quantities is not that the coefficients are indeterminate. Rather, the prob-
lem is that coefficient values cannot be calculated due to the absence of useful large scale
information. The adapted dynamic closure simply circumvents this calculation problem by
borrowing information from other readily obtained dynamic solutions.

The adapted dynamic closure can be used in the scalar mixing DNS to compute the
coefficient Cy;s. Dynamic information will be borrowed from the algebraic scalar variance
model in Eq. (5), and Cgy;s will be rewritten as,

C’O

var

C’Ua’l’
Cais = Cdis,d - ( ) . (26)

Clis,q in this expression is now the unknown model coefficient, while C\4, is the dynamically
computed variance coefficient from Eq. (5). C?,,. is a baseline value of the variance coefficient
that can be determined by using a Taylor series expansion to derive the algebraic variance
model [11]. Proceeding through this derivation leads to CU,,. = 1/12. This number can be
viewed as the variance coefficient’s value in a particular turbulence regime. The details of
this regime, and of its relationship to homogeneous turbulence, are irrelevant. These details
will be accounted for in the specification of the constant Cy;s 4. The intensity of C'q, relative
to this referenced regime is the only information of interest, and this information is captured
by the ratio in Eq. (26).

The adapted dynamic closure is tested by using the scalar mixing DNS to calculate PDFs
of the coefficient Cy;s 4. Coeflicients are determined by first using the DNS to determine
the exact value of C,q, at all locations in the DNS domain. Cgy;s 4 is then determined from

the expression

2 o~ N
oo 7 [rz (725:) -~ 29Dz (25 )|
Ciis,a = < >

var

C’U(l”’

—— — : (27)
2D, (V22 - |VZP2)

where C0, = 1/12. The subfilter variance Z g’fs in this expression is computed directly from
the DNS, and the coefficient C,, is computed so that the algebraic subfilter variance model
is exact. Equation (27) differs from the expression used to calculate Cy;s only in that it is

multiplied by the ratio (Cyar / C2,.)-
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PDFs describing the distribution of Cg;s,4 in the scalar mixing DNS are plotted in
Fig. 12. These distributions are largely independent of the LES filter width, and are uni-
modal. The information that was provided by the dynamic variance calculation therefore
correctly represented the filter dependent component of the Cy;s coefficient. The removal
of this information reduces the amount of physical information that a model coefficient
must attempt to describe. When the adapted dynamic procedure is incorporated into the
modeling framework, the remaining coefficient Cy;,,4 can be accurately treated as a single,
constant value.
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Figure 12: PDFs of the model coefficient Cg;s ¢ from Eq. (26), evaluated from the homogeneous scalar
mixing DNS. The PDF's are parameterized by the LES filter width, A.

Note that the tails of the Cy;s 4 distribution are not associated with particularly high
values of the filtered dissipation rate. Rather, plotting this model coefficient after condi-
tioning it on the dissipation %, reveals that the tails of the PDF shorten when only large
values of X, are considered.

The mean values of the Cy;5 ¢ distributions are approximately Cyis ¢ = 2.3, but the peaks
of the distributions occur around Cgy;s. 4 = 0.75. Many RANS models use a dissipation model
coefficient of approximately 1.0 [19] that sits in between these peak and mean values. To

complete the closures for the LES |VZ|? equation the value Cy;5 4 = 1.0 is used, and the
coefficient Cy;s in Eq. (23) is modeled as

Cvar Cvar
Cdzs Cdzs,d CO 0 (1/12) Cvar ( 8)

var
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The LES transport equation for |[VZ|? may then be written in final form as

J

5 (F92F) = 5o (9(B2 + D) 5 (2P (29)
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32y e
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Z7,

where C)pr¢=1.0 and C,q, is the dynamically computed subfilter scalar variance coefficient
from Eq. (5). The variance Z;’f2$ that appears in the last term in Eq. (29) is determined

from the solution of the conserved Z equation and the 72 equation (Eq. (11)).

6. Transport Equation Model Performance

The transport equation models for ¥, and Z ;’J?S are now evaluated by returning to the
LES simulations of the reactive jet case. Additional computations of both the 1 million cell

LES and the 23 million cell LES are performed, and the |V/\Z/\2 and Z2 variables are solved
for using Egs. (29) and (11), respectively. These two variables are used to locally compute

the dissipation rate ', and the subfilter variance Z;’J?s.

Contour plots of the LES transported dissipation rate and subfilter variance are shown
in Fig. 13. Both the dissipation rate and the subfilter variance are seen to have increased
relative to the algebraic model results in Fig. 3. Additionally, the high dissipation and
high variance structures in the jet are seen to broaden somewhat when transport equation
models are used. As quantified below, these changes bring the subfilter models into better
agreement with the filtered DNS data.

Time averaged transported dissipation rates from both LES simulations are compared
to the time averaged DNS dissipation rate and to the original algebraic model results in
Fig. 14. The transport equation model improves upon the LES algebraic dissipation rate
model in two ways. First, mesh dependencies are reduced. The algebraic model results were
shown to be a strong function of the LES filter width. Conversely, the transport equation
results in Fig. 14 are only weakly dependent on the LES filter. This change represents a
significant improvement in model robustness. Second, the transported dissipation rate in
the 1 million cell LES is in significantly better agreement with the DNS than the 1 million
cell LES algebraic model. The improved agreement is attributed to two factors: 1) to
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Figure 13: LES transport equation model results. Left column: DNS fields filtered using the 1 million cell
LES filter width; Middle column: 1 million cell LES; Right column: 23 million cell LES. Top row: modeled

Xz from Eq. (29); Lower row: modeled Z;’J?S computed from Eq. (11) and the transported Z equation.

improved prediction of the subfilter variance production and variance dissipation processes
that were inadequately represented by the algebraic approach, and 2) to the relaxation of the
assumption that the dissipation rate is always in equilibrium with the local rate of variance
production. .

_ The time averaged subfilter variances that are obtained from the solution of the Z2 and
Z equations are plotted in Fig. 15. This figure compares the transported LES variance
with the corresponding DNS data and with the original algebraic variance model results.
The use of a transport equation model has a pronounced effect on variance predictions, with
predicted values increasing by an order of magnitude relative to algebraic model predictions.
This increase results in the transport equation models significantly over-predicting subfilter
variance at the X/H=6 and X/H=T7 stations.

Several observations can be made regarding the transport equation model’s over-prediction
of subfilter variance. First, the model errors cannot be attributed to the closure of the dis-
sipation term ¥, that appears in the Z2 equation, Eq. (11). Rather, Fig. 14 demonstrated
that the transport equation model for this dissipation rate was accurate at both LES filter
resolutions. Second, the variance transport equation model is much less robust to filter
width changes than is the dissipation rate model. A comparison of the different filter res-
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Figure 14: Dissipation rate, X, in both physical and mixture-fraction conditioned space in the reacting jet.
DNS (e o o); algebraic X, model ( ); transported X, model (— — —). (a) and (c¢): 1 million cell LES
filter width; (b) and (d): 23 million cell LES filter width.
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Figure 15: Subfilter variance results, <2?//f25>’ from the filtered DNS (e @ @), the LES algebraic model (——),

and from the LES transport equation (— — —). (a) 1 million cell LES filter width; (b): 23 million cell LES
filter width.

olutions at the X/H=T station in Fig. 15 shows that the maximum LES subfilter variance
decreases only marginally with decreasing filter width, while the filtered DNS variance de-
creases significantly. Third, the relative accuracy of the algebraic and transport equation
models is a function of the downstream jet coordinate. At locations near the jet inlet, both
the transport equation and algebraic models strongly under-predict variance. At locations
between X/H=1 and X/H=3, the transport equation model performs more accurately than
the algebraic model. Finally, at locations farther downstream, this trend reverses and the
algebraic model agrees most closely with the filtered DNS.

Errors in the transport equation model for the variance are most likely attributable to
two sources. These sources are highlighted because, once Fig. 14 has been used to eliminate
the dissipation term in Eq. (15) from consideration, they have the strongest influence on
the transported variance model. The sources are 1) errors in the models for the subfilter

convective flux terms in the Z2 and Z equations, and 2) numerical errors. These sources may
be equivalently treated as 1) descriptions of subfilter turbulent mixing, and 2) descriptions
of resolved turbulent mixing.

The subfilter flux models (source #1) that are used in the LES are accurate enough to
reasonably reproduce time averaged mixing profiles (Fig. 2), and to adequately capture the
turbulent diffusivity in the reacting jet (Fig. 6). They nonetheless have difficulty modeling
the detailed dynamics of the shear near the jet inlet (the X/H=3 station in Fig. 2), and it
is well known that they cannot capture the tensorial nature of subfilter flux physics [37].
The importance of these flux model limitations is only expected to be magnified in the
transported variance model, where differences between scalar solutions, rather than the
magnitudes of single scalar quantities, are needed.
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Numerical errors (source #2) are known to influence subfilter variance models through
a variety of non-linear mechanisms [12] that include the over-prediction of gradients at the
smallest resolved length scales of an LES, and the propagation of these over-predictions
through dynamic modeling procedures. To estimate the importance of these influences in
the reactive jet case, LES runs of both the 1 million and 23 million cell cases are performed

using two different numerical schemes for the transport the Z , Z2, and |VZ|? scalars. In the
first set of runs, a third order QUICK scheme [38] is used to transport the scalars. In the
second set of runs, a third order WENO scheme [39] is used for transport. The dissipation
rates X, that are predicted using these different schemes are statistically identical, varying

by no more than a few percent. The subfilter variances Z;’]?s that are predicted by the
two schemes are shown in Fig. 16. Few differences are observed between the QUICK and
WENO solutions in the 23 million cell LES, but the 1 million cell results respond strongly
to numerics at downstream locations. In this coarse case, the slightly smoother scalar fields
that result from the use of WENO lead to lower subfilter variance predictions that are in
much better agreement with the filtered DNS.
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Figure 16: Subfilter variance results, <25/’f23>, from the filtered DNS (eee), the LES transport equation model
solved using QUICK (— — —), and from the LES transport equation model solved using WENO (——).

(a) 1 million cell LES filter width; (b): 23 million cell LES filter width.

Although these numerical sensitivities provide context to the coarse LES predictions,
they do not explain disagreements between the finer LES and the corresponding filtered
DNS data. The errors in Fig. 16(b) may be caused by a more subtle numerical issue, or by
a subfilter flux model’s failure (source #1 above) to reproduce the details of the turbulent
mixing process at downstream locations. Fully addressing these issues will require further
study.
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7. Summary And Conclusions

This work has used an auto-igniting jet DNS to analyze the performance of LES algebraic
and transport equation models for both the scalar dissipation rate and the subfilter scalar
variance. It was shown that the algebraic models under-predicted both the dissipation
and the subfilter variance in the jet. The under-predictions were almost entirely due to
the subfilter components of the algebraic expressions. These model errors motivated an
examination of the closure of a transported scalar dissipation rate equation. An additional
DNS of scalar mixing in homogeneous turbulence was introduced to aid this examination.
The scalar mixing DNS demonstrated that subfilter production of X, could be described
using a single model coefficient, while the coefficient associated with subfilter dissipation
of X, was dependent on the LES filter. To account for this filter dependence, an adapted
dynamic procedure was introduced and applied to the dissipation model coefficient. This
procedure used information from a dynamic algebraic variance model to reduce the amount
of physics that the dissipation model must describe. The resulting transport equation closure
for X, was shown to perform well for a variety of LES filter widths. The transport equation
models were then applied in the reacting jet LES. The transported %, model performed
significantly better than the algebraic model and improved the agreement with the DNS
results. The subfilter scalar variance predictions did not match the DNS data as accurately
as did the dissipation predictions, but the dissipation rate that appears in the Z2 equation
was eliminated from consideration as the source of these variance errors. Identifying the
cause of the subfilter variance model errors requires further effort.
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