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Abstract

A model widely used by economists to study self-enforcing international
environmental agreements (IEAs) is the model of stable IEAs introduced by
Carraro and Siniscalco (1991,1993), Hoel (1992) and Barrett (1994). The
key results emerging from the linear-quadratic emissions game version of
this model are that, if the members of the IEA act in a Cournot fashion
with respect to non-signatories, then a stable IEA consists of no more than
3 countries irrespective of the number of countries affected. See Carraro and
Siniscalco (1991) and Hoel (1992). However, if the signatories act as Stackel-
berg leaders with respect to non-signatories, then, depending on parameters,
a stable IEA can consist of any number of signatories, including the grand
coalition, although, crucially, the number of signatories is inversely related
to the potential gains from cooperation. See Barrett (1994).

However in the early paper by Barrett, these results were derived using
numerical simulations and also ignored the fact that emissions must be non-
negative. Recent attempts to use analytical approaches and to explicitly
recognise the non-negativity constraints (e.g. Diamantoudi and Sartzetakis
(2002)) have suggested that, even with Stackelberg leadership, the number
of signatories of a stable IEA may be very small - no more than four. The
way such papers have dealt with non-negativity constraints is to restrict
parameter values to ensure interior solutions for emissions. Not surprisingly,
this restricts the number of signatories.

We argue that a more appropriate approach is to directly impose the non-
negativity constraint on emissions and recognise that for some parameter val-
ues this will entail corner solutions. When this is done we show, analytically,
that the key results from the literature go through. With Cournot behaviour,
a stable IEA will consist of at most 2 countries; we show that corner solu-
tions cannot be stable. However with Stackelberg behaviour there can be
stable IEAs which are corner solutions, and we derive parameter values for
which the grand coalition is stable, and parameter values for which only a
two-country IEA is stable. The number of signatories is directly related to
marginal environmental damage.

Keywords: international externalities, self-enforcing international envi-
ronmental agreements, Cournot equilibrium, Stackelberg equilibrium, non-
negative emissions constraints

JEL classification:C72, D62, F02, Q20



1 Introduction

Over the last two decades, one of the factors driving an increased sense of
interdependence between countries is the need to tackle global environmental
problems such as climate change, ozone depletion, loss of biological diversity
amongst others. Tackling such problems requires some form of agreement
between countries, and the Framework Convention on Climate Change, the
Montreal Protocol on Substances that Deplete the Ozone Layer, and the
Convention on Biodiversity are important examples of such International
Environmental Agreements (IEAs). However, the very different experience
of these agreements illustrates the crucial importance of understanding how
to design agreements which give countries incentives to both join and abide
by such agreements. FEconomists have emphasised two important features:
agreements must be profitable, that is there must be potential gains to all
signatory countries; more importantly, in the absence of any international
authority, agreements must be self-enforcing, i.e. there must be incentives
for countries acting in their own self-interest to want to join or stay in an
agreement.

One of the earliest definitions of a self-enforcing agreement was the con-
cept of a stable IEA, which means that no individual signatory country has
any incentive to leave the IEA, and no non-signatory country has an incen-
tive to join, taking as given the membership decisions of all other countries.
Models based on this concept include Carraro and Siniscalco (1991,1993),
Hoel (1992), Barrett (1994), Na and Shin (1998) amongst many others. If
one uses a linear-quadratic emissions game version of this model, then the
main findings are rather pessimistic. Carraro and Siniscalco (1991) and Hoel
(1992) have shown that if signatory countries act in Cournot fashion with
respect to non-signatories, then a stable IEA consists of 3 countries when
marginal environmental damage is constant (i.e., when the countries’ best-
replay functions are orthogonal), and of 2 countries when marginal damage
increases with emissions (i.e., when the best-replay functions has a negative
slope), in both cases irrespective of the number of countries affected.? If

!There are a number of other concepts of what makes an agreement self-enforcing.
Chander and Tulkens (1997) draw on cooperative game concepts (the gamma core). Other
concepts, such as far-sightedness, have been developed, for instance, by Ecchia and Mari-
otti (1997,1998); see Finus (2001) and Wagner (2001) for excellent recent overviews.

2Carraro and Siniscalco (1991,1993) also show that the number of signatory countries
can be increased by means of self-financed transfers. However, expanding coalitions re-



they act in a Stackelberg fashion, then, depending on parameter values, a
stable IEA can have any number of signatories between two and the grand
coalition of all countries. But the gain in global welfare from the stable IEA
relative to the non-cooperative outcome is inversely related to the number
of signatories. See Barrett (1994).® The rationale for the difference in out-
comes between Cournot and Stackelberg models is that if one country was
to leave the IEA, with Cournot behaviour, the non-signatories expand their
emissions and the remaining signatory countries partially accommodate this
by reducing their emissions. On the other hand with Stackelberg behaviour,
if a signatory was to leave the IEA the remaining signatories would expand
their emissions. Thus the incentives to leave an IEA are greater with Cournot
behaviour than with Stackelberg.

Since this model has become something of a workhorse tool to study IEAs,
it is important that its properties are well understood. There are two, related,
weaknesses in the early paper developed by Barrett (1994). First, it relied
on numerical simulations to derive the main findings. Second, it ignored the
need to ensure that emissions would be non-negative (or, equivalently, in an
abatement game, that abatement did not exceed the unabated level of emis-
sions).? Recent papers have attempted to correct these weaknesses and to
evaluate how they could affect the results. Finus (2001) presents an analyti-

quires some form of commitment. Petrakis and Xepapadeas (1996) extend this result to
the case in which the countries are not identical using an emissions game with orthogonal
best-replay functions as the one studied by Hoel (1992). Hoel and Schneider (1997) point
out that the prospect of receiving a transfer tends to reduce the incentive a country might
have to commit itself to cooperation so that if the disincentive is strong, total emissions will
be higher with side payments. More recently, Barrett (2001) has shown that with strong
asymmetry side payments become the vehicle for increasing participation in a cooperative
agreement.

3These results apply to the case with increasing marginal damage. For the case of
constant marginal damage, it is easy to show that the Cournot and Stackelberg equilibria
coincide so that leadership does not increase the level of cooperation attained by a Cournot-
1IEA.

4These weaknesses do not appear in Carraro and Siniscalco’s (1991) paper. These
author develop an analytical solution for a symmetric Cournot equilibrium. In their model
they assume an environmental damage function that is quadratic with respect to the
local emissions but linear with respect to the imported emissions, i.e., environmental
damage depends on the product between local emissions and total emissions that affect
the country. As a result of this specification the solution of the game yields always interior
solutions. In this paper, we focus on a global environmental problem so that we assume
that environmental damage is a quadratic function of the aggregate emissions.



cal generalization of Barrett’s results and shows that the higher the level of
environmental damages, the greater the size of the stable IEA. However, his
proof in Appendix X.1 assumes interior solutions, and it is easy to show that
high environmental damages imply that, unconstrained, emissions will be-
come negative. Diamantoudi and Sartzetakis (2002) and Rubio and Casino
(2001) also use analytical approaches, but recognise the need to ensure that
emissions are non-negative. They reach even more pessimistic conclusions -
that even with Stackelberg behaviour the number of signatories of a stable
IEA will be small - no greater than four.

However the way Diamantoudi and Sartzetakis deal with the non-negativity
constraint is to compute an interior solution and then restrict parameter val-
ues to ensure that the resulting emissions are always strictly positive. It
is not surprising that this restriction on parameters restricts the number of
signatories in a stable IEA. Rubio and Casino go further and restrict pa-
rameters to ensure that payoffs are non-negative, which is difficult to justify.
We argue that neither of these approaches is appropriate. In this paper we
also use an analytical approach and deal with the non-negativity constraint
by simply imposing it directly on the choice of emissions by both signatory
and non-signatory countries and using Kuhn-Tucker conditions to derive the
equilibrium of the game. Then for some parameter values, the emission game
will result in corner solutions. We show that with Cournot behaviour a sta-
ble IEA consists of no more than two countries. We also show that a stable
IEA cannot involve a corner solution, and derive a range of parameter values
for which there will be no stable IEA, because of the non-negative emissions
constraints. This will occur when the marginal damage is high. In that case,
the free-riding incentive is so strong that no agreement is stable. Thus our
analysis extends the results obtained by Carraro and Siniscalco (1991) for the
case of a global environmental problem characterized by a quadratic damage
function that depends on aggregate emissions.

With Stackelberg behaviour we find the opposite results. A stable IEA
can involve a corner solution. Our findings show that when the marginal
damage is enough high the unique stable IEA is the grand coalition and that
the number of countries in a stable IEA is directly related to the level of
marginal damage so that when marginal damage is enough low a stable IEA
consists of at most 3 countries. The rationale for this kind of relationship
is given by the fact that the interdependence among the countries occurs
through the damage function. Thus when the marginal environmental dam-
age cost is relatively high, the countries in the agreement choose emission



levels which induce the non-signatories to select low emissions, making exit
from the agreement unprofitable. With lower marginal environmental dam-
age cost, these effects are weakened, so that some countries find it profitable
to leave the agreement, i.e. the free-riding cannot be avoided by the lead-
ership. Finally, we clarify the previous results in the literature which have
been derived assuming interior solutions. According to our results restricting
parameter values to guarantee interior solutions is a sufficient condition to
get stable IEAs with a small number of signatories but it is not a necessary
condition. In this paper we show that a stable IEA with a small number of
countries can involve a corner solution.

In section 2 we present the basic model of an international emissions game,
solve for the cooperative and non-cooperative equilibria and introduce the
definition of a stable international environmental agreement. In section 3 we
derive our stability results for Cournot behaviour by signatory countries. In
section 4 we derive the stability results for Stackelberg behaviour. We com-
pare the results of the Stackelberg model with and without non-negativity
constraints, and show that imposing the non-negativity constraint makes a
trivial difference to the size of IEA that might be expected to form. Section
5 concludes.

Thus we have shown in this paper that the results derived for the model
of stable TEAs in paper by Barrett (1994), which used numerical calculations
on the linear-quadratic version of the model and ignored the issue of non-
negative emissions, all carry through when derived analytically in a model
which takes seriously the need to ensure that emissions are non-negative.
The reason why taking account of non-negative emissions does not change
the main results of the literature is that, as we shall show, the definition of
a stable agreement depends on the sign of the difference between payoffs to
signatories and non-signatories as the number of signatories varies. Taking
account of the need for emissions to be non-negative affects the value of these
payofts, but not the sign of differences in payoffs. Thus this paper not only
derives analytically results for the Barrett (1994) model using an appropriate
treatment of non-negative emission constraints, but disproves the claim that
taking account of such constraints makes a significant difference to known
results.



2 An International Emissions Game

2.1 The Basic Model

In this section we present the basic linear-quadratic model of an international
emissions game.” There are N identical countries, i = 1,..., N. We define
q; > 0 as the level of emissions generated by country i, Q; = > ;. qr the
total emissions generated by all countries other than ¢, and @ = Y, qx =
Qi + ¢; as the total emissions generated by all N countries. Each country
derives a gross benefit from its emissions (think of the economic benefits of
burning fossil fuels) denoted: B(q;) = aq;—(3/2)q?. Each country also suffers
environmental damage which depends on the global level of emissions, and
the damage cost function for each country is denoted: C(Q) = (7/2)Q?. Then
each country has a net benefit(payoff) function:

B, 7
(i, Qi) = agi — 5%2 - 5(% + Qi)
We assume that a > 0,3 > 0 and v > 0. It should be clear that w.l.o.g. we
can normalise one of the parameters and we choose to normalise by setting
v = 1. To emphasise this normalisation we rewrite the net benefit function

as:

W(Qz’; Qz’) = aqg; — gqf - %(C]z + Qz’)z- (1)

We shall think of b as /v - the ratio of the (absolute) slope of the marginal
benefit curve and the slope of the marginal damage cost curve, so a low value
of b is to be interpreted as a (relatively) high marginal damage cost.

2.2 Cooperative and Non-Cooperative Outcomes

When all countries cooperate, emissions for each country are chosen to max-
imize aggregate net payoffs. As is well known this requires that emissions for
each country are chosen so that the marginal benefit it derives from an extra

°In this model, as in the early papers discussed in the introduction, we deal with a flow
pollutant. For analysis using a stock pollutant see Rubio and Ulph (2002a, b). Note also
that while we work with an emission game with no abatement, it is trivial to show that
this is equivalent to a model of an abatement game with given level of unabated emissions.



unit of emissions equals the additional damage cost it imposes on all coun-
tries. It is straightforward to check that the cooperative levels of emissions
and per country payoff are given by:

a a?

* . *
TE3rNT T TNy 2)
When countries act non-cooperatively, each country takes as given the emis-
sions set by other countries, and chooses its own emissions to maximize its
own net benefit. It will set its emissions so that the marginal benefit it de-
rives from an extra unit of emissions equals the additional damage cost it
imposes on itself. It is straightforward to check that the non-cooperative

levels of emissions and per country payoff are given by:

2
a ; 7_TEa[b—N(N—Q)] 3)
b+ N 2(b+ N)?

As expected, § > ¢*, 7 < 7*, so non-cooperative behaviour leads to higher
emissions and lower payoffs than cooperative behaviour. Note also that
emissions are strictly positive in both cases, so we have not worry about
non-negativity constraints.

Finally we define the gains to full cooperation by:

q

GEﬂ'*_—ﬁ': N2(N —1)? . ()
T (b+ N?)[b— N(N — 2)]
It is clear that the gains from cooperation are greater the smaller is b, i.e.
the greater are marginal damage costs (relative to the (absolute) slope of
the marginal benefit curve). This makes sense - the more damaging is global
pollution the greater are the gains from cooperating to deal with it.
However, as noted in the introduction, it is not sufficient to show that
countries will be better off if they cooperate than if they do not cooperate (the
profitability issue). One also needs to ensure that entering an agreement is in
the interest of the countries who do so- an agreement must be self-enforcing.
In this paper we use the notion of stability of an IEA as our concept of an
IEA being self-enforcing. We define this formally in the next subsection.

2.3 Stable International Environmental Agreements

We model an International Environmental Agreement as a two-stage game, in
which in the first stage (the Membership Game) each country decides whether
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or not to join an IEA, and in the second stage (the Emissions Game) each
country determines its emissions. We describe each game briefly, in reverse
order.

The Emissions Game

Suppose that, as the outcome of the first-stage game, there are n signatory
countries (a typical signatory being denoted by s) and N — n non-signatory
countries (a typical non-signatory being denoted by f, for fringe or free-rider).
Non-signatory countries choose emissions in the same way that countries did
when acting non-cooperatively - each country takes as given the emissions
of all other countries and chooses its emissions to maximize its own net
benefits. Using symmetry, this will define a non-signatory reaction function
linking the emissions of a typical non-signatory country to the emissions of a
typical signatory country. Signatory countries choose emissions in the same
way countries did when they acted cooperatively - the emissions of each
signatory are chosen to maximize the aggregate payoff of the n signatories.

Two issues need further clarification. First, there is the question of the
timing, or really commitment, of the emissions of signatories relative to non-
signatories. If neither signatories nor non-signatories can commit to their
emissions, the we think of them choosing emissions simultaneously. Thus we
have a Cournot model in which signatories take as given the emissions of
non-signatories when choosing their emissions. This will define a signatory
reaction function relating the emissions of a typical signatory country to the
emissions of typical non-signatory. Equilibrium is the intersection of the two
reaction functions. On the other hand, Barrett (1994) argues that member-
ship of an IEA acts as a form of commitment device, which we model by
thinking of signatories setting their emissions before non-signatories. In that
case signatories can calculate what emissions non-signatories will choose (in
terms of the non-signatory reaction function), and choose their own emissions
to maximize aggregate net benefit. This is the Stackelberg model.

The second issue is that emissions by signatories and non-signatories have
to be non-negative and we just impose these as constraints on the decision
problems of signatories and non-signatories. So for some parameter values
the emissions of either a signatory or non-signatory could be zero (a corner
solution).

The outcome of the emission game then, is that, for any number of signa-
tories n we can define the equilibrium payoffs to signatory and non-signatory
countries: 7°(n), 7/ (n).

The Membership Game




We follow Hoel (1992), Carraro and Siniscalco (1993), Barrett (1994) and
others in saying that an IEA is self-enforcing if it is stable, where the concept

of stability is borrowed from the literature on cartel stability (d’Aspremont
et al (1983)). For 2 < n < N we define A(n) = 7(n) — n/(n — 1); then:

Definition 1 An IFA with n signatories is stable if it satisfies the condi-
tions: Internal Stability: A(n) > 0, i.e. 7°(n) > 7/ (n—1); External Stability:
Aln+1) <0, ienl(n) > 7n(n+1).

Internal stability simply means that any signatory country is at least as
well off staying in the IEA as quitting, assuming that all other countries do
not change their membership decisions. External stability similarly requires
that any non-signatory is at least as well off remaining a non-signatory than
joining the IEA, again assuming that all other countries do not change their
membership decision.

We can also think of a stable IEA as a Nash equilibrium of the Member-
ship Game. To see this, the strategies for each country in the Membership
Game are to sign or not sign. A country takes as given the membership de-
cisions of all other countries. Suppose these have resulted in a membership
of m, 0 < m < N — 1. Then the payoffs to a country are 7°(m + 1) if it
signs and 7/ (m) if it does not. So it will join if 7¢(m + 1) > 7/(m) and not
join otherwise. For an ITEA with n* members to constitute a Nash equilib-
rium of the Membership Game, it must have paid each signatory to sign, so
75(n*) > 7/ (n* — 1). Similarly it must have paid each non-signatory not to
join, so 7/ (n*) > w*(n* 4+ 1). These are just the conditions for Internal and
External Stability.

In this next section we analyse stable IEAs for the Cournot model with
non-negative emissions, and in section 4 we analyse stable IEAs for the Stack-
elberg model with non-negative emissions.

3 Stable Cournot IEAs with Non-Negative
Emissions

We now turn to the analysis of stable IEAs with Cournot behaviour and non-
negative emissions. First we need to analyse the outcome of the emissions
game.

10



3.1 Cournot Emissions Game with Non-Negative Emis-
sions

Suppose there are n signatory countries and N — n non-signatories. A non-
signatory country k takes as given s, and chooses gy, to solve:

b 1
f 5 ,
max M, — a _ = - — + .
g e T Adre T 5l Ty (qrk + Qrr)

The first order condition is:

orl or}
—= =qag—-5> — <0 >( =
04y a qre — (qre + Qrr) <0, g > 0, qfk8ka

(5) defines the non-signatory reaction function for a non-signatory country,
k=1,.., N —n, allowing for the fact that emissions must be non-negative,
so part of the reaction function has g, = 0.

Now signatories are assumed to coordinate in order to maximize their
collective net benefits taking as given the emissions of non-signatories.

0. (5

n

S - S b 1
max [’ = 27?2- = Z[aqsi - 56131 - _(Qm‘ + Qsi)Q]-
i=1

gs1;--,qsn >0 im1 2

The first-order condition is:
oIl ,
= a_bQSi_(QSi+Qsi>_Z(QSj+Qsj) <0, g5 >0, qy% =0,1=1,...,n.
i s
(6)

(6) defines the signatory reaction function for a typical signatory country,
allowing for the fact that emissions must be non-negative, so part of the
reaction function has ¢,; = 0. Under the assumption of symmetry we have
that df1 = --- = qf(N-n) = 4f, qs1 = --- = 4sn = (s and Q = ngs + (N - n)‘]f)
so that (5) and (6) can be written as follows:

aQSz’

on’ ont

— = a—bgr —|ngs + (N —n)qs] <0, g >0, qr—=— =0. 7
Ja; r— | ( )ar] 1 oa; (7)
aqs = a-—- bQS - n[nqs + (N - n)Qf] < O; qs > 07 qs aQS =0. (8)
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Equilibrium in the emissions game involves solving (7) and (8) simulta-
neously, taking account of the non-negativity constraints. In principle there
are three possibilities:

(i) Interior solution (¢s > 0,q; > 0). From (7) and (8) we obtain:

_alb—(N—n)(n—-1)] alb+n(n —1)]

G+ N+n2—n = VT rN+tni-n

so that ¢s > 0 iff b > b(n) = (N —n)(n — 1).
(ii) Signatory Corner Solution (g, = 0, ¢y > 0).From (7) and (8) this
requires:

a

B T

ay
iff b < b(n).
(iii) Non-Signatory Corner Solution (¢s > 0,¢; = 0). From (7) and
(8) this requires:

a

T

qS
which implies that b + n(n — 1) < 0 contradicting b > 0.

It is easy to show that a corner solution for both types of countries does
not satisfy the first order conditions, so that the only two possible equilibria
are the interior solution and the non-signatory corner solution, which are
summarized in:

Lemma 1 For any n, the equilibrium of the Cournot emissions game with
non-negative emissions will depend on the value of the parameter b; the equi-
librium outputs and net benefits for signatory and non-signatory countries
are:

(1) Interior Solution (b>b(n))
~ab-bw)  ab+nm-1)
qs_b[b+N+n2—n]’ qf_b[b+N+n2—n]’
oy~ O Nt Lyt NA(14D)
= {1 [b+N+n2—n]2}’ T =g {1 [b+N+n2—”]2}
(i7) Corner Solution (b < b(n))

12
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L0 SN Ty
i a*(N —n)? a*lb+1— (N —n—1)%
G T e T (N e

Note that for n = 1 and n = N, b(n) = 0, so, since b > 0, we always get
an interior solution for these values of n. Indeed it is straightforward to see
that when n =1 or n =0, ¢; = ¢y = a/(b+ N) = g, the emissions level in
the non-cooperative equilibrium defined in Section 2.2, while if n = N the
emissions level for signatory countries is ¢; = a((b+ N?) = ¢*, the emissions
level in the cooperative equilibrium defined in Section 2.2. In these two cases
we have an interior solution for this reason we focus in the rest of this Section
onn=1{23,..,N—1}

Now for a particular problem b is a fixed parameter, and what we are
interested in is, for a given N, b for which values of n will we have an interior
solution or a signatory corner solution. Note that b(n) = (N —n)(n —1) is
a quadratic concave function with b(n) = b(N — n + 1) and has a maximum
b(n) = (N — 1)?/4 for » = (N + 1)/2.% This maximum is an integer if
N is an odd number. However, when N is an even number, the integers
that maximize b(n) are n; = N/2 and ny = (N + 2)/2. Then there exists
a unique integer, n, that maximizes b(n) if N is an odd number, and two
integers, niand no, if N is an even number so that we can represent by
b(n) the maximum value of the function b(n) given by an integer in domain
{2,3,...,N — 1}.

For b < b(n), define x; < x4 as positive roots of b = b(n) and 1y = I1(x7)
as the smallest integer no less than x; and ny = Ix(z3) as the biggest integer
not greater than w,.” The situation is shown in Figure 1 for the case when
r1 = 71 and 5 = 7is and N is an odd number.

= FIGURE 1 «

Then according to Lemma 1 we have:

%In order to study the behaviour of b(n) we assume that n is a real number in interval
[1, N] and once we know the properties of b(n) then we are able to characterize the values
of b(n) for n restricted to be an integer.

If N is an odd number then b(72) = b(n) yields iy = x1 = g = 29 = (N+1)/2. Instead
if N is an even number then b(7) = b(n) yields iy = 21 = N/2 and fi; = 22 = (N + 2)/2.

13



Proposition 1 For any b, N there exists a unique solution to the Cournot
emissions game with non-negative emissions as follows: (i) If b > b(n) we
have that for alln, 2 <n < N—1, the equilibrium will be an interior solution;
(11) If b < b(n), there exist iy, iy defined above such that the equilibrium will
be an interior solution for n such that 2 < n <mny, no <n < N —1 and a
signatory corner solution for n when ny < n < ns.

Note that b(2) = b(N — 1) = N — 2 and so a corollary is:

Corollary 1 If0 <b< N —2, ny =2 and no = N — 1 so the only interior
solutions are n =1 and n = N.

From Lemma 1 and Proposition 2, for any parameters b and N we can
determine for all possible values of n what type of equilibrium there will be for
the emissions game and the corresponding equilibrium payoffs to signatory
and non-signatory countries 7°(n), 7/(n). We now turn to the equilibrium
of the membership game.

3.2 Cournot Membership Game with Non-Negative
Emissions

In section 2.3 we defined an equilibrium of the membership game as a stable
IEA, where stability was defined using the properties of the function A(n) =
75(n) — m/(n — 1). Clearly the value of A(n) depends on the nature of the
emissions game equilibrium for n and n — 1. We have the following result:

Proposition 2 (i) For the Cournot membership game with non-negative
emissions, an IEA with n signatories is stable only if for bothn and n—1 the
equilibrium of the emissions game is an interior solution; (ii) If b >b(N) =
N —4+42(N?—=3N+3)"/2 > N —2 the unique stable IEA of the Cournot mem-
bership game with non-negative emissions has membership 2; (iii) If b <b(N)
there is no stable IEA of the Cournot membership game with non-negative
emiSsions.

The proof is provided in Appendix A.

Now from Corollary 1 and part (i) of Proposition 3, if b < N — 2 the only
values of n which yield interior solutions are n = 1 and n = N, so, because
of the existence of corner solutions, a necessary condition for the existence

14



of a stable IEA stable is b > N — 2. However from part (ii) of Proposition
the critical minimum value of b for which there exists a unique stable IEA,
with membership 2, is b(IN) > N — 2. So consideration of the possibility of
corner solutions adds no additional constraint to the conditions under which
an TEA of size 2 is stable.

The intuition behind Proposition 2 is essentially that given in the intro-
duction. With Cournot behaviour, if one country leaves an IEA and expands
its emissions, the remaining members of the IEA respond by cutting their
emissions. This effectively “rewards” defection, and so no IEA with at least
3 members is internally stable. It is only when the IEA is driven down to
membership of 2, and so any further defection by one country effectively dis-
solves the IEA, that there is a possibility of stabilizing an IEA, but only for a
large enough value of b, i.e. a low enough (relative) value of marginal damage
costs. Neither of these arguments is affected by the fact that for some values
of n there may be a corner solution with signatory emissions constrained to
zero. This does not affect the incentives to defect when n = 3, and it does
not affect the critical size range of parameter values for b for which n = 2 is
internally stable.

4 Stable Stackelberg IEAs with Non-Negative
Emissions

In this section we analyse stable IEAs when signatory countries act collec-
tively as a Stackelberg leader and emissions are restricted to be non-negative.
We begin with the emissions game.

4.1 Stackelberg Emissions Game with Non-Negative
Emissions

Suppose there are n signatories and N — n non-signatories. Each non-
signatory acts in the same way as in the Cournot model set out in 3.1 with
reaction function given by (7). However, the countries in the agreement act
as the leader of the game so that given that they are identical they coordinate
for the same level of emissions in order to maximize their net benefits taking
into account the reaction function of the followers:

b 1
s nlags — §qf B §(nq5 + (V= n)gy)]
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st. —a+bgs+ngs+ (N —n)g >0, (9)
The Lagrangean for the problem is

b 1
L = nlags — qu - 5(”% + (N — ”)%‘)2]

+A(—a+bgr +ngs + (N —n)qy),
and the KTCs are

OL
9 = nla —bgs —n(ngs + (N —n)qr) + A <0, (10)
oL
> e
qS - 07 q38qs 07
oL
- = —n(N (g, + (N —n)) X0+ N =) 0. (11
f
oL
> 07 Y 07
qr = Qfaqf
oL
s —a+bqy +ngs + (N —n)qy > 0, (12)
oL
> — =0.
A >0, )\8)\ 0

Equilibrium in the emissions game involves solving (10)-(12) simultane-
ously, taking account of non-negativity constraints. In principle there are
three possibilities:

(i) Interior solution (g, > 0,q; > 0). From (10)-(12) we obtain:

B alb®* — (N —n)(n—2)b+ (N —n)?
= b(b+ N —n)® + bn?] ! (13)

a[b?* + (N +n? —2n)b — (N — n)n]

= bi(b+ N —n) + bn?] ’ (14)

so that ¢; > 0,q; > 0 iff

g(b,n) = b — (N —n)(n—2)b+ (N —n)*>0,
h(b,n) = b*+ (N +n?—2n)b— (N —n)n > 0.

(ii) Signatory Corner Solution (¢; = 0,q; > 0). From (10)-(12) this
requires:
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a

_— — b < .
T ov —ny IO =0

qar

(iii) Non-Signatory Corner Solution (¢, > 0, ¢y = 0). From (10)-(12)
this requires:

a
s:_ahba <0.
¢s=—, h(bn) <0

It is easy to show that for the Stackelberg equilibrium a solution g; =
¢r = 0 does not satisfy the KTCs.
Summarizing:

Lemma 2 For any n, the equilibrium of the Stackelberg emissions game with
non-negative emissions will depend on the value of the parameter b; the equi-
librium outputs and net benefits for signatory and non-signatory countries
are:

() Interior Solution (9(b,n),h(b,n) > 0)
ag(b,n) B ah(b,n)

O+ N —nZ+tm2 Y T o+ N —n)Z+ o

with net benefits given by

qs =

a® N?b
7’ (n) = —q1- 9 )
20 (b+ N —n)” + bn?
2 2 )2
o (n) = a 1_(b+1)N (b+2N n) ‘
2b [(b+ N —n)” + bn?)?
(17) Signatory Corner Solution (9(b,n) <0, h(b,n) > 0)
a
©=0 =N,

with net benefits given by

s\ (N —n)? sy @b— (N —n)(N—n-—2)
T =N T T T ap e N
(13i) Non-Signatory Corner Solution (g(b,n) >0, h(b,n) <0)
a
s =5 =0
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with net benefits given by

s (b + n(n - 2)) a?
(n) = — o2 , wl(n) = ——.

Now note that for the interior solution the full-cooperative level of emis-
sions is given by Eq. (13) for n = N and that the full-noncooperative Cournot
level of emissions is given by Eq. (14) for n = 0. In these two cases we have
an interior solution, for this reason we focus in the rest of this Section on
n={1,2,..,N—1}

We now want to determine more precisely for which parameter values the
three different solutions occur. This clearly depends on the signs of g(b,n)
and h(b,n). The next proposition fixes n and considers for which values of
b we get each of the three solutions, and shows that there are no values of b
and n for which both g(b,n) < 0 and h(b,n) < 0. For given n, h(b,n) = 0
presents a unique positive root that we denote by by (n), g(h,n) is always
positive for b > 0 if n = {1,2,3}, if n = 4 g(b,4) is zero for b = N — 4 and
positive otherwise, and if n > 4 g(b,n) = 0 presents two positive roots that
we denote by by(n), bs(n) such that by(n) < by(n) < bs(n). Then we have:

Proposition 3 For any n, there exists a unique solution to the Stackelberg
emissions game with non-negative emissions as follows: (i) forn ={1,2,3},
there exists by(n) defined above such that for b < bi(n) the equilibrium is
the non-signatory corner solution while for b > bi(n) the equilibrium is the
interior solution; (ii) For n = 4, we have that bj(4) < b = N — 4 so that:
(a) for b < by(4) the equilibrium is the non-signatory corner solution, (b) for
bi1(4) < b < N —4 the solution is the interior solution, (c) forb= N — 4 the
equilibrium is the signatory corner solution, (d) for b > N —4 the equilibrium
is the interior solution; (iii) For 4 < n < N, we have that by(n) < by(n) <
bs(n) so that : (a) for b < by(n) the equilibrium is the non-signatories corner
solution, (b) for by(n) < b < by(n) the equilibrium is the interior solution,
(c) for ba(n) < b < bs(n) the equilibrium is the signatories corner solution,
and (d) for b > bs(n) the solution is the interior solution.

The proof is in Appendix B. As with the Cournot model, we are more
interested in the question, for a given b what is the solution to emissions
game for different values of n.

First we focus on non-signatories. The non-signatories’ emissions depend
on whether b is greater or less than b;(n) so that we need to know how b;(n)

18



changes with respect to n in order to establish whether the equilibrium will
be an interior solution or a corner solution for non-signatories. For b;(n)
we have that b1(0) = b (N) = 0 and it is easy to show that the function
presents a unique extreme in the interior of the interval (1, N — 1) which is
a maximum.® Then there exists a unique integer, 7, in that interval that
maximizes b;(n) so that by(n) is the maximum value of the function given by
an integer in the domain {1,2,..., N — 1}.7

For b < by(n), define 21 < x5 as positive roots of b = by(n) and 7y = I1(x7)
as the smallest integer no less than x; and ny = I5(z5) as the biggest integer
not greater than x,.!° In this case we obtain the following results:

Lemma 3 (i) If b > bi(n) we have that for alln, 1 < n < N — 1, the
equilibrium will be an interior solution; (ii) If b < Bl(ﬁ), there exist Ty, Mg
defined above such that the equilibrium will be an interior solution for n
such that 1 < n < ny,ne < n < N — 1 and a corner solution for n when
7_11 S n S ’f_lg.

The proof is provided in Appendix C.
Moreover, as by (N —1) is the minimum value of by (n) forn = {1,2,..., N —
1} we can establish that:

Corollary 2 If 0 < b < b)(N — 1), ny = 1 and ns = N — 1 so the only
interior solutions are n =0 and n = N. In other words, the equilibrium is a
corner solution for non-signatories for alln, 1 <n < N — 1.

The proof is provided in Appendix D.
For signatories emissions depend on whether b belongs to the interval
[b2(n), b3(n)]. ba(n) is a strictly convex, decreasing function defined in the

8To study the behaviour of by(n) in that interval we do as we did for the Cournot
equilibrium we assume that n is a real number and once we know the properties of b;(n)
then we are able to characterize the values of bi(n) with respect to n but now with n
restricted to be an integer number. The same approach is followed to study be(n) and
b3 (n)

9In the Cournot model there existed the possibility of two maxima given the symmetry
of the function b(n), however as b;(n) does not present this property there is no reason to
expect that the maximum of the function be reached for two integers.

Tf 4 in the domain {1,2,..., N — 1} maximizes by (n) in the real interval [1, N — 1] then
b1(n) = bi(n) yields 1 = x5 = n. However, if the value of n that maximizes b (n) is not
an integer number then by (7) = by(n) yields z1 < x9 and one of these two values is equal
to 7.
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interval [4, N] with by(4) = N—4 and by(N) = 0. Then forn = {4,5,..., N—1}
the maximum value of the function is N — 4 and the minimum value is
ba(N —1).

For by(N — 1) < b < N — 4, define x5 as the unique positive root of
b = by(n) and n3g = I3(x3) as the smallest integer no less than xs.

On the other hand, b3(n) is a strictly concave function with a maximum
value equal to N(N —4)/4 in interval (4, N) with b3(4) = N —4 and b3(N) =
0. Then there exists a unique integer, n*, that maximizes bs(n). We denote by
b3(n*) the maximum value of this function given by an integer in the domain
{4,5,...., N — 1}.

For N —4 < b < bg(n*), defines z3 < x4 as the positive roots of b = b3(n)
and n3 = I3(z3) as the smallest integer no less than x5 and ny = I4(x4) as
the biggest integer not greater than x4. For boy(N — 1) < b < N — 4, define
x4 as the unique positive root of b = bs(n) and 1y = I4(z4) as above. Then
we have:

Lemma 4 (i) If b > bs(n*) we have that for all n, 1 < n < N — 1, the
equilibrium will be an interior solution; (ii) If bo(N — 1) < b < bg(n*), there
exist ng, ng defined above depending on whether b is greater or less than N —
4 such that the equilibrium will be an interior solution for n when 1 < n <
ng, ng <n < N —1 and a signatory corner solution for n when ny < n <
ng; (i) If 0 < b < by(N — 1), we have that for alln, 1 < n < N — 1, the
equilibrium will be an interior solution.

The proof is provided in Appendix E and we illustrate it in Figure 2.

= FIGURE 2 «

Now we can establish the type of solution for each kind of country de-

pending on the number of countries in the agreement using Lemmas 3 and
4.

Proposition 4 (i) If b > bs(n*) we have that for alln,1 <n < N — 1, the
equilibrium will be an interior solution for signatories and non-signatories;
(11) If bi(n) < b < bs(n*), the equilibrium will be an interior solution for
non-signatories for all n, however for signatories there exist ng,ng defined
above such that the equilibrium will be an interior solution for n when 1 <
n<mns ng <n < N-—=1and a corner solution when ng < n < ny;(iii)
If bo(N — 1) < b < by(n), there exist ny,no, g and ny defined above such
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that the equilibrium will be an interior solution for non-signatories and for
n when 1 <n <ny,ng <n <N —1 and a non-signatory corner solution for
n when N1 < n < ng, moreover the equilibrium will be an interior solution
for signatories and for n when 1 <n <ng, ny <n < N —1 and a signatory
corner solution for n when ng < n < fig;(w) If by(N — 1) < b < by(N — 1),
the equilibrium will be an interior solution for signatories for all n and a
corner solution for non-signatories also for all n except forn = N — 1;(v) If
0 < b < bi(N—1), the equilibrium will be an interior solution for signatories
for all n and a corner solution for non-signatories also for all n.

The proof is in Appendix F and we illustrate it in Figure 3.!!

= FIGURE 3 <«

As can be seen, Proposition 4 just expresses the results of Proposition 3
in terms of n as a function of b, rather than b as a function of n. The previous
results apply for N > 5 although with minimal changes they are also valid
for N = 5.

Thus for any parameters N and b, Proposition 4 indicates for, any number
of signatories n, what type of solution there is to the Stackelberg emissions
game, with corner solutions to take account of non-negative emissions con-
straints, and Lemma 2 indicates the corresponding outputs and equilibrium
payoff functions for signatories and non-signatories. This is what we need to
know to conduct the stability analysis.

4.2 Membership Game for Stackelberg Model with
Non-Negative Emissions

In this Section we show that the scope of the international cooperation for

controlling an environmental problem depends critically on the level of the

marginal environmental damage. We begin analyzing the stability for (rela-
tively) high marginal damages, i.e., for low values of b.

Proposition 5 If b < bj(N — 1) the unique stable IEA of the Stackelberg
model with non-negative emissions is the grand coalition.

UNotice that as be(n) is a decreasing, strictly convex function and be(N) = by (N) = 0,
by (n) must be also a strictly convex function for big enough values of n.
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The proof is in Appendix G. But the intuition is simply that, as we
know from Proposition 4, for this range of parameter values, for n = N the
equilibrium of the emissions game is the cooperative equilibrium, in which
all signatories get a positive payoff, while for n < N the equilibrium of the
emissions game is the non-signatories corner solution, in which, from Lemma
2, there is a fixed total of emissions independent of the number of signatories.
Thus, for all n < N non-signatories will get a negative payoff which is less
than the payoff to signatories (since signatories get the benefit of producing
emissions), so it does not pay a signatory to leave the grand coalition, and it
always pays non-signatories to join.

Next we show that the grand coalition cannot be a stable agreement for
lower values of damage costs.

Proposition 6 Ifb € [by(N —2),b9(4) = N —4], there exists an upper bound
giwen by ngz for the number of countries that belong to a self-enforcing IEA.
This upper bound decreases when b increases.

The proof is in Appendix H. This result establishes that the scope of
cooperation is very sensitive to changes in the level of marginal environmental
damage. So that we have to expect that a reduction in the marginal damage
leads to a reduction in the level of cooperation reached by a self-enforcing
IEA. The explanation for this kind of relationship is given by the fact that the
interdependence among the countries occurs through the damage function.
Thus, when the marginal environmental damage is relatively high (a low b),
the leadership of the countries in the agreement is strong and the signatories
choose emission levels which induce non-signatories to select low values of
emission, making exit from the agreement unprofitable. These effects are
weakened as environmental damage costs get smaller.

Finally, we focus on the scope of cooperation when b > N — 4.

Proposition 7 There exists a critical value b higher than N — 4 such that if
b e [N —4,b], then an IEA of three countries is self-enforcing. If b > b, only

two countries can sign a self-enforcing IFA.

See Appendix I for the proof and the definition of the critical value b.
Comparing N(N—4)/4 and b we obtain that N(N—4)/4 < bfor N in interval
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(5,26) and that the relationship is the contrary for N > 26.!2 Consequently
we can conclude that:

Corollary 3 Ifb > N(N —4)/4, i.e., when the Stackelberg equilibrium is an
interior solution for signatories and non-signatories, the number of countries
in a self-enforcing IFA is three if N is lower than 26 and two if N is greater
than or equal to 26.

These conclusions clarify the previous results in the literature which have
been derived assuming that there are interior solutions. According to our
results restricting parameter values to guarantee interior solutions is a suf-
ficient condition to get stable IEAs with a small number of signatories but
it is not a necessary condition. We have obtained that it is enough with
b > N — 4 to have a maximum of three countries in an IEA. But between
N — 4 and N(N — 4)/4 the Stackelberg equilibrium is a corner solution for
different values of n depending on the value of b. This means that what is
necessary and sufficient to get a small degree of cooperation is a high value
of b and not interior solutions for signatories and non-signatories.

Thus we have shown that even if we take seriously non-negative emission
constraints, the Stackelberg model can have stable IEAs as large as the grand
coalition and as low as a bilateral agreement depending on the value of the
marginal environmental damage.

Finally, although we have shown that, allowing for non-negative emission
constraints, it is still possible to get the grand coalition as a stable IEA, it
could still be the case that imposing non-negative emissions has a significant
effect on the size of a stable IEA in the sense that for any particular set
of parameter values the size of IEA is significantly smaller than would be
calculated if one simply ignored the constraints. To test this we have taken
values of a = 1000, values of N = 10, 20, , 150, and 1500 values of b. For each
set of parameter values we calculated the size of the stable IEA imposing
non-negative emission constraints and without imposing such constraints.
Three points emerged: (i) first, we confirmed, that, for all N, by varying b
the maximum size of stable IEA obtained was the grand coalition, whether
or not the non-negative emission constraints were imposed; (ii) for any set of
parameter values, the size of the stable IEA with the non-negative emissions

12Remember that N(N — 4)/4 is the maximum value for b3(n). This means that b >
N(N —4)/4 is a sufficient condition to have an interior solution for signatories and non-
signatories.
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constraints imposed was never greater than the size of stable IEA when the
constraints were ignored; (iii), but crucially, the differences in size of stable
IEA were small. We illustrate this in Table 1 by showing for a range of values
of N the average size of stable IEA (averaged over different values of b) with
and without the constraints. As can be seen the difference in average size by
imposing the constraints is tiny. One has to go to the third decimal place to
detect a difference in average size.

Table 1
Average Size of Stable IEA
With and Without Constraints

N | With Constraints | Without Constraints
10 6.268 6.272

30 16.677 16.680

50 27.148 27.151

70 37.629 37.631

90 48.110 48.111

110 58.589 58.590

130 69.068 69.069

150 79.545 79.546

So, as with the Cournot model, introducing non-negative emissions con-
straints does not significantly change the results that exist in the literature.

5 Conclusions

In this paper we have provided analytical proofs of the main results of the
linear-quadratic version of the widely used model of stable IEAs introduced
by Carraro and Siniscalco (1991) and Barrett (1994). Morover, we have
shown, analytically, that these results are robust to the introduction of con-
straints that emissions must be non-negative. While such constraints signif-
icantly complicate the analysis, they leave the main findings of the original
literature almost completely unaffected. Since it is clearly right that such
non-negative constraints should be taken into account, it is important to
know the original results are robust and this is one of the contributions of
our paper. Another contribution is that our results disprove the claim by
Diamantoudi and Sartzetakis (2002) that imposing non-negative emissions
constraints significantly reduces the size of the stable IEAs that can be found
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with non-negative emissions. This paper argues that these claims are wrong
and arise from the inappropriate way non-negative emissions constraints were
taken into account.

Of course there are many other respects in which the original models of
stable TEAs need to be extended - richer concepts of self-enforcing agree-
ments, asymmetric countries, concepts of fairness, dealing with stock pollu-
tants, allowing for uncertainty and learning - and the authors of the original
papers and many others have made important contributions to addressing
these extensions (see again Finus (2001) for an excellent survey). We too
have addressed some of these extensions (Rubio and Ulph (2002 a,b), Ulph
(2002 a, b)). However, since the basic model continues to attract interest, it
is important to make sure that its properties rest on thorough analysis, and
this paper contributes to that purpose.
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A Proof of Proposition 2

(i) Stability depends on the value of the function A(n), which as noted in
the text, depends on whether there are interior or corner solutions for n and
n — 1. We show that unless n and n — 1 are both interior solutions, then
A(n) < 0, and so does not satisfy the condition for internal stability.
(a) Both Corner Solutions
From Lemma 1 we have that for this case
a’ [ (N —n)? b+1 (N —n)?

Aln) = —— —
(n) 2 (b+N—n)2+(b+N—n+1)2 (b+ N —n+1)2 <0,

since the first and third term of parenthesis have the same numerator but
the denominator of the third is greater.

(b) n corner solution, n — 1 interior solution (i.e. n = n;)

For this case n is defined in the interval [2, (N +1)/2]. Now we are going to
compare the increase in benefits with the increase in costs when one country
leaves the agreement. This increase is equal to the benefits of non-signatories
since for a corner solution the emissions of a signatory are zero.

a2{[b+ A+ 2N [b+ A(n
BY(n=1) = agyn — 1) ~ Sy (n — 1 = {[ZHQEJ;A&W ()]

?

where
A(n) =n?=3n+2>0 foralln>1

On the other hand, the increase in costs is given by

N (b+ N —n)* = (N-n)Pb+ N+ An)

Cln=1) - C*(n) = 5 b+ N+ AmPO+N—n?

so that the increase in net benefits is given by

a*b* + B(n)b® + C(n)b* + D(n)b + E(n)

AN = S T A N T A PG I N

where
B(n) =2N +n(n —2)+2A(n) >0 forn > 2

C(n) = (N—n)(bN - (2N +1)n)+ A(n)[2(N —n)(2+ N —n)
+A(n) + 2N]
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D(n) =2N(N —n)* + A(n)(N —n) [2(2N —n) + 2N (N —n)

+An)(N —n+2)] >0 forne[2,(N+1)/2]

E(n) = A(n)(N —n)*[A(n) +2N] >0 for n > 2.

Next, we check the sign of C'(n). Expanding this term and substituting
A(n) we obtain

C(n) = 3n'—4(4+ N)n®+2(N?+ 10N + 15)n?
—(8N? + 32N + 20)n + 9N? + 12N + 4.

It can be easily shown that C”(n) is a strictly convex function with a
minimum at n = (4 + N)/3. For this minimum we have that the second
derivative is positive for N > 3.13 This implies that C’(n) is increasing for all
n in interval [2,(N + 1)/2] and that moreover the first derivative is positive
in this interval since C’(2) is positive. From this result we can conclude that
C'(n) is increasing and moreover that is positive since C'(2) is positive. Thus,
the final conclusion is that C(n) is positive in interval [2, (N + 1)/2] and
consequently the internal stability condition is not satisfy when n is a corner
solution and n — 1 is an interior solution.

(¢) n interior solution, n — 1 corner solution (i.e. n = fiy)

For this case n is defined in the interval ((N+1)/2, N]. As in the previous
case we compare the increase in benefits with the increase in costs when one
country leaves the agreement. The benefits for signatories are

a®[(b+ N +n? —n)? — N?n?|
2b(b+ N +n? —n)? ’

B*(n) = ag,(n) ~ 54,(n)" =

and for the non-signatory countries

b+ 2(N —n+1)]
(b+N—-n+1)2"~

; b , a?
B (n 1) = agy(n 1) - Sgyn— 1 =

so that the increase in benefits is

13We assume in this analysis that the minimum number of countries is 3.
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a? N*n?2(b+ N —n+1)? - (N—-n+1)*(b+ N +n? —n)?

B/(n—1)—B%(n) = —
(n=1) (n) 2 bb+ N —n+1)2b+ N+n?—n)?
On the other hand, the increase in costs is given by

(N—n+1)2?*0b+ N+n*—n)?—N*(b+ N —n+1)?
(b+N—-n+1)2(b+ N +n? —n)? ’

Of (n—1)—C*(n) = %

so that the increase in net benefits is given by

_a® F(n)b’ + G(n)b* + H(n)b+ I(n)

_A(n)_%(b+N—n+1)2(b+N+n2—n)2’

F(n) = N?—(N—-n+1)?

G(n) = N?n®4+ (N —n+1)24+2N*(N —n+1)—2(N —n+1)(N +n® —n),

H(n) = NN -n+1)*—(N—n+1>*N+n*—n)*+2N?n*(N —n+1)
—2(N —n+1)*(N +n*—n),

I(n) = (N—n+1>*N>—(N+n®—n)?).

Next, we check the sign of coefficients F'(n), G(n), H(n) and I(n). F(n)
is positive for all n > 2 since then N2 > (N —n + 1)2.
Expanding G(n) we obtain

G(n) = —2n*+n*(AN+6)—n*(T+N?*+10N)+n(4+10N+4N?)—1-3N?—4N.

It can be easily shown that G”(n) is a strictly concave function with a
maximum for n = (3 + 2N)/4. For this maximum we have that G"((3 +
2N)/4) is positive for N > 3. Moreover we also have that G"((N + 1)/2)
is positive and G”(N) is positive for N = {3,4,5,6}, zero for N = 7 and
negative for N > 7. Let us assume for the moment that N > 7, then we can
conclude that

N+1<3+2N
2 4

ny < <ng <N,
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where n; < ny are the two positive roots of equation G”(n) = 0. Thus, we
can establish that the first derivative is increasing from (N + 1)/2 until n,
where the first derivative presents a maximum and afterwards decreasing.
Moreover as G'((N + 1)/2) is positive and G'(N) is also positive we can
establish that the first derivative is positive in the interval ((N + 1)/2, N].
This means that G(n) is increasing in such interval, then as G((N +1)/2) is
positive we can conclude that G(n) is positive in the interval ((IV +1)/2, N].
If N =7 then ny = N but again the first derivative is positive in the interval
((N +1)/2, N]. Finally, if N = {3,4,5,6} we have that N < ny and the sign
of the first derivative does not change. The result is that G(n) is positive in
the interval (N +1)/2, N].
Expanding H(N) we obtain

H(n) = —-n®+n’(4+2N)—n"(8+ N*+8N) +n’(10 + 4N* + 16N)
—n?(ON? + 7 + 18 + n(10N? + 2 + 10N + 2N?)
—2N — 2N?* — 4N?

In this case H(n) is positive around (N +1)/2 if N € [3, 8] and presents
positive values near of N for N > 3. However, for N > 8 we cannot establish
the sign of this coefficient.

Finally, we expand I(NN) obtaining

I(n) = (N —n+1)*(—n* + 20 + n*(N? = 2N — 1) + 2Nn — N?),

so that the sign of this coefficient depends on the sign of the second term on
the right-hand side.

It is easy to show that the second derivative of this term is a strictly con-
cave function with a positive maximum for n = 1/2.As the second derivative
is negative for (V 4+ 1)/2 and N we can conclude that the first derivative
is decreasing in the interval ((N + 1)/2, N]. Calculating the sign of the first
derivative for these two values we find that the first derivative is positive
for (N + 1)/2 and negative for N which implies that the first derivative is
zero for some value n; between (N + 1)/2 and N and consequently we have
a maximum for the term for n;.Then as the term is positive for (N + 1)/2
and zero for N we can conclude that I(n) is positive or zero in the interval
((N+1)/2,N].

The result is that the sign of the internal stability condition depends on
the sign of the following function of b :
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f(b) = F(n)b* + G(n)b*> + H(n)b+ I(n),

where F(n), G(n) are positive and I(n) is positive or zero for n € (N +
1)/2,N]| and H(n) can be positive or negative. When H(n) is positive we
have that the internal stability condition is not satisfy when n is an interior
solution and n — 1 is a corner solution. When H(n) is negative we have
that the second derivative is a strictly convex function with a minimum for
a negative value of b. This implies that the first derivative is increasing for b
positive and as H(0) is negative the first derivative intersects the horizontal
axis for a unique positive value b. This value is a minimum for f (b) so that
the function is increasing on the right of this value.

On the other hand if n is an interior solution and n — 1 is a corner
solution, b must belong to the following interval

(N=n)(n—1)<b<(N—-n+1)(n—-2) (15)

Remember that (N — n)(n — 1) is lower than (N —n + 1)(n — 2) when
n belongs to the interval ((V + 1)/2, N]. Then if (N — n)(n — 1) is bigger
than b and f((N —n)(n—1)) is positive we can conclude that f(b) is positive
for (15) since then f(b) is increasing. This implies that A(n) is negative
and that the internal stability condition is not satisfy. Next, we show that
b<(N-—-n)(n—1)

Let’s assume that

~G(n) + (G(n)* — 3F(n)H(n))"?

b= 3F(n)

> (N =n)(n—-1),

where b is the positive root of equation f/(b) = 0.
Reordering terms we obtain
(G(n)? = 3F(n)H(n))Y? > 3F(n)(N —n)(n — 1) + G(n) > 0,
now squaring and reordering terms we get
0> 3F(n)(3F(n)(N —n)*(n —1)> +2(N — n)(n — 1)G(n) + H(n)),
which implies that

0>3F(n)(N —n)*(n—1)?+2(N —n)(n—1)G(n) + H(n).
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Substitution of F'(n), G(n) and H(n) yields

0 > 2Nn’ — (6N + 6N?)n* + (4N + 14N? + 4N*)n?
—n*(9N? — 2N +8N?) + n(6N? — 2N) — 2N? + N*.  (16)

It is easy to show that the third derivative of the right-hand side of this
inequality is a strictly convex function with a minimum for N = (3N +3)/5.
For this minimum the third derivative is negative. Moreover, we find that the
third derivative is also negative for (N +1)/2 and N, so that we can conclude
that the second derivative is decreasing in the interval ((N 4 1)/2, N]. Then
as the second derivative is negative for (N + 1)/2 we have that the second
derivative is negative and consequently the first derivative is decreasing. Now,
calculating the first derivative for (N 4 1)/2 and N we find that it intersects
the horizontal axis for a value between (N + 1)/2 and N since the first
derivative is positive for (N + 1)/2 and negative for N. This value defines a
maximum for the right-hand side of inequality (16). Then we can conclude
that right-hand side of this inequality is positive since it takes positive values
for (N +1)/2 and N. The value for (N +1)/2 is on the left of the maximum
and the value for N is on the right of the maximum. This conclusion implies
a contradiction and we have to admit that

~

b< (N —-n)(n-1),

or in words, that for the values of b in the interval (15) function f(b) is
increasing.

Thus, the final step of this part of the proof is to show that f((N —n)(n—
1)) is positive. Substitution of b = (N —n)(n — 1) in f(b) yields

f(n) = n8@2+ N?) —n’(8 48N +2N? + 2N?)
+n*(12 + 28N + 14N? + 4N? + N*)
—n*(8 + 36N + 37N? + 13N® 4+ 2N*)
+n%(2 + 20N + 37N? + 23N® + 5N*)
—n(4N +15N? + 15N% + 6N*) + 2N? + 3N? +2N*  (17)

It is easy to show that the fourth derivative is a strictly convex function
with a minimum for
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44+ AN + N? + N3
3(2+ N2)

and that

A4+4AN+N?+ N3 N+1

N.
32+ N8 2 ©

Moreover, for (N + 1)/2 we have that the fourth derivative is negative for
N > 7 and positive for N = {3,4,5,6} whereas for N the four derivative
is positive. Then for N > 7, the third derivative presents a minimum for a
value between (N +1)/2 and N. Calculating the value of the third derivative
for (N 4+ 1)/2 and for N we can conclude that it intersects the horizontal
axis for a value again between (N + 1)/2 and N since the third derivative
is negative for (IV + 1)/2 and positive for V. This intersection point defines
a minimum for the second derivative so that this derivative is decreasing on
the left of this minimum and increasing on the right. The result is that the
second derivative also presents an intersection point with the horizontal axis
between (N+1)/2 and N since the second derivative is negative for (N +1)/2
and positive for N. This intersection point defines a minimum for the first
derivative between (N + 1)/2 and N since the value of the first derivative is
positive for (N+1)/2 and negative for N. So that we have another intersection
point for the first derivative between (N + 1)/2 and N which defines in this
case a maximum for the function (17). Then as the value of this function
for (N 4 1)/2 is positive and zero for N, we can conclude that the function
is positive in interval ((N + 1)/2, N) and zero for N since the function is
increasing on the left of the maximum and decreasing on the right. Finally,
for N = {3,4,5,6} we have that the fourth derivative is positive in interval
((N +1)/2, N] so that the third derivative is increasing but as it is negative
for (N +1)/2 and positive for N it also presents an intersection point which
defines a minimum for the second derivative. The argument from this point
is the same than before, as is the conclusion.

Then the final result is that f(b) for b = (N —n)(n—1) is positive when n
is in interval ((N +1)/2, N) and zero when n = N, so that it will be positive
for the values of b in interval (15) since f(b) is increasing. Thus, we can
conclude that the internal stability condition is not satisfied when n is an
interior solution and n — 1 is a corner solution.
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(ii) We now consider the case where for both n and n—1 there are interior
solutions. From Corollary 1, a necessary condition for this to hold is that
b> N —2.

When n and n — 1 are interior solutions we know from Lemma 1 that
A(n) is

_ @N*(n—1) (n—3)b* + J(n)b + K(n)
A(n) = 20 p+N+nn-DPp+N+(n—1)(n-2) o

J(n) = 2[n°—4n*+ (N+3)n— N —2] >0 for n> 3,
K(n) = (n+1)N*+2n(n*—-2n—1)N +n*(n—1)*(n—3) >0 forn > 3.

Thus for n € [3, N] A(n) is negative, and so any such n is internally
unstable.

Under what conditions might n = 2 be stable? For n = 2 we have that
A(2) is written as follows

A@) = a?N2b? — 2(N — 4)b — (3N2 — 4N — 4)
2 (b+ N +2)2(b+ N)2 ’

so that the sign of the internal stability condition depends on the sign of
b> — 2(N — 4)b — (3N? — 4N — 4) from which it follows that

AQ2)>0s b>N—-4+2(N*-3N+3)/2>N -2

Finally, we have to check the external stability condition, i.e., the sign
of A(3). If for n = 3 it applies an interior solution we know from (18) that
A(3) < 0 so that 7%(3) < 7/(2) and the external stability is satisfied. If for
n = 3 it applies a corner solution we know from (i)-(b) that A(3) is also
negative. Thus, we can conclude that for the Cournot equilibrium only a
bilateral agreement can be stable.

B Proof of Proposition 3

In this Appendix we show that there does not exist any value of b such that
g(b,n), h(b,n) < 0 for a given value of n. For given n h(b, n) is strictly convex
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with respect to b with a minimum for a negative value of b and an intersection
point with the vertical axis also negative. This implies that h(b,n) = 0 has
only a positive real solution given by

bi(n) = % {—(N+ n® —2n) + (n* — 4n® + 2Nn? + NQ)I/Q} : (19)
so that h(b,n) will be negative if b € (0,b,(n)) and positive for b > by(n).
On the other hand, function g(b,n) is strictly convex with respect to b
and presents a minimum for b = (N — n)(n — 2)/2. For this minimum the
value of the function is n(N — n)?(4 — n)/4 which implies that g(b,n) > 0
for n = {1,2,3} and b > 0. Then we can conclude that there does not exist
any value of b such that g(b,n), h(b,n) < 0 for these values of n since g(b,n)
is always positive. For n = 4, g(b,4) = 0 for b = N — 4 and positive for
b # N — 4. Moreover b = N — 4 is bigger than b;(4) if N > 4, so that
if b < by1(4) we have that the Stackelberg equilibrium yields ¢5(4) > 0 and
qr(4) =0, if b1(4) < b < N — 4 then yields ¢(4), ¢r(4) > 0,ifb=N —4
then yields ¢;(4) = 0 and ¢¢(4) > 0, and finally if b > N — 4 then yields
qs(4), qr(4) > 0. Thus, it does not occur that signatories and non-signatories
select zero emissions at the same time. If N = 4, the interesting cases are
n = {1,2,3} and we know that for these cases g(b,n) is positive since the
minimum value of the function is positive. For n > 4, g(b,n) = 0 has two
positive real solutions

{(N=n)[n—2—(n*—4n)"|}, (20)

{(N=n)[n—2+ n*-4n)"?|} (21)

N~ N~

and g(b,n) will be negative if b € (be(n), bs(n)).
Finally, we show that b;(n) is lower than by(n). Let’s suppose now that
b1(n) > by(n) which yields

—(N +n%—2n) + (n* — 4n® 4+ 2Nn? + N?)V/2
> (N —n)(n—2)— (N —n)(n*—4n)"? > 0, (22)

simplifying terms we have that

(n* — 4n® + 2Nn? + N*)V2 > N(n — 1) — (N — n)(n* — 4n)"/? > 0.
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Then squaring and simplifying terms again we get
n(n? — (34 N)n+3N) > —(n — 1)(N — n)(n® — 4n)"2,

where the left-hand side of the inequality is negative for n € (4, N), then
multiplying by —1 we obtain

0<—nn?— 34+ N)n+3N) < (n—1)(N—n)n*—4n)Y2
Finally, squaring again and simplifying terms we get a contradiction
4n(n® — 2Nn + N?) <0,

since n? — 2Nn + N? is positive for n < N. Consequently, we can establish
that by(n) < by(n) for all n > 4.

Given this relationship we can order the critical values of b : bi(n) <
ba(n) < bs(n), so that if b > b3(n) we have that the Stackelberg equilibrium
yields ¢; > 0,q; > 0, if b € [ba(n),bs(n)] then yields ¢; = 0,q; > 0, if
b € (b1(n), bz2(n)) then yields again g; > 0, gy > 0, and finally if b < b;(n) then
yields gs > 0,q; = 0. Thus, summarizing we can conclude that for a given
value of n there does not exist any value of b such that g(b,n), h(b,n) < 0.

C Proof of Lemma 3

The results in Lemma 3 are shown from the properties of b; (n). Thus, what we
show first is that b;(0) = b1(N) = 0 and that b, (n) presents a unique extreme
in the interval (1, N —1) which is a maximum. As we have written in footnote
3 we assume that 7 is a real number and once we know the properties of by (n)
then we focus on the values of b;(n) for n = {1,2,..., N — 1}.

By substitution it is easy to check that b;(0) = b1(/N) = 0. To show that
the unique extreme of b;(n) is a maximum we use the inverse function of
bi(n) = 0. In order to obtain this function we rewrite h(b,n) as

h(b,n) = (b+ 1)n* — (2b+ N)n + (b + N)b,

and then from h(b,n) = 0 we get:

_ 2b+ N+ (N? — 4b° — 4b?)1/2
B 2(b+1) '

n
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So that for N? — 4% — 4b* > 0 we can define n*(b;) and n™(b;) and their
first derivatives:

dnt 26+ 6% +4b+ N2+ (N — 2)(N? — 4b° — 4p*)'/?
b, 2(b+ 1)2(N? — 4% — 4b2)1/2 ’
dn™ 20+ 6b% +4b+ N? — (N — 2)(N? — 4b° — 4p?)!/?
by, 2(b+ 1)2(N2 — 4% — 4b2)1/2 '

On the other hand, it is easy to show that N? —4b3 —4b? = 0 has a unique
positive solution that we represent by b. For this value we have that
i dn® o dn™
e A R
which implies that db; /dn = 0 when n = @1 that is the value defined by (23)
for b : ~
2b+ N
2(b+1)
Then given the sign of the limits we can establish that n is a maximum for
bi(n) in the real interval (1, N — 1) so that b;(n) is increasing for n < n
and decreasing for n > n. In order to show that n belongs to that interval
the only thing that we need to do is to calculate the differences n — 1 and
N-1-n.

n may or may not be an integer. If 72 is an integer n = n and by(n) = by (n)
has a unique solution xz; = x5 = n where x1 and x, stand by the solutions
to the equation. If n is not an integer then there will exist an integer n
such that b;(n) yields the maximum value of b;(n) for n = {1,2,...., N — 1}.
In that case equation b;(n) = by(n) has two solutions 0 < z; < x5 and
one of them will be equal to n by definition. In both cases according to
Lemma 2 the emissions of non-signatories are zero only when n = n since
for n # n, by(n) > by(n). Remember that b;(n) characterizes the pairs (b, n)
that satisfy h(b,n) = 0 and that for b > by(n) Proposition 3 establishes that
the equilibrium is the interior solution for non-signatories, i.e. h(b,n) > 0.
If b < by(n), b = bi(n) has two solutions and I;(z;) = 7n;, ¢ = 1,2 define
two integers such that n; < ny. Then given the properties of b (n) we have
that b < by(n) for those values of n in the interval [y, 75| so that according
to Proposition 3 the equilibrium is a corner solution. For the rest of values

n =
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of n, b > by(n) and again according to Proposition 3 the equilibrium for
non-signatories is an interior solution. Finally, it is obvious that the distance
To — x1 increases when b decreases which implies that n, — n; also increases
although not monotonically.

D Proof of Corollary 2

This result is immediate from Lemma 3 always that b; (N —1) be the minimum

value of by (n) for n = {1,2,..., N — 1}. As by(n) is first increasing for n < 7

and afterwards decreasing. This will occur if b; (N — 1) is lower than by(1).
First we calculate these two values:

1

bi(1) = 5{—(N—1)+(J\f2+2J\f—3)1/2},
bi(N—1) = %{—(NQ—3N+3)+(N4—6N3+15N2—14N+5)1/2}.

Let s suppose now that b1(1) < b;(N — 1) which yields
—(N=1)+(N?4+2N-3)"2 < —(N?—3N+3)+(N*—6N3+15N?—14N +5)/2,
simplifying terms we have that
0 < N?—4N 44+ (N?+2N —3)Y/2 < (N* — 6N® + 15N? — 14N + 5)Y/2.
Then squaring and simplifying terms again we get

0 < 2(N? — 4N +4)(N* 4+ 2N — 3)1/2 < 2N3 — 10N? + 16N — 8.
Finally, squaring again and simplifying terms we get a contradiction
0 < —16N® + 144N* — 512N3 + 896 N? — 768N + 256,

since the right-hand side of the inequality is negative for N > 3. Then we
can conclude that by (1) > by (VN —1).
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E Proof of Lemma 4

As with Lemma 3, the proof of Lemma 4 derives from the properties of the
functions by(n) and bsz(n). By substitution we get that by(4) = N — 4 and
ba(N) = 0. Remember that signatories’ emissions are always positive for
n=4{1,2,3} and b > 0.

On the other hand, if we take the first derivative of by(n) (see (20) in the
proof of Proposition 3) we obtain

dby 1 2n2—(6+N)n+2N
— =—_<N-2 2
dn 2 { ntet (n? — 4n)1/2 ’
that presents the following limits:

lim d—bQ = —0

n—4 dn ’

. db? 1 N(N —4)

r}gr]l\[% = 5{—(N—2)+(W_—W}<OfOFN>4

Moreover, its second derivative is:

d?b 1 < on® —12n% + 12n + 4N>

dn? 2 (n? — 4n)1/2

Let “s suppose that this second derivative is negative or zero. This implies
that

0 < 2n —12n% +12n + 4N < 2(n* — 4n)'/?,
squaring and reordering terms we obtain the following inequality
4n® —48n°+192n*+ (16N —288)n> — (96N — 140)n* 4 (96N +16)n+16N? < 0.

It is easy but tedious to show that the left-hand side of this inequality if
positive for n > 4 yielding a contradiction. So that we can conclude that
d*by/dn? > 0 which allows us to establish that dby/dn is increasing and,
consequently, that bo(n) is a decreasing, strictly convex function in interval
[4, N]. Thus, for bo(N — 1) < b < N —4, b = by(n) has a unique solution
that we call x3.

Next, we study the properties of function b3(n) (see (21) in the proof of
Proposition 3). By substitution we get that b3(4) = N — 4 and b3(N) = 0.
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Moreover, it is easy to show that bs3(n) is a strictly concave function with
a maximum in interval (4, N) equal to N?/2(N — 2). So that for 4 < n <
N2/2(N — 2) by(n) increases and for N?/2(N — 2) < n < N decreases. This
implies that b3(N?/2(N —2)) = N(N —4)/4 > by(4) = N — 4.

N?/2(N —2) can be or cannot be an integer. If N2/2(N —2) is an integer
N?/2(N — 2) = n* and b3(n*) = b3(n) has a unique solution z3 = x4 = n*
where z3 and x4 stand by the solution to the equation. In order to have a
maximum n* different from 4 we assume that N > 5. Notice that for N =
5, ba(n) and bg(n) are defined in interval [4, 5] and, consequently, n* = 4.4 Tf
N?2/2(N — 2) is not an integer then there will exist an integer n* such that
b1 (n*) yields the maximum value of b3(n) for n = {4, 5, ..., N—1}. In that case
equation b3(n*) = bs(n) has two solutions 0 < z3 < x4 and one of them will be
equal to n* by definition. In both cases according to Lemma 2 the emissions
of signatories are zero only when n = n* since for n # n* bs(n*) > bs(n).
Notice that bs3(n) characterizes the pairs (b,n) that satisfy ¢g(b,n) = 0 and
that for b > bs(n) Proposition 3 establishes that the equilibrium is the interior
solution, i.e. g(b,n) > 0.If N —4 < b < b3(n*), b = bs(n) has two solutions
and [;(z;) = n;, i = 3,4 define two integers such that ng < n4. Then given
the properties of b3(n) we have that b < b3(n) for those values of n in interval
[n3, 4] so that according to Proposition 3 the equilibrium for signatories is
a corner solution. For by(N — 1) < b < N — 4, we have that b = bs(n) has a
unique positive solution z4 that along with x3 obtained from b = by(n) define
applying I;(z;) an interval [ns, ny] for which the equilibrium is also a corner
solution. If n ¢ [ng, 74, b > b3(n) when N —4 < b < b3(n*) or b > by(n) and
b > b3(n) when by(N — 1) < b < N — 4 and again according to Proposition
3 the equilibrium for signatories is an interior solution.

It is obvious that the distance x4 — x3 increases when b decreases always
that b > N — 4 which implies that n, — n3 also increases although not
monotonically. However, if b < N —4 the relationship is the contrary. Finally,
as the minimum value of by(n) for n = {4,5,..., N — 1} is given by by(N — 1)
we have that if b < by(N — 1), b < by(n) for all n, 4 <n < N — 1 and the
equilibrium is an interior solution for n = {1,2,..., N — 1}.

4In the rest of the paper we focus on N > 5 that is the interesting case. Anyway, for
N =5 the results are the same adjusting the sign of some inequalities.
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F Proof of Proposition 4

Points (i)-(iii) and (v) follow from Lemmas 3 and 4 and Corollary 2 always
that bl(A) < bs(n*). Point (iv) occurs only if by (1) > bo(N—1) and by (N—2) >
ba(N —1) too, since by (N — 1) < by(NN —1). First we show that b; (1) < bs(n*)
for N > 5. From the proofs of Proposition 3 and Lemma 4 we know that
b1(4) < b2(4) = 63(4) =N-4< bg(n*)

On the other hand, b;(n) can be increasing or decreasing at n = 4 de-
pending on the number of countries, N. Let s suppose that

by (4) 16+ 4N
ket N > 0.
dn TGNy neyn =0

This implies that
16 + 4N > 3(32N + N?)V/2,

that squaring and simplifying yields
256 — 160N + 7N? > 0.

It is easy to show that the left-hand side of the inequality is negative for
N € (5,21]. So that we can conclude that db;(4)/dn < 0 which means that
n < 4. The previous result also allows us to establish that for N > 21, the
first derivative of b;(n) at n = 4 is positive which means that n > 4.

Next we suppose that N € (5,21]. In that case, 7 is an integer in domain
{1,2,3,4}. If n = 4, we already know that b;(4) < N — 4 < b3(n*) and it
is established that by (2) < bs(n*). If n were an integer different from 4, it is
easy to show that by (n) < N—4 for n = {1, 2,3} so that we can also conclude
that by(n) < bs(n*) for this values of n.

Next, we suppose that N > 21. In that case, n > 4. For n = 4 the same
argument than the one we have just used is applied. For n > 4, we know
from Proposition 3 that by(n) < by(n) and from the proof of Lemma 4 that
ba(n) < N — 4 < bg(n*) so that we find that b;(n) < b3(n*) as we wanted to
establish.

Finally, we show that by (1) > by(/N —1) and by (N —2) > by(/N —1). Let’s
suppose first that b;(1) < bo(N — 1). Th1s implies that
)"

0<((V-17+4 <oN -4 (V-1 —4v-1)".

Squaring yields

22N — 4) (V= 1) — 4V - 1)) " < (2N —4) —8(N - 1),
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squaring again, simplifying and reordering terms we obtain the following
inequality

32N3 — 240N? + 448N — 256 < 0.

This inequality yields a contradiction for N > 5 so that we can conclude that
bao(N — 1) < by(1).
Next, we suppose that by (N — 2) < by(N — 1). This implies that

0 < (N*—10N®4+41N? — 72N 448)Y/2 < —4N + N? +5— (N? —6N +5)1/2.
Squaring yields
2(—4N + N? + 5)(N? — 6N + 5)1/2 < 2N* — 14N? 4 26N — 18,

squaring again, simplifying and reordering terms we obtain the following
inequality

16N* — 144N3 + 400N? — 464N + 176 < 0

This inequality yields a contradiction fro N > 5 so that we can conclude that

G Proof of Proposition 5

It is straightforward to show that the grand coalition is self-enforcing since
7*, the net benefits for the grand coalition, is positive, see (2), and 7/ (N —1)
is negative according to Lemma 2. This means that the internal stability
condition is satisfied. It is also easy to show that the followers are always
interested in joining the agreement. Using the net benefits expressions that
appear in Lemma 2, the external stability condition is given by the difference

a’[2(n+1) — b
2(n+1)2

On the other hand, it is easy to show that by (N — 1) < 1. Let’s suppose
that by(N — 1) > 1. This implies that'?

Aln+1) =

1
h(N—-1)= 5(—(N2 — 3N +3) + (N* —6N? + 15N? — 14N +5)1/2) > 1,

15See Appendix B for the expression of by (n).
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which yields
(N* —6N3 + 15N? — 14N 4+ 5)Y/2 > N2 — 3N +5 > 0.
Squaring and ordering terms we obtain the following contradiction:
0> 4N? — 16N + 20.

Thus, for b < by(/N — 1) < 1 the numerator of A(n + 1) is positive for all
n > 1 and a non-signatory is always interested in entering the agreement.

H Proof of Proposition 6

For bo(N —2) < b < N —4, we have that ng = I3(z3) <y = L41(z4) = N —1
so that we have a signatory corner solution for n = {ng,..., N — 1}. This
is a consequence of the fact that b3(N — 1) > by(4) = N — 4.1° Now given
a value of b we select n such that n3 < n < N — 1 and we check if the
internal stability condition can be satisfied. In this case we have that both
n and n — 1 are signatory corner solutions so that according to Lemma 2 the
internal stability condition is given by

Am) = — a*(N—-n)*  ab—(N-—n+1)(N-n-1)
2(b+ N —n)? 20+ N —n+1)2
a’[b® + L(n)b* + M (n)b+ P(n)]

20+ N —n)2(b+ N —-n+1)2’

Ln)=2(N—-n)+1>0, M(n)=3(N—-n)>+2(N—-n)>0

P(n) =2(N —n)* +2(N —n)? >0

So, A(n) is negative, in fact, for all b > 0. Consequently if there exists a
self-enforcing IEA the number of countries in the agreement will be equal
or less than ng. Finally, we know that by(n) is a strictly convex, decreasing
function defined in interval [4,N], then as 713 is defined as the smallest integer
no less than x3 being x3 the unique positive root of equation b = by(n), we
can conclude that 73 decreases when b increases.

16This is very easy to show so that we omit it.
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I Proof of Proposition 7

According to Proposition 6 if b = N — 4 the maximum number of countries
in a self-enforcing IEA is four then the question to answer now is whether an
agreement of four countries can be self-enforcing for b > N —4. For b > N —4
and n = 4, according to Proposition 3, the equilibrium is the interior solution
for signatories and non-signatories. Then using Lemma 2 we get

a*N?k(b)
C2[(b+ N —3)2+ 902[(b+ N — 4)2 + 16b]’

A(4) =

where

k(b) = 3b*+ (6N +48)b* + (2N* — 40N + 101)d*
—(2N? — 7TN? — 10N + 39)b — (N* — 14N? + 73N? — 168N + 144).

It can be easily shown that k”(b) is a strictly convex function with a
minimum at b = (8 + N)/2. For this minimum we have that the second
derivative is positive for all N. This implies that '(b) is increasing for all
b > 0 and consequently is also increasing for b > N — 4. Then as k'(N —4) =
252N3 — 1212N? — 3408 N + 16716 is positive for N > 5 we can conclude
that the first derivative is positive for b > N — 4, which implies that k(b) is
increasing for b > N — 4. Finally, as f(N — 4) = 8N* — 99N3 + 362N? —
207N — 676 is positive for N > 5 we have that k(b) is positive for b > N — 4
so that A(4) is negative and the internal stability condition is not satisfied.

Next, we check whether an agreement with three countries can be stable.
For n = 3 we have that

a2 N2 (b)

A= G N (b N 3P+ 98]

where

I(b) = 8b*— (N?+ 10N — 23)b* — (2N* — 8N? + 10N — 4)b
—(N* = 10N? + 37N? — 60N + 36).
It is easy to show that this is a strictly convex function that first decreases
until reaching a minimum value that is negative and afterwards increases.

This means that the equation /| (b) = 0 has a unique, positive solution that
we denote by b such that if b < b, [(b) is negative and if b > b, () is positive.
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Then as (N — 4) = —N* + 32N? — 88N? + 144N — 196 is negative we can
conclude that N — 4 < b so that for b in interval [N — 4,b], I(b) < 0 and
consequently A(3) is positive or zero and the internal stability condition
holds. Moreover as /A\(4) will be negative and this implies that 7/(3) >
7%(4), the external stability condition is also satisfy and the agreement is
self-enforcing.

Finally for b > b, I(b) is positive and the internal stability condition for
n = 3 is not satisfy. In this case only an agreement of two countries is
self-enforcing. For n = 2 we have that

a’*N*m(b)

SRR 5 VS s E R g ERT

where

m(b) = b+ 2N + (2N? — 1)b* + (2N3 — TN? + 10N — 5)b
+(N —1)*(N - 2)%
/\(2) is positive for b > 0 and N > 5 which implies that 7%(2) > 7/(1) and
that, consequently, the internal stability condition for an agreement of two

countries holds. The external stability condition is also satisfied since for
b > b, A(3) is negative.
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