The University of Southampton
University of Southampton Institutional Repository

Investigation of the effects of different mTOR inhibitors on protein synthesis

Investigation of the effects of different mTOR inhibitors on protein synthesis
Investigation of the effects of different mTOR inhibitors on protein synthesis
The mammalian target of rapamycin (mTOR), which controls diverse cellular processes, is regulated by the integration of many signals. Rapamycin strongly inhibits the proliferation of many cancer cell lines and there is a high level of interest in its potential use as an anti-cancer agent. However, some tumours and cancer cells are resistant to rapamycin. This has prompted the development of mTOR kinase inhibitors (mTOR-KIs), such as PP242 and AZD8055, which compete with ATP for binding to the kinase domain in mTOR. In this research, I have studied whether the effects of mTOR-KIs on cell signalling and protein synthesis differed in comparison to those of rapamycin. My data shows that mTOR-KIs have strikingly different effects on proteins (including formation of the eIF4F translation factor complex) that control mRNA translation. Furthermore, while rapamycin only has a very small inhibitory effect on the rate of protein synthesis, mTOR-KIs have a much bigger effect. A new mass spectrometric approach, ?pSILAC‘, was applied to explore the effects of rapamycin and mTOR-KIs on the synthesis of specific proteins. The data from pSILAC reveal (i) mTOR-KIs impair synthesis of many proteins; (ii) rapamycin always inhibits less than mTOR-KIs; (iii) their effects are strongest for proteins encoded by 5‘-TOP mRNAs, but mTOR-KIs again inhibit more strongly; (iv) synthesis of some other proteins which are not encoded by known 5‘-TOP mRNAs shows a similar pattern of inhibition to 5‘-TOP mRNAs. These data show that pSILAC is a valuable tool for studying the control of the synthesis of specific proteins. I have also investigated the effects of disruption of eukaryotic translation initiation factor 4E (eIF4E) phosphorylation on (i) its modification by SUMO-1 (ii) TNF? biosynthesis in macrophages and (iii) the interaction with specific mRNAs encoding protumourigenic factors.
Huo, Yilin
5ed5cc05-b575-43c0-b72b-306ee7bb1380
Huo, Yilin
5ed5cc05-b575-43c0-b72b-306ee7bb1380
Proud, Christopher G.
59dabfc8-4b44-4be8-a17f-578a58550cb3

Huo, Yilin (2011) Investigation of the effects of different mTOR inhibitors on protein synthesis. University of Southampton, Biological Sciences, Doctoral Thesis, 219pp.

Record type: Thesis (Doctoral)

Abstract

The mammalian target of rapamycin (mTOR), which controls diverse cellular processes, is regulated by the integration of many signals. Rapamycin strongly inhibits the proliferation of many cancer cell lines and there is a high level of interest in its potential use as an anti-cancer agent. However, some tumours and cancer cells are resistant to rapamycin. This has prompted the development of mTOR kinase inhibitors (mTOR-KIs), such as PP242 and AZD8055, which compete with ATP for binding to the kinase domain in mTOR. In this research, I have studied whether the effects of mTOR-KIs on cell signalling and protein synthesis differed in comparison to those of rapamycin. My data shows that mTOR-KIs have strikingly different effects on proteins (including formation of the eIF4F translation factor complex) that control mRNA translation. Furthermore, while rapamycin only has a very small inhibitory effect on the rate of protein synthesis, mTOR-KIs have a much bigger effect. A new mass spectrometric approach, ?pSILAC‘, was applied to explore the effects of rapamycin and mTOR-KIs on the synthesis of specific proteins. The data from pSILAC reveal (i) mTOR-KIs impair synthesis of many proteins; (ii) rapamycin always inhibits less than mTOR-KIs; (iii) their effects are strongest for proteins encoded by 5‘-TOP mRNAs, but mTOR-KIs again inhibit more strongly; (iv) synthesis of some other proteins which are not encoded by known 5‘-TOP mRNAs shows a similar pattern of inhibition to 5‘-TOP mRNAs. These data show that pSILAC is a valuable tool for studying the control of the synthesis of specific proteins. I have also investigated the effects of disruption of eukaryotic translation initiation factor 4E (eIF4E) phosphorylation on (i) its modification by SUMO-1 (ii) TNF? biosynthesis in macrophages and (iii) the interaction with specific mRNAs encoding protumourigenic factors.

Text
Final_thesis_Yilin_09_02_2011.pdf - Other
Download (4MB)

More information

Published date: 1 December 2011
Organisations: University of Southampton, Centre for Biological Sciences

Identifiers

Local EPrints ID: 334070
URI: http://eprints.soton.ac.uk/id/eprint/334070
PURE UUID: 9864d46f-438f-4cbd-a639-905cec72261e

Catalogue record

Date deposited: 28 Jun 2012 14:18
Last modified: 14 Mar 2024 10:33

Export record

Contributors

Author: Yilin Huo
Thesis advisor: Christopher G. Proud

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×