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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FALCULTY OF ENGINEERING, SCIENCE & MATHMATICS 

Master of Philosophy Thesis 

EFFCIENT PREDICTION METHOD FOR BROADBAND ACOUSTIC 

MODE RADIATION FROM ENGINE BYPASS DUCTS  

by Jun Wu 

High levels of broadband noise produced by modern high-bypass turbine engines have a significant 

impact on the environment. High performance computational numerical methods are now taking an 

active role in this research area. The research presented in this thesis explores a method for efficient 

prediction of broadband aeroacoustic radiation from a turbofan engine bypass duct and the effect of 

the multi-mode propagation in the near-field of an engine bypass duct with bifurcations installed on. 

An accurate and high-order Computational Aeroacoustics (CAA) numerical scheme is used in two-

and-half and three dimensional linearised Euler equations to determine the results. For far-field 

predictions, the Ffowcs Williams- Hawkings (FW-H) method and the Acoustic Intensity Based 

Method (AIBM) could be used to solve the single mode problem. However, the current FW-H 

method can not be used for multi-mode problems due to its required demand for computational 

resources. AIBM is an efficient tool to predict the pressure in far-field based on the near-field 

solution calculated by CAA, and has a potential for multi-mode prediction in the far-field. 

The performances of the prediction of the radiation of bypass duct acoustics with mean flow have 

been analysed, with particular attention to the ducts with bifurcations. For the single mode case of 

the duct acoustics, the AIBM has been implemented and compared against CAA results in the near-

field. Comparison between AIBM and FW-H directivity pattern in the far-field region show good 

agreement. The clean duct cases for multi-mode are solved with the linearised Euler equations (LEE) 

in two-and-half dimensions and the results are analysed. For multi-frequency cases, the SPL 

directivity contour almost matches the pattern obtained by summing the results computed by single 

frequencies. Lower radial modes contribute more to the overall SPL value than higher ones. For the 

circumferential modes, lower ones are more likely to cut-on to more discrete frequencies. Finally, 

the three dimensional solver is used to determine the near-field multi-mode radiation from a generic 

engine bypass with bifurcations. The bifurcations can cause the acoustic pressure waves to be 

redirected. Interference between the diffracted modes increased the acoustic pressures. Results 

show that lower radial modes are smaller in amplitude, and are more likely to cut-on when the radial 

modes are higher. More complex patterns have formed, because of the bifurcation interference, 

compared to single mode cases. For different circumferential mode cases, the radiation peak angle 

increases as the circumferential mode increases. 
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                          Free stream sound speed  

                           Total energy 
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X 
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    Working variable for turbulent viscosity 

               Angular frequency 

Subscripts 

      Freestream value 

      Acoustic perturbation 
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      Turbulent value 

        Perturbation value 
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2D  Two-dimensional 

3D   Three-dimensional 

AIBM                   Acoustic intensity based method 

APE  Acoustic perturbation equations 
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CFD   Computational fluid dynamics 

CFL   Courant-Friedrichs-Levy  
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DNS   Direct numerical simulation 

DRP  Dispersion-relation-preserving 

FFT   Fast Fourier transform 

FW-H  Ffowcs Williams and Hawkings 

KH                        Kevin-Helmholtz 

LDDRK   Low-dissipation and low-dispersion Runge-Kutta 

LEE   Linearized Euler equations 

LES   Large eddy simulation 

NS  Navier-Stokes 

RANS   Reynolds-averaged Navier-Stokes 

RK   Runge-Kutta 

S-A   Spalart-Allmaras 

SGS  Sub-grid scale 

SPL  Sound pressure level, with a reference pressure of 20  Pa 
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1 Introduction 

Increase in air traffic around expanding urban areas over recent years has led to strict noise-

emission constraints being imposed on civil aircrafts. Pressure from public and political groups to 

maintain or reduce current noise levels conflicts, with the ever-growing demand for more air 

transport, has given rise to a more stringent certification criteria. The target set by the Advisory 

Council for Aeroacoustics Research in Europe (ACARE) [1] aims for a 10 dB reduction in perceived 

aircraft noise between 2000 and 2020. Furthermore, extreme acoustic environments can lead to 

significant design alterations, to cope with large acoustic loads. This usually results in additional 

weight, and increases cost. These factors have thus prompted numerous studies into methods for 

accurate measurement and numerical simulations for reduction of aircraft generated noise. 

In the early 1960s when turbojet engines were introduced, the main contributor to aircraft noise 

was jet noise. Since then, advances in low noise high-bypass ratio turbofans have greatly reduced 

engine noise. 

Both theoretical and experimental studies have been conducted in order to understand and predict 

the noise generation and radiation, to identify noise reduction and control techniques. However, the 

cost of the experiments in the wind tunnel is high and the variable conditions required are limited. 

Therefore, numerical methods are becoming more appealing since the computing technology is 

developing quickly. 

A number of numerical investigations into broadband noise propagation have been conducted, as 

described in later chapters. The main aim of this work is to study the development of computational 

method for accurate and efficient prediction of acoustic broadband noise as well as individual modal 

propagation of engine bypass duct geometries. This is to be achieved using high-order 

Computational Aeroacoustics (CAA) numerical schemes.  The Acoustic Intensity Based Method 

(AIBM) [2-4] is also studied for the far-field acoustic prediction. Computational issues will be 

discussed during the development of the method. The newly developed CAA methods are capable of 

single and multi-frequency model simulations for an axisymmetric geometry with an axisymmetric 

mean flow.  

The structure of the thesis is as follows.  

In Chapter 2, literatures are reviewed and summarised. Fundamental acoustic analogy developments 

are discussed, followed by a brief introduction to computational fluid dynamic (CFD) models, which 

are aimed at computing the mean flow field. Then the progress in CAA is outlined, including the 

governing equations to solve the turbofan noise propagation and radiation in both near-field and 

far-field. A set of efficient 2.5D linear Euler equations is introduced to predict the 3D duct mode 

propagation in the 2D plane for symmetrical mean flow while a set of 3D linearised Euler equations 

in a cylindrical coordinate system is used for the asymmetric mean flow. The solvers are validated 

using a linear CAA scattering test case.  

In Chapter 3, a numerical method named Acoustic Intensity Based Method (AIBM) is studied for the 

reconstruction and prediction of radiated fields. This study uses test case specific to duct 

propagation problems for far-field propagation in multi-mode problems. The prediction method 

requires the near-field results of a CAA simulation. 
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Chapter 4 presents results of a 3D model of the sound propagation and radiation from a bypass duct 

with bifurcations, as well as the linear 2.5D model in axisymmetric clean duct cases in a range of 

modes.  

In Chapter 5, the main conclusions are summarised and suggestions for future work are proposed. 
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2 Literature Review 

2.1 Acoustic Analogy 

2.1.1 Sound Fields Radiated by Simple Sources 

Aeroacoustics is concerned with sound generation and propagation of sound waves in flow. 

Aerodynamic sound is the sound generated by unsteady flow motions (and its interaction with solid 

bodies), rather than vibrating or pulsating objects. Aerodynamic sound fields can be classified into 

three types depending on how the kinetic energy of the flow is converted to acoustic energy. 

A monopole field, also called a point source, is formed by forcing the mass in a fixed region of space 

to fluctuate. The acoustic waves generated by a monopole propagated equally in all directions. The 

directivity pattern for a monopole source is circular, as shown in Fig. 2.1(a). 

A dipole field is generated by forcing the momentum in a fixed region of space to fluctuate, and it 

consists of two monopole sources of equal strength but opposite in phase. A dipole source does not 

radiate sound equally in all directions due to some sound cancellation. The directivity pattern is 

shown in Fig. 2.1(b). 

A quadrupole field is formed by forcing the rate of momentum flux in a fixed region of space to 

fluctuate. Two types of quadrupole fields can be formed: lateral and longitudinal quadrupole.  The 

former consists of two opposite dipoles as shown in Fig. 2.1(c), and the latter consists of two 

opposite phase dipoles aligned along a line, as shown in Fig. 2.1(d). The lateral quadruple is 

associated with the shear stress and is common within all turbulent flows. A lateral quadrupole 

radiates well only in front of each monopole source, as the sound is cancelled at points equidistant 

from adjacent opposite monopoles.  

The radiation pattern from a longitudinal quadrupole is similar to that from a lateral quadrupole in 

the near-field. In the far-field, the sound radiation directivity from a longitudinal source is focused 

towards the line along which the dipoles lie.  

 

Figure 2.1: Directivity patterns for acoustic sources; (a) monopole, (b) dipole, (c) lateral 
quadrupole, (d) longitudinal quadrupole [2] 
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2.1.2 Acoustic Analogy 

The main theories of acoustic analogy were first developed in the 1950s. In the early years of the jet 

engine development, excessive noise from the high-speed exhausts of turbojet engines was a cause 

of considerable concern. This stimulated a great deal of effort to mathematically represent the 

process of noise generation and propagation. Although there were a number of attempts to describe 

this phenomenon, the representation was pioneered by James Lighthill [7] in the early 1950s, who 

accounted for the influence of turbulence as a source of sound. Later Curle extended Lighthill’s 

theory by considering the influence of solid boundaries [8]. Further, to include the effect of solid 

bodies in arbitrary motion, Ffowcs Williams and Hawkings developed a form of the Lighthill acoustic 

analogy to include moving surfaces [9]. In 1975, Farassat revised and analysed the theory of noise 

generation from moving bodies with an application to helicopter rotors [10]. 

2.1.2.1 Lighthill’s Acoustic Analogy 

In the 1950s, Lighthill transformed the Navier-Stokes and continuity equations to form an exact, 

inhomogeneous wave equation in which the source terms are important only within the region of 

turbulence. He argued that the acoustic perturbations were a extremely small component of the 

whole turbulent motion and therefore its feedback on the main flow could be ignored. The 

properties of the unsteady flow in the source region may then be determined by neglecting the 

production and propagation of the sound, which is a reasonable approximation if the Mach number 

is small. This approximation is valid for many important types of flows and this theory leads to 

unambiguous predictions of the sound. 

The propagation of sound in a uniform medium is governed by the mass conservation and Navier-

Stokes momentum equations  

  

  
 

 

   

                                                                                          

    

  
 

 

   
                                                                                 

where   is density,    and    are the velocity components,     is the stress tensor, representing the 

force in the    direction acting on a portion of fluid per unit surface area with inward normal in the 

   direction. 

Eliminating the term     from Eqs (2.1) and (2.2), Lighthill’s equation can be easily shown by 

rearranging the sound propagation equation as follows, 

   

   
   

     
     

      
                                                                           

where,  
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and     is known as the Lighthill tensor. It represents the difference between the effective stresses in 

the real flow and the stresses in the uniform acoustics medium at rest, which is comparative to 

external fluctuating forces acting on a uniform medium. 

It is assumed that for an airflow embedded in a uniform atmosphere at rest, the stress system could 

be neglected outside of the flow itself. Also,     and the conduction of heat are both very small, and 

viscous stresses in     can also be ignored. Hence,   

                                                                                                                                                                       

If     is known exactly, then the density perturbation          (ambient density) can be obtained, 

using Green’s Functions [7]: 

   
 

    
 

  

      
         

     

  
 

  

     
                                                

The differentiation may be applied as:  

   
 

    
  

              

      
 

  
 

  

   
        

     

  
 

  

     
                           

In the far-field, one may approximate       by   , which gives the simpler form: 

   
 

    
 

    

    
 

 

  
 

  

   
        

     

  
 

  

     
                                                

A useful and practical deduction with dimensional analysis can be obtained given the volume 

integral above. For low Mach numbers, in unbounded flow the stress tensor can be estimated by 

      (Lighthill reasoned that under certain circumstances it would be the dominant factor [7]), 

which has a scale of    . Since the Strouhal number      has been found to vary far less with 

changing conditions (like the Reynolds number), one may take frequency as proportional to    . 

Now, it can be determined that the density variation is dimensionally proportional to the product as: 

     
 

  
 

 

 
 
 

 
          

 

  
 

  

 
                                                              

The radiated sound power is given by           , which is an extremely small proportion of the 

flow power. 

2.1.2.2 Curle’s Extension  

One of the restrictions of Lighthill’s theory is that the estimated sound wave is only for an 

unbounded medium. Thus it neglects the effects of reflection, diffraction, absorption and scattering 

by solid boundaries. 

In 1955 Curle [8] extended Lighthill’s theory to take into account the presence of solid boundaries. 

From classical acoustics the sound generated by a volume of quadrupole sources from Lighthill’s 

theory will be reflected and diffracted by solid boundaries. Under certain conditions the solid 

boundaries will give rise to distributions of dipole or even monopole noise sources, which arise from 
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the forces and motions imparted to the surface by the unsteady flow. Incorporating these effects 

into the theory results in the following equation for the density fluctuations, 

   
 

    
  

     

      

  

     
 

 

  
  

 

 

  

  
 

 

  

  

  
  

 

   

  

  

  

  
 

 
 

                            

   
 

    
  

  

      
 

        
     

  
 

      

    
 

   
   

 

     

 

   
                

 

 

   
 

   
   

 

     
                

 

                                                       

where    is the   th component of the outward-pointing vector, normal to the fluid.  The first surface 

integral in Eq. (2.12) describes the distribution of dipoles on the surface, and the second surface 

integral describes the distribution of monopoles on the surface, due to the mass addition at the 

boundary. 

There is zero normal velocity at the solid boundaries; that is, if each surface is fixed or is vibrating in 

its own plane then: 

        

Hence, Eq. (2.12) reduces simply to: 

   
 

    
  

  

      
 

        
     

  
 

      

   
 

   
   

 

     

 

   
                

 

         

Therefore the sound field generated in a hypothetical, unbounded and uniform medium at rest will 

consist of a distribution of quadruples                   (  is the retarded time   =           ). 

The region external to the solid bodies will consist of a surface distribution of dipoles              . 

In much the similar way as suggested by Lighthill, the dipole sources can be also simplified as: 

              
 

    
 

  

     

 

  
                                                  
 

       

Thus a dimensional analysis yields: 

              
 

  
 

 

 
                                                                   

Comparing dipole and quadruple source dimensionally, it can be shown that: 

                  

              
 

 

  
                                                                     

Therefore, it follows that at sufficiently low Mach numbers, the contribution from dipole sources 

should be greater than that from quadrupoles.  
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2.1.2.3 Ffowcs Williams-Hawkings Equation 

In 1969 Ffowcs Williams and Hawkings [9] extended the Lighthill-Curle theory to include the effect of 

arbitrary motion of the source. They replaced the physical surfaces presented in the Lighthill-Curle 

theory by mathematical surfaces which correspond identically to the motion of the real fluid on and 

outside the surfaces, but can be specified arbitrarily inside the surfaces. The interior motion does 

not match the external flow at the boundaries. As a result, mass and momentum sources have to be 

added to the flow to maintain these discontinuities. These sources act as sound sources, and are 

analogous to the sound generated by the real flow. 

Let the surface of the moving body be given by the function          , which is defined to be 

positive outside and negative inside the body. The frame of reference   is fixed with respect to the 

undisturbed medium. 

The continuity equation valid in the entire unbounded space is:  

 

  
          

 

   

          

      
   

  
 

 

   

          
  

  
   

  

   
      

  

   
    

  

  
   

  

   
      

  

   
           

Note that the time derivative of the Heaviside function is given by:  

  

  
   

  

   
                                                                                         

So Eq. (2.17) could be written as:  

 

  
          

 

   

              

  

   
         

  

   
                                         

Similarly by multiplying the momentum equation and using the same relationship it can be shown 

that: 

 
 

  
            

 

   
                     

  

   
    

  

   
                                         

Taking the time derivative of both sides of Eq. (2.19) and the space derivative with respect to    of 

both sides of Eq. (2.20), and subtracting the Eq. (2.19) from Eq. (2.20), one can obtain:  

  

   
          

  

      
                  

 

  
               

 

   
    

  

   
                  

Now by adding and subtracting   
            

   
  on the left side of Eq. (2.21) and rearranging the term 

involving    , Eq. (2.21) becomes: 
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Here    is the speed of sound in the undistributed medium. 

Then we obtain the Ffowcs Williams and Hawking equation: 

 
 

  
 

  

   
             

           

      
 

          

   
 

        

  
                                

where                 
     , 

                    
  

   
, 

                  
  

   
. 

The first term on the right hand side of Eq. (2.23) represents the quadrupole term. The second and 

last terms are respectively the dipole term involving unsteady forces and the monopole source. The 

three source terms on the right hand side of Eq. (2.23) are known as the quadrupole, loading and 

thickness sources respectively. 

2.1.2.4 Farassat Formulation 

For several years, the Kirchhoff formulations have been used as an alternative to compute the 

volume term in FW-H equation in prediction of high-speed rotor noise. Di Francescantonio[6]  

showed  a new boundary integral formulation, which can be extended to a penetrable control 

surface and the calculation of the surface pressure normal derivative is not required.  In 1975, 

Farassat [7] proposed another form of the solution for the problems that exist in solving the FW-H 

equation in the case of complex bodies and when the velocity of the body with respect to the 

undisturbed medium was high, avoiding likely numerical difficulties in the singularities and spatial 

derivatives.  

The Green’s function of the wave equation in the unbounded domain is          , where 

      
 

  
        ,   and   are source and observer times respectively.    and   are the 

observer positions respectively. 

For a fixed observer position and time (   ),     describes a sphere with centre at   and a radius 

of        .  

The formal solution of the wave equation 

 
 

  
 

  

   
                                                                            

is  
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For loading noise, we could convert the space derivative into a time derivative for numerical 

differentiation.  

It is shown that the solution of the wave equation  

 
 

  
 

  

   
      

 

   

                                                                   

is  

                                    
 

   
 

  

 
                 

  
 

  

 

  
 

     

 
                  

     

  
                             

where               is the unit radiation vector. 

The integrals in Eq.(2.25) and Eq.(2.27) are all of the form: 

   
 

 
                                                                              

Note that the  -frame is fixed to the undisturbed medium. Let a blade fixed coordinate system 

called  -frame be defined. The   and  -frame are related by: 

                                                                                

where       is the position of the origin of the  -frame and      is the matrix of transformation 

whose coefficients are the function of time  .  

Hence: 

   
 

 
                                                                                  

Now changing the variable    to  , keeping   fixed, the Jacobian of the transformation is         , 

where             is the Mach number in the radiation direction of the volume element located in 

the  -frame. Since                    , hence: 

  

  
   

 

  

  

   

   

  
   

     

  
                                                       

    
 

       
                                                                             

where the subscript ret stands for retarded time and              where    is the element of 

surface area of        , 
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From the FW-H equation and above, the noise due to thickness and loading terms can be written as: 

          
 

  

 

  
  

         
       

 
   

  
   

   
  

        
 
   

  
   

                            

where         is the force on the fluid per unit area in the radiation direction. 

In conclusion, considering the retarded time                 , the full formulation (Eq. 1A in 

[7]) could be written as in Lagrangian coordinates        

          
  

      
  

   

       
 
  

   

 

   
  

     

       
 
 
   

     

 
 

  
  

   
       

 
 
  

     

 

 
 

  
  

     

        
  

  

     

 

 
 

  
  

      
            

        
 

 
  

     

 

 
 

  
  

      
            

        
 

 
  

     

 

                                                            

where the dot above the letters indicates differentiation with respect to  . 

The FW-H equation solver can solve far-field problems in both single and multiple frequencies. 

However due to the large memory requirement in multi-frequency cases, the current FW-H solver 

can only be applied to cases with frequency numbers less than three. 

2.2 Computational Fluid Dynamics Models 

Generally, all the aeroacoustic phenomena can be expressed by the equations of mass, momentum 

and energy combined with the initial states, which are the basic compressible Navier-Stokes 

equations. However it is not possible to simply use Computational Fluid Dynmaics (CFD) codes and 

solve the compressible Navier-Stokes equations from the location of sound generation up to the 

observer because the characters, natures, and objectives of aeroacoustic problems are distinctly 

different from those commonly encountered in CFD [11].   

The numerical modelling of aeroacoustic phenomena is demanding several specific reasons. 

Foremost is the fact that aeroacoustic problems are time dependent by definition. They must be 

treated time-accurately with appropriate consideration of all relevant time scales. Since the human 

ear is sensitive to a wide range of frequencies, simulations dealing with such problems must consider 

resolving a broad range in the frequency spectrum. 

The disparity between the energy levels of unsteady flow fluctuations and the acoustic waves is 

another important consideration. Lighthill [7] showed that the radiated sound power (as shown 

previously          ) is significantly lower than the mechanical flow power around        . 

This means that a numerical procedure needed to solve the coupled flow and acoustic field at 
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      requires accuracy of at least     , otherwise all inaccuracies will be observed as numerical 

noise. This large disparity presents a severe challenge to direct numerical simulations. 

For the problems at low Mach number, the disparity in magnitude between the length scales 

associated with the acoustic and hydrodynamic fields also demands careful consideration. The 

problem must be solved in both the source region and the far-field in a numerical simulation. 

The radiation of energy to the far-field is a defining feature of many aeroacoustic problems. Flow 

disturbances generally decay fast away from the source of generation. On the other hand, the 

acoustic waves decay very slowly and reach the boundaries of a finite computation domain. The 

numerical modelling of such phenomena requires the introduction of artificial boundaries to avoid 

the reflections of outgoing sound waves back into the computation domain which could otherwise 

contaminate the solution. 

There are two well known approaches used to model acoustic problems. These are the direct 

approach and the hybrid approach [11]. The direct approach for aerodynamically generated noise 

solves the flow and acoustic field problem simultaneously. However direct computation of the noise 

radiated by subsonic three-dimensional flow is difficult because of the large computing resources 

that are required. The hybrid approach is widely used to simplify the complexity of aeroacoustic 

problems. In this approach, the flow field is artificially divided into a near-field and far-field.  

For the near-field source computation, various numerical methods for solving the unsteady flow 

field can be used, such as direct numerical method (DNS), large eddy simulation (LES), detached-

eddy simulation (DES) and unsteady Reynolds-Averaged Navier-Stokes (RANS). 

Acoustic sources obtained are then put into the second solver which solves the propagation and 

radiation problems in near- or far-field, based on one of the following methods: FW-H equations, 

Kirchhoff method, linear Euler equations (LEE) or acoustic perturbation equations (APE) [12].  A 

summary of the different models follows. 

2.2.1 Direct Numerical Simulation  

In the direct numerical simulation (DNS) method the full compressible Navier-Stokes equations 

describing the flow field are solved directly without coupling with any other models. This method 

requires a very high numerical resolution due to the wide range of length and time scales presented 

between the acoustic variables and the flow variables. Therefore, it is computationally expensive 

and currently unsuitable for engineering applications and complicated geometries [13].  

2.2.2 Large Eddy Simulation  

Large-eddy simulation (LES) is another method capable of modelling small unsteady flow 

characteristics, and is based on Kolmogorov’s theory of self similarity. In that theory, large eddies of 

the flow are dependent on the flow geometry, while smaller eddies have a universal behaviour. For 

this reason, it becomes practical to solve only for the large eddies explicitly, and model the effect of 

the smaller and more universal eddies on the larger ones using a sub-grid-scale (SGS) model [14].  It 

is a cheaper method compared with DNS but is more expensive compared to a solution method 

based on the Reynolds-averaged Navier-Stokes equations (RANS). 

http://en.wikipedia.org/wiki/Reynolds-averaged_Navier-Stokes_equations
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In practice high Reynolds numbers cases with thin boundary layers require too much computational 

resources. Therefore RANS or other empirical models are implemented in the near wall region to 

reduce the large computational costs when LES is used throughout the domain [15]. 

It should be noted that LES is more precise than the unsteady RANS (URANS) if the flow involves 

separations or acoustic prediction is required [16]. 

 2.2.3 Detached Eddy Simulation  

Detached eddy simulation (DES) is a modification of a RANS model in which the model switches to a 

sub-grid scale formulation in regions fine enough for LES calculations [17]. In the vicinity of solid 

boundaries, where the turbulent length scale is less than the maximum grid spacing, the RANS mode 

of solution is assigned. DES is a combination of RANS and LES, and attempts to treat near-wall 

regions in a RANS-like manner, and treat the rest of the flow in an LES-like manner. The cost of 

calculation is determined by how much the LES model is involved. DES is a feasible computationally 

feasible approach for the unsteady flows around complex geometries at high Reynolds numbers. 

Hedges et al. [17] compared DES and URANS and suggested that with the Spalart-Allmaras (S-A) 

turbulence model [18], the DES performed consistently better than the URANS calculation in the 

time-averaged sense. 

2.2.4 RANS and URANS 

The Reynolds-averaged Navier-Stokes (RANS) equations are emsemble-averaged equations of 

motion for fluid flow. These equations can be used with approximations, based on knowledge of the 

properties of turbulence, to obtain approximate averaged solutions to the Navier-Stokes equations. 

In an unsteady RANS (URANS) approach, flow variables are only averaged over small time scales 

while they are still time dependent over large time intervals. In other words, the time derivative 

term would be kept in the RANS equation in mathematics. 

2.3 Computational Aeroacoustics Progress 

Computational aeroacoustics(CAA) is a new branch of CFD that has made significant progress and 

the concept of CAA has significantly broadened over the past decades. CAA is concerned with the 

accurate numerical prediction of aerodynamically generated noise as well as its propagation and far-

field characteristics. With the fast growth in computer resources and development of optimized 

computational schemes, CAA has played important roles in predicting, modelling and reducing 

airframe noise and its role will be more prominent in the future. 

2.3.1 Finite Difference Schemes for CAA 

As a development of the CFD method, the CAA technique is becoming more mature. CAA is related 

to CFD in the sense that it is used to analyse the noise generated by fluid flow and concerned with 

the simulation of unsteady flow physics. However CAA is different from CFD in the aspect that it 

involves using high-order schemes to discretize the spatial and temporal derivatives so as to 

preserve the physics of wave propagation. 

CAA techniques are used to solve problems with less computational cost when wave propagates to 

far-field. For example, using traditional CFD methods [19], it requires at least 20 point-per-

wavelength (PPW) to reduce the dispersion and dissipation for sound wave propagation problems. 

http://en.wikipedia.org/wiki/RANS
http://en.wikipedia.org/wiki/Large_eddy_simulation
http://en.wikipedia.org/wiki/RANS
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The computational cost is mainly due to a large number of cells required for the whole 

computational domain. CAA resolves the waves accurately with fewer PPW using high-order 

numerical schemes, which use wave space optimization. 

There are two main types of high-order approximation finite-difference schemes: explicit schemes 

and implicit / compact schemes. Explicit schemes directly compute the numeric derivative by 

employing a large number of computational stencil points for accuracy [20], while compact schemes 

use smaller stencils by solving a matrix for the numerical derivatives along a grid line, where the 

numerical derivative at each point depends on the value of the derivative at neighbouring points. 

The advantage of compact schemes is their higher accuracy compared with explicit schemes, based 

on limited grid points, while the disadvantages are: firstly, a matrix must be inverted to obtain the 

spatial derivative at a point and secondly, the boundary stencil has a large effect on the stability and 

accuracy of the scheme. 

The propagation of the wave characters including acoustic, entropy and vortical modes and their 

speeds are involved in the governing equations in the so-called dispersion relations. Tam and Webb 

[21] recognized that if a particular numerical scheme has the same dispersion relations as the 

original governing equations, then it will preserve the wave propagation characteristics, and is 

suitable for resolving the acoustic waves. Such a scheme is called Dispersion-Relation-Preserving 

(DRP). One of the explicit schemes employs a seven-point central-difference stencil: 

 
  

  
    

 

  
              

 

   

                                               

in which two of the coefficients    are chosen so that Eq. (2.36) is accurate to the fourth order while 

the remaining coefficient is used as an optimization parameter to minimize the integrated error. This 

results in an approximation with better resolution of high wave number or short waves as compared 

to the formally high order but unoptimized scheme. 

Lele [22] developed the optimized "spectral-like" compact scheme which provides an improved 

representation of a range of scales in the evaluation of the first, second and higher order derivatives 

compared with other schemes. Using Fourier analysis he was able to derive compact finite difference 

schemes with good resolution characteristics. The resolution characteristics were to be further 

improved using a special optimisation procedure. One of the schemes is a pentadiagonal scheme 

with a seven-point stencil given by 

                             
         

   
  

         

   
  

         

   
             

where    denotes the spatial derivative  
  

  
   at the mesh node  . 

Hixon [22, 23] developed a new class of compact schemes that use three-point stencils and can be 
extended up to eight-order accuracy. In Hixon’s approach, the derivative operator is split into 
forward and backward operators. Only three points are needed to obtain the biased derivatives and 
only two independent bidiagonal matrices are needed to be reversed instead of solving a tridiagonal 
linear system of equations. In Hixon's approach the derivative operator    was split into forward, 
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 , and backward,   

 ,operators as       
    

    , and the discretized equations were 
written in the compact form: 

                           
           

       
                                             

                      

     
           

       
                                                  

For Hixon’s six order scheme, the coefficients are   
 

 
 

 

   
   

 

  
      . The stencil is 

reduced to three points and the tridiagonal matrix is replaced by two bidiagonal matrices. 

Ashcroft and Zhang [25] optimized the compact schemes using a Taylor series expansion, which 

improved the resolution characteristics of Hixon’s scheme. The new schemes require very small 

stencils, fewer boundary stencils and offer more accuracy for high resolution numerical calculations 

in aeroacoustics. The general stencils for the forward and backward derivative operators are defined 

as:  

      
      

  
 

  
                                   

     
        

  
 

  
                                                              

Using Fourier analysis, the coefficients of the biased operators are selected such that their 

dispersion characteristics match those of the original central compact scheme and the numerical 

wave numbers have equal and opposite imaginary components. The scheme accuracy was good and 

was independent of direction. 

2.3.2 Governing Equations 

The Euler Equations can solve all three kinds of waves for fluid flow, namely the vortical, entropy and 

acoustic waves. Sound propagation is hardly affected by viscosity for typical aeroacoustic flows 

outside a critical layer which is not considered here, and sound perturbations are usually ignored in 

the convection velocity because they are too small. These two facts mean that the Euler equations 

can be put forward to simulate the propagation of sound waves and are described as linearized Euler 

equations (LEE), which provides accurate numerical solutions by only considering perturbations. 

 The governing equations based on the inviscid flow equations, for 3D flow in flux vector form can be 

written as Eq. (2.40) in conservative form: 
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where in the Cartesian system    , 
 

   
 

 

  
, and the differential operator is given by:  

  
 

  
  

 

  
  

 

  
                                                                    

while in cylindrical coordinate system    , and the differential operator is:  

  
 

  
   

 

  
   

 

  
                                                                

For the ideal gas, the equations in Eq. (2.40) can be changed using a relation below:  

   
 

   
 

 

 
                                                              

Compared with the background mean flow, if the acoustic amplitudes are small enough, the 

propagation can be modelled by linearising the governing equations about the mean flow. By 

ignoring second order perturbation terms, the Euler equation can be reduced to LEE equations: 
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For aero-engine duct applications, we can assume that the acoustic disturbances are restricted to 

the blade passing frequency and its harmonics, and propagate through an axisymmetric mean flow 

without swirl. It is possible to write the disturbances at each frequency in term of a Fourier series of 

circumferential modes:  

              
                                                                          

where    can represents any flow variable,   the circumferential mode,   the circumferential angle 

and   the angular frequency. Hence following relationships can be derived: 
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This leads to the development of a so-called 2.5D form of the LEE which represents the 3D acoustic 

wave solved by a 2D computational plane for axisymmetric flow [26].  

   

  
                                 

   

  
    

         

 
   

   

  
                     

 

  

   

  
             

   

  
                     

 

  

   

  
                                                

   
 

  
            

  

   
     

  
 

 
    

   

  
                                       

    

  
     

         

 
   

where     is the time derivative of the circumferential velocity, which is different from    in Eq.(2.44) 

for circumferential velocity.    is the reduced differential operator: 

   
 

  
   

 

  
                                                                               

Eq. (2.47) is defined only for single frequency and single circumferential modes. For multi-frequency 

cases a new form of LEE [27] could be derived and written in complex form. The disturbances in 

terms of Fourier series in the circumferential direction could be written as: 

                    
          

 

    

                                                       

The complex form of the multi-mode LEE could then be written as:  
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where      . The above equations can be used in calculating multi-frequency duct acoustic 

problems because the equations do not contain any frequency content. They could be used in the 

time domain for multi-mode contributions. In addition, the equations allow a constant swirl 

background flow (    ). Hence they can be applied to a wider range of flow fields [27]. 

The acoustic wave can be introduced into the computational domain through a wave admission 

region. The broadband acoustic modal inputs can be expressed in harmonic forms in an inflow buffer 

zone as the noise sources. Considering the background temperature as constant in the inflow buffer 

zone, the non-dimensional acoustic pressure and density inputs are same as      . The real part of 

the general form for an acoustic model for each (   ) mode is:  

         
 

  

    

             

  

    

                                     

    
  

        

  

    

  
  

    
           

        

  

    

                    

  
    

            
 
 
 
                                               

  
   

   
 

        

  

    

 

where wave numbers    and    refer to the range of frequency. The weighting constants    and 

    are given by 

             

 
  

            

 
  

            
                                                      

where    and    are Bessel functions of the first and second kind in  th order 

respectively.         ,    ,   ,   are specified as the wave amplitude, the radius at the duct inner 

surface, radial wave number, axial wave number and non-dimensional frequency respectively.   

The   th radial mode wave number    is given in following relation, determined by the hard-wall 

boundary conditions of the duct in the admission zone at  th order: 

 

  
            

 

  
             

 

  
            

 

  
                                  

The axial wave number    and mode cut-on ratio   are given by: 
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where   =     
 . 

The test and validation using LEE are shown in later chapters. 

2.3.3 Overview of SotonCAA  

SotonCAA is a proprietary CFD/CAA program, based on FORTRAN 95, which has been developed and 

used by the University of Southampton in the past few years. Depending on the formulation of the 

governing equations, such as linearised Navier-Stokes or Euler equations, SotonCAA features 

different numerical schemes and consists of a number of subroutines which solve different schemes. 

The advantage of this modular structure is that the new schemes are convenient to implement to 

the rest of the code, which can evolve over time. The disadvantage is that the code has grown rather 

complex with interrelated subroutines. 

The main parts of SotonCAA are the compact finite-difference scheme (6th-order) of Hixon [23,24] 

and the 4th-order optimized compact scheme of Ashcraft and Zhang [25]. The time integration uses a 

low storage, low dispersion and dissipation Runge-Kutta (LDDRK) [28] scheme which is a fourth-

order accurate 4-6 stage scheme. Other low-order (2nd-3rd) schemes have also been included to allow 

rapid problem set up, i.e. running to an approximate solution before starting the main calculation. A 

high-order implicit scheme, ESDIRK4 (Explicit first stage, singly diagonally implicit Runge-Kutta) [29], 

is implemented but is not fully tested. As for boundary conditions, a number of non-reflecting 

methods have been implemented in SotonCAA with LEE and APE solvers to perform acoustic 

calculations.  Buffer zone schemes are implemented and used to perform non-linear flow 

calculations with accurate results. Other boundary conditions, such as standard, adiabatic solid wall 

and symmetry boundary conditions, are also implemented. 

The FW-H solver is independent of the CFD/CAA flow solvers, so supporting programs called ‘CFD to 

FWH’ and ‘FW-H’ in the SotonCAA package are employed. The ‘CFD to FWH’ code is a link between 

two solvers. The raw data outputs from CFD calculation are calculated and their values on a three-

dimensional integration surface are treated before being stored for the aeroacoustic solver. The far-

field observer positions from of the integration surface are also determined. 

Data is read into the main program through ‘input file’, ‘grid file’ and ‘parameter file’. The ‘input file’ 

lists the schemes to be used, the numerical parameters for the simulation, the block information, 

the boundary conditions, and other necessary parameters. The ‘grid file’ only contains the grid-point 

information generated by separate software such as GRIDGEN [30]. The ‘parameter file’ contains 

user defined parameters. The code is portable across all platforms with FORTRAN 95 and MPI 

installed. This includes Windows and UNIX machines. Using unformatted output files could maximise 

disk storage efficiency. There are utilities for converting from one format to another. This file 

conversion capability should be included in the general GUI interface on Windows platforms. 

2.3.3.1 Spatial Discretization 

In order to ease the formal extension to a higher-order accuracy, low operation count and for 

general flexibility, a finite-difference approach is employed to discretize the governing equation. The 

flux derivatives in the transformed conservation equations are evaluated with a prefactored 6th-

order Hixon’s scheme in the research, as is shown by Eqs. (2.38) and (2.39). 



19 

 

2.3.3.2 Time Matching Scheme 

In SotonCAA, a low dispersion and dissipation Runge-Kutta (LDDRK) is 4th order accurate in time for 

linear problems and gives 2nd order temporal accuracy for non-linear problems. A two-storage level 

marching cycle (4-6 LDDRK) [28] is employed. 

Giving the following differential equation: 

  

  
 

  

  
                                                                         

Step One (Low Storage) 

        
 

  
        

        
 

  
      

 

 
       

        
 

  
      

 

 
       

        
 

  
      

 

 
       

                                                                                  

Step Two (High Storage) 

        
 

  
        

        
 

  
                    

        
 

  
                    

        
 

  
      

 

 
       

        
 

  
      

 

 
       

        
 

  
      

 

 
       

                                                                                                                                                          

Using these two numerical schemes long time accurate solutions can be obtained for computational 
aeroacoustic problems.  These are also adequate for general CFD applications.   
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2.3.3.3 Filtering Scheme 

The prefactored compact schemes are centered schemes, and therefore contain no inherent 
dissipation.  Unexpected errors can be generated from mesh non-uniformity, boundary conditions, 
non-linear flow features, or poorly specified initial conditions. A filtering scheme has been 
incorporated to overcome these difficulties and assure numerical stability while retaining the 
accuracy of spatial compact scheme [29]. 

If a component of the solution vector is denoted by  , filtered values    are obtained by solving the 
tridiagonal system 

                      
  

 
            

                                                   

where the coefficients              determine the order and spectral response of the filter. With 

a proper choice of these coefficients, Eq. (2.58) provides a 2Nth-order formula on a 2N+1 point 
stencil. 
 
Table 2.1 gives a group of coefficients of a 6th-order central difference filtering scheme with 7 points 

stencil, which is used in the work. 

Table.2.1: Coefficients of a 6th-order central difference filtering scheme. 

3  0.015625 

2  -0.09375 

1  0.234375 

0  0.6875 

1  0.234375 

2  -0.09375 

3  0.015625 

 
The 6th order formula requires a seven point stencil; it is therefore not suitable for use at and near 
boundary points. In these regions, the order of accuracy of the filter is reduced to a biased filtering 
scheme. Values along the boundary points are left unfiltered. The filter is applied sequentially in 
each coordinate direction to the conserved variable at every time step. 

2.3.3.4 Turbulence Model 

In SotonCAA, the Spalart-Allmaras (S-A) turbulence model [18] is implemented by solving a single 

partial differential transport equation for a working variable related to the turbulence viscosity. The 

Detached Eddy Simulation (DES) [17] model in SotonCAA solves exactly the same transport equation 

as the S-A model which includes a modified length scale in the destruction term. 

2.3.3.5 Boundary Conditions 

The acoustic wave propagation is based on an assumed acoustic source which is introduced into the 

domain. An inflow boundary condition could be used to introduce a pre-defined acoustic source in 

the form of a duct mode at a location inside the duct region of the computational domain, while 
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disturbances can be emitted from the domain through outflow boundary conditions. The 

requirements for the boundary conditions allow the disturbance of an acoustic wave to pass through 

and out of the computational domain without reflections. 

In SotonCAA code, a number of non-reflecting boundary conditions are employed. The main three 

methods are presented below: slip-wall boundary, impedance boundary and buffer zone boundary 

conditions. 

Slip-Wall Boundary Condition 

The slip-wall condition is used for the flow interaction with a rigid wall by setting the normal velocity 

component to zero. i.e.: 

                                                                                          

For high-order discretisation schemes, it is generally not sufficient to set only the normal velocity at 

the wall boundary to zero, for the reason that the order of the discretisation scheme is higher than 

the order of the governing partial differential equations. 

Taking the momentum equation in LEE with the unit normal vector  , Eq. (2.60) gives the normal 

pressure derivative at the wall as zero: 

  

  
                                                                                           

 

Time Domain Impedance Wall Boundary Condition 

Impedance boundary conditions are used to define wall boundaries that are non-rigid and they are 

generally associated with acoustic liners. The difference between impedance boundary conditions 

and slip-wall boundary conditions is that the normal acoustic velocity perturbation is non-zero: 

                                                                                          

Acoustic liners in aircraft engine ducts are used to attenuate the propagating sound and they will be 

presented in later sections. The liners are specified in terms of a complex normal impedance      

defined in the frequency domain. Without the flow, the relationship between the complex pressure 

and the complex velocity amplitude normal to the surface is: 

     
 

   
                                                                           

A frequency-domain impedance boundary condition is defined with the effect impedance   by: 

          
   

  
                                                                

The requirement for a passive impedance and analysis of stability require the limits for the three 

parameters as           and       [30]. 
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When a grazing flow is present, it is commonly assumed that pressure and particle velocity are 

continuous across a thin boundary layer, giving [31]: 

    
 

     
      

 

       
  

 

       
                                      

The second term on the right hand side represents the convective effect of the grazing flow; the 

third term is associated with the curvature of the surface.  

The formulation of Myers’ impedance boundary condition given by Eq. (2.64) has been successfully 

implemented in the frequency domain simulations [31].  

In the time domain, Eq. (2.64) could be transformed as:  

          
 

  
            

      
 

  
                                               

where       is the inverse Fourier transform of     . However     is generally defined over a 

limited frequency range on the real axis, and must therefore be extrapolated over the complex plane 

in such a way that the problem remains causal, the variables real and the wall passive [38]. 

Moreover, the complete time history of the normal velocity,   
      , must be stored if the 

convolution integral is to be evaluated in full. 

Fung and Ju [35] proposed a model for the reflection coefficient, relating incoming and outgoing 

velocities, which is called time domain impedance boundary condition (TDIBC). One of the 

advantages of this method is that it could be applied in both single frequency and broadband noise 

prediction. 

At the frequency domain the reflection wave                   is related to the incident wave 

                  by:  

                                                                                      

where 

                                                                              

The complex function    is indeed a direct measure of the magnitude of the reflection and its 

relative phase with the incident wave. 

The Eq. (2.65) is equivalent to the convolution process of:  

             
 

  

                                                           

This method enables space-time continuation that allows for a non-causal model. 

The derivation of single frequency and broadband prediction is shown in Appendix A. New methods 

proposed recently by Rienstra [36] and Bin and Hussaini [37] are shown in Appendix B. 
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Centreline Axis Boundary Condition 

In a cylindrical coordinate system, the centreline axis for duct cases forms a computational boundary. 

The radial derivative on the centreline axis is solved using a symmetric computational stencil.  This 

requires mirrored flow quantities on the opposite side of the centre line. On the centreline, the 

radial velocity   and circumferential velocity   are set to zero. The cylindrical formulations of 

governing equations contain terms with an inverse dependence on the radial coordinate  . Hence, 

the singularity of     is treated by      at the singularity. 

Buffer Zone Boundary Condition 

In the SotonCAA code, a buffer zone boundary condition is employed for boundary initialization and 

updating. A schematic of a buffer zone set-up is shown as Fig. 2.2. 

 

 

 

 

 

 

Figure 2.2: Sketch of buffer zone. 

The computational domain is extended to be enclosed by a buffer zone. After each time step, the 

solution is explicitly damped, using: 

                                                                           

where        is the solution vector after each time step and      is the expected value in the buffer 

zone. The damping coefficient   is defined in Eq. (2.70) and it follows a continuous function: 

              
    

 
 
 
                                                                

where   is the buffer width,    is the distance along the buffer zone and      and   are coefficients 

which determine the shape of the damping function. 

2.4 Application of CAA 

2.4.1 CAA for Duct Acoustic Propagation and Radiation 

The majority of research applying theoretical analysis to acoustic propagation and radiation from 

turbofan engine intakes has modelled the engine intake as a straight duct. The duct propagation has 

been usually considered independently of the radiation. This is usually achieved by neglecting the 

reflection of the duct termination conditions. Radiation models are set by considering an 

independent system or using the termination conditions. Due to the fact that an engine duct 

Buffer Zone Block Computational Domain Buffer Zone Block 

 

Inner boundary  Inner boundary  

Buffer Width 

Outer boundary  
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geometry is generally non-uniform, the theoretical analysis of duct acoustic propagation and 

radiation is complex. Adding acoustic liners in regions of the engine duct could attenuate the 

propagation noise efficiently. 

2.4.1.1 The Euler Equation 

 
Figure 2.3: Noise sources and transmission paths in a turbofan engine [40]. 

Fig. 2.3 shows the noise sources and propagation paths in a turbofan engine. The fan is enclosed in a 
duct. Noise from the fan and the compressor passes through the intake duct into the forward arc. 
Fan noise also propagates to the rear arc through the bypass duct, radiating through the bypass 
shear layer. Core noise propagates through the hot and cold exhaust streams and radiates into the 
rear arc [40]. 

The typical fan duct, as shown in Fig. 2.3, consists of a cylindrical inlet duct and an annular exhaust 

duct.  The aerodynamic flow through the ducts contains a wide range of subsonic velocities, based 

on the conditions of the engine. The duct source model is recognised to be independent of 

propagation and radiation [33].  The acoustic propagation modelling is based on the linearization of 

the equations governing the isentropic motion for an inviscid, non-heat-conducting perfect gas. The 

linearised Euler Equations (LEE) are outlined earlier as Eqs. (2.40) and (2.50). 

The LEE can be obtained either in the time or the frequency domain.  

In the acoustic radiation model the mean flow and the acoustic perturbations are taken as 

irrotational. Hence, the perturbed velocity can be written in terms of an acoustic velocity 

potential        . The continuity and momentum equations are reduced as follows: 
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Rewriting each dependent variable,        in the time-harmonic version of the continuity equation 

in terms of a complex amplitude       at radian frequency   yields the convected Helmholtz 

equation: 

         
  

  
 
                                                                       

This reduces to the standard Helmholtz equation when the mean flow is zero. 

2.4.1.2 The Far-field Boundary Condition 

The CAA solution must be terminated at the outer boundary of a near-field computational domain 

without generating spurious numerical reflections. Substituting predicted pressure history on a near-

field surface within the computational domain into an integral formulation, the far-field results could 

be obtained. The Kirchoff integral formation [7] or Farassat’s formulation [41] are commonly used 

tools for acoustic wave radiation prediction. 

In SotonCAA, the far-field solutions are given in Lagrangian coordinates       , and considering the 

retarded time                 , the formulation (1A) of Farassat [7] is used as Eq. (2.35).It is 

also assumed that the contributions from quadrupole terms outside the integration surface are 

negligible. 

2.4.1.3 Broadband Noise 

The fan noise consists of both tonal components generated by the rotor-stator interaction and 

broadband characteristics generated by the turbulent flow over fans and outlet guide vanes, etc., 

[27]. The pressure fluctuations associated with turbulent flows near the surface of the blades leads 

to the broadband noise, which contains energy across a wide range of frequencies [42]. Significant 

sources of broadband noise due to the presence of turbulence in the fan system are from the 

boundary layer formation on the outer wall of the inlet duct, the wake shed from each rotor blade 

trailing edge, and from the wake interaction between the rotor wakes impinging on downstream 

stators when there is a discontinuity between gaseous flows. Due to the system complexity, isolation 

of each aeroacoustic source is. Furthermore, the turbulence in the inflow can contribute to the 

overall broadband noise, but its influence is not of great importance.  

In the first stage of the compressor of the fan in a turbofan engine, broadband noise is generated in 

the interaction between the tip of the rotating blade and the turbulent boundary layer formed along 

the wall of the inlet duct. Here turbulence levels are high and the local blade speed is at a maximum. 

Turbulence in the wakes shed by the fan blades are also an important source of random noise 

particularly for fan blades with large surface areas, and it plays an important role in the generation 

of broadband noise generated in the downstream stages.  The broadband noise levels from a 

multistage core compressor will be higher due as the number of stages increases, due to the 

increased interaction between rotor and stators.   

The challenge in reducing fan broadband noise is to change the airfoil profile on the fan exit guide 

vanes to reduce the broadband noise at critical noise conditions (approach, cutback and sideline 

power) without impacting the aerodynamic performance required by design[43] . 
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2.4.1.4 Current CAA propagation methods 

(1) Boundary Element methods(BEM) 

The BEM uses the given boundary conditions to fit boundary values into linear differential 

equations. The BEM uses a defined Greens function, and it is only suited for uniform flow, 

and is less suited for flow acoustics [44, 45]. If its required computational cost is acceptable, 

then it could be applied for fully 3D intake problems.  

(2) The parabolic equation method 

The parabolic equation method splits the wave equation into incoming and outgoing 

components. When one component of the wave dominates, the factored equation can be 

solved more efficiently than the full elliptic wave equation. The scheme marches “forward” 

from the source to the receiver and is inherently fast [46, 47]. 

(3) Finite element Helmholtz methods 

The finite element method is a widely used approach which was first applied to the solution 

of Helmholtz equation for intake problems and coupled to an infinite element mesh in the 

far-field [48, 49]. The main advantage its good dispersion characteristics with quadratic 

elements on unstructured meshes [50]. However, it is restricted to irrotational flows, which 

restricts it from straightforward use to exhaust propagation problems. Additionally, the 

solution time scales poorly with problem size [51]. FE schemes based on higher order 

spectral element and higher order Lagrangian elements have been developed. 

(4) LEE, structured methods 

Time domain finite difference schemes are widely used to solve the LEE for rotational base 

flows. Tam and Webb [20] are most well known for these methods with a DRP scheme. 

Optimised, prefactored compact schemes are also used for a number of structured, time 

domains LEE problems. They could give more stable stencils near boundaries with less 

stencil size [49-53]. 

(5) LEE, unstructured methods  

The most promising high order unstructured approach for the LEE is the Discontinuous 

Galerkin Method which allows variable order of approximation with irregularly shaped 

elements [52-56]. 

(6) Solution of the full Euler equations 

The advantage of using full Euler equations is that Kelvin Helmholtz instabilities are 

controlled by nonlinear terms [57], which benefit the nonlinear propagation in the vicinity of 

the fan. 

2.4.2 CAA For liner Optimisation 

Based on arrays of Helmholtz resonators, conventional acoustic liners are generally used on the 

inside surface of commercial aircraft jet engines for fan noise reduction. A Helmholtz resonator (Fig. 

2.4) has a short neck which widens into a large volume chamber [56]. Resonance of a Helmholtz 

resonator is established when the mass of air at air in the neck oscillates against the large volume of 

air in the chamber. At resonance, small pressure perturbations give rise to large oscillating mass 

fluxes in the neck. These in turn induce large viscous losses, and narrow band sound absorption is 

achieved for frequencies close to resonance. In the absence of a mean flow, the absorption 

coefficient, defined as the proportion of incident energy absorbed, is a non-linear function of the 

acoustic pressure. High incident acoustic pressures are required before the absorption becomes 
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significant. In the presence of a mean flow, the absorption is linear and the absorption coefficient is 

independent of the magnitude of the acoustic pressure. In this instance, absorption is obtained over 

a wider range of frequencies [57]. 

 

Figure 2.4: Helmholtz resonator [33]. 

Conventional acoustic liners are normally composed of a perforated plate and a honeycomb core 

(Fig. 2.5). The honeycomb core is composed of cells which, when bonded to the face sheet, create 

cavities behind the face sheet. The attachment of an impervious sheet to the honeycomb core seals 

it thereby isolating each cavity from its neighbors. The main geometric parameters for single layer 

liner configurations are the porosity, thickness and hole diameter on the pereforated surface, and 

the depth of the cavities. 

 

Figure 2.5: Single-layer acoustic liner [33]. 

Tam and Kurbatskii [61] investigated the mechanisms by which the acoustic energy is dissipated in 

acoustic liners, using direct numerical simulation of the flow field around and inside a liner resonator 

under the excitation of plane acoustic waves. A 2D model without outside flow was considered for 

this investigation. Results gave a better understanding of the flow field and the physics around the 

opening of a liner resonator when excited by incident acoustic waves. At low sound intensity, a 

strong oscillatory boundary layer, with a jet-like velocity profile around the opening of the liner, was 

observed. Most of the dissipation was contributed by the shear gradients of the unsteady boundary 

layer flows. At high sound intensity, the shedding of micro-vortices from the mouth of the resonator 

was observed. These micro-vortices carried with them a significant amount of kinetic energy that 

was eventually dissipated into heat. The shedding of micro-vortices is a very efficient energy 

dissipation mechanism. 
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2.4.3 Scattering Case Validation 

The aim of this section is to validate the parallel code using the scattering benchmark case. A 2D 

Gaussian pulse propagation in a uniform flow field case is employed to check the effectiveness of the 

high order scheme in solving the acoustic problem, by comparing the analytical solution to SotonLEE. 

2.4.3.1 Problem Description 

Idealizing the fuselage as a circular cylinder and the noise (propeller) as a line source the 

computational problem from the Second Computational Aeroacoustics (CAA) Workshop is two-

dimensional [62] shown in Fig. 2.6. 

 

Figure 2.6: 2D Gaussian pulse problem 

A 2D cylinder of non-dimensional radius   = 0.5 is located at the origin of a cylindrical coordinate 
system. An acoustic pulse with initial conditions: 

           

           

                  
         

                                                                                                             

is scattered by the cylinder. The computation is performed on a circular domain with the cylinder 
comprising the inner bound at r = 0.5 metres and the outer bound located at r =10 metres. Three 
points                                          are chosen as observation points. 

2.4.3.2 SotonCAA Simulation 

 The computational setup for the CAA solution is shown in Table 2.2. 
 

Table 2.2: Computation setup for 2D Gaussian pulse propagation. 

Time step 0.002 

Total time setup 6000(total time=0.002 6000=12 units) 

Main grid (highlighted in green) 401(r)  381( ) 
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Buffer zone grid (highlighted in 

red) 
20(r)  381( ) 

Temporal scheme 4th-order explicit LDDRK 

Spatial scheme Hixon 6th-order compact scheme 

Explicit filtering scheme 10th-order, every time step 

 
Using Gridgen, a computational grid is constructed and is shown below: 

 
Figure 2.7: Uniform grid produced by Gridgen. 

2.4.3.3 FW-H Prediction 

The FW-H solver is employed to predict the Gaussian pulse propagation in the far-field. Using the 

‘CFDtoFWH’ code the flow information generated by SotonCAA is transformed into acoustic 

information and is stored for the aeroacoustics solver.  The far-field pressure was predicted by 

applying an elliptical integration surface which enclosed the source region. 

The integration surface is constructed as an ellipse centered at (1.0, 0) with 3 units as the semi-

major axis, 2.5 units as the semi-minor axis in a Cartesian coordinate system. Since the FW-H code 

solves 3D problems, a third dimension was set to span 20 units. 

Results predicted by the LEE and the FW-H solver will be compared with the analytical solution 
presented later (See Appendix C). 

2.4.3.4 Results and Discussion 

Figs. 2.8 and 2.9 show the contours of pressure at non-dimensional time of t=6 and t=10 using 

analytical and LEE solutions respectively. The radius of the acoustic pulse has expanded from the 

source centre, and reflected after the acoustic pressure reached the cylinder. At time t = 6 the large 

wave front reaches the cylinder surface and a small reflected wave can be seen near the cylinder. At 

t =10 the initial pulse has already reached the outer boundary and a smooth transition through the 
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domain edge is observed as expected. 

 

  

Figure 2.8: Contours of pressure at non-dimensional time t=6 (a) LEE, (b) analytical solution. 

 

 

Figure 2.9: Contours of pressure at non-dimensional time t=10 (a) LEE, (b) analytical solution. 

It can be seen that the LEE results are almost identical to the analytical solutions at corresponding 

time steps. Fig. 2.10 shows computed pressure histories in comparison with the analytic solution 

given above. These results show satisfactory agreement between the LEE and analytical solutions. 

Using the FW-H solver, similar solutions for the computed pressure time histories to those predicted 

by SotonCAA were obtained and are shown in Fig. 2.11.  

 

(a) (b) 

(a) (b) 
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Figure 2.10: Comparison between analytic and computed solutions of 2D scattering problem. (a) 
Pressure history at             . (b) Pressure history at                (c) Pressure 
history at               . 

 
Figure 2.11: Comparison between SotonLEE and computed solutions of 2D scattering problem. (a) 
Pressure history at             . (b) Pressure history at                (c) Pressure 
history at               . 

The pressure history at the monitor points calculated by various methods has been compared. It is 

shown that the results computed by the LEE and the FW-H solver match well with those obtained by 

the analytical solution. Good agreement of the pressure amplitude can be observed between 

computational results with a fine mesh and analytical results. In general, the research code performs 
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well in solving this 2D acoustic problem compared to the exact solutions, and it is extendable to 3D 

in a straight-forward manner. 
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3 Acoustic Intensity-Based Method  

A hybrid approach separates the acoustic field into an aerodynamic source, and acoustic 

propagation region, and is commonly used for predicting aerodynamic noise. Conventional CFD 

solvers are generally employed to evaluate the flow field in the near-field to provide the 

aerodynamic sound source information. The extension of the near-field CFD solution to the mid-field 

acoustic radiation can be achieved using the LEE method, but its use may be limited due to an 

excessive demand in computer storage. As for far-field radiation, the FW-H prediction requires a 

closed control surface containing the entire aerodynamic source region. As stated previously, the 

current FW-H solver has difficulty evaluating results for multi-frequency cases due to large memory 

requirement, and it can only be applied to cases with frequency numbers less than three. This 

provides the motivation to explore an alternative far-field prediction method. 

Motivated by the need for an accurate and efficient prediction of far-field acoustic radiation, an 

acoustic intensity-based method (AIBM) [2-4] has been developed by Chao Yu et al. The AIBM 

assumes that the sound propagation is governed by the simple wave equation on and outside a 

control surface that encloses all the nonlinear effects and noise sources. The prediction of the 

acoustic radiation field is however carried out by the inverse method by using the acoustic pressure 

derivative and its simultaneous, co-located acoustic pressure over an open control surface. The 

reconstructed acoustic radiation field using the AIBM is unique due to the unique continuation 

theory of elliptic equations. Hence the method is more stable and the reconstructed acoustic 

pressure is less dependent on the locations of the input acoustic data. The AIBM is based on an 

equal acoustic power assumption so that for a combination of multi-acoustic sources each acoustic 

source has the same acoustic intensity level. Therefore the AIBM is capable of multi-source 

prediction. 

3.1 AIBM Mathematical Formulations  

In 3D, assuming that the mean flow is unvaried in the    direction, the solution of the Helmholtz 

equation can be shown as:  

                                             
                  

 

   

 

   

             

where parameters (        ) are defined for the modified spherical coordinates from Cartesian 

coordinates         in the physical domain, and        .   
  is the associated Legendre 

polynomial and    represents the generalized Hankel function or spherical Hankel function. 

Let (        )=(        ), then: 

                                                                           

Differentiating both sides of Eq. (3.1) with respect to the unit normal vector               and 

using the chain rule, we have the formula for normal derivative of  : 
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Note that: 

   

   
 

 

  
                 

   

   
           

   

   
                                           

   

   
 

 

       
      

   

   
                                                         

There are singularities at          , which will present computational difficulties.  

To remove these singularities,         and        can be expressed as:  

 
 
 

 
        

 

 
               

 

          
                     

       
 

  
               

 

          
                     

                       

Substituting above equation back to Eq. (3.1), we have: 

                                      
                  

 

   

 

   

                               

where 

                                                                                  

and   
    

        . From the expression for   
    we see that 

  
         

       

    

    

     
        

  
  
  
                                      

which has no singularity. This could improve the general solution of the Helmholtz equation. The 

normal derivative can be derived easily from 

         
  

   
 

  

   
    

  

   
    

  

   
                                               

In order to find details of the solution of Eq. (3.1), it is necessary to determine the coefficients    

and   . Both coefficients are determined by matching the assumed form of the solution to the 

measured acoustic pressure and its normal derivative over the input surface segments. Once these 

coefficients are determined, the solution can be quickly evaluated at any field points on or outside 

the control sphere. In the AIBM, both the acoustic pressure and its simultaneous, co-located 

derivative (in out normal direction) on the boundary    are given as the inputs for the reconstruction 

of the acoustic field in the domain   (see in Fig. 3.1). With the pressure derivative boundary 

condition as an additional input for the inverse problem, the uniqueness of the reconstructed 

solution is guaranteed from the unique continuation theory of elliptical equations. The method also 



35 

 

yields a consistent and accurate solution on and outside of the control sphere. In using the AIBM, it 

is assumed that the control sphere is known, although the exact locations of sound sources may not 

be available. 

In the AIBM, the partial boundary value problem is defined as: 

 
                                     

    
          

   
                                       

where   is the outward normal to   .  

 

Figure 3.1: Schematic diagram of sound propagation field and locations of acoustic measurements 
[4]. 

The numerical solutions for Eq. (3.1) or (3.7) are obtained from the following steps 

(a) The solutions are approximated by a finite summation instead of an infinite summation. 

Therefore Eq. (3.7) becomes: 

                                      
                  

 

   

 

   

                     

The upper limit   must be chosen large enough to satisfy the accuracy requirement, and 

small enough to include the characteristics of input acoustic data into consideration, and 

save the computer source. 

(b) The coefficients    and    are determined by matching the assumed form of solution to the 

input data         .  The most popular method is least square method for this linear 

system. 

For axisymmetric problems, considered in 2.5D, the 3D formulations can be simplified into a 2.5D 

formulation. Once    is specified in Eq. (3.1), e.g.                    , the equation can be 

transformed to: 

                             
  

  

  
           

 

   

 

   

                                     

The normal derivative can be derived easily from 
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3.2 Validation 

Following the equation of AIBM described previously, two 2D test cases that combine CAA and AIBM 

were conducted in order to validate the AIBM for physical problems and are shown below. 

3.2.1 Case one: multiple sources in a uniform flow 

A combination of one monopole, one dipole and two quadrupoles in a 2D domain is used for the 

acoustic radiation. The pressure generated by a dipole and quadrupole can be written as a 

summation of a monopole generation. i.e.             
 
          , where    is the strength of 

the monopole and    is the distance between a field point and the monopole source. The strength 

and locations of these sources in this case is same in reference [4], shown as Table 3.1. 

Table 3.1: The strength and distribution of the acoustic sources. 

                    

 1.00 0.30 0.60 
Quadrupole   -1.00 -0.10 0.60 
 1.00 -0.10 0.20 
 -0.10 0.30 0.20 

 -1.20 0.49 -0.12 
Quadrupole    1.20 0.20 -0.20 
 -1.20 0.28 -0.49 
 1.20 0.57 -0.41 

Dipole -0.80 -0.54 -0.16 

0.80 -0.78 -0.45 
Monopole 0.90 -0.58 0.58 

 

All the acoustic sources are located within the circle of radius     . The wave number of the 

sources is considered as        and the control sphere is then defined by the circle of 

radius      . The reconstruction of acoustic radiation pressure is worked out on and out of the 

control sphere. The input data are given at a continuous arc between                    and  

                   in the polar coordinates, as shown in Fig. 3.2. Dividing the arc into even 

20 segments, the acoustic pressures and their derivatives normal to the segments are used as the 

input data. It should be noted that it uses an open surface for the reason that in some cases there 

may not be enough data for the whole surface. 
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Figure 3.2: Schematic diagram of acoustic sources and input locations 

A further study is carried out to verify if the gradient pressure in the input data could improve the 

accuracy and consistency of the results (AIBM solution without gradient pressure named as 

AIBM_without).The predicted radiation with and without a pressure gradient, at       is 

compared with the analytical solution shown in Fig. 3.3. It is shown that the reconstructed acoustic 

pressures agree reasonably well with the analytical solution for cases with and without a pressure 

gradient. However, the result without a derivative pressure input is less dependable than one with a 

pressure derivative. All the results are similar, according to reference [60].  

 

Figure 3.3: Comparisons of acoustic pressure with analytical solution at r=50m. 

3.3.2 Case two: Acoustic Propagation and Radiation from an Axisymmetric Duct 

An axisymmetric geometric model of a duct bypass with a mean flow is tested.  Acoustic 

perturbations are propagating downstream through the axisymmetric duct and radiating to far-field. 

The schematic of the duct configuration is shown in Fig. 3.4. For the near-field, the LEE method could 

predict the pressures and other characters. For the far-field radiation, a FW-H method coupled with 
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the LEE could be used for prediction. Calculations are conducted for a uniform flow with a mean 

axial velocity. The mean flow values are given in table 3.2 and are used to non-dimensionalise all 

variables shown in the results presented in this section. The free stream speed of sound is calculated 

from the free stream temperature by the relation          , where      ,           . 

The characteristic length scale  , is the duct radius    . 

Table 3.2: Bypass duct case background mean flow value 

Mean Flow 

Temperature ( ) 299.2 

Density (     ) 1.25 

Pressure(  ) 112058 

 

 

Figure 3.4:  Schematic of the mean flow pressure distribution for the duct. 

The computational grid is shown in Fig. 3.5. This is done following the results of Zhang et al [27].The 

grid contains          cells with 10 PPW minimum for resolution in both x and y directions. The 

acoustic wave is admitted into the duct through a wave admission region. Buffer zone condition with 

explicit damping (Eq. 2.68) is applied so that it can introduce the acoustic wave into the domain 

whilst allowing any acoustic waves from the duct opening to propagate out of the domain with 

minimal reflections.  

 

Figure 3.5: The grid of computational domain  

For the FW-H method, it is based on using as an input of the unsteady perturbation pressure and 

velocity over a closed FW-H surface that encloses the acoustic sources to predict the far-field 

R=4 

Zone A 
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pressure radiation, whereas AIBM can be coupled with the LEE method with an open integration 

surface, with less computational storage requirement. 

Since AIBM is based on the frequency domain, while the current LEE solver is based on time domain, 

the near-field acoustic pressure comparison could be selected at several points. The input acoustic 

pressure and pressure gradient are chosen as shown in Fig. 3.4, along the arc of r=4, the arc is 

between         and         . 20 points with an interval of      along the arc in different time 

step are chosen (shown as N in Fig 3.6) for comparison with the CAA solution.  

With a defined duct acoustic mode of         the radiation of acoustic pressure at     in 

the near-field is predicted using the 2.5D AIBM equation (Eq.3.13) and the results are shown as Fig. 

3.6. By comparing with the LEE solution, it can be observed that the agreements of the pressures 

(shown as P in non-dimensional form) are satisfactory. The results demonstrate that the AIBM 

solution is compatible with the LEE solution.  

 

Figure 3.6: Comparison of pressure patterns at the same time. 

More precisely for the near flow field, a simple domain was established for the comparison of the 

near filed sound pressure outside the source area (zone   shown in Fig. 3.4). There are only slight 

differences between the two figures shown in Figs. 3.7(a) and (b). The overall features are the same. 

This again verifies that the AIBM solution is suitable for predicting the duct acoustic pressures. 

  

(a)                                                                                  (b) 

Figure 3.7: Acoustic pressure comparison in near-field domain. (a) LEE solution  (b) AIBM solution. 
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For the far-field pressure prediction, the SPL directivity comparison between the AIBM and FW-H 

results is shown in Fig. 3.8. The results are taken at 10 metres from the original axis (2.5, 0). The 

patterns are similar while the quality, to some extent, is different. For the observation angles 

below    , the difference is mainly because the source terms are contained as input data, which has 

a negative influence on the results. The SPL reaches its peak value at an observation angle 

around      , and then reduces gradually as the angle increases. In this case, the AIBM saves up 

to 67% memory expensive compared with FW-H method since it only requires the pressure on the 

integration surface. 

 

Figure 3.8:  Far-field directivity comparison. 

In summary, the AIBM method has been verified for a 2D configuration. The predicted acoustic fields 

by AIBM for the cases agree well with the analytical, LEE, and FW-H solutions. AIBM could be used to 

predict the far-field pressure and it only depends on the pressure distribution on the integration 

surface which is calculated by LEE. It is much easier than the FW-H method which requires more 

components to do the computation for the far-field pressure. Additionally, AIBM could be used on 

an open integration surface if there is not enough input data. Hence, the AIBM would save on 

computational effort and storage. However, since the aim of the research is to predict the 

broadband acoustic pressures, the prediction method requires further studying. For the multi-

frequency problem a suitable solver is also required, and will be presented in the next chapter 

through a detailed study on the effect of bifurcations in a duct. 

 

 

 

 

 

 



41 

 

 

4 Sound Radiation from a Bypass Duct with Bifurcations 

In this section, prediction of the propagation and radiation of spinning modes generated by an 

axisymmetrical engine fan and fan/stator flow interaction is considered in both two and three 

dimensions. The LEE method is able to predict the near-field sound wave propagation of small 

acoustic perturbations compared to the background flow. The far-field sound wave radiation is 

currently predicted using the FW-H solver using the data provided by SotonCAA on an integration 

surface as an input for single acoustic modes. Since the current FW-H solver cannot solve the multi-

mode problem due to a large memory requirement, the sound radiation is compared within the 

computational domain. AIBM can be an alternative method to use for far-field prediction of multi-

modes once its development is completed. 

In this research a newly developed LEE solver is used to explore the bifurcation effects due to multi-

mode inputs in a generic engine bypass duct. An axisymmetrical bypass duct is installed with four 

bifurcations along the circumferential direction with equal spacing. With such a duct configuration 

we want to explore the effects of the bifurcations with multimode acoustics. Results without 

bifurcation have been used for comparison.  

The duct geometry includes bifurcations, the bypass and exhaust ducts. Four bifurcations are located 

at angular intervals of     along the circumferential direction, connecting the inner and the outer 

bypass duct walls. Since the bifurcations occur with equal spacing, one quarter model of the engine 

duct configuration for a generic engine can be used in the study and it is shown in Fig. 4.1. 

 

Figure 4.1: Schematic of aft duct of a generic engine with bifurcation [63]. 

The inner wall radius of the exhaust is 0.57m.The radius of the exhaust cone is 0.23m. The radius of 

the inner wall of the bypass duct is 0.79m and the inner hub radius is 0.6m. In this computation, the 

length of the bypass duct from the spinning mode entry area to the duct exit is 4m. The bifurcations 

have a cross section profile of a NACA 0012 airfoil with a chord of 1m. The starting position of the 
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bifurcation is 3m away from the bypass duct exit. The installation angles for the four bifurcations in 

the circumferential     coordinates are at   ,    ,      and      respectively.  

The computations were performed on a structured grid according to reference [63] and shown in Fig. 

4.2. The grid for computation contains          cells and the grid resolution has a minimum 9 

PPW in both circumferential and radial directions.  

 

Figure 4.2: The grids of the quarter engine duct with bifurcation. 

The problem setup is illustrated in Figs. 4.1 and 4.2, which show the computational domain in near-

field propagation. In order to study the effect of bifurcations, an axisymmetric bypass duct case in 

2D using a 2.5D LEE model at       is also computed.  

4.1 Numerical Model Implementation 

The newly developed LEE (Eq. (2.50)) in complex form, which can be solved for multi-mode problems, 

is used as governing equations for the acoustic computations and all variables were non-

dimensionalised using a reference length of 1m, a reference density of 1.225     , and a reference 

sound speed of 346.76 m/s. If not defined specifically all values shown below are in non-dimensional 

form. 

The temporal scheme used in the computations is a low dissipation and dispersion Runge-Kutta [61] 

scheme and the spatial scheme is a 6th-order accuracy compact scheme [28], which has been stated 

previously. An explicit filter of 10th-order accuracy [34] is used at every time step to remove small 

numerical disturbances. For multi-mode computation the acoustic pressure amplitude of each mode 

is defined to have an acoustic intensity level of 100dB. 
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Figure 4.3: Setup including bypass duct and exhaust geometry. 

For the boundary treatment, the inflow and outflow buffer zones were introduced to minimize 

possible spurious wave reflections at the computational boundaries. A periodic boundary condition 

was applied at the boundaries in the circumferential direction except at the bifurcations. A slip-wall 

condition was applied to all wall boundaries including the bifurcation boundaries. A symmetric flow 

condition was applied at the axis. Estimation of far-field acoustic radiation was performed separately 

based on the near-field computation results through the FW-H equation for single mode. The far-

field directivity was calculated at 100m away from the symmetric axis, shown in Fig. 4.3. 

The steady background flow was solved by the Reynold Average Navier-Stokes (RANS) with a     

turbulence model. The inflow conditions were as follows; at the bypass duct the pressure was 

112058Pa with a Mach number of 0.27. The free stream conditions were set to a pressure of 

101325Pa with Mach number of 0. The temperature was set to a constant of 299.2K. The mean flow 

pressure and velocity in 2D plan are shown in Figs. 4.4 and 4.5. 

 

Figure 4.4: Non-dimensional mean pressure distribution. 

Bifurcation r=4 

Cross section at x=4 
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Figure 4.5: Non-dimensional mean axial velocity distribution. 

The results were taken after 50 wave periods after which the wave fronts were propagated out of 
the computational domain and the solution became periodic. 

The FW-H equation solver was used to determine the far-field noise level for single frequency cases. 

The FW-H integration surface was placed outside of the duct to enclose the source region. For the 

comparison study an elliptic integration surface was used and was generated by substituting values 

at                             into Eq. (4.1).  

      
 

  
  

      
 

  
                                                                       

where    and    are the coordinates of the ellipse centre point and    and    are the ellipse half-

widths in the axial and radial directions respectively. The 3D integration surface is generated by 

extending the surface in the cylindrical azimuthal coordinate.  

The observation points are over a 120 degree arc consisting of 121 observer positions at a distance 

of 100m relative to the coordinate system origin. A zero degree angle corresponds to the 

downstream direction along the centre line of the duct geometry. 

The computing facility is the Iridis3 HPC cluster at the University of Southampton, which consists of 

1008 8-core nodes (Intel Nehalem 2.26 GHz) with a minimum 22 GB of memory per node. All nodes 

are connected to a high speed disk system with 110TB of storage with a fast infiniband network for 

parallel communication. 

The computation time for the 3D simulation was 8 hours on 12 processors while the 2D case consists 

of many fewer grids and requires only about 3 hours of computing time on a single processor. 

Bifurcation 
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4.2 Results and Analysis of Bifurcation Cases 

4.2.1 Clean Duct Cases  

According to reference [27], previous work has been done on multi-frequency simulated in a single 

computation for a generic duct case, and compared with the Munt’s analytical solution. In this 

section, a clean duct case has been studied for multi-frequency using the complex LEE method given 

by Eq. (2.47) and Eq. (2.50). The effect for different radial and circumferential modes is presented. 

For general cases, the realistic duct geometry may be non axisymmetric and contain a multitude of 

spinning acoustic modes. These problems can be solved through solutions of full 3D Euler governing 

equations, while avoiding numerical instability excited in the downstream shear layer. However, the 

computational cost is high. For an axisymmetric mean flow problem, the 2.5D LEE/FWH hybrid 

acoustic method for the computation of acoustic radiation could be used to give an efficient 

prediction in both the near and the far-field, on the condition that the propagation of the total 

multi-mode can be generated from the superposition of single mode results. The comparisons with 

3D cases have been done as follows. 

4.2.1.1 Comparison Multi-frequency SPL and Summed near-field SPL 

Figs. 4.6 and 4.7 show the SPL contours for multi-frequency and for the superposition of three 

different frequencies from 1000Hz to 2000Hz with an interval of 500Hz with the mode kept as (12,1). 

For the superposition shown in Fig. 4.7, the SPL is calculated separately for the three different 

frequencies, and then superimposed to account all the pressures for each mode with the mean flow. 

The SPL directivity plot for the multi-frequency case containing all the three frequencies can be 

calculated for comparison. The directivity plotted in Fig. 4.8 for shows good agreement between 

these two cases. It shows that based on the axisymmetric mean flow and geometry, the total multi-

frequency acoustic field is the same as the superposition of single frequency mode results.  

 

Figure 4.6: Near-field SPL for (12, 1) mode from summed three frequencies (1 kHz, 1.5 kHz, 2 kHz). 
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Figure 4.7: Near-field SPL prediction using multi-frequency sources (1 kHz, 1.5 kHz, 2 kHz): 

 
Figure 4.8: The near-field directivities comparisons at r=4. 

 

The directivity pattern ranges along an arc where a polar observation angle is defined to be staring 

from the axisymmetric axis (φ =   ) and rotating anti-clockwise to φ =     . In the near-field at    , 

the pressure levels from both results reach the radiation peak at     and shows good qualitative and 

quantitative agreement.  

4.2.1.2 Effect of Radial Mode 

Fig. 4.9 shows the directivity patterns for the circumferential mode      as the radial mode( ) 

changes from 1 to 8 at frequencies from 1000Hz to 2000Hz with an interval of 500Hz in near-field 

(along the arc    ). It is shown that the lower radial modes contribute more significantly to the 

overall SPL values than the higher ones. 
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In Fig. 4.10, a directivity pattern comparison between the summed SPL of full cut-on modes (1 to 8) 

and the first half of the radial modes (1 to 4) is made. The results show near identical behaviour at 

observation angles less than    , and a maximum difference of less than 0.3 dB at angles lager 

than    . Hence, only the first half modes can be used to predict the total SPL more efficiently, 

saving computing effort (by up to 47% in this case). 

 

Figure 4.9: Directivity patterns at different radial modes in near-field. 

 

Figure 4.10: Directivity comparison of radial mode contribution for total SPL. 

4.2.1.3 Effect of Circumferential Mode 

Fig. 4.11 shows the directivity patterns at selected circumferential modes while keeping the radial 

mode as 1 at multi-frequency for 1000Hz, 1500Hz and 2000Hz along the arc of r=4. It indicates that 

the mode m=0 has an impact mainly on the first radiation peak. As the circumferential mode goes 

higher, the acoustic energy radiation peak angle increases. Based on the equal power assumption, 

one cut-on mode may have more weight than the others if the azimuthal mode appears on more 
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discrete frequencies. It can be concluded that lower circumferential modes are more likely cut-on to 

more discrete frequencies, and make more contributions to the total SPL. 

Fig. 4.12 compares the superposed SPL directivity with 2/3 m modes (from 0 to 30 with an interval of 

6) total SPL. At lower observation angles (under    ) they are exactly the same; the maximum 

difference of -0.4dB happens at the observation angle of    . Based on this finding, the computation 

could save more time if there is a need to calculate the total SPL precisely. The first 2/3 modes can 

be used to predict the total SPL more efficiently, saving much of the computing efforts (by up to 36% 

in this case). 

 

Figure 4.11: Directivity patterns at different circumferential modes in the near-field. 

 

Figure 4.12: Directivity comparison of circumferential mode contribution for total SPL. 

4.2.2 Bifurcation Configuration Effect 

The 2.5D LEE/FW-H hybrid model has given an accurate and relatively efficient predictions for 

aeroacoustic spinning mode propagation and radiation from a clean engine bypass. The model is 
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based on the assumption of an axisymmetric mean flow and bypass geometry, and allows the 

propagation of single spinning modes, from which the total multi-mode acoustic field can be 

generated from the superposition of single mode results.  

In general, realistic bypass flows and geometries are not axisymmetric and contain a multitude of 

spinning acoustic modes. For a general case, a prediction of the acoustic flow field can only be 

achieved from a solution of full 3D governing equations. In this section, a parallel 3D propagation 

solver that can be extended to arbitrary geometries and flow fields is used for mode propagation in 

a duct with a bifurcation.  

The SotonCAA code verification at a frequency of 1547Hz for a single mode (        ) has 

been done in comparison to reference [63] and the results outlining the contours of acoustic 

pressure contours show agreement. For the single mode case (        ), a bifurcation plane 

at      and a middle plane       at frequency of 1000Hz along the circumferential direction are 

compared in Fig. 4.13. It can be seen that in both figures that the wave propagates out of the duct 

and diffracts around the duct lip. The main propagation direction is backward of the duct at a higher 

angle around    relative to the duct axis. At lower observation angles, acoustic modes are reflected 

from the edge of the bypass duct. The wave after the bifurcation arrived at the shear layer and then 

reflected to the computational domain. Due to the propagation of the sound waves, the strength of 

the acoustic pressures is increased on the downstream side of the bifurcation. The main radiation 

peak angles are almost the same for both cases. However, the bifurcation weakens the sound 

intensity.   

       
(a)                                                                       (b) 

Figure 4.13: Acoustic pressure patterns on 2D plane at (a)      (b)        at single mode case. 

Figs. 4.14 and 4.15 show the effect of a bifurcation on the acoustic pressure distribution. Fig 4.14 is 

the acoustic pressure pattern of the nozzle in 3D. Fig. 4.15 shows the outer face of the nozzle. It can 

be seen clearly that the pressure redirects after the bifurcation section due to the distortion by the 

bifurcation. The circumferentially moving mode is diffracted by the bifurcation, leading to stronger 

acoustic pressures when the diffracted modes interfere with each other. 

Main radiation peak Main radiation peak 
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Figure 4.14: Acoustic pressures on a cross-section of the bifurcation case. 

 

Figure 4.15: Acoustic pressure on a cross –section of outer face. 

Fig. 4.16 shows the acoustic pressure patterns on a y-z plane (shown in Fig 4.2) at x=4, which is after 

the bifurcation. It is shown clearly that the bifurcations distort the acoustic pressure distribution. 

  

Figure 4.16: Acoustic pressure patterns on y-z plane at x=4 for bifurcation case (single mode). 
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Fig. 4.17 shows the sound pressure level (SPL) directivity on a 2D plane at bifurcations at      and 

a middle plane       respectively and along the integration surface at    . The results suggest 

that the bifurcation could redirect the sound propagation from the duct. Both SPLs reach the peak at 

the observation angle of    . The directivity patterns are slightly different between the two planes. 

They indicate that the noise is decreased at different azimuthal planes and is increased at other 

angles.   The SPL in the range of             shows lower levels and higher levels towards   

   .  

 

 

Figure 4.17: The near-field directivity along the arc of     in different   angel planes. 

4.2.3 Comparison of Multi-frequency Computation  

Three discrete frequencies ranging from 1000 to 2000 Hz with an interval of 500Hz have been tested 

separately. The superposition result, shown in Fig. 4.19, is compared with that (see Fig. 4.18) 

predicted using these three frequencies in a single computation. The directivity pattern comparison 

is shown in Fig. 4.20. The reflective wave in the azimuthal direction may be discontinuous. It can be 

seen that the results compare well both qualitatively and quantitatively. 



52 

 

 

Figure 4.18: 3D near-field SPL prediction by multi-frequency sources on a 2D plane. 

 

Figure 4.19: 3D near-field SPL prediction by summed single frequency source on a 2D plane. 

y 
y 
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Figure 4.20: Comparison of directivity along the arc of    . 

Fig. 4.20 shows the comparison of directivity along the arc of    , where the centre is taken at 

(x,y)=(2.5, 0.0). The near-field directivity patterns at the azimuthal planes are similar in terms of the 

amplitude and predicted angle for the radiation peaks. The SPL reaches its peak at around    , and 

then drops by 30 dB at the observation angle of     . 

The existing problem for the FW-H solver to predict the far-field case is that the computing storage 

limits the prediction of multi-mode source radiation. Developing the AIBM could solve the problem 

since it only requires the pressure histories along the integration surface for multi-mode sources. 

The directivity has been done in the near-field for comparison as the AIBM has not been applied to 

the multi-mode sources. 

The results illustrate that the SPL are uncorrelated at different frequencies. The characters are 

independent of frequency. This allows many calculations to be combined together in a single 

computation to save a good deal of computing cost. Alternatively the calculations could be isolated 

if single frequency is needed. 

4.2.4 Radial Mode Effect 

In this section we want to explore the role of the radial mode by changing the radial ( ) mode 

number. The radial modes change from     to   while keeping the circumferential mode as 

  12 at a frequency of 1000Hz, by setting the amplitude equal to 1 for comparison against a single 

mode. The acoustic pressure contours on 2D planes are shown in Fig. 4.21. It can be seen that the 

strength of the pressure appears stronger after the bifurcation section. The higher order  -modes 

get more pressure diffraction by the end of the lip of the duct. The pressure also appears stronger 

after the core nozzle. It is noticed that the strength increases at the lower   modes at the core 

nozzle area, but the pressure propagates stronger in further field at the higher   modes. It may be 

that the radial energy has smaller amplitude at lower radial mode orders while it becomes more 

distinct at higher radial orders as the higher   modes lead the cut-on ratio to one. 
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(a) 

 

 

(b) 

 
(c) 

Figure 4.21: Acoustic pressure contours of 2D plane at     for different radial mode.(a)  =1, (b) 

 =2,(c)  =3. 

As for the directivity, different radial mode directivity patterns are shown in Fig. 4.22. It shows that 
although the amplitudes are different, the main radiation peak angles for the three radial modes are 
almost the same. The SPL values are higher as the radial mode is lower. It reaches the peak around 
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the angles of     and    . 
 

 
 

Figure 4.22: Directivities for different radial modes in the near-field. 

Fig. 4.23 presents the multi-  mode, combining   from 1 to 3 at the bifurcation plane (    ) and 

middle plane (     ) while keeping the circumferential mode  = 12. It is noticed that the acoustic 

pressure is stronger after the bifurcation. The pressure also appears over the lip of the core nozzle in 

the middle plane. The reflections from the edge after the bifurcation along the duct lead to a 

stronger radiation pattern at lower radiation angles. It can be seen that a more complex pattern has 

formed in the nozzle after the bifurcation due to the interference by the bifurcation. 

     

(a) (b) 

Figure 4.23: Acoustic pressure contours of 2D planes at (a)     , (b)      . 

Fig. 4.24 shows the acoustic pressure contours on a cross-section at x=4. It can be seen clearly that 

the bifurcation distorts the multi-  mode acoustic pattern. Compared with the single mode shown in 

Fig. 4.15, it can be concluded that the multi-  mode case was more affected by the bifurcation than 

the single-  mode case. 
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Figure 4.24: Acoustic pressure patterns on a 2D plane at x=4. 

4.2.5 Circumferential Mode Case 

In this study the effect of circumferential modes is studied for   values from 6 to 15 with an interval 

of 3 while the radial mode is kept at 1 at a frequency of 1000Hz. Fig. 4.25 that as the circumferential 

mode goes higher, the strength of the acoustic pressure is weaker. Fig. 4.26 shows the directivity for 

SPL in near-field along the arc    , and indicates more clearly that the circumferential modes have 

effect on the main radiation peak angle. The radiation peak angle increases as the circumferential 

mode goes higher along the x axis. The main radiation peak angles are              and     

respectively for circumferential modes ( ) of 6,9,12 and 15. This is mainly because as the   modes 

increase, according to Eq. (2.54) the cut-on ratio is lower. Also, the radiation peak angle increases as 

the cut-on ratio is lowered to 1. 

     
                                             (a)                                                                               (b) 

Main radiation peak 
Main radiation peak 
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 (c)                                                                                 (d) 

Figure 4.25: Pressure contours for different circumferential mode on 2D plane. (a)  =6; (b) 

 =9; (c)   =12; (d)   =15. 

 

Figure 4.26: SPL for different circumferential modes in the near-field. 

 

 

 

 

 

 

 

Main radiation peak Main radiation peak 
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5 Conclusion Remarks and Future Work 

A summary discussion of the main conclusions of the work and suggestions for future research are 

presented below. 

5.1 Concluding Remarks 
The aim of this work was to study the methods for prediction of multi-mode propagation and 

radiation from an engine bypass duct with and without an installed bifurcation.   

In the first part of this work, a set of linearised Euler equations are introduced, which are the main 

governing equations for the multi-mode acoustic propagation and radiation prediction in the near-

field. A 2.5D formulation of the LEE could be used to calculate the efficient propagation of different 

spiral modes in a 2D computational domain. The 3D equations including complex terms allow 

acoustic propagation from engine ducts with an arbitrary geometry. The SotonCAA code has been 

tested against some benchmark cases, such as scattering cases, combining with the FW-H solver to 

predict the far-field acoustic pressures for non-periodic cases. 

In the second part of the thesis, a numerical method called AIBM was studied. Due to its demanding 

requirement for computational resources, the existing FW-H solver cannot be used for far-field 

multi-mode acoustic radiation prediction.  However AIBM is an efficient tool to predict the far-field 

acoustic pressures for both the single and multi-mode cases combined with the near-field solution, 

which only uses a single variable of pressure and does not require a closed surface. A benchmark 

case of acoustic radiation from multi sound-sources has been validated to prove the reliability of this 

method and was followed by a bypass duct mode propagation case for verification. Using the 

pressure values on an integration surface computed by the LEE in the near-field as the input data, 

the AIBM solver could predict the far-field acoustic pressures. The directivity is compared with the 

results computed by the FW-H solver for a single mode case and it showed that the main radiation 

peaks were predicted well. The AIBM method saves up to 67% memory in comparison with FW-H 

method for the present bypass duct case.  

In the third part of the thesis, the validated SotonCAA code using the LEE solver was applied to a 

generic engine bypass duct case with bifurcations installed for a multi-mode acoustic propagation 

and radiation problems in the near-field. Firstly, the clean duct cases were used as a baseline using 

the 2.5D LEE solver to analyse the effects of multi-frequency and different modes in both 

circumferential and radial directions in a 2D computational domain. Using a mode decomposition 

and wave-splitting technique, the SPL directivity predictions for the superpositioned of individual 

frequencies and the multi-frequency cases were shown to be almost identical. The 2D analysis 

highlighted the effect of multi radial and circumferential modes. The lower radial modes contribute 

more to the overall SPL value than the higher modes, while the lower circumferential modes are 

more likely to cut-on to more discrete frequencies, contributing more effect to the overall SPL values. 

Secondly, the improved 3D LEE solver is employed for more general duct cases with bifurcations 

associated with mean flow. A multi-processor capability was used in order for 3D simulations to be 

performed more efficiently. The 3D model allows the acoustic propagation, from engine bypass 

ducts, of multi-frequency. The acoustic propagation in the near-field was solved using the high-order 

numerical schemes which can achieve accurate solutions with reduced computational storage 
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requirement. Comparison of near-field directivities of the spinning and axisymmetric modes 

predicted by the LEE were in good agreement with multi-frequency and frequencies in superposition. 

The work confirmed that the bifurcation has influences on the near-field acoustic pressure field 

compared to the axisymmetric duct cases. The effects of the bifurcations on the spinning mode 

radiation from a bypass duct in the radial and circumferential directions were studied and analysed. 

For different radial modes, the lower ones are less centralised at the lip of the duct, and the 

predicted pressure is weaker after the nozzle area. However, for different radial modes of 1, 2 and 3, 

the radiation peak is almost same. Due to the bifurcation distortion, a more complex pattern is 

formed in the nozzle area for the multi radial mode cases. For different circumferential mode cases, 

the radiation peak angle increases along the duct axis as the circumferential mode goes higher. 

5.2 Future Work 

The current SotonCAA code, including the newly developed LEE solver which can be used in multi-

mode acoustic problems, could be applicable to other configurations/problems with different 

bifurcations and modes. To make the AIBM code more robust, an area of immediate interest is the 

broadband noise prediction computation using the AIBM method. Further work could introduce 

acoustic liners at different positions in the duct with non-uniform mean flows to optimise the sound 

radiation and propagation performance. 
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Appendix  

A. TDIBC Derivation 

1. Single Frequency Formulation 

As is assumed in Eq. (2.62),           
   

  
,    has the simple poles: 

             

      
   

  
   

    

   
 
 

                                                     

   
    

   
  

If      and      , this implies that      is causal, so     has the form: 

      
     

  
          

  

  
                                         

     can be written as:  

                                                                       

where 

       
 

  
          

  

  
                                             

Then Eq. (2.67) could be written as 

                           
 

  

                                       

Using a trapezoidal integration, Eq. (A5) has following form: 

             
 

 
                                 

 

   

               

Another efficient integration method can also be derived. Eq. (A4) can be rewritten as: 

      
 

    
                                   

                                                                     

Then Eq. (A5) becomes: 
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The same procedure will also produce: 

        

 

 
                                                                        

The initial conditions are: 

              

                

                      

2. Broadband Formulation 

Starting from Eq. (4.59): 
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where  

    
 

   
 

 

               
 

    

    
                                

  and   are the resistance and reactance respectively and they are real.     . 

Assume      has the form as:                                , and thus        

     
 
       , with         

  

    
. Because      has only real coefficients its zeros    are either 

real or complex conjugate pairs. When one of the roots    of      is complex, its conjugate      

must exist to form the pair. Thus         can be written as: 

               

  

   

                       

 

   

                                                    

where  

                    
     

       
 

   

     
 

          

          
    

 
          

              
        

                                                

and  

              

            

                         

    is the frequency used in the experiments and the coefficients,           and the damping 

coefficient    are fitted to a set of impedance tests. In practice, a set of    are known at discrete 

frequencies    and so with specified           the damping coefficient    can be determined. 

        can be written as: 
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thus, 

                      

 

   

 
       

      
 

   
 

 

                      

 

   

 
    

      
 

   
 
                                             

where coefficients are known as: 

           
       

         
    

    
      

           
    

    
        

                

      
    

    
  

 
           

In practice, the number ( ) of discrete functions      is known. The 2L coefficients   to     need to 

be calculated. 

The time domain formula can be shown as: 

                                                                           

 

   

                                                                                                                                          

           

From Eq. (A14), the poles of       is the sum of the poles                         
   

That is:  

           

           
  

 
 

 

           

           
  

 
 

 

           

                
                                                      

where 
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Thus, 

                                                      

                         
           

  
                                                

Using the recursive formula: 

                   
               

         
             

             

       
                        

Eq. (A5) could be written as: 

                   
 

 

          

                        

 

   

                                                    

where  

           

 

 
                                                                       

       

 

 
                                                                               

      
               

   
 

                      

   
                               

      
             

   
 

                       

   
                               

 

 

 

 

 
 

 

 

 

 



69 

 

B. Extended Helmholtz Resonator Model (EHR) and Frequency Response 

Function (FRF) Impedance Boundary Condition 

Rienstra [38] proposed a model, based on a Helmholtz-resonator and the   transform, which 

satisfies all conditions and can be exactly tuned to the impedance at a design frequency using five 

parameters. The implementation of the Extended Helmholtz Resonator Model (EHR) requires the 

storage of a long time history. 

The EHR model of Rienstra is defined in the frequency domain by: 

                  
 

 
     

 

 
                                                           

 
                       

     
                                                                

where         . The five parameters in this model,         and    have to be positive, and 

      is a real, passive and causal impedance [38].        is a rational function that describes a 

periodic frequency response of the impedance given by the term       .  

 The time-domain representation of the preceding model requires the application of a generalized   

function to obtain the inverse Fourier transform of a periodic function       : 

        
 

  
             

 

  

                                                      

 Applying Eq. (B2) to both sides of Eq. (B1), and using the properties of the inverse Fourier 

transformation, one can obtain: 

                                                             

The     term is transformed directly to a time derivative. The implemented form of the boundary 

condition to the time derivative of the normal velocity is given as:  

   

  
    

 

 
                                             

    
   

  
                                                                                                           

where      is defined as: 

                                                                                

EHR requires the data at previous times     . As the coefficients are constant, the whole 

expression including previous time levels can be stored in one variable. To avoid interpolation,   

could be chosen to be a multiple of the time step of the time domain simulation [38]. 

Bin and Hussaini [68] proposed to represent the impedance as a linear sum of the second-order 

frequency response function (FRF) as follows 
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where   is the number of FRFs and     and    are the constants parameters that are so determined 

as to yield the best approximation to the empirical data. This model requires all the parameters to 

be positive for the stability analysis. 

Substituting Eq. (B6) into Eq. (B3) with some algebra and manipulation using inverse Fourier 

transforms, one can obtain: 

  

  
        

   

  

 

 

                                                                     

where 

             
  

        
 

  
         

        
 
                              

   and    are the complex amplitudes of pressure perturbation and velocity perturbation respectively. 

After applying the inverse transform to Eq. (B8), the        could be rearranged as: 

   
     

   
   

    

  
   

 
      

   

  
   

 
                                                

where   is the normal velocity perturbation on the wall, and    is the pressure of  th subcomponent 

in Eq. (B7). 
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C. Analytical Solution to Scattering Benchmark Case 

According to reference [59], the boundary conditions around the cylinder are: 

                                                                                     

and when       the solution represents outgoing waves. One can find the solution in terms of 
velocity potential          given as:  

  
  

  
   

  

  
    

  

  
                                                                     

Using polar coordinates      , the wave equation could be written as:  

   

   
  

   

   
 

 

 

  

  
 

 

  

   

                                                               

The initial condition of C1 becomes: 

                 
  

  
           

                                                    

where        
   

           

The boundary condition of C1 becomes: 

  

  
                                                                                 

The problem (C3)-(C5) could be solved by the method of superposition. 

                                                                                   

where    is the incident wave generated by the initial pressure pulse, and    is the wave reflected 
off the cylinder.           satisfies the equation: 

    

   
  

    

   
 

 
 

 

   

   
                                                              

with the initial conditions, 

                  
   

  
       

 
                                                      

where         are the polar coordinates with the origin at         . 

The initial solution to    could be solved by the order-zero Hankel transform [60]: 

          
 

  
   

  

                  
 

 

                                                 

or in terms of       coordinates, 
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where 

           
 

  
  

  

            
                                           

The problem for    is:  

    

   
  

    

   
 

 

 

   

  
 

 

  

    

                                               

   

  
  

   

  
                                                                          

Assuming  

                             
 

 

                                                        

we could use a Fourier sine transformation. Substituting Eq. (C14) into Eq. (C12) and Eq. (C13), we 
then obtain: 

    

   
 

 

 

   

  
 

 

  

    

   
                                                         

   

  
                                                                               

where             

  
 
     

. 

Eq. (C15) can be solved using a summation of the Hankel function and the Fourier function  

                  
   

 

   

                                                              

The coefficients    of Eq. (C17) are given by using boundary condition (C16), where 

   
  

  
  
   

   
 
 
       

   
 
 
   

                
 

 

                                      

where  

          
  

  

  

  
           

                
     

              

  
  
   

   
 
 
       

   
 
 
   

 

 

   

  

   
                        

         

        
        

 

 

                                          

The pressure field may be calculated by 



73 

 

          
  

  
                     

 

 

                                      

 


