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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

SIMULATION STRATEGIES FOR COMPLEX TURBULENT

FLOWS

by Markus Weinmann

Computational fluid dynamics in conjunction with the Reynolds-Averaged Navier-
Stokes approach is nowadays routinely employed in a large variety of engineering and
industrial applications despite some well-known reliability issues in more complex
flows. In this study, the performance of a state-of-the-art Explicit-Algebraic-Stress
Model (EASM) and a promising elliptic-blending approach is assessed on a range
of test cases to predict complex turbulent flows. In an attempt to improve the
quality of the predictions, near-wall-anisotropy modifications are introduced to the
EASM, which provide better predictions for the Reynolds-stress and anisotropy
tensor close to solid walls. In addition, a novel elliptic-blending RANS model is
presented, which is based on the inverse turbulence time scale ω, and which is
equipped with a non-linear constitutive stress-strain relationship. The coefficients
of the non-linear stress-strain relationship are obtained from the explicit solution
of a Second-Moment Closure in the limit of weak equilibrium, and by imposing an
internal consistency constraint and near-wall-anisotropy modifications, such that
the highly anisotropic state of turbulence and the limiting two-component state is
correctly reproduced at solid boundaries. The performance of the modified EASM
and the novel elliptic-blending model are illustrated and assessed for a range of
complex turbulent flows.

It is expected that, due to ever increasing computational resources, unified or hy-
brid RANS/LES approaches will slowly penetrate into engineering applications
where improved accuracy and reliability is needed. For this reason, a unified RAN-
S/LES/DNS framework is presented, which is expected to provide the required
amount of turbulence modelling for any mesh resolution and seamlessly operates
between RANS and DNS mode. This is achieved by a revised Flow Simulation
Methodology where the turbulence modelling contribution of a RANS model is
rescaled using a damping function. The Flow Simulation Methodology is operating
in conjunction with a newly developed damping function and a tailored convection
discretisation scheme. In addition, a thorough calibration study is performed, which
ensures proper turbulence resolving capabilities. It is conjectured that a sophisti-
cated RANS model will also improve the overall quality of the predictions of any
hybrid RANS/LES model. For this reason, the new elliptic-blending RANS model
is incorporated, together with two successively simpler turbulence models, into the
unified RANS/LES/DNS framework and the performance are assessed on a range
of test cases, and compared to other widely used hybrid RANS/LES methods.
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Chapter 1

Introduction

1.1 Background

Computational Fluid Dynamics (CFD) is nowadays routinely applied to predicting

turbulent flows in a large variety of engineering and industrial applications. CFD

may deliver results at a fraction of the cost and time required for wind tunnel testing,

and hence provides an ideal tool for product development and in design search

and optimisation studies. The role of CFD in product development is expected

to become even more important in the future due to ever increasing availability

of computational resources, improvements in numerical algorithms and automated

generation of computational grids for complex configurations.

Turbulent flows may be described as a multi-scale phenomenon where the non-

linearity of the partial differential equations governing fluid flow, the Navier-Stokes

equations, gives rise to a chaotic, irregular state of fluid motion, which contains a

large spectrum of length and time scales. The spectrum of length and time scales

present in a turbulent flow rapidly grows with increasing Reynolds number. Unfor-

tunately, many flows of engineering and practical interest are characterised by a high

Reynolds number with the consequence, that the spatial and temporal resolution

required to perform Direct Numerical Simulation (DNS) of all turbulence length

and time scales present in the flow is well beyond currently available computational

resources.

The engineering approach to simulating turbulent flows at high Reynolds number

is based on the Reynolds-Averaged Navier-Stokes (RANS) equations. In the RANS

1



2 Chapter 1 Introduction

approach, an ensemble-averaging procedure is applied to the Navier-Stokes equa-

tions such that all spatial and temporal scales of turbulence are removed and only

mean flow quantities are computed from the governing equations. For many engi-

neering applications the significantly reduced computational cost of RANS is very

appealing and facilitates short turnaround times. In addition, predictions of the

mean-flow field are sufficient to determine a range of relevant engineering param-

eters such as lift, drag or pressure loss. Nevertheless, there are other engineering

applications where mean-flow quantities are not sufficient and where more detailed

information about the unsteady nature of the flow field is required, for example,

in aeroacoustic applications or fluid-structure interaction. The major drawback of

the RANS approach is the requirement to model unknown terms appearing in the

governing equations. The unknown term originates from the averaging procedure

and accounts for the effects of the unresolved turbulence on the mean flow. It is

unfortunately not possible to model the unknown term in a general and universal

fashion, such that satisfactory predictions of the mean-flow field are obtained in

every situation. The development of appropriate models of the unknown term is

heavily based on empiricism and calibration for a limited number of rather sim-

ple flows (e.g. isotropic turbulence, homogeneous shear flow). As a consequence,

the reliability of these so-called RANS models deteriorates when applied to more

complex flows, which significantly differ from the inherent calibration assumptions.

Typical examples of flows where the predictive performance of RANS models dete-

riorates are flows where large scale, anisotropic turbulence structures dominate the

evolution of the mean-flow field.

Large-Eddy Simulation (LES) is another strategy for the simulation of turbulent

flows. In LES, a spatial or temporal filter is applied to the Navier-Stokes equa-

tions, which effectively removes the smallest turbulence scales from the flow field.

The large scales of turbulence remain unmodified by the filtering operation and are

explicitly resolved by the simulation in space and time. Therefore, LES is more ex-

pensive than RANS but provides superior predictive accuracy, since the large-scale,

anisotropic turbulence structures, which significantly contribute to the transport of

mass, momentum and energy in the flow, and which strongly depend on boundary

conditions, are explicitly resolved in the simulation. Despite the promise of LES, it is

hardly used in industrial applications due to the fact that in high-Reynolds-number

wall-bounded flows the all-important ‘large’ turbulence scales, which contain most

of the turbulence kinetic energy and where production of turbulence kinetic energy

occurs become very small close to the wall. As a consequence, the computational re-

quirements of resolving the near-wall region in high-Reynolds-number flows becomes
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prohibitive large and LES is not yet a feasible substitute for the RANS approach.

In order to make LES applicable at high-Reynolds-number wall-bounded flows, hy-

brid modelling approaches have been proposed, where RANS and LES are merged

into a unified framework. In order to minimise computational costs, the RANS

approach is used to model the flow close to the wall, whereas LES is used away

from the wall. It is expected that unified or hybrid RANS/LES methods will slowly

penetrate into engineering applications where improved accuracy and reliability is

needed and where the computational cost of LES is not affordable.

1.2 Objectives

The RANS approach will continue to play a vital role for the simulation of turbulent

flows within various industrial and engineering applications for many years to come.

The majority of CFD engineers rely on one- and two-equation turbulence models,

which are based on the concept of a turbulence or eddy-viscosity, and which employ

a linear constitutive stress-strain relationship. Such models provide a simple, cheap

and robust modelling framework, but have known deficiencies and reliability issues

in more complex flows.

One defect of this modelling framework is associated with the assumption of a linear

constitutive stress-strain relationship. This functional stress-strain relationship pre-

dicts results with fair accuracy for a range of simple and ‘well-behaved’ thin shear

flows. In situations where the normal components of the Reynolds-stress tensor

or stress anisotropy become important, such as in flow impingement, separation,

recirculation or streamline curvature, to name a few, the linear stress-strain rela-

tionship fails to predict reliable results. The second defect is associated with the

empirical treatment of wall-bounded flows. Traditional one- and two-equation tur-

bulence models do not adequately account for the effect a wall exerts on the flow.

Therefore, the effects of a solid wall need to be artificially introduced in order to

recover the correct mean-velocity profile or the correct behaviour of the turbulence

quantities. For this purpose, empirical viscosity-dependent damping functions have

been introduced in various forms. These functions are calibrated for simple flows

but, since the wall damping is primarily caused by a non-viscous kinematic block-

ing effect, there is not much justification that they are also appropriate in more

complex flows. The progress in RANS modelling has been stagnant over the past

years, even though many applications would benefit from improved RANS models,

which include a more natural wall treatment and which are able to more reliably
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predict the Reynolds-stress and anisotropy fields in complex flows, yet retain the

robustness of traditional two-equation models. Therefore, the first objective of this

work is the development of a RANS model with improved wall modelling capabilities

and which provides more reliable predictions of the Reynolds-stress and anisotropy

fields in complex flows.

Many hybrid RANS/LES methods rely on making the characteristic length scale

of the model equations proportional to the grid resolution, and thus have the same

resolution requirements as traditional LES models where most of the turbulence

kinetic energy and all production mechanisms of turbulence kinetic energy need to

be explicitly resolved. In engineering and industrial applications the mesh quality

and resolution is sometimes sacrificed for short turnaround times. In such cases it

would be advantageous if the hybrid RANS/LES method would allow Very Large-

Eddy Simulation (VLES) to occur where most of the turbulence kinetic energy is

statistically represented by the turbulence model, or if the method would even revert

back to RANS mode if the flow is highly under-resolved. In order to allow for coarse

grid LES or VLES, two issues require special attention. The first issue is associated

with how the appropriate turbulence length scale is obtained in this situation. The

second issue is related to the underlying RANS model. For a resolution cut-off

located in the large scales of turbulence, the assumption of equilibrium and isotropy

of the unresolved scales does not hold, and it seems beneficial to employ a turbulence

model, which includes the ability to predict non-equilibrium and anisotropy effects.

These features may not only become important in the LES region, they are also

very desirable for an accurate representation of the flow in the RANS region close

to the wall. Therefore, possible improvements in the RANS turbulence models are

not limited to pure RANS applications. It is expected that improvements in the

RANS model may also improve the quality of the predictions in the LES region.

The second objective is to investigate the performance of advanced RANS closures

within a hybrid modelling framework. The hybrid framework should ideally provide

RANS/VLES/LES and DNS capabilities.
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1.3 Contributions

The most important contributions of this work can be summarised as follows:

• Assessment and validation of Explicit-Algebraic-Stress-Models (EASM) and

other state-of-the-art RANS turbulence models for predicting complex turbu-

lent flows.

• Discussion and proposal of suitable near-wall anisotropy modifications for

EASM models.

• Development of a novel RANS model, which combines the elliptic-blending ap-

proach for modelling near-wall flows with the advantages of a non-linear stress-

strain relationship. A near-wall-consistency constraint and additional near-

wall anisotropy modifications are introduced such that the highly anisotropic

state of turbulence and the limiting two-component state is correctly repro-

duced as the wall is approached.

• Proposal and testing of a modified Flow Simulation Methodology, which pro-

vides a unified RANS/LES/DNS framework.

• Proposal of a tailored hybrid convection discretisation scheme for the modified

Flow Simulation Methodology.

• Evaluation of Scale-Adaptive Simulation and Improved Delayed Detached-

Eddy Simulation in comparison with the novel Flow Simulation Methodology.

1.4 Thesis outline

The thesis is organised as follows. In chapter 2, a brief introduction of the funda-

mentals of turbulent flows is given. This is followed by a discussion about the most

popular and most promising strategies of statistical turbulence modelling (RANS) in

chapter 3. The turbulence resolving approaches of Direct and Large-Eddy Simula-

tion are introduced in chapter 4, in conjunction with available techniques to combine

the framework of RANS modelling with turbulence-resolving LES. In chapter 5, the

numerical framework used to solve the set of governing equations is briefly intro-

duced. The constitutive relations of the baseline EASM, upon which the present

work is based, are summarised in chapter 6. In addition, a range of different test and

validation cases are presented in order to highlight the performance and deficiencies
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of the baseline EASM closure. The test cases include the flow in a planar channel,

the flow over the NASA hump configuration and the flow in a three-dimensional

diffuser. In chapter 7, several strategies are presented, which aim at improving the

predictions of the Reynolds-stress and anisotropy tensor of the baseline EASM close

to the wall. The effectiveness of these modifications are illustrated and discussed.

In chapter 8, a novel approach is presented, which aims at combining the advantages

of the elliptic-blending approach for modelling near-wall flows with the advantages

of a non-linear stress-strain relationship to provide more accurate predictions of

the Reynolds-stress and anisotropy field in complex flows. The performance of the

new turbulence model is again assessed for the flow in a planar channel, the flow

over the NASA hump configuration and the flow in a three-dimensional diffuser.

In chapter 9, a modified Flow Simulation Methodology is proposed, which provides

a unified RANS/LES/DNS framework. In addition, a tailored hybrid convection

discretisation scheme is proposed and a calibration procedure for the Flow Simula-

tion Methodology is presented. The performance of the modified Flow Simulation

Methodology is assessed in chapter 10 for complex internal and external flows and

compared to reference data and Scale-Adaptive Simulation and Improved Delayed

Detached-Eddy Simulation. The test cases include, amongst others, the flow in

a three-dimensional diffuser and the flow around a tandem cylinder configuration.

Finally, a summary of results and findings is given in chapter 11.



Chapter 2

Fundamentals of Turbulent Flows

This chapter is intended to give a brief introduction of the fundamental physics

of turbulent flows, before a detailed discussion about modeling strategies will be

presented in chapters 3 and 4. This short introduction will by no means be compre-

hensive and the interested reader is referred to the textbooks of Pope (2000), Hinze

(1975) or Tennekes & Lumley (1972) for a more complete discussion.

Turbulence or turbulent flows can be described as an ‘irregular condition of flow

in which the various quantities show random variation with time and space coor-

dinates’, (Hinze, 1975). On the other hand, flows, which exhibit a smooth and

organised variation in space and time are described as laminar flow. The turbulent

state of fluid motion is the most frequently one encountered in flows of practical

interest and, as stated by Tennekes & Lumley (1972), ‘laminar flow is the excep-

tion, not the rule’. Turbulent flows exhibit some characteristic features, which are

distinctly different from a laminar flow. The large-scale turbulent fluctuations in-

crease mixing in the flow, which significantly enhances the momentum, heat and

mass transfer. Turbulent flows also exhibit increased levels of energy dissipation,

which may become noticeable as an increase in friction or drag on an object placed

in the flow.

Laminar flows can only exist where inertial effects are small compared to viscous

effects. The ratio of inertial forces to viscous forces can be expressed in terms of the

non-dimensional Reynolds number Re � UL{ν, where U is a characteristic velocity

scale, L a characteristic length scale and ν the kinematic viscosity. For example,

the flow in a pipe remains laminar for a Reynolds number ReD   2000, where ReD

is based on the pipe diameter D. Laminar flow at low Reynolds number tends to

remain stable in the presence of ambient perturbations (surface vibration, surface

7
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roughness) due to the dissipative action of viscosity, which damps or suppresses the

growth of disturbances. With increasing Reynolds number, inertial forces exceed

the influence of viscous forces and when a critical Reynolds number is reached,

perturbations may grow and the laminar flow becomes unstable for sufficiently large

disturbances. The laminar flow then undergoes a series of instability mechanisms

before it eventually becomes a fully irregular, three-dimensional turbulent flow.

Turbulence can only be generated or sustained in the presence of a mean rate

of strain, which distorts the large-scale motion and transfers kinetic energy from

the mean flow to turbulent fluctuations. The largest scales of turbulent motion

are generally anisotropic and depend on the flow under consideration as well as

boundary conditions. The largest turbulence scales also contain most of the kinetic

energy, and their size is either limited by geometrical constraints or it is of the

same order as the shear-layer thickness. The large-scale turbulence motion has

characteristic velocity and length scales UI and LI , which are approximately of the

same order as the mean-flow scales U and L. This implies that for high-Reynolds-

numbers flows, the Reynolds number of the large-scale turbulent motion ReI �
UILI{ν is of the same order of magnitude as the mean-flow Reynolds number, with

the consequence, that the direct effect of viscosity onto the largest turbulence scales

is negligible.

The large-scale turbulent motions pass parts of their kinetic energy on to eddies of

successively smaller size by an inviscid vortex-stretching mechanism. The vortex

stretching is an intrinsically three-dimensional mechanism, which results in a net

stretching of a vortex tube (reduction of the vortex tube diameter) and in an increase

of vorticity due to conservation of angular momentum. This process transfers kinetic

energy to successively smaller scales until the eddies reduces to a size where the

characteristic turbulence Reynolds number becomes small and the viscosity starts

to directly act upon the scales of motion. The action of viscosity at the small scales

dissipates the turbulence kinetic energy by conversion into internal thermal energy.

It can be estimated that the largest scales of turbulence possess a kinetic energy

of order U2
I and a characteristic time scale TI � LI{UI . Therefore, the rate at

which the large scales transfer energy to smaller scales can be approximated as

U2
I {TI � U3

I {LI . Thus, in equilibrium conditions, where production of turbulence

kinetic energy and transfer-rate from the large scales to smaller scales equals the

rate at which energy is dissipated at the smallest scales, it can be estimated, that

the dissipation rate scales as ε � U3
I {LI . This also suggests that the dissipation

rate is essentially set by the dynamics of the large scales.
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In high-Reynolds-number flows, where the energy containing and dissipative scales

are sufficiently separated, an intermediate range exists where the turbulence scales

are smaller than the large scales, but still larger than the dissipative scales. Tur-

bulent eddies in this regime merely transfer the kinetic energy produced at the

largest scales to successively smaller scales and are not directly affected by viscos-

ity. Kolmogorov (1941) suggested that eddies in this range only dependent on the

dissipation rate ε and that, on dimensional grounds, the energy is distributed ac-

cording to Epκq � Cκε
2{3κ�5{3, with the constant Cκ and the wavenumber κ � 2π{l,

where l corresponds to the spatial scale of the eddies. The range of scales where

the �5{3 law is valid is referred to as the inertial subrange or universal equilib-

rium range, since the time scale of these eddies is much smaller than that of the

large scales, so that they adapt quickly to changes in the large scales. Kolmogorov

also suggested that the large anisotropic scales loose their directional preference, or

anisotropy, in the cascade process. This has the consequence that, providing the

Reynolds number is high enough, the small scales approach a more isotropic and

universal state. Kolmogorov further argued that the smallest scales solely depend

on the viscosity ν and the rate at which they are dissipated. Based on dimensional

arguments, a characteristic length scale of the smallest turbulence scales can be

obtained as Lη � pν3{εq1{4. With this information, the ratio of smallest to largest

length scales present in a turbulent flow is given by Lη{LI � pν3{U3
IL

3
Iq1{4 � Re

�3{4
I .

Therefore, the separation of scales in a turbulent flow increases as the Reynolds num-

ber increases. The presence of a wide spectrum of spatial and temporal scales is

another characteristic feature of turbulent flows, and is the main reason why direct

numerical simulation is currently limited to low or moderate Reynolds numbers.





Chapter 3

Reynolds-Averaged Navier-Stokes

Modelling

In this chapter the approach of statistical turbulence modelling will be discussed in

detail. Statistical turbulence modelling is almost exclusively used for the simulation

of high-Reynolds-number turbulent flows of practical interest and is based on the

RANS equations, where the mean flow is computed directly and the effects of tur-

bulence are incorporated by models. The existence of an overwhelming number of

possible RANS models makes it virtually impossible to present a complete review.

For this reason, the present review is limited to the most popular and most promis-

ing strategies of statistical turbulence modelling. For a more comprehensive review

the reader is referred to the textbooks of Launder & Sandham (2002), Durbin &

Petterson-Reif (2001), Wilcox (1998), Hanifi et al. (1999) or Gatski et al. (1996).

3.1 The RANS Equations

In order to derive governing equations, which describe the evolution of the mean

flow only, all variables are decomposed into a mean and fluctuating part. This

procedure is commonly referred to as Reynolds decomposition. For example, the

decomposition for the velocity vector can be written as

ui � ui � u
1

i, (3.1)

where ui is the instantaneous velocity vector, ui the mean velocity and u
1

i the fluc-

tuating velocity vector.

11
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The Reynolds-averaged quantities are most generally defined as an ensemble average

over N different realisations

ui px, tq � lim
NÑ8

1

N

Ņ

n�1

u
pnq
i px, tq. (3.2)

For statistically steady turbulence the ensemble average is equal to the time average

ui pxq � lim
TÑ8

1

T

» T

0

uipx, tqdt, (3.3)

or equal to a volume average in case of homogeneous turbulence

ui ptq � lim
VÑ8

1

V

»
V

uipx, tqdV. (3.4)

Substituting the decomposed quantities into the continuity and momentum equation

for incompressible flow
Bui
Bxj � 0, (3.5)

Bui
Bt � uj

Bui
Bxj � �1

ρ

Bp
Bxi � ν∇2ui, (3.6)

and averaging the same yields the RANS equations, which govern the evolution of

the mean flow. Taking into account the Reynolds averaging rules

ui � ui, u
1

i � 0, uiu
1

j � uju
1

i � 0,

Bui{Bxj � Bui{Bxj, Bui{Bt � Bui{Bt, uiuj � uiuj � u
1

iu
1

j, (3.7)

the RANS equations can be written as

Bui
Bxj � 0, (3.8)

Bui
Bt � uj

Bui
Bxj � �1

ρ

Bp
Bxi � ν∇2ui �

Bu1

iu
1

j

Bxj . (3.9)

The Reynolds-averaging procedure applied to the nonlinear convection term in the

momentum equation has introduced the additional term B{Bxj
�
u
1

iu
1

j

	
on the right-

hand side of the RANS momentum equation (3.9). The divergence of the corre-

lation tensor u
1

iu
1

j can be considered as an additional source of momentum due to

turbulent fluctuations, that appears in the momentum equation in the form of an

additional effective stress tensor. The correlation u
1

iu
1

j is therefore also referred to



Chapter 3 Reynolds-Averaged Navier-Stokes Modelling 13

as the Reynolds-stress tensor. The appearance of the Reynolds-stress tensor has the

consequence that the RANS momentum equations are no longer closed. In order

to obtain a solvable system of equations, a turbulence model needs to be employed,

which relates the Reynolds-stress tensor to the velocity gradient tensor Bui{Bxj or

other variables in the equations set.

The Boussinesq Approximation

In the early days of turbulence modelling, Boussinesq (1877) proposed to close the

RANS equations using an analogy between the viscous stress in a Newtonian fluid

and the turbulent Reynolds-stress, where the kinematic viscosity ν is replaced by

a scalar turbulence viscosity νT . The Boussinesq approximation is still widely in

use today and reduces the closure problem to determining the turbulence or eddy-

viscosity νT . In contrast to the kinematic viscosity of the fluid, the turbulence

viscosity is a property of the turbulent flow under consideration. The Boussineq

hypothesis can be written as

u
1

iu
1

j �
2

3
kδij � 2νTS

�
ij, (3.10)

where k � u
1

iu
1

i{2 is the turbulence kinetic energy and S�ij � p1{2q pBui{Bxj � Buj{Bxiq
the strain-rate tensor.

The assumption of a viscous Newtonian-like, linear relation between the stress and

rate of strain is a drastic oversimplification. In reality, the behaviour of a tur-

bulent flow bears more similarity with a non-Newtonian fluid, where the viscosity

may depend on the strain-rate or strain-rate history, and where the stress-strain

relationship may be of a non-linear form.

An algebraic stress-strain relationship, where the transport of Reynolds stress is not

accounted for, has some justification for simple, ‘well behaved’ flows where the flow

is not subject to rapid changes, and where the Reynolds stress is mainly determined

by local processes such as production or dissipation. In more complex flows, where

the flow experiences rapid spatial changes and where the flow is not in equilibrium

(where the production to dissipation ratio of turbulence kinetic energy Pk{ε is not

close to unity) or where stress transport dominates the evolution of the Reynolds-

stress tensor, an algebraic stress-strain relationship cannot be justified. This is

partly, because turbulent flows require a finite time to adapt to sudden changes in

strain-rate. This is opposed to the viscous stress, where the molecular timescale

is small enough to almost instantly adjust to sudden changes in strain-rate, which

justifies the algebraic stress-strain relationship.
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The Boussinesq approximation may provide reasonable predictions for thin parallel

shear flows where the shear stress is the only active component of the Reynolds-stress

tensor. In situations where the normal components of the Reynolds-stress tensor

or stress anisotropy become important, the linear stress-strain relationship fails

to produce reliable results. Example of such cases include turbulence-driven sec-

ondary motion, flow impingement, separation, recirculation and where extra-strain

rates such as curvature of the mean flow, rotation or skewing alter the structure of

turbulence

To summarise, a linear constitutive stress-strain relationship in conjunction with a

scalar eddy viscosity may provide accurate predictions for simple, well-behaved thin

shear flows. For more complex three-dimensional flows, the Boussinesq approxima-

tion suffers from fundamental limitations and predictive accuracy may deteriorate.

In the following section, several approaches are introduced, which alleviate some of

the limitations of the Boussinesq approximation.

3.2 Evolution Equations

3.2.1 Reynolds-Stress Tensor

A differential transport equation for the unknown correlation u
1

iu
1

j can directly be

derived from the Navier-Stokes equation. First, the instantaneous momentum equa-

tions are expressed as N puiq � 0, where the operator N puiq is defined as

N puiq � Bui
Bt � uk

Bui
Bxk �

1

ρ

Bp
Bxi � ν∇2ui. (3.11)

A transport equation for the second moments can now be constructed by taking the

following average

u
1

iN pujq � u
1

jN puiq � u
1

iN
�
uj � u

1

j

�� u
1

jN
�
ui � u

1

i

� � 0. (3.12)
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Assuming incompressible flow and neglecting additional body forces, the evolution

equation for the Reynolds-stress tensor is obtained as

Du
1

iu
1

j

Dt
� u

1

iu
1

k

Buj
Bxk � u

1

ju
1

k

Bui
Bxklooooooooooomooooooooooon

Pij

�
�
u
1

i

Bp1
Bxj � u

1

j

Bp1
Bxi



loooooooooomoooooooooon

Πij

� 2ν

�
Bu1

i

Bxk
Bu1

j

Bxk

�
looooooomooooooon

εij

� B
Bxk

�
�u1

iu
1

ju
1

k�
	

looooooooomooooooooon
Dtij

�ν∇2u
1

iu
1

j. (3.13)

The operator on the left-hand side of (3.13) is the material derivative defined as

Du
1

iu
1

j{Dt � Bu1

iu
1

j{Bt � ukBu1

iu
1

j{Bxk. The terms on the right-hand side of (3.13)

are referred to as stress production Pij, velocity-pressure gradient correlation Πij,

dissipation rate εij, turbulent transport Dt
ij and viscous diffusion ν∇2u

1

iu
1

j.

The velocity-pressure gradient correlation Πij is sometimes further decomposed as

�
�
u
1

i

Bp1
Bxj � u

1

j

Bp1
Bxi



� p1

ρ

�
Bu1

i

Bxj �
Bu1

j

Bxi

�
looooooooomooooooooon

Φij

� B
Bxk

�
p1u

1

i

ρ
δjk �

p1u
1

j

ρ
δik

�
looooooooooooooomooooooooooooooon

Dpij

, (3.14)

where Φij is the pressure-strain correlation and Dp
ij the pressure transport term.

Based on this decomposition the short form of the evolution equations for the

Reynolds-stress tensor can be written as

Du
1

iu
1

j

Dt
� Pij � Φij � εij �Dij (3.15)

where the flux-gradient terms are lumped together into Dij � Dt
ij �Dp

ij � ν∇2u
1

iu
1

j.

The nonlinearity of the momentum equations has again introduced unknown higher-

order correlations in the evolution equations of the Reynolds-stress tensor. Hence,

the closure problem is now shifted to providing a closure for the unknown higher

moments rather than providing closure for the second moments directly. In the

transport equation for the Reynolds-stress tensor, the terms, which can directly be

computed from known quantities are stress production, convection and viscous diffu-

sion. All other terms involve unknown correlations and require additional modelling

in order to express them in terms of available quantities and to obtain a system of

transport equations that can be solved numerically.
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3.2.2 Turbulence Kinetic Energy

Another useful quantity, particularly in the framework of two-equation modelling,

which will be discussed in more detail in section 3.8, is the evolution equation for

the turbulence kinetic energy. The turbulence kinetic energy is defined as one-half

of the trace of the Reynolds-stress tensor, k � p1{2qu1

iu
1

i. The evolution equation

for the turbulence kinetic energy in exact form follows directly from (3.13) as

Dk

Dt
� �u1

iu
1

k

Bui
Bxkloooomoooon

Pk

� ν Bu
1

i

Bxk
Bu1

i

Bxkloooomoooon
ε

� B
Bxk

�
1

2
u
1

iu
1

iu
1

k �
p1

ρ
u
1

k

�
loooooooooooooomoooooooooooooon

Dk

�ν∇2k, (3.16)

where Pk is the production of turbulence kinetic energy, ε the dissipation rate of

turbulence kinetic energy, Dk the sum of turbulence and pressure transport and

ν∇2k corresponds to the viscous-diffusion term. The pressure-strain correlation

tensor appearing in (3.2) has zero trace Φii � 0 and hence, no counterpart in

the governing equation for the turbulence kinetic energy. The dissipation rate,

turbulence and pressure transport terms involve unknown correlations and must be

approximated by suitable models in order to close the transport equation.

3.2.3 Turbulence Kinetic Energy Dissipation Rate

A transport equation for the turbulence kinetic energy dissipation rate ε can be

derived in exact form from the Navier-Stokes equation using

2ν
Bu1

i

Bxj
B
BxjN puiq � 0. (3.17)

The resulting evolution equation of the turbulence kinetic energy dissipation rate

takes the form
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Dε

Dt
� �2ν

�
Bu1

i

Bxk
Bu1

j

Bxk �
Bu1

k

Bxi
Bu1

k

Bxj

�
Bui
Bxjlooooooooooooooooooomooooooooooooooooooon

P 1
ε �P

2
ε

� 2ν
Bu1

i

Bxk
Bu1

i

Bxm
Bu1

k

Bxmloooooooomoooooooon
P 3
ε

� 2νu
1

k

Bu1

i

Bxj
B2ui

BxkBxjloooooooomoooooooon
P 4
ε

� 2ν2 B2u
1

i

BxkBxm
B2u

1

i

BxkBxmlooooooooooomooooooooooon
εε

� B
Bxj

�
�2ν

Bp1
Bxm

Bu1

j

Bxm � νu
1

j

Bu1

i

Bxm
Bu1

i

Bxm

�
loooooooooooooooooooooomoooooooooooooooooooooon

Dε

�ν∇2ε, (3.18)

where P 1
ε , P 2

ε , P 3
ε and P 4

ε are four contributions to the production of turbulence

kinetic energy dissipation rate, εε the dissipation of turbulence kinetic energy dissi-

pation rate, Dε the pressure and turbulence transport of turbulence kinetic energy

dissipation rate and ν∇2ε corresponds to the viscous-diffusion term. The evolution

equation for the dissipation rate is obviously much more complex and contains a

significant number of unknown correlations, which need modelling. In fact, only the

viscous-diffusion term can be computed directly. All other terms require modelling.

3.3 Preliminary Remarks

The main task in closing the exact evolution equations is to express the unknown

terms, for example, the velocity-pressure gradient correlation in the Reynolds-stress

transport equation, in terms of available quantities, for example, Bui{Bxj, u1

iu
1

j, k, ε.

Suitable models should ideally relate the available quantities to the exact processes

in a physically consistent fashion. This, however, is often not possible and further

simplifying assumptions are required, such as homogeneity of turbulence, in order

to reduce the level of complexity. Even though it may sometimes be very difficult to

adequately represent the real physical processes with the limited number of available

quantities, which are at ones disposal, the resulting model should satisfy some

fundamental properties and constraints such as dimensional consistency, coordinate-

frame invariance or realisability.
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Isotropic Tensor Functions

Within the framework of Reynolds-stress modelling, the unknown terms in the

transport equation need to be modelled as tensor-valued functions. These ten-

sor functions need to be formulated properly as isotropic tensor functions, which

guarantees that the model takes the same functional form for any chosen coor-

dinate system and thus preserves coordinate-frame invariance. A tensor function

F pT 1,T 2, ...q is isotropic if it satisfies

F pT 1,T 2, ...q � F
�
QT 1Q

T ,QT 2Q
T , ..

�
, (3.19)

with the second-order tensors T i and an orthogonal transformation matrix Q.

It frequently occurs in turbulence modelling that an unknown second-order tensor

φij is assumed to be a function of a range of other second-order tensors and scalar

variables. In the simplest case, φij is a function of only one second-order tensor,

φij � F paijq. The most general expression for φij is given by a polynomial expansion

in powers of α of the form

φij �
8̧

α�0

βαa
α
ij, (3.20)

where the coefficients βα may depend on all possible scalar invariants of aij. Making

use of the Cayley-Hamilton theorem (see, for example, Poole, 2006), which states

that the matrix aij satisfies its own characteristic equation, all terms in a polynomial

expansion with powers 3 or larger can be reduced to a combination of lower powers

and are therefore redundant. The Cayley-Hamilton theorem can be written as

aikaklalj � Iaaikakj � 1

2
pIIa � I2

aqaij �
1

6
p2IIIa � 3IaIIa � I3

aqδij (3.21)

with the invariants Ia � akk, IIa � aklalk and IIIa � aklalmamk. Therefore, the

isotropic tensor function and most general expression for φij is given by

φij � β1δij � β2aij � β3aikakj. (3.22)

A similar procedure can be applied if φij depends on more than one second-order

tensor, e.g. φij � F pSij,Ωijq. This is discussed in more detail in section 3.6 and in

Durbin & Petterson-Reif (2001).
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Realisability

Another fundamental constraint, which a closure model should ideally fulfill is that

it does not predict physically unrealisable solutions such as negative energy compo-

nents. Even though violation of the realisability constraints may not always have

catastrophic consequences, it may improve robustness and predictive capabilities of

the closure model (see Batten et al., 2009). In fact, a range of two-equation models

may yield unrealisable results for large strain-rates. A turbulence model is said to

be realisable if it satisfies the two following constraints (see Schumann, 1977),

u1

αu
1

α ¥ 0,
�
u1

αu
1

β

	2

¤ u1

α
2 � u1

β
2

‘no summation on α, β’. (3.23)

The former constraint ensures positiveness of the components of turbulence kinetic

energy and the latter constraint is the Schwarz inequality for the shear-stress com-

ponents.

It is sometimes more convenient to express the Reynolds-stress tensor in terms of the

stress-anisotropy tensor aij � u
1

iu
1

j{k�p2{3qδij and the turbulence kinetic energy k.

The anisotropy tensor is symmetric and traceless (aii � 0), i.e. it merely provides

a measure for the departure from an isotropic state of turbulence and it does not

provide any information about the magnitude of turbulence kinetic energy. The

advantage of the anisotropy tensor is that its diagonal components are limited to

the finite interval �2{3 ¤ aαα ¤ 4{3 for all realisable states of turbulence. For

example, the value aαα � �2{3 indicates that the energy contributed by u1

αu
1

α is

vanishing and a value of aαα � 4{3 would indicate that all energy is contained in

u1

αu
1

α (see Hanifi et al., 1999). In addition, all realisable values of the off-diagonal

elements are also bounded within |aαβ| ¤ 1.

As a consequence of the boundedness of all possible realisable states of the anisotropy

tensor, the first and second invariant of the anisotropy tensor IIa � aikaki and

IIIa � aikakjaji are also limited to finite intervals. Lumley & Newman (1977) de-

rived a IIa,IIIa anisotropy-invariant map where all realisable anisotropy states are

confined within a finite region. The anisotropy-invariant map is depicted in figure

3.1. The boundaries of the invariant map are given by the line II
1{2
a � 61{6 |IIIa|1{2

and IIa � p8{9qIIIa, where the former represents the limit of axisymmetric tur-

bulence and the latter the two-component limit of turbulence. The two anisotropy

invariants are very useful to describe important features of a turbulent flow and

therefore often used in turbulence modelling, particularly in modelling of near-wall

flows.
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Figure 3.1: Anisotropy Invariant Map

3.4 Differential-Reynolds-Stress Model

The highest level of turbulence closure, which is currently feasible for the simula-

tion of turbulent flows of practical interest are Differential-Reynolds-Stress Models

(DRSM) or Second-Moment Closures (SMC). DRSM completely abandon the as-

sumption of an algebraic stress-strain relationships together with the concept of

an eddy viscosity and with that the shortcomings inherent in these assumptions.

Instead, a transport equation for each component of the unknown second-moments

u
1

iu
1

j is solved. This results in a minimum of six transport equations, which are

usually solved in conjunction with a transport equation for a length-scale providing

variable, for example, the dissipation rate of turbulence kinetic energy ε.

The obvious advantage of DRSM is that a range of physical processes are naturally

included in the evolution equation of the Reynolds-stress tensor. This not only in-

cludes convection and diffusion of the Reynolds-stress components but also terms,

which describe the exact production mechanisms of turbulence as well as redistribu-

tion terms, which transfer turbulence kinetic energy among its components. These

terms are a particularly important ingredient for predicting the correct representa-

tion of the stress and anisotropy field in a complex turbulent flow. Nevertheless,

a number of important terms appearing in the evolution equation of the second-

moments are not closed and are frequently modelled by employing rather strong

simplifications such as quasi-homogeneity of turbulence.
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In the following, all terms appearing in the evolution equation for the Reynolds

stress are discussed separately and suitable modelling approaches are presented.

3.4.1 Production Term

The production term Pij represents the generation of Reynolds stress by the inter-

action with the mean flow. The production tensor can be computed in exact form,

since all required quantities are available. This term is an important ingredient

when simulating complex turbulent flows, since it is sensitive to both strain and

rotation/curvature effects. This sensitivity becomes more obvious when the veloc-

ity gradient tensor Bui{Bxj is decomposed into a symmetric and antisymmetric part

Bui{Bxj � S�ij � Ω�
ij with

S�ij �
1

2

�Bui
Bxj �

Buj
Bxi



, Ω�

ij �
1

2

�Bui
Bxj �

Buj
Bxi



. (3.24)

The symmetric part S�ij is the strain-rate tensor and the antisymmetric part Ω�
ij

is the vorticity or rotation-rate tensor. The production term can be re-written in

terms of the symmetric and antisymmetric part of the velocity gradient tensor and

the stress-anisotropy tensor aij � u
1

iu
1

j{k � p2{3qδij. The normalised form is as

follows
Pij
ε

� �4

3
Sij � paikSkj � Sikakjq � paikΩkj � Ωikakjq , (3.25)

where the strain- and rotation-rate tensors have been normalised by the turbulence

timescale τ � k{ε such that

Sij � τ

2

�Bui
Bxj �

Buj
Bxi



, Ωij � τ

2

�Bui
Bxj �

Buj
Bxi



. (3.26)

It is now obvious that the production tensor is sensitive to both strain-rate and

rotational components of the velocity gradient tensor. The production term in the

evolution equation for the turbulence kinetic energy reduces to Pk � �u1

iu
1

jBui{Bxj
or to Pk � νTS

2 with S � a
2S�ijS

�
ij by assuming a linear stress-strain relation-

ship. Therefore, the sensitivity of the production term to rotation or curvature is

completely lost in the equation for the turbulence kinetic energy, unless empirical

modifications are introduced to account for these effects. Also, the strain-rate mag-

nitude S cannot distinguish positive from negative strain-rates and produces the

same results for accelerated/decelerated flows in, for example, a nozzle/diffuser.
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3.4.2 Transport Terms

The transport term Dij spatially redistributes u
1

iu
1

j without creating or destroying

it. Here, it is composed of three parts, diffusion due to the action of viscosity

ν∇2u
1

iu
1

j, transport by turbulent fluctuations Dt
ij and transport due to fluctuating

pressure Dp
ij .

The viscous-diffusion term does not involve any new unknowns and thus requires

no modelling. The turbulence and pressure transport terms are not closed and

need to be modelled. It is common practice to model the turbulence transport by

a generalised gradient-diffusion model, following the proposal of Daley & Harlow

(1970)

Dt
ij � cs

B
Bxk

�
k

ε
u
1

ku
1

l

Bu1

iu
1

j

Bxl

�
. (3.27)

More complex, coordinate-frame invariant models for the turbulence transport term

have been proposed in Hanjalic & Launder (1972) and are reviewed in Hanjalic

(1994). Even though the pressure transport term Dp
ij is of different nature, it is

often lumped together with the turbulent transport term. Therefore, the combined

effect of turbulence and pressure transport can be accounted for by calibrating the

constant cs such that it absorbs both effects. In high-Reynolds-number formulations,

Dp
ij is sometimes neglected, since its contribution is much smaller than Dt

ij (see Lai

& So, 1991). The generalised gradient-diffusion model may result in numerical

instabilities. As an alternative, it is possible to resort to a simple scalar gradient-

diffusion model, which can be written as

Dt
ij �

B
Bxk

�
νT
σs

Bu1

iu
1

j

Bxk

�
, (3.28)

where νT is the turbulence viscosity and σs a calibration constant. The drawback

of the scalar diffusion model is that it loses the character of a vector-valued flux

gradient.

3.4.3 Pressure-Strain Correlation

The pressure-strain term Φij plays a pivotal role in Reynolds-stress closures, since

it has a significant contribution to the balance of the Reynolds stresses. A lot of

research has focused on the modelling of this term. Its effect is to redistribute u
1

iu
1

j

among its components without creating or destroying it. The pressure-strain term



Chapter 3 Reynolds-Averaged Navier-Stokes Modelling 23

is traceless in incompressible conditions (Φii � 0) and therefore does not appear in

the governing equation for the turbulence kinetic energy.

More insight into the role of the fluctuating pressure p
1
, which is the source of

the redistribution process, can be gained by deriving the exact Poisson equation

for the fluctuating pressure. This equation can be obtained by subtracting the

Poisson equation (B{Bxi �Npuiq) for the mean pressure p from the Poisson equation

(B{Bxi �Npuiq) for the instantaneous pressure p . The result is

1

ρ
∇2p

1 � �2
Bui
Bxj

Bu1

j

Bxi �
B2

BxiBxj
�
u
1

iu
1

j � u
1

iu
1

j

	
. (3.29)

The solution for p
1

consists of a superposition of the solution to the homogeneous

part ∇2p
1 � 0, with the inhomogeneous boundary condition Bp1{x2 � µB2u

1

2{Bx2
2,

which is obtained from the wall-normal momentum equation for the fluctuating

velocity, and the particular solution associated with the source terms on the right-

hand side of (3.29), with the homogeneous boundary condition Bp1{Bx2 � 0, where

x2 denotes the wall-normal direction (see, for example, Hanifi et al., 1999).

According to (3.29), pressure fluctuations have two different sources. The particular

solution to the first term on the right-hand side contains the mean-velocity gradient,

whereas the solution to the second term contains a non-linear product of fluctuating

velocities. The first term is usually referred to as the rapid contribution, since it

responds immediately to changes in the mean velocity and becomes zero in the

absence of any mean-velocity gradient. The second, non-linear, term is sometime

referred to as the slow part, since it is independent of the mean-velocity gradient.

Both contributions to the fluctuation pressure will be reflected in the pressure-strain

correlation.

The Poisson equation for the fluctuating pressure can be integrated using the

Green’s function technique to give

p
1

ρ
� 1

4π

»
V

�
2
Bulpx1q
Bx1

m

Bu1

mpx1q
Bx1

l

� B2

Bx1

lBx1

m

�
u
1

lpx
1qu1

mpx
1q � u

1

lpx1qu1

mpx1q
	� dV px1q

|r| ,

(3.30)

where r � x1 � x and dV px1q � d3x
1
.
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Multiplying (3.30) with
�Bu1

i{Bxj � Bu1

j{Bxi
�

and taking the average yields the fol-

lowing relation for the pressure-strain correlation:

Φij � 1

4π

»
V

�
Bu1

ipxq
Bxj � Bu1

jpxq
Bxi

�
B2u

1

lpx1qu1

mpx1q
Bx1

lBx1

m

dV px1q
|x� x1 |looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

Φ
psq
ij

(3.31)

� 1

2π

»
V

Bulpx1q
Bx1

m

Bu1

mpx1q
Bx1

l

�
Bu1

ipxq
Bxj � Bu1

jpxq
Bxi

�
dV px1q
|x� x1 |loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Φ
prq
ij

� 1

4π

»
A

�
1

r

B
Bn1 p

1

�Buipxq
Bxj � Bujpxq

Bxi



� p1

�Buipxq
Bxj � Bujpxq

Bxi


 B
Bn1

1

r

�
dAloooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

Φ
pwq
ij

.

In addition to the volume integrals, a surface integral over the bounding surfaces

dA occurs, which accounts for the refection or ‘echo’ of pressure fluctuations from

the wall. Even though the pressure-strain correlation is a single-point correlation

there are two-point correlations appearing on the right-hand side of (3.31). The

two-point correlations reflect the non-local nature of the pressure fluctuations and

its influence at a distance. The best that can be done in the present single-point

framework is to try to model the non-local effect with local quantities only.

A common starting point for the derivation of suitable models for Φij is to invoke

a local homogeneity assumption. For homogeneous turbulence away from solid

boundaries the surface integral vanishes and the velocity gradient Bul{Bxm can be

taken outside the integral. The pressure-strain term can then be written in shorter

from

Φij � Φ
psq
ij � Φ

prq
ij � Φ

psq
ij �Mijlm

Bul
Bxm , (3.32)

where Mijlm is a fourth-order tensor.

Slow Pressure-Strain Term Φ
psq
ij

The slow pressure-strain term only contains velocity fluctuations and its effect is

to redistribute the energy components of anisotropic turbulence towards a more

isotropic state in the absence of a mean strain-rate. The slow term is thus sometimes

also referred to as the return-to-isotropy term. It is common practice to assume

that the rate at which anisotropic turbulence returns to a more isotropic state only

depends on the degree of anisotropy. In other words, the slow term is an isotropic

tensor function, which depends on the anisotropy tensor aij and possibly other
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scalars, thus

Φs
ij � εF

psq
ij paijq . (3.33)

Multiplication by the turbulence kinetic energy dissipation rate ε is required for

dimensional consistency. Based on the previous discussion about isotropic tensor

functions, the slow pressure-strain term can be written in its most general form as

Φ1
ij

ε
� �C1

�
aij � C

1

1

�
aikakj � 1

3
IIaδij


�
, (3.34)

where IIa � tr taikakju. When the constant C
1

1 � 0, the general non-linear model

reduces to the linear model of Rotta (1951), which assumes that the return to

isotropy is proportional to the degree of anisotropy. The constant C1 is referred to

as the Rotta constant. Later proposals redefine the Rotta constant to be a function

of the turbulence Reynolds number ReT or the second and third invariant of the

stress-anisotropy IIa, IIIa, respectively (see Launder, 1989). The model of Speziale

et al. (1991) additionally sensitises the Rotta constant to the ratio of production

to dissipation with C1 � 0.5 pC0
1 � C�

1Pk{εq, which improves the predictions for

non-equilibrium flows.

Rapid Pressure-Strain Term Φ
prq
ij

The second term in equation (3.34), or the ‘rapid’ part of the pressure-strain correla-

tion, promotes an ‘isotropisation’ of stress production or, in other words, counteracts

the effect of production to increase the stress-anisotropy. Consider, for example, a

parallel shear flow where the mean shear feeds energy into P11 � �2u1v1Bu{By. The

other components do not receive energy from the mean shear, since P22 � P33 � 0.

The effect of the rapid pressure fluctuations is to redistribute energy to the other

components and hence make the turbulence more isotropic.

According to (3.31) the rapid part also depends on the velocity gradient tensor,

which introduces another dependence in the tensor function for the rapid pressure-

strain model, thus

Φ
prq
ij � εF

prq
ij paij, Sij,Ωijq . (3.35)

As mentioned before, the assumption of local homogeneity allows the velocity gra-

dient to be taken outside the integral, and the rapid term can be written as

Φ
prq
ij �Mijlm

Bul
Bxm , (3.36)
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where the fourth-order tensor Mijkl now only includes a functional dependency on

aij. An expression for the tensor Mijkl can be derived by expansion in powers of the

anisotropy tensor aij. The resulting tensor function must also satisfy the symmetry

properties in i, j (Mijkl �Mjikl), vanishing trace upon contraction of i � j (Miikl �
0) and the normalisation constraint Mijjl � 2u

1

iu
1

l (see Durbin & Petterson-Reif

(2001) or Hanifi et al. (1999) for more details). The most general form of the fourth-

order tensor contains 15 tensor groups up to the fourth powers of aij (see Johansen

& Hallback, 1994). Speziale et al. (1991) used an expansion for Mijkl, which is

quadratically non-linear in aij. For the present work, only expansions, which are

linear in aij are considered. Using a linear expansion of Mijkl and substituting into

(3.36) yields the General Quasi-Linear Model (GQLM) for the rapid pressure-strain

correlation. All of the widely used linear and quasi-linear pressure-strain models

(for example, Launder et al. (1975), Gibson & Launder (1978) or the linearised

model of Speziale et al. (1991)) can be expressed in the following general form:

Φij

ε
� �1

2

�
C0

1 � C�
1

Pk
ε



aij �

�
C2 � C�

2

2

a
IIa



Sij (3.37)

� C3

2

�
aikSkj � Sikakj � 2

3
tr taikSkju δij



� C4

2
paikΩkj � Ωikakjq .

Alternatively, it is possible to directly model the velocity-pressure gradient corre-

lation Πij � Φij � Dp
ij, which includes the effects of Dp

ij and has the additional

advantage that it vanishes at the wall whereas Φij does not (see Lai & So, 1991).

3.4.4 Dissipation Rate

The dissipation rate εij is a tensor-valued quantity for which an anisotropy measure

can be defined as eij � εij{ε � p2{3qδij, analogous to the stress-anisotropy tensor

aij. For high-Reynolds-number flows, the Kolmogorov hypothesis of local isotropy

of the smallest scales is invoked. Since the dissipation occurs at the smallest scales,

the dissipation in high-Reynolds-number flows is usually assumed to be isotropic,

i.e. eij � 0 or εij � p2{3qεδij. Therefore, knowing the dissipation rate of turbulence

kinetic energy ε, the tensor-valued dissipation rate εij can be computed.

The assumption of isotropy of the dissipation rate is tantamount to an equal drain

of energy from each of the diagonal components of εij. It is known that this is a

questionable assumption for highly anisotropic flows, such as those close to solid



Chapter 3 Reynolds-Averaged Navier-Stokes Modelling 27

boundaries (see, for example, Mansour et al., 1988). Therefore, better approxima-

tions for the dissipation rate tensor have been devised, that assume the dissipation

rate anisotropy eij is proportional to the stress anisotropy, i.e.

eij � fsaij, (3.38)

where fs is a blending function, which approaches zero away from the wall and

thereby recovers the isotropic dissipation rate eij � 0 (see Hanjalic (1994) or Laun-

der (1989)). The blending function fs may depend on quantities like turbulence

Reynolds number ReT � k2{εν or second and third invariants of the stress and

dissipation rate anisotropy tensor. Models based on (3.38) are also not fully sat-

isfactory, since the anisotropy state of the energy containing, large scales does not

correlate well with the state of the more isotropic dissipative scales. This has the

consequence that some of the components of εij do not obey the correct asymptotic

near-wall limit. Modifications to (3.38) have been introduced using information

from the wall-normal vector to recover the correct near-wall limits of εij. A more

detailed discussion can be found in Jakirlic & Hanjalic (2002).

A different means of accounting for the anisotropy of the dissipation rate follows the

proposal of Shima (1988), where the deviatoric part of the dissipation rate tensor

is absorbed into the modelling of the slow pressure-strain correlation, such that

Φij � εij � Φ
ps�q
ij � Φ

prq
ij � 2

3
εδij, (3.39)

with the modified slow pressure-strain correlation Φ
ps�q
ij � Φ

psq
ij �εij�p2{3qεδij. This

approach requires modification of the Rotta constant C1 in the model for the slow

pressure-strain term in (3.34).

3.4.5 Extension to Near-Wall Flows

The pressure-strain models presented above were derived by assuming local homo-

geneity and the influence of solid boundaries was neglected. Local homogeneity may

be a fair approximation for flows, which evolve relatively slowly in space. However,

this assumption breaks down in more complex flows of practical interest, and is not

appropriate in the presence of solid boundaries.

The solid boundary introduces a no-slip and impermeability constraint on the flow.

The no-slip condition results in high shear rates and strongly inhomogeneous flow.
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The local Reynold number close to the wall decreases and the direct effect of vis-

cosity onto the velocity fluctuations becomes important. The action of viscosity

damps the velocity fluctuations equally, independent of their direction. Therefore,

the first modification is the inclusion of viscous or low-Reynolds-number effects into

the model formulations. This is mostly limited to the modelling of viscous dissipa-

tion εij, which exhibits a considerable amount of anisotropy close to the wall, and

to the transport equation for the dissipation rate of turbulence kinetic energy ε.

In addition to viscous effects there are two non-local, kinematic, effects which are

non-viscous in nature, and which influence the flow away from and in the vicinity of

a wall. The impermeability constraint imposes a kinematic wall-blocking effect onto

the wall-normal velocity fluctuations. The kinematic wall-blocking effect strongly

suppresses the wall-normal fluctuations, which results in highly anisotropic turbu-

lence close to the wall. In fact, the wall-normal fluctuations v1v1 approach zero

as Opy4q, where y is the distance from the wall, whereas the other normal-stress

components behave as Opy2q. Therefore, at the edge of the viscous sublayer the

wall-normal fluctuations have almost vanished and the turbulence has reached a

two-component state.

Another effect of a solid boundary is the reflection or ‘echo’ of the pressure fluctu-

ations. Manceau et al. (2001) have shown that the reflected pressure fluctuations

may enhance the total magnitude of pressure fluctuations, and with that the redis-

tribution process. Consequently, the reflected pressure disturbances are promoting

a reduction of the anisotropic state of turbulence and therefore, counteract the

wall-blocking effect. The wall-echo, or pressure reflections, originate from the wall

boundary conditions, which are imposed on the Poisson equation for the fluctuating

pressure. It can be included by taking the surface integral in (3.31) into account.

Alternatively, the wall-boundary condition Bp1{Bx2 � 0 for equation (3.30) allows

the use of the method of images for the solution of the Poisson equation for the

fluctuating pressure. With this approach, the surface integral disappears and the

Green’s function takes the following form for a plane wall

Gpx,x1q � 1

4π |x� x1 | �
1

4π |x� x�| , (3.40)

where x� is the mirror image point of x
1

(see, for example, Launder et al., 1975).

This form of Green’s function suggests that the pressure-strain correlation, which

would be valid for wall bounded flows could be written as an extension to the
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quasi-homogeneous pressure strain model (3.32) in the following form

Φij � Φ
ps,homq
ij � Φ

pr,homq
ij � Φ

ps,wq
ij � Φ

pr,wq
ij , (3.41)

where the effect of the wall (wall-echo) is contained in Φ
ps,wq
ij and Φ

pr,wq
ij , respectively.

Typical formulations for the wall-echo correction rely on information about the

wall-normal vector ni and wall distance to identify the orientation of the wall and

to suppress the intensity of the wall-normal fluctuation v1v1 and to enhance the

streamwise component u1u1 , respectively. Gibson & Launder (1978), for example,

use the modifications

Φs,w
ij � Cw

s

ε

k

�
u
1

ku
1

mnknmδij �
3

2
u
1

ku
1

inknj �
3

2
u
1

ku
1

jnkni



fw, (3.42)

Φr,w
ij � Cw

r

ε

k

�
Φr,hom
km nknmδij � 3

2
Φr,hom
ik nknj � 3

2
Φr,hom
jk nkni



fw. (3.43)

The damping function fw ensures that the modifications are only active close to

the wall and that the quasi-homogeneous model is recovered away from the wall.

The constants need to be tailored to reproduce the correct behaviour in conjunction

with a specific quasi-homogeneous model. Wall-echo corrections of this form may

improve the predictions in simple shear flows. However, they are not very successful

for flows in complex geometries where the wall-normal vector cannot be rigorously

defined in the presence of sharp corners and multiple walls. Another major defect

exists for the prediction of impinging flows where the wall-normal fluctuation v1v1

are erroneously amplified (see, for example, Durbin & Petterson-Reif, 2001).

Another approach that has been used to take into account the strong inhomogeneity

close to the wall is to use a higher-order expansion for Mijkl. Using a non-linear

expansion provides more degrees of freedom to place additional constraints onto

the free coefficients. Craft & Launder (1995) use a non-linear expansion, which

additionally satisfies the two-component limit and gives improved predictions close

to the wall.

3.4.6 Elliptic-Relaxation/Blending Approaches

The elliptic-relaxation/blending approach is yet another technique that accounts

for the non-local, wall-echo and blocking effects of solid walls. This approach is

distinctly different from what has been presented above. Instead of modelling the
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pressure-strain correlation with local quantities, the elliptic-relaxation approach

attempts to model the two-point correlation appearing in (3.31).

In modelling wall-bounded flows, it is usually more convenient to model the velocity-

pressure gradient correlation as a whole rather than using the decomposition into

redistributive and transport part. This is motivated by the fact that the transport

part plays a role in the near-wall balance for the Reynolds-stress component v1v1 and

cannot be neglected. In order to illustrate the elliptic-relaxation concept, consider

the velocity-pressure gradient correlation

u
1

i

Bp1 pxq
Bxj �

»
V

u
1

i pxq
BS px1q
Bxj

dV
�
x

1�
4π |x� x1 | , (3.44)

where Spx1q corresponds to the source terms on the right-hand side of (3.30). The

two-point correlation u
1

i pxq BS px1q{Bxj has been modelled by Durbin (1991, 1993)

as

u
1

i pxq
BS px1q
Bxj � u

1

i px1q BS px
1q

Bxj � exp

�
� ��x� x1

��
L

�
, (3.45)

where L is a correlation length scale. As a result of this modelling, the integration

kernel has changed and now corresponds to a Green’s function for the modified

Helmholtz equation. Thus, the velocity-pressure gradient correlation can be written

as the solution to the elliptic-relaxation (modified Helmholtz) equation of the form

Πij � L2∇2Πij � Φ
phomq
ij . (3.46)

Note that the second term on the left-hand side vanishes for homogeneous turbulence

and the elliptic-relaxation equation reduces to Πij � Φ
phomq
ij . It is now possible to

include the correct asymptotic near-wall behaviour close to the wall by specifying

appropriate boundary conditions to the elliptic-relaxation equation.

The elliptic-relaxation formulation proposed by Durbin (1993) is based on a modified

redistribution tensor of the form

Π�
ij � Πij � εij �

u
1

iu
1

j

k
ε � kfij, (3.47)

which describes the net effect of Πij � εij and where pε{kqu1

iu
1

j is added to ensure

that Π�
ij vanishes at solid boundaries. Durbin introduced the intermediate variable

fij, which is multiplied by k to ensure that the right-hand side approaches zero at
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the wall. The tensor fij is obtained from

fij � L2∇2fij � 1

k

�
Φ
phomq
ij � 2

3
εδij �

u
1

iu
1

j

k
ε

�
, (3.48)

where the correlation length scale is given by

L � CL max

�
k3{2

ε
, Cη

�
ν3

ε


1{4
�
. (3.49)

The lower bound to L is given by the Kolmogorov length-scale. It should be noted

that Φ
phomq
ij can be chosen as any quasi-homogeneous redistribution model without

the need to recalibrate other parts of the elliptic-relaxation concept. Although

the elliptic-relaxation concept provides convincing results for wall-bounded flows, it

requires six additional differential equations to be solved numerically. In addition,

the boundary condition for fij involve terms, which behave as 1{y4, which inevitably

increases numerical stiffness.

An elliptic-blending model has been proposed by Manceau & Hanjalic (2002), which

is somewhat simpler and preserves the idea of the elliptic-relaxation concept, i.e.

the correct prediction of Πij � εij. In the elliptic-blending model the redistribution

tensor is computed from

Πij � p1 � kαqΦ
pwq
ij � kαΦ

phomq
ij . (3.50)

The dissipation is computed as

εij � p1 � Akαq u
1

iu
1

j

k
ε� Akα

2

3
εδij, (3.51)

with Lumley’s flatness parameter A � 61{6 |IIIa|1{3 {II1{2
a . The elliptic-blending

parameter α reduces to a scalar differential equation determined by

α � L2∇2α � 1

k
, (3.52)

with the wall-boundary condition αw � 0. The components of the wall redistribu-

tion tensor Φ
pwq
ij need to be chosen such that Πij � εij has the same behaviour as in

the elliptic-relaxation model. A model, which satisfies this requirement is

Φ
pwq
ij � �5

ε

k

�
u
1

iu
1

knjnk � u
1

ju
1

knink �
1

2
u
1

ku
1

lnknl � pninj � δijq


. (3.53)
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The wall-normal vector is computed from n � ∇α{ |∇α|.

3.5 Algebraic-Stress Models

The increased computational effort required by DRSMs coupled with the numerical

difficulties for complex three-dimensional flows have led to the emergence of alter-

native approaches, where the robustness of traditional turbulence models that are

based on the Boussinesq approximation is combined with the improved predictive

capabilities of a second-moment closure. The first such attempts goes back to the

pioneering work of Rodi (1972, 1976), where an equilibrium hypothesis was intro-

duced, which reduces the transport equations of a DRSM to an algebraic expression,

yielding an implicit algebraic relation between the Reynolds-stress components and

the velocity gradients. Rodi proposed that in a weak-equilibrium condition, where

u
1

iu
1

j{k is approximately constant, convection minus diffusion of u
1

iu
1

j can be approx-

imated to be proportional to convection minus diffusion of the turbulence kinetic

energy k, thus

Du
1

iu
1

j

Dt
�Dij �

u
1

iu
1

j

k

�
Dk

Dt
�Dk



� u

1

iu
1

j

k
pPk � εq . (3.54)

Substituting the weak-equilibrium approximation into the differential RSM (equa-

tion 3.13) yields a set of implicit algebraic relations for the Reynolds-stress tensor

u
1

iu
1

j

k
pP � εq � Pij � Φij � εij. (3.55)

Another way to illustrate Rodi’s weak-equilibrium assumption is to transform the

evolution equation for the Reynolds-stress tensor (3.13) into a transport equation

for the stress-anisotropy tensor aij

k
Daij
Dt

� kD
paq
ij � �u

1

iu
1

j

k
pPk � εq � Pij � εij � Φij, (3.56)

where D
paq
ij contains the diffusion/transport terms of aij. Adopting the most general

form of a quasi-linear model for the pressure strain correlation (3.37), the transport
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equation for the stress-anisotropy can be written as

τ

A0

�
Daij
Dt

�D
paq
ij



�

�
A3 � A4

Pk
ε



aij � A1Sij � paikΩkj � Ωikakjq

� A2

�
aikSkj � Sikakj � 2

3
tr taikSkju



, (3.57)

see Grundestam et al. (2005) for more details. The weak-equilibrium assumption

now amounts to neglecting convection and all diffusion/transport terms in the evolu-

tion equation for aij, i.e. Daij{Dt�Dpaq
ij � 0. The resulting quasi-linear Algebraic-

Stress Model (ASM) takes the form

Naij � �A1Sij � A2

�
aikSkj � Sikakj � 2

3
tr taikSkju



� paikΩkj � Ωikakjq , (3.58)

where

N � A3 � A4
Pk
ε
. (3.59)

The constants Ai are directly related to the constants Ci of the model for the

pressure-strain correlation and are summarised in table 3.1 for the model of Launder

et al. (1975) (LRR), Speziale et al. (1991) (SSG) and Wallin & Johansen (2000)

(WJ).

A1 A2 A3 A4

LRR 1.54 0.37 1.45 2.89
SSG 1.22 0.47 0.88 2.37
WJ 1.20 0 1.8 2.25

Table 3.1: Constants Ai for the pressure-strain models of Launder et al. (1975)
(LRR), Speziale et al. (1991) (SSG) and Wallin & Johansen (2000)
(WJ).

The set of implicit equations can be solved for the Reynolds-stress or anisotropy

tensor using an iterative procedure. The ASM needs to be supported by an equation

for the turbulence kinetic energy as well as a length-scale-providing equation to

compute the dissipation rate ε. Even though all transport terms in the evolution

equation for the anisotropy have been neglected, some history effects are still present

in the ASM through the evolution equation for the turbulence kinetic energy and

its dissipation rate.

In the limit of equilibrium, the algebraic stress relationship can be considered an

exact approximation to the Differential-Reynolds-Stress Model. It is also a fair ap-

proximation for flows, which evolve slowly and which are close to an equilibrium
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condition. For strong non-equilibrium flows or where convection and transport dom-

inate the evolution of the Reynolds-stress tensor, the weak-equilibrium assumption

is not valid and hence the performance of the ASM deteriorates. In addition to the

limitations imposed by the weak-equilibrium assumption, the ASM also inherits all

deficiencies of the ‘parent’ DRSM.

The Extended Weak-Equilibrium Assumption

Flows, which involve significant streamline curvature can be most accurately mod-

elled by DRSM closures, since curvature/rotation effects are naturally included in

the transport equation for the Reynolds-stress tensor. However, ASM were found to

be inferior to a full DRSM closure in predicting the effects of streamline curvature.

Even though the exact production term Pij, and with that the sensitivity to rota-

tional effects, is retained in the ASM approximation, it has been shown by Rumsey

et al. (1999, 2000) that the weak-equilibrium assumption is incorrect in strongly

curved flows, and that Daij{Dt should not be neglected.

Rodi & Scheuerer (1983) and Girimaji (1997) both argued that weak-equilibrium

should preferably be invoked in a suitable curvilinear coordinate system, which in

some way is aligned with the flow direction (for example, in a coordinate system,

which is aligned with streamlines). In such a curvilinear coordinate system the

weak-equilibrium assumption is more likely to hold.

The extended weak-equilibrium constraint is obtained by considering the anisotropy

tensor transformed into a curvilinear coordinate system ac � TaT T , where T is

the coordinate transformation matrix. The anisotropy ac can be transformed back

into a Cartesian system and expanded to give the relation

T TDa
c

Dt
T � Da

Dt
� aDT

T

Dt
T � T TDT

Dt
a, (3.60)

see Gatski & Jongen (2000) or Wallin & Johansen (2002). It follows that

Da

Dt
� T TDa

c

Dt
T � paΩr �Ωraq , (3.61)

with pDT T {DtqT � �T TDT {Dt � Ωr. The extended weak-equilibrium approxi-

mation can now be understood as neglecting the term T T pDac{DtqT in the curvi-

linear coordinate system, which gives

Da

Dt
� paΩr �Ωraq . (3.62)
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It is straightforward to account for these additional terms in the ASM formulation

by using a modified rotation-rate tensor of the form

Ωc � Ω� pτ{A0qΩr. (3.63)

It is, however, much more difficult to determine a suitable transformation matrix

T or Ωr in such a way, that T T pDac{DtqT becomes negligible, and the error in-

troduced by ignoring this term is not significant. Different approaches have been

used to estimate Ωr (see Hellsten, 2002, for a short discussion). The first approach

relates Ωr to the rate of change of the principle axes of the strain-rate tensor. A

detailed description of this method is beyond the scope of this review. More details

about this method can be found in Gatski & Jongen (2000) or Wallin & Johansen

(2002). The second method employs the acceleration vector Dui{Dt and its rate

of change to approximate Ωr (see Girimaji (1997) or Wallin & Johansen (2002) for

more details).

3.6 Explicit-Algebraic-Stress Model

The implicit algebraic stress relations, as introduced above, can be solved using an

iterative procedure. However, it has been found that the iterative solution may be

very expensive in complex flows and may lead to multiple roots and convergence to

non-physical solutions (see, for example, Speziale, 1997). Therefore, the benefit of

using an ASM model compared to a full DRSM is partly lost.

A more practical alternative is to derive an explicit solution to the algebraic stress-

relations (3.58). This results in considerably improved robustness of the resulting

Explicit-Algebraic-Stress Model (EASM), and hence constitutes a practical and

robust alternative to traditional linear two-equation models by providing improved

predictive capabilities at slightly increased numerical expense.

The solution to the algebraic stress relations (3.58) obviously has to be of the

functional form aij � Fij pSij,Ωij, Pk{εq, where Fij is an isotropic second-order

tensor-valued function. Ignoring Pk{ε for the moment, the solution for aij can

be expanded into an infinite tensor polynomial, which contains all second-order

tensors that are symmetric and traceless, that can be formed from Sij and Ωij. The

coefficients depend on all possible invariants of Sij and Ωij. The Caley-Hamilton

theorem limits the most general form of the tensor polynomial to ten terms and five

invariants. It has been shown by Spencer & Rivlin (1959) that the most general



36 Chapter 3 Reynolds-Averaged Navier-Stokes Modelling

tensor polynomial, also referred to as integrity base, is of the form

aij � Fij pSij,Ωijq �
10̧

α�1

βαT
pαq
ij , (3.64)

with

T
p1q
ij � Sij, T

p2q
ij � SikSkj � 1

3
IISδij, T

p3q
ij � ΩikΩkj � 1

3
IIΩδij,

T
p4q
ij � SikΩkj � ΩikSkj, T

p5q
ij � SikSklΩlj � ΩikSklSlj,

T
p6q
ij � SikΩklΩlj � ΩikΩklSlj � 2

3
IV δij,

T
p7q
ij � SikSklΩlmΩmj � ΩikΩklSlmSmj � 2

3
V δij,

T
p8q
ij � SikΩklSlmSmj � SikSklΩlmSmj,

T
p9q
ij � ΩikSklΩlmΩmj � ΩikΩklSlmΩmj,

T
p10q
ij � ΩikSklSlmΩmnΩnj � ΩikΩklSlmSmnΩnj, (3.65)

and where the βi-coefficients are functions of the invariants

IIS � tr tSikSkju , IIΩ � tr tΩikΩkju , IIIS � tr tSikSklSlju ,

IV � tr tSikΩklΩlju , V � tr tSikSklΩlmΩmju . (3.66)

The ten tensor groups are required to guarantee that tensorial expansion provides

non-singular solutions even in cases where some of the tensor groups vanish. In

two-dimensional mean flow the tensor polynomial reduces to only three terms

T
p1q
ij � Sij, T

p2q
ij � SikSkj � 1

3
IISδij, T

p3q
ij � SikΩkj � ΩikSkj, (3.67)

and two invariants

IIS � tr tSikSkju , IIΩ � tr tΩikΩkju . (3.68)

Pope (1975) was the first to derive an explicit solution for the ASM proposed by

Rodi (1972, 1976). His derivation was limited to two-dimensional mean flow for

which the tensor polynomial takes a more manageable form. Substituting the ten-

sor polynomial into the ASM equation (3.58), and applying the Caley-Hamilton

theorem to reduce higher-order terms, leads to a linear system of equations, which

can be inverted to obtain the coefficients βi (see Pope (1975) or Gatski & Speziale

(1993) for more details on the solution procedure). Gatski & Speziale (1993) later



Chapter 3 Reynolds-Averaged Navier-Stokes Modelling 37

extended Pope’s approach to three-dimensional mean flows for the general class of

ASM models that are tensorially linear in the Reynolds-stress anisotropy. Taulbee

(1994) and Wallin & Johansen (2000) both derive EASM for three-dimensional flow

using a modified pressure-strain model of LRR. The modification is chosen such

that some of the terms naturally vanish, which effectively reduces the tensor poly-

nomial to five independent tensor groups. Even though the resulting model is more

compact, it is achieved at the expense of the predictive performance, i.e. it always

predicts a33 � 0 in situations where no anisotropy is induced by the mean strain

rate S33.

A major difficulty in solving the linear system of equations is related to the ap-

pearance of the production to dissipation ratio Pk{ε in the ASM model, which

introduces a non-linear behaviour through the relationship Pk{ε � �tr taikSkju.
Gatski & Speziale (1993) and Taulbee (1992) apply a linearisation of the algebraic

stress-equations by retaining the ratio of production to dissipation implicit during

the derivation, i.e. specifying a constant equilibrium value for the production to

dissipation ratio.

The assumption of a constant ratio of production to dissipation results in an in-

consistent behaviour of the model for flows, which are far from equilibrium. This

inconsistency may lead to singular behaviour for large localised strain rates, which

in turn results in numerical difficulties. Gatski & Speziale (1993) therefore had to

apply a regularisation procedure to remove the resulting model singularities. The

more versatile approach is to solve the algebraic equations in their full non-linear

form. Consistency for the production to dissipation ratio is achieved by writing

Pk{ε using the solution for aij, which yields a scalar polynomial equation that needs

to be solved additionally. For two-dimensional mean flow, solutions to the scalar

polynomial equation have been obtained by Girimaji (1996), Ying & Canuto (1996)

or Wallin & Johansen (2000). Hence, the resulting model becomes a fully explicit

and fully consistent approximation to the ‘parent’ DRSM, which is free of singular-

ities. In the case of general three-dimensional mean flow the non-linear equation is

of sixth order (see Wallin & Johansen, 2000), and no explicit solution can be found

in this case. Wallin & Johansen (2000) instead suggest to provide an initial guess

using the solution of the non-linear equation for two-dimensional flow and to obtain

a more accurate solution by using a perturbation solution for the three-dimensional

equation. As a consequence, the fully explicit character of the EASM in three-

dimensional mean flow can only be retained by sacrificing the internal consistency

of the EASM approximation.
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In the limit of two-dimensional mean flow, the EASM formulations reduce to much

more compact forms and provide fully explicit and fully consistent solutions. There-

fore, it seems very appealing to apply these two-dimensional formulations even for

genuinely three-dimensional mean flows. On the other hand, the additional terms

appearing in three-dimensional EASM formulations constitute additional higher-

order nonlinear coupling terms, which may significantly improve the performance

of the EASM in general three-dimensional flows. Weinmann & Sandberg (2009)

investigated the differences between two and three-dimensional EASM formulations

for predicting complex three-dimensional flows. Their results indicate that the

overall difference in the predictions is very small and that the use of the simplified

2D-EASM formulation provides improved predictions in complex three-dimensional

flows over turbulence models based on a linear stress-strain relationship. Naji et al.

(2004) performed a priori testing of the 2D-EASM described in Gatski & Rum-

sey (2002) and the 3D-EASM of Wallin & Johansen (2000) for a square duct flow,

and came to the conclusion, that the 2D-EASM is a good approximation for the

three-dimensional flow in a square duct.

3.7 Non-linear Eddy-Viscosity Models

The tensor polynomial or integrity base in equation (3.65) constitutes a general

non-linear stress-strain relationship of the form u
1

iu
1

j � p2{3qkδij � kaij. Therefore,

Explicit-Algebraic-Stress Models formally belong to the class of Non-Linear Eddy-

Viscosity Models (NLEVM), i.e. models, which use a non-linear constitutive stress-

strain relationship. In the case of EASM modelling, the coefficients βi are directly

determined from the parent ‘DRSM’ without requiring additional calibration of

closure constants. In addition, the EASM constitutive relations are not strictly

based on the concept of an eddy viscosity. However, comparing equation (3.65) with

the Boussinesq assumption (3.10) reveals that an equivalent turbulence viscosity

of the EASM model is given as νT � �0.5β1kτ . NLEVM are derived by taking a

different route and are therefore discussed separately from EASMs. The route taken

with NLEVM is to determine the βi coefficients by empirical calibration for a range

of flows. As a consequence of the calibration procedure, the coefficients may take

different values dependent on which flow is used to calibrate them. For example,

Craft et al. (1995) calibrated a cubic non-linear eddy-viscosity model using simple

shear and more complex flows. Shih et al. (1995) proposed a NLEVM, which is

calibrated using constraints from rapid-distortion theory (RDT), realisability and

calibration of homogeneous shear and channel flows. Many other NLEVM’s exists,
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some of which are discussed in section 7.2. The success of NLEVM largely depends

on the experience of the developer to include as much physics as possible in the

modelling of the βi coefficients.

Applications

NLEVM and EASM turbulence models have been applied to a broad range of aca-

demic and engineering validation cases, where the superior performance compared

to linear models has been demonstrated. Abid et al. (1997) applied a k-ε EASM to

airfoil flow, with and without incipient separation, and compared the results to a

linear model. None of the models were able to predict the incipient separation, but

the EASM model predicted realistic normal-stress components. Another important

conclusion was that the improvements are limited by the ε equation, which does not

respond accurately to adverse pressure gradients flows. This is also confirmed by

Rumsey & Gatski (2001), where k-ε and k-ω EASM models were applied to a multi

element airfoil. In Rumsey et al. (1999, 2000), an EASM model was successfully

applied to the flow in a U-duct, where the flow exhibits significant streamline cur-

vature. Jang et al. (2001, 2002) tested various NLEVM, EASM and DRSM models

for the flow over a periodic hill configuration. They confirmed the poor performance

of models based on the ε equation, whereas models based on the ω equation gave

much better results. The nonlinear models were found to over-predict the sepa-

ration region due to insufficient shear-stress in the separated shear layer. Luebke

et al. (2001) assessed the performance of linear eddy-viscosity models and EASM

models for bluff body flows. The results obtained with the EASM model are clearly

superior to linear models. Moreover, the EASM model shows many features of LES

but, naturally, is less accurate than LES. Deng et al. (2005) compare a quadratic

EASM with ASM and DRSM models for the prediction of ship flows. In their case,

the EASM and ASM gave similar predictions, and the DRSM was found to be bet-

ter for regions with convex curvature. The better performance of the DRSM was

linked to the weak-equilibrium assumption inherent in the EASM and ASM model.

Franke et al. (2005) and Jouvray & Tucker (2007) evaluated the performance of

NLEVM and EASM models. Both came to the conclusion that the predictions

were improved compared to traditional turbulence models.

3.8 Linear Eddy-Viscosity Turbulence Models

The common feature of all linear eddy-viscosity models is that they are based on

the concept of a scalar eddy viscosity νT and use the Boussinesq approximation
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as the constitutive stress-strain relationship. The Boussinesq approximation can

be considered a first-order (linear) approximation to the more general, non-linear,

tensor polynomial of equation (3.65), and even though it suffers from various defi-

ciencies (see discussion in section 3.1), it is still widely in use today. In fact, linear

eddy-viscosity models are by far the most popular of all turbulence models, mainly

because they are computationally reasonably cheap and robust and may deliver

results of sufficient accuracy for not too complex flows.

On dimensional grounds, an expression for the turbulence viscosity has to be of the

following form

νT � CµVTLT , (3.69)

where VT is a characteristic turbulence velocity scale and LT is a characteristic

turbulence length scale of the energy containing eddies.

In the pioneering work of Prandtl in 1925, the velocity and length scale was approxi-

mated as VT � lmix |du{dy| and LT � lmix, where lmix corresponds to a characteristic

length scale of the flow under consideration. The major difficulty is now associated

with specifying the appropriate length scale. Even though lmix can be tuned for

specific cases (for example, jets, mixing layers or boundary layers), there is not

much hope that it can be chosen with sufficient accuracy in more complex flows.

Another weakness is the purely local nature of such algebraic formulations, since it

cannot account for history effects, which the flow has experienced at some station

upstream.

The lowest level of turbulence closure, which is nowadays accepted for the simulation

of turbulent flows in engineering applications are models, which include some history

effects. This is achieved by introducing one or more evolution equation to determine

the characteristic velocity and length scale. The characteristic velocity scale is

usually determined from a transport equation for the turbulence kinetic energy

k � p1{2qu1

iu
1

i, such that VT � k1{2. The exact equation for the turbulence kinetic

energy has already been derived in section 3.2.2 and is not repeated here. The exact

equation contains unclosed terms, which require modelling. It is common practice

to lump the turbulence transport and pressure transport together and to model

their net effect using a gradient-diffusion approximation of the following form

B
Bxj

�
1

2
u
1

iu
1

iu
1

j �
p1

ρ
u
1

j

�
� � B

Bxj

�
νT
σk

Bk
Bxj



. (3.70)
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The constant σk is a closure coefficient, which needs to be calibrated. The resulting

equation for the modelled turbulence kinetic energy k then takes the form

Dk

Dt
� �u1

iu
1

j

Bui
Bxj � ε� B

Bxj

��
ν � νT

σk


 Bk
Bxj

�
. (3.71)

A simple one-equation turbulence model could now be derived by using the relation

ε9k3{2{LT for the turbulence kinetic energy dissipation rate. The turbulence length

scale can be determined based on an algebraic relation, similar to the mixing length

concept as introduced above (see, for example, Wolfshtein, 1969).

In order to avoid the specification of an algebraic turbulence length-scale relation,

Spalart & Allmaras (1992) proposed to use a transport equation for the product

of the turbulence velocity and length scale, or in other words, for the turbulence

viscosity itself. Instead of considering the turbulence viscosity directly, Spalart &

Allmaras considered a modified turbulence viscosity ν̃ as the transported quantity,

from which the turbulence viscosity is obtained as νT � ν̃fν1, where fν1 is a damping

function. The Spalart & Allmaras (1992) model has proven to be successful in many

applications and is therefore widely in use today.

Another approach to avoid the specification of an algebraic turbulence length-scale

relation is to solve another evolution equation from which the turbulence length

scale LT can be computed. Assuming that the turbulence kinetic energy is known,

the length-scale-providing variable can be any combination of the form φ � kmLnT .

The question, which then arises is what the optimum length-scale-providing variable

would be. Hellsten (2004) has proposed a set of fundamental requirements, which

the length-scale determining equation should fulfill. These are

• Wall boundary condition φw � 0

• Growth rate at the wall not steeper than φ � Opy2q

• The free stream value φ8 should be non-growing

• Non-singular source terms.

Unfortunately, it is not possible to devise a length-scale-providing evolution equa-

tion, which satisfies all constraints above. Two of the most popular choices for the

variable φ are considered next.
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3.8.1 The k-ε Model

The most widely used quantity to compute the turbulence length scale is the dis-

sipation rate of turbulence kinetic energy ε, from which the length scale can be

determined as LT � k3{2{ε (m � 3{2, n � �1). It then follows that the turbulence

viscosity is given by νT � Cµk
2{ε. The first route to derive an evolution equation

for the dissipation rate would be to model all unclosed terms in the exact evolution

equation for the dissipation rate (3.2.3). Unfortunately, the exact transport equa-

tion for the dissipation rate involves various unknown higher-order correlations of

fluctuating quantities, which makes it much more difficult to model than the exact

transport equation for the turbulence kinetic energy k. As a consequence, the un-

certainties introduced by ad hoc modelling of the ε equation is significantly higher

than for the turbulence kinetic energy equation and is often considered one of the

main weaknesses of this type of two-equation modelling.

The second and more practical route to derive a transport equation for the turbu-

lence length scale is based on a generic modelling approach where the length-scale

variable is assumed to be governed by certain physical processes. Typical processes,

which are included in a generic transport equation are, for example, convection by

the mean flow, production by the mean flow, viscous dissipation and transport of

the length-scale variable. Such a transport equation can be written in the general

form for the arbitrary quantity φ

Dφ

Dt
� Cφ1

φ

k
Pφ � Cφ2

φ

k
ε� B

Bxi

�
νT
σφ

Bφ
Bxi

�
. (3.72)

For high-Reynolds-number flows, the ε equation is commonly modelled following

the proposal of Jones & Launder (1972)

Dε

Dt
� Cε1

ε

k
Pk � Cε2

ε2

k
� B
Bxj

��
ν � νT

σε


 Bε
Bxj

�
, (3.73)

where Cε1, Cε2 and σε are closure coefficients, which need to be calibrated. Equation

(3.73) is not applicable to low-Reynolds-number or near-wall flows. Suitable low-

Reynolds-number modifications will be discussed in section 3.8.1.2.

3.8.1.1 Calibration Strategy

There are a total of five closure constants, which need to be determined. In order

to derive suitable values for the closure constants a range of simple idealised flows
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are considered, for which the modelled equations can be reduced to an analytical

solution. This allows isolation of the closure constants and determination of suitable

values by reference to data from experiment or direct numerical simulation.

Decaying Homogeneous Isotropic Turbulence (DHIT)

The constant Cε2 can be determined by considering Decaying Homogeneous Isotropic

Turbulence (DHIT) where all gradients of the mean flow and turbulence statistics

vanish. For DHIT the transport equation reduces to the much simpler form

dk

dt
� �ε, dε

dt
� �Cε2

ε2

k
, (3.74)

which can be solved analytically. Experimental data suggest that the decay of turbu-

lence kinetic energy of grid-generated turbulence approximately follows a power-law

kptq � k0p1 � t{t0q�n, where the subscript 0 denotes initial values and n is the de-

cay exponent. Integrating dk{dt � �ε gives the solution for the dissipation rate ε.

Substituting the solution into the dissipation rate equation gives the constraint for

Cε2 � pn � 1q{n. It is now straightforward to match Cε2 to a reference decay rate

of DHIT.

Homogeneous Shear Flow

Next, homogeneous shear flow will be considered, from which the coefficient Cε1

can be determined. In homogeneous shear flows, both k and ε grow exponentially

and the turbulence time scale τ � k{ε, and the anisotropy a12 � u1v1{k reach

approximately constant values. This also implies that the production to dissipation

ratio Pk{ε � �a12pk{εqdu{dy is approximately constant. The simplified equation

for the k and ε equations take the form

dk

dt
� Pk � ε,

dε

dt
� Cε1

k

ε
Pk � Cε2

ε2

k
. (3.75)

Combining the equations for k and ε yields

d

dt

�
k

ε



� dτ

dt
� p1 � Cε1q

Pk
ε
� p1 � Cε2q . (3.76)

Assuming that the turbulence has reached an asymptotic state, i.e. dτ{dt � 0, and

using experimental data for the production to dissipation ratio in homogeneously

sheared turbulence, for example, pPk{εq8 � 1.8, the constant Cε1 can be determined.
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The Log-Law region

The last closure coefficients, which can be determined are σε and Cµ. The flow

regime under consideration is the logarithmic region of a zero pressure-gradient

boundary layer, where the logarithmic velocity profile is give by du{dy � uτ{κy
and the shear-stress �u1v1 is constant and equal to �u1v1 � u2

τ � τw{ρ with the

wall shear stress τw. It directly follows that the eddy viscosity is given by νT �
�u1v1{pdu{dyq � uτκy. Further, it can be assumed that the flow is locally in

equilibrium, i.e.

Pk � �u1v1
du

dy
� u3

τ

κy
� ε, (3.77)

from which follows that k � a
νT ε{Cµ � u2

τ{
a
Cµ. Substituting all variables into

the modelled equation for the dissipation rate and rearranging for σε yields the

relation

σε � κ2{aCµ pCε2 � Cε1q . (3.78)

What remains is the calibration of the constant Cµ appearing in the turbulence

viscosity relation (3.69) and in the definition of σε. Within the framework of EASM

modelling the constant is given by Cµ � �0.5β1 and is determined as part of the

constitutive relation of the EASM model. In the present context a specific value

for Cµ needs to be specified. For the log-law region of a zero pressure gradient

boundary layer, it follows from the discussion above that Cµ �
�
�u1v1{k

	2

� a2
12.

It can be found from experimental data or DNS, that the stress-intensity ratio

or a12 anisotropy is approximately constant in the log-region and takes a value of

a12 � �0.3. It follows that Cµ � 0.09.

The closure coefficients proposed by Launder & Sharma (1974) (LS) were obtained

based on a slightly different procedure than introduced above. Nevertheless, their

set of closure coefficients is still widely in use due to the LS models reasonable

predictive capabilities for a range of flows. The LS model is nowadays referred to

as the ‘standard’ k-ε model, with the closure coefficients given by

Cµ � 0.09, Cε1 � 1.44, Cε2 � 1.92, σk � 1.0, σε � 1.3. (3.79)

More information about the calibration of the closure coefficients can be found in

Hanifi et al. (1999), Durbin & Petterson-Reif (2001) and Hellsten (2004).
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3.8.1.2 Near-Wall Modifications

The k-ε model, presented above, is only applicable to high-Reynolds-number flows

and has to be used in conjunction with wall functions or log-law boundary conditions

in the presence of solid walls. Suitable log-law boundary conditions follow from the

discussion in section 3.8.1.1. It is important to note that these boundary conditions

are only applicable if they are applied at a location outside the viscous sublayer, in

the log-region where the non-dimensional wall distance y� � uτν{y is in the range

30� 100. Wall functions are computationally attractive, since the viscous sublayer

does not need to be resolved with a fine numerical discretisation. Even though

wall functions may give reasonable results for ‘well-behaved’ high-Reynolds-number

flows, they are usually not applicable for flows with low Reynolds numbers, strong

non-equilibrium or strong pressure gradients, separated flows, wall-bounded flows

with strong curvature or general complex three-dimensional flows.

For more accurate predictions in such cases modifications can be introduced to

the high-Reynolds-number formulation, which allows direct integration across the

viscous sublayer to the solid wall. A large number of such low-Reynolds-number

formulations have been proposed. A detailed review and evaluation of some mod-

els can be found in Patel et al. (1985), Rodi & Mansour (1993) or Sarkar & So

(1997). The modifications commonly introduced to the modelled equations for the

turbulence kinetic energy and its dissipation rate can be summarised as follows:

Dk

Dt
� Pk � ε̃� B

Bxj

��
ν � νT

σk


 Bk
Bxj

�
, (3.80)

Dε̃

Dt
� f1Cε1

ε̃

k
Pk � f2Cε2

ε̃2

k
� B
Bxj

��
ν � νT

σε


 Bε̃
Bxj

�
� E, (3.81)

with

νT � fµCµ
k2

ε̃
(3.82)

and

ε̃ � ε�D. (3.83)

The first modification to note is that the transported quantity is now ε̃, which

has the advantage of a simplified wall boundary condition ε̃w � 0, rather than

εw � D � νB2k{By2 for the unmodified ε equation. The function f1 and the extra

term E are both used to enhance the magnitude of the dissipation rate close to

the wall, which reduces the peak values of turbulence kinetic energy. The damping

function f2 is introduced in order to eliminate the singularity of the destruction
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term at the wall where k Ñ 0. It is sometimes also used to adjust the decay-

rate of isotropic turbulence at low Reynolds number. The last and most important

modification is the damping function fµ, which is applied to the constant Cµ. It

accounts for the suppression of turbulence close to the wall. The near-wall damping

primarily originates from the suppression or blocking of wall-normal fluctuations

v12 and viscous damping only plays a minor role close to the wall. Nevertheless,

viscosity-dependent damping functions, which are sensitive to parameters like y� �
uτy{ν, Rey � k1{2y{ν or ReT � k2{νε are mainly used. It seems that such functions

are not suited to achieve good correlation with the non-viscous, non-local effect of

suppression of turbulence close to the wall.

A typical and widely used low-Reynolds-number formulation is the model of Launder

& Sharma (1974) given by

fµ � exp

� �3.4

p1 �ReT {50q2


, f1 � 0, f2 � 1 � 0.3 exp

��Re2
T

�
, (3.84)

E � 2ννT

�Bui
By


2

, D � 2ν

�Bk1{2

By

2

. (3.85)

3.8.2 The k-ω Model

A different scale-determining variable, which is frequently used is the specific dissi-

pation rate of turbulence kinetic energy ω, from which the length scale is determined

as LT � k1{2{ω and νT � k{ω (m � 1{2, n � �1). Since the scale-determining vari-

able is not the dissipation rate ε itself, the destruction term in the equation for the

turbulence kinetic energy is usually modelled as ε � Cµkω. The pioneering work on

ω-based turbulence models can be attributed to the work of Kolmogorov (1942) and

extensive contributions of Wilcox (see Wilcox, 1998, where his work is summarised).

The ‘standard’ k-ω (1988) model can be represented by the generic transport equa-

tion (3.72) as introduced earlier. The turbulence kinetic energy k and the specific

dissipation rate ω are obtained from

Dk

Dt
� Pk � β�kω � B

Bxj

�
pν � σkνT q BkBxj

�
, (3.86)

Dω

Dt
� γ

ω

k
Pk � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
, (3.87)
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where the turbulence viscosity is νT � k{ω and the closure coefficients are given by

γ � 5{9, β � 3{40, β� � 0.09, σω � 0.5, σk � 0.5. (3.88)

The k-ω model has proven to be superior to the k-ε models in predicting boundary-

layer flows. For boundary layers under an adverse pressure gradient the ε equation

significantly over-predicts the level of turbulence, which may delay or even prevent

separation (see, for example, Wilcox, 1988). Similar shortcomings are observed for

the recovery of reattaching flows (see Jang et al., 2001). Even though the k-ω

model could be used in conjunction with wall functions, a distinct advantage of the

ω-equation is that it can be integrated through the viscous sublayer, directly to the

wall without the need of ad hoc modifications or empirical damping functions to

reproduce the correct velocity profile of a turbulent boundary layer.

Despite these advantages, the standard k-ω model is also not entirely trouble free.

First, the specific dissipation rate ω exhibits singular behaviour ω Ñ 1{y2 close

to the wall. The near-wall behaviour of the ω equation is given by the balance

of destruction and viscous-diffusion terms, which both behave as 1{y4 and involve

computation of second derivatives of the singular quantity ω. Several approaches

exist that alleviate the numerical difficulties close to the wall. The first approach

is to compute ω from the asymptotic near-wall behaviour ω � 6ν{βy2 in the near-

wall region, say below y�   2.5, rather than solving the ω equation in this region.

The second, and most frequently employed, approach is to use rough-wall boundary

conditions with a small roughness height. This has the advantage that ω remains

finite at the wall. Alternatively, it has been proposed by Gullman-Strand et al.

(2004) to use the decomposition ω � ω̃ � ωw, where ω̃ is the new transported

quantity with the wall boundary condition ω̃w � 0, and where the correct near-

wall behaviour is contained in ωw � 6ν{βy2. This approach seems particularly

interesting and deserves some attention. However, more testing and validation is

required before it can be generally recommended.

The second weakness of the standard k-ω model is the spurious sensitivity to free-

stream values of ω8. This sensitivity is undesirable, since it allows a free shear-

layer to attain almost any spreading rate by simply adjusting ω8. It is instructive

to compare the transport equation model for ω with the exact transport equation

obtained by transforming the exact ε equation (3.18) into a form based on ω. The

resulting equation is as follows:

Dω

Dt
� Pε

k
� εε
k
� Dε

k
� ωPk

k
� ω2 � ωDk

k
� 2ν

k

Bω
Bxi

Bk
Bxi � ν∇2ω. (3.89)
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The transformation reveals that the closure coefficients of the standard k-ω model

should be chosen as γ � pCε1 � 1q � 0.44 and β � Cµ pCε2 � 1q � 0.0828 in order

to be consistent with the standard k-ε model. Since the coefficients of the standard

k-ω model are quite different, it might be asked whether the better performance in

adverse pressure gradient flows is due to the different set of closure coefficients.

A closer comparison between the exact ω equation with the generic form also reveals

that the modelled ω equation lacks additional cross-diffusion terms (terms which

involve pBk{BxiqpBω{Bxiq). Menter (1992) proposed a two-layer k-ω model where

the standard k-ω model is used close to the wall and the k-ε model of Jones &

Launder (1972), which is transformed into a formulation based on ω, is used away

from solid boundaries. The motivation for the two-layer concept is twofold. First,

the favourable behaviour of the ω equation close to the wall and in flows with

strong adverse pressure gradients is retained. Second, the transformed k-ε model

includes a turbulent cross-diffusion term, which is activated in the outer region of

a turbulent boundary layer, which effectively eliminates the free-stream sensitivity.

Another possible approach to eliminate the free-stream sensitivity of the standard

k-ω model is to add the cross-diffusion to the transport equation only if it has

a positive contribution. This requires retuning of the diffusion coefficients such

that the correct diffusive behaviour of ω is ensured at a turbulent/non-turbulent

interface. Such a modified version of Wilcox’s k-ω model has been proposed by Kok

(1999) and is referred to as the k-ω TNT model. Note that the cross-diffusion term

is also present in the latest release of the Wilcox (2008) k-ω model.

Another major and very successful upgrade was the introduction of a shear-stress-

transport (SST) limiter by Menter (1992). The SST limiter corrects the ten-

dency to predict too high levels of turbulence in flows with strong adverse pres-

sure gradient, or non-equilibrium flows where the production of turbulence kinetic

energy exceeds the dissipation rate Pk ¡ ε. Inside a boundary layer the shear-

stress may be determined as �u1v1 � νTBu{By. Using Bradshaw’s assumption,

that �u1v1{k � �a12 � 0.3 is a good approximation in a range of turbulent wall

bounded flows, the turbulence viscosity can be expressed as νT � �a12k{S, where

S � a
2S�ijS

�
ij. For boundary-layer flows, the SST limiter is now simply obtained

by imposing an upper limit to the turbulence viscosity νT � minpk{ω,�a12k{Sq.
Wilcox (2008) also recognised the importance of limiting the shear-stress in strong

non-equilibrium flows and introduced a limiter, which multiplies νT with a factor

that is sensitive to the production to dissipation ratio Pk{ε.
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Menter’s k-ω-SST model is obtained by using the shear-stress-transport limiter in

conjunction with the two-layer formulation, as discussed above. Since the SST

model is sometimes used in this work as a reference, the complete formulation will

be given here (see also Menter, 2009). The transport equations for the turbulence

kinetic energy and the specific dissipation rate take the form

Dk

Dt
� P̃k � β�kω � B

Bxj

�
pν � σkνT q BkBxj

�
, (3.90)

Dω

Dt
� γ

1

νT
P̃k � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
� 2p1 � F1qσω2

1

ω

Bk
Bxi

Bω
Bxi , (3.91)

where the turbulence viscosity is given by

νT � a1k

max pa1ω, SF2q . (3.92)

The production term is limited to ten times the dissipation rate, thus

P̃k � maxpPk, 10β�kωq to avoid an unphysical build-up of turbulence kinetic energy

in stagnation regions. The blending functions F1 and F2 are unity close to the wall

and approach zero away from solid walls, and are given by

F1 � tanh

$&%
#

min

�
max

� ?
k

β�ωy
,
500ν

y2ω

�
,

4σω2k

y2CDkω

�+4
,.- , (3.93)

F2 � tanh

$&%
�

max

�
2
?
k

β�kω
,
500ν

y2ω

��2
,.- , (3.94)

where CDkω � maxp2σω2p1{ωqpBk{BxiqpBω{Bxiq, 10�10q and β� � 0.09. The closure

constants are obtained by a blending of the form φ � φ1F1 � p1 � F1qφ2, where φ1

and φ2 correspond to set 1 and 2, respectively.

Set 1: γ1 � 5{9, β1 � 3{40, σK1 � 0.85, σω1 � 0.5.

Set 2: γ2 � 0.44, β2 � 0.0828, σK2 � 1, σω2 � 0.856.

3.8.3 Elliptic-Relaxation/Blending Approaches

The traditional way to include wall effects within the framework of two-equation

models is to introduce empirical damping functions, which involve viscosity-dependent

parameters (for example, y� � uτz{ν, ReT � k2{νε or Rey �
?
ky{ν). For the low-

Reynolds-number formulation of a k-ε model, up to three empirical functions are
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required: f1, f2 and fµ. It is also important to mention in this context that even

though the high-Reynolds-number k-ω model can be integrated to solid boundaries

without requiring ad-hoc modifications, if accurate predictions of the turbulence

quantities close to the wall are desired, damping functions are also required for the

k-ω model.

The damping function fµ applied to Cµ is of critical importance and accounts for

the suppression of turbulence close to the wall. It has already been mentioned

that the near-wall damping primarily originates from the suppression or blocking of

wall-normal fluctuations v12 and viscous damping only plays a minor role close to

the wall. The kinematic wall blocking is a non-viscous effect, and strictly speaking

should not be modelled using viscosity-dependent parameters. Figure 3.2 shows

the behaviour of fµCµ � Ceff
µ close to the wall, computed directly from DNS data

of Coleman et al. (2003) for a turbulent channel flow at Reτ � 390, and for the

same configuration with an imposed uniform straining, which mimics the effect of

an idealized adverse pressure gradient on the flow. In addition, Ceff
µ computed from

the relation Ceff
µ � Cν

µv
12{k, where Cv

µ � 0.22, is plotted as well.
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Figure 3.2: Near-wall behaviour of Ceffµ . Symbols correspond to DNS of Cole-
man et al. (2003); (�) and (—) channel flow, (♦) and (- - -)
channel flow with imposed APG. The lines are computed from

Ceffµ � Cνµv
12{k.

This clearly illustrates that the damping of Cµ close to the wall is very well cor-

related with the suppression of the wall-normal fluctuations and has not much to

do with viscous damping effects. Therefore, any attempt to model the near-wall

behaviour correctly should ideally be based on a damping function of the form

fµ � pCν
µ{Cµqv12{k. Such a damping function is of course only useful if v12 can be

determined with sufficient accuracy close to the wall. Durbin (1991) derived a scalar
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transport equation for the wall-normal fluctuations v2 from the elliptic-relaxation

technique presented in section 3.4.6. Even though the wall-normal velocity scale v2

is not exactly equal to the component v12 of the Reynolds-stress tensor, close to the

wall their behaviour is very similar. Based on the elliptic-relaxation approach of

Durbin (1991), an eddy-viscosity turbulence model can be derived, which does not

rely on empirical viscosity-dependent damping functions.

The scalar transport equation for the wall-normal velocity scale v2 can be written

as
Dv2

Dt
� Π�

22 � ε
v2

k
� B
Bxk

�
pν � σϕνT q Bv

2

Bxk

�
, (3.95)

with the scalar redistribution term

Π�
22 � Π22 � ε22 � v2

k
ε � kf22, (3.96)

and the elliptic equation for the intermediate variable f22

f22 � L2∇2f22 � 1

k

�
Φ
phomq
22 � 2

3
ε� ε

v2

k

�
. (3.97)

The turbulence viscosity is now obtained from the relation νT � Cv
µv

2τ . In order to

take viscous effects into account, the turbulence length and time scales are limited

by the viscous or Kolmogorov length and time scales, respectively:

L � CL max

�
k3{2

ε
, Cη

�
ν3

ε


1{4
�
, τ � max

�
k

ε
, CT

c
ν

ε

�
. (3.98)

The elliptic-relaxation concept is usually used in conjunction with a k-ε model to

compute the turbulence length and time scales. The transport equation for the

turbulence kinetic energy and dissipation rate are given by

Dk

Dt
� Pk � ε� B

Bxj

�
pν � σkνT q BkBxj

�
, (3.99)

Dε

Dt
� C

1

ε1Pk � Cε2ε

τ
� B
Bxj

�
pν � σενT q Bε

Bxj

�
. (3.100)

Note that the near-wall singularity of the destruction term in the transport equation

for the dissipation rate is no longer a problem, since the time scale τ remains finite

at the wall. The closure constant C
1

ε1 � f1Cε1 includes the empirical function

f1 � 1 � 0.0045
b
k{v2, which is designed to enhance the dissipation rate close the
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wall (see, for example, Parneix et al., 1998).

The wall boundary condition for the elliptic equation is given by f22,w � �5pv2{k2qε �
�20ν2v2{εy4. This boundary condition introduces a strong coupling between the

v2 and f22 equation and the highly non-linear behaviour of v2 � Opy4q and y4 in

the denominator introduces considerable numerical stiffness close to the wall. The

strong coupling of v2 and f22 via the boundary conditions results in considerable

numerical difficulties when solved with a segregated solver, and may lead to oscil-

lations or divergence particularly for too small values of y�   1 (see, for example,

Laurence et al. (2004) or Hanjalic et al. (2004)). Therefore, various modifications

to Durbin’s original elliptic-relaxation approach were introduced in the literature in

an attempt to make it applicable for segregated solvers.

Lien & Durbin (1996) and Lien & Kalitzin (2001) redefined the elliptic-relaxation

variable as f̃22 � f22 � f22,w � f22 � 5pv2{k2qε with the benefit that homogeneous

boundary conditions can be prescribed for the new dependent variable f̃22,w � 0.

This reduces the coupling between the v2 and f̃22 equation. In the equation for the

new elliptic variable f̃22 the term 5L2∇2pεv2{k2q resulting from the transformation

has been neglected. Laurence et al. (2004) argued that this term needs to be re-

tained, since in the log-region it has similar magnitude to the other terms in the f̃22

equation.

Hanjalic et al. (2004) and Laurence et al. (2004) both proposed modelling the vari-

able ϕ � v2{k rather than v2 directly. This has the advantage that the non-

linearity at the wall is reduced to ϕ � Opy2q as the wall is approached, and

the boundary condition for f22 reduces to f22,w � �10νϕ{y2. Laurence et al.

(2004) additionally transform the elliptic variable into a more convenient defini-

tion, f̃22 � f22�2νp∇φ∇kq{k�ν∇2φ, for which homogeneous boundary conditions

can be prescribed at the wall, f̃22,w � 0. In the final form of the f̃22 equation,

the term νL2∇2p2p∇ϕ∇kq{k �∇2ϕq originating from the transformation has been

neglected based on the argument that its effect is limited to the viscous sublayer

and the magnitude is significantly smaller as compared to the term neglected by

Lien & Durbin (1996).

Keshmiri et al. (2008) used the new variable ϕ � v2{k in conjunction with the

elliptic-blending concept of Manceau & Hanjalic (2002), where the elliptic-blending

parameter α already has the homogeneous boundary condition αw � 0 and hence

does not require a transformation to another variable where certain terms have to

be neglected in the derivation. The ϕ-α model is considered a good compromise

between predictive accuracy and numerical robustness of the formulation. The
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constitutive equations for ϕ and α take the form

Dϕ

Dt
� p1 � αpq fwall � αpfhom � ϕ

k
Pk � 2

k
pσkνT q BkBxj

Bϕ
Bxj �

B
Bxj

�
pν � σϕνT q BϕBxj

�
,

(3.101)

L2∆α � α � �1. (3.102)

The redistribution term fhom in the ϕ-α model is based on the quasi-homogeneous

redistribution model of Speziale et al. (1991), thus

fhom � �p1{τq pC1 � 1 � C2Pk{εq pϕ� 2{3q , fwall � �ϕε{k. (3.103)

The turbulence viscosity is given as

νT � Cν
µϕkτ. (3.104)

The closure constants can be summarised as Cν
µ � 0.22, CL � 0.161, CT � 6,

Cη � 90, σk � σϕ � 1, p � 3, C1 � 1.7, C2 � 1.2.





Chapter 4

Turbulence-Resolving Approaches

In this chapter the turbulence-resolving approaches of Direct and Large-Eddy Sim-

ulation will be briefly introduced. This is followed by a detailed review of available

techniques to combine the framework of statistical turbulence modelling (RANS)

with a turbulence-resolving approach, such as Large-Eddy Simulation (LES). The

unified framework of RANS/LES modelling aims at providing improved predictions

for complex flows at high Reynolds number where traditional RANS closures fail

to predict reliable results and where conventional LES is prohibitively expensive in

terms of computational cost.

4.1 Direct and Large-Eddy Simulation

The most accurate approach for the simulation of turbulent flows is Direct Numer-

ical Simulation (DNS) where the Navier-Stokes equations are solved in exact form.

The aim of DNS is to explicitly resolve all inherent mechanisms of turbulence in the

simulation, such as, for example, production and dissipation of turbulence. Hence,

DNS does not require any modelling apart from the numerical discretisation. Direct

simulation of turbulent flows is only possible if unsteady simulations are performed

with adequate resolution in space and time to capture both the smallest and largest

turbulence scales in the flow. It has already been discussed in chapter 2, that the

range of time and length scales or, in other words, the ratio of largest to smallest

scales present in a turbulent flow, increases with Reynolds number. Unfortunately,

many flows of engineering and more practical interest are characterised by high

Reynolds number, with the consequence that the spatial and temporal resolution

required to perform DNS is well beyond currently available computational resources.

55
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Even though there is no need for physical modelling of turbulence in DNS, there

are other issues, which require careful attention. The numerical scheme has to be

very accurate in order not to contaminate the smallest turbulence scales by ex-

cessive levels of numerical dissipation and dispersion. Furthermore, the inflow or

initial conditions often need to contain realistic turbulence with a full spectrum of

turbulence scales as well as temporal and spatial correlations, if possible.

The resolution requirements for DNS can be relaxed by applying a spatial or tempo-

ral filter to the Navier-Stokes equations, which effectively removes the smallest scales

from the flow field. As opposed to the RANS approach, where all turbulence scales

are removed from the governing equations, filtering only removes the contribution

of the smallest turbulence scales, which otherwise, would require a very fine spatial

and temporal resolution. The large scales of turbulence remain unmodified by the

filtering operation and are explicitly resolved in the simulation in space and time,

similar to DNS. This approach is referred to as Large-Eddy Simulation (LES). The

filtering operation introduces additional unknown terms in the momentum equa-

tions, which need to be modelled and which account for the effect of the unresolved

small scales on the resolved flow. LES is naturally more reliable and accurate than

traditional RANS modelling for the following two reasons. First, the large scales

of turbulence, which most significantly influence the transport of mass, momentum

and energy, and which are highly anisotropic and strongly depend on boundary

conditions, are explicitly resolved in the simulation. Second, the unresolved small

scales tend to be more universal than the large ones (at high Reynolds numbers)

and are mainly responsible for dissipating turbulence kinetic energy introduced at

the large scales. This makes the unresolved small scales easier to model, compared

to having to model the entire range of scales, including the anisotropic large scales,

in the RANS approach.

In order to remove the smallest scales from the flow a low-pass filter can be applied

to the velocity vector ui. The filtered velocity vector ui can be defined by

ūipx, tq �
» 8

�8

Gp∆,x� x
1quipx1

, tqd3x
1

, (4.1)

where Gp∆,x� x
1q represents a general filter kernel and ∆ the filter cut-off length

scale. For a box or top-hat filter, for example, the filter function is unity in case��x� x
1
�� ¡ Op∆q, and zero for the range

��x� x
1
��   Op∆q. Thus the filtering op-

eration removes all turbulence scales, which are smaller than Op∆q and leaves the

scales larger than Op∆q unmodified. The filter width ∆ usually corresponds to a

measure of the spatial resolution of the computational grid. It follows that the
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unresolved component of the velocity vector is given by u
1

i � ui � ui. Thus the

velocity field can be decomposed, similarly as in the RANS case, as ui � ui � u
1

i.

However, ui denotes the filtered velocity vector, which does not correspond to the

mean value. Contrary to Reynolds-averaging, double-filtering does not necessarily

reproduce the original filtered field, ui � ui. In addition, filtering the unresolved

velocity component does not necessarily result in zero, i.e. u
1

i � 0.

Substituting the decomposed quantities into the continuity and momentum equation

for incompressible flow and filtering the same yields the governing equation for the

filtered velocity field
Bui
Bxj � 0, (4.2)

Bui
Bt � Buiuj

Bxj � �1

ρ

Bp
Bxi � ν∇2ui � B

Bxj
�
τLESij

�
. (4.3)

Note that the filtered non-linear convection term uiuj can be written as

uiuj � pui � u
1

iq � puj � u
1

jq
� uiuj � puiuj � uiujq � puiu1

j � u
1

iujq � u
1

iu
1

j, (4.4)

which gives the following expression for the residual subgrid-stress tensor

τLESij � puiuj � uiujq � puiu1

j � u
1

iujq � u
1

iu
1

j. (4.5)

The residual stress tensor is obviously more complex than in the RANS case (recall

that τRANSij � u
1

iu
1

j). The additional terms account for the interaction of the resolved

flow field with both, the unresolved and resolved flow field.

Comparing the filtered equations with the RANS equations reveals that both ap-

proaches result in an un-closed momentum equation due to the appearance of τLESij

or τRANSij . The filtered and mean momentum equations are both derived without

specifying or knowing the exact form of the filtering kernel or averaging operation.

Therefore, the only difference between both approaches is the magnitude of the

unresolved turbulence velocity and length scales. Hence the magnitude of the extra

stress-tensor τLESij or τRANSij determines whether the RANS or filtered momentum

equations are recovered.
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4.1.1 Subgrid-Scale Modeling

The consequence of the additional term τLESij on the right-hand side of (4.3) is that

the system of equations is no longer closed. In order to close the system of equations,

this term needs to be modelled. It is common practice to model τLESij as a whole

rather than on a term by term basis. The model needs to account for the effect of

the turbulence scales, which are smaller than the grid size ∆ onto the resolved flow

field. The turbulence models in LES are therefore referred to as Subgrid-Scale (SGS)

Model . The smallest scales of turbulence mainly dissipate turbulence kinetic energy

by conversion into thermal energy. Therefore, assuming the turbulence structures

corresponding to the inertial subrange are well resolved, the SGS model merely

has to provide an adequate amount of dissipation such that the energy cascade is

correctly reproduced and no energy accumulates at the smallest resolved scales. For

this reason, SGS models are usually purely dissipative and do not aim at modelling

large amounts of unresolved stress. Within the finite-volume framework used here

to solve the governing equations, the truncation error of the numerical discretisation

introduces numerical dissipation, which provides an implicit filtering operation and

hence additionally drains energy from the resolved flow field. Therefore, in order

to ensure a physically consistent energy cascade the overall dissipative effect of the

SGS model and numerical framework needs to be optimised.

The SGS stress tensor τLESij is frequently modelled using the Boussinesq (1877)

approximation, which relates the subgrid-stress tensor to the filtered velocity field

using a Newtonian stress-strain relationship and a scalar turbulence viscosity νT ,

τLESij � 1

3
tr
 
τLESij

(
δij � �2νTS

�

ij. (4.6)

The most prominent subgrid-scale model has been proposed by Smagorinsky (1963)

and is still used today due to its simplicity. The Smagorinsky model shows close

resemblance to Prandtl’s mixing length model where the turbulence viscosity is

given by

νT9VTLT . (4.7)

In the context of LES, the characteristic length scale is assumed to be proportional

to the spatial resolution provided by the computational grid, with LT � CS∆,

where ∆ is frequently determined as the cube root of the cell volume ∆ � dV 1{3

or as ∆ � p∆x∆y∆zq1{3 for rectangular grids. Note that many other options are

possible to determine ∆. The characteristic velocity scale is given by VT � LT
��S�ij��,

where
��S�ij�� � b

2S�ijS�ij is the magnitude of the filtered strain-rate. Hence, the
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Smagorinsky model is given by

νT � pCS∆q2 ��S�ij�� . (4.8)

The constant CS is usually optimised to provide an inertial subrange energy spec-

trum for isotropic turbulence. The major shortcoming of the Smagorinsky model

is that the constant CS is, in reality, not universal and strongly depends on the

flow under consideration. Moreover, the model is not able to operate in DNS mode,

since the SGS model contribution only vanishes for infinitesimally fine grids where

∆ Ñ 0. Consequently, it is not suitable for transitional flows, since the model al-

ways returns νT ¥ 0, even in laminar flows. In addition, the Smagorinsky model

is purely dissipative and thus does not account for local or instantaneous backscat-

ter of energy from the unresolved to the resolved turbulence fluctuations. Beside

the traditional Smagorinsky model many other models exist. Some of them allevi-

ate the difficulties discussed above. The reader is referred to Sagaut (2001) for a

comprehensive overview of existing SGS models.

4.1.2 Wall Models

The region very close to the wall in a turbulent boundary layer is populated with

longitudinal streamwise structures, which are responsible for the transfer of energy

close to the wall. In order to resolve the driving mechanisms of the near-wall turbu-

lence, these streaky structures need to be resolved explicitly in LES and typically

require a grid resolution of at least ∆�
x � 100, ∆�

z � 20 and ∆�
y   2 , where

∆�
x , ∆�

y and ∆�
z are respectively the streamwise, wall-normal and spanwise non-

dimensionalised grid spacing in wall units (see, for example, Piomelli & Balaras,

2002). On the other hand, in the outer part of the boundary layer the dominant

structures scale with the boundary-layer thickness. Piomelli & Balaras (2002) esti-

mated the number of grid points required to adequately resolve the near-wall region

to be proportional to Re1.8. The resolution requirements for the outer region of

the boundary layer was estimated to be proportional to Re0.4. Assuming a time-

accurate simulation is performed the total computational cost scales as Re0.5 for

the outer layer and as Re2.4 for the inner layer of the boundary layer. The need to

resolve the turbulent near-wall structures in LES is considered the major bottleneck

of LES in high-Reynolds-number flows. In fact, for wall-bounded flows the required

computational resources are not very different from DNS, which currently prohibits

the application of LES at high Reynolds number.
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In order to make LES applicable for high-Reynolds-number wall-bounded flows the

near-wall dynamics cannot be computed explicitly in the simulation and therefore

need to be modelled. Performing LES on too coarse a grid in the near-wall region

is not an option, since it considerably deteriorates the results. Larsson et al. (2007)

investigated the performance of LES on coarse grids to predict the fully developed

flow in a planar channel. It was shown that the skin-friction coefficient was in error

by up to 40%. This is, because subgrid-scale models are generally not designed to

model a significant amount of the unresolved stress, which is required on too coarse

grids. The only way to reduce the cost of LES in high-Reynolds-number wall-

bounded flows is to employ suitable approximations to model the near-wall region

altogether. One approach to wall-modelled LES (WMLES) is to use wall functions,

which bridge the near-wall region of a turbulent boundary layer. Thereby, the first

grid point can be placed in the log-layer (y� ¡ 30) and the mean or instantaneous

velocity can be related to the wall shear-stress based on log-law relations. This

idea is analogous to wall functions in RANS modelling. The wall function approach

works fairly well for attached boundary layers and flows in equilibrium. For complex

flows with strong wall curvature and pressure gradient, and for separated flows, the

log-law assumptions do not hold.

More sophisticated wall models, which do not rely on log-law assumptions, are so

called Two-Layer Models (see, for example, Balaras & Benocci, 1994). Thin Bound-

ary Layer Models (TBLM) belong to this class of wall models and are based on a set

of simplified boundary-layer equations, which are solved on a separate grid embed-

ded between the first LES grid point and the wall and which employ an algebraic

wall-damped eddy-viscosity RANS model. Particularly for flows departing from the

log-law assumptions, this approach may help to provide improved predictions. The

results of TBLM models could obviously be further improved if the thin-boundary-

layer equations and the mixing length model were replaced by a RANS layer near

the wall, combined with a state-of-the-art RANS model. Such hybrid RANS/LES

approaches will be discussed in more detail in the subsequent chapter. The inter-

ested reader is referred to Piomelli & Balaras (2002), Cabot & Moin (1999) and

Sagaut (2001) for a more comprehensive review of existing wall-models in LES.

4.2 Statistically Unsteady Turbulence Modelling

The group of Statistically Unsteady Turbulence Modelling (Sagaut et al., 2006) or

second-generation Unsteady-RANS approaches (Froehlich & von Terzi, 2008) are
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formally based on the RANS paradigm. These approaches are distinctly different

compared to other LES and hybrid RANS/LES approaches, since they do not in-

corporate a grid-dependent filter width ∆ in the model equations. Nevertheless,

some of these approaches are able to fully resolve turbulence structures up to the

grid limit.

4.2.1 Unsteady RANS

In the RANS approach, as discussed in chapter 3, all variables are decomposed

into a mean and fluctuating part and Reynolds averaging is performed in order to

derive governing equations, which describe the evolution of the mean-flow field. In

statistically stationary flows, with no time variation of the mean flow, the Reynolds

averaging corresponds to a time-average operator, where the averaging time has to

be significantly larger than the characteristic turbulence time scale.

It is possible to solve the RANS equation in a time-accurate fashion. The application

of time-accurate or unsteady RANS (URANS) is particularly justified in situations

where unsteady boundary conditions, such as time dependent inflow conditions or

body motion, impose a low-frequency unsteadiness on the mean-flow field. The time

variation of the mean-flow field has to be significantly slower than the characteristic

turbulence time scale, or in other words, there needs to be a clear separation (or

spectral gap) between the mean and turbulence time scale. Under such conditions,

the Reynolds averaging and equilibrium calibration of the RANS models for sta-

tistically steady-state flows remain valid, and URANS is justified. There are other

situations, for example, in bluff body flows with massive separation, where URANS

will resolve some unsteadiness, which is triggered by strong, internal instability

mechanisms of the flow. The resolved large-scale flow structures, directly interact

and influence the mean flow and are not distinguishable from real turbulence, i.e.

there is no spectral gap between the resolved large-scale structures and turbulence

fluctuations. As a consequence, the RANS equations are formally not applicable

in this situation. In addition, the calibration procedure of the closure constants in

the RANS model, which aim at reproducing mean-flow quantities of a statistically

steady-state flow, becomes questionable. Nevertheless, it has been shown in Shur

et al. (2005) and Travin et al. (2004a), that when URANS is applied in a three-

dimensional computational domain, as it is used in LES, improved predictions can

be obtained over steady RANS or even 2D-URANS. The improvements are related

to the capability of URANS to explicitly resolve the dominant three-dimensional

flow structures, which directly interact and influence the mean flow.
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For unsteady flows which contain an organised, periodic motion, the Reynolds de-

composition can be extended to a triple decomposition. Following the proposal of

Hussain & Reynolds (1970), the decomposition for the velocity vector can be written

as

ui � ui � rui � u
1

i, (4.9)

where ui is the time-mean value, rui is the contribution of the organised motion, and

u
1

i is the random, fluctuating part of turbulence. The organised part is equivalent

to rui � xuiy � ui, where the brackets x.y correspond to a phase-average procedure

or a conditional ensemble average at the same phase, that occurs at the time in-

tervals tn � nT , where T is the time-cycle of the periodic motion. Based on the

triple decomposition of variables Reynolds & Hussain (1972) derived the conser-

vation equations for the mean velocity ui and for the organised motion rui. It is

shown, that the resulting mean-momentum equations contain the Reynolds stress

�u1

iu
1

j, which accounts for the interaction of the turbulence with the mean flow, and

additionally, the Reynolds stress �ru1

iru1

j of the organised motion, which accounts for

the interaction of the organised motion with the mean flow.

An alternative to the triple decomposition is the decomposition into coherent and

incoherent part according to ui � uci � uici . The coherent part correspond to the

organised motion and the incoherent part to the small scale turbulence fluctuations.

The coherent part, uci � ui � rui, is directly computed from the phase-averaged

Navier-Stokes equations and the incoherent part, uici � u
1

i, is modelled using a RANS

closure. Note that the phase-averaged conservation equations are identical to the

URANS equations. Nevertheless, the modelled contribution is different between

both approaches, since the length and time scales are not the same (see Sagaut

et al., 2006). The decomposition into a coherent and incoherent part is also referred

to as the Semi-Deterministic Method or Organized-Eddy Simulation.

The RANS closure aims at modelling the effects of the entire spectrum of turbulence

on the mean flow and hence, all turbulence kinetic energy is statistically represented

by the RANS model. In a resolved flow field, with small scale turbulence, the

length-scale-providing equation of traditional RANS closures does not produce the

correct length-scale or dissipation rate. The reason being, that the length-scale-

providing equation does not contain any information about the grid spacing, nor

is sensitive to the resolved turbulence length scales present in the flow. Thus, in

situations with explicitly resolved turbulence fluctuations and resolved turbulence

kinetic energy, the contribution of the turbulence model has to be reduced and

only a fraction of the turbulence kinetic energy needs to be statistically represented
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by the turbulence model. This is not the case for traditional RANS models and

the reason why URANS models are overly diffusive and damp most of the flow

unsteadiness associated with resolved turbulence fluctuations. Again, the main

problem of traditional URANS is, that the length-scale-providing equation does not

produce the correct length-scale or turbulence dissipation rate when the resolution

of the computational grid is fine enough to allow for an explicitly resolved flow

field. This is an artefact of the calibration procedure, which aims at reproducing

mean-flow quantities of the flow. For example, homogeneous shear flow is used

to calibrate the length-scale-providing equation. For homogeneous shear flow the

transport equations for the turbulence kinetic energy and turbulence dissipation

rate reduce to
dk

dt
� Pk � ε,

dε

dt
� Cε1

ε

k
Pk � Cε2

ε2

k
. (4.10)

In the limit of an asymptotic equilibrium state, the time scale k{ε and turbulence

production to dissipation ratio Pk{ε, amongst others, reach constant values. The

equations above can be combined to yield

d

dt

�
k

ε



8

� p1 � Cε1q
Pk
ε
� p1 � Cε2q � 0. (4.11)

This may be rewritten in the following form�
Pk
ε



8

� Cε2 � 1

Cε1 � 1
. (4.12)

The closure coefficients of the ‘standard’ k-ε model (Jones & Launder, 1972) yields

a turbulence production to dissipation ratio pPk{εq8 � 2.1. It is shown in Girimaji

et al. (2006) that the ratio of unresolved to total turbulence kinetic energy ksgs{k
approaches almost unity, independent of the initial conditions, as a long-time be-

haviour. This has the consequence that any initially well-resolved flow field with

small-scale turbulence, where the modelled turbulence kinetic energy ksgs is small,

will eventually approach a state where all fine scale turbulence in the flow field is

eliminated and most of the turbulence kinetic energy is contained in the modelled

contribution ksgs. This long-time behaviour of the URANS equations is linked to

a too high value of the turbulence kinetic energy production to dissipation ratio of

pPk{εq8 � 2.1. In case of resolved turbulence content in the flow field, most of the

production Pk directly increases the velocity fluctuations and hence the resolved

turbulence kinetic energy and only a small part increases the unresolved (modelled)

turbulence kinetic energy, i.e. Pksgs   Pk. Since εsgs � ε in situations where the
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dissipative scales are not explicitly resolved, it follows that the turbulence produc-

tion to dissipation ratio of the modelled scales Pksgs{εsgs has to be smaller than the

URANS value, i.e. Pksgs{εsgs   Pk{ε. Relation (4.12) is particularly useful, since it

reveals possible routes to modify the URANS equation in order to resolve or sustain

turbulence. The key issue here is that the production to dissipation ratio needs to

be reduced by suitable modifications. One possibility is to increase the dissipation

rate by employing an inertial range scaling of the form ε9k3{2{∆. This is, for exam-

ple, the idea of Detached Eddy Simulation based on a two-equation model, which

will be discussed in section 4.3. Alternatively, the turbulence production Pk can

be reduced by applying a damping function to the Reynolds-stress tensor or the

turbulence viscosity. This is, for example, the idea of the Flow Simulation Method-

ology (see discussion in section 4.3). A third possibility is based on modifying the

closure constant Cε2 . For example, for Cε2 � Cε1 the URANS equation will operate

in DNS mode where any turbulence model contribution will vanish. This forms the

basis of the Partially-Averaged Navier-Stockes approach of Girimaji (2006) and the

Partially-Integrated Transport Model of Schiestel & Dejoan (2005).

4.2.2 Scale-Adaptive Simulation

The Scale-Adaptive Simulation (SAS) methodology is formulated based on the k-

kLI model of Rotta (1968) where, LI is the turbulence integral length scale and k

the turbulence kinetic energy. In the original attempt of Rotta (1968) to model the

exact kLI equation a sink term was introduced, which contained the third derivate

of the velocity field. Menter et al. (2003) (see also Menter & Egorov, 2010) have

proposed a new model for this term, which includes the second derivative of the

velocity field. The sensitivity of the length-scale providing equation to the second

derivative of the velocity field introduces some remarkable features to the k-kLI

model. For flows with sufficiently strong instabilities the model contribution is au-

tomatically reduced and fine-scale turbulence structures are allowed to develop up

to the grid limit, without any explicit grid dependency, as in LES. On the other

hand, for flows with only weak instabilities the model operates in RANS mode. The

capability to automatically adapt the model contribution to the turbulence length

scales present in the flow is highly desirable, since it will eventually revert back to

RANS mode when the spatial or temporal resolution is insufficient to support the

explicit resolution of turbulence structures. None of the present LES methodolo-

gies or other hybrid RANS/LES formulations provides such capabilities and instead
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require that the spatial and temporal resolution is sufficient to support the resolu-

tion of turbulence scales well within the inertial subrange. If this is not case, the

predictive accuracy of LES will deteriorate.

The SAS concept is not limited to the kLI scale providing equation. It can also

be used with, for example, the specific turbulence dissipation rate ω. Menter &

Egorov (2005) have transformed the k-kLI formulation to a formulation based on

the k-ω-SST model. The consequence of this transformation is the appearance of a

new source term PSAS in the equation for the specific turbulence dissipation rate,

thus the k and ω equations are given by

Dk

Dt
� Pk � β�kω � B

Bxj

�
pν � σkνT q BkBxj

�
, (4.13)

Dω

Dt
� γ

ω

k
Pk�PSAS�βω2� B

Bxj

�
pν � σωνT q BωBxj

�
�2p1�F1qσω2

1

ω

Bk
Bxi

Bω
Bxi . (4.14)

The additional source term has been modified since the very first proposal. Here,

the formulation given in Egorov & Menter (2007) is used. The source term takes

the from

PSAS � max

�
ζ2κS

2

�
LT
LvK


2

� C
2k

σΦ

max

�
1

ω2

Bω
Bxj

Bω
Bxj ,

1

k2

Bk
Bxj

Bk
Bxj

�
, 0

�
, (4.15)

where S � a
2SijSij and LT � k1{2{

�
C

1{4
µ ω

	
. The SAS formulation was tested on

decaying homogeneous isotropic turbulence and it was found that the model is not

dissipative enough and results in an artificial accumulation of energy at the smallest

resolved scales. As a consequence, the v. Karman length scale LvK , which contains

the second derivative of the velocity field, had to be limited to be no smaller than

the minimum resolvable scales, which are of the order of the grid spacing ∆ � dV 1{3.

Thus the limited v. Karman length scale is given by

LvK � max

�
κS

|∇2U | , CSAS
d

κζ2

β
β�

� γ
∆

�
, (4.16)

where CSAS is a calibration constant, which depends on the discretisation scheme.

For the commercial Ansys CFX solver the constant is given as CSAS � 0.11. The

other extra closure coefficients of SAS are given by ζ2 � 3.51, σΦ � 2{3 and C � 2.

Davidson (2006) has evaluated the performance of SAS based on the k-ω-SST model

compared to steady and unsteady RANS predictions for the flow in planar channel,
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asymmetric plane diffuser and around a three-dimensional axisymmetric hill. For

the flow in the diffuser the SAS model was found to perform worse than the URANS

model. It was argued that in this specific case the SAS model operates in a grey

area, where the model is neither in RANS nor in LES mode. The axisymmetric

hill was poorly predicted by all models. In both cases the turbulence viscosity

was over predicted compared to other hybrid RANS/LES methods. Egorov et al.

(2010) conducted a similar study and compared SAS to steady and unsteady RANS

predictions for a range of applications of practical interest. It was found that SAS

may provide improved prediction over steady and unsteady RANS predictions for

the range of test cases considered.

4.2.3 Turbulence-Resolving RANS

A Turbulence-Resolving RANS (TRRANS) formulation has been presented in Travin

et al. (2004a). TRRANS is a simple modification to Wilcox’s k-ω RANS turbulence

model, which effectively lowers the predicted turbulence viscosity and hence allows

for turbulence fluctuations to develop. In the equation for the turbulence kinetic

energy the turbulence dissipation rate is modelled as

εTRRANS � pβ�ωkq � max

��1,

� ��S�ij��
CT

��Ω�
ij

��
�2

�� , (4.17)

with the strain-rate and vorticity magnitude
��S�ij�� and

��Ω�
ij

��, respectively. Depending

on the ratio of strain-rate to vorticity magnitude, the dissipation of turbulence

kinetic energy k is increased. This has the consequence that the magnitude of

k and the resulting turbulence viscosity is reduced. The ratio of strain-rate to

vorticity magnitude controls whether the turbulence dissipation is increased above

the RANS level. For example, in thin shear flows where
��S�ij�� � ��Ω�

ij

�� or in general,

where
��S�ij�� ! ��Ω�

ij

�� the TRRANS formulation operates in RANS mode. In strain

dominated flows where
��S�ij�� " ��Ω�

ij

�� the turbulence dissipation is increased and

TRRANS operates in a LES-type mode. The constant CT is calibrated to provide

the correct amount of dissipation in decaying homogeneous isotropic turbulence and

is given as CT � 1.25.

Travin et al. (2004a) applied the TRRANS formulation to a range of test cases,

such as boundary layers, an airfoil at 45� angle of attack, a cylinder with laminar

separation and a backward facing step. The results of TRRANS, when applied to

a boundary layer, is consistent with a steady RANS solution. The flow around the
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airfoil and cylinder are qualitatively similar to the results of other hybrid RANS-

LES methods. However, for the backward facing step TRRANS was not able to

sustain any turbulence fluctuations and converged to a steady 2D solution. This

is a somewhat disappointing result, because other hybrid methods perform well for

this test case.

4.2.4 Partially-Averaged Navier-Stokes

The Partially-Averaged Navier-Stokes (PANS) model was proposed by Girimaji

(2006) and Girimaji et al. (2006) and employs two resolution control parameters,

namely the ratio of unresolved to total turbulence kinetic energy fk � ksgs{k and

the ratio of unresolved to total turbulence dissipation rate fε � εsgs{ε to control

the damping or extent of partial averaging employed in the RANS model. For

fk � 1, PANS is consistent with full statistical modelling (RANS) and for fk � 0,

the contribution from the RANS model vanishes and PANS is operating in the DNS

limit. The result of the partial averaging are transport equations, which govern the

evolution of the unresolved turbulence kinetic energy ksgs and turbulence dissipation

rate εsgs. The effect of partial averaging, which is determined by the resolution

control parameters, is limited to the closure coefficients of the transport equations

and does not change the constitutive relations of the RANS model. For a k-ε

model the closure coefficient Cε2 is replace by CPANS
ε2

� Cε1 � fk pCε2 � Cε1q. In

the original PANS formulation, appropriate values for the parameters fk and fε

had to be specified prior to the simulation and were assumed constant in the entire

domain. For a resolution with a cut-off wavenumber within the inertial subrange,

the parameter fε is set to unity and fk is the only relevant parameter. This makes

the implementation of PANS into an existing RANS solver straightforward and only

requires to change the value of Cε2 . Later extensions to PANS redefine the resolution

control parameter fk to be a function of the grid spacing ∆ (see, for example,

Abdol-Hamid & Girimaji (2004), Elmiligui et al. (2004) and Song & Park (2009)).

PANS has also been extended to the k-ω model framework (see Lakshmipathy &

Girimaji, 2006). For k-ω models the closure constant β has to be replaced by

βPANS � γβ� � fkpγβ� � βq. The PANS approach seems very appealing, since the

subgrid-scale turbulence dissipation rate εsgs is obtained from a transport equation

and not from an algebraic relation of the form εsgs9k3{2{∆, as used in many subgrid-

scale models. The transport equation is believed to be superior over the algebraic

relations, since it naturally includes effects such as production, dissipation and

transport of the subgrid-scale turbulence dissipation rate εsgs. It is difficult to assess
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the performance of the PANS approach, since the number of test and validation cases

are very limited or do not allow for a rigorous comparison with reference data.

4.3 Overview of Hybrid RANS/LES Methods

In this section a review of some existing hybrid RANS/LES methodologies will

be presented. All of these methodologies aim at reducing the cost of LES in the

near-wall region and hence make LES applicable for high-Reynolds-number wall-

bounded flows. Since large parts of the flow are explicitly resolved, hybrid RAN-

S/LES methods are expected to be naturally more accurate in predicting complex

flows compared to traditional RANS closures.

All hybrid RANS/LES methods can be grouped into two different categories. In

this work the terminology of Froehlich & von Terzi (2008) is adopted where hybrid

RANS/LES methods are classified as ‘unified’ and ‘segregated’ approaches. Another

possibility is to group hybrid RANS/LES methods into ‘global’ and ‘zonal’ hybrid

RANS/LES approaches (see, for example, Sagaut et al., 2006). Unfortunately,

the word ‘zonal’ is not used consistently in the literature and the classification of

Froehlich & von Terzi (2008) is therefore preferred.

Segregated hybrid RANS/LES approaches

In segregated modelling the computational domain is divided into different sub-

zones in which the different modelling concepts, RANS or LES, are applied. In

addition to switching the underlying turbulence modelling concept it is also possible

to switch the numerical discretisation or solver strategy. In this way, the sub-zones

can be tailored to the flow problem under consideration such that RANS is applied

in regions where it is expected to provide reliable predictions and that LES is

applied in regions with complex flow or where the RANS model is expected to

provide an insufficient representation of the flow. In addition, higher-order low-

dissipation schemes can be used in the LES region and a more robust scheme with

increased levels of numerical dissipation in the RANS zones. For complex three-

dimensional computational domains with multiple bodies, decomposing the domain

into suitable sub-zones is not a trivial task at all and may explain why segregated

modelling, despite some theoretical advantages over unified modelling, is currently

not supported by any commercial CFD code.

In contrast to unified modelling, segregated modelling is based on an entirely dis-

continuous treatment of flow variables, for example, the velocity field across the
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interface. Even though the zones are formally treated segregated of each other, in-

formation needs to be exchanged across the interface in both directions. Therefore,

the exchange of information across the interface and specifying appropriate bound-

ary conditions to each zone are the key issues in segregated hybrid RANS/LES

approaches.

The main problem of specifying inflow boundary conditions for an LES zone down-

stream of a RANS zone is that the RANS zone only provides mean flow quantities.

The LES approach, in turn, relies on the existence of resolved turbulence fluc-

tuations. Consequently the LES inflow conditions are prescribed by using mean

flow quantities from the RANS zone and superimposing turbulent fluctuations to

yield time-dependent boundary conditions. The influence of inflow conditions was,

amongst others, studied by Aider & Danet (2006), where the importance of bound-

ary conditions with realistic turbulence structures was demonstrated. The influence

of unphysical boundary conditions can persist for a long downstream distance and

may deteriorate the results. Therefore, considerable effort has been put into the

development of techniques to create physically realistic turbulent fluctuations at

LES inflow boundaries. For an overview of existing techniques the reader is referred

to Sagaut (2001) and Sagaut et al. (2006). Appropriate inflow boundary conditions

for a RANS zone downstream of an LES zone are usually obtained by calculating

averaged/mean quantities in the LES zone. These quantities are then used as in-

flow boundary conditions for the RANS zone. A complete specification of boundary

conditions to the RANS zone also requires boundary conditions for the transported

quantities used in the turbulence model. The evaluation of the turbulence dissi-

pation rate ε based on LES quantities is not straightforward. A robust alternative

would be to solve the turbulence model equations in the LES zone using mean flow

quantities (see Quemere & Sagaut, 2002). This method, however, is not able to

conserve the total (modelled plus resolved) turbulence kinetic energy of the LES

zone across the interface.

Appropriate outflow conditions for the LES zone are also important. It is shown

in Schluter & Pitsch (2001) that the LES outflow boundary condition may have

an impact on the entire flow field in the LES zone. The outflow boundary condi-

tions of the LES zone needs to be designed such that it allows information from

a downstream RANS zone to propagate upstream into the LES zone. Schluter &

Pitsch proposed a method to match the mean-flow quantities of the LES zone to a

RANS solution in an overlap region using an additional body force in the momen-

tum equations. It is also important that the LES outflow boundary conditions do

allow fluctuations to leave the domain without giving rise to spurious reflections.
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The issue of specifying outflow conditions for the RANS zone is very similar to that

of an LES outflow boundary. The outflow boundary condition needs to allow in-

formation about the mean-flow from the downstream LES zone to travel upstream.

Celic (2004) suggested a RANS outflow condition similar to the outflow condition

for LES, where a body force is applied in a forcing region to match RANS quantities

with averaged/mean LES quantities.

Unified hybrid RANS/LES approaches

The characteristic feature of all unified hybrid RANS/LES approaches is that the

flow quantities are continuous across the RANS/LES interface. The switch from

RANS to LES can be achieved by modifying the underlying RANS model to a

subgrid-scale model or by altering terms in the turbulence model formulation. The

switching may be controlled by blending functions or by comparing characteris-

tic quantities such as the turbulence length scale and grid spacing or the mag-

nitude of different turbulence viscosity norms. The switching location may even

be pre-determined, similar to the segregated approaches. The difference of unified

approaches compared to segregated modelling is that no boundary conditions are

specified at the interface location between RANS and LES zones and vice versa. In-

stead, the resolved flow propagates by convection and diffusion across the interface.

This has the consequence that, for example, an LES zone downstream of RANS

zone is not supplied with resolved turbulence fluctuations. Therefore, the spectrum

of turbulence scales has to be generated in the LES zone by natural instability

mechanisms of the flow. This leads to the existence of a ‘grey area’ where the hybrid

approach reduces the model contribution to an LES level but resolved turbulence

(resolved stress) does not yet exist to compensate the reduction of modelled stress.

Obviously, the weaker the instability mechanisms in the flow the longer it takes to

generate resolved turbulence fluctuations. The segregated approach alleviates the

existence of grey areas, since appropriate boundary conditions are specified at the

LES inflow boundary, which contain turbulence fluctuations superimposed onto the

mean flow.

4.4 Comments on Unified RANS/LES Methods

In hybrid RANS/LES modelling different possibilities exist how the cost of LES in

the near-wall region can be alleviated. The first and most rigorous one is to treat

the entire attached boundary layer in RANS mode and to switch to LES mode
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outside the boundary layer. The second option is to initiate the switch from RANS

to LES close to the wall such that only the near-wall region is treated as RANS and

the outer layer of the boundary layer is treated in LES mode, thus functioning as

WMLES. This seams reasonable due to a week Reynolds number scaling (Re0.5) of

the computational cost in the outer layer of the boundary layer.

A common flaw shared by all unified hybrid RANS/LES methods is the existence of

a ‘grey area’ where the model switches form RANS to LES modelling. Grey areas

are mainly an issue if the entire attached boundary layer is treated in RANS mode

and not so much for WMLES where turbulence is resolved in the outer region of

the boundary layer. If the entire boundary layer is modelled in RANS mode no re-

solved turbulence fluctuations exist and all turbulence kinetic energy is statistically

represented by the RANS model. As the hybrid model switches to LES mode the

model contribution reduces and turbulence is allowed to develop. Since the RANS

layer does not contain any turbulence fluctuations, natural instability mechanisms

transfer energy into resolved turbulence fluctuations, which will eventually result

in fully developed turbulence. Therefore, modelling the entire boundary layer in

RANS mode is particularly justified in the presence of strong instability mecha-

nisms, which quickly generate resolved turbulence and hence limits the extent of

the grey area. Examples of such flows include cavities, wakes, massive separation

and so on. In cases where only weak stability mechanisms exist, the transition

from a RANS to LES flow field will be comparably slower and the flow may take a

long time to generate turbulence fluctuations, which compensate the reduction of

modelled stress. For such scenarios WMLES seem better justified.

Using a unified hybrid RANS/LES method to provide WMLES capabilities is also

not trouble free. Since the near-wall region is treated in RANS mode the energy-

producing events close to the wall, which generate and transfer turbulence kinetic

energy into resolved turbulence fluctuations, is suppressed by the RANS model.

Consequently, the LES region away from the wall is not fed with these resolved,

energy-carrying turbulent structures. Again, switching the model from RANS to

LES mode and the associated reduction of modelled stress does not imply an in-

stantaneous change of resolved turbulence fluctuation at the switching location.

The reduction of modelled Reynolds-stress is not instantly compensated for by re-

solved turbulence fluctuation (resolved stress). The result is a drop of total (mod-

elled+resolved) stress. It was shown in Nikitin et al. (2000) that the switch from

RANS to LES mode inside the boundary layer causes an under-prediction of the skin

friction coefficient by about 15%. In addition the mean-velocity profile exhibited a

modelled log layer (from the RANS model) and a resolved log layer predicted by the
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LES model. Unfortunately, the modelled and resolved log-layer show a mismatch of

several u� units compared to DNS data. Similarly, Baggett (1998) investigated the

fully developed channel flow at Reτ � 1000 using a WMLES hybrid RANS/LES

approach. Unrealistically high velocity fluctuations close to the wall combined with

unphysically large streamwise vortices and streaks were observed near the wall.

Consequently, it was claimed that merging RANS and LES in the near-wall region

is unlikely to be successful where an accurate mean flow and accurate turbulence

statistics are required. Piomelli et al. (2003) investigated the sensitivity of the re-

solved log layer depending on the interface location between RANS and LES. It was

found that when the interface was moved closer to the wall, the resolved log layer

was also shifted closer to the wall. The unphysical near-wall turbulence structure

could not be removed completely. Subsequent attempts to eliminate the log-layer

mismatch are based on superimposing turbulence fluctuations at the interface with

the purpose of providing improved physical boundary conditions to the LES region

and disrupting the development of unphysical large structures close to the wall. A

large range of subsequent studies have examined the effect of adding turbulence fluc-

tuations at the interface location when RANS is used to bridge the near-wall region.

This approach has been effective in reducing the log-layer mismatch. The interested

reader is referred to Cabot & Moin (1999), Dahlstrom & Davidson (2003), Batten

et al. (2003, 2004), Piomelli et al. (2003), Davidson & Billson (2006), Benarafa et al.

(2006), Hamba (2003, 2006), Keating & Piomelli (2006) or Larsson et al. (2006) for

further details.

4.5 Unified Hybrid RANS/LES Methods

4.5.1 Blending Approaches

Blending approaches in hybrid RANS/LES have been published in various forms.

The most general form of the blending approach is a linear combination of RANS

and LES quantities according to φhybrid � FφRANS � p1 � F qφLES, where F is a

blending function. The arbitrary quantity φ may stand for the modelled stress

tensor τij, the turbulence viscosity νT or the transport equation for the turbulence

kinetic energy k and its dissipation rate ε.

Baurle et al. (2003) used the blending technique of Menter to construct a linear

combination of a one-equation subgrid-scale model and RANS turbulence model. In

addition to blending the equations for the turbulence kinetic energy, the turbulence
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viscosity is blended as well. Using the blending function F1 or F2 proposed by

Menter enforces a transition from RANS to LES away from the wall even though the

grid is too coarse to support LES. To avoid a switch in areas where the grid cannot

support LES the blending function is modified, inspired from Limited-Numerical-

Scales by Batten et al. (2002) (see discussion following later in this chapter). This

modification ensures that the RANS equations are retained if the SGS viscosity is

greater than the RANS viscosity. The blending function is given by

F � max
�
tanhpη4q, FLNS

�
, (4.18)

where η � max
�
LT {d, 500νCdLT {

�
d2k1{2

��
and FLNS � min

�
νSGS{νRANS, 1�. Bau-

rle et al. applied this blending approach to incompressible Poiseulle flow, supersonic

base flow and supersonic flow over a cavity and observed improved accuracy in the

prediction over traditional RANS models.

Xiao et al. (2004) used a blending function to combine a one-equation subgrid-

scale model with a k-ζ (enstrophy) model. In addition to blending the transport

equations, the turbulence viscosity is blended as well. Three different blending

functions were proposed. The first blending function is designed to be explicitly

independent of the grid and the geometry and takes the form FvK � tanhplvK{α1λq2,

where LvK is the von Karman length-scale and α1λ is proportional to the Taylor

microscale. The second blending function explicitly depends on the distance to the

nearest wall, Fd � tanhpd{α1λq2. The third blending function explicitly depends on

the grid resolution, F∆ � tanhpLT {α2∆q2. The constants α1 and α2 where chosen

such that the blending functions reach a value of 0.5 in the log-law region. The

blending approach was tested for the compressible flow over a compression ramp

and a compression-expansion corner and partly improved the predictions compared

to the unmodified k-ζ turbulence model.

The blending function approach has also been used by Abe (2005) and Inuzuka

& Abe (2007) to combine an anisotropy-resolving eddy-viscosity turbulence model

with a SGS model. Both use a blending of the Reynolds-stress tensor and the

subgrid-stress tensor. The following blending function is used:

F � 1�exp
��py{ pChb∆qq6�, where Chb � 4.0 and ∆ �a

max p∆x∆y,∆y∆z,∆z∆xq.
Both applied the hybrid method to fully developed plane channel flow. It was shown

that anisotropy-resolving turbulence models are effective in improving the predic-

tion of the near-wall anisotropy and the accuracy of the total Reynolds-stress tensor

(resolved plus modelled.)



74 Chapter 4 Turbulence-Resolving Approaches

Baggett (1998) has examined the feasibility of supplementing a SGS model with

a RANS model in the near-wall region using a blending approach. Two different

formulations were suggested

τij � 1

3
τkkδij � � �p1 � F q νSGST � FνRANST

�
S
�

ij, (4.19)

and

τij � 1

3
τkkδij � �νSGST

�
S
�

ij � p1 � F q
A
S
�

ij

E�
� FνRANST

A
S
�

ij

E
, (4.20)

where νSGST is determined from the dynamic Smagorinsky model and νRANST is

determined from the v2-f model of Durbin (1995a). The angle brackets xy denotes

a time-averaged quantity. Baggett tested the proposed models using channel flow

at Reτ � 1000. No specific form of the blending function F has been proposed,

instead Baggett estimated the blending function using a mean momentum balance

prior to the simulation. The blending function ensures that for F � 0, LES is

recovered and for F � 1, RANS is recovered. The results of Baggett show improved

mean-flow results. However, the turbulence velocity fluctuations close to the wall

were found to be far too high and are combined with an artificial near-wall structure

with streamwise streaks too large in spanwise direction.

A similar approach was proposed by Uribe et al. (2010) where a blending of the

following form is used

τij � 1

3
τkkδij � �2νSGST F

�
S
�

ij �
A
S
�

ij

E�
� 2p1 � F qνRANST

A
S
�

ij

E
. (4.21)

The turbulence viscosity νSGST is computed from the Smagorinsky model using the

fluctuating strain-rate tensor pS�ij �
A
S
�

ij

E
q and νRANST is obtained from an elliptic-

relaxation RANS model. The first term on the right-hand side contains the fluctuat-

ing strain-rate tensor, which in the mean does not contribute to the Reynolds-stress

tensor. The second term on the right-hand side is evaluated using the mean strain-

rate tensor and hence determines the mean shear stress and velocity profile. The

blending function needs to be designed such that it approaches unity where the

resolution of the computational grid is sufficient to resolve most of the turbulence

fluctuations (away from the walls) and is zero in regions where the flow is under-

resolved, such as close to the wall. The blending function used in Uribe et al. (2010)

is given by F � tanh pClLT {∆q. Encouraging results have been obtained for the

separated flow over a trailing edge and for planar channel flow up to Reτ � 4000.

The channel flow results did not show the commonly observed log-layer mismatch.
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4.5.2 Layering RANS and LES

The concept of layering RANS and LES is inspired by the two-layer wall model

for LES, as discussed in section 4.1.2, where the thin-boundary-layer equations are

replaced by a RANS layer and a state-of-the-art RANS turbulence model. In the

hybrid RANS/LES approach the grid is split up into two different regions. This is

either done by specifying a separating grid line prior to the simulation or by using

an adaptive interface location, which adjusts itself in the course of the simulation.

Davidson & Peng (2003) use a one-equation SGS model and a k-ω RANS model.

A pre-selected grid line determines the switching location. The grid line is chosen

such that the switch occurs in the log-region of the attached boundary layer. At the

switching location y� an additional constraint is placed on ω, namely Bω{By|y� � 0.

The results for a fully developed planar channel flow show the typical unphysical

kink in the mean-velocity profile at the interface location. Results were also obtained

for the flow over periodic 2D hills in a channel, which predicted the correct velocity

field with moderate success.

Hamba (2003) has observed that the turbulence viscosity drops sharply at the in-

terface location from a high RANS level to the much lower LES level. In order

to avoid this problem Temmerman et al. (2005) and Tessicini et al. (2006) placed

the constraint νLES,modT � νLES,resT � νRANS,modT � νRANS,resT on the turbulence vis-

cosity at the interface. Therefore, the following relation must hold at the interface:

Cµ,int � νLES,modT {pfµk2{εq or in the mean, xCµ,inty �
A
νLES,modT

E
{xfµk2{εy. In order

to satisfy a smooth transition between the RANS and LES region, the constant Cµ

of the RANS model is modified to satisfy this constraint. It is proposed in Tem-

merman et al. (2005) to use the following modified relation for Cµ in the RANS

model:

Cµ �
$&% 15

40�y�

�
0.09 � pCµ,int � 0.09q 1�expp�y{∆q

1�expp�yint{∆intq

	
, if y�   25

0.09 � pCµ,int � 0.09q 1�expp�y{∆q
1�expp�yint{∆intq

, if y� ¡ 25

and where the subscipt ‘int’ denotes quantities evaluated at the interface location.

This relation effectively damps the excessive level of turbulence viscosity close to

the interface produced by the RANS model. The hybrid method has been applied

to a fully developed planar channel flow where the switching location was fixed at a

pre-defined wall distance y� and the flow over periodic 2D hills in a channel where

the switching location was fixed using a grid line. The channel flow showed an
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unphysical kink in the mean-velocity profile and the recirculation zone behind the

hill was found to be too long but only weakly dependent on the interface location.

Switching the turbulence model formulation at a pre-determined grid line is not

practical for three-dimensional geometries. Similarly, switching at a certain wall

distance y� is also problematic due to the inherent scaling with the wall shear

stress. Breuer et al. (2007a,b) have employed a dynamic switching criterion, which

is somewhat more robust and more generally applicable. The switching location is

determined based on the non-dimensional wall distance y� � k1{2y{ν, which offers

the advantage of being applicable in regions where the wall shear-stress vanishes,

such as close to the separation point. In regions where y�   Cy� , the RANS model

is active and for y� ¡ Cy� the hybrid model operates in LES mode. The switching

location was chosen as Cy� � 60.

4.5.3 Detached Eddy Simulation

The most prominent hybrid RANS/LES method is called Detached Eddy Simula-

tion (DES). A lot of effort has focused on testing, validating and improving the

formulation of DES. The initial version of DES was proposed by Spalart et al.

(1997) and is based upon the one-equation turbulence model of Spalart & Allmaras

(1992). In DES the switch from a RANS to LES mode is achieved by modifying

a term in the transport equation of the RANS turbulence model. The destruction

term in the transport equation for the modified turbulence viscosity ν̃ of the Spalart

& Allmaras model is proportional to pν̃{dq2, where d is the wall distance. In the

DES formulation, the RANS length scale d is replaced with a hybrid length scale

defined as d̃ � minpd, CDES∆q, which away from the wall, reduces the magnitude

of the turbulence viscosity νT . In regions where d   CDES∆, the model operates in

RANS mode and for d ¡ CDES∆, the model operates as a SGS model. The model

constant CDES is analogous to the Smagorinsky constant CS and determined from

decaying homogeneous isotropic turbulence as CDES � 0.65. It should be noted

that the idea of DES to replace the RANS length scale with a hybrid DES length

scale is not limited to the Spalart & Allmaras model. Travin et al. (2004b), for

example, transformed the k-ω-SST model into a DES formulation by rewriting the

dissipation term in the turbulence kinetic energy equation as ε � k3{2{LDES with

LDES � min rLT , CDES∆s and LT � k1{2{β�ω. Therefore, in LES mode the tur-

bulence dissipation rate is determined from the algebraic relation ε � k3{2{CDES∆.

DES has also been used in conjunction with non-linear eddy-viscosity turbulence

models (see Bunge et al. (2007) or Mockett (2009)).
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The natural use of DES is to treat the entire boundary layer in RANS mode and to

switch to LES outside the boundary layer. For this reason the length scale ∆ has

been defined as ∆ � maxp∆x,∆y,∆zq, which helps to maintain a RANS mode in

boundary layers where highly anisotropic cells are usually used. Nevertheless, the

location where DES switches from a RANS to LES mode depends on the grid design.

It is the user’s responsibility to supply a grid properly designed for DES, such that

the switch occurs at the correct location, i.e. outside the boundary layer. In order

to handle the entire boundary layer in RANS mode the grid needs to be designed

such that the boundary layer thickness δ   CDES∆. The intricate griding issue

inherent in DES has led to publications giving explicit guidelines on how to design

suitable grids for DES (see Spalart, 2001). Unfortunately, there are many possible

scenarios where it cannot be guaranteed that the entire boundary layer is handled

in RANS mode, e.g. in cases where thick boundary layers are involved such as close

to the separation point, in grid convergence studies, in regions with high geometric

curvature and when using unstructured meshes. In such cases it is very likely that

the switch from RANS to LES occurs inside the boundary layer. This poses a

possible danger, particularly if the computational grid in the LES region is too

coarse, since the turbulence viscosity is reduced but the coarse resolution does not

allow resolved fluctuations to compensate the reduction of modelled Reynolds-stress

through resolved stress. This leads to a drop of total Reynolds-stress components

at the switching location. This effect is referred to as Modelled Stress Depletion

(MSD) and may result in a severe under-prediction of the skin friction coefficient

and may cause premature separation. Since the switch from RANS to LES mode is

triggered by the grid design, this phenomenon is also called Grid Induced Separation

(GIS) (see Menter et al., 2003).

Since the original proposal of DES, different modifications have been proposed,

which aim at avoiding the difficulty of generating DES grids in complex configura-

tions and which eliminate the effects of MSD and GIS. Deck (2005) used a zonal

DES approach to simulate a high-lift airfoil configuration with deployed slat and

flap. The zones for RANS and LES were explicitly defined prior to the simulation.

The zonal approach ensured that the thick boundary layers present on the airfoil

configuration were covered in RANS mode and that the other areas of interest were

covered in LES mode whatever the grid resolution was. In Spalart et al. (2006)

a more robust formulation of the hybrid DES length scale in terms of grid depen-

dency was proposed. The new length scale is obtained using additional elements

from the Spalart & Allmaras (1992) model to prevent or ‘delay’ the switch inside
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the boundary layer. The new hybrid length scale is given by

d̃ � d� fd max p0, d� CDES∆q , (4.22)

where fd � 1 � tanh
�p8rdq3� and rd � pνT � νq{pκ2d2

a
ui,jui,jq. The function

fd shields the DES length scale from being activated inside the boundary layer.

Therefore, for fd � 0, a RANS mode is enforced where the RANS length scale is

given by d̃ � d. For fd � 1, the switch to LES is allowed and the length scale

is obtained as d̃ � CDES∆. Spalart et al. called this modified version Delayed

Detached Eddy Simulation (DDES).

The latest major modification to the original DES formulation is introduced in Shur

et al. (2008) and is referred to as Improved-DDES (IDDES). In IDDES, the capa-

bilities of DDES are combined with the capability of the original DES to provide

wall modelling capabilities (WMLES). The new IDDES formulation is able to op-

erate in the DDES and WMLES mode depending on turbulence initial and inflow

conditions. This is achieved by the following hybrid length-scale definition

d̃ � fdp1 � feqd� p1 � fdqΨCDES∆. (4.23)

The function fd is a blending function, which blends between the DDES and WM-

LES mode and Ψ is a function, which compensates for the erroneous activation of

near-wall/low-Reynolds-number modifications of the baseline RANS model. The

definition of the filter length scale is also modified and includes a dependency on

the wall distance, ∆ � fp∆x,∆y,∆z, dq. Another important ingredient is the func-

tion fe, which increases the Reynolds-stress of the underlying RANS model above

the natural RANS level. This is an effective measure to reduce the extend of the

log-layer mismatch in WMLES mode.

The original DES and DDES formulation have been applied to a wide range of

flows of engineering and industrial interest. For further information and discussions

about applications of DES, the reader is referred to Spalart (2009), Squires et al.

(2002) and Squires (2004).

4.5.4 Flow Simulation Methodology

At roughly the same time when DES was proposed Speziale (1998a,b) proposed a

combined LES and time-dependent RANS approach, which was intended to close

the gap between RANS and DNS. Speziale argued that a hybrid RANS/LES method



Chapter 4 Turbulence-Resolving Approaches 79

should possess at least the following three properties: 1) The subgrid-scale model

should be able to resolve anisotropy of the flow and allow for a direct integration

to the wall without using empirical damping functions, 2) In the limit of a very

coarse mesh or infinite Reynolds number the hybrid method needs to revert to a

state-of-the-art RANS turbulence model, 3) Absence of any test filters or double-

filtered fields. The points 1) and 2) seem particularly important, since most subgrid-

scale models are derived based on the assumption that the unresolved subgrid-

scales are isotropic. This assumption is not justified, for example, for anisotropic

computational grids or close to the wall where subgrid scales are likely to exhibit

anisotropy. In addition, subgrid-scale models are not able to model a significant

amount of Reynolds-stress; if the resolution becomes too coarse to explicitly resolve,

say, 80% of the turbulence kinetic, subgrid-scale models are not adequate and results

will deteriorate.

In order to satisfy these properties, Speziale suggested that the unresolved stress

components can be computed by damping the Reynolds-stress tensor predicted from

a state-of-the-art RANS turbulence model. Hence, the unresolved stress components

are given by the following relation

τij � F � τRANSij . (4.24)

The damping function F , in its initial proposal, is sensitised to the ratio of grid

spacing ∆ to Kolmogorov length scale Lη � ν3{4{ε1{4. In principle, the damping

function allows for a continuous blending between RANS and DNS, depending on

the local and instantaneous grid resolution. In general, the blending function needs

to be designed such that the DNS limit F Ñ 0 is recovered if the grid resolution is

sufficient to resolve all scales of turbulence. In the coarse grid or infinite-Reynolds-

number limit, F needs to approach unity such that a RANS closure is recovered.

For values 0 ¤ F ¤ 1 the model is able to operate in LES or Very Large-Eddy

Simulation (VLES) mode. VLES may be defined as an LES-like simulation where

most of the turbulence kinetic energy is modelled and not explicitly resolved.

For this purpose Speziale proposed to use the following damping function

F p∆{LKq �
�

1 � exp

��β∆

Lη


�n
, (4.25)

where the constants are given by β � 0.001 and n � 1. In general, any RANS model

can be used to model τRANSij . Speziale used an Explicit-Algebraic-Stress Model,

which is able to account for flow anisotropy and non-equilibrium effects through
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strain-dependent coefficients. Since this hybrid approach is distinctly different from

existing RANS and LES methods, Zhang et al. (2000) and Fasel et al. (2002) later

referred to this approach as Flow Simulation Methodology (FSM).

The damping function is the key to success of the FSM approach. A properly

designed damping function would be able to provide the required amount of tur-

bulence modelling at any grid resolution. The choice of the damping function and

the constants β and n in the initial proposal were never completely justified. How-

ever, Hussaini et al. (2006) used Renormalization Group Theory (RNG) to modify

an existing RANS model for subgrid-scale applications while maintaining the cor-

rect RANS and DNS limits. They derived a set of possible damping functions and

arrived, amongst others, at the following form F p∆q � 1 � exp p�β∆2q, which

is somewhat similar to Sepziale’s proposal. Sandberg & Fasel (2006) investigated

transitional and turbulent supersonic base flows using FSM. It was found that the

best results were obtained for 0.001 ¤ β ¤ 0.004 and a grid resolution such that

the damping function is smaller than 10%. Fasel et al. (2006) applied FSM to a

backward facing step, subsonic plane wake and a supersonic axisymmetric wake.

The optimum value of β was again found to be approximately β � 0.001 for n � 1.

These investigations confirm the suitability of the proposed values for β. The effect

of the parameter n has so far not been investigated.

Zhang et al. (2000) proposed a modified version of the damping function, which

takes the following form: F p∆{Lηq � r1 � exp p�5 max p0,∆ � 2Lηq {NLηqsn. It

was shown that this damping function recovers a RANS mode across almost the

entire thickness of a flat plate boundary layer for N � 10. Using a value of N � 2500

would recover the original damping function.

Germano (1998) suggested a modified damping function of the form F � 1 �
τRANSij τ resij {τRANSij τRANSij , where τ resij is the resolved stress. If no turbulence is

resolved, the resolved stress τ resij Ñ 0 and the RANS limit is recovered. For

τ resij Ñ τRANSij the DNS limit is recovered.

It can be anticipated that the damping function based on ∆{Lη is able to provide the

correct DNS limit, since Lη is a relevant length scale in DNS. However, the viscous,

or Kolmogorov, length scale Lη is not a relevant length scale when performing LES.

It seems very difficult, using this length scale, to achieve the correct amount of

damping in LES mode. In addition, the damping function does not incorporate a

characteristic length scale of the largest scales in the flow and it appears even more

difficult to approach the correct RANS limit in case of too coarse a grid. Motivated

by this issue, Israel (2005) introduced an integral length scale into the damping



Chapter 4 Turbulence-Resolving Approaches 81

function. The modified damping function is as follows:

F p∆, Lη, LIq � pβ∆q2{3 � L
2{3
η

L
2{3
I � L

2{3
η

, (4.26)

where LI � k3{2{ε is used as an estimate for the integral length scale.

Another issue, which was not been addressed by Speziale is how the Reynolds-stress

tensor τRANSij is computed in case of resolved turbulence, where τij ! τRANSij . As-

suming the hybrid method operates in a pure RANS mode, i.e. τij � τRANSij , the

computed quantities of the flow field correspond to Reynolds-averaged quantities,

which are consistent with the derivation and the applicability of the RANS equa-

tions. In case a considerable amount of turbulence is resolved in the simulation, the

computed quantities in the flow field are filtered quantities and not equivalent to

a Reynolds-averaged quantity. Strictly speaking, Reynold averaged quantities are

required for the RANS equations in order to be consistent in the computation of the

Reynolds-stress tensor. This raises the fundamental question of which quantities

should be used to compute the Reynolds-stress tensor in case of resolved turbulence.

As pointed out by Batten et al. (2000), there are two different possibilities. First,

the Reynolds-stress tensor can be computed in a time-accurate fashion from the

filtered flow field as the simulation progresses. Alternatively, a RANS computa-

tion can be performed prior to the simulation or time-averaged quantities can be

obtained as the simulation progresses.

4.5.5 Limited Numerical Scales

Based on Sepziale’s combined RANS/LES method, Batten et al. (2000, 2002) pro-

posed a modified form of the damping function, which does not incorporate any

parameter that needs to be defined by the user. This modified approach of Speziale

has been termed Limited Numerical Scales (LNS). Batten et al. expressed the

damping function as a ratio of effective viscosity norms and called this term latency

parameter α. In the latest publication of Batten et al. (2004) the latency factor is

defined as

α � min

�
νLEST

νRANST

, 1

�
, (4.27)

where νLEST is obtained from the Smagorinsky model and the νRANST from a non-

linear k-εmodel. The filter width has been defined as ∆ � 2 max
�
∆x,∆y,∆z,

a
u2
i∆t

�
.

The last term ensures that RANS is recovered as the time step ∆t becomes large,
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whatever the spatial resolution of the grid is. The property of the latency param-

eter is that it automatically selects the model, νLEST or νRANST , which provides the

smallest shear stress. Regarding the ambiguity of which quantities should be used

to calculate the Reynolds-stress tensor, Batten et al. employs the scaled Reynolds-

stress tensor τij (or damped turbulence viscosity ανRANST ) in the transport equations

for the turbulence kinetic energy and dissipation rate, k and ε respectively. This

effectively reduces the production term as well as transport/diffusion terms in the

transport equations and the RANS model turns into a model for the subgrid scales

ksgs and εsgs. LNS has been applied to the flow around a square cylinder and a

periodic 2D hills in a channel. The results are generally improved compared to

traditional RANS and URANS approaches.

4.5.6 Partially-Integrated and Partially-Resolved Transport

Modeling

The Partially Integrated Transport Model (PITM) has been proposed by Schiestel

& Dejoan (2005) for the framework of k-ε turbulence modelling and was extended

by Chaouat & Schiestel (2005) to a DRSM closure. PITM is derived by splitting

the energy spectrum into a resolved and unresolved part and performing partial

integration of the energy spectrum function Epκ, tq in spectral space. The result is

a transport equation for the sub-grid turbulence kinetic energy ksgs and turbulence

dissipation rate εsgs, which depend on the parameter fk � ksgs{k. An expression

for fk is analytically derived using a model energy spectrum and does not take a

constant value as in the PANS approach. The latest proposal for fk in Chaouat &

Schiestel (2009) is derived from an energy spectrum function, which is valid from

small to large wavenumbers. The free coefficients in the expression are determined

by reference to decaying homogeneous isotropic turbulence. It is interesting to note

that the PITM approach results in the same constitutive relations as for the PANS

approach if fε � 1.

It is sometimes argued that traditional seamless RANS/LES approaches are concep-

tually inconsistent, since the Reynolds-averaging operator provides time-averaged

quantities whereas LES provides spatially filtered quantities. In homogeneous tur-

bulence the spatial filtering operation in the limit ∆ Ñ 8 is indeed consistent with

the Reynolds-averaging operator. This is not true for inhomogeneous flows where

spatial filtering operation in the limit ∆ Ñ 8 is not consistent with the Reynolds-

averaging operator. Based on this argument Fadai-Ghotbi et al. (2009) derived a

Temporally Partially Integrated Transport Model (TPITM) by splitting the energy
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spectrum into a resolved and unresolved part and performing partial integration of

the energy spectrum function Epω, tq in the spectral frequency space. TPITM pro-

vides temporally filtered quantities, which are consistent with Reynolds averaging

if the temporal filter width goes to infinity (for statistically steady flows).

The Partially Resolved Navier-Stokes (PRNS) method has been proposed by Liu &

Shih (2006). The main difference to TPITM is the choice of the resolution control

parameter. In PRNS the resolution control parameter is a function of the temporal

filter width RCP � ∆T {T , where T is the integral time scale. The value of RCP is

specified prior to the simulation and the resulting turbulence viscosity is defined as

νT � RCP �Cµk2{ε. Here, RANS model equations are used to determine the values

for k and ε.





Chapter 5

Numerical Methodology

In this chapter the numerical framework used to solve the set of governing equations

will be introduced. Most of the numerical framework is extensively discussed in

various textbooks and other publications, e.g. Patankar (1981) or Ferziger & Peric

(2002). For this reason only a brief overview will be given here with emphasis placed

on the elements, which are particularly important for this work.

The flow solver used in this work is the open-source CFD code OpenFOAM, which

has been used and validated in a wide range of previous studies such as, for example,

Weller et al. (1998), Jasak (1996) and de Villiers (2006). The finite volume method

is used to solve the set of governing equations on arbitrarily unstructured meshes

with a cell-centered (co-located) variable arrangement. A segregated approach is

used to solve the governing equations in incompressible form. The discretisation

procedure is second-order accurate in space and time and employs a fully implicit

time advancement scheme.

5.1 Governing Equations

The governing equations for momentum or any other transported quantity takes

the form of an unsteady, convection diffusion equation, which can be written in the

following form for the arbitrary quantity φ,

Bφ
Bt �∇ � pφuq �∇ � pΓ∇φq � Sφ. (5.1)

85
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The terms on the left-hand side respectively represent the local rate of change,

convection by mean velocity and diffusion of φ, with the diffusion coefficient Γ. The

right-hand side term represents the sum of all sources and sinks of φ.

In the finite-volume method (FVM) the governing equations are integrated in time

and over a control volume (CV) to yield the integral form of (5.1)» t�∆t

t

B
Bt

�»
CV

φdV



dt�

» t�∆t

t

»
CV

∇ � pφuq dV dt

�
» t�∆t

t

»
CV

∇ � pΓ∇φq dV dt �
» t�∆t

t

»
CV

SφdV dt. (5.2)

In the first step (pre-processing) the flow domain must be subdivided into a finite

number of small control volumes (CV) or cells where the centre of each control

volume corresponds to the point where the solution to the governing equations is

calculated. In general, there are no restrictions regarding the shape of the control

volumes as long as each CV is completely surrounded by an arbitrary number of

faces and each face only connects to one adjacent CV. In the second step, the

integral-conservation equations are applied to each CV and the volume integrals

are approximated and converted into integrals over the bounding surfaces of each

CV. The flow variables at the CV surfaces are obtained by interpolation between

the cell-centered values, which introduces a dependency of the variables in the CV

centre to the neighbouring control volumes. This procedure results in a system of

algebraic equations, which can then be solved using an iterative procedure.

5.2 Spatial Discretisation

5.2.1 Convection Term

Using Gauss Divergence Theorem the volume integrals appearing in (5.2) can be

converted into integrals over the bounding surface elements BA of the control vol-

ume, i.e. »
CV

∇ � φdV �
¾
BA

dA � φ, (5.3)
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where dA is the outward-pointing vector normal to the surface element BA. As-

suming a linear variation of the variable φ the surface integral can be further ap-

proximated with second-order accuracy as»
BA

dA � φ �
¸
f

�»
f

dAφ



�
¸
f

Aφf . (5.4)

that is, as the sum of the product of the outward pointing surface area vector A

times the face-centered value of the quantity φf . This procedure applied to the

convection term yields»
CV

∇ � puφq dV �
¸
f

A puφqf �
¸
f

pAuf qφf �
¸
f

Fφf , (5.5)

where F � Auf corresponds to the mass flux through the bounding face f . The

face values of φf or uf can be obtained by interpolation between the cell-centered

values φP and φU of the two cells connecting to the face f . This situation is depicted

in figure 5.1.

U Pf

f
P

f
f

f
U

d

Figure 5.1: Interpolation of face values in the FVM .

Assuming a linear variation of the dependent variable φ between the cell centres U

and P of two neighboring cells, the face value can be obtained by linear interpolation

as

φf � fxφP � p1 � fxqφU , (5.6)

with the interpolation factor fx � fU{PU . Note, the interpolated quantity uf

must also satisfy the continuity constraint
°
f F � 0. The linear interpolation

of face quantities results in a second-order accurate scheme, which is commonly

referred to as the Central-Differencing Scheme (CDS).
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For problems where convection is the physically dominant mechanism in the flow

the CDS may produce unbounded solutions and unphysical oscillations in the flow

field. As the importance of convection increases the solution will become increas-

ingly non-physical, which may then lead to divergence of the simulation. It is argued

in Versteeg & Malalasekera (2007) that the major defect of CDS is the lack of sen-

sitivity to the direction of the convection velocity. In strongly convective conditions

the cell-centered value upstream of face f should have a stronger weighting than the

value of the cell downstream. The upwind differencing scheme (UDS) takes account

of the flow direction and computes the face values accordingly as

φf �
#
φP , if F ¥ 0

φU , if F   0.
(5.7)

The UDS is only first-order accurate but it considerable improves the stability char-

acteristics by guaranteeing boundedness of the solution. Even though higher-order

UDS can be derived the improved stability is always achieved at the expense of

accuracy by introducing a significant amount of numerical diffusion. This is par-

ticularly problematic in the LES region of any hybrid RANS/LES approach where

the modelled turbulence diffusivity may be very small or even of the same order

of magnitude as the numerical diffusion. Any elevated level of numerical diffusion

therefore inevitably contaminates the resolved flow field unless the modelled tur-

bulence diffusivity is adjusted according to the numerical scheme employed in the

simulation. Adjusting the modelled turbulence diffusivity is not a satisfying solu-

tion, since every turbulence model would have to be adjusted and re-calibrated for

a large number of available convection discretisation schemes.

The small amount of numerical diffusion inherent in the CDS makes it well suited

for performing simulations with resolved turbulent content. In simulations of prac-

tical interest it cannot alway be guaranteed that the mesh resolution ∆x (in one

dimensional problems) is sufficient to satisfy the boundedness requirement of a cell

Peclet number (or sometimes called cell Reynolds number) Pe � u{pΓ{∆xq   2 (see

Versteeg & Malalasekera, 2007) of the CDS. Instead, it is necessary to introduce a

small amount of additional numerical diffusion to the CDS such that the accuracy of

the CDS is retained and stability and boundedness of the solution is improved. For

this reason Peric (1985) has proposed a blended or hybrid convection scheme, which

is obtained as a linear combination of a CDS and UDS scheme of the following form

φf � p1 � σbqφf,CDS � σbφf,UDS. (5.8)
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The blending function σb controls the level of additional numerical diffusion. For

σb � 0 a full CDS is recovered and for σb � 1 the interpolation follows a UDS.

Travin et al. (2004b) use the blending technique to develop a hybrid convection

scheme that is tailored to Detached Eddy Simulation. The hybrid convection scheme

operates in a UDS mode in the RANS region and switches to a CDS mode in

LES regions of the flow field. The blending function also depends on local flow

quantities like turbulence viscosity νsgs and magnitude of strain and rotation rate

S, Ω respectively. These quantities are used to detect flow regions with a well-

resolved flow field (Ω ¡ S) where the CDS should be used and irrotational flow

regions where UDS can be used. Since the hybrid convection scheme of Travin

et al. (2004b) is used in this study in conjunction with Detached Eddy Simulation

the constitutive relations are given here

σb � tanh
�
ACh1

�
, A � Ch2 max

�
CDES∆

lturbg
� 0.5, 0

�
lturb �

d
νsgs � ν

C
3{2
µ K

, K � max

�c
S2 � Ω2

2
,

0.1

τref

�

g � tanh
�
B4

�
, B � Ch3Ω max rS,Ωs

max
�
S2�Ω2

2
, 10�20

�
Ch1 � 3, Ch2 � 1, Ch3 � 2. (5.9)

and τref � lref{uref .

5.2.2 Flux-gradient Transport Term

Following a similar procedure as for the convection term the volume integral of the

flux-gradient transport term can be converted into a surface integral as»
CV

∇ � pΓ∇φq dV �
¸
f

A � pΓ∇φqf �
¸
f

ΓfA � p∇φqf . (5.10)

The face value Γf can be determined by linear interpolation according to (5.6) and

the face gradient is given by

A � p∇φqf � |A| φP � φU
|d| , (5.11)

where d is the vector connecting point U and P . This method is second-order

accurate and provides bounded solutions, providing the face is orthogonal, i.e. d
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and A are parallel. In situations where the faces are non-orthogonal a correction

(cross-diffusion) term needs to be introduced to (5.11) as follows

A � p∇φqf � Ad
φP � φU

|d| �Aθ � p∇φqf , (5.12)

where Ad is the component parallel to d and Aθ is component perpendicular to A

such that A � Ad �Aθ. The term p∇φqf in (5.12) is obtained by interpolation of

the cell-centered gradients according to (5.6). The cross-diffusion term may yield

unbounded solutions on strongly non-orthogonal meshes. Therefore, the effect of the

cross-diffusion term may have to be limited to ensure convergence of the solution.

The gain in stability is again achieved at the expense of accuracy of the diffusion

term.

5.2.3 Source Terms

All other source terms are linearised by decomposition into a constant part Sc and

a part, which linearly depends on φ, i.e.

Sφ � Sc � Spφ. (5.13)

Since »
CV

φdV � φPVP , (5.14)

the source term can be written as»
CV

SφdV � ScVP � SpVPφP . (5.15)

5.3 Temporal Discretisation

Introducing the spatial discretisation into (5.2) yields the semi-discrestised form of

the generic transport equation

» t�∆t

t

��Bφ
Bt



P

VP �
¸
f

Fφf �
¸
f

ΓfA � p∇φqf
�

dt �
» t

t�∆t

rScVP � SpVPφP s dt.

(5.16)
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In order to maintain an overall second-order accuracy of the discretised transport

equation the temporal derivative in (5.16) is discretised using the second-order ac-

curate Backward Differencing (BD) scheme�Bφ
Bt


n

� p3{2qφn � 2φn�1 � p1{2qφn�2

∆t
. (5.17)

The BD scheme requires information from the three time levels φn � φpt � ∆tq,
φn�1 � φptq and φn�2 � φpt � ∆tq. Assuming that the temporal variation of the

face fluxes φf and face gradients p∇φqf can be neglected a second-order accurate

and fully implicit discretisation of the generic transport equation (5.1) is obtained

as

p3{2qφn � 2φn�1 � p1{2qφn�2

∆t
VP �

¸
f

Fφnf �
¸
f

ΓfA � p∇φqnf � ScVP � SpVPφ
n
P .

(5.18)

Note, although the BD scheme is second-order accurate, neglecting the temporal

variation of the face fluxes and face gradients results in a larger truncation error

as compared to, for example, the second-order Crank-Nicholson (CN) method (see

Jasak, 1996). In the simulations performed in this work the time step and CFL

number is generally small (CFL   1), which minimises the effect of the larger

truncation error and the resulting additional numerical diffusion.

In the final step, the new values for φP need to be determined. The discretisation of

the face fluxes and face gradients introduces a dependency of φP on the values φN

in the surrounding cells, which connect to the control volume under consideration.

Equation (5.18) therefore can be written as an algebraic equation of the form

aPφ
n
P �

¸
N

aNφ
n
N � RP , (5.19)

where aP includes the contribution from all terms, which include φnP , that is from

the unsteady, convection and diffusion terms as well as from the linear part of the

source terms. Similarly, aN contains the coefficients φnN of the neighboring cells.

RP contains all other terms, which do not depend on the new values φn. A system

of algebraic equations of the form Aφ � R is obtained by assembling one algebraic

equation for each control volume. A is a sparse matrix containing the coefficients

aP and aN , φ is the solution vector and R a vector containing the source terms.

The system of equations is solved iteratively using the conjugate gradient method

with preconditioning to accelerate convergence. More detail can be found in Jasak

(1996) and de Villiers (2006).
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5.4 Navier-Stokes Equation

When the discretisation procedure is applied to the Navier-Stokes equations some

issues require special consideration. First, the incompressible Navier-Stokes equa-

tions are non-linear in nature due to the appearance of the quadratic product of

velocities in the convection term. Second, the momentum equation constitutes a

set of coupled equations and the pressure gradient term introduces another variable

to the system. In incompressible flow the pressure cannot be computed from any

transport or other equation and an iterative procedure needs to be employed to

determine a pressure and velocity field such that the continuity and momentum

equation are satisfied.

Convection Term

In order to make the non-linear convection term compatible with the linear system

solver, a linearisation of the convection term is introduced. This is achieved by

replacing one of the face values unf with the face value from the previous time step

un�1
f . The linearised convection term is as follows»

CV

∇ � puuq dV �
¸
f

A puuqf �
¸
f

�
Aun�1

f

�
unf �

¸
f

F n�1φnf . (5.20)

Pressure-velocity coupling

In compressible flow the continuity equation can be used to calculate the density

and the pressure follows from the equation of state. For incompressible flows the

continuity equation does not contain any information about the pressure and merely

places an additional constraint on the flow field, which is determined from the mo-

mentum equations. However, combining the momentum and continuity equations

an additional equation for the pressure can be derived. The momentum and pres-

sure correction equations are solved in a sequential or segregated manner rather

than in a fully coupled fashion. In order to achieve the pressure-velocity coupling,

the SIMPLE algorithm Patankar (1981) is used for steady state problems and the

PISO algorithm Issa (1986) for transient simulations.



Chapter 6

Baseline EASM

In this chapter the constitutive relations of the baseline EASM formulation are

summarised and a range of different test and validation cases are presented. The

first objective of this chapter is to evaluate the performance of the baseline EASM

closure to predict complex and three-dimensional flows. This validation study has

been found necessary for two reasons. First, the range of published validation cases

for EASM models, particularly for three-dimensional mean flow, is very limited and

second, the baseline EASM model employs a different pressure-strain correlation

model compared to the widely used EASM model of Wallin & Johansen (2000) and

Hellsten (2005). For the purpose of validating the baseline EASM closure, simula-

tions are performed for the flow in a planar channel, the flow over the NASA hump

configuration (Greenblatt et al., 2004) and the flow in a three-dimensional diffuser

(Cherry et al., 2008) and the results are compared with reference data. In addition,

the results are compared to predictions of the popular k-ω-SST and the recently

proposed ϕ-α-UMIST model (Keshmiri et al., 2008). The second objective of this

chapter is to investigate potential differences between two-dimensional and three-

dimensional EASM formulations for predicting complex three-dimensional flows.

This investigation seems particularly relevant, since two-dimensional EASM clo-

sures are generally preferred, due to their simplicity and numerical efficiency, over

the much more complex three-dimensional EASM formulation. However, three-

dimensional EASM formulations use additional, higher-order, coupling terms in the

stress-strain relationship, which may have the potential to improve the predicted

results for cases with three-dimensional mean flow. Additional cases have been pub-

lished by the author in Weinmann & Sandberg (2009) where the flow around an

idealised wing-body junction and the flow over a three-dimensional axisymetric hill

are considered.

93
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6.1 Constitutive Relations

The baseline EASM is a high-Reynolds-number formulation, since neither the trans-

port equations nor the quasi-homogeneous pressure-strain model used in the EASM

includes modifications to account for various effects the wall exerts on the flow.

The Reynolds-stress tensor u
1

iu
1

j of the EASM formulation constitutes a non-linear

stress-strain relationship, which can be written as u
1

iu
1

j � p2{3qkδij � kaij, where

the anisotropy tensor is given by

aij � �2pνT {kqS�ij � aexij , (6.1)

with the mean strain rate tensor S�ij � p1{2q pBui{Bxj � Buj{Bxiq and the extra-

anisotropy tensor aexij , which introduces anisotropy in addition to the anisotropy

resulting form the mean strain rate S�ij. For a vanishing extra-anisotropy tensor

aexij � 0, the stress-strain relationship reduces to the linear Boussinesq approx-

imation. The most general form of the extra-anisotropy tensor, valid in three-

dimensional mean flow, can be written in the following form:

aexij � β2 pSikSkj � p1{3qIISδijq � β3 pΩikΩkj � p1{3qIIΩδijq � β4 pSikΩkj � ΩikSkjq
� β5 pSikSklΩlj � ΩikSklSljq � β6 pSikΩklΩlj � ΩikΩklSlj � p2{3qIV δijq
� β7 pSikSklΩlmΩmj � ΩikΩklSlmSmj � p2{3qV δijq
� β8 pSikΩklSlmSmj � SikSklΩlmSmjq
� β9 pΩikSklΩlmΩmj � ΩikΩklSlmΩmjq , (6.2)

with the invariants

IIS � tr tSikSkju , IIΩ � tr tΩikΩkju , III � tr tSikSklSlju ,

IV � tr tSikΩklΩlju , V � tr tSikSklΩlmΩmju . (6.3)

The tensors Sij and Ωij are the non-dimensionalised mean strain rate and rotation-

rate tensors Sij � τS�ij and Ωij � pτ{2q pBui{Bxj � Buj{Bxiq, respectively. The

turbulence time scale is given by τ � 1{β�ω and is not limited by the viscous time

scale, since this is not required in the present high-Reynolds-number formulation.

A detailed derivation of the explicit solution for a general quasi-linear Algebraic

RSM can be found in Wallin & Johansen (2000) and is not repeated here. The βi
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coefficients are given as

β1 � �0.5A1N
�
30A2IV � 21NIIΩ � 2A3

2IIIS � 6N3 � 3A2
2IISN

� {Q,
β2 � �A1A2

�
6A2IV � 12NIIΩ � 2A3

2IIIS � 6N3 � 3A2
2IISN

� {Q,
β3 � �3A1

�
2A2

2IIIS � 3NA2IIS � 6IV
� {Q,

β4 � �A1

�
2A3

2IIIS � 3A2
2NIIS � 6A2IV � 6NIIΩ � 3N3

� {Q,
β5 � 9A1A2N

2{Q, β6 � �9A1N
2{Q, β7 � 18A1A2N{Q

β8 � 9A1A
2
2N{Q, β9 � 9A1N{Q, (6.4)

where

Q � 3N5 � ��p15{2qIIΩ � p7{2qA2
2IIS

�
N3 � �

21A2IV � A3
2IIIS

�
N2

� �
3II2

Ω � 8IISIIΩA
2
2 � 24A2

2V � A4
2II

2
S

�
N � p2{3qA5

2IISIIIS

� 2A3
2IV IIS � 2A3

2IIΩA2IIΩ. (6.5)

Wallin & Johansen (2000) (WJ) suggest using a modified version of the linear

pressure-strain model of Launder et al. (1975). This pressure-strain model has

also been adopted in the latest EASM of Hellsten (2005). The modification of

WJ results in a simplified form of the Algebraic RSM and consequently in reduced

complexity of the EASM approximation. Even though the resulting model is more

compact and computationally slightly less expensive, it is achieved at the expense

of predictive performance. For example, the EASM of WJ cannot predict the third

normal-extra-anisotropy component, i.e. aex33 � 0. The baseline EASM used in this

study is therefore based on the linear pressure-strain model of Speziale et al. (1991),

which is able to predict all normal components of the extra-anisotropy tensor aexij

and which also gives slightly better anisotropy predictions in homogeneous turbu-

lence (see Speziale et al., 1991). These features are believed to be favourable when

predicting complex three-dimensional flows. The coefficients Ai appearing in (6.4)

and (6.5) are directly determined from the model of Speziale et al. (1991) and are

given as

A1 � 1.22, A2 � 0.47, A3 � 0.88, A4 � 2.37.

The variable N appearing in (6.4) and (6.5) corresponds to the ratio of rates of

turbulence kinetic energy production to dissipation pN � A3 � A4Pk{εq and is gov-

erned by a non-linear polynomial relation. For general three-dimensional mean flow,

N is governed by a sixth-order polynomial equation and no explicit solution can

be obtained. In the limit of two-dimensional mean flow N is governed by a cubic
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polynomial relation for which an explicit solution can be obtained. In this work,

the turbulence production to dissipation ratio in the three-dimensional EASM for-

mulation is approximated using the solution for two-dimensional mean flow. For

two-dimensional flows the non-linear equation has the explicit solution

N �
$&%

A3

3
� �

P1 �
?
P2

�1{3 � �
P1 �

?
P2

�1{3
, P2 ¥ 0

A3

3
� 2 pP 2

1 � P2q1{6 cos

�
1
3

arccos

�
P1?
P 2
1�P2


�
, P2   0

(6.6)

with

P1 �
�
A2

3

27
�
�
A1A4

6
� 2

9
A2

2



IIS � 2

3
IIΩ

�
A3, (6.7)

P2 � P 2
1 �

�
A2

3

9
�
�
A1A4

6
� 2

9
A2

2



IIS � 2

3
IIΩ

�3

. (6.8)

Finally, the relation for the turbulence viscosity takes the form

νT � �0.5 pβ1 � IIΩβ6q kτ. (6.9)

The constitutive relations for aexij provide a solution in three-dimensional mean flow.

The resulting EASM obviously results in a large number of additional numerical

operations to compute aexij and the coefficients βi, compared to a linear two-equation

model. In addition, the three-dimensional EASM formulation is not fully consistent,

since the production to dissipation ratio Pk{ε is approximated using the solution for

two-dimensional mean flows. Even though the full three-dimensional form might be

required in some cases, two-dimensional EASM approximations are very appealing

from a computational perspective and may provide a good compromise between

predictive accuracy and computational expense. For the two-dimensional EASM

the βi coefficients reduce to

β1 � �A1N{Q, β2 � 2A1A2{Q, β4 � �A1{Q,
β3 � β5 � β6 � β7 � β8 � β9 � 0, (6.10)

where

Q � N2 � 2IIΩ � 2

3
A2

2IIS. (6.11)

The anisotropy tensor aij � Fij pSij,Ωijq (6.1) is expressed as an isotropic second-

order tensor-valued function which depends on the two independent tensors Sij and

Ωij. The isotropic tensor function for aij satisfies the property apQSQT ,QΩQT q �
QapS,ΩqQT , where Q is an orthogonal transformation matrix. Thus, the expres-

sion for aij is independent of the coordinate system used and hence, preserves
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coordinate-frame invariance (see Gatski & Jongen, 2000). In the case of two-

dimensional mean flow, only the two independent invariants IIS and IIΩ exist

(III � 0, IV � 0 and V � 0.5IISIIΩ). This has the consequence that the isotropic

tensor function for aij reduces to a three-term basis. Since all terms in the poly-

nomial expansion of aij are linearly independent, any reduced basis will conserve

the coordinate-frame invariance property of the isotropic tensor function for aij. In

fact, the three-term basis is a very popular choice, since it provides an exact repre-

sentation in two-dimensional mean flows, and provides an approximation, optimal

in the least-squares sense, for the computation of three-dimensional mean flows (see

Gatski & Jongen, 2000). In addition, the formulation is significantly simpler and

numerically less expensive, compared to, for example, a ten-term basis.

Before the transport equations for the turbulence velocity-scale and length-scale

variable are introduced, some further comments about the baseline EASM model

are necessary. The baseline EASM is not used in conjunction with any streamline

curvature modification as discussed, for example, in Wallin & Johansen (2002) and

Hellsten (2002). The reasons for neglecting these modifications are twofold. First,

curvature modifications significantly deteriorate the stability and convergence char-

acteristics of the EASM (see, for example, Hellsten, 2005). Second, as pointed out

in Wang et al. (2005), the success of curvature corrections is mainly limited to

improved predictions in simple strongly curved flows, for example, the flow in a

strongly curved two-dimensional U-duct. They are, however, less or even counter

effective in more general three-dimensional flows, or flows with recirculation, due

to over-prediction of the contribution from the curvature correction. For these two

reasons curvature modifications are not included in the baseline EASM.

The relations above must be supplemented by a transport equation for the turbu-

lence velocity and length-scale. The velocity scale is determined from a transport

equation for the turbulence kinetic energy k. Many previous studies have indepen-

dently demonstrated the importance of the length-scale equation in the framework

of RANS modelling (see, for example, Wilcox, 1993). Due to the inability of the

standard dissipation rate equation to produce correct length scales in adverse pres-

sure gradient flows, the length-scale equation used in this work is based on the

formulation proposed by Menter (1994), where the ω equation is used in the near-

wall region and blended to the ε equation in the wake region of attached boundary

layers. The blending retains the improved predictions of the ω formulation for ad-

verse pressure gradient flows and at the same time avoids the spurious sensitivity of

the specific turbulence dissipation rate equation to free-stream values. In addition,

the ω-based formulation can be integrated to the wall without requiring ad-hoc
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modification in order to recover the correct velocity profile. The transport equa-

tions used in this study are based on the re-calibrated version of Menter’s blending

approach as presented in Hellsten (2004, 2005). The aim of the recalibration ef-

fort of Hellsten (2005) is to take into account the non-constant Ceff
µ of the EASM

formulation and to improve the model behaviour at the outer edge of a turbulent

boundary layer as well as the spreading rate of wakes and mixing layers. In addi-

tion, the closure coefficients have been optimised to give satisfactory performance

for a range of calibration cases, for example, zero and adverse pressure-gradient

boundary layers, channel flow, wakes and mixing layers.

The transport equations for the turbulence kinetic energy k and the specific turbu-

lence dissipation rate ω take the following form

Dk

Dt
� Pk � β�kω � B

Bxj

�
pν � σkνT q BkBxj

�
, (6.12)

Dω

Dt
� γ

ω

k
Pk � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
� σd
ω

max pCDkω, 0q , (6.13)

where Pk � �u1

iu
1

jBui{Bxj is the production of turbulence kinetic energy and CDkω �
pBk{BxjqpBω{Bxjq is a turbulent cross-diffusion term, arising from the formal trans-

formation of the equation for the dissipation rate ε to a form based on the specific

dissipation rate ω. The closure coefficients are obtained by blending the sets of

coefficients from the ε and ω formulations

φ � F1φ1 � p1 � F1qφ2. (6.14)

The blending function F1 used in this study follows the proposal of Hellsten (2005)

but is slightly modified compared Menter’s original formulation

F1 � tanh
�
1.5Γ4

�
, (6.15)

with

Γ � min rmax pΓ1,Γ2q ,Γ3s , (6.16)

where

Γ1 �
?
k

β�ωy
, Γ2 � 500ν

ωy2
, Γ3 � 20k

max ry2CDkω{ω, 200k8s , (6.17)

and k8 is the free-stream value of turbulence kinetic energy. The closure constants

are given as:

Set 1: γ1 � 0.518, β1 � 0.0747, σK1 � 1.1, σω1 � 0.53, σd1 � 1.0.

Set 2: γ2 � 0.440, β2 � 0.0828, σK2 � 1.1, σω2 � 1.0, σd2 � 0.4.
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6.2 Planar Channel Flow

In order to verify the correct implementation and to highlight the performance and

deficiencies of the baseline EASM, the results for a fully developed turbulent channel

flow are considered next. As a reference, the results of the k-ω-SST and ϕ-α-UMIST

(Keshmiri et al., 2008) turbulence model are also included.

6.2.1 Computational Setup

The flow in the planar channel is turbulent and fully developed with a Reynolds

number of Reτ � 590, based on the skin friction velocity uτ and the channel half-

width H � Ly{2. The flow under consideration is essentially a 1D problem, since

there is no variation of the mean flow field in the streamwise and the spanwise

directions. For this reason periodic boundary conditions can be used in the spanwise

and streamwise directions. In order to maintain a constant flow rate through the

channel an additional momentum source is introduced to the momentum equations.

The momentum source could iteratively be adjusted in order to yield the desired

flow rate. Alternatively, the required pressure gradient can be computed exactly for

the target Reτ by considering the momentum balance in the streamwise direction.

Simulations are conducted by imposing a fixed pressure gradient in the streamwise

direction. The pressure gradient is computed from the relation dp{dx � τw{H with

the wall shear stress τw � ρu2
τ and the skin friction velocity uτ computed from the

target Reτ . The results are assessed and compared to DNS data of Moser et al.

(1999).

Simulations are performed on a computational grid with a first wall-normal grid

spacing of y�1 � 0.2 at the top and bottom wall and 200 cells in the wall-normal

direction. Results have also been obtained on a computational grid with 400 cells in

the wall-normal direction and they showed no significant differences. The convective

fluxes are discretised using a second-order accurate upwind-difference scheme. The

viscous terms use a second-order central-difference scheme. Steady-state results are

obtained using the SIMPLE pressure-correction algorithm.

6.2.2 Results

The results shown in figure 6.1 are for the mean-velocity profile U�, the normal

components of the anisotropy tensor aij � u
1

iu
1

j{k � p2{3qδij, the Reynolds-stress
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components u
1

iu
1

j

�
, the asymptotic behaviour of the Reynolds-stress components,

the IIIa-IIa invariant map and the balance of the turbulence kinetic energy equa-

tion. The superscipt � denotes normalisation using the skin-friction velocity uτ and

viscosity ν.

All turbulence models predict the correct log-law behaviour of the velocity profile

U�. However, all turbulence model predict somewhat lower magnitudes of velocity

in the buffer region y� � 10�30. The ϕ-α-UMIST is the only model, which predicts

the correct velocity magnitude in the centre of the channel, whereas the k-ω-SST

and EASM-2D predict somewhat too low values.

For the present case, the k-ω-SST and ϕ-α-UMIST model, which are both based

on a linear constitutive stress-strain relationship fail to predict any anisotropy of

the normal-Reynolds-stress components. This is, because the anisotropy is set by

the strain rate tensor S�ij (recall that aij � �2pνT {kqS�ij), and for this flow S�11 �
S�22 � S�33 � 0. The EASM-2D on the other hand, provides good predictions for

all normal-anisotropy components in the log region. However, since the EASM

formulation is based on a quasi-homogeneous pressure-strain model, the near-wall

behaviour of the anisotropy tensor is largely in error, i.e. a22 does not approach

the correct limit a22 Ñ �2{3 at the wall, and the near-wall peaks of a11 and a33

are not reproduced. This picture is confirmed by the anisotropy-invariant map in

figure 6.1 (e), where only the EASM-2D is able to reproduce some parts of the locus

predicted by DNS. However, the two-component line is not reached, which is a direct

consequence of the incorrect wall limit of a22 and a non vanishing energy contained

in the v1v1 Reynolds-stress component. Further, at the centre of the channel, where

the velocity gradient vanishes, the algebraic non-linear stress-strain relationship of

the EASM fails to predict any anisotropy. In the centre of the channel, diffusion

dominates the budget of u
1

iu
1

j and the failure of the EASM can be linked to the weak-

equilibrium assumption employed in the derivation of the EASM, which effectively

neglects all transport of u
1

iu
1

j.

Concerning the components of the Reynolds-stress tensor in sub figures (c) and

(d), all models predict the shear stress u1v1 in good agreement with reference data.

The normal components of the Reynolds-stress tensor show the same trend as the

anisotropy tensor, i.e. the linear models predict the same magnitude for all normal

components u1u1 � v1v1 � w1w1 � p2{3qk, which is clearly not correct. The EASM-

2D is able to predict realistic levels of the normal-Reynolds-stress components in the

log region. However, shortcomings can be observed in the near-wall region where

the prediction of the normal-Reynolds-stress u1u1 is largely in error. In addition, the
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Figure 6.1: Predictions for a planar channel flow at Reτ � 590. Symbols cor-
respond to DNS (Moser et al., 1999), (—) k-ω-SST, (- - -) ϕ-α-
UMIST, (� � �) k-ω-EASM-2D.
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asymptotic behaviours of the normal-Reynolds-stress components are not satisfac-

torily reproduced by any of the models considered here. The k-ω-SST predicts an

asymptotic behaviour of u
1

iu
1

i � Opy�4.8q, whereas the ϕ-α-UMIST model predicts

u
1

iu
1

i � Opy�2q. The leading-order asymptotic behaviour of the normal-Reynolds-

stress components of the linear models is directly linked to the asymptotic behaviour

of the evolution equation for the turbulence kinetic energy k. In the EASM for-

mulation, the normal-Reynolds-stress components are additionally influenced by

non-linear terms appearing in the constitutive stress-strain relationship.

The budget of the turbulence kinetic energy equation is shown in sub figure (f).

Away from the wall, for y� ¡ 30, the turbulence kinetic energy production P�
k ,

transportD�
k , viscous diffusion ν∇2k� and dissipation rate ε� are in good agreement

with reference data. The ϕ-α-UMIST model, which solves a transport equation for

the dissipation rate ε, gives the best overall agreement with DNS data close to the

wall. In particular, the dissipation rate ε� and viscous diffusion ν∇2k�, which are

involved in the near-wall balance of k, are well reproduced. This explains why the

ϕ-α-UMIST model is able to correctly predict the asymptotic behaviour Opy�2q
of turbulence kinetic energy as the wall is approached. The models based on the

specific dissipation rate ω are not very successful in providing realistic prediction for

ε� and ν∇2k� close to the wall. Both terms go to zero rather than remaining finite

at the wall. This explains the erroneous prediction of the asymptotic behaviour

Opy�4.8q of turbulence kinetic energy as the wall is approached.

The discussion above clearly highlights the deficiency of the baseline EASM consti-

tutive relations to predict the highly anisotropic flow close to the wall (y�   100).

This is due to the lack of adequate modification of the quasi-homogeneous pressure-

strain model and the high-Reynolds-number form of the transport equations for the

turbulence quantities. The budget of turbulence kinetic energy shows that deficien-

cies exist in predicting the correct magnitude for the dissipation rate ε� and the

viscous diffusion term ν∇2k�, which are both involved in the near-wall balance.
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6.3 NASA Hump

The NASA wall-mounted hump is used here in order to evaluate the performance

of the EASM model to capture important phenomena associated with separation

from a smooth surface, recirculation and subsequent reattachment of the flow. This

test case has also been used in the CFD validation workshops on turbulent separa-

tion control and refined turbulence modelling (Langley Research Center Workshop

about CFD Validation of Synthetic Jets and Turbulent Separation Control 2004

and the 11th/12th ERCOFTAC/IAHR Workshop on Refined Turbulence Modelling

2005/2006). The configuration consists of a Glauert-Goldschmied type body, which

is mounted on a splitter plate (see figure 6.2).

The model investigated in the experiment has a spanwise width of Lz � 1.4c, where

c is the chord length. End plates are mounted on either side. At approximately

x{c � 0.65 a slot opening extends over the entire spanwise width of the model in

order to allow for separation control of the flow. In the following investigations only

the baseline case will be considered with no-flow control.

Figure 6.2: Geometry of the NASA hump, reproduced from Greenblatt et al.
(2004).

The flow is tripped at the splitter plate leading edge in order to yield a fully de-

veloped flow approaching the hump. The Reynolds number based on the chord c

is Rec � 9.36 � 105 and corresponds to the experimental data of Greenblatt et al.

(2004, 2006). Detailed information about the velocity field and Reynolds stress are

available for the separated flow region as well as surface pressure and wall shear

stress measurements on the model. As a reference, the results of the k-ω-SST and

ϕ-α-UMIST turbulence models are also included and compared to the experimental

data.
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6.3.1 Computational Setup

The computational domain used here does not include the slot for flow control (see

figure 6.3), and has an extended upstream section of x{c � 6.39 in order to generate

a fully turbulent boundary layer approaching the hump. The upstream extent is

chosen such that the velocity profile of the approaching turbulent boundary layer

matches experimental data at the location x{c � �2.14. At the outlet, located at

x{c � 4 downstream of the hump, zero-gradient boundary conditions are specified

for all quantities. The end plates used in the experiment introduced some unde-

sired three-dimensional effects near the end plate. The effect of the side walls are

approximated in the two-dimensional computational domain by a modified contour

of the upper inviscid boundary (see Rumsey & Greenblatt, 2009, for details). All

simulations are performed on a grid using 840 � 216 cells and a maximum first

wall-normal grid spacing of y�1 � 0.2. Grid convergence has been verified using a

coarser computational grid with every other grid point removed. The convective

fluxes are discretised using a second-order accurate upwind-difference scheme. The

viscous terms use a second-order central-difference scheme. Steady-state results are

obtained using the SIMPLE pressure-correction algorithm.

(a) Computational domain.

(b) Coarse grid.

Figure 6.3: Computational setup of the NASA hump.
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6.3.2 Results

The predicted streamwise velocity contour U{U0 and computed streamlines are

shown in figure 6.4 for the three turbulence models investigated and experimen-

tal data. It is evident that the recirculation region in the experiment is significantly

smaller compared to the predictions of all three turbulence models. The experimen-

tal data show the separation and reattachment point to be located at approximately

xs{c � 0.66 � 0.67 and xr{c � 1.1, respectively. The k-ω-SST and k-ω-EASM-2D

predict the separation point at xs{c � 0.655. The ϕ-α-UMIST model, which is

based on a transport equation for the turbulence dissipation rate ε, predicts sepa-

ration at xs{c � 0.660, which is in good agreement with the reference data. The

defect common to turbulence models based on the turbulence dissipation rate ε, to

delay separation, is not observed here.

The location of the reattachment point is predicted very similar by all three turbu-

lence models. The k-ω-SST predicts the longest recirculation zone with reattach-

ment occurring at xr{c � 1.28, the ϕ-α-UMIST gives xr{c � 1.26 and the EASM-2D

xr{c � 1.24, giving the best agreement with reference data. The better agreement of

the EASM-2D might be linked to a more realistic prediction of the reattachment pro-

cess by providing improved predictions for the normal-Reynolds-stress components.

Further, the reattachment streamline of the experiment shows a steep inclination

to the wall, which is reproduced by the EASM-2D model. Both, the k-ω-SST and

ϕ-α-UMIST model, show a shallower inclination of the reattachment streamline.

(a) Experiment. (b) k-ω-SST.

(c) ϕ-α-UMIST. (d) EASM-2D.

Figure 6.4: Streamwise velocity contours U{U0 and streamlines for the NASA
hump case.
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Figure 6.5 shows predictions for the surface-pressure coefficient Cp � pp�pref q{p0.5ρU2
0 q

and the skin-friction coefficient Cf � τw{p0.5ρU2
0 q distributions. The surface-

pressure distribution of the k-ω-SST and EASM-2D are very similar with only

negligible differences. Both under-predict the low pressure peak on the model up-

stream of the separation point. The ϕ-α-UMIST model provides somewhat better

predictions in this region. On the other hand, the magnitude of the surface pressure

in the recirculation region is better predicted by the k-ω-SST and EASM-2D mod-

els. Further, all three turbulence models predict too slow a rate of pressure recovery

downstream of the reattachment point. The skin-friction coefficient distribution is

more sensitive to the turbulence model formulation. In the region upstream of the

separation point the k-ω-SST and ϕ-α-UMIST models predict a much lower magni-

tude of skin-friction compared to the EASM-2D model. It is difficult to judge, due

to the scatter in the experimental data, which model performs better. The situation

is much clearer downstream of the separation point. Inside the recirculation region

the k-ω-SST and k-ω-EASM-2D models predict the skin-friction magnitude in much

better agreement with the reference data than the ϕ-α-UMIST model, which sig-

nificantly over-estimates the magnitude of skin friction. None of the turbulence

models is capable of predicting the correct location of maximum skin friction in

the recirculation region. This is linked to the erroneous prediction of the extent

of the recirculation zone. After reattachment, only the EASM-2D model is able to

recover the correct magnitude of skin-friction. The skin-friction predicted by the

k-ω-SST after reattachment remains too low, whereas the ϕ-α-UMIST model shows

somewhat too high levels of skin friction.

(a) Surface-pressure coefficient Cp. (b) Skin-friction coefficient Cf .

Figure 6.5: Surface-pressure coefficient Cp and skin-friction coefficient Cf dis-
tribution. Symbols correspond to experimental data of Greenblatt
et al. (2004, 2006). (—) k-ω-SST, (- - -) ϕ-α-UMIST, (���) EASM-
2D.
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The velocity profiles for the streamwise and vertical velocity component U{U0 and

V {U0 are shown in figure 6.6, for the stations x{c � 0.65, x{c � 0.8, x{c � 1.0

and x{c � 1.2. The velocity profiles reflect what has been said in the preceding

discussion. At the first station, x{c � 0.65, which is immediately upstream of the

separation point, the ϕ-α-UMIST model predicts both components of the velocity

profile in excellent agreement with experimental data. The k-ω-SST and EASM-2D

show too strong a retardation of the streamwise velocity component close to the

wall. This behaviour explains the somewhat too early separation from the hump

observed for those two models. At the second station, x{c � 0.8, the better upstream

predictions of the ϕ-α-UMIST model is reflected in the predictions of the streamwise

velocity component, which is still in good agreement with reference data. The k-

ω-SST and EASM-2D also predict the velocity profiles, but with somewhat larger

departure from the reference data. At the next location farther downstream, x{c �
1.0, which is located just upstream of the reattachment point, the departure from

experimental data, mainly away from the wall, becomes slightly more pronounced.

Close to the wall, the reverse flow magnitude is in good agreement with reference

data. The rapid flow reattachment and flow recovery occurring between x{c � 1.0

and x{c � 1.2 is not adequately predicted by any of the three turbulence models.

Consequently, the near-wall region at the last station, x{c � 1.2, is rather poorly

predicted by all models, but the EASM-2D showing somewhat improved predictions.

The final quantities for which reference data are available are the components of

the Reynolds-stress and anisotropy tensor. The shear stress u1v1 and normal-stress

components u1u1 and v1v1 are shown in figure 6.7. The anisotropy tensor compo-

nents a11 and a22 are shown in figure 6.8. It is noted that the uncertainty in the

experimental data for the turbulence quantities is as much as 14%-20% at maxi-

mum, which makes a comparisson of absolute values difficult. The shear stress at

station x{c � 0.65, where the flow is still attached, is well predicted by all models

even though the EASM-2D predicts a slightly too large magnitude close to the wall.

At the next two stations downstream, which are located in the recirculation region,

the shear stress in the free-shear layer is under-predicted by all models. There is

also a significant offset in peak-value location at x{c � 1.0. In the separated flow

region, the models based on the specific dissipation rate ω seem to predict somewhat

higher levels of shear stress compared to the ϕ-α-UMIST model. It is interesting

to note that the EASM-2D predicts the highest levels of shear stress of all models

even though the constant Ceff
µ � �0.5β1 � 0.055, in the eddy viscosity relation, is

significantly reduced compared to the generally accepted value of Ceff
µ � 0.09 or

the prediction of the ϕ-α-UMIST model, which gives Ceff
µ � Cν

µϕ � 0.095. The
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(a) Streamwise velocity component U{U0

(b) Vertical velocity component V {U0

Figure 6.6: Velocity profiles at different stations in the flow field. Symbols
correspond to experimental data of Greenblatt et al. (2004, 2006).
(—) k-ω-SST, (- - -) ϕ-α-UMIST, (� � �) EASM-2D.

rather low value predicted by the EASM relations is a consequence of the sensitivity

of Ceff
µ to strain and rotation rate. The overall insufficient levels of shear stress in

the free-shear layer consequently results in an over-prediction of the recirculation

length.

In the prediction of the normal-Reynolds-stress and anisotropy components a clear

trend becomes noticeable. At almost all stations in the flow field the EASM-2D is

clearly superior in predicting the correct magnitude of the normal-Reynolds-stress

components away from the wall. The same holds for the anisotropy tensor com-

ponents, where significant improvements of the EASM-2D over the models based

on a linear stress-strain relationship can be observed. Even though the near-wall

behaviour of the wall-normal fluctuations v1v1 seems to be in agreement with ref-

erence data at most locations, predictions of the streamwise fluctuations u1u1 and

both anisotropy components are largely in error. This behaviour is consistent to

what has been observed in the prediction of the planar channel flow in section 6.2.
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(a) Reynolds-stress component u
1

v
1

(b) Reynolds-stress component u1u1

(c) Reynolds-stress component v1v1

Figure 6.7: Components of the Reynolds-stress tensor. Symbols correspond to
experimental data of Greenblatt et al. (2004, 2006). (—) k-ω-SST,
(- - -) ϕ-α-UMIST, (� � �) EASM-2D.
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(a) Anisotropy tensor component a11

(b) Anisotropy tensor component a22

Figure 6.8: Components of the anisotropy tensor. Symbols correspond to ex-
perimental data of Greenblatt et al. (2004, 2006). (—) k-ω-SST,
(- - -) ϕ-α-UMIST, (� � �) EASM-2D.
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6.4 Three-Dimensional Diffuser

The last test case considered is the flow in an asymmetric three-dimensional diffuser.

The flow in the diffuser includes three-dimensional boundary-layer separation and

turbulence-driven secondary motion in the corners of the diffuser, which makes it

a challenging test case for any RANS turbulence model, but especially for models

based on a linear stress-strain relationship. This case has been subject to the

13th/14th ERCOFTAC/IAHR Workshop on Refined Turbulence Modelling. The

diffuser has a rectangular cross section, as depicted in figure 6.9, with a geometric

expansion of 11.3� and 2.56�, respectively. The Reynolds number is ReH � 10000,

based on the channel height H and bulk velocity Ub, or approximately Reτ � 588

at the diffuser inflow. In the experiments of Cherry et al. (2008, 2009) a long

rectangular channel has been used upstream of the diffuser, which results in a

fully developed turbulent flow at the diffuser inlet. Magnetic-resonance velocimetry

has been used to measure the three-dimensional velocity field in the entire diffuser

volume. In addition, surface-pressure measurements at the bottom wall and stream-

wise velocity fluctuations are also available for comparison. The experimental data

show an uncertainty of as much as 10% at maximum. Simulations are performed

with the EASM-2D and EASM-3D and the results of the k-ω-SST and ϕ-α-UMIST

turbulence model are included as a reference.

(a) Isometric view (b) Top: x-y plane. Bottom: x-z plane.

Figure 6.9: Three-dimensional diffuser geometry.

6.4.1 Computational Setup

The simulations are performed on a computational grid with approximately 2.1�106

cells (335 � 65 � 97) for the diffuser domain. In order to generate fully developed

turbulent inflow conditions a short rectangular channel is computed simultaneously

and the flow is mapped to the inlet of the diffuser domain. The boundary conditions
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of the inflow channel are periodic in the streamwise direction and the flow is driven

by an imposed pressure gradient. The pressure gradient is adjusted iteratively to

yield the desired bulk velocity Ub. The computational grid of the separate channel-

flow domain has approximately 400000 cells. The convective fluxes are discretised

using a second-order accurate upwind-difference scheme. The viscous terms use a

second-order central-difference scheme. Steady-state results are obtained using the

SIMPLE pressure-correction algorithm. No-slip boundary conditions are specified

for all walls and zero-gradient boundary conditions are used at the diffuser outlet.

It should also be mentioned that the diffuser used in the experiment joins the inflow

duct by a small radius. The small radius is not modelled here and approximated

by a sharp corner, which considerably simplifies the grid generation process. A

grid convergence study was conducted on a computational grid with a 50% increase

in cells in each coordinate direction (502 � 98 � 145) and with a total number of

approximately 7�106 cells for the diffuser domain. Since the velocity field predicted

by the coarser computational collapses with predictions on the finer mesh, all results

presented subsequently are obtained on the coarse computational grid.

6.4.2 Results

The presentation of results is split into two parts. First, a comparison of the flow

field at the spanwise location z{Lz � 0.5, where Lz � 3.33H is the spanwise width

of the inflow channel, is presented. This is followed by an analysis of the streamwise

evolution of the three-dimensional flow.

Centre Plane z{Lz � 0.5

The predictions of the surface-pressure distribution Cp � pp � pref q{p0.5ρU2
b q at

the bottom wall (y{H � 0) is shown in figure 6.10. The reference pressure pref

is evaluated at the bottom wall, where the geometric expansion starts, x{L � 0,

where L � 15H is the length of the diffuser. It is obvious that none of the turbu-

lence models investigated here is capable of predicting the correct pressure recovery

observed in the experiment. All of the turbulence models have difficulties in pre-

dicting particularly the initial, rapid pressure recovery, which extents up to the

location x{L � 0.5. For the streamwise locations x{L ¡ 0.5, all models predict the

reduced, slower rate of pressure recovery, which agrees with the trend observed in

the experiment. However, the magnitude of Cp remains significantly too low for

x{L ¡ 0.5. The k-ω-SST shows the largest departure from reference data. The

EASM-2D and ϕ-α-UMIST give very similar results, which are in better agreement
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with the experimental data. The EASM-3D, which might be expected to be better

suited for predicting truly three-dimensional flows, gives a surface-pressure distribu-

tion, which is less accurate compared to EASM-2D. Most of the turbulence models

investigated in the 13th/14th ERCOFTAC/IAHR Workshop, including more so-

phisticated DRSM closures, show a similar trend with an under-prediction of Cp,

as observed here.

Figure 6.10: Surface-pressure coefficient Cp at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
k-ω-SST, (- - -) ϕ-α-UMIST, (���) EASM-2D and (����) EASM-
3D.

Some more insight into the flow field predictions can be gained from figure 6.11,

which shows the streamwise velocity contour U{Ub at the centre plane z{Lz � 0.5.

The figure also includes a thick line, which corresponds to the zero-velocity contour

line and gives the extent of the separated flow region. The experimental data show a

large separation zone, which extents approximately from x{H � 7 to x{H � 19. It is

now obvious that the initial, rapid, pressure recovery occurs in the region x{H   7,

where the flow is still attached. The region of a slowed pressure recovery corresponds

to the separated flow region downstream of x{H � 7. It is important to note that the

boundary-layer separation is a three-dimensional process and starts much further

upstream in the corner of the diffuser. None of the turbulence models predicts the

extent of the recirculation zone in satisfactory agreement with reference data. The

ϕ-α-UMIST model fails to predict any separation apart from the tiny recirculations

zone just downstream of the sharp corner, where the geometric expansion starts.

This is also predicted by all other models. The main recirculation zone predicted

by the k-ω-SST starts too far upstream, at x{H � 4, and only extents to x{H � 11.

The EASM-2D predicts a very small recirculation zone ranging from x{H � 13 to
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x{H � 18. The location of the recirculation zone predicted by EASM-3D is closest

to the reference data, even though the extent from x{H � 11 to x{H � 17 is still too

small. Another fundamental difference becomes obvious from the velocity contour

plots. The experiment shows that the flow discharged into the diffuser propagates

towards the centre of the diffuser, away from the bottom wall. All turbulence models

predict the flow to remain too close to the bottom wall.

(a) Exp. (b) k-ω-SST.

(c) ϕ-α-UMIST. (d) EASM-2D.

(e) EASM-3D.

Figure 6.11: Streamwise velocity contours U{Ub at the plane z{Lz � 0.5.

A more detailed comparison of the flow field on the centre plane is shown in figures

6.12 and 6.13, where the velocity profile U{Ub, Reynolds-stress and anisotropy ten-

sor components are plotted at the four streamwise locations, x{H � 1, x{H � 5,

x{H � 12 and x{H � 16. The flow at the diffuser inlet, x{H � 0, was also analysed

but the results are not shown here. The diffuser inflow condition are better pre-

dicted by the EASM-2D and EASM-3D model, which predict 5% less streamwise

velocity magnitude in the centre of the channel and hence show better agreement

with the reference data. It may be argued that improved inflow conditions are a

consquence of the non-linear stress-strain relationship of the EASM, which is able

to resolve the anisotropy-induced secondary motion developing in the corners of the

inflow duct. The experimental data show a slight asymmetry in the velocity profile

at the inflow, which is not captured by any of the turbulence models investigated

here. It is not clear whether the flow at the diffuser inlet in the experiment is

indeed asymmetric or whether the asymmetry stems from inaccuracies of the mea-

surements. It should be kept in mind that the flow in the diffuser is sensitive to the
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inflow boundary conditions and the asymmetry in the velocity profile may cause

the flow in the diffuser to develop differently compared to a symmetric velocity

profile. At the location x{H � 1, the same trend as for the inflow is still visible.

Both EASM models predict the velocity magnitude, in the centre of the diffuser, in

better agreement with the experimental data than the k-ω-SST and ϕ-α-UMIST.

Further downstream, at station x{H � 5, the location of peak velocity has moved

away from the bottom wall towards the centre of the diffuser. A similar trend is

captured by all turbulence models. However, the location of peak velocity remains

too close to the bottom wall. In addition, the magnitude of streamwise velocity is

significantly over-predicted with a difference of the order of 15% of Ub. At the top

wall, overall good agreement is observed for most turbulence models, apart from the

k-ω-SST, which already shows separated flow at this station. The error in predict-

ing the location of peak velcoity becomes more pronounced for the stations farther

downstream, x{H � 12 and x{H � 16. The measurements show that the location

of peak velocity is close to the centre of the diffuser, whereas the predicted peak

velocity location remains too close to the bottom wall. The ϕ-α-UMIST model

shows overall the greatest departure in the velocity profile from reference data. It

not only fails in predicting the location of peak velocity, but it also significantly

under-predicts the velocity magnitude. In fact, at the station x{H � 16, the flow is

almost uniform over the entire diffuser height. The k-ω-SST model does somewhat

better in predicting the peak velocity magnitudes, but it also fails in predicting the

flow close to the top wall. The EASM-2D and EASM-3D show overall the best,

but not satisfying, agreement with the reference data. Improvements are not only

observed for the location of peak velocity and velocity magnitude, the EASM mod-

els also predict the flow at the top wall, at x{H � 16, in good agreement with the

reference data.
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(a) Velocity component U{Ub

(b) u1

rms{Ub

(c) v1

rms{Ub

(d) u1v1{U2
b

Figure 6.12: Velocity and Reynolds-stress components at the centre plane
z{Lz � 0.5. Locations from left to right: x{H � 1, x{H � 5,
x{H � 12 and x{H � 16. Symbols correspond to experimental
data of Cherry et al. (2008, 2009). (—) k-ω-SST, (- - -) ϕ-α-
UMIST, (� � �) EASM-2D and (� � ��) EASM-3D.
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The predictions of the Reynolds-stress and anisotropy tensor are discussed next.

Unfortunately, experimental data are only available for the component u1

rms{Ub. It

is obvious from figure 6.12, that there is a significant difference in the predictions

for the streamwise and wall-normal velocity fluctuations predicted by the EASM

models and by the models based on a linear stress-strain relationship. The non-

linear stress-strain relationship of the EASM formulation clearly provides improved

predictions for the streamwise velocity fluctuations u1

rms{Ub. The linear models

tend to under-predict the intensity of the streamwise fluctuations and over-predict

the intensity of wall-normal fluctuations, similar to the predictions for the channel

flow in section 6.2. This is particularly visible at stations x{H � 12 and x{H � 16.

The EASM models provide higher levels of streamwise velocity fluctuations and

a lower magnitude for the wall-normal fluctuations, which is in better agreement

with the reference data. For the predictions of shear stress u1v1{U2
b in sub figure (f),

another difference between the EASM and the k-ω-SST and ϕ-α-UMIST models

becomes apparent. The shear stress predicted by both EASM models is larger in

magnitude, even though the variable Ceff
µ � �0.5β1 reduces the contribution of the

linear term in the stress-strain relationship to the shear stress of the order 10-20%

compared to a constant Cµ � 0.09.

The ability of the EASM models to predict more realistic levels of normal-Reynolds-

stress components is reflected in the predictions of the anisotropy tensor, shown in

figure 6.13. The linear stress-strain relationship of the k-ω-SST and ϕ-α-UMIST

models only predicts a very weak anisotropy state for the normal components a11

and a22 at all stations in the flow field. This is not too surprising, since linear model

are not intended to predict anisotropy, unless the anisotropy is directly induced

through the strain-rate tensor (aij � �2pνT {kqS�ij). Unfortunately, no reference data

are available for the anisotropy tensor. However, both EASM models predict much

higher levels of anisotropy throughout, which seem more realistic. Nevertheless, the

EASM models are not capable of predicting the correct limiting state a22 Ñ �2{3
as the wall is approached.
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(a) Anisotropy component a11.

(b) Anisotropy component a22.

Figure 6.13: Components of the anisotropy tensor aij at the centre plane
z{Lz � 0.5. Locations from left to right: x{H � 1, x{H � 5,
x{H � 12 and x{H � 16. (—) k-ω-SST, (- - -) ϕ-α-UMIST,
(� � �) EASM-2D and (� � ��) EASM-3D.
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Three-Dimensional Flow Field

Further insight into the predictions of the three-dimensional flow field can be gained

from figures 6.14 and 6.15, which show contour plots of streamwise velocity compo-

nent U{Ub and streamwise velocity fluctuations u1

rms{Ub at the streamwise locations

x{H � 1, x{H � 5, x{H � 12 and x{H � 16. Figure 6.14 also includes the con-

tour line with zero velocity in order to visualise the extent of the separated flow

region. At the first cross section, x{H � 1, the experimental data show incipient

boundary-layer separation emanating from the two upper corners in the diffuser.

The same trend is reproduced by all turbulence models with the tendency of a too

large separation zone in the corners. At the next station downstream, x{H � 5, the

separation is limited to the top right corner in the diffuser. All turbulence models

are able to capture this trend. However, the shape and extent of the recirculation

zone depart somewhat from the reference data. In the predictions of the k-ω-SST

model the flow is already completely detached from the side wall. At the next two

stations downstream, x{H � 12 and x{H � 16, the flow in the experiment has com-

pletely detached from the top wall and the recirculation zone has become almost

two-dimensional with no variation in the spanwise direction. In the predictions of

the k-ω-SST and ϕ-α-UMIST models the flow fully separates from the right wall

and not from the top wall. It is somewhat surprising and counter-intuitive, that

separation is predicted at the side wall, where the geometrical expansion is much

smaller (2.56�) compared to the top wall with an expansion of 11.3�. One possible

explanation for the departure from reference data might be the failure of the linear

stress-strain relationship to predict the anisotropy-induced secondary motion in the

corners of the inflow duct. Even though the magnitude of the secondary motion

is relatively weak, approximately 3.5% of the bulk velocity, it was demonstrated in

Schneider et al. (2010a) by means of LES, that the flow topology in the diffuser is

sensitive to the secondary motion in the corners of the inflow duct. The EASM-2D

and EASM-3D models both resolve the secondary motion in the inflow duct and

the predictions are indeed somewhat improved, although not entirely satisfying.

The EASM-2D predicts the flow to remain attached in parts to the side wall and

only separates fully from the top wall at the location x{H � 16. The separation

zone remains fully three-dimensional and does not show much resemblance with the

separation zone observed in the experiment. The EASM-3D also predicts a fully

three-dimensional separation zone where parts of the flow remain attached to the

top wall and the side wall is fully separated. Even though the secondary motion

is resolved by the EASM, the magnitude of the secondary motion is less than 1%
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of the bulk velocity and therefore quite different to what is observed in the exper-

iment. This might be an explanation for the improved, but not fully satisfactory

predictions of the flow topology in the diffuser by the EASM. It would be intersting

to investigate the sensitivity of the flow in the diffuser by artificially enhacing the

magnitude of the secondary motion, similarly to what has been done by Schneider

et al. (2010a) using LES. This study is left for future investigation.

The contours of streamwise velocity fluctuations u1

rms{Ub in figure 6.15 are pre-

dicted very similar by all turbulence models investigated here. As discussed before,

the EASM models predict a somewhat too high intensity of streamwise velocity

fluctuations compared to the k-ω-SST and ϕ-α-UMIST model and hence, shows

better agreement with the reference data.
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(a) Experiment
(x{H � 1)

(b) Experiment
(x{H � 5)

(c) Experiment
(x{H � 12)

(d) Experiment
(x{H � 16)

(e) k-ω-SST (x{H � 1) (f) k-ω-SST (x{H � 5) (g) k-ω-SST (x{H �
12)

(h) k-ω-SST (x{H �
16)

(i) ϕ-α-UMIST
(x{H � 1)

(j) ϕ-α-UMIST
(x{H � 5)

(k) ϕ-α-UMIST
(x{H � 12)

(l) ϕ-α-UMIST
(x{H � 16)

(m) EASM-2D (x{H �
1)

(n) EASM-2D (x{H �
5)

(o) EASM-2D (x{H �
12)

(p) EASM-2D (x{H �
16)

(q) EASM-3D (x{H �
1)

(r) EASM-3D (x{H �
5)

(s) EASM-3D (x{H �
12)

(t) EASM-3D (x{H �
16)

Figure 6.14: Streamwise velocity contours predicted by the k-ω-SST, ϕ-α-
UMIST, EASM-2D, EASM-3D and experimental data of Cherry
et al. (2008, 2009). Thick line corresponds to zero-velocity con-
tour line. The spacing between contour lines corresponds to
∆U{Ub � 0.1 and dashed lines denote negative velocities.
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(a) Experiment
(x{H � 1)

(b) Experiment
(x{H � 5)

(c) Experiment
(x{H � 12)

(d) Experiment
(x{H � 16)

(e) k-ω-SST (x{H � 1) (f) k-ω-SST (x{H � 5) (g) k-ω-SST (x{H �
12)

(h) k-ω-SST (x{H �
16)

(i) ϕ-α-UMIST
(x{H � 1)

(j) ϕ-α-UMIST
(x{H � 5)

(k) ϕ-α-UMIST
(x{H � 12)

(l) ϕ-α-UMIST
(x{H � 16)

(m) EASM-2D (x{H �
1)

(n) EASM-2D (x{H �
5)

(o) EASM-2D (x{H �
12)

(p) EASM-2D (x{H �
16)

(q) EASM-3D (x{H �
1)

(r) EASM-3D (x{H �
5)

(s) EASM-3D (x{H �
12)

(t) EASM-3D (x{H �
16)

Figure 6.15: Streamwise velocity fluctuations u1rms{Ub predicted by the k-ω-
SST, ϕ-α-UMIST, EASM-2D, EASM-3D and experimental data
of Cherry et al. (2008, 2009).
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6.5 Summary

Based on the test cases considered a fairly consistent picture of the performance

of the EASM closure is emerging. The two- and three-dimensional EASM closures

are capable of providing improved predictions for the flow in the three-dimensional

diffuser, over turbulence models based on a linear stress-strain relationship. Im-

provements are not limited to predictions of the Reynolds-stress and anisotropy

tensor but are also reflected in more realistic predictions of the mean-velocity field.

However, the EASM closures show deficiencies in predicting the near-wall behaviour

of turbulence kinetic energy and the Reynolds-stress and anisotropy tensor when

compared to the reference data. The EASM closures also failed to provide im-

proved predictions for the mean-velocity field of the massively separated flow around

the NASA hump configuration despite improved predictions of normal-Reynolds-

stress components. This shortcoming is attributed to the behaviour of the variable

Ceff
µ � �0.5β1 in the free-shear layer, which is sensitive to strain- and rotation-

rate, and which reduces the contribution of the linear term in the stress-strain

relationship to the shear stress. This has the consequence that the extent of the

recirculation zone is over-predicted. The test cases also reveal that the two- and

three-dimensional formulations of the EASM closure predict equivalent or very sim-

ilar results in three-dimensional flows. The three-dimensional EASM closure is not

found to give improved or significantly different predictions, which suggests that

the considerable additional numerical expense compared to the two-dimensional

formulation is not justified.





Chapter 7

Accounting for Wall-Induced

Anisotropy

The baseline EASM, as presented in chapter 6, is from a theoretical point of view

only valid for high-Reynolds-number flows and away from solid boundaries, since

neither the transport equations nor the quasi-homogeneous pressure-strain model

used in the EASM formulation include modifications to account for various effects

the wall exerts on the flow. Nevertheless, a distinct advantage of the EASM based

on the k-ω framework is that it can be used on fine near-wall grids, which resolve

the viscous sublayer and low-Reynolds-number region close to the wall, despite the

lack of appropriate near-wall and low-Reynolds-number modifications. It has been

shown in chapter 6 and in Weinmann & Sandberg (2009), where the baseline EASM

closure is applied to a range of test cases, that the EASM is capable of provid-

ing significantly improved predictions of the normal-Reynolds-stress and anisotropy

tensor away from solid walls, over turbulence models based on a linear stress-strain

relationship. Nevertheless, room for improvements exists for both, modelling the

transport equations and predictions of the Reynolds-stress and anisotropy tensor

close to the wall.

In this chapter several strategies are presented, which aim at improving the predic-

tions of the Reynolds-stress and anisotropy tensor of the baseline EASM close to the

wall. Possible improvements in the near-wall region may be beneficial for a range

of applications, since not only most of the turbulence kinetic energy is generated

in this region but also, because it influences predictions of separation, aerodynamic

drag and heat and mass transfer. The correct asymptotic near-wall behaviour of

the components of the Reynolds-stress and anisotropy tensor close to the wall are

125
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discussed first. This is followed by a review of existing near-wall modifications and

different strategies to improve the predictions of the baseline EASM close to the

wall.

7.1 Asymptotic Near-Wall Behaviour

It was argued in section 3.4.5, that the two different mechanisms of viscous damping

and non-viscous, kinematic wall-blocking both affect the turbulence close to the

wall. In order to ensure the correct physical behaviour close to the wall, any near-

wall modification needs to be designed such that the asymptotic behaviour of the

fluctuating velocities is correctly reproduced as the wall is approached. Therefore,

the characteristic asymptotic near-wall behaviour is introduced in this section. The

asymptotic near-wall behaviour of the mean and the fluctuating velocity components

can be derived using Taylor-series expansions in terms of the wall-normal distance

y. The no-slip condition at the wall removes the contribution of the zero-order

terms in the series expansions of the fluctuating velocity components. Additionally,

the continuity constraint requires, that the coefficient of the linear contribution of

the fluctuating velocity v
1

vanishes as well, thus

u
1 � auy � buy

2 �Opy3q,
v
1 � bvy

2 � cvy
3 �Opy4q,

w
1 � awy � bwy

2 �Opy3q, (7.1)

where a, b and c are free coefficients. The asymptotic near-wall behaviours of the

Reynolds-stress components can now be written as

u1u1 � a2
uy

2 � 2aubuy
3 �Opy4q,

v1v1 � b2
vy

4 � 2bvcvy
5 �Opy6q,

w1w1 � a2
wy

2 � 2awbwy
3 �Opy4q,

u1v1 � aubvy
3 � pbubv � aucvqy4 �Opy5q,

u1w1 � auawy
2 � paubw � buawqy3 �Opy4q,

v1w1 � bvawy
3 � pbvbw � cvawqy4 �Opy5q. (7.2)
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It also follows directly, that the turbulence kinetic energy and dissipation rate are

k � 1

2
pa2
u � a2

wqy2 �Opy3q,
ε � νpa2

u � a2
wq �Opyq. (7.3)

From the above, the near-wall asymptotic behaviour of the anisotropy tensor com-

ponents, which are relevant for this work, can be derived as

a11 � �2

3
� a2

u

0.5pa2
u � a2

wq
�Opyq,

a22 � �2

3
�Opy2q,

a33 � �2

3
� a2

w

0.5pa2
u � a2

wq
�Opyq,

a12 � Opyq. (7.4)

It is now obvious that the a12 anisotropy component scales linearly with the wall

distance y and has to vanish at the wall. The wall-normal component a22 of the

anisotropy tensor has a limiting value of a22 � �2{3 at the wall and the limiting

value is approached to order Opy2q. The behaviour of a22 is a direct consequence

of the wall blocking effect and the limiting value of a22 Ñ �2{3 is a requirement

for reproducing the two-component state of turbulence very close to the wall. The

wall-limiting values of the other two normal components a11 and a33 depend on the

constants au and aw and therefore, on the flow under consideration. Typical values

for au and aw in plane channel flow, boundary layers and pipe flow are summarised

in So et al. (1991). Also note that the characteristic variation of a11 and a33 is of

order Opyq, which is different compared to the Opy2q variation of a22.

The near-wall behaviour of the baseline EASM can now be examined and compared

to the correct physical behaviour of the Reynolds-stress and anisotropy tensor close

to the wall. In order to understand the near-wall behaviour of the baseline EASM,

the assumption of one-dimensional parallel shear flow is invoked, where du{dy is

the only non-zero component of the velocity-gradient tensor. In this specific case,

the components of the anisotropy tensor predicted by the baseline EASM reduces
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to

a11 �
�

1

3
β2 � 1

3
β3 � 2β4



σ2 �

�
2

3
β7 � 2β8 � 2β9



σ4,

a22 �
�

1

3
β2 � 1

3
β3 � 2β4



σ2 �

�
2

3
β7 � 2β8 � 2β9



σ4,

a33 �
�
�2

3
β2 � 2

3
β3



σ2 � 4

3
β7σ

4,

a12 � β1σ � 2β6σ
3, (7.5)

where σ � p1{2qpk{εqdu{dy. The quantity σ becomes very large close the wall and

has an asymptotic near-wall behaviour, which is of the order Opy2q. It is therefore

instructive to investigate the near-wall behaviour of the baseline EASM by assuming

a large value for σ. In this case, the variable N , which represents the ratio of rate

of turbulence kinetic energy production to its dissipation, scales as N9σ, and the

invariants scale as IIS, IIΩ9σ2, IIIS � IV � 0 and V9σ4. The behaviour of the

βi coefficients can now be estimated as

β191{σ, β2, β3, β491{σ2, β5, β691{σ3, β7, β8, β991{σ4. (7.6)

Substituting this into equations 7.5 confirms the picture, that was emerging from

the channel-flow simulation in section 6.2 (figure 6.1), namely that the level of

normal-anisotropy close to the wall is approximately constant. This behaviour is

not consistent with the physically correct asymptotic limits.

The relations (7.5) are also useful, since they allow identification of the contribution

of each term in the tensorial expansion to each component of the anisotropy tensor.

For example, the coefficients β1, β5 and β6 do not contribute to the normal com-

ponents of the anisotropy tensor and, therefore, do not need any alteration when

modifications for the normal-anisotropy components are introduced. Further, the

contribution to the shear stress is not limited to the linear term associated with

the β1 coefficient, but the higher-order term associated with the β6 coefficient also

contributes to the shear stress and therefore, requires special treatment. It is inter-

esting to note that the contribution of the β6 term to the shear stress is only present

if the full three-dimensional EASM approximation is used; for the two-dimensional

EASM approximation, this coefficient, amongst others, vanishes.
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7.2 Review of Existing Near-Wall Modifications

Possibly the best and most consistent way to include near-wall effects into an EASM

closure is to start the derivation from a DRSM, which includes appropriate modifi-

cations of the quasi-homogeneous pressure-strain model, such that the presence of

solid boundaries is adequately accounted for. This approach has been pursued by

Manceau (2003), who derived a k-ε-α EASM model from the elliptic-blending DRSM

of Manceau & Hanjalic (2002). The variable α is governed by an elliptic equation,

which modifies the redistribution term in the DRSM, such that the two-component

limit is achieved at the wall. This approach allows the correct near-wall behaviour

to be included into a two-equation model. Although initial results for channel flow

seem very promising, the resulting model is extremely complex and a fourth-order

polynomial equation needs to be solved using an iterative procedure. In addition,

the derivation of the EASM was limited to a three-term tensorial expansion for aij,

i.e. to two-dimensional mean flow. Due to the complexity of the resulting model

an extension to three-dimensional mean flow seems too cumbersome. At present

it is not clear whether the k-ε-α EASM provides improved robustness at a lower

computational cost when compared to a full DRSM.

The second approach is to derive the EASM based on a quasi-homogeneous pressure-

strain model and subsequently modify the βi coefficients to reproduce the correct

near-wall behaviour. Wallin & Johansen (2000) (WJ) introduce viscous blending

and damping functions where the anisotropy predicted from the quasi-homogeneous

EASM is blended towards a fixed anisotropy state at the wall. WJ chose to fix the

limiting anisotropy values at the wall such that they correspond to the limiting

values in a planar channel flow. Since the anisotropy state at the wall is fixed, it

cannot adjust itself for different types of flows. This must be considered a disadvan-

tage and limits the application to channel flow-type cases. The correct asymptotic

near-wall behaviour is achieved by the blending functions, which reproduce the cor-

rect asymptotic behaviour at the wall. Karlatiras & Papadakis (2006) used the

elliptic-blending function of Manceau & Hanjalic (2002) to replace the viscosity-

based blending/damping function in the approach of WJ. Rahman et al. (2001)

extended the EASM of Gatski & Speziale (1993) by a low-Reynolds-number cor-

rection. They introduced viscosity-dependent damping functions, in the same way,

as is commonly done for two-equation models. However, they neglected the fact

that additional modifications are required to rectify the erroneous predictions of

the quasi-homogeneous EASM for the highly anisotropic state of turbulence close

to the wall.
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Some NLEVM, which seem particularly suitable for providing improved and more

accurate predictions for the Reynolds-stress and anisotropy close to the wall are

introduced next. Note that other NLEVM are also discussed in the literature review

in section 3.7. Durbin (1995b) and Lien & Durbin (1996) proposed a non-linear

stress-strain relationship for the elliptic-relaxation k-ε-v2 model. The stress-strain

relationship is derived by imposing the constraints a11 � αsa22 and a22 � v2{k�2{3,

where the velocity scale v2 is obtained from the transport equation. The empirical

function αs � �1�6
��S�ij�� {p15���S�ij��q is designed by reference to shear flow data and

approximately gives the correct behaviour of the anisotropy component a11. Suga

& Abe (2000) proposed a cubic nonlinear k-ε-A model, where A denotes the use of

a transport equation for Lumley’s flatness parameter, A � 1 � p9{8q pIIa � IIIaq.
The flatness parameter A vanishes at the two-component state close to the wall

and is unity in isotropic turbulence. The flatness parameter A is used to modify

the NLEVM such that it produces the correct two-component limit at the wall.

Apsley & Leschziner (1998) derived a cubic NLEVM where the free coefficients of

the model were modified to reproduce the correct near-wall behaviour of turbulent

boundary layers and channel flow. Abe et al. (2003) modified the model of Abe et al.

(1997) by introducing additional terms and wall-direction indicators, which enhance

the anisotropy state close to the wall and hence, provide improved predictions of

Reynolds stress and anisotropy close to the wall.

7.3 Near-Wall Modifications for the Baseline EASM

In this section three different strategies are presented, which improve the predictions

of the normal-Reynolds-stress and anisotropy components of the baseline EASM

close to the wall. The near-wall modifications are to some extent based on modelling

concepts that can be found in the literature, but all of them require adjustment or

re-calibration to work in conjunction with the present baseline EASM. In addition,

modifications to the transport equations are introduced such that the turbulence

kinetic energy is correctly predicted as the wall is approached. In order to highlight

the performance of the resulting modified EASM, predictions for the planar channel

flow configuration of section 6.2 are presented.
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7.3.1 Near-Wall Anisotropy Modifications

The near-wall modifications are initially introduced for the two-dimensional EASM

formulation and may be extend later to the full three-dimensional EASM formu-

lation, if required. This decision is motivated by the observation that the predic-

tive capabilities of the two-dimensional EASM may be very similar in a range of

complex three-dimensional flows when compared to the much more complex three-

dimensional EASM formulation. In addition, the two-dimensional EASM is numer-

ically much more efficient and only requires slightly more resources (approx. 7%)

compared to standard two-equation models.

For one-dimensional mean flow the anisotropy tensor (7.5) reduces to the simplified

form

a12 � β1σ, a11 �
�

1

3
β2 � 2β4



σ2,

a22 �
�

1

3
β2 � 2β4



σ2, a33 � �2

3
β2σ

2. (7.7)

The correct near-wall behaviour for the normal and off-diagonal components of the

anisotropy tensor can now be imposed by modifying the βi coefficient such that the

correct asymptotic behaviour is reproduced. Since β1 only influences the predictions

of the a12 component, the modification for the off-diagonal and normal-anisotropy

components can be performed independently of each other.

7.3.1.1 Anisotropy Component a12

It has been shown above that the coefficient β191{σ as σ becomes large, which

results in an approximately constant value of a12 close to the wall. In order to

achieve the correct asymptotic behaviour of a12 � O pyq, the coefficient can be

modified by a damping function, which imposes the correct near-wall behaviour.

The damping function needs to be of O pyq as the wall is approached. Thus, the

near-wall corrected coefficient β1 is given by

β1 � f1β
h
1 , (7.8)

where βh1 is obtained from the baseline EASM relations, which are derived from

a quasi-homogeneous pressure strain model. Multiplication with a van-Driest-like

damping function of the form f1 � 1 � expp�y�{A�q would introduce the correct

near-wall behaviour. However, using y� is problematic, especially in situations

where the wall shear stress vanishes. It is therefore preferred to base the damping
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function on quantities like Rey �
?
ky{ν or ReT � k2{νε. The damping function

initially used here is obtained from Wallin & Johansen (2000) and takes the form

f1 � 1 � exp
�
�C1

y

a
Rey � C2

yRe
2
y

	
, (7.9)

where C1
y � 2.4{26 and C2

y � 0.003{26.

Figure 7.1 shows predictions of Ceff
µ and the anisotropy component a12 � �2Ceff

µ σ

for the baseline EASM (Ceff
µ � �0.5βh1 ), the modified EASM (Ceff

µ � �0.5f1β
h
1 )

and a standard k-ε two-equation model without near-wall damping (Ceff
µ � 0.09)

using a priori study, based on the DNS data of Moser et al. (1999) for a planar

channel flow at Reτ � 590. It is obvious that a constant Ceff
µ is not applicable close

y+
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Figure 7.1: A priori study for predictions of Ceffµ and a12 in a planar channel
flow at Reτ � 395. (�) DNS data of Moser et al. (1999). (—)
modified EASM , (- - -) baseline EASM, (� � �) k-ε model.

to the wall and will result in non-realisable values (|a12| ¤ 1.0) for the anisotropy

component a12. It can be argued that the damping for standard two-equation

turbulence models is required in order to eliminate non-realisable values at large

strain-rate (see, for example, Hanifi et al., 1999). The damping of Ceff
µ is more

naturally included in the baseline EASM, since the coefficient βh1 is sensitive to the

strain-rate invariant IIS, which results in an approximately constant value for the

a12 component at the wall. The correct asymptotic near-wall behaviour for Ceff
µ

and a12 is eventually recovered by using the modified f1β
h
1 coefficient.
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7.3.1.2 Normal Anisotropy Components

Three different possibilities are introduced next to account for the highly anisotropic

region close to the wall. The first one is a generalisation of the blending approach of

Wallin & Johansen (2000). The second and third approaches are largely based on

the ideas of Abe et al. (2003), where additional terms are used to locally enhance the

anisotropy close to the wall. The difference between the second and third approach

is the use of additional wall-direction-dependent terms.

Blending Functions

The first EASM model, which has been proposed including near-wall modifications

is the model of Wallin & Johansen (2000). Their approach has been discussed

above and is not repeated here. Wallin & Johansen have chosen the constants in

the pressure-strain model such that a simplified form of the tensorial expansion for

aij is obtained. In the course of the present work, the near-wall modifications of

Wallin & Johansen have been extended to EASM formulations, which use a three-

term expansion for aij. Since the extension to a three-term basis cannot be found

in the literature, such a formulation is given here. Following the idea of Wallin &

Johansen, the blending approach can be written as

a11 �
�

1

3
β2 � 2β4



σ2 � f2a

h
11 � p1 � f2q pB11 � 2{3q ,

a22 �
�

1

3
β2 � 2β4



σ2 � f2a

h
22 � p1 � f2q p�2{3q ,

a33 � �2

3
β2σ

2 � f2a
h
33 � p1 � f2q pB33 � 2{3q , (7.10)

where B11 � a2
u{p0.5pa2

u � a2
wqq � 1.8, B33 � a2

w{p0.5pa2
u � a2

wqq and f2 is a blending

function. Note that quantities with superscript h are computed from the EASM

relations presented in chapter 6 and are based on a quasi-homogeneous form of the

pressure-strain model, for example, ah11 �
�p1{3qβh2 � 2βh4

�
σ2.

In order to achieve the correct behaviour of the normal components of the anisotropy

tensor, only the coefficients β2 and β4 are available to impose the correct behaviour.

In other words, the system of equations (7.10) is overdetermined, since there are

two unknowns in three equations. The modifications introduced subsequently are

derived by imposing the correct near-wall behaviour on a11 and a22. This seems

justified, since the component a11 is the largest in magnitude for shear flows and

a22 is crucial in achieving a two-component state at the wall. Solving the equations
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for the unknown coefficients β2 and β4 gives

β2 � f2β
h
2 � p1 � f2q 3B11 � 4

max rIIS, IIeqS s
, (7.11)

β4 � f2β
h
4 � p1 � f2q B11

2 max rIIS, IIeqS s
. (7.12)

A few points should be made here. First, the variable σ2 is replaced and generalised

by σ2 � IIS{2. Second, the invariant IIS in the denominator would result in a

numerically ill-behaved model, since IIS vanishes at points where the strain rate

vanishes. Singular behaviour is avoided by introducing the equilibrium value IIeqS �
5.05 as a lower bound. Last, the blending function f2 needs to be designed such that

the correct asymptotic near-wall behaviour of the normal components is obtained.

Since it is not possible to satisfy the correct asymptotic behaviour for all normal-

anisotropy components, Wallin & Johansen chose f2 � f 2
1 , which makes f2 behave

as f2 � Opy2q, and hence reproduces the correct asymptotic behaviour of the a22

component.

Local Enhancement of Anisotropy

The idea here is to retain the behaviour of the βhi coefficients close to the wall, but to

use additional terms to compensate for the erroneous near-wall behaviour. This idea

has also been used in Abe et al. (2003). The tensor awij is added to the anisotropy

tensor obtained from the baseline EASM model ahij and the total anisotropy tensor

is as follows:

aij � ahij � p1 � f2q awij. (7.13)

The activation of awij needs to be restricted to the near-wall region. This is achieved

by the function f2, which shuts off the additional term away from solid boundaries.

In order to introduce a Opy2q behaviour, the function f2 is taken to be f2 � f 2
1 .

The additive fragment awij is expressed in the following form

awij �
�
1 � f 2

r

� � α2

1 � IIS

�
SikSkj � 1

3
IISδij



� α4

1 �?�IIΩIIS
pSikΩkj � ΩikSkjq

�
.

(7.14)

The function fr � pIIΩ � IISq{pIIΩ � IISq is used to ensure an activation of the

near-wall correction for shear-dominated flows only, i.e. fr � 0 for pure shear flow.

The calibration constants αi could be determined from an apriori study using DNS

data. In present study, the constants αi are obtained by optimisation for a planar
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channel flow at Reτ � 590 and take the following values

α2 � 0.9, α4 � �0.49. (7.15)

Rearranging equation (7.13) gives the modified, near-wall improved coefficients

β2 � βh2 � p1 � f2q
�
1 � f 2

r

� α2

1 � IIS
, (7.16)

β4 � βh4 � p1 � f2q
�
1 � f 2

r

� α4

1 �?�IIΩIIS
. (7.17)

Local and Directional Enhancement of Anisotropy

The near-wall modifications based on a local enhancement of the near-wall anisotropy

obviously relies on the invariants IIS and IIΩ. In order to improve the anisotropy

predictions in situations where the invariants vanish, it is suggested in Abe et al.

(2003) to use an additional term, which modifies the anisotropy state independent

of the invariants IIS and IIΩ. The model from above can therefore be extended to

aij � ahij � p1 � f2q
�
awij � 0.5Mij

�
, (7.18)

where Mij � Nij�p1{3qδij is the deviatoric part of the tensor obtained from taking

the outer product of the wall-normal vector Nij � ninj. Different possibilities exist

for how the wall-normal vector can be evaluated. The formulation used here avoids

the computation of the distance to the closest wall, which cannot uniquely be defined

in complex geometries involving multiple walls. Instead, the wall-normal vector can

be obtained with sufficient accuracy from a variable, which shows a characteristic

wall-normal variation. In this study, the damping function f1 is used to compute the

wall-normal vector using the relation ni � p∇f1qi{ }∇f1}. The calibration constants

αi are again determined by optimization for a planar channel flow at Reτ � 590.

The values are given as

γ2 � 1.4, γ4 � �0.23. (7.19)

7.3.2 Near-Wall Consistent Transport Equation

It has been shown in section 6.2, that the high-Reynolds-number form of the trans-

port equations for k and ω fail in predicting the correct near-wall asymptotic be-

haviour of turbulence kinetic energy k. As a consequence, the asymptotic behaviour

of all other derived quantities, such as ε � β�kω or τ � k{ε, will also be largely
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in error close to the wall. In order for the near-wall modifications to work as in-

tented, it is crucial that the near-wall asymptotic behaviour of k and ω is correctly

reproduced. In the following, modifications to the transport equation of turbulence

kinetic energy are introduced, which rectify the erroneous predictions close to the

wall and yield the correct asymptotic behaviour for k as the wall is approached.

The balance of the k and ω equations very close to the wall reduces to

ν
B2k

Bx2
j

� ε � 0, ν
B2ω

Bx2
j

� βω2 � 0. (7.20)

It is easy to show that close to the wall the solution to the ω equation is given by

ω � aω{y2. The constant aω can be determined from (7.20) as aω � 6ν{β. Hence,

the near-wall balance of the ω equation is satisfied providing ω Ñ 6ν{βy2 as the

wall is approached. In order to ensure the correct behaviour of ω close to the wall

it is common practice to prescribe the solution of ω at the first grid point (or cell)

adjacent to walls as ω1 � 6ν{βy2
1, where y1 is the distance of the first grid point

to the closest wall. Alternatively, the somewhat arbitrary wall boundary condition

ωw � 10 � 6ν{βy2
1 (see, for example, Menter, 1994) can be used. From experience

gained in this work, the specification of the boundary conditions ω1 or ωw may

not always be sufficient to fully reproduce the correct asymptotic behaviour of ω

close to the wall, particularly if the grid resolution near the wall is not adequate.

In order to ensure that ω behaves correctly as the wall is approached, the present

formulation prescribes the asymptotic solution ω � 6ν{βy2 in the near-wall region,

where y� � β�1{4k1{2y{ν ¤ 2.0.

Next, the near-wall balance of the turbulence kinetic energy equation is considered.

Assuming the turbulence kinetic energy behaves as k � aky
2 close to the wall and

using the model for the dissipation rate ε � β�kω, the near-wall balance reduces to

1�3β�{β � 0. This constraint is obviously not fulfilled in the high-Reynolds number

formulation, and explains the incorrect asymptotic behaviour of k. In order to take

this constraint into account, the first option would be to apply a damping function

to the closure coefficient β (see Speziale et al., 1992). In the present formulation a

damping function fβ� is applied to the model for the dissipation rate ε � fβ�β
�kω.

The function fβ� needs to satisfy the limiting value of fβ� Ñ β{3β�. This ensures

that the near-wall balance is satisfied. The damping function follows the proposal

of Wilcox (1998) and depends on the turbulence Reynolds number ReT � k{νω,

thus

fβ� � β{3β� � pReT {Rβq4
1 � pReT {Rβq4 . (7.21)
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The constant Rβ controls the turbulence kinetic energy dissipation rate close to the

wall and has to be adjusted to give the correct log-law behaviour of a turbulent

boundary layer. For the present formulation the correct behaviour is reproduced

for Rβ � 8. Note that the other two functions of Wilcox (1998) k-ω model for

transitional flows, which multiply the eddy viscosity and production of specific

dissipation rate, are not needed here.

7.4 Planar Channel Flow

In order to highlight the performance of these near-wall modifications, the modified

EASM formulations are applied to the planar channel flow configuration of section

6.2. The results are summarised in figure 7.2 and show the mean-velocity profile

U�, the normal components of the anisotropy tensor aij � u
1

iu
1

j{k � p2{3qδij, the

Reynolds-stress components u
1

iu
1

j

�
, the asymptotic behaviour of the Reynolds-stress

components, the IIIa-IIa invariant map and the balance of the turbulence kinetic

energy equation.

The predictions of the mean-velocity profile are the same as for the baseline EASM

formulation. The small under-prediction of velocity magnitude in the buffer region,

and centre of the channel, is still present. Very clear improvements can be observed

for the predictions of the Reynolds-stress and anisotropy tensors. Good agreement

is now achieved in the near-wall regions for both the Reynolds-stress and anisotropy

tensor components. The asymptotic behaviours of the normal-Reynolds-stress com-

ponents, particularly for u1u1 and v1v1 , show significant improvements. The w1w1

component departs slightly from the reference data. Even though the near-wall

behaviour of the normal-anisotropy components are in much better agreement with

the reference data, none of the modifications are able to resolve the reduction of

the anisotropy components a11 and a33 between the peak locations and the wall.

This deficiency is also reflected in the anisotropy-invariant map (e), where all near-

wall modifications predict a two-components state at the wall, but none is able to

predict the correct variation along the two-component line. The budget of turbu-

lence kinetic energy (f) also shows significant improvements close to the wall. The

damping function fβ� is effective in reducing the artificial peak of the dissipation

rate ε� close to the wall, which eliminates the severe under-prediction of turbulence

kinetic energy k� observed for the baseline EASM. The damping function not only

improves the predictions of k� close to the wall, but it also improves predictions of

the viscous and turbulent diffusion terms.
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Figure 7.2: Predictions for a planar channel flow at Reτ � 590. Symbols cor-
respond to DNS (Moser et al., 1999). (—) EASM based on the
blending approach, (- - -) EASM based on local enhancement of
anisotropy , (� ��) EASM based on local and directional enhance-
ment of anisotropy.



Chapter 8

A Novel Non-Linear

Elliptic-Blending RANS Model

In this chapter, a new approach is presented, which aims at combining the ad-

vantages of the elliptic-blending approach for modelling near-wall flows with the

advantages of a non-linear stress-strain relationship to provide more accurate pre-

dictions of the Reynolds-stress and anisotropy field in complex flows. The resulting

non-linear elliptic-blending RANS model contains several novelties. First of all, any

viscosity-dependent blending or damping functions as they are used for the near-wall

anisotropy modifications and for modelling the transport equations in section 7 are

abandoned and their effect is more naturally included based on the elliptic-blending

approach. Second, the elliptic-blending approach of Keshmiri et al. (2008) is used

in conjunction with a k-ω framework and not, as usual, in conjunction with a k-ε

model. This seams a reasonable decision due to the previously discussed superiority

of the ω equation to predict the flow in adverse pressure gradient or strong non-

equilibrium conditions. Finally, a non-linear stress-strain relationship is proposed,

which recovers the normal-Reynolds-stress and anisotropy predictions of the base-

line EASM model away from the wall, where the quasi-homogeneous pressure-strain

model of Speziale et al. (1991) provides good predictions for the Reynolds-stress

and anisotropy tensor. A near-wall-consistency constraint and additional near-wall

anisotropy modification are introduced in order to improve the predictions of the

quasi-homogeneous pressure-strain model close to the wall, such that the highly

anisotropic state of turbulence and the limiting two-component state is correctly

reproduced as the wall is approached. In order to assess the performance of the

new turbulence model, simulations are performed for the flow in a planar channel,

139
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the flow over the NASA hump configuration and the flow in a three-dimensional

diffuser and the results are assessed by comparing to reference data.

8.1 Transport Equations

The proposed RANS model is based on a transport equation for the inverse turbulent

time scale or specific turbulence dissipation rate ω. The transport equation from

the baseline EASM can be retained and do not require re-calibration or further

modifications. The transport equations for the turbulence kinetic energy k and the

specific dissipation rate ω take the following form (see Hellsten, 2004, 2005)

Dk

Dt
� Pk � ε� B

Bxj

�
pν � σkνT q BkBxj

�
, (8.1)

Dω

Dt
� γ

ω

k
Pk � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
� σd
ω

max pCDkω, 0q , (8.2)

where Pk � �u1

iu
1

jBui{Bxj is the rate of production of turbulence kinetic energy

and CDkω � pBk{BxjqpBω{Bxjq is the turbulent cross-diffusion term, which stems

from the transformation of the standard k-ε model to a k-ω framework. The cross-

diffusion term is effective in reducing the model sensitivity to free-stream values of

ω. The turbulence kinetic energy dissipation rate is now modelled as

ε � fβ�β
�kω, (8.3)

where fβ� is a novel damping function, which relies on the wall-normal fluctuation

ratio ϕ � v2{k, as predicted by the elliptic-blending approach, rather than using

the turbulence Reynolds number ReT . A damping function, which satisfies the

constraint β�{β Ñ 1{3 as the wall is approached is given by

fβ� � β{3β� � pϕ{β�q3
1 � pϕ{β�q3 . (8.4)

The constants in fβ� are chosen such that the correct log-layer behaviour of the

mean-velocity profile is reproduced. The present formulation employs the ϕ-α model

of Keshmiri et al. (2008), which is based on the elliptic-blending concept of Manceau

& Hanjalic (2002). The ϕ-α model solves a transport equation for the normalised

wall-normal fluctuating velocity scale ϕ � v2{k and an elliptic equation for the
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parameter α. The constitutive equations for ϕ and α take the form

Dϕ

Dt
� p1 � αpq fwall � αpfhom � ϕ

k
Pk � 2

k
pσkνT q BkBxj

Bϕ
Bxj �

B
Bxj

�
pν � σϕνT q BϕBxj

�
,

L2∇2α � α � �1. (8.5)

The redistribution term fhom is based on the quasi-homogeneous pressure-strain

model of Speziale et al. (1991), thus

fhom � �p1{τq pC1 � 1 � C2Pk{εq pϕ� 2{3q , fwall � �ϕε
k
. (8.6)

The damping function fβ� in the model for the turbulence kinetic energy dissipation

rate not only ensures that the turbulence kinetic energy is correctly predicted of the

order k � Opy2q as the wall is approached. It also guarantees, that the near-wall

balance of the ϕ equation is satisfied, and that the correct behaviour ϕ � Opy2q is

reproduced.

The eddy viscosity, which contains the correct near-wall damping through the nor-

malised velocity scale ϕ, is as follows

νT � Cν
µϕkτ. (8.7)

In order to take viscous effects into account, a lower bound on the viscous time τ

and length scales L is introduced. In addition, the realisability constraint of Durbin

(1996) is imposed, such that

τ � max

�
min

�
k

ε
,

0.6?
6Cµϕ

��S�ij��
�
, Cτ

c
ν

ε

�
, (8.8)

L � CL max

�
min

�
k3{2

ε
,

k1{2

?
6Cµϕ

��S�ij��
�
, Cη

�
ν3

ε


1{4
�
. (8.9)

8.2 Non-linear Stress-Strain Relationship

The Reynolds-stress tensor u
1

iu
1

j of the new RANS model constitutes a non-linear

stress-strain relationship, which can be written as u
1

iu
1

j � p2{3qkδij � kaij, where

the anisotropy tensor is given by

aij � �2pνT {kqS�ij � aexij . (8.10)
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The most general form of the extra-anisotropy tensor in the limit of two-dimensional

mean flow is given by the following relation:

aexij � β2

�
SikSkj � 1

3
IISδij



� β4 pSikΩkj � ΩikSkjq , (8.11)

with the invariants

IIS � tr tSikSkju , IIΩ � tr tΩikΩkju . (8.12)

Recall that it was demonstrated in chapter 6 and in Weinmann & Sandberg (2009)

that the baseline EASM, which is based on the quasi-homogeneous pressure-strain

model of Speziale et al. (1991) (SSG), is capable of providing realistic predictions

for the Reynolds-stress and anisotropy tensor in complex three-dimensional flows

away from solid boundaries. It was also found that the SSG model fails to predict

the highly anisotropic state of turbulence and the limiting two-component state as

the wall is approached.

In order to improve the predictions of the quasi-homogeneous pressure-strain model

close to the wall, a near-wall-consistency constraint and additional near-wall anisotropy

modification are introduced. These constraints result in a set of modified coefficients

βi, which include the correct near-wall behaviour, and which recover the solution

of the quasi-homogeneous EASM model away from solid boundaries. Thus, away

from solid boundaries, the new model recovers the coefficients βhi of the quasi-

homogeneous EASM. The coefficients βhi are given by

βh2 � 2A1A2{Q, βh4 � �A1{Q (8.13)

where

Q � N2 � 2IIΩ � 2

3
A2

2IIS. (8.14)

The constants Ai are directly determined from the model of Speziale et al. (1991),

and are given as

A1 � 1.22, A2 � 0.47, A3 � 0.88, A4 � 2.37.

The variable N appearing in (8.14) corresponds to the ratio of turbulence kinetic

energy production to dissipation rate and is governed by a non-linear relation. For
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two-dimensional flows the non-linear equation has the explicit solution

N �
$&%

A3

3
� �

P1 �
?
P2

�1{3 � �
P1 �

?
P2

�1{3
, P2 ¥ 0

A3

3
� 2 pP 2

1 � P2q1{6 cos

�
1
3

arccos

�
P1?
P 2
1�P2


�
, P2   0

(8.15)

with

P1 �
�
A2

3

27
�
�
A1A4

6
� 2

9
A2

2



IIS � 2

3
IIΩ



A3, (8.16)

P2 � P 2
1 �

�
A2

3

9
�
�
A1A4

3
� 2

9
A2

2



IIS � 2

3
IIΩ


3

. (8.17)

Near-Wall Consistency and Anisotropy Modifications

The main objective for the proposed model is to introduce the ability to account

for the highly anisotropic state of turbulence close to a wall. The correct near-wall

behaviour of the coefficients βi is achieved by imposing the following constraints on

the anisotropy tensor:

a11 � ah11 � fwa
w
11, a22 � fb pϕ� 2{3q � p1 � fbq ah22. (8.18)

That is, the a11 anisotropy component is obtained as the sum of the contribution

from the quasi-homogeneous EASM model ah11, and the extra component aw11, which

enhances the anisotropy state close to the wall. The function fw ensures that the

anisotropy modifications are only activated close to the wall. The a22 anisotropy

component is designed such that the anisotropy state obtained from the wall-normal

velocity scale pϕ� 2{3q is used in the near-wall region and blended towards the

anisotropy state predicted by the EASM relations ah22 away from solid boundaries.

The blending is achieved by the specifically designed blending function fb. The

present formulation ensures that the Reynolds-stress and anisotropy predictions of

the baseline EASM model are recovered away from solid boundaries. Note that no

constraint is placed on a33, since only two relations are required to determine the

new coefficients β2 and β4.

New expressions for the coefficients β2 and β4 are derived by considering two-

dimensional parallel mean flow, where (8.10) reduces to

a12 � �2Ceff
µ σ, a11 � pp1{3qβ2 � 2β4qσ2,

a22 � pp1{3qβ2 � 2β4qσ2, a33 � �p2{3qβ2σ
2, (8.19)
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where σ � p1{2qτdu{dy and Ceff
µ � Cν

µϕ. Using the relations (8.19) to rewrite the

tensor ahij and the wall anisotropy modification tensor awij in terms of βhi and βwi ,

and substituting both into (8.18) yields a system of equations that can be solved.

The result is

β2 � βh2 �
3fb pϕ� 2{3q

max rIIS, 5.05s � fb

�
1

2
βh2 � 3βh4



� fw

�
1

2
βw2 � 3βw4



, (8.20)

β4 � βh4 �
fb pϕ� 2{3q

2 max rIIS, 5.05s � fb

�
1

12
βh2 �

1

2
βh4



� fw

�
1

12
βw2 � 1

2
βw4



. (8.21)

The strain rate σ has been replaced and generalised using the relation σ2 � 0.5IIS,

and is limited to the equilibrium value in order to avoid numerical difficulties in

situations where IIS vanishes. The coefficients βwi for the near-wall-anisotropy

corrections are taken as

βw2 � α2

1 � IIS
, βw4 � α4

1 �?�IISIIΩ

. (8.22)

The constants αi are calibrated using planar channel flow and take the values α2 �
0.9 and α4 � 0.49. The auxiliary function fb is a modified version of Menter’s

blending function F1 and ensures that the consistency constraint is only invoked

in a region close to the wall, where the stress and anisotropy state predicted by

the baseline EASM model is largely in error. Alternatively, the region where the

consistency constraint is invoked could easily be extended to a region of almost

the entire boundary layer by using Menter’s original functions fb � F1 or fb � F2.

The function fw, which ensures that the near-wall-anisotropy modifications are only

activated close to the wall, uses the elliptic-blending variable α to detect the presence

of solid boundaries. Since the near-wall modifications are derived by assuming

parallel shear flow, the function fr � pIIΩ � IISq { pIIΩ � IISq is introduced to fw,

in order to ensure that the modifications are only active in shear-dominated flows

for which fr Ñ 0. The auxiliary functions take the form

fb � tanh
�
16Γ4

2

�
, fw �

�
1 � α2

� �
1 � f 2

r

� �IIS � 100

IIS � 100
, (8.23)

where Γ2 � 500ν{ωy2. The invariant �IIS � tr
!rSik rSkj) is determined from rSij �rτS�ij using the time scale rτ � min

�
k{ε, 0.6{?6Cµϕ

��S�ij���, which does not impose a

lower viscous limit. The invariant �IIS is necessary in order to correctly model the

variation of the anisotropy components a11 and a33 between the peak location and

the wall.
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The suggested closure coefficients for the new ϕ-α-EASM can be summarised as

Set 1: γ1 � 0.518 β1 � 0.0747 σK1 � 1.1 σω1 � 0.53 σd1 � 1.0
Set 2: γ2 � 0.440 β2 � 0.0828 σK2 � 1.1 σω2 � 1.00 σd2 � 0.4

Cν
µ � 0.22 C1 � 1.7 C2 � 1.2 p � 3 σϕ � 1 CL � 0.161
Cτ � 6 Cη � 90 α2 � 1.0 α4 � 0.49 Rα � 0.01 β� � 0.09

Table 8.1: Closure constants for the ϕ-α-EASM

8.3 Discussion

The new ϕ-α-EASM differs from the baseline EASM in the following ways: 1)

the inclusion of additional near-wall-anisotropy modifications, which are used in

conjunction with a near-wall-consistency constraint and 2) the redefinition of Ceff
µ ,

which is given here as Ceff
µ � Cν

µϕ, and for the baseline EASM as Ceff
µ � �0.5βh1

with βh1 � �A1N{Q. With the present formulation, several shortcomings of the

coefficient βh1 are obviated. Consider, for example, two-dimensional parallel shear

flow. It can be shown that for large strain rates σ, the coefficient βh1 behaves as

βh191{σ, with the consequence that a12 is approximately constant close to the wall.

Therefore, the damping inherent in βh1 is not sufficient and additional damping

functions are required in order to achieve the correct behaviour of a12 � Opyq as

the wall is approached. In the present formulation the wall damping is naturally

included and a12 � Opy2q. Note that the behaviour a12 � Opy2q is a spurious feature

of the elliptic-blending/-relaxation technique and is tantamount to a turbulence

viscosity νT , that behaves as Opy4q instead of Opy3q, as it should, as the wall

is approached. This is not considered a problem, since νT is sufficiently small

close to the wall such that the total effective viscosity νeff � ν � νT is correctly

reproduced (see Durbin, 1991). Second, in case of vanishing strain rate, σ Ñ 0, the

coefficient βh1 takes excessive values. For example, the predicted Ceff
µ � �0.5βh1 at

the centerline of a planar channel flow reaches values close to Ceff
µ � 0.7. This is

clearly in contradiction to the generally accepted value of Ceff
µ � 0.09. The present

formulation does not suffer from this issue.

Finally, the authors recent experience has shown that for separated flows the EASM

formulation is sometimes inferior to traditional linear two-equation models. One

source of deficiency of the EASM framework was identified to be the coefficient βh1 ,

which reduces the contribution of the linear term in the stress-strain relationship

to the shear stress in the separated shear layer, through Ceff
µ � �0.5βh1 , by up
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to 30% (when compared to Ceff
µ � 0.09). The insufficient level of shear stress in

the separated shear layer consequently leads to an over-prediction of the separation

or recirculation zone. These observations are confirmed by Jang et al. (2002) who

investigated the performance of several NLEVMs and EASMs in massively separated

flows. The model presented here avoids this issue by using Ceff
µ � Cν

µϕ, which

does not reduce in free shear layers. This feature effectively shortens excessive

recirculation zones frequently observed with EASM models.

Even though the present modifications solve some of the common issues related to

EASM models in shear-dominated flows, it might do so by sacrificing some of the

capabilities inherent in βh1 , particularly the sensitivity to rotational effects through

the invariant IIΩ, to predict flows with strong streamline curvature or imposed

system rotation. However, the present formulation has been tested for the strongly

curved flow in a two-dimensional U-duct and the predicted results for the mean flow

and turbulence quantities were found to be very similar to the baseline EASM. For

this reason, no further action has been taken to retain the original coefficient βh1 of

the baseline EASM formulation for rotational flows.

8.4 Planar Channel Flow

In order to highlight the performance of the new ϕ-α-EASM model, it is applied

to the planar channel flow configuration of section 6.2. The results are summarised

in figure 8.1, which shows the mean-velocity profile U�, the normal components

of the anisotropy tensor aij � u
1

iu
1

j{k � p2{3qδij, the Reynolds-stress components

u
1

iu
1

j

�
, the IIIa-IIa invariant map and the balance of the turbulence kinetic energy

equation.

The mean-velocity profile U� follows the same trends, which were observed for the

baseline EASM formulation, i.e. a slight under-prediction of velocity magnitude at

the centre of the channel and in the buffer region (y� � 10 � 30). The predictions

of the components of the anisotropy tensor has improved over the baseline EASM

and over the modified EASM, as discussed in section 7.3. The present model is

able to capture the reduction of the normal components a11 and a33 between the

peak locations and the wall. It is also able to maintain higher levels of anisotropy

as the centre of the channel is approached. This is related to the fact, that the

erroneous behaviour of Ceff
µ for σ Ñ 0 is eliminated in the new ϕ-α-EASM model.

The components of the Reynolds-stress tensor and the asymptotic behaviour of the

normal components are both in excellent agreement with the reference data. Only
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the w1w1 component shows a small kink close to the wall. Note that the k-ε-α of

Manceau (2003) shows a similar dip for w1w1 at approximately the same location.

The excellent predictions of the anisotropy tensor are also reflected in the IIIa-IIa

invariant map, where the new model is able to fully reproduce the DNS data. The

predictions of the near-wall budget of the turbulence kinetic energy equation has

not changed much. This is not too surprising, since the k and ω equations remain

the same as for the near-wall modified EASM of section 7.3, apart from the newly

designed damping function fβ� .
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Figure 8.1: Predictions for a planar channel flow at Reτ � 590. Symbols cor-
respond to DNS (Moser et al., 1999). (—) new ϕ-α-EASM model.
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8.5 NASA Hump

The NASA wall-mounted hump has already been introduced in section 6.3 and

is used here again in order to evaluate the performance of the new ϕ-α-EASM

model to predict separation from a smooth surface, recirculation and subsequent

reattachment of the flow. As a reference, the results of the EASM-2D and ϕ-α-

UMIST models are also included in the compassion with the experimental data of

Greenblatt et al. (2004, 2006).

The predicted streamwise velocity contour U{U0 and computed streamlines are

shown in figure 8.2. The ϕ-α-EASM model predicts the separation point at the

location xs{c � 0.665, which is identical to the locations predicted by the EASM-

2D. The reattachment point is located at xr{c � 1.16 and has moved much closer

to the reattachment location of the experiment xr{c � 1.1. The error in the reat-

tachment location has reduced from approximately 13% of chord of the EASM-2D

to 5% of chord of the ϕ-α-EASM. As a consequence, the small recirculation zone

observed in the experiment is now much better predicted by the ϕ-α-EASM com-

pared to the other turbulence models. The shortening of the recirculation zone is

a direct consequence of the redefinition of Ceff
µ � Cν

µϕ, which does not reduce the

contribution of the linear term in the stress-strain relationship to the shear stress in

the free-shear layer. This is in contrast to the baseline EASM, where the sensitivity

of Ceff
µ to strain and rotation reduces the shear stress in the free-shear layer.

(a) Experiment. (b) ϕ-α-EASM.

(c) ϕ-α-UMIST. (d) EASM-2D.

Figure 8.2: Streamwise velocity contours and streamlines for the NASA hump
case.



150 Chapter 8 A Novel Non-Linear Elliptic-Blending RANS Model

Figure 8.3 shows predictions of the surface-pressure coefficient Cp � pp�pref q{p0.5ρU2
0 q

and skin-friction coefficient Cf � τw{p0.5ρU2
0 q distributions. Upstream of the sep-

aration point, the surface-pressure distribution of the ϕ-α-EASM matches the re-

sults of the ϕ-α-UMIST and reference data, whereas the baseline EASM shows a

small under-prediction of the low-pressure peak. In the separated flow region, the

surface-pressure distribution is slightly improved over the ϕ-α-UMIST, but remains

somewhat higher compared to the EASM-2D. After reattachment, the ϕ-α-EASM

shows recovery of surface pressure, which is in better agreement with the reference

data. The skin-friction distribution of the ϕ-α-EASM closely follows that of the

EASM-2D. In the region upstream of the separation point, the ϕ-α-UMIST model

shows a much lower magnitude of skin friction compared to the ϕ-α-EASM and

EASM-2D models. Within the recirculation zone, the ϕ-α-EASM and EASM-2D

predict much lower levels of skin friction, which is in better agreement with the ref-

erence data, whereas the ϕ-α-UMIST model shows excessive levels of skin friction.

The EASM-2D seems to be slightly superior in predicting the correct magnitude of

skin friction in the recirculation zone. Downstream of the reattachment point, only

the ϕ-α-EASM and EASM-2D models are able to recover the correct magnitude of

skin friction.

(a) Surface-pressure coefficient Cp (b) Skin-friction coefficient Cf

Figure 8.3: Surface-pressure coefficient Cp and skin-friction coefficient Cf dis-
tribution. Symbols correspond to experimental data of Greenblatt
et al. (2004, 2006). (—) ϕ-α-EASM, (- - -) ϕ-α-UMIST, (� � �)
EASM-2D.

The velocity profiles for the streamwise and vertical velocity components U{U0 and

V {U0 are shown in figure 8.4 for the stations x{c � 0.65, x{c � 0.8, x{c � 1.0 and

x{c � 1.2. At the first station, x{c � 0.65, immediately upstream of the separation

point, the ϕ-α-EASM model predicts both components of the velocity in excellent
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agreement with the experimental data and does not show the defect of the EASM-

2D of too strong a retardation of the streamwise velocity component close to the

wall. At the second and third stations, x{c � 0.8 and x{c � 1.0, the ϕ-α-EASM and

ϕ-α-UMIST predict the streamwise velocity component very similar and in good

agreement with corresponding measurements. Some advantages can be observed

for the ϕ-α-EASM in predicting the velocity component V {U0. At the last station,

x{c � 1.2, just after reattachment, the superiority of the new ϕ-α-EASM becomes

clearly visible in the predictions of the streamwise velocity profile. Both the EASM-

2D and ϕ-α-UMIST show a small amount of reverse flow close to the bottom wall,

whereas the flow of the ϕ-α-EASM has already reattached. The earlier reattachment

reflects significant improvements of the velocity profile close to the wall.

(a)

(b)

Figure 8.4: Velocity profiles at different stations in the flow field. Symbols
correspond to experimental data of Greenblatt et al. (2004, 2006).
(—) ϕ-α-EASM, (- - -) ϕ-α-UMIST, (� � �) EASM-2D.

The shear stress u1v1 and normal-stress components u1u1 and v1v1 are shown in figure

8.5. The shear-stress prediction at x{c � 0.65 by the ϕ-α-EASM model has now a

pronounced peak close to the wall, which is absent in the predictions of the other

models and from the reference data. In the region of the free-shear layer, the ϕ-α-

EASM model predicts higher overall shear stress, which is in better agreement with

the experimental data. The location of the shear-stress peak value has also moved

towards the location of maximum shear stress found in the experiment. The higher

overall levels of shear stress are responsible for the shortening of the recirculation
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zone. At the last station, x{c � 1.2, the new ϕ-α-EASM recovers the predictions of

the EASM-2D.

(a) Reynolds-stress tensor component u1v1

(b) Reynolds-stress tensor component u1u1

(c) Reynolds-stress tensor component v1v1

Figure 8.5: Components of the Reynolds-stress tensor. Symbols correspond
to experimental data of Greenblatt et al. (2004, 2006). (—) ϕ-α-
EASM, (- - -) ϕ-α-UMIST, (� � �) EASM-2D.

Similar to the shear stress, the normal-stress component u1u1 at station x{c � 0.65

of the ϕ-α-EASM shows a large peak close to the wall, which is not predicted by the

other models, and which is not observed in the experimental data. This peak stems

from the normal-anisotropy modifications of the ϕ-α-EASM and seems to be too

intense. At all other stations, the normal-stress component u1u1 has improved over

the EASM-2D and the ϕ-α-UMIST models. The ϕ-α-EASM model shows higher

intensities of normal stress u1u1 close to the wall and in the free-shear layer. The

location of the peak normal stress has also slightly improved.
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The predictions of the normal-stress component v1v1 show less scatter. At station

x{c � 0.65, the ϕ-α-EASM and EASM-2D show significantly better predictions,

even though the intensity of v1v1 remains too high close to the wall. At all other

stations, the results are very similar and good agreement is observed with the ref-

erence data.

In order to illustrate the effect of the near-wall consistency and anisotropy modifi-

cations used in the ϕ-α-EASM, it is convenient to analyse the components of the

anisotropy tensor. The a11 and a22 components of the anisotropy tensor are shown

in figure 8.6. It is again obvious, that the ϕ-α-EASM and EASM-2D model provide

good agreement with the reference data for the region away from the wall. It should

be emphasised that the anisotropy predictions away from the wall of both models

are very similar, as expected, since the ϕ-α-EASM recovers the normal anisotropy

of the EASM-2D model, as desired. At x{c � 0.65 and x{c � 0.8, the effect of

the near-wall consistency and anisotropy modification becomes apparent. The a11

components show a large peak close to the wall, and the a22 component approaches

the correct limiting value of a22 Ñ �2{3 at the wall. The rate at which the wall

limit is approached is somewhat too rapid compared to the reference data. At the

last two stations, x{c � 1.0 and x{c � 1.2, it is much harder to detect the effect of

the near-wall consistency and anisotropy modifications, since they are limited to a

region very close to the wall.

Finally, the anisotropy-invariant map is presented in figure 8.7. The first to notice

is that all anisotropy states are bound inside the triangle. This indicates that the

ϕ-α-EASM model predicts physically realisable results. Second, the new model is

able to reproduce the physically correct two-component state of turbulence at the

wall. This is linked to the correct limit of a22 Ñ �2{3. Unfortunately, no reference

data are available, which prevents further comparison and evaluation.
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(a) Anisotropy tensor component a11

(b) Anisotropy tensor component a22

Figure 8.6: Components of the anisotropy tensor. Symbols correspond to ex-
perimental data of Greenblatt et al. (2004, 2006). (—) ϕ-α-EASM,
(- - -) ϕ-α-UMIST, (� � �) EASM-2D.

IIIa

II a

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5 x/c=0.65

IIIa

II a

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5 x/c=0.8

IIIa

II a

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5 x/c=1.2

IIIa

II a

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5 x/c=1.0

Figure 8.7: Anisotropy-invariant map. (- - -) ϕ-α-EASM, (—) ϕ-α-UMIST,
(� � �) EASM-2D.
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8.6 Three-Dimensional Diffuser

The three-dimensional diffuser has already been introduced in section 6.4 and is used

here again in order to evaluate the performance of the new ϕ-α-EASM model to

predict three-dimensional flow including boundary-layer separation. As a reference,

the results of the EASM-2D and ϕ-α-UMIST turbulence models are also included

in the comparison with experimental data of Cherry et al. (2008, 2009).

The flow field at the spanwise location z{Lz � 0.5 is presented first. This is followed

by a more detailed analysis of the streamwise evolution of the three-dimensional flow

field.

Centre Plane z{Lz � 0.5

The predictions of the surface-pressure distribution Cp � pp � pref q{p0.5ρU2
b q at

the bottom wall, y{H � 0, are shown in figure 8.8. The new ϕ-α-EASM model

clearly shows improved predictions over the EASM-2D and ϕ-α-UMIST models for

the surface-pressure distribution downstream of x{L � 0.3. The ϕ-α-EASM model

shows the highest magnitude of Cp throughout and is therefore in better agreement

with the reference data. The other models more severely under-predict the surface-

pressure distribution. All of the models exhibit the same difficulties in reproducing

the initial, rapid pressure recovery, which extents up to the location x{L � 0.5. The

ϕ-α-EASM model is slightly superior in this respect and predicts the correct trend

up to approximately x{L � 0.2.

x/L

C
p

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Figure 8.8: Surface-pressure coefficient Cp at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
ϕ-α-EASM, (- - -) ϕ-α-UMIST, (� � �) EASM-2D.
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More insight into the flow field predictions can be gained from figure 8.9, which

shows the streamwise velocity contour U{Ub at the centre plane z{Lz � 0.5. The

figure also includes a thick line, which corresponds to the zero-velocity contour line

and gives the extent of the separated flow region. The experimental data show a

large separation zone, which extents from approximately x{H � 7 to x{H � 19.

The ϕ-α-EASM and ϕ-α-UMIST both predict no separation at the centre plane,

apart from a very small recirculation zone just downstream of the sharp corner at

x{H � 0. The EASM-2D gives a more realistic picture of the separation zone, even

though agreement is also not fully satisfactory. Similar to the other models, the

ϕ-α-EASM model fails to predict the spreading of the flow away from the bottom

wall, towards the centre of the diffuser.

(a) Exp. (b) ϕ-α-EASM

(c) ϕ-α-UMIST (d) EASM-2D

Figure 8.9: Streamwise velocity contour U{Ub at the centre plane z{Lz � 0.5.

A more detailed comparison of the flow field in the centre plane is shown in figures

8.10 and 8.11, where the velocity profiles and Reynolds-stress tensor components

are plotted at the four streamwise locations x{H � 1, x{H � 5, x{H � 12 and

x{H � 16. Although not shown in the figures, the diffuser inflow conditions are

better predicted by the ϕ-α-EASM, similar to the EASM-2D. Both predict the

centre-line velocity in better agreement with reference data than the ϕ-α-UMIST

model, which over-predicts the streamwise velocity in the centre of the channel. At

x{H � 1 and x{H � 5, the same trend as for the inflow is still visible, in that,

both the ϕ-α-EASM and EASM-2D predict the velocity magnitude in the centre

of the diffuser in better agreement with experimental data. Further downstream,

at x{H � 12 and x{H � 16, the over-prediction of streamwise velocity magni-

tude is considerably reduced and the magnitudes are closer to the reference data.

Nevertheless, the location of the streamwise velocity peak remains too close to the

bottom wall, and does not move towards the centre of the diffuser as observed in

the experiment. The ϕ-α-EASM gives the best agreement near the bottom wall and



Chapter 8 A Novel Non-Linear Elliptic-Blending RANS Model 157

the location of the peak streamwise velocity is at all stations predicted further away

from the bottom wall. However, the overall agreement with reference is still not en-

tirely satisfactory. The streamwise velocity near the top wall is best reproduced by

the EASM-2D model. As discussed before, the ϕ-α-EASM and ϕ-α-UMIST model

do not predict any flow separation at the top wall. This is reflected in the velocity

profiles, which show a too large streamwise velocity magnitude at the top wall.

For the streamwise velocity fluctuations u1

rms{Ub close to the wall, clear differences

can be observed between the ϕ-α-EASM and EASM-2D model (figure 8.10 (d)).

The differences are most pronounced at x{H � 1 and {H � 5, where the ϕ-α-

EASM shows a significantly higher intensity close to the wall. The higher level

of streamwise velocity fluctuations can be attributed to the near-wall-anisotropy

modifications used in the ϕ-α-EASM model. Further downstream, at x{H � 1 and

x{H � 5, the influence of the near-wall modifications is less pronounced compared

to the stations upstream. Away from the wall, ϕ-α-EASM predicts the stream-

wise velocity fluctuations in close agreement with the EASM-2D. This behaviour

is expected, since the ϕ-α-EASM model recovers the normal-Reynolds-stress and

anisotropy predictions of the EASM-2D away from the wall. The non-linear stress-

strain relationship of both EASM-based models shows clearly more realistic predic-

tions compared to the ϕ-α-UMIST model. However, the ϕ-α-EASM model predicts

wall-normal velocity fluctuations v1rms{Ub that are similar to the EASM-2D model,

and which are significantly lower in intensity than from ϕ-α-UMIST model. Even

though the lower intensity seems more realistic, no experimental data are available

to confirm this.

Predictions for the u1v1 shear stress reveal that the ϕ-α-EASM closely follows the

predictions of the EASM-2D. Both models show significantly higher values of shear

stress, particularly at x{H � 12 and {H � 16. It is somewhat surprising, that

at the last two stations, the EASM-2D model predicts higher levels of shear stress

compared to the ϕ-α-EASM model, even though the non-constant coefficient Ceff
µ �

�0.5β1 reduces the contribution of the linear term in the stress-strain relationship

to the shear stress.

The ability of the EASM-based models to predict more realistic levels of normal-

Reynolds-stress components is also reflected in the predictions of the anisotropy

tensor, as shown in figure 8.11. The difference between the ϕ-α-EASM and the

EASM-2D model and the effectiveness of the near-wall consistency and anisotropy

modifications becomes more obvious in predictions of the anisotropy tensor. The
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near-wall-anisotropy modifications introduce a peak in the a11 anisotropy compo-

nent close to the wall, which is not predicted by the baseline EASM model. In

addition, the near-wall-consistency constraint ensures that the a22 anisotropy com-

ponent approaches the correct limit of a22 Ñ �2{3 at both walls. It is also obvious

that the anisotropy components from the ϕ-α-EASM model away from the wall, re-

duce to the predictions of the baseline EASM-2D model. Even though no reference

data are available for the anisotropy tensor, the significantly higher anisotropy of

the ϕ-α-EASM and EASM-2D models seem more realistic than the predictions of

the ϕ-α-UMIST model.

Finally, the anisotropy-invariant map is presented in figure 8.12. The first to notice

is that, for this internal flow case, all anisotropy states are bound within the trian-

gle. This indicates that the ϕ-α-EASM model predicts physically realisable results.

Second, the new model is able to predict the physically correct two-component state

of turbulence at both walls. This is a direct consequence of predicting the correct

limit a22 Ñ �2{3 as the wall is approached.
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(a) Velocity component U{Ub

(b) u1

rms{Ub

(c) v1

rms{Ub

(d) u1v1{U2
b

Figure 8.10: Velocity and Reynolds-stress tensor components at the centre
plane z{Lz � 0.5. Locations from left to right: x{H � 1, x{H � 5,
x{H � 12 and x{H � 16. Symbols correspond to experimental
data of Cherry et al. (2008, 2009). (—) ϕ-α-EASM, (- - -) ϕ-α-
UMIST, (� � �) EASM-2D.
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(a) a11

(b) a22

Figure 8.11: Components of the anisotropy tensor aij at the centre plane
z{Lz � 0.5. Locations from left to right: x{H � 1, x{H � 5,
x{H � 12 and x{H � 16. (—) ϕ-α-EASM, (- - -) ϕ-α-UMIST,
(� � �) EASM-2D.
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Figure 8.12: Anisotropy-invariant map. (- - -) ϕ-α-EASM, (—) ϕ-α-UMIST,
(� � �) EASM-2D.
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Three-Dimensional Flow Field

Further insight into the predictions of the three-dimensional flow field can be gained

from figures 8.13 and 8.14, which show contour plots of streamwise velocity compo-

nent U{Ub and streamwise velocity fluctuations u1

rms{Ub at the streamwise locations

x{H � 1, x{H � 5, x{H � 12 and x{H � 16. Figure 8.13 also includes the contour

line with zero velocity in order to visualise the extent of the separated-flow region.

At the first cross section, x{H � 1, the experimental data show incipient boundary-

layer separation emanating from the two upper corners in the diffuser. The same

trend is reproduced by all turbulence models with a small tendency to over-predict

the amount of separation in the corners. At the next station downstream, x{H � 5,

the separation is limited to the top right corner and again, all turbulence models

are able to capture this trend. However, the shape and extent of the recirculation

zone departs slightly from the reference data. The EASM-2D shows separation in

the top left corner, which is not observed in the experiment or by the ϕ-α-EASM

and ϕ-α-UMIST models. At the next two stations downstream, x{H � 12 and

x{H � 16, the flow in the experiment has completely detached from the top wall,

and the recirculation zone has become almost two dimensional, with no variation in

spanwise direction. Only the EASM-2D model is able to predict the complete flow

separation from the top wall, even though this occurs far too late, at approximately

x{H � 16. Both the ϕ-α-EASM and ϕ-α-UMIST models show separation from

the right wall, which is in contradiction to the experimental data. The shape of

the recirculation zone is slightly different between both models. The ϕ-α-EASM

additionally shows flow separation in the top left corner, similarly to the EASM-2D

model. It is somewhat surprising that the ϕ-α-EASM provides improved predictions

for the surface-pressure distribution and the velocity profiles at the centre plane,

even though, the three-dimensional flow topology is better predicted by the EASM-

2D. It is also worth mentioning that the intensity of the secondary motion in the

corners of the inflow duct of the ϕ-α-EASM has almost doubled, to 1.7% of Ub,

compared to the baseline EASM-2D. This is in better agreement to reference data,

but did not result in improved results for the three-dimensional flow topology.

The contours of streamwise velocity fluctuations u1

rms{Ub in figure 8.14 are again

predicted very similar by all turbulence models investigated here. As discussed

before, the EASM models predict a somewhat higher intensity of streamwise velocity

fluctuations compared to the ϕ-α-UMIST model. This is in better agreement with

the reference data.
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(a) Experiment x{H �
1)

(b) Experiment x{H �
5)

(c) Experiment x{H �
12)

(d) Experiment x{H �
16)

(e) ϕ-α-EASM (x{H �
1)

(f) ϕ-α-EASM (x{H �
5)

(g) ϕ-α-EASM (x{H �
12)

(h) ϕ-α-EASM
(x{H � 16)

(i) ϕ-α-UMIST
(x{H � 1)

(j) ϕ-α-UMIST
(x{H � 5)

(k) ϕ-α-UMIST
(x{H � 12)

(l) ϕ-α-UMIST
(x{H � 16)

(m) EASM-2D (x{H �
1)

(n) EASM-2D (x{H �
5)

(o) EASM-2D (x{H �
12)

(p) EASM-2D (x{H �
16)

Figure 8.13: Streamwise velocity contours predicted by the ϕ-α-EASM, ϕ-α-
UMIST, EASM-2D and experimental data of Cherry et al. (2008,
2009). Thick line corresponds to zero-velocity contour line. The
spacing between contour lines corresponds to ∆U{Ub � 0.1 and
dashed lines denote negative velocities.
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(h) ϕ-α-EASM
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(i) ϕ-α-UMIST
(x{H � 1)

(j) ϕ-α-UMIST
(x{H � 5)

(k) ϕ-α-UMIST
(x{H � 12)

(l) ϕ-α-UMIST
(x{H � 16)

(m) EASM-2D (x{H �
1)

(n) EASM-2D (x{H �
5)

(o) EASM-2D (x{H �
12)

(p) EASM-2D (x{H �
16)

Figure 8.14: Streamwise velocity fluctuations u1rms{Ub predicted by the ϕ-α-
EASM, ϕ-α-UMIST, EASM-2D and experimental data of Cherry
et al. (2008, 2009).





Chapter 9

A Modified Flow Simulation

Methodology

In this section a modified Flow Simulation Methodology (FSM) is presented, which

is expected to provide the required amount of turbulence modelling for any mesh

resolution, and seamlessly operate between RANS and DNS mode. In order to

further enhance the reliability and predictive accuracy of the FSM approach, a

hybrid convection discretisation scheme is proposed. The free parameters in the

FSM approach are calibrated for stationary homogeneous isotropic turbulence, in

order to provide proper LES behaviour and a physically consistent energy cascade.

The FSM approach is proposed in conjunction with three different underlying RANS

closures of different levels of sophistication. The turbulence models include the

k-ω-SST, EASM-2D and ϕ-α-EASM model.

9.1 The Hybrid RANS/LES Model Formulation

In the combined RANS/LES approach of Speziale (1998b,a) (see also discussion

in section 4.5.4) the unresolved-stress components are computed by damping the

Reynolds-stress tensor predicted from a state-of-the-art RANS turbulence model.

Hence, the unresolved-stress components are given by

u
1

iu
1

j � F � u1

iu
1

j

RANS
, (9.1)

where F is a damping function. The damping function F allows for a continuous

blending between RANS and DNS mode, depending on the local and instantaneous

165
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grid resolution, and hence is expected to provide the required amount of turbulence

modelling for any mesh resolution. This feature seems highly desirable for any

hybrid RANS/LES method to be successfully employed in a commercial solver en-

vironment, because it may automatically compensate for inadequate grid resolution

by elevated contribution of the unresolved-stress tensor. In general, the blending

function needs to be designed such that F Ñ 0, if the grid resolution is sufficient

to perform DNS and to resolve the smallest scales of turbulence. In the coarse-grid

or infinite-Reynolds-number limit, F needs to approach unity to recover a RANS

closure. For values 0 ¤ F ¤ 1, the model is able to operate in LES mode, where

most of the turbulence kinetic energy is resolved in the simulation, or in a VLES

mode, where large amounts of turbulence kinetic energy are not resolved and are

statistically represented by the turbulence model.

Consistency of FSM

The consistency issue of FSM has been addressed in section 4.5.4. Recall that at

least two possibilities exist for the computation of the Reynolds-stress tensor. The

first approach is to determine the Reynolds-stress tensor by performing explicit av-

eraging of the flow field and only use averaged quantities as an input in the RANS

model. This could be achieved by an a-priori RANS simulation, or by computing

averaged quantities ‘on the fly’ as the simulation progresses. Computing the average

as the simulation progresses seems not desirable, since accuracy is only achieved for

long-time averages and additional averaging may be required for cases, which are

statistically unsteady. In addition, the averaging operation removes all information

about the local and instantaneous state of the flow and modelling the unresolved

component of the local and instantaneous velocity field based on mean-flow quan-

tities seems questionable. Therefore, if mean-flow quantities were used to compute

u
1

iu
1

j

RANS
, at least one additional element needs to be introduced, such that the tur-

bulence model may adjust its contribution to the local and instantaneous nature of

the flow field, but without influencing the mean-flow field determined by u
1

iu
1

j

RANS
.

The hybrid RANS/LES approach of Uribe et al. (2010) is based on an idea similar

to this. The present FSM approach is designed such that the turbulence-model con-

tribution adjusts to the local and instantaneous state of the flow. This is achieved

by using the local and instantaneous filtered flow field to determine the Reynolds-

stress tensor u
1

iu
1

j

RANS
. The instantaneous flow field provides sufficient information

to model the unresolved scales at a certain instant in time and space. In this case,

the resulting Reynolds-stress tensor should be considered as a subgrid-stress ten-

sor and the turbulence kinetic energy k and dissipation rate ε computed from the

transport equation, turn into the subgrid quantities ksgs and εsgs, respectively.
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The main problem of traditional URANS is that the length-scale-providing equation

is designed and calibrated to reproduce mean-flow quantities. Therefore, URANS

does not predict the correct length scale or turbulence dissipation rate if resolved

turbulence fluctuations exist in the flow field. On dimensional grounds, the turbu-

lence viscosity and the turbulence kinetic energy dissipation rate are given by

νT � CµVTLT , ε � V 3
T {Lε, (9.2)

where LT and Lε are two characteristic turbulence length scales and VT is a charac-

teristic velocity scale. In traditional RANS predictions, LT and Lε are characteristic

length scales of the mean flow, which are too large and therefore not adequate in

the presence of resolved turbulence. This has the consequence that the magnitude

of ε is too small and the resulting magnitude of νT is too high. In order to make

the URANS equations resolve or sustain turbulence fluctuations, the magnitude of

the characteristic length scales LT and Lε needs to be consistent with the smallest

turbulence length scales present in the flow. Since the un-resolved turbulence length

scales are much smaller than the length scale of the mean flow, the turbulence dis-

sipation rate is naturally increased and the turbulence viscosity is decreased. The

characteristic velocity scale VT depends on the characteristic turbulence length scale

LT . In the simplest case of a mixing-length RANS model, VT � LTS
�

ij, or when

obtained from a transport equation for the turbulence kinetic energy, VT � k1{2. It

is important to note that the velocity scale VT is sensitive to the resolved flow field

through S
�

ij or through the production term Pk in the turbulence kinetic energy

equation. VT also has the correct order of magnitude providing the length scale LT

is consistent with the smallest resolved length scale in the flow field. Therefore,

in order to make the URANS equations resolve turbulence, only the characteristic

turbulence length scales or turbulence dissipation rate ε needs to be modified, but

not the way the turbulence velocity scale VT is obtained.

In two-equation DES models, the length scale Lε is modified to be of the order of

the grid resolution ∆, which corresponds to the smallest turbulence scales that can

be resolved. However, this is not fully consistent, since the length scale LT in the

turbulence viscosity relation is left unchanged. This not only increases the turbu-

lence viscosity, but it also affects the magnitude of the diffusion terms, which are

usually modelled using the turbulence viscosity. In contrast, FSM aims at rescaling

the Reynolds-stress tensor, which using the Boussinesq approximation 3.10, can be

written as F � u1

iu
1

j

RANS � p2{3qFkδij � 2FνTS
�

ij. From the discussion above, the

first term on the right-hand side should not be damped, since it has the correct

magnitude, providing the correct length scale is used in the transport equation for
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k. The second term on the right-hand side suggests that F can be used to rescale

the characteristic length scale LT in the turbulence viscosity relation to a smaller

magnitude F �LT . However, this is again not fully consistent, since the length scale

Lε in the turbulence dissipation rate ε is left unchanged. Another argument, to

limit the damping function F to the turbulence viscosity only and not to damp the

entire Reynolds-stress tensor, is that the diffusion terms are computed consistently,

i.e. with a turbulence viscosity of the correct magnitude. Yan et al. (2009) investi-

gated different hybrid RANS/LES formulations by replacing the turbulence length

scales following the idea of DES and FSM and a consistent formulation where both

LT and Lε are modified. The application to a coaxial jet clearly demonstrated the

superior performance of the consistent formulation.

Therefore, the URANS equations can be transformed into a subgrid-scale model by

modifying both length scales LT and Lε. The simplest of such a modification is to

take LT9∆ and Lε9∆, which would reduce the URANS equations to exactly the

same form as a typical one-equation SGS model for LES (see, for example, Menon

et al., 1996)

Dksgs
Dt

� �u1

iu
1

j

Bui
Bxj � Cε

k
3{2
sgs

∆
� B
Bxj

��
ν � νsgs

σk


 Bksgs
Bxj

�
, (9.3)

with νsgs � Cµk
1{2
sgs∆ and τij � p2{3qksgsδij�2νsgsS

�

ij. Note, the closure constants of

the RANS model are designed to predict a statistically steady mean-flow field. In

the present formulation, the standard RANS closure constants Cµ and Cε1 in (9.3)

are modified by the calibration procedure discussed in section 9.4 such that FSM

provides proper turbulence resolving capabilities with a physically correct energy

cascade.

The original proposal of Speziale to rescale the Reynolds-stress tensor is reduced

to a damping of the characteristic length scale LT � k1{2{β�ω, computed from the

RANS equations. Thus, the effective, or hybrid, length scale in FSM is given as

Lhyb � F � LT . The way this is implemented into a two-equation RANS model is

discussed in the next section.

A New Damping Function

The damping function F is particularly important for the success of the FSM ap-

proach. The original damping function by Speziale was based on the ratio of grid
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spacing to Kolmogorov length scale ∆{Lη and was given by

F � fη �
�

1 � exp

��β∆

Lη


�n
. (9.4)

This function is expected to provide the correct behaviour in the DNS limit. How-

ever, the Kolmogorv length scale is not a relevant characteristic length scale when

performing LES. Therefore, there is no guarantee that this damping function will

provide the correct magnitude of damping in LES mode. It seems even more ques-

tionable how this damping function would recover a RANS mode in case of too-

coarse grids. The first modification to the FSM approach, that has been made in

this work, is to retain the original damping function fη to ensure that FSM reaches

the DNS limit. Another advantage of this approach is that the two free parameters

n and β can more easily be tuned. Figure 9.1 shows the dependency of the damping

function fη on the parameters n and β. For example, the values n � 4 and β � 0.5

yield a damping function, which rapidly goes to zero as the ratio ∆{Lη drops below

10. The issue of choosing β is revisited in section 9.4, where the modified FSM

approach is calibrated for homogeneous isotropic turbulence.
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Figure 9.1: Dependency of fη on the parameters n and β.

The second modification ensures that FSM provides the correct damping in LES

mode. In the LES region, most of the turbulence kinetic energy production and

turbulence kinetic energy is explicitly resolved by the simulation. This requires a

grid resolution such that the resolution cut-off is located in the inertial subrange

of the energy spectrum. In LES the grid size represents the characteristic length

scale of the unresolved turbulence, with Lhyb9∆. Therefore, the additional element

f∆ � Cα∆{LT is introduced to the damping function F , where Cα is a constant

that needs to be calibrated. With the modifications so far, the damping function F
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can be written as

F � fηf∆ �
�

1 � exp

�
�β∆

Lη


�n
Cα∆

LT
. (9.5)

The filter length scale is defined in this work as the cube root of the cell volume, i.e.

∆ � dV 1{3. Note that many other definitions are possible, but this one is suitable

for cells of arbitrary polyhedral shapes.

If the filter width is smaller than the local characteristic length scale, Cα∆   LT ,

the FSM approach will operate in LES mode, with F   1. This usually occurs away

from the wall where the grid size is sufficiently fine to resolve turbulence fluctuations.

As the wall is approached, the length scale LT goes to zero, since the turbulence

kinetic energy vanishes at the wall, kw � 0. As a consequence, Cα∆ ¡ LT close to

the wall, which gives F ¡ 1. A damping function larger than unity is not desirable,

since its need to be able to recover the RANS mode. Thus,

F � min rfηf∆, 1s � min

��
1 � exp

�
�β∆

Lη



n
Cα∆

LT
, 1

�
. (9.6)

This modification ensures that the hybrid formulation operates in a URANS mode

for Cα∆ ¡ LT . Recall that for Cα∆   LT the FSM approach reduces to the exact

form as a one-equation subgrid-scale model for LES. It is not very likely that the

present formulation would return to URANS mode away from the wall, even if the

grid resolution becomes too coarse to resolve turbulence fluctuations. On too-coarse

grids the length scale definition Lhyb9∆ becomes increasingly inappropriate, and

the FSM approach effectively operates as a sort of badly calibrated one-equation

RANS model. In order to completely revert back to RANS mode, or to enter the

VLES regime, another element needs to be introduced to the damping function,

such that F approaches unity. The v. Karman length scale LvK may be a suitable

candidate. However, this issue has not been investigated in the current work due

to time constraints.

The present FSM formulation suffers from the same grid sensitivity issues as DES.

It is therefore essential to introduce another element to the damping function F ,

which ensures that the switch from RANS to LES occurs outside the boundary

layer. This is easily achieved by the function

fz � 1

1 � Fz
. (9.7)
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The ‘shielding’ function can be chosen as Fz � F1 or Fz � F2, where F1 and

F2 are blending functions, which are required for the underlying k-ω turbulence

model described in the next section. Therefore, the resulting new formulation of

the damping function, including a boundary-layer shield, is given as

F � min rfηf∆fz, 1s � min

��
1 � exp

�
�β∆

Lη



n
Cα∆

LT

�
1

1 � Fz



, 1

�
. (9.8)

9.2 Choice of underlying RANS model

It is natural to assume that a more sophisticated RANS model will provide improved

predictions in the RANS region within a hybrid RANS/LES framework. This offers

enough incentive to employ a state-of-the-art RANS turbulence model with, for

example, a non-linear constitutive stress-strain relationship and strain- and rotation-

dependent coefficients within a hybrid RANS/LES method. Such features are likely

to provide more realistic predictions of the Reynolds-stress and anisotropy tensor,

and better performance in non-equilibrium flows.

The benefits of using a more sophisticated RANS model will also be reflected in

the quality of the predictions in the LES region, where the RANS model functions

as a subgrid-scale model. A more sophisticated RANS model will presumably pro-

vide a more realistic representation of the modelled subgrid-stress and hence will

improve the predictions in the LES region. Improvements are expected to be most

pronounced in situations where the unresolved subgrid flow is not in equilibrium

and contains a significant degree of anisotropy. Such situations are likely to be

encountered in engineering and industrial applications where the mesh quality and

resolution is sometimes sacrificed in favour of short turnaround times. For example,

on anisotropic computational grids the resolved turbulence structures will contain

a forced anisotropy, which is also reflected in anisotropy of the modelled subgrid-

stress. Close to the wall, the turbulence is highly anisotropic and so will be the

unresolved subgrid-stress. In situations where the computational grid is too coarse

and the resolution cut-off is located in the large scales, the unresolved turbulence

will not be in equilibrium and will be anisotropic. In all these cases a sophisti-

cated turbulence model, which contains advanced elements to accurately predict

the subgrid flow is considered highly desirable.

In fact, a range of LES subgrid-scale models have been developed with the intention

of providing a more realistic representation of the unresolved turbulence as it is pos-

sible with a linear stress-strain relationship. For example, scale-similarity models
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explicitly filter the resolved flow field in order to obtain a more accurate description

of the structure of the unresolved turbulence. Similarly, non-linear and differen-

tial subgrid-scale models (see, for example, Deardorff (1973) or Lund & Novikov

(1992)) have been introduced with the intention of providing a more realistic rep-

resentation of the subgrid-stress and anisotropy field. Fureby et al. (1997a,c) have

investigated differential subgrid-scale models and confirmed that improved mean-

velocity predictions and second-order statistics could be obtained. Marstropp et al.

(2009) proposed an explicit algebraic subgrid-stress model and found that for coarse

resolution the mean velocity and Reynolds stresses were better than those given by

the dynamic Smagorinsky model. In addition, the predictions were found to be

much less sensitive to the resolution of the computational grid. These findings were

confirmed in Rasam et al. (2011).

In order to investigate the sensitivity of results with respect to the underlying RANS

model, the Flow Simulation Methodology is used in conjunction with three different

RANS turbulence models of different levels of sophistication. The first RANS model

is the k-ω-SST model, which is based on a linear stress-strain relationship. The

second model is the baseline EASM-2D model, which contains strain- and rotation-

dependent coefficients and is based on a non-linear constitutive stress-strain rela-

tionship. The last model is the ϕ-α-EASM model, which includes consistency and

anisotropy modifications for improved predictions of the flow close to the wall.

FSM-k-ω-SST

The transport equations for the turbulence kinetic energy k and the specific dissi-

pation rate ω of the k-ω-SST model are unchanged and take the form:

Dk

Dt
� P̃k � ε� B

Bxj

�
pν � σkνT q BkBxj

�
, (9.9)

Dω

Dt
� γ

1

νT
P̃k � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
� 2p1 � F1qσω2

1

ω

Bk
Bxi

Bω
Bxi . (9.10)

Within the hybrid FSM approach the turbulence kinetic energy dissipation rate is

given by

ε � F�1β�kω, (9.11)

and the turbulence viscosity is obtained as

νT � F
a1k

maxpa1ω, SF2q . (9.12)
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Note that this formulation is consistent with replacing the characteristic turbulence

length scale in the definition of the dissipation rate and in the turbulence viscosity,

with Lhyb � FLT , where LT � k1{2{β�ω.

FSM-k-ω-EASM

The transport equations for the turbulence kinetic energy k and the specific dissi-

pation rate ω of the baseline EASM-2D model take the following form:

Dk

Dt
� Pk � ε� B

Bxj

�
pν � σkνT q BkBxj

�
, (9.13)

Dω

Dt
� γ

ω

k
Pk � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
� σd
ω

max pCDkω, 0q . (9.14)

Within the hybrid FSM approach the dissipation rate is given by

ε � F�1β�kω, (9.15)

and the turbulence viscosity is

νT � F p�0.5β1kτq. (9.16)

Note that the turbulence time scale is given by τ � 1{β�ω and is not limited by

the viscous time scale. The non-linear stress-strain relationship of the EASM model

u
1

iu
1

j � p2{3qkδij � kaij, also requires that the damping function is applied to the

extra-anisotropy tensor according to

aij � �2pνT {kqS�ij � F � aexij . (9.17)

FSM-ϕ-α-EASM

The transport equations for the turbulence kinetic energy k and the specific dissi-

pation rate ω of the new ϕ-α-EASM model take the following form:

Dk

Dt
� Pk � ε� B

Bxj

�
pν � σkνT q BkBxj

�
, (9.18)

Dω

Dt
� γ

ω

k
Pk � βω2 � B

Bxj

�
pν � σωνT q BωBxj

�
� σd
ω

max pCDkω, 0q , (9.19)

where the turbulence dissipation rate is given by

ε � F�1fβ�β
�kω. (9.20)
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In addition, the transport equation for the wall-normal velocity scale ratio and the

elliptic operator are given as

Dϕ

Dt
� p1 � αpq fwall � αpfhom � ϕ

k
Pk � 2

k
pσkνT q BkBxj

Bϕ
Bxj �

B
Bxj

�
pν � σϕνT q BϕBxj

�
,

L2∇2α � α � �1. (9.21)

The homogeneous and wall redistribution term are computed using the RANS dis-

sipation rate ε. It has been found that in this way the near-wall modifications

remain inactive away from the wall, in case of resolved turbulence. Therefore, the

redistribution terms are given by

fhom � �p1{τq
�
C1 � 1 � C2Pk

fβ�β�kω


�
ϕ� 2

3



, fwall � �ϕfβ�β�ω. (9.22)

In order to avoid a double-damping of the turbulence viscosity

νT � F � Cν
µϕkτ, (9.23)

the turbulence time and length scale are also computed using the RANS dissipation

rate, thus

τ � max

�
min

�
1

fβ�β�ω
,

0.6?
6Cµϕ

��S�ij��
�
, Cτ

c
ν

fβ�β�kω

�
, (9.24)

L � CL max

�
min

�
k1{2

fβ�β�ω
,

k1{2

?
6Cµϕ

��S�ij��
�
, Cη

�
ν3

fβ�β�kω


1{4
�
. (9.25)

The same holds for the time scale rτ used in the near-wall consistency and anisotropy

modification.

The non-linear stress-strain relationship of the ϕ-α-EASM model u
1

iu
1

j � p2{3qkδij�
kaij also requires that the damping function is applied to the extra-anisotropy

tensor, according to

aij � �2pνT {kqS�ij � F � aexij . (9.26)
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9.3 A tailored Hybrid Convection Scheme

In this section a tailored hybrid convection scheme is proposed, where the face fluxes

are obtained by a linear combination of the central-difference scheme (CDS) and a

second-order upwind scheme, using a flow-dependent flux-blending function. This

scheme is intended to be used in conjunction with the modified FSM approach. A

similar hybrid convection scheme tailored to Detached Eddy Simulation has been

presented in Travin et al. (2004b).

The motivation for using a hybrid convection scheme stems from the conflicting

demands RANS and LES place on the discretisation scheme. In LES applications,

the subgrid-scale (SGS) model has to provide an adequate amount of dissipation,

such that the energy cascade is correctly reproduced and no energy accumulates at

the smallest resolved scales. The amount of dissipation provided by the SGS model

is usually very small, with the consequence that any elevated level of numerical

dissipation will inevitably contaminate the resolved flow field. Therefore, higher-

order schemes with low levels of numerical dissipation, such as the CDS, are the

preferred choice in LES. The unboundedness of CDS may result in spurious oscilla-

tions if the stability constraints are not satisfied. According to Hirsch (1994), the

following constraints need to be satisfied: Pe � σ   2 and 2β   1, where the Peclet

number is defined as Pe � σ{β � u{pΓ{∆xq, the variable σ � u∆t{∆x corresponds

to the Courant–Friedrichs–Lewy number and the diffusion number β � Γ∆t{∆2
x,

where ∆t denotes the time step and ∆x the grid spacing. Since fine grids are re-

quired for LES and the diffusivity Γ is small, the pure CDS is often applicable.

However, in strongly convective conditions it may be necessary to introduce a very

small amount, say 5%, of second-order upwind in order to stabilise the solution. In

general, higher-order upwind or TVD schemes are not recommended for turbulence

resolving simulations, since the additional numerical dissipation introduced by these

schemes is significant, and will contaminate the resolved flow field. It will be shown

later, in section 9.4 and chapter 10, that when higher-order upwind or TVD schemes

are used in the LES region, the results will inevitably deteriorate. In RANS ap-

plications, the source terms and high-order nonlinearities present in the transport

equations for turbulence quantities require more robust, yet less accurate, upwind

or TVD schemes to ensure numerical stability. The increased levels of numerical

dissipation induced by the second-order upwind or TVD schemes is usually smaller

than the large diffusivity Γ provided by the RANS model and hence, will not affect

the predictions as much as in the case of LES.
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Based on this discussion, a second-order accurate hybrid convection scheme is pro-

posed, which employs the linear-upwind (LUD) scheme in the RANS region and the

CDS scheme in the LES region. Alternatively, the LUD scheme could be replaced

by a TVD scheme. The face fluxes of the hybrid convection scheme are obtained

from a linear combination of the form

φf � p1 � σbqφf,CDS � σbφf,LUD, (9.27)

where σb is a flow-dependent blending function. The blending function is designed

such that σb � 1 if FSM operates in RANS mode (F � 1) and rapidly drops to

zero if the damping function is F   1. The following function provides the desired

behaviour

σb � tanh
�
A3

�
, A � max rfηf∆fz � 0.6, 0s . (9.28)

Note that other possibilities exist to combine CDS and LUD/TVD schemes, for

example, a switch or blending between both schemes based on the local Peclet

number would be a viable option. Since the FSM scheme has been found to work

as intended, no further effort has been devoted to the implementation and testing

of other numerical schemes.

Figure 9.2 shows contours of the blending function σb for the flow around two inline

tandem cylinders and the flow in a diffuser, using the modified FSM approach. Both

cases are described in more detail in chapter 10. It is obvious that the free-stream

and boundary layers on both cylinder are computed using the upwind-difference

scheme (σb � 1). In the wake of the first and second cylinder, σb drops sharply

to zero and the resolved flow is computed using the central-difference scheme. It

should be noted that no stable solution could be obtained for the tandem cylinder

case if the central-difference scheme was employed everywhere in the domain. The

blending function also works as intended for the flow in the diffuser. The near-wall

RANS region is computed using the upwind-difference scheme whereas the flow away

from the wall is computed using the central-difference scheme. It will be shown in

chapter 10 that the hybrid FSM schemes provides almost identical results to those

obtained using the central-difference scheme.
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(a) Tandem Cylinders.

(b) Diffuser.

Figure 9.2: Flux blending function σb.

9.4 Calibration of the modified FSM approach

The remaining task to complete the model formulation is to determine suitable val-

ues for the free parameters Cα, β and n, which appear in the damping function F .

Homogeneous isotropic turbulence (HIT) is used to calibrate and validate the LES

capabilities of the proposed modified FSM approach. In the calibration process the

total turbulence kinetic energy dissipation rate ε � εsgs � εν � εnum, resulting form

the combined effect of turbulence model formulation, viscosity and numerical frame-

work, is optimised such, that the FSM approach provides proper LES capabilities

with resolved turbulence, as depicted in figure 9.3, and with a physically consistent

energy cascade. It is important that the numerical dissipation is included in the

calibration study, since the magnitude may be of the same order as the dissipation

provided by the turbulence model. For this reason, the calibration is performed in

conjunction with the hybrid FSM convection scheme presented in section 9.3.

HIT is probably the most simple turbulent flow conceivable. In HIT the spatial

gradients of mean flow and turbulence statistics vanish and with that all produc-

tion and transport processes. This has the consequence that the turbulence kinetic

energy decays according to dk{dt � �ε. Typically, decaying HIT is used for the

calibration of virtually all trusted turbulence-resolving approaches such as, DES,

SAS and many LES sugbrid-scale models. In the calibration process the model
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(a) Vorticity magnitude (b) Q � p1{2qpΩ�
ijΩ

�
ij � S�ijS

�
ijq � 3p1{s2q

Figure 9.3: Homogeneous isotropic turbulence.

constants are adjusted and results for the energy spectra are matched to experi-

mental or DNS data. One of the major difficulties associated with temporal sim-

ulation of decaying homogeneous isotropic turbulence is that physically realistic

initial conditions are required for the three-dimensional velocity field. With the

availability of reference DNS data, the three-dimensional velocity field from DNS

can be re-sampled/truncated to the grid resolution used for the calibration study.

The situation is slightly more difficult when experimental data are used as a ref-

erence. Usually only energy spectra are available from experiments, which need

to be converted into a three-dimensional flow field using inverse Fourier transform.

Even though the spectral energy distribution of the flow field can be re-created,

the resulting velocity field lacks physically consistent spatial correlations. In the

calibration procedure the simulation is started from the initial flow field and after a

certain time has elapsed, the instantaneous energy spectra is compared to reference

data. The simulation time, of course, needs to be long enough such, that the flow

field recovers from unphysical initial conditions and to allow the flow to adapt to

the contributions from the turbulence model.

In the calibration study conducted here, the potential sensitivity of the results

to initial conditions is avoided by performing simulations of stationary homoge-

neous isotropic turbulence, where the natural decay of turbulence is circumvented

by adding an artificial forcing term to the momentum equations. The forcing term

maintains a certain level of turbulence kinetic energy. This procedure not only

allows to achieve arbitrarily high Reynolds numbers, with a significant inertial sub-

range, it also allows to obtain statistically converged turbulence statistics.
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9.4.1 Computational Setup

The forcing scheme employed in this work follows the proposal of Eswaran & Pope

(1988) and has previously been used in Fureby et al. (1997b). The energy is only

added to wavenumbers below κ � |κ| ¤ 2.5r1{ms. This ensures that the statistics of

the small-scale motion close to the grid cut-off wavenumber are not contaminated by

the artificial forcing mechanism, which mainly consists of spatially random white

noise. Even though some of the small-scale quantities are set by the large-scale

motion, e.g. dissipation rate, it has been shown in Eswaran & Pope (1988), that

forcing at low wavenumbers does not significantly influence the dynamics of the

small-scale motion and hence the statistics at high wavenumbers.

Simulations are performed in a cubic box with a side length of L � 2πrms and with

periodic boundary conditions in all directions. The Reynolds number investigated

here is Reλ � urmsλT {ν � 732, with urms �
ap2{3q xky, xky � p1{2q xuiuiy and

the Taylor length scale λT � �xuiuiy{@p∇ujq2D�1{2
, where the brackets xy denotes

space-averaged quantities. This Reynolds number is also studied in Kaneda et al.

(2003) using DNS, and their results are used here as a reference.

In order to assess potential grid dependencies of the calibration constants, the cal-

ibration study is conducted for two different grid resolutions using 32 (HIT32)

and 64 (HIT64) cells in each direction of the cubic box. The physical time step

is set to ∆t � 0.05rsecs for the coarse mesh and ∆t � 0.025rsecs for the fine

mesh and yields a CFL number of CFL   0.4. The resulting energy spectra are

averaged over more than 30 samples, which are sufficiently separated in time to

ensure that they are not correlated. In all simulations the integral length scale

LI � pπ{2urmsq
³κmax
0

κ�1Epκqdκ did not exceed LI   0.2L, such that the use of

periodic boundary conditions is justified.

9.4.2 Calibration of Cα

The closure constant Cα is the most important one and controls the behaviour of

FSM for an LES-like resolution of the flow. Recall that the Taylor-scale Reynolds

number is Reλ � 732 and the ratio of grid spacing to Kolmogorov length scale

is ∆{Lη � 187 for the coarse mesh and ∆{Lη � 93 for the finer mesh, where

the Kolmogorov length scale Lη is obtained from DNS data. This high ratio is

reflected in the damping function fη, which controls the behaviour of FSM close

to the DNS limit. For the two grid resolutions fη remains inactive (fη � 1). As a
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consequence, only the constant Cα for the damping function f∆ can be determined,

and the constant β appearing in fη has to be determined using a different strategy

or smaller Reynolds number.

Before the results of the calibration study are presented some additional comments

about the calibration strategy are necessary. It is important to note again that all

underlying RANS models used here are based on a set of closure constants, which

are obtained by blending between the k-ω and k-ε framework using the blending

function F1. The blending function F1 is designed to be unity close to the wall and

to decay to zero away from the wall. For the case F1 � 1 the closure constants

of the k-ω framework are active and for F1 � 0 the closure constants of the k-ε

framework are active. The present calibration case does not involve any walls and

the closure constants of the RANS model therefore corresponds to the k-ε model.

It would seem natural to perform the calibration for both limits F1 � 1 and F1 � 0,

and to obtain two constants Cα1 and Cα2 , which are blended according to F1. How-

ever, this has been found not to be necessary for the following reason. Consider the

cases where parts of the boundary layer are shielded using either fz � 1{ p1 � F1q
or fz � 1{ p1 � F2q. In both cases FSM will be operating in a RANS mode in re-

gions where F1 � 1 or F2 � 1 with the consequence, that the value of Cα1 becomes

irrelevant. In case fz is not used to shield parts of the boundary layer, it might

potentially occur that the damping function F reduces the model contribution to

LES mode and the blending function F1 is still close to unity. Only in this specific

case would it be beneficial to have an optimised value of Cα1 , since FSM will try

to resolve turbulence with the baseline RANS model operating in the k-ω regime.

However, it has been observed in practical applications that when FSM reduces the

model contribution to an LES level, the blending function F1 also sharply drops to

zero. This means that the k-ω regime is almost exclusively used in a pure RANS

mode, which does not require the constant Cα1 . For this reason and for the sake

of reducing the complexity of the FSM approach, a blending function for Cα is not

considered here.

Results

The constants Cα resulting from the optimisation study are summarised in table

9.1 for all three underlying RANS models and for both mesh resolutions. Figure 9.4

shows the corresponding three-dimensional energy spectra Epκq, which are obtained

by performing integration over spherical shells and where κ � |κ| is the wavenumber
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magnitude. For comparison, results of IDDES, SAS and with no subgrid-scale model

(UDNS), are shown as well.

FSM Cα (HIT 32) Cα (HIT 64)
SST 1.0 0.85

EASM 2.4 2.1
ϕ-α-EASM 1.0 0.85

Table 9.1: Model constants Cα for the FSM approach.
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Figure 9.4: Energy spectra Epκq. Symbols correspond to DNS of Kaneda et al.
(2003). (—) FSM-SST, (- - -) FSM-EASM, (� � �) FSM-ϕ-α-
EASM, (� � � ) IDDES , (� � �) SAS, (� � ��) UDNS .

The simulations with no sub-grid scale model are clearly not very successful in

reproducing the correct energy cascade at the cut-off and show an spurious ac-

cumulation of energy at the high wavenumbers. The energy spectra for the low

resolution case (HIT32) is predicted consistently by all models in good agreement

with DNS data. The small discrepancies at low wavenumbers can be attributed to

the artificial forcing mechanism, which is active in this range. It is interesting to

note that the constant Cα of the FSM-EASM model is significantly larger compared

to the values for the FSM-SST and FSM-ϕ-α-EASM models. This implies that the

dissipative nature of the FSM-EASM model is significantly less compared to the

other two RANS models and needs to be compensated by a larger value of Cα.

The difference in the dissipative nature is explained by the sensitivity of Ceff
µ to

strain and rotation rate. In the present case Ceff
µ of the FSM-EASM reduces to@

Ceff
µ

D � 0.028, where brackets xy denote averaging in time and space. This value

is significantly less compared to the generally accepted value of Ceff
µ � 0.09 (away

from solid walls). The FSM-EASM model introduces a dynamic response to the
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flow field under consideration through the sensitivity of Ceff
µ to strain and rotation

rate. It is generally acknowledged that the closure constants in LES subgrid-scale

models, for example, CS in the Smagorinsky model, are not universal and take

significantly different values for different types of flow. The flow dependency of

the calibration constants CS explains the success of dynamic subgrid-scale models,

which dynamically adjust the model constants to the flow under consideration. It

might be argued that the behaviour of the FSM-EASM model is somewhat similar

to a dynamic subgrid-scale model in the sense of providing the capability to adapt

to different types of flows depending on strain and rotation-rate. This seems a very

appealing feature and makes it worthwhile to explore in more detail.

The ϕ-α-EASM can also adapt to the flow through Ceff
µ � 0.22ϕ. However, the

variable ϕ does not reduce much in the case of a resolved flow field and predicts@
Ceff
µ

D � 0.09. This results in almost the same dissipative behaviour as the FSM-

SST formulation. Note that the wall-damping function fβ� in the turbulence kinetic

energy equation used in the ϕ-α-EASM model is also based on the variable ϕ. This

damping function maintains a value of unity in the resolved flow field, and does not

erroneously activate the near-wall damping, as observed for low-Reynolds-number

turbulence model formulations, where viscosity-dependent parameters such as ReT

are used. The similar dissipative behaviour of the FSM-SST and FSM-ϕ-α-EASM

also suggests that the extra non-linear terms in the stress-strain relationship do not

significantly alter the dissipative behaviour of the model.

The calibration constants Cα for the higher resolved case (HIT64) are optimised to

reproduce a �5{3 slope at the cut-off wavenumber. Note that the DNS of Kaneda

et al. (2003) predicts a slope of the inertial range close to �1.77 rather than exactly

�5{3. In order to achieve the correct dissipative behaviour in the HIT64 case, all

constants Cα have to be reduced compared to the HIT32 case. The IDDES and

SAS model show a similar resolution sensitivity. On the fine grid, the SAS model

shows too large a damping of the smallest resolved scales with insufficient energy

in the smallest scales. IDDES predicts a slope at the cut-off wavenumber, which is

somewhat too step, �1.95, even though this is not clearly visible in figure 9.4. The

dependence of the results of IDDES to the grid resolution has also been observed

in Mockett (2009).

These findings are worrying, since the calibration constant does not only depend

on the flow under investigation but also on the level of resolution of the flow field.

Perhaps the most promising way to tackle this issue would be to introduce a dy-

namic procedure to determine the constant Cα. This, however, adds considerable
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complexity and is therefore not considered at this stage. Nevertheless, to complete

the calibration effort a constant Cα needs to be chosen. It could be argued that

the calibration constants corresponding to the lower resolution (HIT32) would be

more appropriate for practical applications, since the computational cost associated

with fine meshes are currently often not affordable. On the other hand, it could be

argued that on coarse meshes the application of low dissipative schemes, as they

are used in the calibration study, are often problematic and some upwinding may

be required to stabilise the simulation. As mentioned before, any form of upwind-

ing inevitably introduces additional numerical dissipation. With that in mind, the

larger values of Cα combined with upwinding stabilised numerical schemes might

be too dissipative. For this reason the lower values of the constants Cα will be used

in the simulations to follow in chapter 10.

9.4.3 Calibration of β

A straightforward approach to determine the constant β would be to choose a

value such that fη approaches zero for a certain ratio of ∆{Lη, say ∆{Lη � 10.

However, this approach does not take into account the uncertainty associated with

determining the Kolmogorov length scale Lη using the subgrid dissipation rate εsgs.

It has been found that for the high-Reynolds-number case Reλ � 732, the estimated

ratio of grid length scale to Kolmogorov length scale is x∆{Lηy � 26.2, which is a

factor 7 smaller compared to DNS, which gives ∆{Lη � 187. In order to obtain a

suitable value for the constant β, a Taylor-scale Reynolds number of Reλ � 35 is

considered here. This Reynolds number is low enough to achieve DNS resolution on

the the HIT32 and HIT64 grids. For example, Jimenez et al. (1993) performed DNS

of isotropic turbulence at Reλ � 35 using a box of 64 cubed cells. Eswaran & Pope

(1988) used a box of 32 cells for DNS at Reλ � 30. Therefore, the parameter β will

be determined here such that the FSM contribution function reduces to F � 0 for

the HIT32 and HIT64 resolutions at a Taylor-scale Reynold number of Reλ � 35.

Since the energy spectra do not provide any additional insights, only the resulting

constant β is given for which the contribution function approaches zero. The result

of this study is that a value of β ¤ 1.0 is sufficient to ensures that all FSM models

approach the DNS limit. For all following simulation a value of β � 0.75 will be

used, unless stated otherwise.
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9.4.4 Influence of Numerical Discretisation

The calibration study presented above gives suitable values of the calibration con-

stants of the FSM approach when used in conjunction with the hybrid FSM convec-

tion scheme. Since it is not possible to repeat the calibration study for all possible

numerical discretisation schemes, this section investigates the dissipative behaviour

and the error introduced when FSM is used in conjunction with other convection dis-

cretisation schemes. For this purpose, five different convection schemes, which are

all formally second-order accurate, will be assessed for the same calibration case. All

tested schemes are likely to be employed in unsteady simulation of turbulence using

commercial finite-volume codes. The schemes considered are the central-difference

scheme (CDS), a bounded central-difference scheme with 20% TVD conformity

(TVD), the hybrid convection scheme of Travin et al. (2004b), a second-order lin-

ear upwind scheme (LUD), a blend between LUD and CDS with 20% upwinding

(BDS20) and the new hybrid FSM convection scheme (FSM scheme). It should be

noted that the hybrid convection scheme of Travin et al. (2004b) has been designed

for the combination of a fourth-order CDS and third/fifth-order upwind scheme. It

is used here in conjunction with a second-order accurate CDS and LUD schemes.

The resulting energy spectra at Reλ � 732 are shown in figure 9.5 for a box of 32

and 64 cells, obtained by FSM-SST using the optimised constants Cα from section

9.4.2.
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Figure 9.5: Energy spectra Epκq. Symbols correspond to DNS of Kaneda et al.
(2003). (—) CDS, (� � � ) TVD , (- - -) Travin et al. (2004b), (� ��)
BDS20, (� � ��) LUD, (���) new hybrid FSM scheme .
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The numerical schemes with the smallest amount of numerical dissipation are the

CDS and the new hybrid FSM convection scheme. The new blending function σb of

the FSM convection scheme is zero for both mesh resolutions, with the consequence

that the hybrid FSM scheme operates in pure CDS mode. The hybrid scheme of

Travin et al. (2004b) is somewhat more dissipative and shows a small departure

from the �5{3 energy cascade at the cut-off. This behaviour can be traced back

to the blending function σb, which takes a non-zero value xσby � 0.03 and which

exhibits localised regions where σb is close to unity; see figure 9.6. The non-zero

value of σb might be necessary in terms of stability requirements when the hybrid

scheme is used in conjunction with a fourth-order accurate CDS, as suggested in

Travin et al. (2004b). However, the small amount of upwinding is not required in

the present case in order to stabilise the full second-order CDS. The new hybrid

FSM convection scheme is preferred in this respect, since it recovers a full CDS and

avoids contamination of the resolved small scales of turbulence.

(a) Blending function of Travin et al.
(2004b)

(b) Blending function of the FSM con-
vection scheme

Figure 9.6: Blending function σb of the hybrid convection scheme.

The BDS20 and the TVD scheme are slightly more dissipative than the hybrid

scheme of Travin et al. (2004b) and the departure from a �5{3 energy cascade at

the cut-off wavenumber is clearly visible. It also turns out that the TVD variant is

slightly more dissipative than the BDS20 scheme. The LUD scheme provides the

most damping of the small-scales of turbulence. Even though the LUD is second-

order accurate it cannot be recommended for the use within the hybrid RANS/LES

environment unless the constant Cα is significantly lowered.





Chapter 10

Applications of the FSM

Approach

In this chapter the proposed modifications and extensions to the Flow Simulation

Methodology (FSM) are assessed on a range of test cases, which cover both internal

and external flows. The flow around a tandem cylinder configuration is used to

investigate the performance of FSM when operated in its basic, ‘natural’, mode,

where the entire attached boundary layer is treated in RANS mode and the mas-

sively separated flow outside the boundary layer is treated in LES mode. The use

of the basic FSM may become overly restrictive for many internal flows where it

is beneficial to resolve some turbulence in the outer layer of the boundary layer.

The other two test cases are selected to investigate the performance of FSM when

operated in an ‘extended’ mode, where only the near-wall region is treated in RANS

mode and the flow away from the wall, both inside and outside the boundary layer, is

treated in LES mode. This extended mode can be referred to as wall-modelled LES

(WMLES), where the computationally expensive near-wall region is bridged using

a state-of-the-art RANS model. The first internal flow case considered is the flow in

a planar channel. This case is mainly used to investigate the extent of the log-layer

mismatch frequently observed when the switch from RANS to LES occurs inside

the boundary. The second case is the flow in a three-dimensional diffuser, where

the incoming fully developed turbulent duct flow experiences a three-dimensional

boundary-layer separation.

Simulations are performed with FSM based on three different underlying RANS

closures with different levels of sophistication, that is, the k-ω-SST, EASM-2D and

the new ϕ-α-EASM model. All cases include an assessment of the statistical con-

vergence of results, investigations of the sensitivity and influence of the resolution

187
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of the computational grid and numerical convection discretisation scheme. The

results are compared to reference data and to results obtained with other hybrid

RANS/LES methods, such as IDDES and SAS.

10.1 Planar Channel Flow

The flow in a planar channel is used here in order to investigate the performance of

the FSM framework to provide basic WMLES capabilities. In addition, a parameter

and sensitivity study is conducted to investigate the influence of the convection

discretisation scheme and the calibration parameters Cα and β of the FSM model.

Simulations are performed for both low and high-Reynolds-number channel flow

at Reτ � 395 and Reτ � 18000, respectively. The simulations are conducted

without the function fz included in the damping function F of the FSM, unless

stated otherwise. Results are compared to the DNS of Moser et al. (1999) and

to the correlation of Reichardt (1951) for the mean-velocity profile. In order to

improve the predictions of the mean-velocity profile in WMLES mode, an additional

modification is introduced to the FSM framework.

10.1.1 Computational Setup

Planar channel flow can be considered as the flow between two parallel plates. It

is approximated here as the flow through a domain with the streamwise extent of

Lx � 2πH, the spanwise width of Lz � πH and a channel height of Ly � 2H,

where H is the channel half-height. These dimensions correspond to the channel

used by Moser et al. (1999) for DNS at Reτ � 395. Periodic boundary conditions

are used in the spanwise and streamwise directions. The domain size is large enough

to accommodate the streamwise streaks close the wall with ∆�
x � 1000� 1600, and

to allow the spanwise and streamwise correlations to reduce to a sufficiently small

magnitude in order for periodic boundary conditions to be applicable. The simula-

tion at the lower Reynolds number Reτ � 395 is performed on a computational grid

with 54� 54� 54 cells. This corresponds to a maximum resolution in wall units of

∆�
x � 46, ∆�

y1
� 0.8 and ∆�

z � 23, where ∆�
y1

is the first grid spacing adjacent to

walls. The simulations for the higher Reynolds number case, Reτ � 18000, are per-

formed on a computational grid with 96� 124� 96 cells. This provides a resolution

of ∆�
x � 1178, ∆�

y1
� 0.8 and ∆�

z � 588 in wall units.
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The convective fluxes in the flow equations are discretised using the hybrid FSM dif-

ference scheme and a second-order upwind scheme is used for the turbulence trans-

port equations. The viscous terms use a second-order central-difference scheme.

Time stepping is performed using an implicit second-order accurate backward-

difference scheme and the coupling between the pressure and velocity is achieved

by the PISO algorithm. The time step is set as 1.6� 10�3H{uτ such that the CFL

number does not exceed 0.5.

In order to maintain a constant flow rate through the channel, an additional mo-

mentum source term is introduced to the streamwise momentum equation. In the

present simulations, the pressure gradient required to yield the desired Reτ is com-

puted from the momentum balance in the streamwise direction. The required pres-

sure gradient is obtained from the relation dp{dx � τw{H, with the wall shear stress

τw � ρu2
τ and the skin-friction velocity uτ .

Initialisation

Without special consideration of the initial flow field the transition process from the

initial flow field to a fully turbulent state may require a large number of channel flow-

through times. In order to speed up the transition process the following strategy

has been found very effective in quickly generating turbulence structures. The same

strategy has also been employed in de Villiers (2006). The velocity field is initialised

by prescribing a laminar parabolic velocity profile, where the streamwise velocity

component near the wall is perturbed with parallel streaks of high- and low-speed

streamwise velocity. These streamwise streaks are further modified by introducing

a periodic spanwise perturbation of approximately +/-10% of the bulk velocity.

This procedure is applied only to the first simulation of this series. Every following

simulation is re-started from an instantaneous solution of the previous run.

10.1.2 Averaging and Statistical Convergence

Before any results are presented, the averaging procedure and statistical conver-

gence is discussed. For all simulations the flow is allowed to develop from the initial

flow field for approximately 15H{uτ time units. After the initial settling period,

statistical quantities are computed by averaging over 80H{uτ time units, which ap-

proximately corresponds to 200 flow through times. For post-processing purposes

the time-averaged quantities are additionally averaged over both homogeneous di-

rections.
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In order to verify the statistical convergence of the flow field, results for the mean

velocity U�, the modelled, resolved and total turbulence kinetic energy k� and

the modelled, resolved and total shear stress u1v1
�

, are presented in figure 10.1,

after averaging over 23H{uτ , 43H{uτ ,63H{uτ and 80H{uτ time units. It is obvious

that after averaging over only 23H{uτ time units the mean-velocity profile is already

converged. However, the statistics for the shear stress and turbulence kinetic energy

are not yet fully converged. When averaging over more than 43H{uτ time units the

statistics for the shear stress and turbulence kinetic energy are also fully converged.
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Figure 10.1: Statistical convergence of the flow field. (� � ��) t � 23H{uτ ,
(� � �) t � 43H{uτ , (- - -) t � 63H{uτ and (—) t � 80H{uτ .

10.1.3 Influence of Convection Discretisation

The sensitivity of results with respect to the numerical convection discretisation

scheme is investigated next. Four different second-order accurate schemes are con-

sidered in this study. The numerical schemes include the central-difference scheme

(CDS), the hybrid FSM convection scheme (FSM) with a flow-dependent model for

the flux-blending function, a bounded central-difference scheme with 20% TVD co-

formity (BCD20) and the linear upwind scheme (LUD). Simulations are performend

using the FSM-SST formulation and Cα � 0.85, β � 0.75 and n � 4. Results for

the mean velocity U�, damping function F and the modelled, resolved and total

shear stress u1v1
�

are shown in figure 10.2.

The results clearly demonstrate that the mean-velocity profile and shear stress ex-

hibit a large sensitivity to the convection discretisation scheme, even though the

resulting damping function F is considerably less sensitive to the numerical scheme.

All damping functions collapse onto one curve close to the wall and take slightly
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Figure 10.2: Sensitivity with respect to the convection discretisation scheme.
Symbols correspond to DNS of Moser et al. (1999). (—) CDS,
(- - -) hybrid FSM scheme, (� � �) BCD20, (� � ��) LUD .

different values away from the wall. It is obvious that with increasing level of numer-

ical dissipation inherent in the discretisation scheme the results increasingly depart

from the reference data. The LUD scheme predicts a mean-velocity profile, which

grossly departs from the reference data and which is not within typical predictive

tolerances required for engineering applications. The situation is slightly improved

with the BCD20 scheme, which predicts the velocity profile and shear stress in bet-

ter agreement with reference data. However, the overall accuracy of the BCD20

scheme is still not satisfying. Both the LUD and BCD20 schemes predict reduced

levels of resolved shear stress when compared to the more accurate CDS scheme.

The reduced resolved shear stress is not compensated by a sufficient increase in

modelled shear stress, such that reasonable predictions for the total shear stress

and hence the velocity profile are obtained. Only the CDS and hybrid FSM scheme

are capable of predicting results in reasonable agreement with the reference data. It

should be noted that the FSM-SST formulation is not optimised for WMLES. That

is why the CDS and hybrid FSM scheme over-predict the velocity magnitude in the

log layer by a small margin. The results of the hybrid FSM scheme are very encour-

aging and are in close agreement with the CDS. This indicates that the numerical

dissipation of the hybrid FSM scheme in the resolved flow region is of similar mag-

nitude to that of the CDS. It also indicates that the enhanced numerical dissipation

of the LUD scheme employed in the RANS region does not adversely affect the flow

in the LES region. For this reason, the hybrid FSM convection scheme will be used

for all further studies, unless stated other wise.
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10.1.4 Sensitivity to the Underlying RANS Model

The sensitivity of the results with respect to the underlying RANS model is investi-

gated in this section. Simulations are performed using the FSM-SST, FSM-EASM

and FSM-ϕ-α-EASM formulation in conjunction with the hybrid FSM convection

scheme. Results for the mean velocity U�, damping function F and the modelled,

resolved and total shear stress u1v1
�

are presented in figure 10.3.
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Figure 10.3: Sensitivity of FSM with respect to the underlying RANS model.
Symbols correspond to DNS of Moser et al. (1999). (—) FSM-
SST, (- - -) FSM-EASM, (� � �) FSM-ϕ-α-EASM.

At first sight the predictions for the channel flow are clearly sensitive to the under-

lying RANS model. However, the differences in the predictions are mainly caused

by the damping function F , which takes significantly different shapes and values

depending on the underlying RANS model. The different shapes of the damping

functions are caused by differences in the predictions of k and ω, which are both

used to compute the relevant length scales in the damping function.

The damping function resulting from the supposedly most sophisticated RANS

model, the ϕ-α-EASM, seems not very well suited for the channel flow predictions

and the results for the mean-velocity profile in the log-layer region show the greatest

departure from the reference data. This is caused by a large reduction of the

damping function close to the wall, which results in a vanishing modelled shear

stress and in a general under-estimation of the total shear stress between the wall

and approximately y� � 30. The FSM-SST and FSM-EASM models predict a

thicker RANS layer (F � 1) close to the wall, which results in elevated levels

of modelled shear stress and in reduced levels of resolved shear stress. The total

shear stress is now better predicted in the near-wall region, which is also reflected

in improved predictions for the mean-velocity profile in the log-layer region. The

FSM-EASM shows the largest extent of the near-wall RANS layer and provides the
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best overall agreement with the reference data. It is important to note that both

the FSM-SST and FSM-EASM show too low levels of total shear stress between the

locations y� � 20 and y� � 80. This defect is responsible for the too high velocity

magnitude in the log layer. In order to reduce the velocity magnitude in the log

layer it is necessary to enhance the modelled shear stress at the switching location

from RANS to LES, such that the total shear stress is not under-predicted in this

region.

Since the predictions strongly depend on the shape of the damping function, it is

unfortunately not very clear to what extend the non-linear stress-strain relation-

ship of the EASM model, or the improved near-wall treatment of the ϕ-α-EASM,

influences the predictions. The influence of the underlying RANS model can only

be rigorously assessed if the same damping function is used for all three underlying

turbulence models. This study is left for future investigations.

10.1.5 Sensitivity to the Constant Cα

The sensitivity to the calibration constant Cα appearing in the damping function

F is investigated next. The sensitivity study is conducted using the FSM-SST

formulation in conjunction with the hybrid FSM convection scheme. Simulations

are performed with Cα � 0.7, Cα � 0.85 and Cα � 1.0. The results for the mean

velocity U�, damping function F and the modelled, resolved and total shear stress

u1v1
�

are presented in figure 10.4. The same sensitivity study was conducted for

the FSM-EASM and FSM-ϕ-α-EASM models. Since the results show exactly the

same trend as for the FSM-SST formulation, they are not presented here.
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Figure 10.4: Sensitivity of the results to the calibration constant Cα. Symbols
correspond to DNS of Moser et al. (1999). (—) Cα � 0.7 , (- - -)
Cα � 0.85, (� � �) Cα � 1.0.
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The different values for Cα are reflected in different magnitudes of the damping

function F in the LES region. However, the overall differences in the resulting mag-

nitude of F are rather small. Nevertheless, the variation of Cα would be enough to

observe a noticeable difference in the energy spectra for isotropic turbulence (see

section 9.4). Lower values of Cα result in a reduction of modelled shear stress and in

an increase of resolved shear stress, such that the total shear stress remains approx-

imately the same for all values of Cα. Since the total shear stress does not change

significantly the velocity profile is very similar for all values of Cα investigated here.

10.1.6 Sensitivity to the Constant β

The sensitivity of results to the calibration constant β appearing in the damp-

ing function F is investigated next. The sensitivity study is conducted using the

FSM-SST formulation in conjunction with the hybrid FSM convection scheme. Sim-

ulations are performed with β � 1.0, β � 0.75, β � 0.5 and β � 0.25. The results

for the mean velocity U�, damping function F and the modelled, resolved and total

shear stress u1v1
�

are presented in figure 10.5.
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Figure 10.5: Sensitivity of the results to the calibration constant β. Symbols
correspond to DNS of Moser et al. (1999). (—) β � 1.0, (- - -)
β � 0.75, (� � �) β � 0.5, (� � ��) β � 0.25 .

The calibration constant β is much more effective in modifying the level of damping

in the LES region than Cα. For values of β smaller than β � 0.25, the FSM-SST

formulation reduces to a quasi-DNS for large parts of the channel, while the extent

of the RANS region (F � 1) is not much altered by different values of β. It is

somewhat surprising that the three constants, β � 1.0, β � 0.75 and β � 0.5, result

in the same levels of resolved and modelled shear stress and consequently in the same

velocity profile. At first sight this seems not very intuitive, since the magnitude of



Chapter 10 Applications of the FSM Approach 195

the damping function F away from the wall is significantly different. In addition,

the sensitivity study of the calibration constant Cα has shown that different values

of F away from the wall result in different levels of resolved and modelled shear

stress. However, a closer inspection of the damping function F reveals that close to

the wall (y�   30) different values of β collapse onto one curve, with the exception

of β � 0.25. This is not the case in the sensitivity study for the calibration constant

Cα, where different values of Cα result in a different distribution of the damping

function close to the wall (y�   30). It seems that the level of damping in the

near-wall region (y�   30) controls the magnitude of resolved fluctuations away

from the wall. The magnitude of the damping function away from the wall seems

to have a negligible effect on the resolved shear stress. This is probably only true

for sufficiently small values of the damping function, such that the flow field away

from the wall is not contaminated by overly large levels of modelled dissipation.

Even though the levels of damping differ significantly for different values of β, the

velocity profile is not significantly affected by the values of β investigated here.

10.1.7 Introducing fz for WMLES

The sensitivity study so far has revealed that the resulting damping function may

take significantly different shapes and values depending on the underlying RANS

model. The FSM-ϕ-α-EASM, for example, shows a significant reduction of the

damping function close to the wall, which results in an almost vanishing modelled

shear stress and in an over-prediction of the velocity magnitude in the log-layer

region. It was also shown, that the damping function close to the wall controls the

levels of resolved and modelled shear stress. In addition, changing the calibration

constants Cα and β is not an effective way to improve the predictions of the velocity

profile in the log-layer region. In the following, an attempt is presented, which aims

at modifying the damping function close to the wall such that it takes a more

consistent shape for all underlying turbulence models and also provides improved

predictions of the velocity profile. For this purpose, the function fz is introduced,

which effectively controls the extent of the RANS region (F � 1) close to the wall.

The shielding function fz is given by

fz � 1

1 � Fz
, (10.1)

where

Fz � tanhpCzΓ4
2q, Γ2 � 500ν

ωy2
. (10.2)
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The constant Cz controls the extent of the RANS region close to the wall. The

resulting damping function is now given as

F � min rfηf∆fz, 1s . (10.3)

In order to illustrate the effect of the shielding function, simulations are performed

with the FSM-SST, FSM-EASM and FSM-ϕ-α-EASM formulation using the new

function fz and the optimised constant Cz � 16. Results for the mean velocity U�,

damping function F , the modelled, resolved and total shear stress u1v1
�

and the

total (resolved plus modelled) normal-Reynolds-stress components are presented in

figure 10.6. In addition, results of the IDDES model based on the k-ω-SST are also

included as a reference.
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Figure 10.6: Influence of the shielding function fz. Symbols correspond to DNS
of Moser et al. (1999). (—) FSM-SST, (- - -) FSM-EASM, (���)
FSM-ϕ-α-EASM, (� � ��) IDDES .

It is obvious that the shielding function fz is effective in modifying the damping

function F close to the wall. The RANS region close to the wall is generally enlarged

and all three underlying turbulence models now show a more consistent distribution

of F . As a consequence of the enlarged RANS region, the modelled shear stress is
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increased close to the wall, and the resolved shear stress is reduced away from the

wall, when compared to simulations without fz, as seen in figure 10.3.

The enlarged RANS region, which now extends up to y� � 100, significantly im-

proves predictions of the velocity profile in the buffer and log-layer region. Recall

that predictions without fz show a large over-prediction of the velocity profile in

the log-layer regions. Even though the velocity profile is generally improved, the

onset of a secondary, resolved log layer becomes visible in the results. Again, this is

caused by an under-prediction of the total shear stress around the switching loca-

tion from RANS to LES mode. When the shielding function is included, the most

sophisticated RANS model, the ϕ-α-EASM, provides the best predictions of the ve-

locity profile and matches the centerline velocity of the reference data. Surprisingly,

the IDDES formulation also over-predicts the velocity magnitude in the log-layer

region, even though, it includes the function fe, which is designed to enhance the

modelled shear stress at the switching location and hence compensates for the drop

of total shear stress. The effect of the function fe is visible in figure 10.6 (b) as a

small peak in the predictions of the length-scale ratio Lhyb{LT .

The total normal-Reynolds-stress components are discussed next. Note that the

results are normalised by the skin-friction velocity uτ , which is the same for all

simulations, since the pressure gradient is fixed in the simulation, which gives

uτ �
apH{ρqpdp{dxq. Therefore, the differences between the predictions are solely

caused by the turbulence model formulation and not by the scaling with uτ . The

FSM-SST, which is based on a linear-constitutive stress-strain relationship, shows

the greatest overall departure from the reference data. The u1u1� component is

significantly under-predicted in the near-wall region, whereas the other two normal

components, v1v1
�

and w1w1�, are over-predicted. The FSM-EASM shows more

realistic wall-normal fluctuations v1v1
�

compared to the FSM-SST. The FSM-ϕ-α-

EASM more accurately reproduces the near-wall peak of the streamwise velocity

fluctuations u1u1�, which is a consequence of the near-wall anisotropy modifications

employed in the ϕ-α-EASM model. In addition, the FSM-ϕ-α-EASM shows im-

proved asymptotic near-wall behaviours of all normal-Reynolds-stress components.

The IDDES formulation results in a much smaller RANS region close to the wall.

As a consequence, IDDES shows the lowest levels of modelled shear stress and

the highest levels of resolved shear stress. Additionally, the smaller RANS region

allows turbulence fluctuations to penetrate much more deeply into the near-wall

region, which is reflected in a larger intensity of streamwise velocity fluctuations

u1u1� close to the wall. It is also obvious that all models show a reduction of total

normal-Reynolds-stress components v1v1
�

and w1w1� around the interface location.
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The turbulence activity in the RANS region at y� � 10 and in the LES region at

y� � 200 is visualised in figures 10.7 and 10.8, using the instantaneous vorticity

magnitude |ω|H{uτ . Note that the resolution of the computational grid is relatively

high and should be able to the resolve the dominant near-wall turbulence structures.

This is achieved by IDDES, which shows more turbulence structures at the wall

distance y� � 10. All FSM models damp most of the turbulence fluctuations close

to the wall, and show un-physically large ‘super’ streaks, similar to what has been

observed in Baggett (1998). The difference in the level of turbulence activity stems

from the extent of the RANS region close to the wall, which for the FSM models,

is significantly larger and extents up to y� � 100. Nevertheless, fluctuations from

the LES zone penetrate deep into the RANS zone and result in an over-prediction

of total (modelled plus resolved) Reynolds stress. Clearly, IDDES is superior in

resolving as much as possible of the near-wall turbulence structures on the same

computational grid. However, since the velocity profile is reasonably reproduced

by the FSM models, no further modifications are introduced at this stage. In the

log layer, at the wall distance y� � 200, the resolved turbulence activity is overall

very similar for all models. The FSM-EASM and FSM-ϕ-α-EASM both show the

presence of a large streamwise structure. The existence of very large structures

in the log layer was experimentally observed by Hutchins & Marusic (2007) and

was referred to as ‘superstructures’. The superstructures present in the log layer

are much larger than the near-wall streaky structure and are reported to be of the

streamwise extent 20H and of a spanwise width 0.3�0.5H (see Hutchins & Marusic,

2007). Whether the observed structure in the simulations of the FSM-EASM and

FSM-ϕ-α-EASM corresponds to such superstructures, or whether they are linked

to the near-wall super streaks has not been investigated further.

(a) FSM-SST. (b) FSM-EASM.

(c) FSM-ϕ-α-EASM. (d) IDDES.

Figure 10.7: Instantaneous vorticity magnitude |ω|H{uτ at the plane y� � 10.
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(a) FSM-SST. (b) FSM-EASM.

(c) FSM-ϕ-α-EASM. (d) IDDES.

Figure 10.8: Instantaneous vorticity magnitude |ω|H{uτ at the plane y� �
200.

10.1.8 Performance at High Reynolds Number

In the final investigation of this flow, the FSM-SST, FSM-EASM and FSM-ϕ-α-

EASM formulations to provide WMLES capabilities at a much higher Reynolds

number is evaluated. All FSM models include the shielding function fz in the

damping function F . The Reynolds number under consideration is Reτ � 18000.

The results are compared to the correlation of Reichardt (1951) for the velocity

profile. In addition, results obtained from IDDES based on the k-ω-SST model are

also included as a reference. Results for the mean velocity U�, damping function

F and the modelled, resolved and total shear stress u1v1
�

are shown in figure 10.9.
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Figure 10.9: Planar channel flow at Reτ � 18000. Symbols correspond to
the correlation of Reichardt (1951). (—) FSM-SST, (- - -) FSM-
EASM, (� � �) FSM-ϕ-α-EASM, (� � ��) IDDES .
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Even though all FSM formulations include the shielding function fz, the resulting

distribution of the damping function F is quite different, particularly in the near-

wall region. The FSM-SST and FSM-ϕ-α-EASM formulations both show a RANS

zone close to the wall, which extents up to y� � 160. For y� ¡ 160 the damping

function drops sharply to a lower value. The FSM-EASM, on the other hand,

shows a RANS zone, which extents up to y� � 450 and the damping function drops

relatively slower to lower magnitude. This difference is reflected in the predictions

of the velocity profile as well as in the modelled and resolved shear stress. The

FSM-SST predicts the smallest level of modelled shear stress and the highest level

of resolved shear stress. It also shows the most pronounced log-layer mismatch

of all models investigated here. The FSM-ϕ-α-EASM gives the highest levels of

modelled shear stress and the lowest level of resolved shear stress, which results

in a reduced log-layer mismatch. The FSM-EASM and IDDES formulations show

intermediate levels of resolved and modelled shear stress and provide more accurate

results of the velocity profile, with a smaller log-layer mismatch. The result of the

FSM-EASM is particularly encouraging, since it matches the prediction of IDDES.

Note that the IDDES implementation used here shows a slightly more pronounced

log-layer mismatch than the results of Shur et al. (2008). However, Shur et al.

(2008) employ a fourth-order accurate numerical scheme, which might explain the

observed differences.

10.1.9 Summary

It is demonstrated that the elevated level of numerical dissipation of the upwind and

TVD schemes results in reduced levels of resolved shear stress when compared to

the more accurate Central-Difference Scheme. The reduced resolved shear stress is

not compensated by a sufficient increase in modelled shear stress, such that reason-

able predictions for the total shear stress, and hence the mean-velocity profile, are

obtained. Both schemes results are beyond the level of accuracy normally required

in engineering applications. Only the new hybrid FSM convection scheme delivers

results in close agreement with predictions from the CDS. This shows that the nu-

merical dissipation of the hybrid FSM scheme is of a similar magnitude to that of

the CDS in the resolved-flow region, and that the enhanced numerical dissipation

of the upwind scheme employed in the RANS region, does not adversely affect the

flow in the LES region.

It is also shown that the mean-velocity predictions are insensitive to the choice of

the calibration constants Cα and β. Although the shape of the damping function
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F depends on the calibration constants, the total shear-stress and mean-velocity

predictions are very similar, almost independent of the value of the calibration

constants. On the other hand, the results are very sensitive to the underlying

RANS model. It is argued that the sensitivity with respect to the RANS model is

mainly caused by different distributions of the damping function F . For this reason,

an extension to FSM is introduced, which modifies the damping function close to

the wall, such that it has a more consistent shape for all underlying turbulence

models and also provides improved predictions of the mean-velocity profile. With

this modification included, the most sophisticated underlying RANS model, the ϕ-

α-EASM, provides the best predictions of the mean-velocity profile and asymptotic

near-wall behaviour of all normal-Reynolds-stress components for the Reτ � 395

case. The small log-layer mismatch present in the results is caused by an under-

prediction of total (resolved plus modelled) shear stress at the switching location;

this mismatch could potentially be eliminated by enhancing either the resolved

or modeled contribution to the shear stress at the switching location. For the

high-Reynolds-number channel flow (Reτ � 18000), the FSM-EASM and FSM-ϕ-

α-EASM models provide improved predictions over FSM based on the k-ω-SST

model. The FSM-EASM model shows the best prediction, with minimal log-layer

mismatch and good agreement with predictions from IDDES. Nevertheless, more

testing is required, particularly in more complex flows, in order to confirm the good

performance of the FSM-EASM.
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10.2 Three-Dimensional Diffuser

The next test case is the flow in an asymmetric three-dimensional diffuser. This

case has already been introduced in section 6.4. In was demonstrated in sections

6.4 and 8.6, as well as in the 13th/14th ERCOFTAC/IAHR Workshop on Refined

Turbulence Modelling, that even the most sophisticated RANS model exhibits dif-

ficulties in predicting the correct boundary-layer separation and flow topology in

the three-dimensional diffuser. Even though the Reynolds number is moderate and

would allow for wall-resolved LES (Schneider et al., 2010b) and even DNS (Ohlsson

et al., 2010), this case is used here in order to investigate the performance of the

FSM approach to provide WMLES capabilities for complex internal flows.

10.2.1 Computational Setup

In order to generate fully developed turbulent inflow conditions, a periodic, rect-

angular channel of the streamwise extent 3H is computed simultaneously and the

flow mapped to the inlet of the diffuser domain. This approach is computation-

ally relative cheap and provides physically correct turbulence fluctuations to the

diffuser domain. However, the relatively short streamwise extent of the periodic

inflow channel has the consequence that a spurious periodicity is induced in the

diffuser domain. The primary recycling frequency, determined by the convection

speed in the centre of the channel and channel length, is approximately 0.4rHzs.
The undesirable recycling frequency and higher harmonics can be observed in the

diffuser domain. The alternative is to use a much longer section upstream of the

diffuser in order to achieve a fully developed flow field at the inlet. Ohlsson et al.

(2010), for example, use a development section of 63H and specify laminar flow at

the upstream boundary.

The boundary conditions of the rectangular inflow channel are periodic in the

streamwise direction and the flow is driven by an imposed pressure gradient, which

is adjusted iteratively to yield the desired bulk velocity Ub. Convective boundary

conditions of the form Bφ{Bt�uBφ{Bn � 0, where n is the outward pointing normal

direction, are used at the diffuser outlet. The convective boundary condition is

placed 13H downstream of the diffuser. It is therefore expected that the boundary

condition at the outlet is not significantly influencing the flow in the diffuser.

The simulations are performed on a computational grid with approximately 2.1�106

cells (335� 65� 97) for the diffuser domain and approximately 400000 cells for the
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separate duct flow domain. The average first wall-normal grid spacing is around

y�1 � 0.5 and the maximum value is y�1 � 0.8. The convective fluxes in the flow

equations are discretised using the hybrid FSM difference scheme and a second-order

upwind scheme is used for the turbulence transport equations. The viscous terms

use a second-order central-difference scheme. Time stepping is performed using

an implicit second-order accurate backward-difference scheme, and the coupling

between the pressure and velocity is achieved by the PISO algorithm. The time

step is set to 0.007H{Ub such that the CFL number does not exceed 0.5.

Initialisation

The initial conditions of the inflow duct require special attention, in order to speed

up the transition to a fully developed turbulent flow. The parabolic initial velocity

field in the periodic inflow channel is perturbed in the same way as described for

the planar channel flow simulation in section 10.1. This procedure is applied only

to the first simulation of this series. Every following simulation is re-started from

an instantaneous solution of the first run.

10.2.2 Averaging and Statistical Convergence

The statistical convergence of the flow field is discussed first. For all simulations, the

flow is allowed to develop for approximately 200D{Ub time units. After the initial

settling period, statistical quantities are computed by averaging over 2300D{Ub
time units. In order to verify the statistical convergence of the flow field, results

for the surface-pressure coefficient Cp distribution on the bottom wall, as well as

the streamwise velocity component U{Ub and the streamwise velocity fluctuations

u1

rms on the centre plane at z{Lz � 0.5, are presented in figures 10.10 and 10.11,

for averaging intervals of 600D{Ub, 1100D{Ub, 1700D{Ub and 2300D{Ub time units.

It is obvious that after averaging over only 600D{Ub time units the surface-pressure

distribution Cp � pp � pref q{p0.5ρU2
b q at the bottom wall (y{H � 0), at z{Lz �

0.5, is already converged. However, the streamwise velocity profile and velocity

fluctuations at the last two stations, x{H � 12 and x{H � 16, are not yet fully

converged. Even averaging over 1100D{Ub does not provided fully converged results

for the streamwise turbulence intensity. Averaging over more than 1700D{Ub time

units is required for the mean flow and turbulence statistics to be fully converged.
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Figure 10.10: Surface-pressure coefficient Cp at the bottom wall. (� � ��) t �
600D{Ub, (� � �) t � 1100D{Ub, (- - -) t � 1700D{Ub, (—)
t � 2300D{Ub.
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Figure 10.11: Streamwise velocity and turbulence fluctuations at the centre
plane z{H � 0.5. Locations from left to right: x{H � 1, x{H �
5, x{H � 12 and x{H � 16. (� � ��) t � 600D{Ub, (� � �)
t � 1100D{Ub, (- - -) t � 1700D{Ub, (—) t � 2300D{Ub.

10.2.3 Inflow Duct Results

The quality of the predictions provided by the inflow duct is assessed. For this

purpose, the streamwise velocity profile and streamwise turbulence fluctuations

u1

rms{Ub at the spanwise location z{Lz � 0.5 are shown in figure 10.12, for the

predictions of the FSM-SST, FSM-EASM, FSM-ϕ-α-EASM and IDDES models.

All models predict a very similar velocity profile with a too high velocity magnitude

in the centre of the duct compared to corresponding measurements. In addition, the

experimental data show a asymmetry of the velocity profile, which is not reproduced

by any of the simulations. In the centre of the duct, the resolved streamwise turbu-

lence fluctuations are in good agreement with the reference data. The differences

in the near-wall treatment becomes noticeable close to the wall. All FSM model

resolve much lower turbulence intensities close to wall than the IDDES model. As



Chapter 10 Applications of the FSM Approach 205

discussed before, this is linked to the larger RANS region of the FSM models, which

damps the turbulence fluctuations close to the wall.
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Figure 10.12: Streamwise velocity profile and turbulence fluctuations in the
inflow duct, at the centre plane z{Lz � 0.5. Symbols correspond
to experimental data of Cherry et al. (2008, 2009). (—) FSM-
SST, (- - -) FSM-EASM, (���) FSM-ϕ-α-EASM, (����) IDDES.

10.2.4 Influence of Convection Discretisation

The sensitivity of results with respect to the numerical convection discretisation

scheme is investigated. Three second-order accurate schemes are considered in this

study. The numerical schemes include the hybrid FSM convection scheme (FSM)

with a flow-dependent model for the flux-blending function, a bounded central-

difference scheme with 20% TVD conformity (BCD20) and the central-difference

scheme (CDS). All simulations are performed using the FSM-SST model with Cα �
0.85, β � 0.75 and n � 4.

The prediction of the surface-pressure distribution Cp at the bottom wall (y{H � 0)

is shown in figure 10.13. There are significant differences in the predictions of the

surface-pressure distribution. The CDS and hybrid-FSM scheme give similar re-

sults in reasonable agreement with the reference data, whereas the bounded BCD20

scheme significantly over-predicts the pressure recovery in the diffuser. Note that

the jump in Cp at x{L � 1.86 is caused by the boundary conditions specified at

the outlet. The results for the pressure distribution suggest that the velocity field

predicted by the BCD20 scheme also differs from the predictions of the other two

convection schemes. This is confirmed in figure 10.14, which shows the streamwise

velocity contour U{Ub at the centre plane, z{Lz � 0.5. The figures also include a

thick line, which corresponds to the zero-velocity contour and gives the extent of
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Figure 10.13: Surface pressure coefficient Cp at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
CDS, (- - -) hybrid FSM scheme, (� � �) BCD20.

the separated-flow region. The hybrid FSM scheme and CDS again give a very sim-

ilar picture of the separated-flow region. Both show a separated-flow region, which

extents from approximately x{H � 1 to x{H � 18. On the other hand, BCD20 only

predicts very shallow separation at the top wall. Even though separation occurs too

early with the CDS and hybrid FSM scheme, the agreement with reference data is

much better than with the BCD20 scheme.

A more detailed comparison of the flow field on the centre plane is shown in figure

10.15, where the streamwise velocity profile and streamwise turbulence fluctuations

u1

rms{Ub are plotted at the four streamwise locations x{H � 1, x{H � 5, x{H � 12

and x{H � 16. The CDS and hybrid FSM scheme again predict similar results

for both streamwise velocity and streamwise turbulence fluctuations. At x{H � 12

and x{H � 16, where the differences in the velocity profiles are most pronounced,

the CDS and hybrid-FSM scheme are clearly in much better agreement with the

reference data. A similar trend is evident in the streamwise velocity fluctuations.

The CDS and hybrid-FSM scheme again predict similar results, that agree better

with the reference data, whereas the BCD20 scheme over-predicts the magnitude of

velocity fluctuations at the bottom wall for the first two stations. At the last two

stations, the turbulence streamwise intensity predicted by BCD20 is overall smaller

in magnitude and the agreement with the reference data deteriorates.

The three-dimensional velocity field in the diffuser has also been analysed, but is not

shown here. Predictions of the three-dimensional flow field reflect what has already

been said above. The CDS and hybrid-FSM scheme predict the flow field in much

better agreement with the reference data. On the other hand, the BCD20 scheme
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(a) Experiment. (b) CDS.

(c) Hybrid FSM scheme. (d) BCD20.

Figure 10.14: Streamwise velocity contours U{Ub at the plane Lz{H � 0.5.

almost completely suppresses flow separation at the top wall and hence shows a

greater departure from the reference data.

Figure 10.16 shows the frequency power spectral density distribution of the stream-

wise velocity component at the locations x{H � 8, y{H � 1 and x{H � 14, y{H � 2

in the centre plane (z{Lz � 0.5). The CDS and hybrid-FSM scheme both allow for a

physically realistic energy cascade 9St�5{3, where the Strouhal number is defined as

St � fH{Ub, over approximately one decade at both locations. This suggests that

the resolution of the computational grid is in principle adequate to resolve a fair

amount of turbulence structures. The bounded central-difference scheme BCD20

only sustains a very short St�5{3 region and shows an overly large damping of the

high-frequency content. The damping originates from the additional numerical dis-

sipation introduced by the BCD20 scheme. The study of the numerical convection

scheme illustrates that the hybrid-FSM convection scheme provides results as ac-

curate as the CDS with significantly improved robustness in the RANS region. It

also indicates that boundedness of the numerical scheme inevitably contaminates

the resolved flow and hence deteriorates the results.
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Figure 10.15: Velocity and Reynolds-stress components at the centre plane
z{H � 0.5. Locations from left to right: x{H � 1, x{H � 5,
x{H � 12 and x{H � 16. Symbols correspond to experimental
data of Cherry et al. (2008, 2009). (—) CDS, (- - -) hybrid FSM
scheme, (� � �) BCD 20.

Figure 10.16: Power spectral density of streamwise velocity at two different
locations. Left: x{H � 8, y{H � 1, z{H � 1.665; right: x{H �
14, y{H � 2, z{H � 1.665. (
—
) CDS, (�—�) hybrid-FSM
scheme, (
—
) BCD 20.



Chapter 10 Applications of the FSM Approach 209

10.2.5 Grid and Parameter Sensitivity Study

In this section the influence of the resolution of the computational grid is investi-

gated together with the effect of the shielding function fz, as developed in section

10.1.7 for improved WMLES capabilities of FSM. In order to assess the effectiveness

of the shielding function for WMLES, simulations with and without the shielding

function are performed and compared. The grid sensitivity is investigated by per-

forming a simulation on a computational grid with a 50% increase in cells in each

coordinate direction (502� 98� 145), which gives a total number of approximately

7� 106 cells within the diffuser. All simulations are performed using the FSM-SST

model and with Cα � 0.85, β � 0.75 and n � 4.

An instantaneous snapshot of the spanwise vorticity ωzH{Ub contour at the centre

plane, z{Lz � 0.5, is shown in figure 10.17. The shielding function fz enforces a

significantly enlarged RANS layer, which suppresses turbulence fluctuations close to

the wall. The reduced turbulence activity in the RANS layer has the consequence

that the incoming boundary layer at the top wall requires much longer streamwise

distances before the flow breaks down into fine-scale turbulence. When the shield-

ing function fz is not used, turbulence fluctuations are allowed to penetrate much

closer to the wall, with the effect of a much faster breakdown into turbulence down-

stream of the sharp corner. The same effect is achieved on the fine grid, where

resolved turbulence fluctuations develop much faster downstream of the sharp cor-

ner. Moreover, the computational grid with the higher resolution clearly allows

finer turbulence structures to develop, compared to the relatively coarse baseline

computational grid.

(a) FSM-SST coarse with fz (b) FSM-SST coarse no fz

(c) FSM-SST fine with fz

Figure 10.17: Instantaneous spanwise vorticity ωzH{Ub contour at the plane
z{Lz � 0.5.
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The predictions of the surface-pressure distribution Cp at the bottom wall (y{H �
0), at z{Lz � 0.5, are shown in figure 10.18. The simulation on the coarse grid and

including the shielding function shows the greatest departure of the rapid pressure

recovery, up to x{L � 0.5. However, further downstream, at x{L ¡ 0.5, it provides

the best agreement with reference data. The simulations on the fine grid and the

simulation on the coarse grid without the shield function better predict the rapid

initial pressure rise in the diffuser. The fine resolution case also provides good

agreement of surface pressure at x{L ¡ 0.5. The simulation without the shielding

function shows overly large surface-pressure values downstream of x{L � 0.5. The

shielding function developed for improved WMLES is also effective in the present

case and improves the overall quality of the predictions.
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Figure 10.18: Surface-pressure coefficient Cp at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
FSM-SST coarse with fz, (- - -) FSM-SST coarse no fz, (� � �)
FSM-SST fine with fz.

The differences in the surface-pressure distribution can be explained from the stream-

wise velocity U{Ub contour in the centre plane, z{Lz � 0.5, which is shown in figure

10.19. The figure also includes a thick line, which corresponds to the zero-velocity

contour and gives the extent of the separated-flow region. In the predictions on

the coarse grid and including the shielding function, flow separation occurs almost

immediately downstream of the sharp corner and extents up to x{H � 18. The

premature separation from the top wall explains the relatively slow pressure recov-

ery downstream of the sharp corner. This is probably a consequence of the delayed

breakdown of the flow from the RANS layer into resolved turbulence fluctuations.

The simulations on the fine grid and the simulation without the shielding function,

both predict a shallow recirculation region just downstream of the diffuser inlet.

This results in better predictions of the initial, rapid, pressure rise in the diffuser.

The improved predictions are likely related to the much faster breakdown of the flow
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(a) Exp. (b) FSM-SST coarse with fz

(c) FSM-SST coarse no fz (d) FSM-SST fine with fz

Figure 10.19: Streamwise velocity contours U{Ub at the plane z{Lz � 0.5.

from the RANS layer into resolved turbulence fluctuations. The flow in the simu-

lation without shielding function reattaches to the top wall and separates again at

x{H � 12. This is significantly delayed compared to the reference data, and results

in a too-small recirculation zone. The fine resolution case provides the best overall

agreement with the reference data, in terms of predicting the correct extent of the

recirculation region. This is reflected in good agreement of the surface-pressure

distribution.

A more detailed comparison of the flow field on the centre plane is shown in figure

10.20, where the streamwise velocity profile and streamwise fluctuations u1

rms{Ub
are plotted at the four streamwise locations x{H � 1, x{H � 5, x{H � 12 and

x{H � 16. The velocity profile at the first station, x{H � 1, is predicted very

similarly by all simulations. At the second station, x{H � 5, the fine- and coarse-

resolution cases show the same velocity distribution close to the bottom wall and

under-predict the streamwise velocity magnitude at the top wall. The case without

shielding function shows improved agreement at the top wall, which is not much of

a surprise, since it predicts no flow separation at this station, which is in agreement

with the reference data. The flow close to the top wall, at x{H � 12 and x{H � 16,

is better reproduced if the shielding function is included. This is linked to a more

realistic prediction of the extent of the recirculation zone. At the bottom wall the

two cases with shielding function exhibit a somewhat higher streamwise velocity

magnitude compared to the case without shielding function. The lower magnitude

is in better agreement with the reference data.

It has been discussed before, that without the shielding function included, turbu-

lence fluctuations are allowed to penetrate much closer to the wall. This is reflected

in significantly increased streamwise fluctuations u1

rms{Ub at x{H � 1, close to
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the wall. At the other stations, farther downstream, this difference is much less

pronounced or even non existent. The coarse-grid simulation using the shielding

function shows the highest level of streamwise fluctuations throughout. The sim-

ulations on the fine grid and the simulation without the shielding function show

a smaller intensity of the streamwise fluctuations, particularly at the centre of the

diffuser, and hence provide better agreement with the reference data.
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Figure 10.20: Velocity component U{Ub and streamwise velocity fluctuations

u1rms{Ub at the centre plane z{Lz � 0.5. Locations from left to
right: x{H � 1, x{H � 5, x{H � 12 and x{H � 16. Symbols
correspond to experimental data of Cherry et al. (2008, 2009).
(—) FSM-SST coarse with fz, (- - -) FSM-SST coarse no fz,
(� � �) FSM-SST fine with fz.
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10.2.6 Sensitivity to the Turbulence Model

The sensitivity of results to the underlying RANS model is investigated. Simulations

are performed using the FSM-SST, FSM-EASM and FSM-ϕ-α-EASM formulation

in conjunction with the hybrid FSM convection scheme. In addition, results ob-

tained by IDDES based on the k-ω-SST model are also included in the comparison

with the reference data. Simulations have also been performed using the Scale-

Adaptive Simulation (SAS) methodology. However, SAS was not able to sustain

any turbulence fluctuations in the inflow duct and in the diffuser, and are therefore

not included in the subsequent discussion.

The presentation of results is split into three parts. First, the instantaneous flow

field is discussed, followed by a comparison of the mean-flow field at the spanwise

location z{Lz � 0.5. Finally, analysis of the streamwise evolution of the three-

dimensional flow field is presented.

Instantaneous flow field at the centre plane z{Lz � 0.5

An instantaneous snapshot of the spanwise vorticity contours ωzH{Ub, at the centre

plane z{Lz � 0.5, is shown in figure 10.21. It is evident, that all FSM models resolve

very long streamwise structures at the bottom wall. In the predictions of the IDDES

model these elongated turbulence structure do not exist and instead, many more

fine-grained turbulence structures are resolved close to the wall. As previously

discussed, this is related to the extent of the RANS region adjacent to the wall,

which is much smaller for IDDES than for the FSM models, where the function fz

enforces a larger RANS layer. The excessive damping in the RANS region eliminates

most of the turbulence structures, that are observed in the IDDES predictions

close to the wall. This issue has already been discussed in section 10.1 and is

clearly visualised in figure 10.7 for the flow in a planar channel. The suppression of

turbulence fluctuations close to the wall by the FSM models has the consequence,

that the incoming boundary layer at the top wall requires much longer streamwise

distances before the breakdown into fine-scale turbulence occurs.

Mean flow field at the centre plane z{Lz � 0.5

The surface-pressure distribution Cp at the bottom wall (y{H � 0), is shown in

figure 10.22. All of the employed hybrid RANS/LES models have difficulties in

reproducing both, the initial rapid pressure recovery, which extents up to x{L � 0.5,

and the correct magnitude of surface pressure downstream of x{L � 0.5. The

IDDES model gives good predictions for the initial, rapid, pressure recovery in the
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(a) FSM-SST (b) FSM-EASM

(c) FSM-ϕ-α-EASM (d) IDDES

Figure 10.21: Spanwise vorticity ωzH{Ub at the plane z{Lz � 0.5.

diffuser but over-predicts the magnitude of Cp for x{L ¡ 0.5. On the other hand, all

FSM models show deficiencies in predicting the correct pressure recovery up to the

location x{L � 0.5. Downstream of x{L � 0.5, the predictions of the FSM models

improve and the FSM-SST and FSM-EASM models achieve reasonable agreement

with the reference data. The FSM-ϕ-α-EASM model under-predicts the magnitude

of Cp and therefore provides least agreement with the reference data, compared

to the other FSM models. Note that many of the LES and hybrid RANS/LES

simulation presented at the 13th/14th ERCOFTAC/IAHR Workshop show trends

similar to that observed here. They show either good agreement for the initial,

rapid, pressure recovery with over-prediction of Cp for x{L ¡ 0.5, or they fail to

predict the rapid pressure rise but predict a more realistic magnitude of Cp farther

downstream.
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Figure 10.22: Surface-pressure coefficient Cp at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
FSM-SST, (- - -) FSM-EASM, (� ��) FSM-ϕ-α-EASM, (� � ��)
IDDES.
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Some more insight into the flow-field predictions can be gained from figure 10.23,

which shows the streamwise velocity contour U{Ub at the centre plane z{Lz � 0.5.

The figure also includes a thick line, which corresponds to zero-velocity contours,

which reveal the extent of the separated flow region. The streamwise velocity con-

tour and particularly the amount of separation explains the departure in the predic-

tions of the surface-pressure distribution from the reference data. The experimental

data show a large separation zone, which extends from approximately x{H � 7 to

x{H � 19. It is now obvious that the initial, rapid, pressure recovery occurs in

the region x{H   7, where the flow is still attached. Downstream of x{H � 7, the

recirculation zone reduces the effective cross section, which is responsible for the ob-

served reduced rate of pressure recovery in the diffuser. The IDDES model predicts

a very shallow recirculation zone just downstream of the sharp corner and the main

separation from the top wall occurs far too late, at approximately x{H � 11. The

fact that the flow remains attached to the top wall is consistent with the reference

data, and is reflected in accurate predictions of the surface-pressure distribution in

this region. The erroneous prediction of the location and size of the recirculation

zone is again reflected in an over-prediction of the magnitude of Cp in this region.

On the other hand, all FSM models predict flow separation to occur almost immedi-

ately downstream of the sharp edge, at approximately x{H � 1, and the thickness

of the recirculation zone to be much larger and hence in better agreement with

the reference data. This explains the departure observed in the predictions of the

surface-pressure distribution by the FSM models up to x{L � 0.5, and the better

agreement further downstream.

A more detailed comparison of the flow field on the centre plane is shown in figure

10.24, where the mean-velocity profiles and resolved Reynolds-stress components

are plotted at the four streamwise locations x{H � 1, x{H � 5, x{H � 12 and

x{H � 16. The quality of the streamwise velocity component at the first location,

x{H � 1, is similar for all hybrid RANS/LES models. All models show a too high

streamwise velocity magnitude in the centre of the diffuser. At the second station,

x{H � 5, the flow predicted by the IDDES model is still attached to the top wall,

which is reflected in good agreement of the velocity profile with the reference data

at the top wall. All FSM models predict flow separation at this location, and for

this reason, show a departure in the streamwise velocity profile at the top wall. All

hybrid models show too large peak values of streamwise velocity magnitude near

the bottom wall. The models, which predict the thickest recirculation zone at this

station consequently predict the largest peak value of streamwise velocity. That is,

the IDDES model shows, relative to the other models, the lowest peak value and
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(a) Exp. (b) FSM-SST

(c) FSM-EASM (d) FSM-ϕ-α-EASM

(e) IDDES

Figure 10.23: Streamwise velocity contours U{Ub at the plane z{Lz � 0.5.

the FSM-EASM and FSM-ϕ-α-EASM models predict the highest peak values. In

addition, all hybrid RANS/LES predict the location of maximum streamwise veloc-

ity too close to the bottom wall. At the last two stations, x{H � 12 and x{H � 16,

all hybrid RANS/LES models show significantly improved predictions compared to

the RANS results (see section 6.4). Close to the bottom wall, the IDDES and FSM-

EASM models provide better agreement for the location of maximum streamwise

velocity. The peak streamwise velocity location of the FSM-SST and FSM-ϕ-α-

EASM models remain too close to the bottom wall and the velocity magnitude is

generally over-predicted. The FSM formulation with the most sophisticated under-

lying RANS model (ϕ-α-EASM) shows the greatest departure from the reference

data at the bottom wall. The streamwise velocity profile at the top wall confirms

what has been said in the discussion about the size of the recirculation zone. The

IDDES model predicts the least amount of reverse flow and therefore slightly over-

estimates the streamwise velocity. It should be noted that the streamwise velocity

profiles obtained by the wall-resolved LES of Schneider et al. (2010b) and the DNS

of Ohlsson et al. (2010) also do not achieve perfect agreement with the experimental

data, particularly for the stations downstream of x{H � 15.

The predictions of the resolved Reynolds-stress components are discussed next. At

the first station, x{H � 1, the IDDES model predicts significantly higher val-

ues of streamwise velocity fluctuations, u1

rms{Ub, wall-normal velocity fluctuations,

v1rms{Ub and shear stress, u1v1{U2
b , compared to the FSM approaches. The reason
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for the more intense fluctuations of IDDES is, that more turbulence structures are

allowed to develop close to the wall. The FSM models employ a larger RANS zone,

where resolved turbulence fluctuations are strongly suppressed. At the next station

downstream, at x{H � 5, the IDDES model shows the lowest levels of resolved

turbulence fluctuations in the centre of the channel, which is in better agreement

with the reference data. This is probably linked to the more rapid breakdown into

smaller-scale turbulence fluctuations of the incoming boundary layer at the top wall.

On the other hand, the FSM models show a delayed breakdown of the flow from

the RANS layer into turbulence fluctuations, which results in more energetic large-

scale turbulence motion at that location. This trend continues throughout to the

downstream stations, x{H � 12 and x{H � 16, where the IDDES model consis-

tently shows lower levels of turbulence fluctuations than the FSM approaches. It is

also obvious that the FSM-ϕ-α-EASM model consistently predicts the highest levels

of resolved turbulence fluctuations. The FSM-SST and FSM-EASM formulations

show very similar levels of resolved turbulence fluctuations with an intensity lower

than the FSM-ϕ-α-EASM model, but higher than the IDDES model.
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Figure 10.24: Velocity and Reynolds-stress components at the centre plane
z{Lz � 0.5. Locations from left to right: x{H � 1, x{H � 5,
x{H � 12 and x{H � 16. Symbols correspond to experimen-
tal data of Cherry et al. (2008, 2009). (—) FSM-SST, (- - -)
FSM-EASM, (� � �) FSM-ϕ-α-EASM, (� � ��) IDDES.
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Three-Dimensional Flow Field

Further insight into the predictions of the three-dimensional flow field can be gained

from figures 10.25 and 10.26, which show contour plots of streamwise velocity U{Ub
and resolved streamwise velocity fluctuations u1

rms{Ub at the streamwise locations

x{H � 1, x{H � 5, x{H � 12 and x{H � 16. Figure 10.25 also includes the

contour line with zero-velocity, in order to visualise the extent of the separated-flow

region. The flow field at the first station, x{H � 1, is well predicted by the FSM-

SST and FSM-EASM models. Both show a small recirculation region in the top left

and top right corners. FSM-ϕ-α-EASM and IDDES both predict flow separation at

the entire top wall at this station, which is not consistent with the reference data.

At the second station, x{H � 5, the size of the recirculation zone in the top right

corner has grown significantly, but the flow still remains attached on parts at the

top wall. All three FSM models predict the flow to be completely separated from

the top wall at this station. The flow predicted by IDDES has re-attached at the

top wall, and shows a recirculation zone in the top right corner, consistent with the

experimental data. The extent of the recirculation zone is slightly under-predicted.

At the last two stations, x{H � 12 and x{H � 16, the flow has completely detached

from the top wall and the recirculation zone has become almost two-dimensional,

with no variation in the spanwise direction. All hybrid models are able to correctly

predict the flow separation from the top wall. The shape of the recirculation region

exhibits some variation in the spanwise direction and hence does not fully match

the reference data. Nevertheless, all hybrid models predict the mean-flow topology

in satisfying agreement with the reference data, and are therefore clearly superior

to the RANS predictions of section 6.4, which completely failed to predict a realistic

flow topology in the diffuser.

The contour plots of resolved streamwise velocity fluctuations u1

rms{Ub in figure

10.26 illustrate again the differences in resolved turbulence fluctuations between the

FSM and IDDES approach. The levels of resolved turbulence fluctuations predicted

by the IDDES, at the plane x{H � 1, is significantly higher, particularly close to the

wall, compared to the FSM models, and hence in better agreement with the reference

data. At the second plane, x{H � 5, the opposite trend can be observed. All FSM

models predict higher intensities of streamwise velocity fluctuations, whereas the

IDDES model predicts lower intensities, which is, again, in better agreement with

the reference data. At the last two planes, x{H � 12 and x{H � 16, the IDDES

model consistently predicts lower resolved streamwise fluctuations, compared to the

FSM models. The higher levels of streamwise fluctuations of the FSM models now
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better matches the reference data. Although, the FSM-EASM and FSM-ϕ-α-EASM

models predict still somewhat too high intensities at the plane x{H � 12.
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(q) IDDES (x{H � 1) (r) IDDES (x{H � 5) (s) IDDES (x{H � 12) (t) IDDES (x{H � 16)

Figure 10.25: Streamwise velocity contours predicted by the FSM-SST, FSM-
EASM, FSM-ϕ-α-EASM, IDDES and experimental data of
Cherry et al. (2008, 2009). Thick line corresponds to zero veloc-
ity contour line. The spacing between contour lines corresponds
to ∆U{Ub � 0.1 and dashed lines denote negative velocities.
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(q) IDDES (x{H � 1) (r) IDDES (x{H � 5) (s) IDDES (x{H � 12) (t) IDDES (x{H � 16)

Figure 10.26: Streamwise velocity fluctuations u1rms{Ub predicted by the FSM-
SST, FSM-EASM, FSM-ϕ-αEASM, IDDES and experimental
data of Cherry et al. (2008, 2009).
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10.2.7 Summary

The simulations of the flow in a three-dimensional diffuser confirm that a bounded

convection discretisation scheme in the LES region adversely affects the results. The

bounded scheme almost completely suppresses flow separation on the centre plane,

whereas the CDS and hybrid FSM schemes give a similar picture of the separated

flow region, in much better agreement with the reference data. In addition, both

schemes allow for a more realistic spectral distribution of velocity fluctuations and

show a more distinct �5{3 energy cascade.

All hybrid RANS/LES models considered here provide significantly improved results

over pure RANS predictions, and are able to predict the correct flow topology in

the diffuser. However, for the simulations on the relatively coarse baseline grid,

none of the investigated turbulence models provides a satisfactory prediction of

the flow field, in good agreement with the corresponding measurements. The SAS

method is not able to sustain any turbulence fluctuations in the diffuser. In the

predictions of the IDDES model, separation from the top wall occurs too late and

results in too small a recirculation zone. On the other hand, all FSM models

exhibit premature separation just downstream of the sharp corner. The differences

in the predictions are related to the capabilities of each model to resolve turbulence

fluctuations close to the wall. The IDDES model resolves more turbulence structures

close to the wall than does FSM, which influences the predictions of the boundary-

layer separation in the diffuser. It is shown that grid refinement improves the

predictions of the separated-flow region just downstream of the sharp corner, and

provides better agreement with the reference data. Concerning the sensitivity of

results with respect to the underlying RANS model, the FSM-SST and FSM-EASM

models give slightly better overall predictions, compared to the more sophisticated

FSM-ϕ-α-EASM, which shows a pronounced over-prediction of streamwise velocity

close to the bottom wall.
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10.3 Tandem Cylinders

The configuration consists of two in-line, tandem cylinders, where the first cylinder

creates an unsteady wake, which interacts with the downstream cylinder. For this

reason, tandem cylinder flows are classed as a problem of wake interference (see

Zdravkovich, 1987). The separation between the cylinders sets the type of wake

interaction. When the cylinders are close to each other, vortex shedding from the

upstream cylinder has been found to be suppressed. As the cylinder spacing is in-

creased, a variety of flow modes are encountered, with upstream shear layer reattach-

ment occurring first on the downstream cylinder, followed by the re-establishment

of vortex shedding behind the upstream cylinder. This canonical wake/bluff-body

interaction problem has recently received much attention in an effort to improve

the understanding of sound generation mechanisms of landing-gear components,

and has been subject of a workshop on Benchmark problems for Airframe Noise

Computations (BANC) (see Lockard, 2011). Most tandem-cylinder studies have

been performed at relatively low Reynolds number. However, a recent experimen-

tal program has been performed at high Reynolds number (1.66� 105) by Lockard

et al. (2007), Khorrami et al. (2007) and Jenkins et al. (2006), that provides one

of the most comprehensive data sets available for aerodynamic and aeroacoustic

simulation validation.

The tandem cylinder configuration is used here to investigate the performance of

FSM and other hybrid RANS/LES methods when operated in its basic, ‘natural’,

mode, where the entire attached boundary layer is treated in RANS mode and

the massively separated flow outside the boundary layer is treated in LES mode.

The tandem cylinder configuration has a gap spacing of x{D � 3.7 (from centre

to centre) and a Reynolds number of ReD � 1.66 � 105 based on the cylinder

diameter D and free-stream velocity U0. The cylinder spacing of x{D � 3.7 is

large enough, such that regular vortex shedding occurs on the front cylinder. The

boundary layer on the upstream cylinder was tripped in the experiments of the QFF

and BART facilities (Lockard et al. (2007), Khorrami et al. (2007) or Jenkins et al.

(2006)). The boundary-layer tripping ensures, that the flow is fully turbulent prior

to separation and hence corresponds to a super-critical flow regime. It is argued in

Lockard (2011), that due to the tripping, the resulting pressure distribution of the

single front cylinder corresponds to a Reynolds number greater than 8 � 106. The

boundary-layer tripping justifies the use of a fully turbulent simulation approach,

where all boundary layers are fully turbulent and transition is not accounted for. It

also facilitates a comparison between experiment and CFD.
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In order to successfully reproduce the experimental data, it is important to cor-

rectly predict the boundary layer, flow separation and the development free-shear

layer from the front cylinder, since any error in the predictions may significantly

alter the downstream development of the flow. The main challenge associated with

the flow around the downstream cylinder is to accurately capture the interaction

of the wake and the cylinder, as well as, the development of the boundary layer on

the downstream cylinder. Experimental data show that the wake of the rear cylin-

der strongly depends on the state of the boundary layer and associated separation

points. Recall that the front cylinder is tripped in all experiments. Two data sets

are available, with and without tripping of the boundary layer on the rear cylinder.

The fully turbulent simulation approach more closely resembles the experimental

data with tripping of the boundary layer on both cylinders.

10.3.1 Computational Setup

The computational setup consists of a three-dimensional C-type domain with a

spanwise extend of z{D � 3. The up-stream boundary is placed 25D away from

the cylinders and the outflow boundary is located at x{D � 30 downstream of the

centre of the first cylinder. Periodic boundary conditions are used in the spanwise

direction, and zero-gradient boundary conditions on the outflow boundary. Each

two-dimensional plane (x-y) (see figure 10.27) is discretised with approximately

52000 cells using an average first wall-normal grid spacing, on both cylinders, of

around y�1 � 0.7 and a maximum value of y�1 � 1.7. The number of cells in the

spanwise direction is 40, so as to achieve almost isotropic cells in the gap region

between the cylinders. The total cell count is approximately 2�106 cells. Note that

the total number of cells of the baseline grid is significantly less compared to what

was used in other contributions to the BANC I workshop (typically 7 � 133 � 106

cells). The turbulence kinetic energy and specific dissipation rate at the inflow are

respectively prescribed as k8 � 10�6U2
0 and ω8 � 5U0{D (see Spalart & Rumsey,

2007) such that immediate transition occurs in the boundary layer.

The convective fluxes in the flow equations are discretised using the hybrid FSM dif-

ference scheme and a second-order upwind scheme is used for the turbulence trans-

port equations. The viscous terms use a second-order central-difference scheme.

Time stepping is performed using an implicit second-order backward-difference

scheme, and the coupling between the pressure and velocity is achieved by the

PISO algorithm. The time step is set to 0.003D{U0 such that the CFL number

does not exceed 0.5.
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(a) (b)

Figure 10.27: Computational grid.

10.3.2 Averaging and Statistical Convergence

Before any results are presented the averaging procedure and statistical convergence

is discussed. For all simulations, the flow is allowed to develop from the initial

flow field for approximately 115D{U0 time units. After the initial settling period,

statistical quantities are computed by averaging over 700D{U0 time units. For post-

processing purposes the time-averaged quantities are additionally averaged over the

homogeneous spanwise direction.

In order to verify the statistical convergence, the distributions of mean-surface-

pressure coefficient Cp and fluctuating-surface-pressure coefficient Cp1rms are shown

in figure 10.28, for both cylinders, for averaging over 230D{U0, 460D{U0 and 690D{U0

time units. In addition, the predictions of mean streamwise velocity and resolved

two-dimensional turbulence kinetic energy k2D
res � p1{2q

�
u1u1 � v1v1

	
{U2

0 on the

centerline, y{D � 0, are shown in figure 10.29. It is obvious that the mean-surface-

pressure distribution is already converged after averaging over 230D{U0 time units.

The fluctuating-surface-pressure distribution requires time-averaging over at least

460D{U0 time units before adequately converged statistics are obtained. The same

holds for the streamwise velocity and turbulence kinetic energy distributions. Av-

eraging over more than 460D{U0 time units does not change the statistics.
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Figure 10.28: Mean-surface-pressure Cp and fluctuating-surface-pressure coef-
ficient Cp1rms

. (—) t � 230D{U0, (- - -) t � 460D{U0, (� � �)

t � 690D{U0.
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Figure 10.29: Streamwise velocity profiles U{U0 and 2D TKE at y{D � 0. (—)
t � 230D{U0, (- - -) t � 460D{U0, (� � �) t � 690D{U0 .

10.3.3 Influence of Convection Discretisation

The sensitivity of results to the convection discretisation scheme is investigated.

Three different second-order schemes are considered in this study. The numerical

schemes include the hybrid FSM convection scheme (FSM) with a flow-dependent

model for the flux-blending function, a central-difference scheme with 20% TVD

conformity (BCD20) and a fully TVD conformal central-difference scheme (BCD).

Unfortunately, no results could be obtained using the unbounded central-difference

scheme, due to the presence of severe numerical oscisllations in the flow field. This

highlights the advantages of an accurate hybrid scheme, such as the newly devel-

oped FSM scheme. The results presented here are obtained using the FSM-SST

formulation and the baseline grid. This study focuses on differences in the predic-

tions between each numerical scheme and is thus not so much concerned with the

discussion of the overall agreement with reference data.
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The distributions of mean-surface-pressure coefficient Cp and fluctuating-surface-

pressure coefficient Cp1rms are shown in figure 10.30, for the upstream and down-

stream cylinder. The three convection schemes show negligible differences in mean-

surface-pressure distribution on both cylinders. The fluctuating-surface-pressure

distribution is predicted very similarly by the FSM and BCD20 schemes. Only the

BCD scheme predicts overall higher levels of surface-pressure-fluctuations, which

is particularly pronounced on the upstream cylinder, and which deteriorates the

agreement with the reference data.
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Figure 10.30: Mean-surface-pressure Cp and fluctuating-surface-pressure coeffi-
cient Cp1rms

. Front cylinder: (�) BART, (�) QFF. Rear Cylinder:

(�) BART, (�) BART (rear cylinder tripped). (—) new FSM
convection scheme, (- - -) BCD20, (� � �) BCD.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

lence kinetic energy k2D
res on the centerline, y{D � 0, are shown in figure 10.31. Sig-

nificant differences can be observed for the velocity distribution in the gap region.

Only the hybrid FSM scheme is able to provide predictions in excellent agreement

with the reference data. Both bounded central-difference schemes, BCD20 and

BCD, over-predict the size of the recirculation zone and predict lower intensities
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of maximum streamwise velocity in the gap region at around x{D � 2.5. It seems

that the additional numerical dissipation of the BCD20 and BCD schemes damps

the natural shear layer instability mechanism, which results in a delayed breakdown

of the separated shear layer. This results in an over-prediction of the recirculation

zone behind the upstream cylinder, and in reduced entrainment of free-stream fluid,

into the gap region, which manifests as an under-prediction of maximum streamwise

velocity. Even though the velocity distribution obtained by the FSM scheme is in

excellent agreement with reference data, the resolved turbulence kinetic energy in

the central part of the gap region is significantly over-predicted. The more dissipa-

tive schemes, BCD20 and BCD, show lower levels of turbulence intensity in the gap

between the cylinders, which is in better agreement with the reference data. Con-

cerning the velocity distribution downstream of the rear cylinder, it can be noted,

that the experimental data strongly depend on whether, or not, the boundary layer

is trip on the rear cylinder. Without tripping the boundary layer on the rear cylin-

der, a much smaller recirculation zone behind the rear cylinder is observed, whereas

in the tripped case, a significantly enlarged recirculation zone is observed. The size

of the recirculation zone is directly linked to the separation point on the rear cylin-

der and the resulting trajectory of the free-shear layer. This clearly demonstrates,

that the boundary-layer development on the rear cylinder is important, even though

the rear cylinder is located in the highly turbulent wake of the upstream cylinder.

Further, it is not too surprising, that the fully turbulent simulation approach, which

does not account for laminar-turbulent transition, reproduce the experimental data

for which the flow was tripped on the rear cylinder. The velocity distribution down-

stream of the rear cylinder is predicted by all schemes in good agreement with the

reference data. The turbulence kinetic energy distribution downstream of the rear

cylinder shows exactly the opposite trend observed for the gap region. The FSM

scheme, with the lowest amount of additional numerical dissipation, exhibits the

lowest intensity of turbulence fluctuations. The more dissipative schemes predict

higher levels of turbulence intensity throughout. This seems counterintuitive, since

increased levels of numerical dissipation enhances the damping of turbulence fluc-

tuations, which should result in reduced levels of turbulence intensity. More insight

into this issue can be gained from the power spectral density of streamwise velocity

discussed next.
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Figure 10.31: Streamwise velocity profiles U{U0 and 2D TKE on the centreline
(y{D � 0). (�) BART, (�) BART (rear cylinder tripped). (—)
new FSM convection scheme, (- - -) BCD20, (� � �) BCD.

Predictions of the power spectral density (PSD) of surface pressure at the locations

θ � 135�, on the front cylinder and θ � 45� on the rear cylinder, are shown in

figure 10.32. In addition, the PSD of streamwise velocity on the centreline, at

x{D � 2.5 and x{D � 4.5, are also shown. The PSD of surface pressure on the

upstream cylinder shows clear differences between each discretisation scheme. The

new hybrid FSM scheme provides predictions clearly superior to BCD20 and BCD.

The FSM scheme predicts the secondary peak at St � 0.5, where the Strouhal

number is defined as St � fD{U0. This peak is absent from the results obtained by

BCD20 and BCD. In addition, FSM gives overall a more realistic picture of the PSD

for Strouhal numbers St ¡ 1. The predictions on the downstream cylinder show

significantly less scatter, and all discretisation schemes provide good agreement with

the reference data. Clear differences between each numerical scheme are also evident

in the PSD of streamwise velocity. At both locations the hybrid FSM scheme shows

the largest extent of St�5{3 behaviour. The more dissipative schemes, BCD20 and

BCD, are not able to reproduce a �5{3 region due to an overly large damping
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of turbulence fluctuations for St ¡ 1. The BCD scheme shows, as expected, the

most pronounced damping at higher Strouhal numbers. It also seems that at the

second location, downstream of the rear cylinder, the energy contained in the low

Strouhal numbers is smaller for the FSM scheme, and more pronounced for the

BCD20 and BCD schemes. This may explain why the FSM scheme predicts overall

lower turbulence intensities downstream of the rear cylinder.
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Figure 10.32: Surface pressure spectra and velocity spectra. (—) BART mea-
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10.3.4 Effect of Spanwise Domain Width

The baseline computational grid has a spanwise domain width of Lz � 3D. However,

the experiments were performed using cylinders with a span of between 12D and

16D, and show that the spanwise surface-pressure correlation does not go to zero

until approximately 7D. This indicates that three-dimensional effects are present

in the flow. The question then arises, whether the spanwise domain width (3D) is

sufficient to resolve the dominant three-dimensional effects in the flow, or whether

a larger domain is required in order to improve the correlation with experiment.

Therefore, the effect of the spanwise width of the computational domain is investi-

gated in this section. For this purpose, simulations are performed on three different

computational grids with different spanwise extents. The first grid has a spanwise

width of 3D and 40 cells in the spanwise direction (FSM-3-40), the second grid has

a spanwise width of 6D and 80 cells in the spanwise direction (FSM-6-80) and the

largest grid has a spanwise width of 12D and 160 cells in the spanwise direction

(FSM-12-160).

The distributions of mean-surface-pressure coefficient Cp and fluctuating-surface-

pressure coefficient Cp1rms are shown in figure 10.33, for the upstream and down-

stream cylinder. The mean-surface-pressure distributions on both cylinders are

virtually indistinguishable and are therefore not sensitive to the spanwise domain

width. Small differences can be observed for the fluctuating-surface-pressure coef-

ficient on the front cylinder. With increasing spanwise domain width, the intensity

of surface-pressure fluctuations reduces, and hence provides better agreement with

the reference data. However, the difference is very small and probably does not

justify the considerably increased computational effort required for larger domains.

The fluctuating-surface-pressure on the downstream cylinder is again predicted very

similar by all domain widths.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

lence kinetic energy k2D
res on the centerline, y{D � 0, is shown in figure 10.34. The

streamwise velocity distributions show only a very small sensitivity to the width of

the computational domain. The FSM-12-160 predicts a slightly larger recirculation

region and a slightly reduced maximum streamwise velocity magnitude, at around

x{D � 2.5, in the gap between the cylinders. Similarly, the differences in resolved

two-dimensional turbulence kinetic energy are also very small. The FSM-12-160

predicts a slightly lower magnitude of k2D
res in the gap region, which is in better

agreement with the reference data.
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Figure 10.33: Mean-surface-pressure Cp and fluctuating-surface-pressure coeffi-
cient Cp1rms

. Front cylinder: (�) BART, (�) QFF. Rear Cylinder:

(�) BART, (�) BART (rear cylinder tripped). (—) FSM-3-40,
(- - -) FSM-6-80, (� � �) FSM-12-160.

Predictions of the spanwise surface-pressure correlation Rpp and PSD of surface-

pressure at θ � 135�, on the front and rear cylinder, are shown in figure 10.35.

The spanwise correlation is an indicator of whether the resolution (cell count and

domain extent) in the spanwise direction is adequate to reproduce the characteristic

three-dimensional variation of the flow field.

Recall that the experiments were performed using cylinders with a span of between

12D and 16D. The experiments show that the spanwise surface-pressure correlation

does not go to zero until approximately 7D. This indicates that three-dimensional

effects are present in the flow. The spanwise surface-pressure correlation is well

reproduced on both cylinder up to the spanwise distance of z{D � 1.0 for all

domain widths. The spanwise domain width 3D of the FSM-3-40 case is clearly

too small, since the spanwise correlation does not drop below Rpp � 0.7, and the

flow is constrained by the periodic boundary conditions to maintain an artificially

high correlation in the spanwise direction. The larger domains allows the spanwise
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Figure 10.34: Streamwise velocity profiles U{U0 and 2D TKE on the centreline
(y{D � 0). (�) BART, (�) BART (rear cylinder tripped). (—)
FSM-3-40, (- - -) FSM-6-80, (� � �) FSM-12-160.

correlation to reduce further. However, the spanwise correlation never drops below

Rpp � 0.5 on both cylinders, even for the largest domain width of 12D. This suggests

that periodic boundary conditions are not fully justified, even for the largest domain

width of 12D. The same trend for the surface-pressure correlation is also observed

in most of the simulations of the BANC I workshop participants, even on domain

widths of 16D and with periodic boundary conditions in the spanwise direction.

Only one simulation, with a domain width of 16D, and where initially random

suction and blowing on the cylinder walls is used to promote the development of

vortex shedding, gave a surface-pressure correlation that goes to zero at z{D �
7 (see Lockard, 2011). It is not clear why the surface pressure remains highly

correlated in the spanwise direction. Further insight could be gained by eliminating

the uncertainty introduced by the periodic boundary conditions and by using a

computational domain, which more closely resembles the experimental setup, i.e. a

spanwise domain width of 12.4D or 16D with vertical side plates.
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The PSD of surface pressure confirms the trend above for the fluctuating-surface-

pressure distribution. On the upstream cylinder, the overall magnitude of surface-

pressure fluctuations is reduced for increasing domain widths. The reduced intensity

predicted on the FSM-12-160 grids is in better agreement with the reference data

for the Strouhal number range St � 0.3 � 0.7. For Strouhal numbers St ¡ 0.7,

the intensity is too low and the FSM-3-40 grid provides better agreement with the

reference data. On the downstream cylinder, the predictions are again similar for

all domain widths. The results presented above clearly show that no systematic

improvements are obtained for increasing domain widths. For this reason, the ad-

ditional computational effort, required for larger spanwise domain widths, does not

seem justified.
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Figure 10.35: Spanwise surface-pressure correlation Rpp and PSD of surface
pressure at the locations θ � 135�. (�) and (—) BART measure-
ments. (—) and (
—
) FSM-3-40, (���) and (�—�) FSM-6-80,
(� � �) and (
—
) FSM-12-160.
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10.3.5 Effect of Grid Resolution

It is very tempting, particularly for two-dimensional configurations, to reduce the

computational cost of a turbulence resolving simulation by using a small number

of cells in the spanwise direction. The first objective of this section is to inves-

tigate the sensitivity of results with respect to the spanwise grid resolution. For

this purpose simulations are performed on three different computational grids with

different spanwise resolutions. All grids have a spanwise width of 6D and approxi-

mately 52000 cells in each xy-plane. The first grid has a spanwise resolution of 40

cells (FSM-6-40), the second grid has a spanwise resolution of 80 cells (FSM-6-80)

and the finest grid has a spanwise resolution of 160 cells (FSM-6-160). The total cell

counts are approximately 2� 106, 4� 106 and 8� 106 cells, respectively. Note that

the FSM-6-80 case results in almost isotropic cells in the gap region between both

cylinder. In addition to this study, the effect of a finer resolution in the xy-plane is

investigated by performing a simulation on a grid with 82000 cells in the xy-plane

and 150 cells in the spanwise direction, which makes a total of approximately 12�106

cells. The spanwise domain width had to be reduced to 3D for this case in order to

keep the computational cost affordable. The grid design of the finer grid is overall

very similar to other grids used. The main difference is the increased grid density

in the gap region and in the wake of the rear cylinder, and the use of a rectangular

domain shape. The first wall-normal grid point is located at approximately y� � 1.

This grid was kindly provided by M. Strelets from New Technologies and Services,

St. Petersburg and will be referred to as the FSM-Strelets case. The Strelets grid

is depicted in figure 10.36.

(a) xy-plane (b) xy-plane

Figure 10.36: Computational grid of Strelets.

The distributions of mean-surface-pressure coefficient Cp and fluctuating-surface-

pressure coefficient Cp1rms are shown in figure 10.37 for both cylinders. The predic-

tions of Cp obtained on the grid with the coarsest spanwise resolution (FSM-6-40)
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clearly differ from the results obtained with a finer spanwise resolution. The coarse

resolution case consistently predicts too high values of Cp on both cylinders, and

hence shows the greatest departure from the reference data. The FSM-6-80 and

FSM-6-160 cases show similar results in good agreement with the reference data.

The FSM-Strelets case provides a slightly too low base pressure, and predicts the

lowest values of Cp at the suction peaks at the locations θ � 90� and θ � 270�.

The fluctuating-surface-pressure coefficient shows a much more pronounced sensi-

tivity to the grid resolution. The predictions of the fluctuating surface pressure on

the upstream cylinder are improved when the resolution is doubled from the coarse

(FSM-6-40) to the medium (FSM-6-80) spanwise resolution. It would be natural to

expect, that a further grid refinement would again result in improved predictions,

but surprisingly, a further increase in resolution shows the exact opposite trend.

The two finest grids, FSM-6-160 and FSM-Strelets, predict the highest intensity of

surface-pressure fluctuations and hence show the largest departure from the refer-

ence data. The same observation also holds for the downstream cylinder. It should

be noted that the present results are only valid for the sepcific spanwise domain

width used in the simulations. It may well be, that the trends observed here do not

hold for simulations using a different spanwise domain width.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

lence kinetic energy k2D
res on the centerline, y{D � 0, are shown in figure 10.38.

The coarse spanwise resolution case, FSM-6-40, shows a significantly too large re-

circulation zone behind the first cylinder, and a too low magnitude of maximum

streamwise velocity in the gap region. Both fine resolution cases, FSM-6-160 and

FSM-Strelets, show the exact opposite trend. The extent of the recirculation zone

is predicted to be too small, and the maximum streamwise velocity in the gap re-

gion is too high compared to the corresponding measurement. Although, it is not

clear why, the FSM-6-80 case is able to provide good agreement with reference data

for the velocity distribution in the gap region between both cylinders. Note that

the results presented in Garbaruk et al. (2010) using IDDES on the same grid as

the FSM-Strelets case are qualitatively very similar to the results obtained here

using the FSM-SST model. In order to shed some light on the possible cause of

the large differences in the results, the instantaneous spanwise vorticity contours

ωzD{U0 are presented in figure 10.39. It is obvious that the too-large recirculation

zone predicted on the FSM-6-40 grid is related to an overly large damping of the

natural instability mechanisms in the free-shear layer, which results in a signifi-

cantly delayed roll-up or breakdown of the free-shear layer. It seems likely that

the overly large damping is a result of the increased turbulence model contribution
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Figure 10.37: Mean-surface-pressure Cp and fluctuating-surface-pressure coeffi-
cient Cp1rms

. Front cylinder: (�) BART, (�) QFF. Rear Cylinder:

(�) BART, (�) BART (rear cylinder tripped). (—) FSM-6-40,
(- - -) FSM-6-80, (� � �) FSM-6-160, (� � ��) FSM-Strelets.

through the turbulence model length scale ∆ � p∆x∆y∆zq1{3, which is increased

by the factor 21{3 compared to the FSM-6-80 case, which results in much better

predictions. It should be noted at this stage that the O-grid topology of the com-

putational grid makes it virtually impossible to provide a good numerical resolution

of the free shear-layer in the direction perpendicular to the free-stream. The coarse

resolution of the free-shear layer makes it difficult to accurately resolve the natural

instability mechanisms of the shear layer and hence puts significant pressure on

the turbulence model to provide the appropriate amount of damping in order to

compensate the coarse numerical resolution. The FSM-6-80 case with the reduced

turbulence model contribution through the length scale ∆ seems to provide the cor-

rect amount of damping, such that the free-shear layer breaks down more quickly,

and consequently results in the correct velocity distribution in the gap region. On

the other hand, when the resolution in the spanwise direction is further refined,

such as for the FSM-6-160 case, the damping of the turbulence model may actually
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become insufficient to compensate the coarse resolution of the free-shear layer, and

consequently results in a too quick breakdown of the shear layer and in a too short

recirculation zone.

The distribution of turbulence kinetic energy in the gap region reflects the pre-

dictions of streamwise velocity. The FSM-6-40 case under-predicts the turbulence

intensity in the gap region. The lower turbulence activity is less efficient in en-

training high-speed free-stream fluid into the gap between the cylinders, which may

shorten the recirculation zone and increase the maximum streamwise velocity in the

gap. The FSM-6-160 and FSM-Strelets case predict excessive levels of turbulence

intensity in the gap region, which results in enhanced entrainment of free-stream

fluid and in a too short recirculation zone and too high magnitude of streamwise

velocity in the gap region. The FSM-6-80 resolved intermediate levels of turbulence

intensity, which are too high compared to the reference data, but seem to result

in the correct amount of entrainment of free-stream fluid into the gap region, and

good predictions of the velocity distribution.
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Figure 10.38: Streamwise velocity profiles U{U0 and 2D TKE on the centreline
(y{D � 0). (�) BART, (�) BART (rear cylinder tripped). (—)
FSM-6-40, (- - -) FSM-6-80, (� � �) FSM-6-160, (� � ��) FSM-
Strelets.
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(a) Experiment. (b) FSM-6-40.

(c) FSM-6-80. (d) FSM-6-160.

(e) FSM-Strelets.

Figure 10.39: Normalised instantaneous spanwise vorticity ωzD{U0.

Predictions of spanwise surface-pressure correlation Rpp and PSD of surface pressure

at the locations θ � 135�, on both cylinders, are shown in figure 10.40. All cases

predict similar spanwise correlations, in good agreement with the corresponding

measurements up to the location z{D � 1 on both cylinders. For z{D ¡ 1, the

departure in the predictions becomes more pronounced. The spanwise correlation

on the upstream cylinder reaches an approximately constant value for z{D ¡ 2 and

does not drop below Rpp � 0.7 for all cases investigated here. The same behaviour

is observed for the downstream cylinder, where FSM-6-80 and FSM-6-160 drop

to an almost constant value of Rpp � 0.7. The correlation Rpp predicted by the

FSM-6-40 case reduces to a slightly lower value of Rpp � 0.6. The plots of PSD of

surface pressure confirms the predictions of Cp1rms discussed before. The two cases

with the finest resolution, FSM-6-160 and FSM-Strelets, consistently show too high

levels of surface-pressure fluctuations over almost the entire Strouhal number range.

The FSM-6-40 case slightly under-predicts the magnitude of the peaks and primary

vortex shedding frequency. In addition, the broadband content in the Strouhal

number range St � 0.4� 1 is over-predicted and the secondary peak in the spectra,

which is present in all other cases, is absent in FSM-6-40. The FSM-6-80 case is able

to predict the magnitude and frequency of the primary and secondary peaks, as well

as the broadband content up to St � 1, in good agreement with the reference data,

and hence provides the best overall performance. On the downstream cylinder,

there is significantly less scatter in the results and the broadband content, as well
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as the magnitude of the primary peak is well reproduced by all models. Only the

FSM-6-40 case predicts a too low magnitude and frequency of the primary peak

in the spectra. In addition, the secondary peak is absent in the results, and the

broadband content is under-predicted compared to the other cases.
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Figure 10.40: Spanwise surface-pressure correlation Rpp and PSD of surface
pressure at the locations θ � 135�. (�) and (� � �) BART
measurements. (
—
) FSM-6-40, (�—�) FSM-6-80, (�—�) FSM-
6-160, (
—
) FSM-Strelets.
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10.3.6 Sensitivity to the Turbulence Model

The sensitivity of results with respect to the underlying RANS model is investigated.

For this purpose, simulations are performed using the FSM-SST, FSM-EASM and

FSM-ϕ-α-EASM formulations. In addition, results obtained by IDDES and SAS,

based on the k-ω-SST model, are also included in the comparison with the reference

data. Note that the SAS model completely failed to resolve turbulence fluctuations

in the three-dimensional diffuser case, since the instability mechanisms were insuf-

ficient to trigger flow unsteadiness. Nevertheless, the SAS model contains some

interesting and unique features, and since SAS is expected to perform much better

in the present case, due to the presence of strong instability mechanisms, it is in-

cluded in the comparison. The FSM models are used in conjunction with the new

hybrid FSM convection scheme; IDDES and SAS use the hybrid convection scheme

of Travin et al. (2004b). All simulations are performed on the baseline computa-

tional grid with a spanwise width of 3D and 40 cells in the spanwise direction.

Instantaneous Flow Field

Instantaneous snapshots of the flow fields are visualised in figure 10.41 using iso-

contours of the second invariant of the velocity gradient tensorQ � 1
2

�
Ω�
ijΩ

�
ij � S�ijS

�
ij

�
.

This quantity can be used to identify coherent or vorticity-dominated structures in

the flow field. It is evident, that all hybrid RANS/LES methodologies show the

presence of resolved turbulence structures in the flow field. Nevertheless, there are

some visible differences in the results obtained from the different simulations. The

FSM-SST model shows the most rapid growth of shear layer instability. All other

turbulence models predict a somewhat delayed onset of shear layer instability and

the shear layer predicted by the FSM-EASM model does not show much resemblance

to the typical Kelvin-Helmholtz instability mechanisms. Most of the flow fields show

the presence of streamwise vortices in the gap region, with a characteristic spanwise

extent of 2-3 cell widths ∆z. These structures seem to be less pronounced in the

predictions of the FSM-EASM and FSM-ϕ-α-EASM models, which are both based

on a non-linear stress-strain relationship, and which exhibit more chaotic, irregular

vortical structures in the flow field. The IDDES and SAS turbulence models show in

general, somewhat larger vortical structures compared to the FSM approaches. This

indicates a slightly higher contribution of the turbulence model, which effectively

eliminates the smaller-scale turbulence structures observed in the predictions of the

FSM models. The predictions of the flow field in the wake of the downstream cylin-

der is similarly resolved by all turbulence models. Only the FSM-EASM is able to

maintain turbulence structures much farther downstream of the rear cylinder. This
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is associated with the variable constant Ceff
µ in the eddy-viscosity relation, which

reduces to Ceff
µ � 0.04 � 0.05 for the EASM model.

(a) FSM-SST (b) FSM-EASM

(c) FSM-ϕ-α-EASM (d) IDDES

(e) SAS

Figure 10.41: Iso-contours of Q � 1.5U2
0 {D

2, coloured by the instantaneous
streamwise velocity.

These observations are confirmed in figure 10.42, which shows contour plots of

instantaneous spanwise vorticity ωzD{U0, obtained from the simulations and PIV

data from the experiment. It is again clearly visible, that the FSM models are

able to resolve finer-scale turbulence structures in the gap region and give better

overall agreement with the PIV reference data, compared to the IDDES and SAS

models. Despite the fairly coarse resolution of the free-shear layer, the development

of Kelvin-Helmholtz type instabilities can be observed in the results from IDDES,

FSM-SST and FSM-ϕ-α-EASM.
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(a) Experiment Khorrami et al. (2007) (b) FSM-SST

(c) FSM-EASM (d) FSM-ϕ-α-EASM

(e) IDDES (f) SAS

Figure 10.42: Normalised instantaneous spanwise vorticity ωzD{U0.

Alternative Mean Flow Field

In has already been mentioned in the introduction to this test case, that the dis-

tance between the cylinders sets the type of interaction. Most of the computational

grids and turbulence models used in this work converge to a state where vortices

are being shed from the upstream cylinder. However, the simulation using IDDES

converges to an alternative state where the vortex shedding from the upstream

cylinder is suppressed, and the shear layer re-attaches to the downstream cylinder.

Interestingly, the IDDES simulation converges to the first state with vortex shed-

ding from the upstream cylinder for the first 120000 iterations, or 380D{U0 time

units. After a transition phase and a simulation time larger than 500D{U0 time

units, IDDES converges to a second state, with suppressed vortex shedding from

the upstream cylinder. The resulting mean-flow fields of both states and instanta-

neous spanwise vorticity contours are presented in figure 10.43. The second state

has also been observed in a simulation using the FSM-SST model on a grid with

finer spanwise resolution, and has also been reported by some participants of the

BANC I workshop (see Lockard, 2011). The suppression of vortex shedding from

the upstream cylinder is usually observed for smaller gap spacings than used here.

Nevertheless, according to Lockard (2011), some experiments conducted with the

same gap spacing of 3.7D at different Reynolds number and spanwise lengths of the

cylinders have also shown the alternative state predicted by the IDDES model. It is
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not clear what causes the transition to the alternative state but, it is expected, that

a range of parameters such as boundary conditions, computational grid, turbulence

model and numerical discretisation contribute.

(a) Mean streamwise velocity (b) Mean streamwise velocity

(c) Instantaneous spanwise vorticity ωzD{U0 (d) Instantaneous spanwise vorticity ωzD{U0

Figure 10.43: Alternative mean flow states.

Lift and Drag

The predicted drag coefficient CD � Fx{p0.5ρU0Aq is summarised in table 10.1,

together with the primary vortex-shedding frequency and rms-values of fluctuating

lift and drag coefficients. The primary vortex-shedding frequency measured in the

experiment is 178rHzs, which corresponds to a Strouhal number of St � 0.231.

Unfortunately, force measurements are not available as a reference. It is surprising

that only the FSM-SST, FSM-EASM and SAS models are able to accurately predict

the primary-vortex shedding frequency observed in the experiment. The FSM-ϕ-α-

EASM predicts a Strouhal number approximately half of the measured value and

IDDES predicts a Strouhal number that is too high, St � 0.279. In addition, the

drag coefficient CD, on the upstream cylinder as well as the CL1rms , are too small on

both cylinders. Note that the IDDES results are evaluated for the first 380D{U0

time units only where the vortex-shedding from the upstream cylinder is still present

in the simulation. The differences observed for the IDDES model can possibly be

explained by the location of the separation point on the first cylinder. The IDDES

model predicts the separation point of the mean flow at θ � 102�, 258�, whereas, for

example, the FSM-EASM predicts earlier separation at θ � 96�, 264�. Due to the

delayed separation predicted by the IDDES model, the development of the wake

exhibits the behaviour of a wake at an effectively higher Reynolds number, which,

according to Schewe (1983), shows a similar trend to what is observed here, namely

an increase in vortex-shedding frequency and a reduction in drag coefficient. The
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upstream cylinder downstream cylinder

Model St CD CL1rms
CD1

rms
CD CL1rms

CD1
rms

FSM-SST 0.228 0.616 0.139 0.029 0.419 0.695 0.098

FSM-EASM 0.234 0.626 0.148 0.022 0.383 0.695 0.098

FSM-ϕ-α-EASM 0.101 0.559 0.128 0.023 0.353 0.523 0.070

IDDES 0.279 0.397 0.036 0.017 0.409 0.425 0.059

SAS 0.228 0.614 0.171 0.040 0.415 0.665 0.101

Table 10.1: Lift and drag coefficients.

cause for the delayed separation of the IDDES model is not quite clear, since the

FSM-SST and SAS models, which are based on the same underlying RANS model,

do not show this behaviour. There might also be a connection between the delayed

separation and the occurrence of the alternative mean flow state in the predictions

of the IDDES model. An investigation of this issue is left for future investigations.

The separation point predicted by the FSM-ϕ-α-EASM model is the same as for

the FSM-EASM model, and can therefore not be used to explain the failure to

predict the correct vortex-shedding frequency. Unfortunately, a close inspection of

the flow field and turbulence quantities did not reveal any possible sources which

would explain the failure of the FSM-ϕ-α-EASM model.

Mean Flow Field

The distributions of the mean-surface-pressure coefficient Cp and fluctuating-surface-

pressure coefficient Cp1rms are shown in figure 10.44. All turbulence models are able

to predict the surface-pressure coefficient in good agreement with the reference

data. The IDDES model shows the most pronounced suction peaks at θ � 90� and

θ � 270� and also predicts a somewhat too high base pressure magnitude in the re-

circulation region on both cylinders. On the upstream cylinder, all other turbulence

models reproduce the base pressure level observed in the BART facility, and predict

a magnitude of the suction peaks, which matches the data from the QFF facility.

On the downstream cylinder, the simulations are in good agreement with the refer-

ence data, and reproduce the measurement of the BART facility, which included a

boundary-layer trip on the downstream cylinder. This is not surprising, since the

fully turbulent simulation approach is not able to correctly predict the transitional

flow occurring in the experiment without tripping of the boundary layer.
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The predictions of fluctuating-surface-pressure coefficient on the upstream cylin-

der reflects the predictions of the rms-values of lift and drag coefficient discussed

above. The IDDES model, which showed the lowest values of CL1rms and CD1
rms

, also

consistently predict a too low magnitude of surface-pressure fluctuations Cp1rms . In

addition, the location of the peak values, which approximately correspond to the

separation location, are too far downstream and confirm the delayed separation.

Similarly, the SAS model show the highest levels of CL1rms and CD1
rms

and hence

significantly over-predicts the intensity of surface-pressure fluctuations. All FSM

models predict the same results of Cp1rms in the separated flow region and show a

slightly too high magnitude compared to the reference data. An interesting trend

can be observed for the intensity of the peak values predicted by the FSM mod-

els. The arguably simplest underlying RANS model, FSM-SST, shows the most

pronounced over-prediction of the peak values compared to the other FSM mod-

els. The FSM-EASM model shows reduced magnitude and the FSM-ϕ-α-EASM

an even lower magnitude, which is in excellent agreement with the reference data.

Concerning the predictions of fluctuating-surface-pressure coefficient on the down-

stream cylinder, all models are able to predict the correct location of the first

and dominant peak, at θ � 45�, 315�. These peaks correspond to the impinge-

ment points of the unsteady wake from the upstream cylinder. Nevertheless, the

magnitude of fluctuating-surface-pressure shows significant differences among the

models. The boundary-layer tripping on the downstream cylinder not only reduces

the magnitude of the secondary peaks but also shifts the location of the peaks,

which are associated with the separation location, further upstream compared to

the untripped case. All simulations more closely reproduce the BART data with

boundary-layer tripping on the downstream cylinder. The IDDES model predicts

the lowest intensity of surface-pressure fluctuations around the impingement points

but predicts the second and smaller peak, at θ � 135�, 225�, in excellent agreement

with the reference data. The FSM-ϕ-α-EASM model predicts the magnitude of

surface-pressure fluctuations at the impingement point in best agreement with the

reference data, but shows too low levels of Cp1rms and the largest departure around

the separation points, and in the recirculation region. In addition, the secondary

peaks, and with that the locations of the separation points, is predicted farther up-

stream compared to reference data, and predictions of the other turbulence models.

The FSM-EASM shows the most pronounced peaks at the impingement locations

but predicts realistic values of Cp1rms at the separation points and in the recircula-

tion region. The FSM-SST and SAS models predict almost identical results with

too intense pressure fluctuations around the impingement points and the highest

magnitude of Cp1rms at the separation points and in the recirculation region.
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Figure 10.44: Mean-surface-pressure Cp and fluctuating-surface-pressure coeffi-
cient Cp1rms

. Front cylinder: (�) BART, (�) QFF. Rear Cylinder:

(�) BART, (�) BART (rear cylinder tripped). (—) FSM-SST,
(- - -) FSM-EASM, (� � �) FSM-ϕ-α-EASM, (� � �) IDDES,
(� � ��) SAS.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

lence kinetic energy k2D
res on the centerline, y{D � 0, are shown in figure 10.45. In

addition, contour plots of turbulence intensity Ix � u1

rms{U0 and Iy � v1rms{U0

are shown in figures 10.46 and 10.47. The velocity in the gap region clearly show a

large sensitivity to the turbulence model. The FSM-SST model predicts the velocity

distribution in excellent agreement with reference data. The FSM models based on

more sophisticated RANS models, i.e. FSM-EASM and FSM-ϕ-α-EASM, show a

somewhat too small recirculation zone, but show good agreement for the maximum

reverse flow intensity occurring at x{D � 1.2 in the recirculation region. In ad-

dition, the maximum streamwise velocity in the gap region is over-predicted. The

same observation holds for the SAS model with the difference, that the maximum

streamwise velocity at approximately x{D � 2.5 is lower and hence in better agree-

ment with the reference data. The IDDES model shows exactly the opposite trend;
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the extent of the recirculation zone behind the upstream cylinder is too large and

the maximum streamwise velocity in the gap region is under-predicted. Concern-

ing the velocity distribution downstream of the rear cylinder, FSM-SST, IDDES

and SAS provide similar predictions in excellent agreement with the reference data.

Note that the simulations match the BART data with the boundary-layer tripped

on the downstream cylinder. The FSM-EASM and FSM-ϕ-α-EASM models both

over-predict the extent of the recirculation region behind the rear cylinder. This is

associated with the mean separation point being slightly too far upstream, which

consequently changes the trajectory of the free-shear layer and hence results in the

too large recirculation zone.
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Figure 10.45: Streamwise velocity profiles U{U0 and 2D TKE on the centreline
(y{D � 0). (�) BART, (�) BART (rear cylinder tripped). (—)
FSM-SST, (- - -) FSM-EASM, (���) FSM-ϕ-α-EASM, (���)
IDDES, (� � ��) SAS.

The resolved turbulence kinetic energy in the gap region is predicted very similar

by most hybrid RANS/LES turbulence models. Only the IDDES model predicts

much lower levels of resolved turbulence kinetic energy throughout the gap region.

The low intensity of velocity fluctuations results in less efficient entrainment of
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(a) Experiment. (b) FSM-SST.

(c) FSM-EASM. (d) FSM-ϕ-α-EASM.

(e) IDDES. (f) SAS.

Figure 10.46: Turbulence intensity Ix � u1rms{U0.

(a) Experiment. (b) FSM-SST.

(c) FSM-EASM. (d) FSM-ϕ-α-EASM.

(e) IDDES. (f) SAS.

Figure 10.47: Turbulence intensity Iy � v1rms{U0.

high-speed fluid from the free-stream, which contributes to the over-prediction of

the size of the recirculation zone behind the upstream cylinder. Nevertheless, the

IDDES model predicts the correct location of maximum turbulence intensity in the

gap region. All other turbulence models predict the location of maximum turbu-

lence kinetic energy too far upstream and over-predict the magnitude of maximum
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turbulence kinetic energy, compared to the reference data. The higher intensity of

velocity fluctuations is more efficient in entraining fluid from the free-stream, which

may add to the shortening of the recirculation zone behind the upstream cylinder.

Even though FSM-SST follows the same trend, the resulting velocity distribution

in the gap region agrees very well with the reference data. The predictions of re-

solved turbulence kinetic energy behind the downstream cylinder shows significantly

more scatter. All turbulence models show the same tendency of too low levels of

turbulence intensity up to x{D � 4.8, and the location of maximum turbulence

intensity is predicted too far downstream compared to the reference data. It should

be noted that the measurements correspond to the BART data without tripping the

boundary layer on the downstream cylinder. It can be expected that measurements

including a boundary-layer trip on the downstream cylinder will be different in

terms of the overall magnitude and location of maximum turbulence kinetic energy.

Nevertheless, FSM-SST predicts overall the highest levels of turbulence kinetic en-

ergy and hence shows the best agreement with the reference data. The FSM-EASM

and FSM-ϕ-α-EASM models predict much lower magnitudes of turbulence kinetic

energy, and the FSM-ϕ-α-EASM shows the greatest departure from the reference

data. Downstream of the rear cylinder, the departure observed in the predictions

of turbulence kinetic energy by the FSM-EASM and FSM-ϕ-α-EASM model seem

to correlate with the departure of the mean-velocity distribution from the reference

data. The IDDES and SAS models both significantly under-predict the turbulence

kinetic energy, but predict the mean-velocity distribution downstream of the rear

cylinder in good agreement with the reference data.

The total (resolved plus modelled) shear stress is discussed next. Figure 10.48 shows

two profiles of total shear stress, at the locations x{D � 1 and x{D � 2.7, in the gap

between the cylinders. The region of interest at the first location, x{D � 1, is the

free-shear layer at approximately y{D � 0.5. The highest levels of shear stress are

predicted by the SAS and FSM-ϕ-α-EASM models. The high levels of shear stress

are also reflected in the predictions of streamwise velocity in the gap region. Both

model show the smallest extent of the recirculation behind the upstream cylinder.

The FSM-EASM shows reduced levels of shear-stress in the free-shear layer, which

are in good agreement with the experimental data. Nevertheless, the extent of

the recirculation zone is still somewhat too small. The FSM-SST predicts levels of

shear stress, which are slightly smaller compared to the corresponding measurement.

However, the velocity distribution in the gap region shows the best agreement with

the reference data of all models. The IDDES model shows the most pronounced
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under-prediction of shear stress, which consequently results in the largest recircu-

lation zone. Further downstream, at the location x{D � 2.7, the scatter in the

results is significantly reduced. All models under-predict the peak-value of shear

stress at the location y{D � 4.0. The FSM-SST predicts overall the highest level

of shear stress, and hence shows the best agreement with the reference data. The

peak-values of shear stress predicted by the FSM-EASM, IDDES and SAS models

are almost identical. However, the peak-value predicted by the IDDES model is lo-

cated much closer to the centreline. The FSM-ϕ-α-EASM now predicted the lowest

level of shear stress. It is not clear why the shear stress of the FSM-ϕ-α-EASM

has significantly reduced from the locations x{D � 1, where it was too high, to the

location x{D � 2.7.
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Figure 10.48: Profiles of total (resolved plus modelled) shear-stress. Left: at
x{D � 1 and right: at x{D � 2.7. (—) FSM-SST, (- - -) FSM-
EASM, (���) FSM-ϕ-α-EASM, (� ��) IDDES, (� � ��) SAS.

Predictions of spanwise surface-pressure correlation Rpp and PSD of surface pressure

are shown in figure 10.49. The IDDES model allows the spanwise surface-pressure

correlation to drop to approximately Rpp � 0.7 on the first cylinder, and hence pro-

vides good agreement with the reference. In the predictions of all other cases, the

spanwise correlation only drops to Rpp � 0.8 and remains too high, compared to the

corresponding measurements. The correlation of the FSM-SST and SAS models are

almost indistinguishable. The FSM-EASM and FSM-ϕ-α-EASM show overall the

highest level of correlation Rpp. The high levels of correlation is also reflected in the

iso-contour plots of Q in figure 10.41, where the free-shear layer shows a strong two

dimensionality with almost no variation in the spanwise direction. On the down-

stream cylinder, the IDDES model again shows a rapid drop of Rpp and reaching

levels much below the corresponding measurements. The best agreement is achieved

by the SAS model, which nicely follows the trend observed in the experiment. The

results of the FSM-SST model is of a similar quality, however, the correlation Rpp

remains somewhat too high. The more advanced FSM-EASM and FSM-ϕ-α-EASM
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models show least agreement with the reference data, and the spanwise correlation

remains significantly too high over the cylinder span.

The PSD of surface pressure is discussed next. The results of the IDDES and FSM-

ϕ-α-EASM models are not included in the comparison, since both models did not

reproduce the correct primary vortex shedding and the results are largely in error.

On the upstream cylinder, all three turbulence models, FSM-SST, FSM-EASM and

SAS, show good agreement around the primary vortex shedding frequency, with

a small over-prediction of the peak magnitude. The simulations are also able to

predict the secondary peak at St � 0.5. The secondary peak is best predicted

by the FSM-SST model, with both other models showing a significantly too high

peak magnitude. The broadband contribution for St ¡ 1 is also best resolved

by FSM-SST. Both FSM-EASM and SAS under-predict the broadband levels by

quite some margin. The predictions on the downstream cylinder show significantly

less scatter compared to the upstream cylinder. All three turbulence models show

good agreement around the primary vortex shedding frequency. In addition, all

models are able to resolve the secondary peak, but under-predict the broadband

levels. The FSM-SST model gives the highest broadband levels, and hence is in

best overall agreement with the reference data.
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Figure 10.49: Spanwise surface-pressure correlation Rpp and PSD of surface
pressure. (�) and (—) BART measurements. (—) and (
—
)
FSM-SST, (- - -) and (�—�) FSM-EASM, (� � �) FSM-ϕ-α-
EASM, (� � �) IDDES, (� � ��) and (
—
) SAS.
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10.3.7 Summary

The simulations clearly demonstrate the advantages of a hybrid convection discreti-

sation scheme. No results could be obtained with the unbounded CDS scheme, and

the bounded TVD schemes significantly over-predicts the size of the recirculation

zone behind the upstream cylinder. The hybrid FSM scheme, with a flow-dependent

flux blending function, is able to deliver results in good agreement with the refer-

ence data. The tandem cylinder case is a difficult case to predict accurately, due

to a high sensitivity of the flow to the resolution of the computational grid and

turbulence model. A particularly high sensitivity of results is observed with respect

to the resolution of the computational grid in the spanwise direction, as well as to

the resolution in the xy-plane. Too-coarse spanwise resolution completely fails to

provide reasonable predictions for the mean-flow field. Spanwise resolution, which

yields approximately isotropic cells in the gap region between the cylinders, is found

to provide the best results. The grids with finer resolution in the spanwise direc-

tion and with finer resolution in the xy-plane are found to deteriorate the results,

compared to the coarser baseline grid. This seems not-intuitive, but may point to-

wards a favourable cancellation of errors induced by the coarse grid and turbulence

modelling. However, further testing is required to confirm this hypothesis. It was

also argued that the definition of the turbulence length scale ∆ may contribute to

this behaviour and that the turbulence model might benefit from redefinition of this

length scale. On the other hand, most results are insensitive to the spanwise domain

width. This is linked to a spurious strong correlation of the flow in the spanwise

direction, which does not completely vanish on the largest spanwise domain of 12D.

With increasing spanwise domain width, the intensity of surface-pressure fluctu-

ations on the upstream cylinder reduces somewhat, and hence provides improved

agreement with the reference data. Nevertheless, the difference is not pronounced

enough to justify the increased computational cost associated with large spanwise

domain widths. The flow is also very sensitive to the turbulence model used. The

IDDES model transitioned after long simulation times to an alternative mean-flow

state, where the vortex shedding is suppressed from the upstream cylinder. The

FSM approach based on the most sophisticated RANS model predicts the funda-

mental vortex-shedding frequency of half the experimental value. The FSM-SST

model provides the best agreement with reference data on the baseline computa-

tional grid followed by the SAS and FSM-EASM models.





Chapter 11

Summary and Outlook

11.1 Summary

A summary of the most important achievements and findings of this study is given

in the following.

• The performance of two- and three-dimensional EASM closures is assessed on

a range of different test cases, ranging from simple channel flow to massively

separated flows and to complex three-dimensional flows. Based on these test

cases, a fairly clear picture of the performance of the baseline EASM closure

emerges. It is shown, that two- and three-dimensional EASM closures are

capable of providing improved predictions for the three-dimensional flow in a

three-dimensional diffuser, compared to turbulence models based on a linear

stress-strain relationship. The more realistic predictions of the mean-velocity

field are a consequence of improved predictions of the Reynolds-stress and

anisotropy tensors. Nevertheless, the EASM closure shows deficiencies in pre-

dicting the correct near-wall behaviour of turbulence kinetic energy and the

Reynolds-stress and anisotropy tensors when compared to the experimental

reference data. For the massively separated flow over the NASA hump con-

figuration, the mean-velocity field predicted by the EASM is not improved

over more simple liner two-equation models, despite improved predictions of

normal-Reynolds-stress components One of the shortcomings of the EASM is

attributed to the behaviour of the variable Ceff
µ , which depends on the stain-

and rotation-rate, and which reduces the contribution of the linear term in

the stress-strain relationship to the shear stress in the free-shear layer, and

257
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consequently over-predicts the extent of the recirculation zone. An important

conclusion drawn from the test cases considered in this work is that the two-

and three-dimensional formulations of the EASM closure predict equivalent or

very similar results in three-dimensional flows. The three-dimensional EASM

closure is not found to give improved, or significantly different, predictions,

which suggests that the considerable additional numerical expense compared

to the two-dimensional formulation is not justified in those cases.

• Several strategies and modifications are introduced to the baseline EASM,

which aim at improving the predictions of the Reynolds-stress and anisotropy

tensor close to the wall. The free parameters appearing in the near-wall-

anisotropy modifications and in the damping function for the turbulence ki-

netic energy dissipation rate are optimised to provide the correct behaviour

for planar channel flows. The modifications achieve improved predictions for

both the Reynolds-stress and anisotropy tensors in the near-wall region, and

predict the physically correct two-components state of turbulence near the

wall. In addition, the near-wall budget of turbulence kinetic energy shows

significant improvements over the baseline EASM. However, none of the mod-

ifications capture the reduction of the anisotropy components a11 and a22 very

close to the wall, and fail to improve the anisotropy predictions at low strain

rates, that occur towards the centre of the channel.

• A new RANS model is presented, which combines the advantages of the

elliptic-blending approach for modelling near-wall flows, with the advantages

of a non-linear stress-strain relationship to provide more accurate predictions

of the Reynolds-stress and anisotropy fields in complex flows. The new non-

linear elliptic-blending RANS model completely abandons viscosity-dependent

blending or damping functions and their effect is more naturally included.

The elliptic-blending approach is used in this work in conjunction with a k-ω

model and not as usual, within the k-ε modeling framework. The proposed

non-linear stress-strain relationship recovers the normal-Reynolds-stress and

anisotropy predictions of the baseline EASM model away from the wall, where

the quasi-homogeneous pressure-strain model of Speziale et al. (1991) provides

good predictions for the Reynolds-stress and anisotropy tensor. Close to the

wall, a near-wall-consistency constraint and additional near-wall-anisotropy

modification are introduced, in order to improve the predictions of the quasi-

homogeneous pressure-strain model. As a consequence, the highly anisotropic

state of turbulence and the limiting two-component state are correctly repro-

duced as the wall is approached. The new ϕ-α-EASM further improves the
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predictions of the normal-anisotropy components a11 and a33 very close to the

wall and in situations, where the strain rate becomes small. It is also capable

of fully reproducing the appropriate anisotropy-invariant map.

The new turbulence model predicts a higher overall magnitude of shear stress

in the free-shear layer of the NASA hump configuration, which effectively

shortens the recirculation zone and hence provides improved agreement with

the reference data over the baseline EASM and ϕ-α-UMIST model. In ad-

dition, predictions of the anisotropy component a11 show an enlarged peak

close to the wall, which is not predicted by the baseline EASM model; the

near-wall-consistency constraint ensures that the a22 component approaches

the correct limiting value of a22 Ñ �2{3 at the wall. For the flow in the three-

dimensional diffuser, the new ϕ-α-EASM model shows the best predictions

of the surface-pressure distribution. However, no systematic improvement of

the mean-velocity field in the asymmetric diffuser was obtained by the new

model.

• A hybrid RANS/LES/DNS framework is presented, which is able to pro-

vide the required amount of turbulence modeling for any mesh resolution,

and seamlessly operates between RANS and DNS mode. This is achieved

by a revised Flow Simulation Methodology, where the turbulence modelling

contribution of a RANS model is rescaled using a damping function. The

Flow Simulation Methodology is proposed in conjunction with a newly de-

veloped damping function and a tailored convection discretisation scheme,

which further enhances the reliability and predictive accuracy of FSM. The

hybrid convection scheme is based on a linear combination of the second-

order central-difference and the linear-upwind scheme, with a flow-dependent

flux-blending function. Such blended schemes are available in many CFD

codes, which makes the implementation straightforward. It is conjectured

that a sophisticated RANS model will improve the overall quality of the pre-

dictions of any hybrid RANS/LES model, not only in the RANS region, but

also in the LES region. For this reason, the FSM approach is presented and

calibrated for three different underlying RANS closures of different levels of

sophistication. The turbulence models include the k-ω-SST, EASM-2D and

ϕ-α-EASM schemes. The free parameters are calibrated for stationary ho-

mogeneous isotropic turbulence, in order to provide proper LES behaviour

and a physically consistent energy cascade. It is demonstrated that the cal-

ibration constants exhibit an undesirable grid or resolution dependency, and
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that any attempt to achieve boundedness of the convection discretisation in-

evitably deteriorates the results, unless the calibration constants are adjusted

accordingly.

• The basic wall-modelled LES mode of FSM has been investigated for planar

channel flow. It is demonstrated that the results for the mean-velocity profile

and shear stress exhibit a gross sensitivity with respect to the convection dis-

cretisation scheme. The second-order upwind scheme and the TVD scheme

are not recommended to be employed within a turbulence-resolving simula-

tion, because the reduction of resolved shear stress is not compensated by an

sufficient increase in modelled shear stress. This results in an under-prediction

of total shear stress and in a mean-velocity profile, which is beyond the level

of accuracy required in engineering applications. The hybrid FSM convection

scheme, on the other hand, delivers results almost as accurate as the Central-

Difference Scheme. It is further shown that the mean-velocity predictions are

insensitive to the choice of calibration constants Cα and β, but are sensitive

to the underlying RANS model. Even though the shape of the damping func-

tion F is influenced by the specific choice of the calibration constants, the

total shear stress and hence the mean-velocity profile is predicted very consis-

tently, almost independently of the specific value of Cα and β. The sensitivity

with respect to the RANS model is mainly caused by different distributions

of the damping function F . In order to eliminate the strong sensitivity of the

damping function on the underlying RANS model, an extension to FSM is in-

troduced, which modifies the damping function close to the wall, such that it

takes a more consistent distribution for all underlying turbulence models. In

addition, the modification provides improved predictions of the mean-velocity

profile. With the modification included, the most sophisticated underlying

RANS model, ϕ-α-EASM, provides the best predictions for the mean-velocity

profile and asymptotic near-wall behaviour of all normal-Reynolds-stress com-

ponents, for the Reτ � 395 case. It is shown that the small log-layer mismatch

visible in the results is caused by an under-prediction of total (resolved plus

modelled) shear stress at the switching location. It is, consequently, suggested

that the mismatch could potentially be eliminated by enhancing either the re-

solved or modelled contribution to the shear stress at the switching location.

For the high-Reynolds-number channel flow (Reτ � 18000), the FSM-EASM

and FSM-ϕ-α-EASM models provide clearly improved predictions over FSM

based on the k-ω-SST model. The FSM-EASM shows the best predictions,
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with the log-layer mismatch almost eliminated and similar to the predictions

of IDDES.

• The performance of the wall-modelled LES mode of FSM is assessed for the

complex flow in a three-dimensional diffuser, which inlcudes three-dimensional

boundary-layer separation. The sensitivity study of the convection discrectisa-

tion scheme confirms that a bounded scheme is not recommended in turbulence-

resolving simulations, since it will inevitably deteriorate the results. The

bounded-difference scheme almost completely suppresses flow separation on

the centre plane, whereas the CDS and hybrid FSM schemes give results in

much better agreement with the reference data. The hybrid FSM schemes

retains the accuracy of the CDS, and does not contaminate the resolved flow

field with elevated levels of numerical dissipation. This also ensures a more

realistic �5{3 behaviour of the velocity fluctuation spectra.

All hybrid RANS/LES models investigated in this work predict the correct

flow topology in the diffuser and therefore provide significantly improved pre-

dictions compared to pure RANS simulations. Only the SAS method is gen-

erally not able to sustain any turbulence fluctuations in the diffuser and effec-

tively operates in RANS mode. The FSM and IDDES models show a slight

departure from the reference data, for the simulations on the coarse baseline

grid, in terms of predicting the correct extent of the separated flow region in

the diffuser. In the predictions of the IDDES model, separation from the top

wall occurs too late and results in too small a recirculation zone. All FSM

models, on the other hand, exhibit premature separation just downstream

of the sharp corner. It is found that different levels of resolved turbulence

fluctuations provided from the inflow duct simulation, particularly close to

the wall, influence the downstream development of the flow in the diffuser

and are responsible for the observed differences between each model. A grid

refinement improves the predictions of the separated flow region downstream

of the sharp corner and hence provides results in good agreement with ref-

erence data. The results of FSM are also sensitive to the underlying RANS

model. The FSM-SST and FSM-EASM give slightly better overall predic-

tions, compared to the more sophisticated FSM-ϕ-α-EASM, which shows the

most pronounced over-prediction of streamwise velocity close to the bottom

wall.

• The simulations of the flow around the tandem cylinder configuration clearly

highlight the advantages of an accurate hybrid convection discretisation scheme,

with a flow-dependent flux blending function. In the present case, no results
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could be obtained with the unbounded central-difference scheme and all TVD

schemes result in over-prediction of the size of the recirculation zone behind

the upstream cylinder. An extensive grid sensitivity study is conducted and

reveals a high sensitivity of results to the resolution of the computational grid

in the spanwise direction, as well as to the resolution in the xy-plane. The

baseline computational grid, which has a spanwise resolution such that approx-

imately isotropic cells are obtained in the gap region between the cylinders,

is found to provide the best results and good agreement with the reference

data. On the other hand, the computational grid with too coarse a spanwise

resolution is found not suitable for a turbulence-resolving simulation and fails

to provide sufficiently accurate predictions of the mean-flow field. The com-

putational grids with a finer resolution in spanwise direction and with a finer

resolution in the xy-plane are found to deteriorate the results, compared to

the coarser baseline grid. It is speculated that this is might be caused by a

favourable cancellation of errors induced by the coarse grid and the turbu-

lence model. Further testing is required to confirm this hypothesis. It is also

argued that the definition of the turbulence length scale ∆ may contribute

to this behaviour and that the turbulence model might benefit from redefi-

nition of this length scale. The sensitivity study has also revealed that most

results are insensitive to different spanwise domain widths. Only the intensity

of surface-pressure fluctuations on the upstream cylinder reduces somewhat

with increasing domain width, and hence provides improved agreement with

the reference data. Nevertheless, the difference is not pronounced enough to

justify the large computational cost associated with large spanwise domain

widths. The very small sensitivity of the results with respect to the spanwise

domain width is associated with a spurious, too strong spanwise correlation

of the flow. The spanwise surface-pressure correlation does not go to zero on

the largest computational grid, with a span of 12D. It is argued that lateral

periodic boundary conditions contribute to this effect. The flow around the

tandem cylinder configuration is also very sensitive to the turbulence mod-

elling approach. The IDDES model transitioned after long simulation times to

an alternative mean-flow state where the vortex shedding from the upstream

cylinder is suppressed. The FSM approach, based on the most sophisticated

underlying RANS model, predicts a fundamental vortex shedding frequency

of half the experimental value. The FSM-SST model provides overall the best

agreement with reference data on the baseline computational grid, followed

by the SAS and FSM-EASM models.
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11.2 Outlook

In the following, a few points are discussed that have not been covered in the present

work, but are suggested as being worthwhile topics for future exploration.

• The near-wall anisotropy modifications presented in chapter 7 have only been

applied and tested for the flow in a planar channel. Since they are compu-

tationally less expensive, compared to the new ϕ-α-EASM model, it may be

worthwhile to investigate how these rather simple modifications perform in

more complex flows.

• The new ϕ-α-EASM model presented in chapter 8 exhibited convergence dif-

ficulties for some cases. During the course of this work no satisfying solution

could be found to improve this situation. In addition, the near-wall anisotropy

and consistency modifications are targeted to improve the predictions in shear

flows, and are inactive in cases of, for example, flow impingement. Even

though reattaching flows have been part of the test cases presented in this

work, it seems worthwhile to also investigate and potentially optimise the

performance of the new model for the isolated flow impingement normal to a

wall.

• The modified Flow Simulation Methodology presented in chapter 9 is able to

operate in a RANS/LES and DNS mode. From an industrial perspective, it

seems very appealing to introduce the capability to operate in VLES mode,

where most of the turbulence kinetic energy is statistically represented by the

turbulence model, and only a fraction is resolved by the simulation. No satis-

fying solution could be found here to introduce VLES capabilities. However,

it is believed that this issue may be worthwhile to explore in the future.
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