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SIMULATION STRATEGIES FOR COMPLEX TURBULENT
FLOWS

by Markus Weinmann

Computational fluid dynamics in conjunction with the Reynolds-Averaged Navier-
Stokes approach is nowadays routinely employed in a large variety of engineering and
industrial applications despite some well-known reliability issues in more complex
flows. In this study, the performance of a state-of-the-art Explicit-Algebraic-Stress
Model (EASM) and a promising elliptic-blending approach is assessed on a range
of test cases to predict complex turbulent flows. In an attempt to improve the
quality of the predictions, near-wall-anisotropy modifications are introduced to the
EASM, which provide better predictions for the Reynolds-stress and anisotropy
tensor close to solid walls. In addition, a novel elliptic-blending RANS model is
presented, which is based on the inverse turbulence time scale w, and which is
equipped with a non-linear constitutive stress-strain relationship. The coefficients
of the non-linear stress-strain relationship are obtained from the explicit solution
of a Second-Moment Closure in the limit of weak equilibrium, and by imposing an
internal consistency constraint and near-wall-anisotropy modifications, such that
the highly anisotropic state of turbulence and the limiting two-component state is
correctly reproduced at solid boundaries. The performance of the modified EASM
and the novel elliptic-blending model are illustrated and assessed for a range of
complex turbulent flows.

It is expected that, due to ever increasing computational resources, unified or hy-
brid RANS/LES approaches will slowly penetrate into engineering applications
where improved accuracy and reliability is needed. For this reason, a unified RAN-
S/LES/DNS framework is presented, which is expected to provide the required
amount of turbulence modelling for any mesh resolution and seamlessly operates
between RANS and DNS mode. This is achieved by a revised Flow Simulation
Methodology where the turbulence modelling contribution of a RANS model is
rescaled using a damping function. The Flow Simulation Methodology is operating
in conjunction with a newly developed damping function and a tailored convection
discretisation scheme. In addition, a thorough calibration study is performed, which
ensures proper turbulence resolving capabilities. It is conjectured that a sophisti-
cated RANS model will also improve the overall quality of the predictions of any
hybrid RANS/LES model. For this reason, the new elliptic-blending RANS model
is incorporated, together with two successively simpler turbulence models, into the
unified RANS/LES/DNS framework and the performance are assessed on a range
of test cases, and compared to other widely used hybrid RANS/LES methods.
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Chapter 1

Introduction

1.1 Background

Computational Fluid Dynamics (CFD) is nowadays routinely applied to predicting
turbulent flows in a large variety of engineering and industrial applications. CFD
may deliver results at a fraction of the cost and time required for wind tunnel testing,
and hence provides an ideal tool for product development and in design search
and optimisation studies. The role of CFD in product development is expected
to become even more important in the future due to ever increasing availability
of computational resources, improvements in numerical algorithms and automated

generation of computational grids for complex configurations.

Turbulent flows may be described as a multi-scale phenomenon where the non-
linearity of the partial differential equations governing fluid flow, the Navier-Stokes
equations, gives rise to a chaotic, irregular state of fluid motion, which contains a
large spectrum of length and time scales. The spectrum of length and time scales
present in a turbulent flow rapidly grows with increasing Reynolds number. Unfor-
tunately, many flows of engineering and practical interest are characterised by a high
Reynolds number with the consequence, that the spatial and temporal resolution
required to perform Direct Numerical Simulation (DNS) of all turbulence length
and time scales present in the flow is well beyond currently available computational

resources.

The engineering approach to simulating turbulent flows at high Reynolds number

is based on the Reynolds-Averaged Navier-Stokes (RANS) equations. In the RANS
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approach, an ensemble-averaging procedure is applied to the Navier-Stokes equa-
tions such that all spatial and temporal scales of turbulence are removed and only
mean flow quantities are computed from the governing equations. For many engi-
neering applications the significantly reduced computational cost of RANS is very
appealing and facilitates short turnaround times. In addition, predictions of the
mean-flow field are sufficient to determine a range of relevant engineering param-
eters such as lift, drag or pressure loss. Nevertheless, there are other engineering
applications where mean-flow quantities are not sufficient and where more detailed
information about the unsteady nature of the flow field is required, for example,
in aeroacoustic applications or fluid-structure interaction. The major drawback of
the RANS approach is the requirement to model unknown terms appearing in the
governing equations. The unknown term originates from the averaging procedure
and accounts for the effects of the unresolved turbulence on the mean flow. It is
unfortunately not possible to model the unknown term in a general and universal
fashion, such that satisfactory predictions of the mean-flow field are obtained in
every situation. The development of appropriate models of the unknown term is
heavily based on empiricism and calibration for a limited number of rather sim-
ple flows (e.g. isotropic turbulence, homogeneous shear flow). As a consequence,
the reliability of these so-called RANS models deteriorates when applied to more
complex flows, which significantly differ from the inherent calibration assumptions.
Typical examples of flows where the predictive performance of RANS models dete-
riorates are flows where large scale, anisotropic turbulence structures dominate the

evolution of the mean-flow field.

Large-Eddy Simulation (LES) is another strategy for the simulation of turbulent
flows. In LES, a spatial or temporal filter is applied to the Navier-Stokes equa-
tions, which effectively removes the smallest turbulence scales from the flow field.
The large scales of turbulence remain unmodified by the filtering operation and are
explicitly resolved by the simulation in space and time. Therefore, LES is more ex-
pensive than RANS but provides superior predictive accuracy, since the large-scale,
anisotropic turbulence structures, which significantly contribute to the transport of
mass, momentum and energy in the flow, and which strongly depend on boundary
conditions, are explicitly resolved in the simulation. Despite the promise of LES, it is
hardly used in industrial applications due to the fact that in high-Reynolds-number
wall-bounded flows the all-important ‘large’ turbulence scales, which contain most
of the turbulence kinetic energy and where production of turbulence kinetic energy
occurs become very small close to the wall. As a consequence, the computational re-

quirements of resolving the near-wall region in high-Reynolds-number flows becomes
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prohibitive large and LES is not yet a feasible substitute for the RANS approach.

In order to make LES applicable at high-Reynolds-number wall-bounded flows, hy-
brid modelling approaches have been proposed, where RANS and LES are merged
into a unified framework. In order to minimise computational costs, the RANS
approach is used to model the flow close to the wall, whereas LES is used away
from the wall. It is expected that unified or hybrid RANS/LES methods will slowly
penetrate into engineering applications where improved accuracy and reliability is

needed and where the computational cost of LES is not affordable.

1.2 Objectives

The RANS approach will continue to play a vital role for the simulation of turbulent
flows within various industrial and engineering applications for many years to come.
The majority of CFD engineers rely on one- and two-equation turbulence models,
which are based on the concept of a turbulence or eddy-viscosity, and which employ
a linear constitutive stress-strain relationship. Such models provide a simple, cheap
and robust modelling framework, but have known deficiencies and reliability issues

in more complex flows.

One defect of this modelling framework is associated with the assumption of a linear
constitutive stress-strain relationship. This functional stress-strain relationship pre-
dicts results with fair accuracy for a range of simple and ‘well-behaved’ thin shear
flows. In situations where the normal components of the Reynolds-stress tensor
or stress anisotropy become important, such as in flow impingement, separation,
recirculation or streamline curvature, to name a few, the linear stress-strain rela-
tionship fails to predict reliable results. The second defect is associated with the
empirical treatment of wall-bounded flows. Traditional one- and two-equation tur-
bulence models do not adequately account for the effect a wall exerts on the flow.
Therefore, the effects of a solid wall need to be artificially introduced in order to
recover the correct mean-velocity profile or the correct behaviour of the turbulence
quantities. For this purpose, empirical viscosity-dependent damping functions have
been introduced in various forms. These functions are calibrated for simple flows
but, since the wall damping is primarily caused by a non-viscous kinematic block-
ing effect, there is not much justification that they are also appropriate in more
complex flows. The progress in RANS modelling has been stagnant over the past
years, even though many applications would benefit from improved RANS models,

which include a more natural wall treatment and which are able to more reliably
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predict the Reynolds-stress and anisotropy fields in complex flows, yet retain the
robustness of traditional two-equation models. Therefore, the first objective of this
work is the development of a RANS model with improved wall modelling capabilities
and which provides more reliable predictions of the Reynolds-stress and anisotropy

fields in complex flows.

Many hybrid RANS/LES methods rely on making the characteristic length scale
of the model equations proportional to the grid resolution, and thus have the same
resolution requirements as traditional LES models where most of the turbulence
kinetic energy and all production mechanisms of turbulence kinetic energy need to
be explicitly resolved. In engineering and industrial applications the mesh quality
and resolution is sometimes sacrificed for short turnaround times. In such cases it
would be advantageous if the hybrid RANS/LES method would allow Very Large-
Eddy Simulation (VLES) to occur where most of the turbulence kinetic energy is
statistically represented by the turbulence model, or if the method would even revert
back to RANS mode if the flow is highly under-resolved. In order to allow for coarse
grid LES or VLES, two issues require special attention. The first issue is associated
with how the appropriate turbulence length scale is obtained in this situation. The
second issue is related to the underlying RANS model. For a resolution cut-off
located in the large scales of turbulence, the assumption of equilibrium and isotropy
of the unresolved scales does not hold, and it seems beneficial to employ a turbulence
model, which includes the ability to predict non-equilibrium and anisotropy effects.
These features may not only become important in the LES region, they are also
very desirable for an accurate representation of the flow in the RANS region close
to the wall. Therefore, possible improvements in the RANS turbulence models are
not limited to pure RANS applications. It is expected that improvements in the
RANS model may also improve the quality of the predictions in the LES region.
The second objective is to investigate the performance of advanced RANS closures
within a hybrid modelling framework. The hybrid framework should ideally provide
RANS/VLES/LES and DNS capabilities.



Chapter 1 Introduction )

1.3 Contributions

The most important contributions of this work can be summarised as follows:

e Assessment and validation of Explicit-Algebraic-Stress-Models (EASM) and
other state-of-the-art RANS turbulence models for predicting complex turbu-

lent flows.

e Discussion and proposal of suitable near-wall anisotropy modifications for
EASM models.

e Development of a novel RANS model, which combines the elliptic-blending ap-
proach for modelling near-wall flows with the advantages of a non-linear stress-
strain relationship. A near-wall-consistency constraint and additional near-
wall anisotropy modifications are introduced such that the highly anisotropic
state of turbulence and the limiting two-component state is correctly repro-

duced as the wall is approached.

e Proposal and testing of a modified Flow Simulation Methodology, which pro-
vides a unified RANS/LES/DNS framework.

e Proposal of a tailored hybrid convection discretisation scheme for the modified

Flow Simulation Methodology.

e Evaluation of Scale-Adaptive Simulation and Improved Delayed Detached-

Eddy Simulation in comparison with the novel Flow Simulation Methodology.

1.4 Thesis outline

The thesis is organised as follows. In chapter 2, a brief introduction of the funda-
mentals of turbulent flows is given. This is followed by a discussion about the most
popular and most promising strategies of statistical turbulence modelling (RANS) in
chapter 3. The turbulence resolving approaches of Direct and Large-Eddy Simula-
tion are introduced in chapter 4, in conjunction with available techniques to combine
the framework of RANS modelling with turbulence-resolving LES. In chapter 5, the
numerical framework used to solve the set of governing equations is briefly intro-
duced. The constitutive relations of the baseline EASM, upon which the present
work is based, are summarised in chapter 6. In addition, a range of different test and

validation cases are presented in order to highlight the performance and deficiencies
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of the baseline EASM closure. The test cases include the flow in a planar channel,
the flow over the NASA hump configuration and the flow in a three-dimensional
diffuser. In chapter 7, several strategies are presented, which aim at improving the
predictions of the Reynolds-stress and anisotropy tensor of the baseline EASM close
to the wall. The effectiveness of these modifications are illustrated and discussed.
In chapter 8, a novel approach is presented, which aims at combining the advantages
of the elliptic-blending approach for modelling near-wall flows with the advantages
of a non-linear stress-strain relationship to provide more accurate predictions of
the Reynolds-stress and anisotropy field in complex flows. The performance of the
new turbulence model is again assessed for the flow in a planar channel, the flow
over the NASA hump configuration and the flow in a three-dimensional diffuser.
In chapter 9, a modified Flow Simulation Methodology is proposed, which provides
a unified RANS/LES/DNS framework. In addition, a tailored hybrid convection
discretisation scheme is proposed and a calibration procedure for the Flow Simula-
tion Methodology is presented. The performance of the modified Flow Simulation
Methodology is assessed in chapter 10 for complex internal and external flows and
compared to reference data and Scale-Adaptive Simulation and Improved Delayed
Detached-Eddy Simulation. The test cases include, amongst others, the flow in
a three-dimensional diffuser and the flow around a tandem cylinder configuration.

Finally, a summary of results and findings is given in chapter 11.



Chapter 2

Fundamentals of Turbulent Flows

This chapter is intended to give a brief introduction of the fundamental physics
of turbulent flows, before a detailed discussion about modeling strategies will be
presented in chapters 3 and 4. This short introduction will by no means be compre-
hensive and the interested reader is referred to the textbooks of Pope (2000), Hinze
(1975) or Tennekes & Lumley (1972) for a more complete discussion.

Turbulence or turbulent flows can be described as an ‘irregular condition of flow
in which the various quantities show random variation with time and space coor-
dinates’, (Hinze, 1975). On the other hand, flows, which exhibit a smooth and
organised variation in space and time are described as laminar flow. The turbulent
state of fluid motion is the most frequently one encountered in flows of practical
interest and, as stated by Tennekes & Lumley (1972), ‘laminar flow is the excep-
tion, not the rule’. Turbulent flows exhibit some characteristic features, which are
distinctly different from a laminar flow. The large-scale turbulent fluctuations in-
crease mixing in the flow, which significantly enhances the momentum, heat and
mass transfer. Turbulent flows also exhibit increased levels of energy dissipation,
which may become noticeable as an increase in friction or drag on an object placed

in the flow.

Laminar flows can only exist where inertial effects are small compared to viscous
effects. The ratio of inertial forces to viscous forces can be expressed in terms of the
non-dimensional Reynolds number Re = UL/v, where U is a characteristic velocity
scale, L a characteristic length scale and v the kinematic viscosity. For example,
the flow in a pipe remains laminar for a Reynolds number Rep < 2000, where Rep
is based on the pipe diameter D. Laminar flow at low Reynolds number tends to

remain stable in the presence of ambient perturbations (surface vibration, surface

7
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roughness) due to the dissipative action of viscosity, which damps or suppresses the
growth of disturbances. With increasing Reynolds number, inertial forces exceed
the influence of viscous forces and when a critical Reynolds number is reached,
perturbations may grow and the laminar flow becomes unstable for sufficiently large
disturbances. The laminar flow then undergoes a series of instability mechanisms

before it eventually becomes a fully irregular, three-dimensional turbulent flow.

Turbulence can only be generated or sustained in the presence of a mean rate
of strain, which distorts the large-scale motion and transfers kinetic energy from
the mean flow to turbulent fluctuations. The largest scales of turbulent motion
are generally anisotropic and depend on the flow under consideration as well as
boundary conditions. The largest turbulence scales also contain most of the kinetic
energy, and their size is either limited by geometrical constraints or it is of the
same order as the shear-layer thickness. The large-scale turbulence motion has
characteristic velocity and length scales U; and L;, which are approximately of the
same order as the mean-flow scales U and L. This implies that for high-Reynolds-
numbers flows, the Reynolds number of the large-scale turbulent motion Re; =
U;L;/v is of the same order of magnitude as the mean-flow Reynolds number, with
the consequence, that the direct effect of viscosity onto the largest turbulence scales

is negligible.

The large-scale turbulent motions pass parts of their kinetic energy on to eddies of
successively smaller size by an inviscid vortex-stretching mechanism. The vortex
stretching is an intrinsically three-dimensional mechanism, which results in a net
stretching of a vortex tube (reduction of the vortex tube diameter) and in an increase
of vorticity due to conservation of angular momentum. This process transfers kinetic
energy to successively smaller scales until the eddies reduces to a size where the
characteristic turbulence Reynolds number becomes small and the viscosity starts
to directly act upon the scales of motion. The action of viscosity at the small scales

dissipates the turbulence kinetic energy by conversion into internal thermal energy.

It can be estimated that the largest scales of turbulence possess a kinetic energy
of order U? and a characteristic time scale T; = L;/U;. Therefore, the rate at
which the large scales transfer energy to smaller scales can be approximated as
U?/T; = U}/L;. Thus, in equilibrium conditions, where production of turbulence
kinetic energy and transfer-rate from the large scales to smaller scales equals the
rate at which energy is dissipated at the smallest scales, it can be estimated, that
the dissipation rate scales as ¢ = U$/L;. This also suggests that the dissipation

rate is essentially set by the dynamics of the large scales.
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In high-Reynolds-number flows, where the energy containing and dissipative scales
are sufficiently separated, an intermediate range exists where the turbulence scales
are smaller than the large scales, but still larger than the dissipative scales. Tur-
bulent eddies in this regime merely transfer the kinetic energy produced at the
largest scales to successively smaller scales and are not directly affected by viscos-
ity. Kolmogorov (1941) suggested that eddies in this range only dependent on the
dissipation rate € and that, on dimensional grounds, the energy is distributed ac-
cording to E(k) = Ce*?k 7%, with the constant C,, and the wavenumber x = 27/,
where [ corresponds to the spatial scale of the eddies. The range of scales where
the —5/3 law is valid is referred to as the inertial subrange or universal equilib-
rium range, since the time scale of these eddies is much smaller than that of the
large scales, so that they adapt quickly to changes in the large scales. Kolmogorov
also suggested that the large anisotropic scales loose their directional preference, or
anisotropy, in the cascade process. This has the consequence that, providing the
Reynolds number is high enough, the small scales approach a more isotropic and
universal state. Kolmogorov further argued that the smallest scales solely depend
on the viscosity v and the rate at which they are dissipated. Based on dimensional
arguments, a characteristic length scale of the smallest turbulence scales can be
obtained as L, = (v* /6)1/ *. With this information, the ratio of smallest to largest
length scales present in a turbulent flow is given by L, /L; = (v*/U ;’L?j)l/ t = Re}g/ *
Therefore, the separation of scales in a turbulent flow increases as the Reynolds num-
ber increases. The presence of a wide spectrum of spatial and temporal scales is
another characteristic feature of turbulent flows, and is the main reason why direct

numerical simulation is currently limited to low or moderate Reynolds numbers.






Chapter 3

Reynolds-Averaged Navier-Stokes
Modelling

In this chapter the approach of statistical turbulence modelling will be discussed in
detail. Statistical turbulence modelling is almost exclusively used for the simulation
of high-Reynolds-number turbulent flows of practical interest and is based on the
RANS equations, where the mean flow is computed directly and the effects of tur-
bulence are incorporated by models. The existence of an overwhelming number of
possible RANS models makes it virtually impossible to present a complete review.
For this reason, the present review is limited to the most popular and most promis-
ing strategies of statistical turbulence modelling. For a more comprehensive review
the reader is referred to the textbooks of Launder & Sandham (2002), Durbin &
Petterson-Reif (2001), Wilcox (1998), Hanifi et al. (1999) or Gatski et al. (1996).

3.1 The RANS Equations

In order to derive governing equations, which describe the evolution of the mean
flow only, all variables are decomposed into a mean and fluctuating part. This
procedure is commonly referred to as Reynolds decomposition. For example, the

decomposition for the velocity vector can be written as

7

U; Zﬂi-l—u' (31>

77

where u; is the instantaneous velocity vector, u; the mean velocity and u; the fluc-

tuating velocity vector.

11
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The Reynolds-averaged quantities are most generally defined as an ensemble average

over N different realisations

1 N
w(x, 1) = lim = 3 (x,1). (3.2)

N—

For statistically steady turbulence the ensemble average is equal to the time average
1 T
imy=mn—fm@ww, (3.3)

T—wo 0

or equal to a volume average in case of homogeneous turbulence

m@zhmlfm@ﬁﬁi (3.4)

V—w

Substituting the decomposed quantities into the continuity and momentum equation

for incompressible flow

61111‘
o, 0, (3.5)

ou; ou; 1 0p 9
T = i) 3.6
o +ujaxj p&xi+yvu (3.6)

and averaging the same yields the RANS equations, which govern the evolution of

the mean flow. Taking into account the Reynolds averaging rules

pu— — [E— [
U; = Uy, =0, Uju; = uju; = 0,

5uz/6xj = 6U_i/5$j, 5UZ/5t = 5u_z/5t, m = ﬂiﬂj + m, (37)

the RANS equations can be written as

u;
=0 3.8
S0 (33)
ou; _ 0u; 1 dp 2 5@
— — = —— i — : 3.9
ot T ox; p ox; vV ox; (39)

The Reynolds-averaging procedure applied to the nonlinear convection term in the
momentum equation has introduced the additional term 0/0x; (W) on the right-
hand side of the RANS momentum equation (3.9). The divergence of the corre-
lation tensor W can be considered as an additional source of momentum due to
turbulent fluctuations, that appears in the momentum equation in the form of an

additional effective stress tensor. The correlation wu; is therefore also referred to
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as the Reynolds-stress tensor. The appearance of the Reynolds-stress tensor has the
consequence that the RANS momentum equations are no longer closed. In order
to obtain a solvable system of equations, a turbulence model needs to be employed,
which relates the Reynolds-stress tensor to the velocity gradient tensor du;/dx; or

other variables in the equations set.

The Boussinesq Approximation
In the early days of turbulence modelling, Boussinesq (1877) proposed to close the
RANS equations using an analogy between the viscous stress in a Newtonian fluid
and the turbulent Reynolds-stress, where the kinematic viscosity v is replaced by
a scalar turbulence viscosity vy. The Boussinesq approximation is still widely in
use today and reduces the closure problem to determining the turbulence or eddy-
viscosity vp. In contrast to the kinematic viscosity of the fluid, the turbulence
viscosity is a property of the turbulent flow under consideration. The Boussineq
hypothesis can be written as

2

3 kéu - QVTS-*

u;u; = iy (3.10)
where k = ju,/2 is the turbulence kinetic energy and St = (1/2) (0u;/0x; + 0uy/dx;)

the strain-rate tensor.

The assumption of a viscous Newtonian-like, linear relation between the stress and
rate of strain is a drastic oversimplification. In reality, the behaviour of a tur-
bulent flow bears more similarity with a non-Newtonian fluid, where the viscosity
may depend on the strain-rate or strain-rate history, and where the stress-strain

relationship may be of a non-linear form.

An algebraic stress-strain relationship, where the transport of Reynolds stress is not
accounted for, has some justification for simple, ‘well behaved’ flows where the flow
is not subject to rapid changes, and where the Reynolds stress is mainly determined
by local processes such as production or dissipation. In more complex flows, where
the flow experiences rapid spatial changes and where the flow is not in equilibrium
(where the production to dissipation ratio of turbulence kinetic energy P /e is not
close to unity) or where stress transport dominates the evolution of the Reynolds-
stress tensor, an algebraic stress-strain relationship cannot be justified. This is
partly, because turbulent flows require a finite time to adapt to sudden changes in
strain-rate. This is opposed to the viscous stress, where the molecular timescale
is small enough to almost instantly adjust to sudden changes in strain-rate, which

justifies the algebraic stress-strain relationship.
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The Boussinesq approximation may provide reasonable predictions for thin parallel
shear flows where the shear stress is the only active component of the Reynolds-stress
tensor. In situations where the normal components of the Reynolds-stress tensor
or stress anisotropy become important, the linear stress-strain relationship fails
to produce reliable results. Example of such cases include turbulence-driven sec-
ondary motion, flow impingement, separation, recirculation and where extra-strain
rates such as curvature of the mean flow, rotation or skewing alter the structure of

turbulence

To summarise, a linear constitutive stress-strain relationship in conjunction with a
scalar eddy viscosity may provide accurate predictions for simple, well-behaved thin
shear flows. For more complex three-dimensional flows, the Boussinesq approxima-
tion suffers from fundamental limitations and predictive accuracy may deteriorate.
In the following section, several approaches are introduced, which alleviate some of

the limitations of the Boussinesq approximation.

3.2 Evolution Equations

3.2.1 Reynolds-Stress Tensor
A differential transport equation for the unknown correlation u;u; can directly be
derived from the Navier-Stokes equation. First, the instantaneous momentum equa-
tions are expressed as N (u;) = 0, where the operator N (u;) is defined as

ou; ou; 1 0dp

N(ui)ZE—i—uk

—vV3u,. 11
5xk+p8xi vV-<u (3.11)

A transport equation for the second moments can now be constructed by taking the

following average

w;N (uj) + u;N (u;) = upN (u; + ) + u;N (u; + u;) = 0. (3.12)
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Assuming incompressible flow and neglecting additional body forces, the evolution

equation for the Reynolds-stress tensor is obtained as

——
Du;u; —— 0u;

= uu—j—m@— pil u,&p'
Dt B \Z‘ kﬁl’k J k&x,g i&xj j@xi
P i,
5u; 5U; 0 G 27T
_2y<51‘k 5%) +?xk (—uiujuk—i—)J +rViuu;. (3.13)

~
t
Dij

€ij

The operator on the left-hand side of (3.13) is the material derivative defined as

Duu;/Dt = Ouu; /0t + Updugu,/0xy. The terms on the right-hand side of (3.13)
are referred to as stress production F;;, velocity-pressure gradient correlation II;;,
dissipation rate ¢;;, turbulent transport ij and viscous diffusion VV2u;u'j.

The velocity-pressure gradient correlation II;; is sometimes further decomposed as

, Op/ , Op/ p [ oy ﬁu;- o [pu p'u;
Ay N _P (o _ @ (s L PYs ) 314
(uzﬁxj Y &Ei) p (6@ - ox; orp \ p " - p " (3:14)

~ -

where @;; is the pressure-strain correlation and ij the pressure transport term.
Based on this decomposition the short form of the evolution equations for the

Reynolds-stress tensor can be written as

N
Duyu;

Dt

= .Pz‘j + q)ij — Eij + Dij (315)

where the flux-gradient terms are lumped together into D;; = Dj; + Dj; + l/VQu;u'j.

The nonlinearity of the momentum equations has again introduced unknown higher-
order correlations in the evolution equations of the Reynolds-stress tensor. Hence,
the closure problem is now shifted to providing a closure for the unknown higher
moments rather than providing closure for the second moments directly. In the
transport equation for the Reynolds-stress tensor, the terms, which can directly be
computed from known quantities are stress production, convection and viscous diffu-
sion. All other terms involve unknown correlations and require additional modelling
in order to express them in terms of available quantities and to obtain a system of

transport equations that can be solved numerically.
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3.2.2 Turbulence Kinetic Energy

Another useful quantity, particularly in the framework of two-equation modelling,
which will be discussed in more detail in section 3.8, is the evolution equation for
the turbulence kinetic energy. The turbulence kinetic energy is defined as one-half
of the trace of the Reynolds-stress tensor, k = (1/2)uju;. The evolution equation

for the turbulence kinetic energy in exact form follows directly from (3.13) as

Dk ﬁ&ﬂl 8u'» 6u' 8 1ﬁ p' , 2
= — U A —uue, — — +vVZk, 3.16
Dt “’“kaxk V&xk ox, Oxk (2%“’% puk> v ( )
—_— —
Py € [‘)’k

where Py is the production of turbulence kinetic energy, e the dissipation rate of
turbulence kinetic energy, Dy the sum of turbulence and pressure transport and
vV?2k corresponds to the viscous-diffusion term. The pressure-strain correlation
tensor appearing in (3.2) has zero trace ®;; = 0 and hence, no counterpart in
the governing equation for the turbulence kinetic energy. The dissipation rate,
turbulence and pressure transport terms involve unknown correlations and must be

approximated by suitable models in order to close the transport equation.

3.2.3 Turbulence Kinetic Energy Dissipation Rate

A transport equation for the turbulence kinetic energy dissipation rate e can be

derived in exact form from the Navier-Stokes equation using

ou, 0
i %N () = 0. 1
ﬁx]— al'j (UZ) 0 <3 7)

2v

The resulting evolution equation of the turbulence kinetic energy dissipation rate

takes the form
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De ou;; 0wy ou,, ou,, | T ou, ou, du),
— = 2 + —2v ——Fr
Dt Oxy Oxy, 0z, Oxj | Oz, . oxy, 0T, ﬁme
) pip? ’ e
, Ou; 0% s u; %,
— 20U ——— — 2V
51’]‘ 6xk6xj N 6xk6xm é‘xké‘me
0 ap/ 6u'] , aul aul 9
b — | L L L | 4V 3.18
ox; [ 0%y, OTym YU 0%y, O, vve ( )

where P!, P2, P3 and P! are four contributions to the production of turbulence
kinetic energy dissipation rate, €. the dissipation of turbulence kinetic energy dissi-
pation rate, D, the pressure and turbulence transport of turbulence kinetic energy
dissipation rate and vV?¢ corresponds to the viscous-diffusion term. The evolution
equation for the dissipation rate is obviously much more complex and contains a
significant number of unknown correlations, which need modelling. In fact, only the

viscous-diffusion term can be computed directly. All other terms require modelling.

3.3 Preliminary Remarks

The main task in closing the exact evolution equations is to express the unknown

terms, for example, the velocity-pressure gradient correlation in the Reynolds-stress
;-u;, k,e.

Suitable models should ideally relate the available quantities to the exact processes

transport equation, in terms of available quantities, for example, 0u;/0z;, u

in a physically consistent fashion. This, however, is often not possible and further
simplifying assumptions are required, such as homogeneity of turbulence, in order
to reduce the level of complexity. Even though it may sometimes be very difficult to
adequately represent the real physical processes with the limited number of available
quantities, which are at ones disposal, the resulting model should satisfy some
fundamental properties and constraints such as dimensional consistency, coordinate-

frame invariance or realisability.
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Isotropic Tensor Functions

Within the framework of Reynolds-stress modelling, the unknown terms in the
transport equation need to be modelled as tensor-valued functions. These ten-
sor functions need to be formulated properly as isotropic tensor functions, which
guarantees that the model takes the same functional form for any chosen coor-
dinate system and thus preserves coordinate-frame invariance. A tensor function
F (T, T,,...) is isotropic if it satisfies

F(T,Ts,..)=F(QT:Q",QT.Q",.), (3.19)
with the second-order tensors T'; and an orthogonal transformation matrix Q.

It frequently occurs in turbulence modelling that an unknown second-order tensor
¢i; is assumed to be a function of a range of other second-order tensors and scalar
variables. In the simplest case, ¢;; is a function of only one second-order tensor,
¢ij = F(a;j). The most general expression for ¢;; is given by a polynomial expansion

in powers of a of the form
0
Pij = Z 501(1%7 (3.20)
a=0

where the coefficients 3, may depend on all possible scalar invariants of a;;. Making
use of the Cayley-Hamilton theorem (see, for example, Poole, 2006), which states
that the matrix a;; satisfies its own characteristic equation, all terms in a polynomial
expansion with powers 3 or larger can be reduced to a combination of lower powers

and are therefore redundant. The Cayley-Hamilton theorem can be written as

1 1
ik Qx1ay; = [aaik@kj + 5([[(1 — IS)aij + 6(2[][(1 — 3[a[Ia + [3)5” (321)

with the invariants I, = ar, 11, = ayay and 111, = agap,an,,e. Therefore, the

isotropic tensor function and most general expression for ¢;; is given by

Gij = P10i; + P2aij + Paainar;- (3.22)

A similar procedure can be applied if ¢;; depends on more than one second-order
tensor, e.g. ¢;; = F(S;5,8;). This is discussed in more detail in section 3.6 and in
Durbin & Petterson-Reif (2001).
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Realisability

Another fundamental constraint, which a closure model should ideally fulfill is that
it does not predict physically unrealisable solutions such as negative energy compo-
nents. Even though violation of the realisability constraints may not always have
catastrophic consequences, it may improve robustness and predictive capabilities of
the closure model (see Batten et al., 2009). In fact, a range of two-equation models
may yield unrealisable results for large strain-rates. A turbulence model is said to

be realisable if it satisfies the two following constraints (see Schumann, 1977),

u,u, =0, (u;u'ﬁ) <u’ -uﬁ2 ‘no summation on a, /. (3.23)
The former constraint ensures positiveness of the components of turbulence kinetic
energy and the latter constraint is the Schwarz inequality for the shear-stress com-

ponents.

It is sometimes more convenient to express the Reynolds-stress tensor in terms of the
stress-anisotropy tensor a;; = W/ k—(2/3)d;; and the turbulence kinetic energy k.
The anisotropy tensor is symmetric and traceless (a; = 0), i.e. it merely provides
a measure for the departure from an isotropic state of turbulence and it does not
provide any information about the magnitude of turbulence kinetic energy. The
advantage of the anisotropy tensor is that its diagonal components are limited to
the finite interval —2/3 < ano < 4/3 for all realisable states of turbulence. For
example, the value a,, = —2/3 indicates that the energy contributed by m is
vanishing and a value of a,, = 4/3 would indicate that all energy is contained in
ulu, (see Hanifi et al., 1999). In addition, all realisable values of the off-diagonal

elements are also bounded within |a.s| < 1.

As a consequence of the boundedness of all possible realisable states of the anisotropy
tensor, the first and second invariant of the anisotropy tensor II, = a;.ay; and
I11, = a;,aijaj; are also limited to finite intervals. Lumley & Newman (1977) de-
rived a I1,,I11, anisotropy-invariant map where all realisable anisotropy states are
confined within a finite region. The anisotropy-invariant map is depicted in figure
3.1. The boundaries of the invariant map are given by the line 11;/* = 61/6 \111,"?
and I1, = (8/9)I11,, where the former represents the limit of axisymmetric tur-
bulence and the latter the two-component limit of turbulence. The two anisotropy
invariants are very useful to describe important features of a turbulent flow and
therefore often used in turbulence modelling, particularly in modelling of near-wall

flows.
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FIGURE 3.1: Anisotropy Invariant Map

3.4 Differential-Reynolds-Stress Model

The highest level of turbulence closure, which is currently feasible for the simula-
tion of turbulent flows of practical interest are Differential-Reynolds-Stress Models
(DRSM) or Second-Moment Closures (SMC). DRSM completely abandon the as-
sumption of an algebraic stress-strain relationships together with the concept of
an eddy viscosity and with that the shortcomings inherent in these assumptions.
Instead, a transport equation for each component of the unknown second-moments
W is solved. This results in a minimum of six transport equations, which are
usually solved in conjunction with a transport equation for a length-scale providing

variable, for example, the dissipation rate of turbulence kinetic energy e.

The obvious advantage of DRSM is that a range of physical processes are naturally
included in the evolution equation of the Reynolds-stress tensor. This not only in-
cludes convection and diffusion of the Reynolds-stress components but also terms,
which describe the exact production mechanisms of turbulence as well as redistribu-
tion terms, which transfer turbulence kinetic energy among its components. These
terms are a particularly important ingredient for predicting the correct representa-
tion of the stress and anisotropy field in a complex turbulent flow. Nevertheless,
a number of important terms appearing in the evolution equation of the second-
moments are not closed and are frequently modelled by employing rather strong

simplifications such as quasi-homogeneity of turbulence.
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In the following, all terms appearing in the evolution equation for the Reynolds

stress are discussed separately and suitable modelling approaches are presented.

3.4.1 Production Term

The production term P;; represents the generation of Reynolds stress by the inter-
action with the mean flow. The production tensor can be computed in exact form,
since all required quantities are available. This term is an important ingredient
when simulating complex turbulent flows, since it is sensitive to both strain and
rotation/curvature effects. This sensitivity becomes more obvious when the veloc-

ity gradient tensor 0u;/0x; is decomposed into a symmetric and antisymmetric part
ou;/0x; = S + QF with

. 1 (ou om . 1 (0w oy

The symmetric part Sj; is the strain-rate tensor and the antisymmetric part (2

is the vorticity or rotation-rate tensor. The production term can be re-written in

terms of the symmetric and antisymmetric part of the velocity gradient tensor and

the stress-anisotropy tensor a; = w;u;/k — (2/3)d;;. The normalised form is as

follows P 4
% = —gsz‘j — (aikSkj + Sikakj) + (aikaj — Qikakj) s (325)

where the strain- and rotation-rate tensors have been normalised by the turbulence

timescale 7 = k/e such that

. T 6@2 5ﬂj . T 5ﬂi 6@]'

It is now obvious that the production tensor is sensitive to both strain-rate and

rotational components of the velocity gradient tensor. The production term in the

evolution equation for the turbulence kinetic energy reduces to P, = —u;u'j&m /0x;
or to P, = vpS? with S = 2555} by assuming a linear stress-strain relation-

ship. Therefore, the sensitivity of the production term to rotation or curvature is
completely lost in the equation for the turbulence kinetic energy, unless empirical
modifications are introduced to account for these effects. Also, the strain-rate mag-
nitude S cannot distinguish positive from negative strain-rates and produces the

same results for accelerated /decelerated flows in, for example, a nozzle/diffuser.
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3.4.2 Transport Terms

The transport term D;; spatially redistributes uyu; without creating or destroying
it. Here, it is composed of three parts, diffusion due to the action of viscosity
vV,
pressure D .

transport by turbulent fluctuations ij and transport due to fluctuating

The viscous-diffusion term does not involve any new unknowns and thus requires
no modelling. The turbulence and pressure transport terms are not closed and
need to be modelled. It is common practice to model the turbulence transport by
a generalised gradient-diffusion model, following the proposal of Daley & Harlow

(1970) L

Dj; = csai;k [éu}cu;&g—;ﬂla] . (3.27)
More complex, coordinate-frame invariant models for the turbulence transport term
have been proposed in Hanjalic & Launder (1972) and are reviewed in Hanjalic
(1994). Even though the pressure transport term ij is of different nature, it is
often lumped together with the turbulent transport term. Therefore, the combined
effect of turbulence and pressure transport can be accounted for by calibrating the
constant ¢, such that it absorbs both effects. In high-Reynolds-number formulations,
Dy; is sometimes neglected, since its contribution is much smaller than Dj; (see Lai
& So, 1991). The generalised gradient-diffusion model may result in numerical
instabilities. As an alternative, it is possible to resort to a simple scalar gradient-

diffusion model, which can be written as

oy
Dl = 2 (”—T ”“) (3.28)

ory \ o5 Oxy

where v is the turbulence viscosity and o, a calibration constant. The drawback
of the scalar diffusion model is that it loses the character of a vector-valued flux

gradient.

3.4.3 Pressure-Strain Correlation

The pressure-strain term ®;; plays a pivotal role in Reynolds-stress closures, since
it has a significant contribution to the balance of the Reynolds stresses. A lot of
research has focused on the modelling of this term. Its effect is to redistribute u;u;

among its components without creating or destroying it. The pressure-strain term
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is traceless in incompressible conditions (®; = 0) and therefore does not appear in

the governing equation for the turbulence kinetic energy.

More insight into the role of the fluctuating pressure p, which is the source of
the redistribution process, can be gained by deriving the exact Poisson equation
for the fluctuating pressure. This equation can be obtained by subtracting the
Poisson equation (0/0x; - N(;)) for the mean pressure p from the Poisson equation

(0/0x; - N(u;)) for the instantaneous pressure p . The result is

! 2
%VQP’ — _QZZZ—ZZ — 65(91;]- <u;ulj — u;u;> : (3.29)
The solution for p’ consists of a superposition of the solution to the homogeneous
part V?p = 0, with the inhomogeneous boundary condition p /zy = pd*uy/0x3,
which is obtained from the wall-normal momentum equation for the fluctuating
velocity, and the particular solution associated with the source terms on the right-
hand side of (3.29), with the homogeneous boundary condition dp /dz, = 0, where

x9 denotes the wall-normal direction (see, for example, Hanifi et al., 1999).

According to (3.29), pressure fluctuations have two different sources. The particular
solution to the first term on the right-hand side contains the mean-velocity gradient,
whereas the solution to the second term contains a non-linear product of fluctuating
velocities. The first term is usually referred to as the rapid contribution, since it
responds immediately to changes in the mean velocity and becomes zero in the
absence of any mean-velocity gradient. The second, non-linear, term is sometime
referred to as the slow part, since it is independent of the mean-velocity gradient.
Both contributions to the fluctuation pressure will be reflected in the pressure-strain

correlation.

The Poisson equation for the fluctuating pressure can be integrated using the

Green’s function technique to give

,OZEV

p, 1 6@ (m’) (?u;n (m') 62 [N ’ T —— dV(iB,)
2 _
Tl e (e e — @) | T

where r = ' — x and dV(z') = d*x’.
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Multiplying (3.30) with (5u;/ ox;j + 5u; / 5%-) and taking the average yields the fol-

lowing relation for the pressure-strain correlation:

{ 6 " 2,7 ’ ’ ’ /
A Jy \ Oz; ox; ox,0r,,  |x—o|
@E)

L[ ) du,@) (i) | @) dvia)
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1 10 ,[(0u(x) oJuj(x) , Oui(x)  Ouj(z)\ 0 1
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In addition to the volume integrals, a surface integral over the bounding surfaces
dA occurs, which accounts for the refection or ‘echo’ of pressure fluctuations from
the wall. Even though the pressure-strain correlation is a single-point correlation
there are two-point correlations appearing on the right-hand side of (3.31). The
two-point correlations reflect the non-local nature of the pressure fluctuations and
its influence at a distance. The best that can be done in the present single-point

framework is to try to model the non-local effect with local quantities only.

A common starting point for the derivation of suitable models for ®;; is to invoke
a local homogeneity assumption. For homogeneous turbulence away from solid
boundaries the surface integral vanishes and the velocity gradient dw;/dx,, can be
taken outside the integral. The pressure-strain term can then be written in shorter
from
D,y = 00 1 @) = o) 1 0y, O0 3.32
ij = Ly + Pyt =@y A+ iflm g (3.32)
where M;j;,,, is a fourth-order tensor.
(s)

Slow Pressure-Strain Term @,
The slow pressure-strain term only contains velocity fluctuations and its effect is
to redistribute the energy components of anisotropic turbulence towards a more
isotropic state in the absence of a mean strain-rate. The slow term is thus sometimes
also referred to as the return-to-isotropy term. It is common practice to assume
that the rate at which anisotropic turbulence returns to a more isotropic state only
depends on the degree of anisotropy. In other words, the slow term is an isotropic

tensor function, which depends on the anisotropy tensor a;; and possibly other
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scalars, thus

®3; = eF (ai;) . (3.33)

Multiplication by the turbulence kinetic energy dissipation rate € is required for
dimensional consistency. Based on the previous discussion about isotropic tensor
functions, the slow pressure-strain term can be written in its most general form as

o

€

/ 1
= —Cl laij + Cl (aikakj — §[Ia61j>] s (334)

where 11, = tr{a;,ay;}. When the constant C| = 0, the general non-linear model
reduces to the linear model of Rotta (1951), which assumes that the return to
isotropy is proportional to the degree of anisotropy. The constant (' is referred to
as the Rotta constant. Later proposals redefine the Rotta constant to be a function
of the turbulence Reynolds number Res or the second and third invariant of the
stress-anisotropy I1,, I11,, respectively (see Launder, 1989). The model of Speziale
et al. (1991) additionally sensitises the Rotta constant to the ratio of production
to dissipation with C; = 0.5(CY + C}P;/e), which improves the predictions for
non-equilibrium flows.

(r)

Rapid Pressure-Strain Term &,
The second term in equation (3.34), or the ‘rapid’ part of the pressure-strain correla-
tion, promotes an ‘isotropisation’ of stress production or, in other words, counteracts
the effect of production to increase the stress-anisotropy. Consider, for example, a
parallel shear flow where the mean shear feeds energy into Pj; = —2%6@/ 0y. The
other components do not receive energy from the mean shear, since Pyy = P33 = 0.
The effect of the rapid pressure fluctuations is to redistribute energy to the other

components and hence make the turbulence more isotropic.

According to (3.31) the rapid part also depends on the velocity gradient tensor,
which introduces another dependence in the tensor function for the rapid pressure-

strain model, thus
@) = eFy) (aij, Sijs Q). (3.35)

As mentioned before, the assumption of local homogeneity allows the velocity gra-

dient to be taken outside the integral, and the rapid term can be written as

ony

(r _
CI)Z.j - Mijlm%u

(3.36)
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where the fourth-order tensor M;;,; now only includes a functional dependency on
a;j. An expression for the tensor M;;; can be derived by expansion in powers of the
anisotropy tensor a;;. The resulting tensor function must also satisfy the symmetry
properties in 4, j (M;jx = M), vanishing trace upon contraction of i = j (M =
0) and the normalisation constraint M;;;; = 2% (see Durbin & Petterson-Reif
(2001) or Hanifi et al. (1999) for more details). The most general form of the fourth-
order tensor contains 15 tensor groups up to the fourth powers of a;; (see Johansen
& Hallback, 1994). Speziale et al. (1991) used an expansion for M;j;, which is
quadratically non-linear in a;;. For the present work, only expansions, which are
linear in a;; are considered. Using a linear expansion of M;;,; and substituting into
(3.36) yields the General Quasi-Linear Model (GQLM) for the rapid pressure-strain
correlation. All of the widely used linear and quasi-linear pressure-strain models
(for example, Launder et al. (1975), Gibson & Launder (1978) or the linearised

model of Speziale et al. (1991)) can be expressed in the following general form:

.. 1 P .
2o eprer)ag+ (e- Fvin) s, (337)

€ 2
C 2 C
+ ?3 (aikSkj + Sikakj — gtl‘ {aikSkj} 51]) — 74 (aikaj — Qikakj) .

Alternatively, it is possible to directly model the velocity-pressure gradient corre-
lation Il;; = ®;; + Dj;, which includes the effects of Dj; and has the additional
advantage that it vanishes at the wall whereas ®;; does not (see Lai & So, 1991).

3.4.4 Dissipation Rate

The dissipation rate ¢;; is a tensor-valued quantity for which an anisotropy measure
can be defined as e;; = €;;/e — (2/3)0;;, analogous to the stress-anisotropy tensor
a;j. For high-Reynolds-number flows, the Kolmogorov hypothesis of local isotropy
of the smallest scales is invoked. Since the dissipation occurs at the smallest scales,
the dissipation in high-Reynolds-number flows is usually assumed to be isotropic,
i.e. e;; =0 ore; = (2/3)ed;;. Therefore, knowing the dissipation rate of turbulence

kinetic energy e, the tensor-valued dissipation rate ¢;; can be computed.

The assumption of isotropy of the dissipation rate is tantamount to an equal drain
of energy from each of the diagonal components of €;;. It is known that this is a

questionable assumption for highly anisotropic flows, such as those close to solid
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boundaries (see, for example, Mansour et al., 1988). Therefore, better approxima-
tions for the dissipation rate tensor have been devised, that assume the dissipation

rate anisotropy e;; is proportional to the stress anisotropy, i.e.

e,»j = fsaij, (338)

where f, is a blending function, which approaches zero away from the wall and
thereby recovers the isotropic dissipation rate e;; = 0 (see Hanjalic (1994) or Laun-
der (1989)). The blending function f; may depend on quantities like turbulence
Reynolds number Rer = k?/ev or second and third invariants of the stress and
dissipation rate anisotropy tensor. Models based on (3.38) are also not fully sat-
isfactory, since the anisotropy state of the energy containing, large scales does not
correlate well with the state of the more isotropic dissipative scales. This has the
consequence that some of the components of ¢;; do not obey the correct asymptotic
near-wall limit. Modifications to (3.38) have been introduced using information
from the wall-normal vector to recover the correct near-wall limits of €;;. A more
detailed discussion can be found in Jakirlic & Hanjalic (2002).

A different means of accounting for the anisotropy of the dissipation rate follows the
proposal of Shima (1988), where the deviatoric part of the dissipation rate tensor

is absorbed into the modelling of the slow pressure-strain correlation, such that
B e = L™ _ 2 3.39)
ij — €ij = P45 ij 56 ij> (3.

with the modified slow pressure-strain correlation @S*) = @S) —¢€;j+(2/3)€d;;. This
approach requires modification of the Rotta constant C'; in the model for the slow

pressure-strain term in (3.34).

3.4.5 Extension to Near-Wall Flows

The pressure-strain models presented above were derived by assuming local homo-
geneity and the influence of solid boundaries was neglected. Local homogeneity may
be a fair approximation for flows, which evolve relatively slowly in space. However,
this assumption breaks down in more complex flows of practical interest, and is not

appropriate in the presence of solid boundaries.

The solid boundary introduces a no-slip and impermeability constraint on the flow.

The no-slip condition results in high shear rates and strongly inhomogeneous flow.
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The local Reynold number close to the wall decreases and the direct effect of vis-
cosity onto the velocity fluctuations becomes important. The action of viscosity
damps the velocity fluctuations equally, independent of their direction. Therefore,
the first modification is the inclusion of viscous or low-Reynolds-number effects into
the model formulations. This is mostly limited to the modelling of viscous dissipa-
tion €;;, which exhibits a considerable amount of anisotropy close to the wall, and

to the transport equation for the dissipation rate of turbulence kinetic energy e.

In addition to viscous effects there are two non-local, kinematic, effects which are
non-viscous in nature, and which influence the flow away from and in the vicinity of
a wall. The impermeability constraint imposes a kinematic wall-blocking effect onto
the wall-normal velocity fluctuations. The kinematic wall-blocking effect strongly
suppresses the wall-normal fluctuations, which results in highly anisotropic turbu-
lence close to the wall. In fact, the wall-normal fluctuations v'v" approach zero
as O(y*), where y is the distance from the wall, whereas the other normal-stress
components behave as O(y?). Therefore, at the edge of the viscous sublayer the
wall-normal fluctuations have almost vanished and the turbulence has reached a

two-component state.

Another effect of a solid boundary is the reflection or ‘echo’ of the pressure fluctu-
ations. Manceau et al. (2001) have shown that the reflected pressure fluctuations
may enhance the total magnitude of pressure fluctuations, and with that the redis-
tribution process. Consequently, the reflected pressure disturbances are promoting
a reduction of the anisotropic state of turbulence and therefore, counteract the
wall-blocking effect. The wall-echo, or pressure reflections, originate from the wall
boundary conditions, which are imposed on the Poisson equation for the fluctuating
pressure. It can be included by taking the surface integral in (3.31) into account.
Alternatively, the wall-boundary condition dp /dxs = 0 for equation (3.30) allows
the use of the method of images for the solution of the Poisson equation for the
fluctuating pressure. With this approach, the surface integral disappears and the

Green’s function takes the following form for a plane wall

/ 1 1

Gz, ) (3.40)

= +
Amle —x'|  Ar|x — x|

where x* is the mirror image point of &' (see, for example, Launder et al., 1975).
This form of Green’s function suggests that the pressure-strain correlation, which

would be valid for wall bounded flows could be written as an extension to the
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quasi-homogeneous pressure strain model (3.32) in the following form

__ x(s,hom) (r,hom) (s,w) (r,w)
Py = D5 + P, + @, + P, (3.41)

where the effect of the wall (wall-echo) is contained in @g;’w) and CIDl(-;’w), respectively.

Typical formulations for the wall-echo correction rely on information about the
wall-normal vector n; and wall distance to identify the orientation of the wall and
to suppress the intensity of the wall-normal fluctuation v'v" and to enhance the
streamwise component 't/ respectively. Gibson & Launder (1978), for example,

use the modifications

s, w w € N 3% Bﬁ
o = C e <ukumnknm5ij — U — Eukujnknz> fuws (3.42)

W w € r,hom 3 r,hom 3 r,hom
cI)ij = OT E (I)km nknméij — §(I)zk nEn; — §(I)jk: nen; fw. (343)

The damping function f,, ensures that the modifications are only active close to
the wall and that the quasi-homogeneous model is recovered away from the wall.
The constants need to be tailored to reproduce the correct behaviour in conjunction
with a specific quasi-homogeneous model. Wall-echo corrections of this form may
improve the predictions in simple shear flows. However, they are not very successful
for flows in complex geometries where the wall-normal vector cannot be rigorously
defined in the presence of sharp corners and multiple walls. Another major defect
exists for the prediction of impinging flows where the wall-normal fluctuation v

are erroneously amplified (see, for example, Durbin & Petterson-Reif, 2001).

Another approach that has been used to take into account the strong inhomogeneity
close to the wall is to use a higher-order expansion for M;;,;. Using a non-linear
expansion provides more degrees of freedom to place additional constraints onto
the free coefficients. Craft & Launder (1995) use a non-linear expansion, which
additionally satisfies the two-component limit and gives improved predictions close
to the wall.

3.4.6 Elliptic-Relaxation/Blending Approaches

The elliptic-relaxation/blending approach is yet another technique that accounts
for the non-local, wall-echo and blocking effects of solid walls. This approach is

distinctly different from what has been presented above. Instead of modelling the



30 Chapter 3 Reynolds-Averaged Navier-Stokes Modelling

pressure-strain correlation with local quantities, the elliptic-relaxation approach

attempts to model the two-point correlation appearing in (3.31).

In modelling wall-bounded flows, it is usually more convenient to model the velocity-
pressure gradient correlation as a whole rather than using the decomposition into
redistributive and transport part. This is motivated by the fact that the transport
part plays a role in the near-wall balance for the Reynolds-stress component v'v” and
cannot be neglected. In order to illustrate the elliptic-relaxation concept, consider

the velocity-pressure gradient correlation

(@) _ L i, () 5@ AV (=) (3.44)

"oz, or; Arle —a'|

where S(z') corresponds to the source terms on the right-hand side of (3.30). The
two-point correlation w; (x) 05 (z')/dz; has been modelled by Durbin (1991, 1993)

i) S @) B o (“‘”%) | (3.45)

where L is a correlation length scale. As a result of this modelling, the integration
kernel has changed and now corresponds to a Green’s function for the modified
Helmholtz equation. Thus, the velocity-pressure gradient correlation can be written

as the solution to the elliptic-relaxation (modified Helmholtz) equation of the form
hom
I — L*V2IL; = &)™ (3.46)

Note that the second term on the left-hand side vanishes for homogeneous turbulence
(hom)
ij

include the correct asymptotic near-wall behaviour close to the wall by specifying

and the elliptic-relaxation equation reduces to II;; = ® . It is now possible to

appropriate boundary conditions to the elliptic-relaxation equation.

The elliptic-relaxation formulation proposed by Durbin (1993) is based on a modified

redistribution tensor of the form

!/ !

H;kj = Hij — eij + iij = kfij; (347)

which describes the net effect of IT;; — €;; and where (¢/k)uzu; is added to ensure
that H;‘j vanishes at solid boundaries. Durbin introduced the intermediate variable

fij, which is multiplied by k to ensure that the right-hand side approaches zero at
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the wall. The tensor f;; is obtained from

1 2 uu
fij — L*V?fij = = (@l(,;?om) — 56517 + kj€> , (3.48)

k

where the correlation length scale is given by

L3/2 3\ /4
0 C, (?) : (3.49)

The lower bound to L is given by the Kolmogorov length-scale. It should be noted

L = (' max

that CDg-wm) can be chosen as any quasi-homogeneous redistribution model without
the need to recalibrate other parts of the elliptic-relaxation concept. Although
the elliptic-relaxation concept provides convincing results for wall-bounded flows, it
requires six additional differential equations to be solved numerically. In addition,
the boundary condition for f;; involve terms, which behave as 1/y*, which inevitably

increases numerical stiffness.

An elliptic-blending model has been proposed by Manceau & Hanjalic (2002), which
is somewhat simpler and preserves the idea of the elliptic-relaxation concept, i.e.
the correct prediction of II;; — €;;. In the elliptic-blending model the redistribution

tensor is computed from
I = (1 ka) & + kad!"™. (3.50)

The dissipation is computed as

u;u; 2
€+ Akage@j, (351)

€ij = (1 — AkOé) 2

with Lumley’s flatness parameter A = 66 |J_T]a|1/3 /]I;/Q. The elliptic-blending

parameter « reduces to a scalar differential equation determined by
272 1
a—LVoz:E, (3.52)

with the wall-boundary condition «,, = 0. The components of the wall redistribu-
tion tensor <I>§;-”) need to be chosen such that II;; — €;; has the same behaviour as in

the elliptic-relaxation model. A model, which satisfies this requirement is

w — —— 11—
<I>Z(-j) = —5% (uiuknjnk + ujupning — o WU T - (nin; — 5,)) ) (3.53)
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The wall-normal vector is computed from n = Va/|Val.

3.5 Algebraic-Stress Models

The increased computational effort required by DRSMs coupled with the numerical
difficulties for complex three-dimensional flows have led to the emergence of alter-
native approaches, where the robustness of traditional turbulence models that are
based on the Boussinesq approximation is combined with the improved predictive
capabilities of a second-moment closure. The first such attempts goes back to the
pioneering work of Rodi (1972, 1976), where an equilibrium hypothesis was intro-
duced, which reduces the transport equations of a DRSM to an algebraic expression,
yielding an implicit algebraic relation between the Reynolds-stress components and
the velocity gradients. Rodi proposed that in a weak-equilibrium condition, where
Tu;/ k is approximately constant, convection minus diffusion of Tu; can be approx-
imated to be proportional to convection minus diffusion of the turbulence kinetic

energy k, thus

D ~ —2
Dt J k

DW u;u'- Dk u;u'<
J = J (ﬁ — k) = J (Pk - 6) . (354)

Substituting the weak-equilibrium approximation into the differential RSM (equa-

tion 3.13) yields a set of implicit algebraic relations for the Reynolds-stress tensor

’ !

U-U -
ij (P — 6) = F)ij + (I)z'j — Eij- (355)

Another way to illustrate Rodi’s weak-equilibrium assumption is to transform the
evolution equation for the Reynolds-stress tensor (3.13) into a transport equation

for the stress-anisotropy tensor a;;

wa
ZT0_pp@ i
Dt K

(Pr — €) + Pyj — €ij + @y, (3.56)

where Dl(;) contains the diffusion/transport terms of a;;. Adopting the most general

form of a quasi-linear model for the pressure strain correlation (3.37), the transport
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equation for the stress-anisotropy can be written as

T DCLi' a Pk
A_O (Tt] — DZ(])) = (Ag + A4?) a;; + Alsij - (aikaj - Qikakj)

2
+ AQ <aikSkj + Sikakj — gtl" {aszk]}) , (357)

see Grundestam et al. (2005) for more details. The weak-equilibrium assumption
now amounts to neglecting convection and all diffusion/transport terms in the evolu-
tion equation for a;j, i.e. Da;j/Dt— Di(?) = 0. The resulting quasi-linear Algebraic-
Stress Model (ASM) takes the form

2
Naij =—-A5;; — Ay (aikskj + Sikakj — gtr {alkSk]}) + (aikaj — Qikakj) , (358)

where

P
N=&+m%. (3.59)

The constants A; are directly related to the constants C; of the model for the
pressure-strain correlation and are summarised in table 3.1 for the model of Launder
et al. (1975) (LRR), Speziale et al. (1991) (SSG) and Wallin & Johansen (2000)
(WJ).

A Ay, A Ay
LRR 154 037 1.45 289
SSG  1.22 047 0.88 2.37
WJ 120 0 1.8 225

TABLE 3.1: Constants A; for the pressure-strain models of Launder et al. (1975)
(LRR), Speziale et al. (1991) (SSG) and Wallin & Johansen (2000)
(WJ).

The set of implicit equations can be solved for the Reynolds-stress or anisotropy
tensor using an iterative procedure. The ASM needs to be supported by an equation
for the turbulence kinetic energy as well as a length-scale-providing equation to
compute the dissipation rate €. Even though all transport terms in the evolution
equation for the anisotropy have been neglected, some history effects are still present
in the ASM through the evolution equation for the turbulence kinetic energy and

its dissipation rate.

In the limit of equilibrium, the algebraic stress relationship can be considered an
exact approximation to the Differential-Reynolds-Stress Model. It is also a fair ap-

proximation for flows, which evolve slowly and which are close to an equilibrium
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condition. For strong non-equilibrium flows or where convection and transport dom-
inate the evolution of the Reynolds-stress tensor, the weak-equilibrium assumption
is not valid and hence the performance of the ASM deteriorates. In addition to the
limitations imposed by the weak-equilibrium assumption, the ASM also inherits all
deficiencies of the ‘parent” DRSM.

The Extended Weak-Equilibrium Assumption

Flows, which involve significant streamline curvature can be most accurately mod-
elled by DRSM closures, since curvature/rotation effects are naturally included in
the transport equation for the Reynolds-stress tensor. However, ASM were found to
be inferior to a full DRSM closure in predicting the effects of streamline curvature.
Even though the exact production term F;;, and with that the sensitivity to rota-
tional effects, is retained in the ASM approximation, it has been shown by Rumsey
et al. (1999, 2000) that the weak-equilibrium assumption is incorrect in strongly
curved flows, and that Da;;/Dt should not be neglected.

Rodi & Scheuerer (1983) and Girimaji (1997) both argued that weak-equilibrium
should preferably be invoked in a suitable curvilinear coordinate system, which in
some way is aligned with the flow direction (for example, in a coordinate system,
which is aligned with streamlines). In such a curvilinear coordinate system the

weak-equilibrium assumption is more likely to hold.

The extended weak-equilibrium constraint is obtained by considering the anisotropy
tensor transformed into a curvilinear coordinate system a® = T'aT”, where T is
the coordinate transformation matrix. The anisotropy a‘ can be transformed back
into a Cartesian system and expanded to give the relation

Da°_, Da  DT" DT

T =" T+ T — .
Dt Dt P o (3.60)

TT
see Gatski & Jongen (2000) or Wallin & Johansen (2002). It follows that

Da rDa‘ , ,

with (DT? /DT = —T*DT/Dt = €. The extended weak-equilibrium approxi-
mation can now be understood as neglecting the term T (Da¢/Dt)T in the curvi-

linear coordinate system, which gives

D
F? ~ (aY — a). (3.62)
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It is straightforward to account for these additional terms in the ASM formulation

by using a modified rotation-rate tensor of the form
Q°=Q— (1/4,)Q". (3.63)

It is, however, much more difficult to determine a suitable transformation matrix
T or " in such a way, that T7 (Da°/Dt)T becomes negligible, and the error in-
troduced by ignoring this term is not significant. Different approaches have been
used to estimate €2 (see Hellsten, 2002, for a short discussion). The first approach
relates 2" to the rate of change of the principle axes of the strain-rate tensor. A
detailed description of this method is beyond the scope of this review. More details
about this method can be found in Gatski & Jongen (2000) or Wallin & Johansen
(2002). The second method employs the acceleration vector Du;/Dt and its rate
of change to approximate 2" (see Girimaji (1997) or Wallin & Johansen (2002) for

more details).

3.6 Explicit-Algebraic-Stress Model

The implicit algebraic stress relations, as introduced above, can be solved using an
iterative procedure. However, it has been found that the iterative solution may be
very expensive in complex flows and may lead to multiple roots and convergence to
non-physical solutions (see, for example, Speziale, 1997). Therefore, the benefit of

using an ASM model compared to a full DRSM is partly lost.

A more practical alternative is to derive an explicit solution to the algebraic stress-
relations (3.58). This results in considerably improved robustness of the resulting
Explicit-Algebraic-Stress Model (EASM), and hence constitutes a practical and
robust alternative to traditional linear two-equation models by providing improved

predictive capabilities at slightly increased numerical expense.

The solution to the algebraic stress relations (3.58) obviously has to be of the
functional form a;; = Fj; (Si;, €, Pi/€), where Fj; is an isotropic second-order
tensor-valued function. Ignoring Pg/e for the moment, the solution for a;; can
be expanded into an infinite tensor polynomial, which contains all second-order
tensors that are symmetric and traceless, that can be formed from S;; and €2;;. The
coefficients depend on all possible invariants of S;; and €2;;. The Caley-Hamilton
theorem limits the most general form of the tensor polynomial to ten terms and five

invariants. It has been shown by Spencer & Rivlin (1959) that the most general
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tensor polynomial, also referred to as integrity base, is of the form

ai; = Fi; (Sij, Qi) = Zﬁa P (3.64)
with

1
T(l) == Sz‘j; T(2) == Sszk] - g[[séij, T == szij 3[[952J,

v ]

T = Sik€hj — QigSky, T = SikSki8l; — QirSkiSly,

(]

2
7 - SitS Sl + QS — gIV5ijv

2

T4(,7) = Sik;SlelQOj + QikalSlmSmj - gvéij’
T(8) = Sika:lSlmSmj - Sik:SlelmSmja
T(g) = QikSkZleQmj - QikalSlQOja
T,(.IO) = QikSlelQOnan - QikalSlmSannjv (365>

and where the f;-coefficients are functions of the invariants
IIS = tr {SlkSkj} 5 IIQ =tr {Qlek]} R IIIS =tr {SikSlelj} y

IV =tr {Sika:lQlj} s V =tr {Sik:SlelQOj} . (366)
The ten tensor groups are required to guarantee that tensorial expansion provides
non-singular solutions even in cases where some of the tensor groups vanish. In
two-dimensional mean flow the tensor polynomial reduces to only three terms

1
Ty =Sy, Ty = SuSey — gllsd, Ty = Suluy — QunSii, (3.67)

v

and two invariants

IIS = tr {SlkSkj} 5 [IQ = tr {szng} . (368)

Pope (1975) was the first to derive an explicit solution for the ASM proposed by
Rodi (1972, 1976). His derivation was limited to two-dimensional mean flow for
which the tensor polynomial takes a more manageable form. Substituting the ten-
sor polynomial into the ASM equation (3.58), and applying the Caley-Hamilton
theorem to reduce higher-order terms, leads to a linear system of equations, which
can be inverted to obtain the coefficients f3; (see Pope (1975) or Gatski & Speziale
(1993) for more details on the solution procedure). Gatski & Speziale (1993) later
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extended Pope’s approach to three-dimensional mean flows for the general class of
ASM models that are tensorially linear in the Reynolds-stress anisotropy. Taulbee
(1994) and Wallin & Johansen (2000) both derive EASM for three-dimensional flow
using a modified pressure-strain model of LRR. The modification is chosen such
that some of the terms naturally vanish, which effectively reduces the tensor poly-
nomial to five independent tensor groups. Even though the resulting model is more
compact, it is achieved at the expense of the predictive performance, i.e. it always
predicts ass = 0 in situations where no anisotropy is induced by the mean strain

rate 533 .

A major difficulty in solving the linear system of equations is related to the ap-
pearance of the production to dissipation ratio Py/e in the ASM model, which
introduces a non-linear behaviour through the relationship Py/e = —tr {a;Sk;}.
Gatski & Speziale (1993) and Taulbee (1992) apply a linearisation of the algebraic
stress-equations by retaining the ratio of production to dissipation implicit during
the derivation, i.e. specifying a constant equilibrium value for the production to

dissipation ratio.

The assumption of a constant ratio of production to dissipation results in an in-
consistent behaviour of the model for flows, which are far from equilibrium. This
inconsistency may lead to singular behaviour for large localised strain rates, which
in turn results in numerical difficulties. Gatski & Speziale (1993) therefore had to
apply a regularisation procedure to remove the resulting model singularities. The
more versatile approach is to solve the algebraic equations in their full non-linear
form. Consistency for the production to dissipation ratio is achieved by writing
Py /€ using the solution for a;;, which yields a scalar polynomial equation that needs
to be solved additionally. For two-dimensional mean flow, solutions to the scalar
polynomial equation have been obtained by Girimaji (1996), Ying & Canuto (1996)
or Wallin & Johansen (2000). Hence, the resulting model becomes a fully explicit
and fully consistent approximation to the ‘parent’ DRSM, which is free of singular-
ities. In the case of general three-dimensional mean flow the non-linear equation is
of sixth order (see Wallin & Johansen, 2000), and no explicit solution can be found
in this case. Wallin & Johansen (2000) instead suggest to provide an initial guess
using the solution of the non-linear equation for two-dimensional flow and to obtain
a more accurate solution by using a perturbation solution for the three-dimensional
equation. As a consequence, the fully explicit character of the EASM in three-
dimensional mean flow can only be retained by sacrificing the internal consistency

of the EASM approximation.
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In the limit of two-dimensional mean flow, the EASM formulations reduce to much
more compact forms and provide fully explicit and fully consistent solutions. There-
fore, it seems very appealing to apply these two-dimensional formulations even for
genuinely three-dimensional mean flows. On the other hand, the additional terms
appearing in three-dimensional EASM formulations constitute additional higher-
order nonlinear coupling terms, which may significantly improve the performance
of the EASM in general three-dimensional flows. Weinmann & Sandberg (2009)
investigated the differences between two and three-dimensional EASM formulations
for predicting complex three-dimensional flows. Their results indicate that the
overall difference in the predictions is very small and that the use of the simplified
2D-EASM formulation provides improved predictions in complex three-dimensional
flows over turbulence models based on a linear stress-strain relationship. Naji et al.
(2004) performed a priori testing of the 2D-EASM described in Gatski & Rum-
sey (2002) and the 3D-EASM of Wallin & Johansen (2000) for a square duct flow,
and came to the conclusion, that the 2D-EASM is a good approximation for the

three-dimensional flow in a square duct.

3.7 Non-linear Eddy-Viscosity Models

The tensor polynomial or integrity base in equation (3.65) constitutes a general
non-linear stress-strain relationship of the form W = (2/3)kd;; + ka;;. Therefore,
Explicit-Algebraic-Stress Models formally belong to the class of Non-Linear Eddy-
Viscosity Models (NLEVM), i.e. models, which use a non-linear constitutive stress-
strain relationship. In the case of EASM modelling, the coefficients ; are directly
determined from the parent ‘DRSM’ without requiring additional calibration of
closure constants. In addition, the EASM constitutive relations are not strictly
based on the concept of an eddy viscosity. However, comparing equation (3.65) with
the Boussinesq assumption (3.10) reveals that an equivalent turbulence viscosity
of the EASM model is given as vy = —0.58,k7. NLEVM are derived by taking a
different route and are therefore discussed separately from EASMs. The route taken
with NLEVM is to determine the ; coefficients by empirical calibration for a range
of flows. As a consequence of the calibration procedure, the coefficients may take
different values dependent on which flow is used to calibrate them. For example,
Craft et al. (1995) calibrated a cubic non-linear eddy-viscosity model using simple
shear and more complex flows. Shih et al. (1995) proposed a NLEVM, which is
calibrated using constraints from rapid-distortion theory (RDT), realisability and

calibration of homogeneous shear and channel flows. Many other NLEVM’s exists,
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some of which are discussed in section 7.2. The success of NLEVM largely depends
on the experience of the developer to include as much physics as possible in the

modelling of the (; coefficients.
Applications

NLEVM and EASM turbulence models have been applied to a broad range of aca-
demic and engineering validation cases, where the superior performance compared
to linear models has been demonstrated. Abid et al. (1997) applied a k-¢ EASM to
airfoil flow, with and without incipient separation, and compared the results to a
linear model. None of the models were able to predict the incipient separation, but
the EASM model predicted realistic normal-stress components. Another important
conclusion was that the improvements are limited by the € equation, which does not
respond accurately to adverse pressure gradients flows. This is also confirmed by
Rumsey & Gatski (2001), where k-e and k-w EASM models were applied to a multi
element airfoil. In Rumsey et al. (1999, 2000), an EASM model was successfully
applied to the flow in a U-duct, where the flow exhibits significant streamline cur-
vature. Jang et al. (2001, 2002) tested various NLEVM, EASM and DRSM models
for the flow over a periodic hill configuration. They confirmed the poor performance
of models based on the € equation, whereas models based on the w equation gave
much better results. The nonlinear models were found to over-predict the sepa-
ration region due to insufficient shear-stress in the separated shear layer. Luebke
et al. (2001) assessed the performance of linear eddy-viscosity models and EASM
models for bluff body flows. The results obtained with the EASM model are clearly
superior to linear models. Moreover, the EASM model shows many features of LES
but, naturally, is less accurate than LES. Deng et al. (2005) compare a quadratic
EASM with ASM and DRSM models for the prediction of ship flows. In their case,
the EASM and ASM gave similar predictions, and the DRSM was found to be bet-
ter for regions with convex curvature. The better performance of the DRSM was
linked to the weak-equilibrium assumption inherent in the EASM and ASM model.
Franke et al. (2005) and Jouvray & Tucker (2007) evaluated the performance of
NLEVM and EASM models. Both came to the conclusion that the predictions

were improved compared to traditional turbulence models.

3.8 Linear Eddy-Viscosity Turbulence Models

The common feature of all linear eddy-viscosity models is that they are based on

the concept of a scalar eddy viscosity vy and use the Boussinesq approximation
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as the constitutive stress-strain relationship. The Boussinesq approximation can
be considered a first-order (linear) approximation to the more general, non-linear,
tensor polynomial of equation (3.65), and even though it suffers from various defi-
ciencies (see discussion in section 3.1), it is still widely in use today. In fact, linear
eddy-viscosity models are by far the most popular of all turbulence models, mainly
because they are computationally reasonably cheap and robust and may deliver

results of sufficient accuracy for not too complex flows.

On dimensional grounds, an expression for the turbulence viscosity has to be of the
following form

vr = CMVTLTa (369)

where Vi is a characteristic turbulence velocity scale and Ly is a characteristic

turbulence length scale of the energy containing eddies.

In the pioneering work of Prandtl in 1925, the velocity and length scale was approxi-
mated as Vi = I, |[du/dy| and Ly = l,,;,, where l,,,;, corresponds to a characteristic
length scale of the flow under consideration. The major difficulty is now associated
with specifying the appropriate length scale. Even though ,,;, can be tuned for
specific cases (for example, jets, mixing layers or boundary layers), there is not
much hope that it can be chosen with sufficient accuracy in more complex flows.
Another weakness is the purely local nature of such algebraic formulations, since it
cannot account for history effects, which the flow has experienced at some station

upstream.

The lowest level of turbulence closure, which is nowadays accepted for the simulation
of turbulent flows in engineering applications are models, which include some history
effects. This is achieved by introducing one or more evolution equation to determine
the characteristic velocity and length scale. The characteristic velocity scale is
usually determined from a transport equation for the turbulence kinetic energy

k= (1/2)uu,

‘), such that Vp = k2. The exact equation for the turbulence kinetic
energy has already been derived in section 3.2.2 and is not repeated here. The exact
equation contains unclosed terms, which require modelling. It is common practice
to lump the turbulence transport and pressure transport together and to model

their net effect using a gradient-diffusion approximation of the following form

6 1# p’ , . 6 Ut (91{:
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The constant oy, is a closure coefficient, which needs to be calibrated. The resulting

equation for the modelled turbulence kinetic energy k then takes the form

Dk _ Nﬁﬂi—e—i—il(y—i—y—T) 61{;]. (3.71)

E__ ‘ jﬁ]}j 5xj O 6_.13]

A simple one-equation turbulence model could now be derived by using the relation
eock®? /Ly for the turbulence kinetic energy dissipation rate. The turbulence length
scale can be determined based on an algebraic relation, similar to the mixing length

concept as introduced above (see, for example, Wolfshtein, 1969).

In order to avoid the specification of an algebraic turbulence length-scale relation,
Spalart & Allmaras (1992) proposed to use a transport equation for the product
of the turbulence velocity and length scale, or in other words, for the turbulence
viscosity itself. Instead of considering the turbulence viscosity directly, Spalart &
Allmaras considered a modified turbulence viscosity 7 as the transported quantity,
from which the turbulence viscosity is obtained as vy = U f,1, where f,; is a damping
function. The Spalart & Allmaras (1992) model has proven to be successful in many

applications and is therefore widely in use today.

Another approach to avoid the specification of an algebraic turbulence length-scale
relation is to solve another evolution equation from which the turbulence length
scale Ly can be computed. Assuming that the turbulence kinetic energy is known,
the length-scale-providing variable can be any combination of the form ¢ = k™ L.
The question, which then arises is what the optimum length-scale-providing variable
would be. Hellsten (2004) has proposed a set of fundamental requirements, which

the length-scale determining equation should fulfill. These are
e Wall boundary condition ¢, = 0
e Growth rate at the wall not steeper than ¢ = O(y?)
e The free stream value ¢, should be non-growing
e Non-singular source terms.
Unfortunately, it is not possible to devise a length-scale-providing evolution equa-

tion, which satisfies all constraints above. Two of the most popular choices for the

variable ¢ are considered next.
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3.8.1 The k-¢ Model

The most widely used quantity to compute the turbulence length scale is the dis-
sipation rate of turbulence kinetic energy €, from which the length scale can be
determined as Ly = k*2/e (m = 3/2, n = —1). It then follows that the turbulence
viscosity is given by vy = C,k%/e. The first route to derive an evolution equation
for the dissipation rate would be to model all unclosed terms in the exact evolution
equation for the dissipation rate (3.2.3). Unfortunately, the exact transport equa-
tion for the dissipation rate involves various unknown higher-order correlations of
fluctuating quantities, which makes it much more difficult to model than the exact
transport equation for the turbulence kinetic energy k. As a consequence, the un-
certainties introduced by ad hoc modelling of the € equation is significantly higher
than for the turbulence kinetic energy equation and is often considered one of the

main weaknesses of this type of two-equation modelling.

The second and more practical route to derive a transport equation for the turbu-
lence length scale is based on a generic modelling approach where the length-scale
variable is assumed to be governed by certain physical processes. Typical processes,
which are included in a generic transport equation are, for example, convection by
the mean flow, production by the mean flow, viscous dissipation and transport of
the length-scale variable. Such a transport equation can be written in the general
form for the arbitrary quantity ¢

D¢

2 _c
Dt ¢1

¢
k

L [”T a¢]. (3.72)

Fo = Conet o0 |5, om

For high-Reynolds-number flows, the ¢ equation is commonly modelled following
the proposal of Jones & Launder (1972)

De € €2 0 vr\ Oe
— =C4-P, —Cop— + — — ) — )
D = Caghe—Cag + 5 [(” ae) axj] ’ (3.73)

where Cq, Cs and o, are closure coefficients, which need to be calibrated. Equation
(3.73) is not applicable to low-Reynolds-number or near-wall flows. Suitable low-

Reynolds-number modifications will be discussed in section 3.8.1.2.

3.8.1.1 Calibration Strategy

There are a total of five closure constants, which need to be determined. In order

to derive suitable values for the closure constants a range of simple idealised flows
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are considered, for which the modelled equations can be reduced to an analytical
solution. This allows isolation of the closure constants and determination of suitable

values by reference to data from experiment or direct numerical simulation.
Decaying Homogeneous Isotropic Turbulence (DHIT)

The constant C,, can be determined by considering Decaying Homogeneous Isotropic
Turbulence (DHIT) where all gradients of the mean flow and turbulence statistics
vanish. For DHIT the transport equation reduces to the much simpler form

dk de €2

it Fri _CE2E’ (3.74)
which can be solved analytically. Experimental data suggest that the decay of turbu-
lence kinetic energy of grid-generated turbulence approximately follows a power-law
k(t) = ko(1 + t/ty)~™, where the subscript 0 denotes initial values and n is the de-
cay exponent. Integrating dk/dt = —e gives the solution for the dissipation rate e.
Substituting the solution into the dissipation rate equation gives the constraint for

Ce, = (n+ 1)/n. It is now straightforward to match C., to a reference decay rate
of DHIT.

Homogeneous Shear Flow

Next, homogeneous shear flow will be considered, from which the coefficient C,,
can be determined. In homogeneous shear flows, both £ and e grow exponentially
and the turbulence time scale 7 = k/e, and the anisotropy a;, = u'v'/k reach
approximately constant values. This also implies that the production to dissipation
ratio Py/e = —ajo(k/e)du/dy is approximately constant. The simplified equation

for the k and € equations take the form

dk de k €2
=P — — - P — — .
dt k €, dt C’61 B k 062 L (3 75)
Combining the equations for k£ and e yields
d [k dr Py
—l=—=01-C,)—-(10-0C,). 3.76
$(5)-F-a-co-a-c (3.76)

Assuming that the turbulence has reached an asymptotic state, i.e. dr/dt ~ 0, and
using experimental data for the production to dissipation ratio in homogeneously

sheared turbulence, for example, (Py/€) & 1.8, the constant C, can be determined.
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The Log-Law region

The last closure coefficients, which can be determined are o, and C,. The flow
regime under consideration is the logarithmic region of a zero pressure-gradient
boundary layer, where the logarithmic velocity profile is give by du/dy = w,/ky
and the shear-stress —u/v’ is constant and equal to —u'v’ = u? = 71,/p with the
wall shear stress 7,. It directly follows that the eddy viscosity is given by vy =
—u'v'/(du/dy) = u.ky. Further, it can be assumed that the flow is locally in
equilibrium, i.e.

- us
P, =—uv—=-"T=¢, (3.77)
RY

from which follows that k = y/vre/C,, = u2/4/C,,. Substituting all variables into
the modelled equation for the dissipation rate and rearranging for o. yields the

relation

oc = K*/A/C, (Ceo — C1) . (3.78)

What remains is the calibration of the constant C, appearing in the turbulence
viscosity relation (3.69) and in the definition of o.. Within the framework of EASM
modelling the constant is given by C), = —0.58; and is determined as part of the
constitutive relation of the EASM model. In the present context a specific value

for C), needs to be specified. For the log-law region of a zero pressure gradient

N2
boundary layer, it follows from the discussion above that C), = (—u'v' / k‘) = al,.

It can be found from experimental data or DNS, that the stress-intensity ratio
or ajo anisotropy is approximately constant in the log-region and takes a value of
a2 ~ —0.3. It follows that C), ~ 0.09.

The closure coefficients proposed by Launder & Sharma (1974) (LS) were obtained
based on a slightly different procedure than introduced above. Nevertheless, their
set of closure coefficients is still widely in use due to the LS models reasonable
predictive capabilities for a range of flows. The LS model is nowadays referred to

as the ‘standard’ k-e model, with the closure coefficients given by
C,=0.09,Cq =144,Cp =192,0, = 10,0 = 1.3. (3.79)

More information about the calibration of the closure coefficients can be found in
Hanifi et al. (1999), Durbin & Petterson-Reif (2001) and Hellsten (2004).
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3.8.1.2 Near-Wall Modifications

The k-e model, presented above, is only applicable to high-Reynolds-number flows
and has to be used in conjunction with wall functions or log-law boundary conditions
in the presence of solid walls. Suitable log-law boundary conditions follow from the
discussion in section 3.8.1.1. It is important to note that these boundary conditions
are only applicable if they are applied at a location outside the viscous sublayer, in
the log-region where the non-dimensional wall distance y* = w,v/y is in the range
30 — 100. Wall functions are computationally attractive, since the viscous sublayer
does not need to be resolved with a fine numerical discretisation. Even though
wall functions may give reasonable results for ‘well-behaved’ high-Reynolds-number
flows, they are usually not applicable for flows with low Reynolds numbers, strong
non-equilibrium or strong pressure gradients, separated flows, wall-bounded flows

with strong curvature or general complex three-dimensional flows.

For more accurate predictions in such cases modifications can be introduced to
the high-Reynolds-number formulation, which allows direct integration across the
viscous sublayer to the solid wall. A large number of such low-Reynolds-number
formulations have been proposed. A detailed review and evaluation of some mod-
els can be found in Patel et al. (1985), Rodi & Mansour (1993) or Sarkar & So
(1997). The modifications commonly introduced to the modelled equations for the

turbulence kinetic energy and its dissipation rate can be summarised as follows:

Dk _ 6 vr 6k
— =P — —_— — ) — .
D ) €+&‘9:j [<V+0k> &nj]’ (3.80)
D¢ € &2 0 vr\ O€
— = - P — —_ 4+ — — ) — FE 81
Dt flCelk k fQCGQk + 2z, [(V‘i‘ 06) &Uj] + LB, (3.81)
with
]{72
vr = fucu? (3.82)
and
E=¢e¢—D. (3.83)

The first modification to note is that the transported quantity is now €, which
has the advantage of a simplified wall boundary condition €, = 0, rather than
€w = D = vd?k/0y? for the unmodified € equation. The function f; and the extra
term E are both used to enhance the magnitude of the dissipation rate close to
the wall, which reduces the peak values of turbulence kinetic energy. The damping

function fs is introduced in order to eliminate the singularity of the destruction
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term at the wall where £ — 0. It is sometimes also used to adjust the decay-
rate of isotropic turbulence at low Reynolds number. The last and most important
modification is the damping function f,, which is applied to the constant C,. It
accounts for the suppression of turbulence close to the wall. The near-wall damping

primarily originates from the suppression or blocking of wall-normal fluctuations

7

v'? and viscous damping only plays a minor role close to the wall. Nevertheless,
viscosity-dependent damping functions, which are sensitive to parameters like y™ =
u,y/v, Re, = kY?y/v or Rer = k?/ve are mainly used. It seems that such functions
are not suited to achieve good correlation with the non-viscous, non-local effect of

suppression of turbulence close to the wall.

A typical and widely used low-Reynolds-number formulation is the model of Launder
& Sharma (1974) given by

—3.4
(1 4+ Rep/50)

o, \* (6k1/2)2
E=2vvp|—], D=2 . 3.85
! ( oy ) dy (3:85)

3.8.2 The k-w Model

fu = exp < ) , fi=0, fo=1-03exp(—Re7), (3.84)

A different scale-determining variable, which is frequently used is the specific dissi-
pation rate of turbulence kinetic energy w, from which the length scale is determined
as Ly = k'/?/w and vp = k/w (m = 1/2, n = —1). Since the scale-determining vari-
able is not the dissipation rate e itself, the destruction term in the equation for the
turbulence kinetic energy is usually modelled as € = C,kw. The pioneering work on
w-based turbulence models can be attributed to the work of Kolmogorov (1942) and

extensive contributions of Wilcox (see Wilcox, 1998, where his work is summarised).

The ‘standard’ k-w (1988) model can be represented by the generic transport equa-
tion (3.72) as introduced earlier. The turbulence kinetic energy k and the specific

dissipation rate w are obtained from

Dk . 0 ok

E —Pk—ﬂ kw—f‘a—x] |:(V+UkVT) 5_%] s (386)
Dw w 0 ow
ZE oI Bt — - .
Br =R B4 o o) 52, (387



Chapter 3 Reynolds-Averaged Navier-Stokes Modelling 47

where the turbulence viscosity is vr = k/w and the closure coefficients are given by

v =5/9, B=3/40, B*=0.09, o,=05 o4=0.5. (3.88)

The k-w model has proven to be superior to the k-e¢ models in predicting boundary-
layer flows. For boundary layers under an adverse pressure gradient the € equation
significantly over-predicts the level of turbulence, which may delay or even prevent
separation (see, for example, Wilcox, 1988). Similar shortcomings are observed for
the recovery of reattaching flows (see Jang et al., 2001). Even though the k-w
model could be used in conjunction with wall functions, a distinct advantage of the
w-equation is that it can be integrated through the viscous sublayer, directly to the
wall without the need of ad hoc modifications or empirical damping functions to

reproduce the correct velocity profile of a turbulent boundary layer.

Despite these advantages, the standard k-w model is also not entirely trouble free.
First, the specific dissipation rate w exhibits singular behaviour w — 1/y? close
to the wall. The near-wall behaviour of the w equation is given by the balance
of destruction and viscous-diffusion terms, which both behave as 1/y* and involve
computation of second derivatives of the singular quantity w. Several approaches
exist that alleviate the numerical difficulties close to the wall. The first approach
is to compute w from the asymptotic near-wall behaviour w = 6v/y? in the near-
wall region, say below y™ < 2.5, rather than solving the w equation in this region.
The second, and most frequently employed, approach is to use rough-wall boundary
conditions with a small roughness height. This has the advantage that w remains
finite at the wall. Alternatively, it has been proposed by Gullman-Strand et al.
(2004) to use the decomposition w = @ + w,, where @ is the new transported
quantity with the wall boundary condition @, = 0, and where the correct near-
wall behaviour is contained in w, = 6v/By%. This approach seems particularly
interesting and deserves some attention. However, more testing and validation is

required before it can be generally recommended.

The second weakness of the standard k-w model is the spurious sensitivity to free-
stream values of w,. This sensitivity is undesirable, since it allows a free shear-
layer to attain almost any spreading rate by simply adjusting we. It is instructive
to compare the transport equation model for w with the exact transport equation
obtained by transforming the exact e equation (3.18) into a form based on w. The
resulting equation is as follows:

Dw P. e D, wP, o wDyp  2v 0w Ok

Pw e € LDe Wiy wly = av 2
D i ’ ? + w” + ? + k@:}ci@xi—i_yv w. (3.89)
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The transformation reveals that the closure coefficients of the standard k-w model
should be chosen as v = (Cq —1) = 0.44 and § = C, (Ce — 1) = 0.0828 in order
to be consistent with the standard k-e¢ model. Since the coefficients of the standard
k-w model are quite different, it might be asked whether the better performance in

adverse pressure gradient flows is due to the different set of closure coefficients.

A closer comparison between the exact w equation with the generic form also reveals
that the modelled w equation lacks additional cross-diffusion terms (terms which
involve (0k/0x;)(0w/0x;)). Menter (1992) proposed a two-layer k-w model where
the standard k-w model is used close to the wall and the k-e model of Jones &
Launder (1972), which is transformed into a formulation based on w, is used away
from solid boundaries. The motivation for the two-layer concept is twofold. First,
the favourable behaviour of the w equation close to the wall and in flows with
strong adverse pressure gradients is retained. Second, the transformed k-e¢ model
includes a turbulent cross-diffusion term, which is activated in the outer region of
a turbulent boundary layer, which effectively eliminates the free-stream sensitivity.
Another possible approach to eliminate the free-stream sensitivity of the standard
k-w model is to add the cross-diffusion to the transport equation only if it has
a positive contribution. This requires retuning of the diffusion coefficients such
that the correct diffusive behaviour of w is ensured at a turbulent/non-turbulent
interface. Such a modified version of Wilcox’s k-w model has been proposed by Kok
(1999) and is referred to as the k-w TNT model. Note that the cross-diffusion term

is also present in the latest release of the Wilcox (2008) k-w model.

Another major and very successful upgrade was the introduction of a shear-stress-
transport (SST) limiter by Menter (1992). The SST limiter corrects the ten-
dency to predict too high levels of turbulence in flows with strong adverse pres-
sure gradient, or non-equilibrium flows where the production of turbulence kinetic
energy exceeds the dissipation rate P, > €. Inside a boundary layer the shear-
stress may be determined as —uv = vrdu/dy. Using Bradshaw’s assumption,
that —W/k = —ajp = 0.3 is a good approximation in a range of turbulent wall
bounded flows, the turbulence viscosity can be expressed as vy = —aj9k/S, where
S = /2555 For boundary-layer flows, the SST limiter is now simply obtained
by imposing an upper limit to the turbulence viscosity vy = min(k/w, —a2k/S).
Wilcox (2008) also recognised the importance of limiting the shear-stress in strong
non-equilibrium flows and introduced a limiter, which multiplies v with a factor

that is sensitive to the production to dissipation ratio Py/e.
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Menter’s k-w-SST model is obtained by using the shear-stress-transport limiter in
conjunction with the two-layer formulation, as discussed above. Since the SST
model is sometimes used in this work as a reference, the complete formulation will
be given here (see also Menter, 2009). The transport equations for the turbulence

kinetic energy and the specific dissipation rate take the form

Dk - 0 ok

— =P - 0"k — -— .

Dt k ﬁ w + axj l(V + O'kI/T) ax]] y (3 90)
Dw 1 - 0 Ow 1 0k ow
— =y—P, — B+ — -— 21— F - 91
Dt /yl/T k 6&) + 61‘]‘ |:(V + O-WVT) é‘x]] + ( l)anw 8% é‘xi’ (3 9 )

where the turbulence viscosity is given by
k
vy = @ (3.92)

max (ayw, SFy)’

The production term is limited to ten times the dissipation rate, thus
P, = max (P, 108*kw) to avoid an unphysical build-up of turbulence kinetic energy

in stagnation regions. The blending functions F} and F5, are unity close to the wall

} : (3.93)

F; = tanh [max ( 2vk 500]])] : (3.94)

and approach zero away from solid walls, and are given by

4
F} = tanh {min [max ( vk 5OOV> T2k

Brwy’ y?w | y*CDy,

Brkw’ 2w

where C' Dy, = max(20,2(1/w)(0k/0x;)(0w/dx;),1071°) and B* = 0.09. The closure
constants are obtained by a blending of the form ¢ = ¢ F} + (1 — Fy)¢po, where ¢

and ¢ correspond to set 1 and 2, respectively.

Set 1: m =5/9, p1=23/40, ok, =085 o, =0.5.
Set 21 o =044, F=0.0828, ox, =1, 0., = 0.856.

3.8.3 Elliptic-Relaxation/Blending Approaches

The traditional way to include wall effects within the framework of two-equation
models is to introduce empirical damping functions, which involve viscosity-dependent
parameters (for example, y© = u,z/v, Rer = k*/ve or Re, = Vky/v). For the low-

Reynolds-number formulation of a k-e¢ model, up to three empirical functions are
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required: fi, fo and f,. It is also important to mention in this context that even
though the high-Reynolds-number k-w model can be integrated to solid boundaries
without requiring ad-hoc modifications, if accurate predictions of the turbulence
quantities close to the wall are desired, damping functions are also required for the

k-w model.

The damping function f,, applied to C}, is of critical importance and accounts for
the suppression of turbulence close to the wall. It has already been mentioned
that the near-wall damping primarily originates from the suppression or blocking of
wall-normal fluctuations v’ and viscous damping only plays a minor role close to
the wall. The kinematic wall blocking is a non-viscous effect, and strictly speaking
should not be modelled using viscosity-dependent parameters. Figure 3.2 shows
the behaviour of f,C), = Cﬁf F close to the wall, computed directly from DNS data
of Coleman et al. (2003) for a turbulent channel flow at Re, = 390, and for the
same configuration with an imposed uniform straining, which mimics the effect of
an idealized adverse pressure gradient on the flow. In addition, Cﬁf F computed from
the relation C’Ef F= C’Z?/ k, where C'; = 0.22, is plotted as well.
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F1GURE 3.2: Near-wall behaviour of C’ﬁf 7 Symbols correspond to DNS of Cole-
man et al. (2003); (o) and (—) channel flow, () and (- - -)
channel flow with imposed APG. The lines are computed from

Cill = k.

This clearly illustrates that the damping of C), close to the wall is very well cor-
related with the suppression of the wall-normal fluctuations and has not much to
do with viscous damping effects. Therefore, any attempt to model the near-wall
behaviour correctly should ideally be based on a damping function of the form
fu= (CZ/CM)F//@ Such a damping function is of course only useful if v’ can be

determined with sufficient accuracy close to the wall. Durbin (1991) derived a scalar
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transport equation for the wall-normal fluctuations v2 from the elliptic-relaxation
technique presented in section 3.4.6. Even though the wall-normal velocity scale v2
is not exactly equal to the component o2 of the Reynolds-stress tensor, close to the
wall their behaviour is very similar. Based on the elliptic-relaxation approach of
Durbin (1991), an eddy-viscosity turbulence model can be derived, which does not

rely on empirical viscosity-dependent damping functions.

The scalar transport equation for the wall-normal velocity scale v? can be written

as
Dv? w0 ov?
— =15 —e—+ — 3.95
Dt 22 € L + &\xk [(V—i_O“PVT) axk] ’ < )
with the scalar redistribution term
02
I, =1l — e + T k faz, (3.96)

and the elliptic equation for the intermediate variable fo,

1 omy 2 17
faz — LPV? fog = 7 <<I>§'§ )~ g€t 6?) . (3.97)

The turbulence viscosity is now obtained from the relation vy = CE?T. In order to
take viscous effects into account, the turbulence length and time scales are limited

by the viscous or Kolmogorov length and time scales, respectively:

3/2 3\ 1/4
kT,a7 (%) ] szax[é,CT\/g]. (3.98)

The elliptic-relaxation concept is usually used in conjunction with a k-¢ model to

L = Cpmax

compute the turbulence length and time scales. The transport equation for the

turbulence kinetic energy and dissipation rate are given by

Dk 0 ok
E—Pk—€+%jl(y+0kVT)%j], (399)
De C’lpk — Ce 0 oe
ZE_Hatkm et Y L. 1
D . + 7 [(V + ocvr) 6353-] (3.100)

Note that the near-wall singularity of the destruction term in the transport equation
for the dissipation rate is no longer a problem, since the time scale 7 remains finite

at the wall. The closure constant C., = f,Cq includes the empirical function

fi =140.0045 k/ﬁ, which is designed to enhance the dissipation rate close the



52 Chapter 3 Reynolds-Averaged Navier-Stokes Modelling

wall (see, for example, Parneix et al., 1998).

The wall boundary condition for the elliptic equation is given by fa2., = —5(v2/k?)e =
—QOyzﬁ/ey‘l. This boundary condition introduces a strong coupling between the
v2 and fyy equation and the highly non-linear behaviour of v2 = O(y*) and y* in
the denominator introduces considerable numerical stiffness close to the wall. The
strong coupling of v2 and fay via the boundary conditions results in considerable
numerical difficulties when solved with a segregated solver, and may lead to oscil-
lations or divergence particularly for too small values of y™ < 1 (see, for example,
Laurence et al. (2004) or Hanjalic et al. (2004)). Therefore, various modifications
to Durbin’s original elliptic-relaxation approach were introduced in the literature in

an attempt to make it applicable for segregated solvers.

Lien & Durbin (1996) and Lien & Kalitzin (2001) redefined the elliptic-relaxation
variable as fas = foo — fozw = foo + 5(v2/k?)e with the benefit that homogeneous
boundary conditions can be prescribed for the new dependent variable f~22,w = 0.
This reduces the coupling between the v2 and fas equation. In the equation for the
new elliptic variable foy the term 5L2V?(ev?/k?) resulting from the transformation
has been neglected. Laurence et al. (2004) argued that this term needs to be re-
tained, since in the log-region it has similar magnitude to the other terms in the fgg

equation.

Hanjalic et al. (2004) and Laurence et al. (2004) both proposed modelling the vari-
able ¢ = F/k rather than v? directly. This has the advantage that the non-
linearity at the wall is reduced to ¢ = O(y?) as the wall is approached, and
the boundary condition for fs reduces to fa, = —10v¢/y*. Laurence et al.
(2004) additionally transform the elliptic variable into a more convenient defini-
tion, fao = fag +20(VVk)/k+1vV2¢, for which homogeneous boundary conditions
can be prescribed at the wall, f~227w = 0. In the final form of the fs equation,
the term vL2V?(2(VpVk)/k + V%) originating from the transformation has been
neglected based on the argument that its effect is limited to the viscous sublayer

and the magnitude is significantly smaller as compared to the term neglected by
Lien & Durbin (1996).

Keshmiri et al. (2008) used the new variable ¢ = v2/k in conjunction with the
elliptic-blending concept of Manceau & Hanjalic (2002), where the elliptic-blending
parameter « already has the homogeneous boundary condition a,, = 0 and hence
does not require a transformation to another variable where certain terms have to
be neglected in the derivation. The ¢-a model is considered a good compromise

between predictive accuracy and numerical robustness of the formulation. The
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constitutive equations for ¢ and « take the form

Dy % 2 ok oOp
=(1=aP wall p fhom p “
Dt ( @ )f ta f k’ F + k (O-kVT) 6xj 61’j

L’Aa —a = —1.

0 o
+ 5_1‘] [(V + O'@VT) 5_%] s
(3.101)
(3.102)

The redistribution term f"*™ in the ¢-a model is based on the quasi-homogeneous

redistribution model of Speziale et al. (1991), thus

from = =(1/7) (Cr = 1+ CoPefe) (9 —2/3), [ = —pe/k. (3.103)

The turbulence viscosity is given as

vr = CZQO]{?T

(3.104)

The closure constants can be summarised as C) = 0.22, C, = 0.161, Cr = 6,

C,=90,0p,=0,=1,p=3,C, =17, Cy =1.2.






Chapter 4

Turbulence-Resolving Approaches

In this chapter the turbulence-resolving approaches of Direct and Large-Eddy Sim-
ulation will be briefly introduced. This is followed by a detailed review of available
techniques to combine the framework of statistical turbulence modelling (RANS)
with a turbulence-resolving approach, such as Large-Eddy Simulation (LES). The
unified framework of RANS/LES modelling aims at providing improved predictions
for complex flows at high Reynolds number where traditional RANS closures fail
to predict reliable results and where conventional LES is prohibitively expensive in

terms of computational cost.

4.1 Direct and Large-Eddy Simulation

The most accurate approach for the simulation of turbulent flows is Direct Numer-
ical Simulation (DNS) where the Navier-Stokes equations are solved in exact form.
The aim of DNS is to explicitly resolve all inherent mechanisms of turbulence in the
simulation, such as, for example, production and dissipation of turbulence. Hence,
DNS does not require any modelling apart from the numerical discretisation. Direct
simulation of turbulent flows is only possible if unsteady simulations are performed
with adequate resolution in space and time to capture both the smallest and largest
turbulence scales in the flow. It has already been discussed in chapter 2, that the
range of time and length scales or, in other words, the ratio of largest to smallest
scales present in a turbulent flow, increases with Reynolds number. Unfortunately,
many flows of engineering and more practical interest are characterised by high
Reynolds number, with the consequence that the spatial and temporal resolution

required to perform DNS is well beyond currently available computational resources.

%)
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Even though there is no need for physical modelling of turbulence in DNS, there
are other issues, which require careful attention. The numerical scheme has to be
very accurate in order not to contaminate the smallest turbulence scales by ex-
cessive levels of numerical dissipation and dispersion. Furthermore, the inflow or
initial conditions often need to contain realistic turbulence with a full spectrum of

turbulence scales as well as temporal and spatial correlations, if possible.

The resolution requirements for DNS can be relaxed by applying a spatial or tempo-
ral filter to the Navier-Stokes equations, which effectively removes the smallest scales
from the flow field. As opposed to the RANS approach, where all turbulence scales
are removed from the governing equations, filtering only removes the contribution
of the smallest turbulence scales, which otherwise, would require a very fine spatial
and temporal resolution. The large scales of turbulence remain unmodified by the
filtering operation and are explicitly resolved in the simulation in space and time,
similar to DNS. This approach is referred to as Large-Eddy Simulation (LES). The
filtering operation introduces additional unknown terms in the momentum equa-
tions, which need to be modelled and which account for the effect of the unresolved
small scales on the resolved flow. LES is naturally more reliable and accurate than
traditional RANS modelling for the following two reasons. First, the large scales
of turbulence, which most significantly influence the transport of mass, momentum
and energy, and which are highly anisotropic and strongly depend on boundary
conditions, are explicitly resolved in the simulation. Second, the unresolved small
scales tend to be more universal than the large ones (at high Reynolds numbers)
and are mainly responsible for dissipating turbulence kinetic energy introduced at
the large scales. This makes the unresolved small scales easier to model, compared
to having to model the entire range of scales, including the anisotropic large scales,
in the RANS approach.

In order to remove the smallest scales from the flow a low-pass filter can be applied

to the velocity vector u;. The filtered velocity vector uw; can be defined by

wi(x,t) = JOO G(A, x — x )uy(x , 1)d®x (4.1)
—o0
where G(A,x — x') represents a general filter kernel and A the filter cut-off length
scale. For a box or top-hat filter, for example, the filter function is unity in case
Ix —x'| > O(A), and zero for the range [x — x| < O(A). Thus the filtering op-
eration removes all turbulence scales, which are smaller than O(A) and leaves the
scales larger than O(A) unmodified. The filter width A usually corresponds to a

measure of the spatial resolution of the computational grid. It follows that the
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unresolved component of the velocity vector is given by u; = u; — u;. Thus the
velocity field can be decomposed, similarly as in the RANS case, as u; = ; + u;.
However, u; denotes the filtered velocity vector, which does not correspond to the
mean value. Contrary to Reynolds-averaging, double-filtering does not necessarily
reproduce the original filtered field, w; # w;. In addition, filtering the unresolved

velocity component does not necessarily result in zero, i.e. u; # 0.

Substituting the decomposed quantities into the continuity and momentum equation
for incompressible flow and filtering the same yields the governing equation for the
filtered velocity field

ou;
= 4.2
ﬁxj 0, ( )
6@ aﬂlﬂ] 1 aﬁ 9 o LES
R T —— (). 4.
ot - ox; p 0x; VT oz (7"°) (4.3)

Note that the filtered non-linear convection term %;u; can be written as

v, = (U + ) - (T + ;)

= W, + (W — ) + (W + wt;) + g, (4.4)

which gives the following expression for the residual subgrid-stress tensor

7" = (@ — ) + (@ + ) + ;. (45)

The residual stress tensor is obviously more complex than in the RANS case (recall
that TgAN S = u;u;). The additional terms account for the interaction of the resolved
flow field with both, the unresolved and resolved flow field.

Comparing the filtered equations with the RANS equations reveals that both ap-

proaches result in an un-closed momentum equation due to the appearance of 7%

ij
RANS
or T;;

specifying or knowing the exact form of the filtering kernel or averaging operation.

. The filtered and mean momentum equations are both derived without

Therefore, the only difference between both approaches is the magnitude of the
unresolved turbulence velocity and length scales. Hence the magnitude of the extra
stress-tensor 75%% or 7}4NS determines whether the RANS or filtered momentum

equations are recovered.
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4.1.1 Subgrid-Scale Modeling

The consequence of the additional term 7,57 on the right-hand side of (4.3) is that

the system of equations is no longer closed. In order to close the system of equations,

this term needs to be modelled. It is common practice to model 7.5°

as a whole
rather than on a term by term basis. The model needs to account for the effect of
the turbulence scales, which are smaller than the grid size A onto the resolved flow
field. The turbulence models in LES are therefore referred to as Subgrid-Scale (SGS)
Model . The smallest scales of turbulence mainly dissipate turbulence kinetic energy
by conversion into thermal energy. Therefore, assuming the turbulence structures
corresponding to the inertial subrange are well resolved, the SGS model merely
has to provide an adequate amount of dissipation such that the energy cascade is
correctly reproduced and no energy accumulates at the smallest resolved scales. For
this reason, SGS models are usually purely dissipative and do not aim at modelling
large amounts of unresolved stress. Within the finite-volume framework used here
to solve the governing equations, the truncation error of the numerical discretisation
introduces numerical dissipation, which provides an implicit filtering operation and
hence additionally drains energy from the resolved flow field. Therefore, in order
to ensure a physically consistent energy cascade the overall dissipative effect of the

SGS model and numerical framework needs to be optimised.

The SGS stress tensor TZ-?ES is frequently modelled using the Boussinesq (1877)
approximation, which relates the subgrid-stress tensor to the filtered velocity field
using a Newtonian stress-strain relationship and a scalar turbulence viscosity v,
1 —
ngES — gtr {ngES} 0ij = —2vrS;;. (4.6)
The most prominent subgrid-scale model has been proposed by Smagorinsky (1963)
and is still used today due to its simplicity. The Smagorinsky model shows close
resemblance to Prandtl’s mixing length model where the turbulence viscosity is
given by
VTOCVTLT. (47)

In the context of LES, the characteristic length scale is assumed to be proportional
to the spatial resolution provided by the computational grid, with Ly = CgA,
where A is frequently determined as the cube root of the cell volume A = dV/3

or as A = (AmAyAz)l/?’ for rectangular grids. Note that many other options are

possible to determine A. The characteristic velocity scale is given by Vi = Ly ‘S_;‘; ,

where ‘S_;;‘ = 1/2§,~j§ij~ is the magnitude of the filtered strain-rate. Hence, the
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Smagorinsky model is given by
vr = (CsA)* [SE] . (4.8)

The constant Cg is usually optimised to provide an inertial subrange energy spec-
trum for isotropic turbulence. The major shortcoming of the Smagorinsky model
is that the constant Cy is, in reality, not universal and strongly depends on the
flow under consideration. Moreover, the model is not able to operate in DNS mode,
since the SGS model contribution only vanishes for infinitesimally fine grids where
A — 0. Consequently, it is not suitable for transitional flows, since the model al-
ways returns vy = 0, even in laminar flows. In addition, the Smagorinsky model
is purely dissipative and thus does not account for local or instantaneous backscat-
ter of energy from the unresolved to the resolved turbulence fluctuations. Beside
the traditional Smagorinsky model many other models exist. Some of them allevi-
ate the difficulties discussed above. The reader is referred to Sagaut (2001) for a

comprehensive overview of existing SGS models.

4.1.2 Wall Models

The region very close to the wall in a turbulent boundary layer is populated with
longitudinal streamwise structures, which are responsible for the transfer of energy
close to the wall. In order to resolve the driving mechanisms of the near-wall turbu-
lence, these streaky structures need to be resolved explicitly in LES and typically
require a grid resolution of at least AY ~ 100, AT ~ 20 and Af < 2, where
AF, AF and A are respectively the streamwise, wall-normal and spanwise non-
dimensionalised grid spacing in wall units (see, for example, Piomelli & Balaras,
2002). On the other hand, in the outer part of the boundary layer the dominant
structures scale with the boundary-layer thickness. Piomelli & Balaras (2002) esti-
mated the number of grid points required to adequately resolve the near-wall region
to be proportional to Re'®. The resolution requirements for the outer region of

04 Assuming a time-

the boundary layer was estimated to be proportional to Re
accurate simulation is performed the total computational cost scales as Re%5 for
the outer layer and as Re** for the inner layer of the boundary layer. The need to
resolve the turbulent near-wall structures in LES is considered the major bottleneck
of LES in high-Reynolds-number flows. In fact, for wall-bounded flows the required
computational resources are not very different from DNS, which currently prohibits

the application of LES at high Reynolds number.
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In order to make LES applicable for high-Reynolds-number wall-bounded flows the
near-wall dynamics cannot be computed explicitly in the simulation and therefore
need to be modelled. Performing LES on too coarse a grid in the near-wall region
is not an option, since it considerably deteriorates the results. Larsson et al. (2007)
investigated the performance of LES on coarse grids to predict the fully developed
flow in a planar channel. It was shown that the skin-friction coefficient was in error
by up to 40%. This is, because subgrid-scale models are generally not designed to
model a significant amount of the unresolved stress, which is required on too coarse
grids. The only way to reduce the cost of LES in high-Reynolds-number wall-
bounded flows is to employ suitable approximations to model the near-wall region
altogether. One approach to wall-modelled LES (WMLES) is to use wall functions,
which bridge the near-wall region of a turbulent boundary layer. Thereby, the first
grid point can be placed in the log-layer (y* > 30) and the mean or instantaneous
velocity can be related to the wall shear-stress based on log-law relations. This
idea is analogous to wall functions in RANS modelling. The wall function approach
works fairly well for attached boundary layers and flows in equilibrium. For complex
flows with strong wall curvature and pressure gradient, and for separated flows, the

log-law assumptions do not hold.

More sophisticated wall models, which do not rely on log-law assumptions, are so
called Two-Layer Models (see, for example, Balaras & Benocci, 1994). Thin Bound-
ary Layer Models (TBLM) belong to this class of wall models and are based on a set
of simplified boundary-layer equations, which are solved on a separate grid embed-
ded between the first LES grid point and the wall and which employ an algebraic
wall-damped eddy-viscosity RANS model. Particularly for flows departing from the
log-law assumptions, this approach may help to provide improved predictions. The
results of TBLM models could obviously be further improved if the thin-boundary-
layer equations and the mixing length model were replaced by a RANS layer near
the wall, combined with a state-of-the-art RANS model. Such hybrid RANS/LES
approaches will be discussed in more detail in the subsequent chapter. The inter-
ested reader is referred to Piomelli & Balaras (2002), Cabot & Moin (1999) and

Sagaut (2001) for a more comprehensive review of existing wall-models in LES.

4.2 Statistically Unsteady Turbulence Modelling

The group of Statistically Unsteady Turbulence Modelling (Sagaut et al., 2006) or
second-generation Unsteady-RANS approaches (Froehlich & von Terzi, 2008) are
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formally based on the RANS paradigm. These approaches are distinctly different
compared to other LES and hybrid RANS/LES approaches, since they do not in-
corporate a grid-dependent filter width A in the model equations. Nevertheless,
some of these approaches are able to fully resolve turbulence structures up to the

grid limit.

4.2.1 Unsteady RANS

In the RANS approach, as discussed in chapter 3, all variables are decomposed
into a mean and fluctuating part and Reynolds averaging is performed in order to
derive governing equations, which describe the evolution of the mean-flow field. In
statistically stationary flows, with no time variation of the mean flow, the Reynolds
averaging corresponds to a time-average operator, where the averaging time has to

be significantly larger than the characteristic turbulence time scale.

It is possible to solve the RANS equation in a time-accurate fashion. The application
of time-accurate or unsteady RANS (URANS) is particularly justified in situations
where unsteady boundary conditions, such as time dependent inflow conditions or
body motion, impose a low-frequency unsteadiness on the mean-flow field. The time
variation of the mean-flow field has to be significantly slower than the characteristic
turbulence time scale, or in other words, there needs to be a clear separation (or
spectral gap) between the mean and turbulence time scale. Under such conditions,
the Reynolds averaging and equilibrium calibration of the RANS models for sta-
tistically steady-state flows remain valid, and URANS is justified. There are other
situations, for example, in bluff body flows with massive separation, where URANS
will resolve some unsteadiness, which is triggered by strong, internal instability
mechanisms of the flow. The resolved large-scale flow structures, directly interact
and influence the mean flow and are not distinguishable from real turbulence, i.e.
there is no spectral gap between the resolved large-scale structures and turbulence
fluctuations. As a consequence, the RANS equations are formally not applicable
in this situation. In addition, the calibration procedure of the closure constants in
the RANS model, which aim at reproducing mean-flow quantities of a statistically
steady-state flow, becomes questionable. Nevertheless, it has been shown in Shur
et al. (2005) and Travin et al. (2004a), that when URANS is applied in a three-
dimensional computational domain, as it is used in LES, improved predictions can
be obtained over steady RANS or even 2D-URANS. The improvements are related
to the capability of URANS to explicitly resolve the dominant three-dimensional

flow structures, which directly interact and influence the mean flow.
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For unsteady flows which contain an organised, periodic motion, the Reynolds de-
composition can be extended to a triple decomposition. Following the proposal of
Hussain & Reynolds (1970), the decomposition for the velocity vector can be written
as

U; = ﬂi + 171 + u;, (49)

where %; is the time-mean value, 1; is the contribution of the organised motion, and
u; is the random, fluctuating part of turbulence. The organised part is equivalent
to u; = (u;) — u;, where the brackets {.) correspond to a phase-average procedure
or a conditional ensemble average at the same phase, that occurs at the time in-
tervals t, = nT, where T is the time-cycle of the periodic motion. Based on the
triple decomposition of variables Reynolds & Hussain (1972) derived the conser-
vation equations for the mean velocity w; and for the organised motion ;. It is
shown, that the resulting mean-momentum equations contain the Reynolds stress

—u;u;, which accounts for the interaction of the turbulence with the mean flow, and

additionally, the Reynolds stress —17;17; of the organised motion, which accounts for

the interaction of the organised motion with the mean flow.

An alternative to the triple decomposition is the decomposition into coherent and
incoherent part according to u; = u + u'. The coherent part correspond to the
organised motion and the incoherent part to the small scale turbulence fluctuations.
The coherent part, u{ = u; + w;, is directly computed from the phase-averaged
Navier-Stokes equations and the incoherent part, ui® = u;, is modelled using a RANS
closure. Note that the phase-averaged conservation equations are identical to the
URANS equations. Nevertheless, the modelled contribution is different between
both approaches, since the length and time scales are not the same (see Sagaut
et al., 2006). The decomposition into a coherent and incoherent part is also referred

to as the Semi-Deterministic Method or Organized-Eddy Simulation.

The RANS closure aims at modelling the effects of the entire spectrum of turbulence
on the mean flow and hence, all turbulence kinetic energy is statistically represented
by the RANS model. In a resolved flow field, with small scale turbulence, the
length-scale-providing equation of traditional RANS closures does not produce the
correct length-scale or dissipation rate. The reason being, that the length-scale-
providing equation does not contain any information about the grid spacing, nor
is sensitive to the resolved turbulence length scales present in the flow. Thus, in
situations with explicitly resolved turbulence fluctuations and resolved turbulence
kinetic energy, the contribution of the turbulence model has to be reduced and

only a fraction of the turbulence kinetic energy needs to be statistically represented
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by the turbulence model. This is not the case for traditional RANS models and
the reason why URANS models are overly diffusive and damp most of the flow
unsteadiness associated with resolved turbulence fluctuations. Again, the main
problem of traditional URANS is, that the length-scale-providing equation does not
produce the correct length-scale or turbulence dissipation rate when the resolution
of the computational grid is fine enough to allow for an explicitly resolved flow
field. This is an artefact of the calibration procedure, which aims at reproducing
mean-flow quantities of the flow. For example, homogeneous shear flow is used
to calibrate the length-scale-providing equation. For homogeneous shear flow the
transport equations for the turbulence kinetic energy and turbulence dissipation
rate reduce to
dk de € €

E:P]f—ﬁ, —:Ce Pk—CEQE.

= = Car (4.10)

In the limit of an asymptotic equilibrium state, the time scale k/e and turbulence
production to dissipation ratio Pj/e, amongst others, reach constant values. The

equations above can be combined to yield

€

This may be rewritten in the following form
P C,—1
(—‘“) =z - (4.12)
€ ) Cq—1

The closure coefficients of the ‘standard’ k-e model (Jones & Launder, 1972) yields
a turbulence production to dissipation ratio (Fj/€),, = 2.1. It is shown in Girimaji
et al. (2006) that the ratio of unresolved to total turbulence kinetic energy k,s/k
approaches almost unity, independent of the initial conditions, as a long-time be-
haviour. This has the consequence that any initially well-resolved flow field with
small-scale turbulence, where the modelled turbulence kinetic energy k4 is small,
will eventually approach a state where all fine scale turbulence in the flow field is
eliminated and most of the turbulence kinetic energy is contained in the modelled
contribution k4. This long-time behaviour of the URANS equations is linked to
a too high value of the turbulence kinetic energy production to dissipation ratio of
(Py/€),, = 2.1. In case of resolved turbulence content in the flow field, most of the
production P, directly increases the velocity fluctuations and hence the resolved
turbulence kinetic energy and only a small part increases the unresolved (modelled)

turbulence kinetic energy, i.e. Py < . Since €4y, = € in situations where the
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dissipative scales are not explicitly resolved, it follows that the turbulence produc-
tion to dissipation ratio of the modelled scales Py, /€sgs has to be smaller than the
URANS value, i.e. Py, ,/€sgs < Pp/e. Relation (4.12) is particularly useful, since it
reveals possible routes to modify the URANS equation in order to resolve or sustain
turbulence. The key issue here is that the production to dissipation ratio needs to
be reduced by suitable modifications. One possibility is to increase the dissipation
rate by employing an inertial range scaling of the form eack®?/A. This is, for exam-
ple, the idea of Detached Eddy Simulation based on a two-equation model, which
will be discussed in section 4.3. Alternatively, the turbulence production P, can
be reduced by applying a damping function to the Reynolds-stress tensor or the
turbulence viscosity. This is, for example, the idea of the Flow Simulation Method-
ology (see discussion in section 4.3). A third possibility is based on modifying the
closure constant C,. For example, for C,, = C,, the URANS equation will operate
in DNS mode where any turbulence model contribution will vanish. This forms the
basis of the Partially-Averaged Navier-Stockes approach of Girimaji (2006) and the
Partially-Integrated Transport Model of Schiestel & Dejoan (2005).

4.2.2 Scale-Adaptive Simulation

The Scale-Adaptive Simulation (SAS) methodology is formulated based on the k-
kL; model of Rotta (1968) where, L; is the turbulence integral length scale and k
the turbulence kinetic energy. In the original attempt of Rotta (1968) to model the
exact kL; equation a sink term was introduced, which contained the third derivate
of the velocity field. Menter et al. (2003) (see also Menter & Egorov, 2010) have
proposed a new model for this term, which includes the second derivative of the
velocity field. The sensitivity of the length-scale providing equation to the second
derivative of the velocity field introduces some remarkable features to the k-kL;
model. For flows with sufficiently strong instabilities the model contribution is au-
tomatically reduced and fine-scale turbulence structures are allowed to develop up
to the grid limit, without any explicit grid dependency, as in LES. On the other
hand, for flows with only weak instabilities the model operates in RANS mode. The
capability to automatically adapt the model contribution to the turbulence length
scales present in the flow is highly desirable, since it will eventually revert back to
RANS mode when the spatial or temporal resolution is insufficient to support the
explicit resolution of turbulence structures. None of the present LES methodolo-

gies or other hybrid RANS/LES formulations provides such capabilities and instead
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require that the spatial and temporal resolution is sufficient to support the resolu-
tion of turbulence scales well within the inertial subrange. If this is not case, the

predictive accuracy of LES will deteriorate.

The SAS concept is not limited to the kL; scale providing equation. It can also
be used with, for example, the specific turbulence dissipation rate w. Menter &
Egorov (2005) have transformed the k-kL; formulation to a formulation based on
the k-w-SST model. The consequence of this transformation is the appearance of a
new source term Pgsg in the equation for the specific turbulence dissipation rate,

thus the £ and w equations are given by

Dk 0 ok
-7 = b= 57 - - 4.1
Dr e — B kw + o [(l/—l—akl/T) axj] , (4.13)
Dw w 5 0 ow 1 0k ow
Dt _f}/Epk"i_PSAS_ﬁw +5_(L’] [(V+UwVT) 5_1']:|+2(1_F1)UW256_1‘151‘1 (414)

The additional source term has been modified since the very first proposal. Here,
the formulation given in Egorov & Menter (2007) is used. The source term takes

the from

2
PSAS = Imnax [CQK/Sz ( LT ) — C% max lié_wa_w i%é_]ﬂ] ’O] , (415)

LvK Op w? 51}]' an7 k2 ﬁxj aﬂfj

where S = \/m and Ly = k'/2/ (Cﬁ”w). The SAS formulation was tested on
decaying homogeneous isotropic turbulence and it was found that the model is not
dissipative enough and results in an artificial accumulation of energy at the smallest
resolved scales. As a consequence, the v. Karman length scale L,x, which contains
the second derivative of the velocity field, had to be limited to be no smaller than
the minimum resolvable scales, which are of the order of the grid spacing A = dV/3.

Thus the limited v. Karman length scale is given by

kS k(o
Lok = Y Cons |22 A 4.16
K maX[|V2U| SAS R (4.16)

where Cgg is a calibration constant, which depends on the discretisation scheme.
For the commercial Ansys CFX solver the constant is given as Cgag = 0.11. The

other extra closure coefficients of SAS are given by (, = 3.51, 0 = 2/3 and C = 2.

Davidson (2006) has evaluated the performance of SAS based on the k-w-SST model

compared to steady and unsteady RANS predictions for the flow in planar channel,
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asymmetric plane diffuser and around a three-dimensional axisymmetric hill. For
the flow in the diffuser the SAS model was found to perform worse than the URANS
model. It was argued that in this specific case the SAS model operates in a grey
area, where the model is neither in RANS nor in LES mode. The axisymmetric
hill was poorly predicted by all models. In both cases the turbulence viscosity
was over predicted compared to other hybrid RANS/LES methods. Egorov et al.
(2010) conducted a similar study and compared SAS to steady and unsteady RANS
predictions for a range of applications of practical interest. It was found that SAS
may provide improved prediction over steady and unsteady RANS predictions for

the range of test cases considered.

4.2.3 Turbulence-Resolving RANS

A Turbulence-Resolving RANS (TRRANS) formulation has been presented in Travin
et al. (2004a). TRRANS is a simple modification to Wilcox’s k-w RANS turbulence
model, which effectively lowers the predicted turbulence viscosity and hence allows
for turbulence fluctuations to develop. In the equation for the turbulence kinetic

energy the turbulence dissipation rate is modelled as

2
TRRANS _ (g% 1.\ . |95]
€ = (B*wk) - max | 1, <CT mm) : (4.17)

with the strain-rate and vorticity magnitude ‘S:;‘ and ‘Q;‘j‘, respectively. Depending
on the ratio of strain-rate to vorticity magnitude, the dissipation of turbulence
kinetic energy k is increased. This has the consequence that the magnitude of
k and the resulting turbulence viscosity is reduced. The ratio of strain-rate to
vorticity magnitude controls whether the turbulence dissipation is increased above
the RANS level. For example, in thin shear flows where ‘S{‘;‘ ~x ‘Q:‘]‘ or in general,
where ‘S;’}‘ « ‘QZ‘J‘ the TRRANS formulation operates in RANS mode. In strain
dominated flows where ‘S;’;‘ » ‘QZ*]‘ the turbulence dissipation is increased and
TRRANS operates in a LES-type mode. The constant C7 is calibrated to provide
the correct amount of dissipation in decaying homogeneous isotropic turbulence and

is given as C'pr = 1.25.

Travin et al. (2004a) applied the TRRANS formulation to a range of test cases,
such as boundary layers, an airfoil at 45° angle of attack, a cylinder with laminar
separation and a backward facing step. The results of TRRANS, when applied to

a boundary layer, is consistent with a steady RANS solution. The flow around the
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airfoil and cylinder are qualitatively similar to the results of other hybrid RANS-
LES methods. However, for the backward facing step TRRANS was not able to
sustain any turbulence fluctuations and converged to a steady 2D solution. This
is a somewhat disappointing result, because other hybrid methods perform well for

this test case.

4.2.4 Partially-Averaged Navier-Stokes

The Partially-Averaged Navier-Stokes (PANS) model was proposed by Girimaji
(2006) and Girimaji et al. (2006) and employs two resolution control parameters,
namely the ratio of unresolved to total turbulence kinetic energy fi = kys/k and
the ratio of unresolved to total turbulence dissipation rate f. = €5,5/€ to control
the damping or extent of partial averaging employed in the RANS model. For
fr = 1, PANS is consistent with full statistical modelling (RANS) and for f; = 0,
the contribution from the RANS model vanishes and PANS is operating in the DNS
limit. The result of the partial averaging are transport equations, which govern the
evolution of the unresolved turbulence kinetic energy k4, and turbulence dissipation
rate €55. The effect of partial averaging, which is determined by the resolution
control parameters, is limited to the closure coefficients of the transport equations
and does not change the constitutive relations of the RANS model. For a k-e
model the closure coefficient C¢, is replace by CéZAN S =04+ fr(Cy,—0C4). In
the original PANS formulation, appropriate values for the parameters f, and f.
had to be specified prior to the simulation and were assumed constant in the entire
domain. For a resolution with a cut-off wavenumber within the inertial subrange,
the parameter f, is set to unity and fj is the only relevant parameter. This makes
the implementation of PANS into an existing RANS solver straightforward and only
requires to change the value of C,. Later extensions to PANS redefine the resolution
control parameter fi to be a function of the grid spacing A (see, for example,
Abdol-Hamid & Girimaji (2004), Elmiligui et al. (2004) and Song & Park (2009)).
PANS has also been extended to the k-w model framework (see Lakshmipathy &
Girimaji, 2006). For k-w models the closure constant § has to be replaced by
BPANS = 4 3% — f.(vB* + (). The PANS approach seems very appealing, since the
subgrid-scale turbulence dissipation rate €,y is obtained from a transport equation
and not from an algebraic relation of the form esgsock?’/ 2/A, as used in many subgrid-
scale models. The transport equation is believed to be superior over the algebraic
relations, since it naturally includes effects such as production, dissipation and

transport of the subgrid-scale turbulence dissipation rate €4. It is difficult to assess
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the performance of the PANS approach, since the number of test and validation cases

are very limited or do not allow for a rigorous comparison with reference data.

4.3 Overview of Hybrid RANS/LES Methods

In this section a review of some existing hybrid RANS/LES methodologies will
be presented. All of these methodologies aim at reducing the cost of LES in the
near-wall region and hence make LES applicable for high-Reynolds-number wall-
bounded flows. Since large parts of the flow are explicitly resolved, hybrid RAN-
S/LES methods are expected to be naturally more accurate in predicting complex

flows compared to traditional RANS closures.

All hybrid RANS/LES methods can be grouped into two different categories. In
this work the terminology of Froehlich & von Terzi (2008) is adopted where hybrid
RANS/LES methods are classified as ‘unified” and ‘segregated’ approaches. Another
possibility is to group hybrid RANS/LES methods into ‘global’ and ‘zonal” hybrid
RANS/LES approaches (see, for example, Sagaut et al., 2006). Unfortunately,
the word ‘zonal’ is not used consistently in the literature and the classification of
Froehlich & von Terzi (2008) is therefore preferred.

Segregated hybrid RANS/LES approaches

In segregated modelling the computational domain is divided into different sub-
zones in which the different modelling concepts, RANS or LES, are applied. In
addition to switching the underlying turbulence modelling concept it is also possible
to switch the numerical discretisation or solver strategy. In this way, the sub-zones
can be tailored to the flow problem under consideration such that RANS is applied
in regions where it is expected to provide reliable predictions and that LES is
applied in regions with complex flow or where the RANS model is expected to
provide an insufficient representation of the flow. In addition, higher-order low-
dissipation schemes can be used in the LES region and a more robust scheme with
increased levels of numerical dissipation in the RANS zones. For complex three-
dimensional computational domains with multiple bodies, decomposing the domain
into suitable sub-zones is not a trivial task at all and may explain why segregated
modelling, despite some theoretical advantages over unified modelling, is currently

not supported by any commercial CFD code.

In contrast to unified modelling, segregated modelling is based on an entirely dis-

continuous treatment of flow variables, for example, the velocity field across the
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interface. Even though the zones are formally treated segregated of each other, in-
formation needs to be exchanged across the interface in both directions. Therefore,
the exchange of information across the interface and specifying appropriate bound-
ary conditions to each zone are the key issues in segregated hybrid RANS/LES

approaches.

The main problem of specifying inflow boundary conditions for an LES zone down-
stream of a RANS zone is that the RANS zone only provides mean flow quantities.
The LES approach, in turn, relies on the existence of resolved turbulence fluc-
tuations. Consequently the LES inflow conditions are prescribed by using mean
flow quantities from the RANS zone and superimposing turbulent fluctuations to
yield time-dependent boundary conditions. The influence of inflow conditions was,
amongst others, studied by Aider & Danet (2006), where the importance of bound-
ary conditions with realistic turbulence structures was demonstrated. The influence
of unphysical boundary conditions can persist for a long downstream distance and
may deteriorate the results. Therefore, considerable effort has been put into the
development of techniques to create physically realistic turbulent fluctuations at
LES inflow boundaries. For an overview of existing techniques the reader is referred
to Sagaut (2001) and Sagaut et al. (2006). Appropriate inflow boundary conditions
for a RANS zone downstream of an LES zone are usually obtained by calculating
averaged /mean quantities in the LES zone. These quantities are then used as in-
flow boundary conditions for the RANS zone. A complete specification of boundary
conditions to the RANS zone also requires boundary conditions for the transported
quantities used in the turbulence model. The evaluation of the turbulence dissi-
pation rate € based on LES quantities is not straightforward. A robust alternative
would be to solve the turbulence model equations in the LES zone using mean flow
quantities (see Quemere & Sagaut, 2002). This method, however, is not able to
conserve the total (modelled plus resolved) turbulence kinetic energy of the LES

zone across the interface.

Appropriate outflow conditions for the LES zone are also important. It is shown
in Schluter & Pitsch (2001) that the LES outflow boundary condition may have
an impact on the entire flow field in the LES zone. The outflow boundary condi-
tions of the LES zone needs to be designed such that it allows information from
a downstream RANS zone to propagate upstream into the LES zone. Schluter &
Pitsch proposed a method to match the mean-flow quantities of the LES zone to a
RANS solution in an overlap region using an additional body force in the momen-
tum equations. It is also important that the LES outflow boundary conditions do

allow fluctuations to leave the domain without giving rise to spurious reflections.
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The issue of specifying outflow conditions for the RANS zone is very similar to that
of an LES outflow boundary. The outflow boundary condition needs to allow in-
formation about the mean-flow from the downstream LES zone to travel upstream.
Celic (2004) suggested a RANS outflow condition similar to the outflow condition
for LES, where a body force is applied in a forcing region to match RANS quantities

with averaged/mean LES quantities.

Unified hybrid RANS/LES approaches

The characteristic feature of all unified hybrid RANS/LES approaches is that the
flow quantities are continuous across the RANS/LES interface. The switch from
RANS to LES can be achieved by modifying the underlying RANS model to a
subgrid-scale model or by altering terms in the turbulence model formulation. The
switching may be controlled by blending functions or by comparing characteris-
tic quantities such as the turbulence length scale and grid spacing or the mag-
nitude of different turbulence viscosity norms. The switching location may even
be pre-determined, similar to the segregated approaches. The difference of unified
approaches compared to segregated modelling is that no boundary conditions are
specified at the interface location between RANS and LES zones and vice versa. In-

stead, the resolved flow propagates by convection and diffusion across the interface.

This has the consequence that, for example, an LES zone downstream of RANS
zone is not supplied with resolved turbulence fluctuations. Therefore, the spectrum
of turbulence scales has to be generated in the LES zone by natural instability
mechanisms of the flow. This leads to the existence of a ‘grey area’ where the hybrid
approach reduces the model contribution to an LES level but resolved turbulence
(resolved stress) does not yet exist to compensate the reduction of modelled stress.
Obviously, the weaker the instability mechanisms in the flow the longer it takes to
generate resolved turbulence fluctuations. The segregated approach alleviates the
existence of grey areas, since appropriate boundary conditions are specified at the
LES inflow boundary, which contain turbulence fluctuations superimposed onto the

mean flow.

4.4 Comments on Unified RANS/LES Methods

In hybrid RANS/LES modelling different possibilities exist how the cost of LES in
the near-wall region can be alleviated. The first and most rigorous one is to treat
the entire attached boundary layer in RANS mode and to switch to LES mode
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outside the boundary layer. The second option is to initiate the switch from RANS
to LES close to the wall such that only the near-wall region is treated as RANS and
the outer layer of the boundary layer is treated in LES mode, thus functioning as
WMLES. This seams reasonable due to a week Reynolds number scaling (Re%°) of

the computational cost in the outer layer of the boundary layer.

A common flaw shared by all unified hybrid RANS/LES methods is the existence of
a ‘grey area’ where the model switches form RANS to LES modelling. Grey areas
are mainly an issue if the entire attached boundary layer is treated in RANS mode
and not so much for WMLES where turbulence is resolved in the outer region of
the boundary layer. If the entire boundary layer is modelled in RANS mode no re-
solved turbulence fluctuations exist and all turbulence kinetic energy is statistically
represented by the RANS model. As the hybrid model switches to LES mode the
model contribution reduces and turbulence is allowed to develop. Since the RANS
layer does not contain any turbulence fluctuations, natural instability mechanisms
transfer energy into resolved turbulence fluctuations, which will eventually result
in fully developed turbulence. Therefore, modelling the entire boundary layer in
RANS mode is particularly justified in the presence of strong instability mecha-
nisms, which quickly generate resolved turbulence and hence limits the extent of
the grey area. Examples of such flows include cavities, wakes, massive separation
and so on. In cases where only weak stability mechanisms exist, the transition
from a RANS to LES flow field will be comparably slower and the flow may take a
long time to generate turbulence fluctuations, which compensate the reduction of

modelled stress. For such scenarios WMLES seem better justified.

Using a unified hybrid RANS/LES method to provide WMLES capabilities is also
not trouble free. Since the near-wall region is treated in RANS mode the energy-
producing events close to the wall, which generate and transfer turbulence kinetic
energy into resolved turbulence fluctuations, is suppressed by the RANS model.
Consequently, the LES region away from the wall is not fed with these resolved,
energy-carrying turbulent structures. Again, switching the model from RANS to
LES mode and the associated reduction of modelled stress does not imply an in-
stantaneous change of resolved turbulence fluctuation at the switching location.
The reduction of modelled Reynolds-stress is not instantly compensated for by re-
solved turbulence fluctuation (resolved stress). The result is a drop of total (mod-
elled+resolved) stress. It was shown in Nikitin et al. (2000) that the switch from
RANS to LES mode inside the boundary layer causes an under-prediction of the skin
friction coefficient by about 15%. In addition the mean-velocity profile exhibited a
modelled log layer (from the RANS model) and a resolved log layer predicted by the
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LES model. Unfortunately, the modelled and resolved log-layer show a mismatch of
several u™ units compared to DNS data. Similarly, Baggett (1998) investigated the
fully developed channel flow at Re, = 1000 using a WMLES hybrid RANS/LES
approach. Unrealistically high velocity fluctuations close to the wall combined with
unphysically large streamwise vortices and streaks were observed near the wall.
Consequently, it was claimed that merging RANS and LES in the near-wall region
is unlikely to be successful where an accurate mean flow and accurate turbulence
statistics are required. Piomelli et al. (2003) investigated the sensitivity of the re-
solved log layer depending on the interface location between RANS and LES. It was
found that when the interface was moved closer to the wall, the resolved log layer
was also shifted closer to the wall. The unphysical near-wall turbulence structure
could not be removed completely. Subsequent attempts to eliminate the log-layer
mismatch are based on superimposing turbulence fluctuations at the interface with
the purpose of providing improved physical boundary conditions to the LES region
and disrupting the development of unphysical large structures close to the wall. A
large range of subsequent studies have examined the effect of adding turbulence fluc-
tuations at the interface location when RANS is used to bridge the near-wall region.
This approach has been effective in reducing the log-layer mismatch. The interested
reader is referred to Cabot & Moin (1999), Dahlstrom & Davidson (2003), Batten
et al. (2003, 2004), Piomelli et al. (2003), Davidson & Billson (2006), Benarafa et al.
(2006), Hamba (2003, 2006), Keating & Piomelli (2006) or Larsson et al. (2006) for
further details.

4.5 Unified Hybrid RANS/LES Methods

4.5.1 Blending Approaches

Blending approaches in hybrid RANS/LES have been published in various forms.
The most general form of the blending approach is a linear combination of RANS
and LES quantities according to ¢'id = FpfANS 1 (1 — F)¢LES | where F is a
blending function. The arbitrary quantity ¢ may stand for the modelled stress
tensor 7;;, the turbulence viscosity vy or the transport equation for the turbulence

kinetic energy k and its dissipation rate e.

Baurle et al. (2003) used the blending technique of Menter to construct a linear
combination of a one-equation subgrid-scale model and RANS turbulence model. In

addition to blending the equations for the turbulence kinetic energy, the turbulence



Chapter 4 Turbulence-Resolving Approaches 73

viscosity is blended as well. Using the blending function F; or F, proposed by
Menter enforces a transition from RANS to LES away from the wall even though the
grid is too coarse to support LES. To avoid a switch in areas where the grid cannot
support LES the blending function is modified, inspired from Limited-Numerical-
Scales by Batten et al. (2002) (see discussion following later in this chapter). This
modification ensures that the RANS equations are retained if the SGS viscosity is

greater than the RANS viscosity. The blending function is given by
F = max [tanh(n*), FLys], (4.18)

where n) = max | Ly/d, 500vCy L/ (d*k'/?)| and Fjys = min [5¢9/vRANS 1], Bau-
rle et al. applied this blending approach to incompressible Poiseulle flow, supersonic
base flow and supersonic flow over a cavity and observed improved accuracy in the

prediction over traditional RANS models.

Xiao et al. (2004) used a blending function to combine a one-equation subgrid-
scale model with a k-¢ (enstrophy) model. In addition to blending the transport
equations, the turbulence viscosity is blended as well. Three different blending
functions were proposed. The first blending function is designed to be explicitly
independent of the grid and the geometry and takes the form F,x = tanh(l,x /a1 )\)?,
where L,k is the von Karman length-scale and a; A is proportional to the Taylor
microscale. The second blending function explicitly depends on the distance to the
nearest wall, F; = tanh(d/a;\)2. The third blending function explicitly depends on
the grid resolution, Fa = tanh(Lz/asA)% The constants a; and ap where chosen
such that the blending functions reach a value of 0.5 in the log-law region. The
blending approach was tested for the compressible flow over a compression ramp
and a compression-expansion corner and partly improved the predictions compared

to the unmodified k-¢ turbulence model.

The blending function approach has also been used by Abe (2005) and Inuzuka
& Abe (2007) to combine an anisotropy-resolving eddy-viscosity turbulence model
with a SGS model. Both use a blending of the Reynolds-stress tensor and the

subgrid-stress tensor. The following blending function is used:

F =1—exp [~ (y/ (CrpA))°], where Cyp = 4.0 and A = y/max (A, A, A,A,, AA,).
Both applied the hybrid method to fully developed plane channel flow. It was shown
that anisotropy-resolving turbulence models are effective in improving the predic-
tion of the near-wall anisotropy and the accuracy of the total Reynolds-stress tensor

(resolved plus modelled.)
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Baggett (1998) has examined the feasibility of supplementing a SGS model with
a RANS model in the near-wall region using a blending approach. Two different

formulations were suggested

1

Tij — ngk&j = — [(1 — FYv2 + Fu RANS] SZ], (4.19)

and
Tij — %Tkk&-j = —V?GS [ (1- <SU>} FVRANS <Sw> (4.20)
where 129 is determined from the dynamic Smagorinsky model and vEAN9 is

determined from the 7% f model of Durbin (1995a). The angle brackets () denotes
a time-averaged quantity. Baggett tested the proposed models using channel flow
at Re, = 1000. No specific form of the blending function F' has been proposed,
instead Baggett estimated the blending function using a mean momentum balance
prior to the simulation. The blending function ensures that for F' = 0, LES is
recovered and for F' = 1, RANS is recovered. The results of Baggett show improved
mean-flow results. However, the turbulence velocity fluctuations close to the wall
were found to be far too high and are combined with an artificial near-wall structure

with streamwise streaks too large in spanwise direction.

A similar approach was proposed by Uribe et al. (2010) where a blending of the

following form is used

T — émaﬁ = 2565 |3 [ <SU>] yRANS <Sw> (4.21)

v265 is computed from the Smagorinsky model using the

RANS ;

The turbulence viscosity v.

fluctuating strain-rate tensor (?:j — <§* >) and vy is obtained from an elliptic-

relaxation RANS model. The first term on the right-hand side contains the fluctuat-
ing strain-rate tensor, which in the mean does not contribute to the Reynolds-stress
tensor. The second term on the right-hand side is evaluated using the mean strain-
rate tensor and hence determines the mean shear stress and velocity profile. The
blending function needs to be designed such that it approaches unity where the
resolution of the computational grid is sufficient to resolve most of the turbulence
fluctuations (away from the walls) and is zero in regions where the flow is under-
resolved, such as close to the wall. The blending function used in Uribe et al. (2010)
is given by F' = tanh (C;Lr/A). Encouraging results have been obtained for the
separated flow over a trailing edge and for planar channel flow up to Re, = 4000.

The channel flow results did not show the commonly observed log-layer mismatch.
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4.5.2 Layering RANS and LES

The concept of layering RANS and LES is inspired by the two-layer wall model
for LES, as discussed in section 4.1.2, where the thin-boundary-layer equations are
replaced by a RANS layer and a state-of-the-art RANS turbulence model. In the
hybrid RANS/LES approach the grid is split up into two different regions. This is
either done by specifying a separating grid line prior to the simulation or by using

an adaptive interface location, which adjusts itself in the course of the simulation.

Davidson & Peng (2003) use a one-equation SGS model and a k-w RANS model.
A pre-selected grid line determines the switching location. The grid line is chosen
such that the switch occurs in the log-region of the attached boundary layer. At the
switching location y* an additional constraint is placed on w, namely dw/dy| g = 0.
The results for a fully developed planar channel flow show the typical unphysical
kink in the mean-velocity profile at the interface location. Results were also obtained
for the flow over periodic 2D hills in a channel, which predicted the correct velocity

field with moderate success.

Hamba (2003) has observed that the turbulence viscosity drops sharply at the in-
terface location from a high RANS level to the much lower LES level. In order
to avoid this problem Temmerman et al. (2005) and Tessicini et al. (2006) placed

LES,mod LES res RANS,mod RANS,res

the constraint v + vy = Up + vy on the turbulence vis-

cosity at the interface. Therefore, the following relation must hold at the interface:
Crimt = V5™ (£, J€) or in the mean, {C), jn;) = <V#Es’m°d>/<fuk;2/e>. In order
to satisfy a smooth transition between the RANS and LES region, the constant C,
of the RANS model is modified to satisfy this constraint. It is proposed in Tem-
merman et al. (2005) to use the following modified relation for C, in the RANS

model:

5 (000 + (Cpine — 0.09) H22CUR ) iy < 25

1*6XP(*ymt/Amt)

0.09 4 (C)y it — 0.09) —=2RCw/2) if yt>25

1—6Xp(—ymt/Amt) )

and where the subscipt ‘int’ denotes quantities evaluated at the interface location.
This relation effectively damps the excessive level of turbulence viscosity close to
the interface produced by the RANS model. The hybrid method has been applied
to a fully developed planar channel flow where the switching location was fixed at a
pre-defined wall distance y™ and the flow over periodic 2D hills in a channel where

the switching location was fixed using a grid line. The channel flow showed an



76 Chapter 4 Turbulence-Resolving Approaches

unphysical kink in the mean-velocity profile and the recirculation zone behind the

hill was found to be too long but only weakly dependent on the interface location.

Switching the turbulence model formulation at a pre-determined grid line is not
practical for three-dimensional geometries. Similarly, switching at a certain wall
distance y* is also problematic due to the inherent scaling with the wall shear
stress. Breuer et al. (2007a,b) have employed a dynamic switching criterion, which
is somewhat more robust and more generally applicable. The switching location is
determined based on the non-dimensional wall distance y* = k'/?y/v, which offers
the advantage of being applicable in regions where the wall shear-stress vanishes,
such as close to the separation point. In regions where y* < Cy«, the RANS model
is active and for y* > Cy« the hybrid model operates in LES mode. The switching

location was chosen as Cy+ = 60.

4.5.3 Detached Eddy Simulation

The most prominent hybrid RANS/LES method is called Detached Eddy Simula-
tion (DES). A lot of effort has focused on testing, validating and improving the
formulation of DES. The initial version of DES was proposed by Spalart et al.
(1997) and is based upon the one-equation turbulence model of Spalart & Allmaras
(1992). In DES the switch from a RANS to LES mode is achieved by modifying
a term in the transport equation of the RANS turbulence model. The destruction
term in the transport equation for the modified turbulence viscosity o of the Spalart
& Allmaras model is proportional to (7/d)?, where d is the wall distance. In the
DES formulation, the RANS length scale d is replaced with a hybrid length scale
defined as d = min(d, CpesA), which away from the wall, reduces the magnitude
of the turbulence viscosity vr. In regions where d < CpesA, the model operates in
RANS mode and for d > CpgsA, the model operates as a SGS model. The model
constant Cppg is analogous to the Smagorinsky constant Cs and determined from
decaying homogeneous isotropic turbulence as Cpgs = 0.65. It should be noted
that the idea of DES to replace the RANS length scale with a hybrid DES length
scale is not limited to the Spalart & Allmaras model. Travin et al. (2004b), for
example, transformed the k-w-SST model into a DES formulation by rewriting the
dissipation term in the turbulence kinetic energy equation as ¢ = k%2?/Lppg with
Lpgs = min[Ly,CppsA] and Ly = kY2/3*w. Therefore, in LES mode the tur-
bulence dissipation rate is determined from the algebraic relation ¢ = k%2 /CppgA.
DES has also been used in conjunction with non-linear eddy-viscosity turbulence
models (see Bunge et al. (2007) or Mockett (2009)).
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The natural use of DES is to treat the entire boundary layer in RANS mode and to
switch to LES outside the boundary layer. For this reason the length scale A has
been defined as A = max(A,, A,, A;), which helps to maintain a RANS mode in
boundary layers where highly anisotropic cells are usually used. Nevertheless, the
location where DES switches from a RANS to LES mode depends on the grid design.
It is the user’s responsibility to supply a grid properly designed for DES, such that
the switch occurs at the correct location, i.e. outside the boundary layer. In order
to handle the entire boundary layer in RANS mode the grid needs to be designed
such that the boundary layer thickness 6 < CprsA. The intricate griding issue
inherent in DES has led to publications giving explicit guidelines on how to design
suitable grids for DES (see Spalart, 2001). Unfortunately, there are many possible
scenarios where it cannot be guaranteed that the entire boundary layer is handled
in RANS mode, e.g. in cases where thick boundary layers are involved such as close
to the separation point, in grid convergence studies, in regions with high geometric
curvature and when using unstructured meshes. In such cases it is very likely that
the switch from RANS to LES occurs inside the boundary layer. This poses a
possible danger, particularly if the computational grid in the LES region is too
coarse, since the turbulence viscosity is reduced but the coarse resolution does not
allow resolved fluctuations to compensate the reduction of modelled Reynolds-stress
through resolved stress. This leads to a drop of total Reynolds-stress components
at the switching location. This effect is referred to as Modelled Stress Depletion
(MSD) and may result in a severe under-prediction of the skin friction coefficient
and may cause premature separation. Since the switch from RANS to LES mode is
triggered by the grid design, this phenomenon is also called Grid Induced Separation
(GIS) (see Menter et al., 2003).

Since the original proposal of DES, different modifications have been proposed,
which aim at avoiding the difficulty of generating DES grids in complex configura-
tions and which eliminate the effects of MSD and GIS. Deck (2005) used a zonal
DES approach to simulate a high-lift airfoil configuration with deployed slat and
flap. The zones for RANS and LES were explicitly defined prior to the simulation.
The zonal approach ensured that the thick boundary layers present on the airfoil
configuration were covered in RANS mode and that the other areas of interest were
covered in LES mode whatever the grid resolution was. In Spalart et al. (2006)
a more robust formulation of the hybrid DES length scale in terms of grid depen-
dency was proposed. The new length scale is obtained using additional elements

from the Spalart & Allmaras (1992) model to prevent or ‘delay’ the switch inside
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the boundary layer. The new hybrid length scale is given by
d=d— fymax(0,d — CppsA), (4.22)

where f; = 1 — tanh [(87“d)3] and ry = (vp +v)/(k*d*\/T; Ui ;). The function
fa shields the DES length scale from being activated inside the boundary layer.
Therefore, for f; = 0, a RANS mode is enforced where the RANS length scale is
given by d = d. For f; = 1, the switch to LES is allowed and the length scale
is obtained as d = CprsA. Spalart et al. called this modified version Delayed
Detached Eddy Simulation (DDES).

The latest major modification to the original DES formulation is introduced in Shur
et al. (2008) and is referred to as Improved-DDES (IDDES). In IDDES, the capa-
bilities of DDES are combined with the capability of the original DES to provide
wall modelling capabilities (WMLES). The new IDDES formulation is able to op-
erate in the DDES and WMLES mode depending on turbulence initial and inflow
conditions. This is achieved by the following hybrid length-scale definition

d = fa(1+ fo)d+ (1~ f))¥CprsA. (4.23)

The function f; is a blending function, which blends between the DDES and WM-
LES mode and V¥ is a function, which compensates for the erroneous activation of
near-wall/low-Reynolds-number modifications of the baseline RANS model. The
definition of the filter length scale is also modified and includes a dependency on
the wall distance, A = f(A,, Ay, A,,d). Another important ingredient is the func-
tion f,, which increases the Reynolds-stress of the underlying RANS model above
the natural RANS level. This is an effective measure to reduce the extend of the

log-layer mismatch in WMLES mode.

The original DES and DDES formulation have been applied to a wide range of
flows of engineering and industrial interest. For further information and discussions
about applications of DES, the reader is referred to Spalart (2009), Squires et al.
(2002) and Squires (2004).

4.5.4 Flow Simulation Methodology

At roughly the same time when DES was proposed Speziale (1998a,b) proposed a
combined LES and time-dependent RANS approach, which was intended to close
the gap between RANS and DNS. Speziale argued that a hybrid RANS/LES method
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should possess at least the following three properties: 1) The subgrid-scale model
should be able to resolve anisotropy of the flow and allow for a direct integration
to the wall without using empirical damping functions, 2) In the limit of a very
coarse mesh or infinite Reynolds number the hybrid method needs to revert to a
state-of-the-art RANS turbulence model, 3) Absence of any test filters or double-
filtered fields. The points 1) and 2) seem particularly important, since most subgrid-
scale models are derived based on the assumption that the unresolved subgrid-
scales are isotropic. This assumption is not justified, for example, for anisotropic
computational grids or close to the wall where subgrid scales are likely to exhibit
anisotropy. In addition, subgrid-scale models are not able to model a significant
amount of Reynolds-stress; if the resolution becomes too coarse to explicitly resolve,
say, 80% of the turbulence kinetic, subgrid-scale models are not adequate and results

will deteriorate.

In order to satisfy these properties, Speziale suggested that the unresolved stress
components can be computed by damping the Reynolds-stress tensor predicted from
a state-of-the-art RANS turbulence model. Hence, the unresolved stress components
are given by the following relation

Ty = F 74N (4.24)
The damping function F', in its initial proposal, is sensitised to the ratio of grid
spacing A to Kolmogorov length scale L, = v**/e}/*. In principle, the damping
function allows for a continuous blending between RANS and DNS, depending on
the local and instantaneous grid resolution. In general, the blending function needs
to be designed such that the DNS limit F' — 0 is recovered if the grid resolution is
sufficient to resolve all scales of turbulence. In the coarse grid or infinite-Reynolds-
number limit, F' needs to approach unity such that a RANS closure is recovered.
For values 0 < F' < 1 the model is able to operate in LES or Very Large-Eddy
Simulation (VLES) mode. VLES may be defined as an LES-like simulation where

most of the turbulence kinetic energy is modelled and not explicitly resolved.

For this purpose Speziale proposed to use the following damping function

F(A/Lg) = [1 — exp (_LBAﬂn, (4.25)

n

where the constants are given by 8 = 0.001 and n = 1. In general, any RANS model

RANS

can be used to model 7;; . Speziale used an Explicit-Algebraic-Stress Model,

which is able to account for flow anisotropy and non-equilibrium effects through
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strain-dependent coefficients. Since this hybrid approach is distinctly different from
existing RANS and LES methods, Zhang et al. (2000) and Fasel et al. (2002) later
referred to this approach as Flow Simulation Methodology (FSM).

The damping function is the key to success of the FSM approach. A properly
designed damping function would be able to provide the required amount of tur-
bulence modelling at any grid resolution. The choice of the damping function and
the constants 8 and n in the initial proposal were never completely justified. How-
ever, Hussaini et al. (2006) used Renormalization Group Theory (RNG) to modify
an existing RANS model for subgrid-scale applications while maintaining the cor-
rect RANS and DNS limits. They derived a set of possible damping functions and
arrived, amongst others, at the following form F (A) = 1 — exp (—8A?), which
is somewhat similar to Sepziale’s proposal. Sandberg & Fasel (2006) investigated
transitional and turbulent supersonic base flows using FSM. It was found that the
best results were obtained for 0.001 < 8 < 0.004 and a grid resolution such that
the damping function is smaller than 10%. Fasel et al. (2006) applied FSM to a
backward facing step, subsonic plane wake and a supersonic axisymmetric wake.
The optimum value of 8 was again found to be approximately 5 = 0.001 for n = 1.
These investigations confirm the suitability of the proposed values for 5. The effect

of the parameter n has so far not been investigated.

Zhang et al. (2000) proposed a modified version of the damping function, which
takes the following form: F (A/L,) = [1 —exp(—5max (0,A —2L,)/NL,)]". It
was shown that this damping function recovers a RANS mode across almost the
entire thickness of a flat plate boundary layer for N = 10. Using a value of N = 2500

would recover the original damping function.

Germano (1998) suggested a modified damping function of the form F = 1 —

RANS res/ RANS RANS Tres

, where is the resolved stress. If no turbulence is

resolved the resolved stress 7'27;65 — 0 and the RANS limit is recovered. For

7765 — 7ANS the DNS limit is recovered.

It can be anticipated that the damping function based on A/L, is able to provide the
correct DNS limit, since L, is a relevant length scale in DNS. However, the viscous,
or Kolmogorov, length scale L, is not a relevant length scale when performing LES.
It seems very difficult, using this length scale, to achieve the correct amount of
damping in LES mode. In addition, the damping function does not incorporate a
characteristic length scale of the largest scales in the flow and it appears even more
difficult to approach the correct RANS limit in case of too coarse a grid. Motivated
by this issue, Israel (2005) introduced an integral length scale into the damping
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function. The modified damping function is as follows:

N
2/3 2/3
2Py

F(A, L, L) = ( , (4.26)

where L; = k3/? /€ is used as an estimate for the integral length scale.

Another issue, which was not been addressed by Speziale is how the Reynolds-stress

tensor 774V5 is computed in case of resolved turbulence, where 7;; « 7745 As-

5
suming tjhe hybrid method operates in a pure RANS mode, ie. 7;; = TijjAN S the
computed quantities of the flow field correspond to Reynolds-averaged quantities,
which are consistent with the derivation and the applicability of the RANS equa-
tions. In case a considerable amount of turbulence is resolved in the simulation, the
computed quantities in the flow field are filtered quantities and not equivalent to
a Reynolds-averaged quantity. Strictly speaking, Reynold averaged quantities are
required for the RANS equations in order to be consistent in the computation of the
Reynolds-stress tensor. This raises the fundamental question of which quantities
should be used to compute the Reynolds-stress tensor in case of resolved turbulence.
As pointed out by Batten et al. (2000), there are two different possibilities. First,
the Reynolds-stress tensor can be computed in a time-accurate fashion from the
filtered flow field as the simulation progresses. Alternatively, a RANS computa-
tion can be performed prior to the simulation or time-averaged quantities can be

obtained as the simulation progresses.

4.5.5 Limited Numerical Scales

Based on Sepziale’s combined RANS/LES method, Batten et al. (2000, 2002) pro-
posed a modified form of the damping function, which does not incorporate any
parameter that needs to be defined by the user. This modified approach of Speziale
has been termed Limited Numerical Scales (LNS). Batten et al. expressed the
damping function as a ratio of effective viscosity norms and called this term latency
parameter «. In the latest publication of Batten et al. (2004) the latency factor is
defined as

T
VRANS ’

JLES
a = min [— 1] , (4.27)
T

where vEES is obtained from the Smagorinsky model and the vF4Y5 from a non-

linear k-¢ model. The filter width has been defined as A = 2 max [Ax, Ay, A /ugAt] .

The last term ensures that RANS is recovered as the time step At becomes large,
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whatever the spatial resolution of the grid is. The property of the latency param-
eter is that it automatically selects the model, vEF5 or vBANS which provides the
smallest shear stress. Regarding the ambiguity of which quantities should be used
to calculate the Reynolds-stress tensor, Batten et al. employs the scaled Reynolds-
stress tensor 7;; (or damped turbulence viscosity avfAN9) in the transport equations
for the turbulence kinetic energy and dissipation rate, k£ and e respectively. This
effectively reduces the production term as well as transport/diffusion terms in the
transport equations and the RANS model turns into a model for the subgrid scales
ksgs and €,,. LNS has been applied to the flow around a square cylinder and a

periodic 2D hills in a channel. The results are generally improved compared to
traditional RANS and URANS approaches.

4.5.6 Partially-Integrated and Partially-Resolved Transport
Modeling

The Partially Integrated Transport Model (PITM) has been proposed by Schiestel
& Dejoan (2005) for the framework of k-e turbulence modelling and was extended
by Chaouat & Schiestel (2005) to a DRSM closure. PITM is derived by splitting
the energy spectrum into a resolved and unresolved part and performing partial
integration of the energy spectrum function F(k,t) in spectral space. The result is
a transport equation for the sub-grid turbulence kinetic energy k4, and turbulence
dissipation rate ey, which depend on the parameter f; = kyys/k. An expression
for fi is analytically derived using a model energy spectrum and does not take a
constant value as in the PANS approach. The latest proposal for f; in Chaouat &
Schiestel (2009) is derived from an energy spectrum function, which is valid from
small to large wavenumbers. The free coefficients in the expression are determined
by reference to decaying homogeneous isotropic turbulence. It is interesting to note
that the PITM approach results in the same constitutive relations as for the PANS
approach if f. = 1.

It is sometimes argued that traditional seamless RANS/LES approaches are concep-
tually inconsistent, since the Reynolds-averaging operator provides time-averaged
quantities whereas LES provides spatially filtered quantities. In homogeneous tur-
bulence the spatial filtering operation in the limit A — oo is indeed consistent with
the Reynolds-averaging operator. This is not true for inhomogeneous flows where
spatial filtering operation in the limit A — o0 is not consistent with the Reynolds-
averaging operator. Based on this argument Fadai-Ghotbi et al. (2009) derived a
Temporally Partially Integrated Transport Model (TPITM) by splitting the energy
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spectrum into a resolved and unresolved part and performing partial integration of
the energy spectrum function F(w,t) in the spectral frequency space. TPITM pro-
vides temporally filtered quantities, which are consistent with Reynolds averaging

if the temporal filter width goes to infinity (for statistically steady flows).

The Partially Resolved Navier-Stokes (PRNS) method has been proposed by Liu &
Shih (2006). The main difference to TPITM is the choice of the resolution control
parameter. In PRNS the resolution control parameter is a function of the temporal
filter width RCP = Arp/T, where T is the integral time scale. The value of RCP is
specified prior to the simulation and the resulting turbulence viscosity is defined as
vr = RCP-C,k*/e. Here, RANS model equations are used to determine the values

for £ and e.






Chapter 5

Numerical Methodology

In this chapter the numerical framework used to solve the set of governing equations
will be introduced. Most of the numerical framework is extensively discussed in
various textbooks and other publications, e.g. Patankar (1981) or Ferziger & Peric
(2002). For this reason only a brief overview will be given here with emphasis placed

on the elements, which are particularly important for this work.

The flow solver used in this work is the open-source CFD code OpenFOAM, which
has been used and validated in a wide range of previous studies such as, for example,
Weller et al. (1998), Jasak (1996) and de Villiers (2006). The finite volume method
is used to solve the set of governing equations on arbitrarily unstructured meshes
with a cell-centered (co-located) variable arrangement. A segregated approach is
used to solve the governing equations in incompressible form. The discretisation
procedure is second-order accurate in space and time and employs a fully implicit

time advancement scheme.

5.1 Governing Equations

The governing equations for momentum or any other transported quantity takes
the form of an unsteady, convection diffusion equation, which can be written in the
following form for the arbitrary quantity ¢,

d¢

= TV (6w =V (I'V9) = 5,. (5.1)
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The terms on the left-hand side respectively represent the local rate of change,
convection by mean velocity and diffusion of ¢, with the diffusion coefficient I'. The

right-hand side term represents the sum of all sources and sinks of ¢.

In the finite-volume method (FVM) the governing equations are integrated in time

and over a control volume (CV) to yield the integral form of (5.1)

t+AL g t+AL
J — (J (de) dt + J V- (¢u)dVdt
¢ ot \Jev ¢ cv

t+At t+At
- f V. (I'Ve)dVdt = f SydVat. (5.2)
t cv

t cv

In the first step (pre-processing) the flow domain must be subdivided into a finite
number of small control volumes (CV) or cells where the centre of each control
volume corresponds to the point where the solution to the governing equations is
calculated. In general, there are no restrictions regarding the shape of the control
volumes as long as each CV is completely surrounded by an arbitrary number of
faces and each face only connects to one adjacent CV. In the second step, the
integral-conservation equations are applied to each CV and the volume integrals
are approximated and converted into integrals over the bounding surfaces of each
CV. The flow variables at the CV surfaces are obtained by interpolation between
the cell-centered values, which introduces a dependency of the variables in the CV
centre to the neighbouring control volumes. This procedure results in a system of

algebraic equations, which can then be solved using an iterative procedure.

5.2 Spatial Discretisation

5.2.1 Convection Term

Using Gauss Divergence Theorem the volume integrals appearing in (5.2) can be

converted into integrals over the bounding surface elements dA of the control vol-

ume, i.e.

V-opdV = jgdA - O, (5.3)
oA

cv
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where dA is the outward-pointing vector normal to the surface element dA. As-
suming a linear variation of the variable ¢ the surface integral can be further ap-

proximated with second-order accuracy as

LAdA.¢=zf:<LdA¢> =;A¢f. (5.4)

that is, as the sum of the product of the outward pointing surface area vector A
times the face-centered value of the quantity ¢;. This procedure applied to the

convection term yields

Vo (up)dV = ) A(we), = ) | (Atg) ¢y = Y Foy, (5.5)
ov ! f f

where F' = Awuy corresponds to the mass flux through the bounding face f. The

face values of ¢ or wy can be obtained by interpolation between the cell-centered

values ¢p and ¢ of the two cells connecting to the face f. This situation is depicted

in figure 5.1.

r

FIGURE 5.1: Interpolation of face values in the FVM .

Assuming a linear variation of the dependent variable ¢ between the cell centres U
and P of two neighboring cells, the face value can be obtained by linear interpolation

as

or = fo0p + (1= [f2) P, (5.6)

with the interpolation factor f, = f_U/P_U Note, the interpolated quantity u;
must also satisfy the continuity constraint )| s F = 0. The linear interpolation
of face quantities results in a second-order accurate scheme, which is commonly
referred to as the Central-Differencing Scheme (CDS).
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For problems where convection is the physically dominant mechanism in the flow
the CDS may produce unbounded solutions and unphysical oscillations in the flow
field. As the importance of convection increases the solution will become increas-
ingly non-physical, which may then lead to divergence of the simulation. It is argued
in Versteeg & Malalasekera (2007) that the major defect of CDS is the lack of sen-
sitivity to the direction of the convection velocity. In strongly convective conditions
the cell-centered value upstream of face f should have a stronger weighting than the
value of the cell downstream. The upwind differencing scheme (UDS) takes account

of the flow direction and computes the face values accordingly as

¢f:{¢P A F >0 67

¢U ,1fF<0

The UDS is only first-order accurate but it considerable improves the stability char-
acteristics by guaranteeing boundedness of the solution. Even though higher-order
UDS can be derived the improved stability is always achieved at the expense of
accuracy by introducing a significant amount of numerical diffusion. This is par-
ticularly problematic in the LES region of any hybrid RANS/LES approach where
the modelled turbulence diffusivity may be very small or even of the same order
of magnitude as the numerical diffusion. Any elevated level of numerical diffusion
therefore inevitably contaminates the resolved flow field unless the modelled tur-
bulence diffusivity is adjusted according to the numerical scheme employed in the
simulation. Adjusting the modelled turbulence diffusivity is not a satisfying solu-
tion, since every turbulence model would have to be adjusted and re-calibrated for

a large number of available convection discretisation schemes.

The small amount of numerical diffusion inherent in the CDS makes it well suited
for performing simulations with resolved turbulent content. In simulations of prac-
tical interest it cannot alway be guaranteed that the mesh resolution A, (in one
dimensional problems) is sufficient to satisfy the boundedness requirement of a cell
Peclet number (or sometimes called cell Reynolds number) Pe = u/(I'/A,) < 2 (see
Versteeg & Malalasekera, 2007) of the CDS. Instead, it is necessary to introduce a
small amount of additional numerical diffusion to the CDS such that the accuracy of
the CDS is retained and stability and boundedness of the solution is improved. For
this reason Peric (1985) has proposed a blended or hybrid convection scheme, which

is obtained as a linear combination of a CDS and UDS scheme of the following form

¢y = (1 —0v) ¢5.cps + ovdrups. (5.8)
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The blending function o, controls the level of additional numerical diffusion. For
o, = 0 a full CDS is recovered and for o, = 1 the interpolation follows a UDS.
Travin et al. (2004b) use the blending technique to develop a hybrid convection
scheme that is tailored to Detached Eddy Simulation. The hybrid convection scheme
operates in a UDS mode in the RANS region and switches to a CDS mode in
LES regions of the flow field. The blending function also depends on local flow
quantities like turbulence viscosity vy, and magnitude of strain and rotation rate
S, Q respectively. These quantities are used to detect flow regions with a well-
resolved flow field (2 > S) where the CDS should be used and irrotational flow
regions where UDS can be used. Since the hybrid convection scheme of Travin
et al. (2004b) is used in this study in conjunction with Detached Eddy Simulation

the constitutive relations are given here

Cprsi
oy = tanh (A1), A = Cjymax l DESZ 0.5, o]
turbd
2402 0.1
liwrd = ngg/; V, K = max 5% , 0
C./"K 2 Tref
CpsQmax [ S, Q]
= tanh(B'), B= —
J ( ) max [—S ;Q ,10—20]
Chi = 3, Cp=10Cy3z=2. (5.9)

and Tref = lref/uref.

5.2.2 Flux-gradient Transport Term

Following a similar procedure as for the convection term the volume integral of the

flux-gradient transport term can be converted into a surface integral as

cv

V- (IV¢)dV = > A-(TVg), = > T;A-(Vo),. (5.10)
f f

The face value I'; can be determined by linear interpolation according to (5.6) and

the face gradient is given by

A- (V) - 14| L2 (5.11)

where d is the vector connecting point U and P. This method is second-order

accurate and provides bounded solutions, providing the face is orthogonal, i.e. d
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and A are parallel. In situations where the faces are non-orthogonal a correction
(cross-diffusion) term needs to be introduced to (5.11) as follows

A-(V¢), = Ad% + Ay (Vo) (5.12)
where A, is the component parallel to d and Ay is component perpendicular to A
such that A = Ay + Ag. The term (V¢), in (5.12) is obtained by interpolation of
the cell-centered gradients according to (5.6). The cross-diffusion term may yield
unbounded solutions on strongly non-orthogonal meshes. Therefore, the effect of the
cross-diffusion term may have to be limited to ensure convergence of the solution.
The gain in stability is again achieved at the expense of accuracy of the diffusion

term.

5.2.3 Source Terms

All other source terms are linearised by decomposition into a constant part S, and

a part, which linearly depends on ¢, i.e.

Se = Sc + 5p0. (5.13)
Since
¢dV = ¢pVp, (5.14)
cv
the source term can be written as
J SedV = S5.Vp + S,Vpop. (5.15)
oV

5.3 Temporal Discretisation

Introducing the spatial discretisation into (5.2) yields the semi-discrestised form of

the generic transport equation

t+ At t
J [(g—f) Vp+ Y Fgy— Y TA (V¢)f] dt = J [SeVp + SpVeop] dt.
t P f f !

+At
(5.16)
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In order to maintain an overall second-order accuracy of the discretised transport
equation the temporal derivative in (5.16) is discretised using the second-order ac-

curate Backward Differencing (BD) scheme

<%>n _ (3/2)¢" — 291 + (1/2)¢"2
ot At :

(5.17)

The BD scheme requires information from the three time levels ¢" = ¢(t + At),
o™t = ¢(t) and ¢"? = ¢(t — At). Assuming that the temporal variation of the
face fluxes ¢ and face gradients (Vo)  can be neglected a second-order accurate
and fully implicit discretisation of the generic transport equation (5.1) is obtained

as

(3/2)¢" — 20" + (1/2)¢"*
At

Vp+ > F¢} = > T1A- (Vo)) = SVp + S, Vodh.
f f
(5.18)

Note, although the BD scheme is second-order accurate, neglecting the temporal
variation of the face fluxes and face gradients results in a larger truncation error
as compared to, for example, the second-order Crank-Nicholson (CN) method (see
Jasak, 1996). In the simulations performed in this work the time step and CFL
number is generally small (CFL < 1), which minimises the effect of the larger

truncation error and the resulting additional numerical diffusion.

In the final step, the new values for ¢p need to be determined. The discretisation of
the face fluxes and face gradients introduces a dependency of ¢p on the values ¢n
in the surrounding cells, which connect to the control volume under consideration.

Equation (5.18) therefore can be written as an algebraic equation of the form
ap@h + Y andh = Rp, (5.19)
N

where ap includes the contribution from all terms, which include ¢%, that is from
the unsteady, convection and diffusion terms as well as from the linear part of the
source terms. Similarly, ay contains the coefficients ¢R; of the neighboring cells.
Rp contains all other terms, which do not depend on the new values ¢". A system
of algebraic equations of the form A¢ = R is obtained by assembling one algebraic
equation for each control volume. A is a sparse matrix containing the coefficients
ap and apy, ¢ is the solution vector and R a vector containing the source terms.
The system of equations is solved iteratively using the conjugate gradient method
with preconditioning to accelerate convergence. More detail can be found in Jasak
(1996) and de Villiers (2006).
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5.4 Navier-Stokes Equation

When the discretisation procedure is applied to the Navier-Stokes equations some
issues require special consideration. First, the incompressible Navier-Stokes equa-
tions are non-linear in nature due to the appearance of the quadratic product of
velocities in the convection term. Second, the momentum equation constitutes a
set of coupled equations and the pressure gradient term introduces another variable
to the system. In incompressible flow the pressure cannot be computed from any
transport or other equation and an iterative procedure needs to be employed to
determine a pressure and velocity field such that the continuity and momentum

equation are satisfied.
Convection Term

In order to make the non-linear convection term compatible with the linear system
solver, a linearisation of the convection term is introduced. This is achieved by
replacing one of the face values u; with the face value from the previous time step

ﬁ;}_l. The linearised convection term is as follows

V-(@m)dV =) Awm), ~ Y (A} ")) =) F" e, (5.20)
v f f f

Pressure-velocity coupling

In compressible flow the continuity equation can be used to calculate the density
and the pressure follows from the equation of state. For incompressible flows the
continuity equation does not contain any information about the pressure and merely
places an additional constraint on the flow field, which is determined from the mo-
mentum equations. However, combining the momentum and continuity equations
an additional equation for the pressure can be derived. The momentum and pres-
sure correction equations are solved in a sequential or segregated manner rather
than in a fully coupled fashion. In order to achieve the pressure-velocity coupling,
the SIMPLE algorithm Patankar (1981) is used for steady state problems and the
PISO algorithm Issa (1986) for transient simulations.



Chapter 6

Baseline EASM

In this chapter the constitutive relations of the baseline EASM formulation are
summarised and a range of different test and validation cases are presented. The
first objective of this chapter is to evaluate the performance of the baseline EASM
closure to predict complex and three-dimensional flows. This validation study has
been found necessary for two reasons. First, the range of published validation cases
for EASM models, particularly for three-dimensional mean flow, is very limited and
second, the baseline EASM model employs a different pressure-strain correlation
model compared to the widely used EASM model of Wallin & Johansen (2000) and
Hellsten (2005). For the purpose of validating the baseline EASM closure, simula-
tions are performed for the flow in a planar channel, the flow over the NASA hump
configuration (Greenblatt et al., 2004) and the flow in a three-dimensional diffuser
(Cherry et al., 2008) and the results are compared with reference data. In addition,
the results are compared to predictions of the popular k-w-SST and the recently
proposed p-a-UMIST model (Keshmiri et al., 2008). The second objective of this
chapter is to investigate potential differences between two-dimensional and three-
dimensional EASM formulations for predicting complex three-dimensional flows.
This investigation seems particularly relevant, since two-dimensional EASM clo-
sures are generally preferred, due to their simplicity and numerical efficiency, over
the much more complex three-dimensional EASM formulation. However, three-
dimensional EASM formulations use additional, higher-order, coupling terms in the
stress-strain relationship, which may have the potential to improve the predicted
results for cases with three-dimensional mean flow. Additional cases have been pub-
lished by the author in Weinmann & Sandberg (2009) where the flow around an
idealised wing-body junction and the flow over a three-dimensional axisymetric hill

are considered.
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6.1 Constitutive Relations

The baseline EASM is a high-Reynolds-number formulation, since neither the trans-
port equations nor the quasi-homogeneous pressure-strain model used in the EASM
includes modifications to account for various effects the wall exerts on the flow.
The Reynolds-stress tensor TU; of the EASM formulation constitutes a non-linear
stress-strain relationship, which can be written as wu; = (2/3)kd;; + kag;, where
the anisotropy tensor is given by

Q5 = —2(VT/]€)S* + aff,

(6.1)

with the mean strain rate tensor Sf = (1/2) (0u;/dx; + du;/0x;) and the extra-

anisotropy tensor a$¥, which introduces anisotropy in addition to the anisotropy

Z] ’
resulting form the mean strain rate S;;. For a vanishing extra-anisotropy tensor

aii = 0, the stress-strain relationship reduces to the linear Boussinesq approx-

imation. The most general form of the extra-anisotropy tensor, valid in three-

dimensional mean flow, can be written in the following form:

aff = Do ( szkJ (1/3)I[S5ij) + f33 (Qikaj (1/3)119513) + 54( ’Lk‘ij QikSkj)
+ B (SikSki€; — QirSkiSi;) + Bo (SieaSl; + Qe Sy — (2/3)1V6i;5)

+ B7 (Sit:SkimQms + Qi Sim S — (2/3)V i)

+ B8 (Sit 21 Sim Smi — SiSkiSlmSimy)

+ B (Qir Skt mmg — it 1.Sim ) (6.2)

with the invariants
]]S =tr {Ssz;w} s ]_[Q =tr {szng} s II] = tr {SikSlelj} s

IV =1tr {SikalQlj} s V =tr {SszlelQOj} . (63)

The tensors S;; and €2;; are the non-dimensionalised mean strain rate and rotation-
rate tensors Sy = 75 and Q = (7/2) (0u;/0x; — 0u;/0x;), respectively. The
turbulence time scale is given by 7 = 1/4*w and is not limited by the viscous time

scale, since this is not required in the present high-Reynolds-number formulation.

A detailed derivation of the explicit solution for a general quasi-linear Algebraic
RSM can be found in Wallin & Johansen (2000) and is not repeated here. The ;



Chapter 6 Baseline EASM 95

coefficients are given as

B = —0541N (30421V — 21N1Io — 2A31115 + 6N* — 3A311sN) /Q,

Bo = —A145 (6A21V + 12N 1l + 2431115 — 6N + 3A31IsN) /Q,

Bs = —3A; (2451115 + 3N A1+ 61V) /Q,

By = —Ay (2A311Is + 3ASNIIg + 64,1V — 6NIIg + 3N?) /Q,

Bs = 9A1AN?/Q, fs=—9AIN?/Q, [r=18414;.N/Q

Bs = 9AIAIN/Q, [y =9AN/Q, (6.4)
where

Q = 3N°+ (—(15/2)1q — (7/2)A311s) N° + (21A,1V — A311Ig) N*
+ (3113 — 8IIsIIgAS + 24A3V + AJITZ) N + (2/3) A IsI1Ig
+2A3IV g — 2A311g Al . (6.5)

Wallin & Johansen (2000) (WJ) suggest using a modified version of the linear
pressure-strain model of Launder et al. (1975). This pressure-strain model has
also been adopted in the latest EASM of Hellsten (2005). The modification of
W results in a simplified form of the Algebraic RSM and consequently in reduced
complexity of the EASM approximation. Even though the resulting model is more
compact and computationally slightly less expensive, it is achieved at the expense
of predictive performance. For example, the EASM of WJ cannot predict the third
normal-extra-anisotropy component, i.e. a5; = 0. The baseline EASM used in this
study is therefore based on the linear pressure-strain model of Speziale et al. (1991),
which is able to predict all normal components of the extra-anisotropy tensor af}
and which also gives slightly better anisotropy predictions in homogeneous turbu-
lence (see Speziale et al., 1991). These features are believed to be favourable when
predicting complex three-dimensional flows. The coefficients A; appearing in (6.4)
and (6.5) are directly determined from the model of Speziale et al. (1991) and are
given as
A =122, Ay, =047, A3=0.88, A, =23T.

The variable N appearing in (6.4) and (6.5) corresponds to the ratio of rates of
turbulence kinetic energy production to dissipation (N = A3 + A4P;/¢) and is gov-
erned by a non-linear polynomial relation. For general three-dimensional mean flow,
N is governed by a sixth-order polynomial equation and no explicit solution can

be obtained. In the limit of two-dimensional mean flow N is governed by a cubic
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polynomial relation for which an explicit solution can be obtained. In this work,
the turbulence production to dissipation ratio in the three-dimensional EASM for-
mulation is approximated using the solution for two-dimensional mean flow. For

two-dimensional flows the non-linear equation has the explicit solution

L4 (P+VP) (P =VR)T P20

N = 6.6
% +2(P? — PQ)I/6 cos [% arccos (\/%)] , P <0 (6.6)
with A2 (A 2 2
Po= |2 (22 M- ST | A 6.7
1 [27 + < G 912 s — gllaf s (6.7)
A2 (AA 2 2 T°

Py=P?— |22 (L L SR TIs + S| 6.8
2 1 [ 9 + ( 6 + gz | s + 3iin (6.8)

Finally, the relation for the turbulence viscosity takes the form
vr = —0.5 (51 + 11956) k. (69)

The constitutive relations for aff provide a solution in three-dimensional mean flow.
The resulting EASM obviously results in a large number of additional numerical
operations to compute af; and the coefficients 3;, compared to a linear two-equation
model. In addition, the three-dimensional EASM formulation is not fully consistent,
since the production to dissipation ratio Py /e is approximated using the solution for
two-dimensional mean flows. Even though the full three-dimensional form might be
required in some cases, two-dimensional EASM approximations are very appealing
from a computational perspective and may provide a good compromise between
predictive accuracy and computational expense. For the two-dimensional EASM

the B; coefficients reduce to

B = —AIN/Q, B2=24A1A4:/Q, pBr=—-4A1/Q,
Bs=Bs = s = Pr = Bs = Py =0, (6.10)

where 5
Q=N?*-2II; — §A§HS. (6.11)

The anisotropy tensor a;; = Fj; (S;;,€%;) (6.1) is expressed as an isotropic second-
order tensor-valued function which depends on the two independent tensors S;; and
Qi;. The isotropic tensor function for a;; satisfies the property a(QSQ", QQQ") =
Qa(S,Q)Q", where Q is an orthogonal transformation matrix. Thus, the expres-

sion for a;; is independent of the coordinate system used and hence, preserves
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coordinate-frame invariance (see Gatski & Jongen, 2000). In the case of two-
dimensional mean flow, only the two independent invariants [Is and [l exist
(111 =0,1V =0and V = 0.5/Ig1Ig). This has the consequence that the isotropic
tensor function for a;; reduces to a three-term basis. Since all terms in the poly-
nomial expansion of a;; are linearly independent, any reduced basis will conserve
the coordinate-frame invariance property of the isotropic tensor function for a;;. In
fact, the three-term basis is a very popular choice, since it provides an exact repre-
sentation in two-dimensional mean flows, and provides an approximation, optimal
in the least-squares sense, for the computation of three-dimensional mean flows (see
Gatski & Jongen, 2000). In addition, the formulation is significantly simpler and

numerically less expensive, compared to, for example, a ten-term basis.

Before the transport equations for the turbulence velocity-scale and length-scale
variable are introduced, some further comments about the baseline EASM model
are necessary. The baseline EASM is not used in conjunction with any streamline
curvature modification as discussed, for example, in Wallin & Johansen (2002) and
Hellsten (2002). The reasons for neglecting these modifications are twofold. First,
curvature modifications significantly deteriorate the stability and convergence char-
acteristics of the EASM (see, for example, Hellsten, 2005). Second, as pointed out
in Wang et al. (2005), the success of curvature corrections is mainly limited to
improved predictions in simple strongly curved flows, for example, the flow in a
strongly curved two-dimensional U-duct. They are, however, less or even counter
effective in more general three-dimensional flows, or flows with recirculation, due
to over-prediction of the contribution from the curvature correction. For these two

reasons curvature modifications are not included in the baseline EASM.

The relations above must be supplemented by a transport equation for the turbu-
lence velocity and length-scale. The velocity scale is determined from a transport
equation for the turbulence kinetic energy k. Many previous studies have indepen-
dently demonstrated the importance of the length-scale equation in the framework
of RANS modelling (see, for example, Wilcox, 1993). Due to the inability of the
standard dissipation rate equation to produce correct length scales in adverse pres-
sure gradient flows, the length-scale equation used in this work is based on the
formulation proposed by Menter (1994), where the w equation is used in the near-
wall region and blended to the € equation in the wake region of attached boundary
layers. The blending retains the improved predictions of the w formulation for ad-
verse pressure gradient flows and at the same time avoids the spurious sensitivity of
the specific turbulence dissipation rate equation to free-stream values. In addition,

the w-based formulation can be integrated to the wall without requiring ad-hoc
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modification in order to recover the correct velocity profile. The transport equa-
tions used in this study are based on the re-calibrated version of Menter’s blending
approach as presented in Hellsten (2004, 2005). The aim of the recalibration ef-
fort of Hellsten (2005) is to take into account the non-constant C’Ef I of the EASM
formulation and to improve the model behaviour at the outer edge of a turbulent
boundary layer as well as the spreading rate of wakes and mixing layers. In addi-
tion, the closure coefficients have been optimised to give satisfactory performance
for a range of calibration cases, for example, zero and adverse pressure-gradient

boundary layers, channel flow, wakes and mixing layers.

The transport equations for the turbulence kinetic energy k& and the specific turbu-

lence dissipation rate w take the following form

Dk 0 ok
— =P, — [B%k — -— 6.12
pr = e Bkt o l(” +owvr) axj] ’ (6.12)
Dw w 0 ow 04
—— =~ZP. — fuw?+ — oVT) — — CDy,,,0), 6.13
or = 10 Bw +6mj [(l/+a VT)&xj]+wmaX( ks 0) ( )
where P, = —u;u; 0u;/0x; is the production of turbulence kinetic energy and C' Dy, =

(0k/0x;)(0w/dz;) is a turbulent cross-diffusion term, arising from the formal trans-
formation of the equation for the dissipation rate € to a form based on the specific
dissipation rate w. The closure coefficients are obtained by blending the sets of

coeflicients from the € and w formulations

¢ = Fipr + (1 — F1) ¢o. (6.14)

The blending function Fj used in this study follows the proposal of Hellsten (2005)

but is slightly modified compared Menter’s original formulation

Fy = tanh (1.5I'), (6.15)
with
I' = min [max (', T), T3], (6.16)
where Vi
2
I K Iy = @ I's = Ok (6.17)

- Brwoy’ 7wy’ P max [y2C Dy, /w, 200k ]

and ko, is the free-stream value of turbulence kinetic energy. The closure constants
are given as:

Set 1: v = 0.518, B =0.0747, ok, =11, o, =0.53, o4 =1.0.

Set 2: vo = 0.440, p2 =0.0828, ok, =11, o, =10, o4, =04
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6.2 Planar Channel Flow

In order to verify the correct implementation and to highlight the performance and
deficiencies of the baseline EASM, the results for a fully developed turbulent channel
flow are considered next. As a reference, the results of the k-w-SST and ¢-a-UMIST

(Keshmiri et al., 2008) turbulence model are also included.

6.2.1 Computational Setup

The flow in the planar channel is turbulent and fully developed with a Reynolds
number of Re, = 590, based on the skin friction velocity u, and the channel half-
width H = L, /2. The flow under consideration is essentially a 1D problem, since
there is no variation of the mean flow field in the streamwise and the spanwise
directions. For this reason periodic boundary conditions can be used in the spanwise
and streamwise directions. In order to maintain a constant flow rate through the
channel an additional momentum source is introduced to the momentum equations.
The momentum source could iteratively be adjusted in order to yield the desired
flow rate. Alternatively, the required pressure gradient can be computed exactly for
the target Re, by considering the momentum balance in the streamwise direction.
Simulations are conducted by imposing a fixed pressure gradient in the streamwise
direction. The pressure gradient is computed from the relation dp/dz = 7,,/H with
the wall shear stress 7,, = pu? and the skin friction velocity u, computed from the
target Re.. The results are assessed and compared to DNS data of Moser et al.
(1999).

Simulations are performed on a computational grid with a first wall-normal grid
spacing of y; ~ 0.2 at the top and bottom wall and 200 cells in the wall-normal
direction. Results have also been obtained on a computational grid with 400 cells in
the wall-normal direction and they showed no significant differences. The convective
fluxes are discretised using a second-order accurate upwind-difference scheme. The
viscous terms use a second-order central-difference scheme. Steady-state results are

obtained using the SIMPLE pressure-correction algorithm.

6.2.2 Results

The results shown in figure 6.1 are for the mean-velocity profile U™, the normal

components of the anisotropy tensor a;; = wuzu;/k — (2/3)d;;, the Reynolds-stress
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7t . .
components u;u; , the asymptotic behaviour of the Reynolds-stress components,
the I11,-11, invariant map and the balance of the turbulence kinetic energy equa-
tion. The superscipt + denotes normalisation using the skin-friction velocity u, and

viscosity v.

All turbulence models predict the correct log-law behaviour of the velocity profile
U*. However, all turbulence model predict somewhat lower magnitudes of velocity
in the buffer region y* ~ 10—30. The p-a-UMIST is the only model, which predicts
the correct velocity magnitude in the centre of the channel, whereas the k-w-SST

and EASM-2D predict somewhat too low values.

For the present case, the k-w-SST and ¢-a-UMIST model, which are both based
on a linear constitutive stress-strain relationship fail to predict any anisotropy of
the normal-Reynolds-stress components. This is, because the anisotropy is set by
the strain rate tensor S} (recall that a;; = —2(vr/k)S};), and for this flow S} =
Sy, = S3; = 0. The EASM-2D on the other hand, provides good predictions for
all normal-anisotropy components in the log region. However, since the EASM
formulation is based on a quasi-homogeneous pressure-strain model, the near-wall
behaviour of the anisotropy tensor is largely in error, i.e. asy does not approach
the correct limit agy — —2/3 at the wall, and the near-wall peaks of ay; and as3
are not reproduced. This picture is confirmed by the anisotropy-invariant map in
figure 6.1 (e), where only the EASM-2D is able to reproduce some parts of the locus
predicted by DNS. However, the two-component line is not reached, which is a direct
consequence of the incorrect wall limit of ass and a non vanishing energy contained
in the v'v’ Reynolds-stress component. Further, at the centre of the channel, where
the velocity gradient vanishes, the algebraic non-linear stress-strain relationship of
the EASM fails to predict any anisotropy. In the centre of the channel, diffusion
dominates the budget of W and the failure of the EASM can be linked to the weak-
equilibrium assumption employed in the derivation of the EASM, which effectively

neglects all transport of u;u]

Concerning the components of the Reynolds-stress tensor in sub figures (c¢) and
(d), all models predict the shear stress W'v in good agreement with reference data.
The normal components of the Reynolds-stress tensor show the same trend as the

anisotropy tensor, i.e. the linear models predict the same magnitude for all normal

components u'u’ = v'v" = w'w’ = (2/3)k, which is clearly not correct. The EASM-
2D is able to predict realistic levels of the normal-Reynolds-stress components in the
log region. However, shortcomings can be observed in the near-wall region where

the prediction of the normal-Reynolds-stress u'v’ is largely in error. In addition, the
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FIGURE 6.1: Predictions for a planar channel flow at Re; = 590. Symbols cor-
respond to DNS (Moser et al., 1999), (—) k-w-SST, (- - -) p-a-
UMIST, (- - —) k-w-EASM-2D.
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asymptotic behaviours of the normal-Reynolds-stress components are not satisfac-
torily reproduced by any of the models considered here. The k-w-SST predicts an
asymptotic behaviour of m ~ O(y+4'8), whereas the p-a-UMIST model predicts
m ~ O(y+2). The leading-order asymptotic behaviour of the normal-Reynolds-
stress components of the linear models is directly linked to the asymptotic behaviour
of the evolution equation for the turbulence kinetic energy k. In the EASM for-
mulation, the normal-Reynolds-stress components are additionally influenced by

non-linear terms appearing in the constitutive stress-strain relationship.

The budget of the turbulence kinetic energy equation is shown in sub figure (f).
Away from the wall, for y© > 30, the turbulence kinetic energy production P,
transport D;, viscous diffusion vV2k " and dissipation rate e are in good agreement
with reference data. The p-a-UMIST model, which solves a transport equation for
the dissipation rate ¢, gives the best overall agreement with DNS data close to the
wall. In particular, the dissipation rate e and viscous diffusion »V?k*, which are
involved in the near-wall balance of k, are well reproduced. This explains why the
©-a-UMIST model is able to correctly predict the asymptotic behaviour O(y+2)
of turbulence kinetic energy as the wall is approached. The models based on the
specific dissipation rate w are not very successful in providing realistic prediction for
et and vV2k* close to the wall. Both terms go to zero rather than remaining finite
at the wall. This explains the erroneous prediction of the asymptotic behaviour

O(y**®) of turbulence kinetic energy as the wall is approached.

The discussion above clearly highlights the deficiency of the baseline EASM consti-
tutive relations to predict the highly anisotropic flow close to the wall (y* < 100).
This is due to the lack of adequate modification of the quasi-homogeneous pressure-
strain model and the high-Reynolds-number form of the transport equations for the
turbulence quantities. The budget of turbulence kinetic energy shows that deficien-
cies exist in predicting the correct magnitude for the dissipation rate e and the

viscous diffusion term vV2k*, which are both involved in the near-wall balance.
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6.3 NASA Hump

The NASA wall-mounted hump is used here in order to evaluate the performance
of the EASM model to capture important phenomena associated with separation
from a smooth surface, recirculation and subsequent reattachment of the flow. This
test case has also been used in the CFD validation workshops on turbulent separa-
tion control and refined turbulence modelling (Langley Research Center Workshop
about CFD Validation of Synthetic Jets and Turbulent Separation Control 2004
and the 11th/12th ERCOFTAC/IAHR Workshop on Refined Turbulence Modelling
2005/2006). The configuration consists of a Glauert-Goldschmied type body, which

is mounted on a splitter plate (see figure 6.2).

The model investigated in the experiment has a spanwise width of L, = 1.4¢, where
¢ is the chord length. End plates are mounted on either side. At approximately
x/c = 0.65 a slot opening extends over the entire spanwise width of the model in
order to allow for separation control of the flow. In the following investigations only

the baseline case will be considered with no-flow control.

endplate frames

FIGURE 6.2: Geometry of the NASA hump, reproduced from Greenblatt et al.
(2004).

The flow is tripped at the splitter plate leading edge in order to yield a fully de-
veloped flow approaching the hump. The Reynolds number based on the chord ¢
is Re. = 9.36 x 10° and corresponds to the experimental data of Greenblatt et al.
(2004, 2006). Detailed information about the velocity field and Reynolds stress are
available for the separated flow region as well as surface pressure and wall shear
stress measurements on the model. As a reference, the results of the k-w-SST and
-a-UMIST turbulence models are also included and compared to the experimental
data.
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6.3.1 Computational Setup

The computational domain used here does not include the slot for flow control (see
figure 6.3), and has an extended upstream section of z/c = 6.39 in order to generate
a fully turbulent boundary layer approaching the hump. The upstream extent is
chosen such that the velocity profile of the approaching turbulent boundary layer
matches experimental data at the location x/c = —2.14. At the outlet, located at
x/c = 4 downstream of the hump, zero-gradient boundary conditions are specified
for all quantities. The end plates used in the experiment introduced some unde-
sired three-dimensional effects near the end plate. The effect of the side walls are
approximated in the two-dimensional computational domain by a modified contour
of the upper inviscid boundary (see Rumsey & Greenblatt, 2009, for details). All
simulations are performed on a grid using 840 x 216 cells and a maximum first
wall-normal grid spacing of y; ~ 0.2. Grid convergence has been verified using a
coarser computational grid with every other grid point removed. The convective
fluxes are discretised using a second-order accurate upwind-difference scheme. The
viscous terms use a second-order central-difference scheme. Steady-state results are

obtained using the SIMPLE pressure-correction algorithm.

0909 c

6.39 ¢ T e 4c

(a) Computational domain.

(b) Coarse grid.

FIGURE 6.3: Computational setup of the NASA hump.
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6.3.2 Results

The predicted streamwise velocity contour U/U, and computed streamlines are
shown in figure 6.4 for the three turbulence models investigated and experimen-
tal data. It is evident that the recirculation region in the experiment is significantly
smaller compared to the predictions of all three turbulence models. The experimen-
tal data show the separation and reattachment point to be located at approximately
xs/c = 0.66 — 0.67 and z,/c = 1.1, respectively. The k-w-SST and k-w-EASM-2D
predict the separation point at zs/c = 0.655. The p-a-UMIST model, which is
based on a transport equation for the turbulence dissipation rate €, predicts sepa-
ration at zg/c = 0.660, which is in good agreement with the reference data. The
defect common to turbulence models based on the turbulence dissipation rate €, to

delay separation, is not observed here.

The location of the reattachment point is predicted very similar by all three turbu-
lence models. The k-w-SST predicts the longest recirculation zone with reattach-
ment occurring at x,/c = 1.28, the p-a-UMIST gives z,./c = 1.26 and the EASM-2D
x./c = 1.24, giving the best agreement with reference data. The better agreement of
the EASM-2D might be linked to a more realistic prediction of the reattachment pro-
cess by providing improved predictions for the normal-Reynolds-stress components.
Further, the reattachment streamline of the experiment shows a steep inclination
to the wall, which is reproduced by the EASM-2D model. Both, the k-w-SST and

p-a-UMIST model, show a shallower inclination of the reattachment streamline.

02 [ .
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yic
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T xic
(¢) ¢-a-UMIST. (d) EASM-2D.

FIGURE 6.4: Streamwise velocity contours U/Uy and streamlines for the NASA
hump case.
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Figure 6.5 shows predictions for the surface-pressure coefficient C), = (p—pyy)/(0.5pUF)
and the skin-friction coefficient Cy = 7,/(0.5pUZ) distributions. The surface-
pressure distribution of the k-w-SST and EASM-2D are very similar with only
negligible differences. Both under-predict the low pressure peak on the model up-
stream of the separation point. The p-a-UMIST model provides somewhat better
predictions in this region. On the other hand, the magnitude of the surface pressure
in the recirculation region is better predicted by the k-w-SST and EASM-2D mod-
els. Further, all three turbulence models predict too slow a rate of pressure recovery
downstream of the reattachment point. The skin-friction coefficient distribution is
more sensitive to the turbulence model formulation. In the region upstream of the
separation point the k-w-SST and ¢-a-UMIST models predict a much lower magni-
tude of skin-friction compared to the EASM-2D model. It is difficult to judge, due
to the scatter in the experimental data, which model performs better. The situation
is much clearer downstream of the separation point. Inside the recirculation region
the k-w-SST and k-w-EASM-2D models predict the skin-friction magnitude in much
better agreement with the reference data than the p-a-UMIST model, which sig-
nificantly over-estimates the magnitude of skin friction. None of the turbulence
models is capable of predicting the correct location of maximum skin friction in
the recirculation region. This is linked to the erroneous prediction of the extent
of the recirculation zone. After reattachment, only the EASM-2D model is able to
recover the correct magnitude of skin-friction. The skin-friction predicted by the
k-w-SST after reattachment remains too low, whereas the p-a-UMIST model shows

somewhat too high levels of skin friction.

A 0.008

0.002

0.000—

(a) Surface-pressure coefficient Cp. (b) Skin-friction coefficient C'.

FIGURE 6.5: Surface-pressure coefficient C), and skin-friction coefficient C dis-
tribution. Symbols correspond to experimental data of Greenblatt
et al. (2004, 2006). (—) k-w-SST, (- - -) p-a-UMIST, (—-—) EASM-
2D.
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The velocity profiles for the streamwise and vertical velocity component U/U, and
V' /Uy are shown in figure 6.6, for the stations z/c = 0.65, x/c = 0.8, z/c = 1.0
and x/c = 1.2. The velocity profiles reflect what has been said in the preceding
discussion. At the first station, x/c = 0.65, which is immediately upstream of the
separation point, the p-a-UMIST model predicts both components of the velocity
profile in excellent agreement with experimental data. The k-w-SST and EASM-2D
show too strong a retardation of the streamwise velocity component close to the
wall. This behaviour explains the somewhat too early separation from the hump
observed for those two models. At the second station, z/c = 0.8, the better upstream
predictions of the p-a-UMIST model is reflected in the predictions of the streamwise
velocity component, which is still in good agreement with reference data. The k-
w-SST and EASM-2D also predict the velocity profiles, but with somewhat larger
departure from the reference data. At the next location farther downstream, z/c =
1.0, which is located just upstream of the reattachment point, the departure from
experimental data, mainly away from the wall, becomes slightly more pronounced.
Close to the wall, the reverse flow magnitude is in good agreement with reference
data. The rapid flow reattachment and flow recovery occurring between x/c = 1.0
and x/c = 1.2 is not adequately predicted by any of the three turbulence models.
Consequently, the near-wall region at the last station, x/c = 1.2, is rather poorly

predicted by all models, but the EASM-2D showing somewhat improved predictions.

The final quantities for which reference data are available are the components of
the Reynolds-stress and anisotropy tensor. The shear stress «'v” and normal-stress
components W' and v'v" are shown in figure 6.7. The anisotropy tensor compo-
nents ay; and agy are shown in figure 6.8. It is noted that the uncertainty in the
experimental data for the turbulence quantities is as much as 14%-20% at maxi-
mum, which makes a comparisson of absolute values difficult. The shear stress at
station x/c = 0.65, where the flow is still attached, is well predicted by all models
even though the EASM-2D predicts a slightly too large magnitude close to the wall.
At the next two stations downstream, which are located in the recirculation region,
the shear stress in the free-shear layer is under-predicted by all models. There is
also a significant offset in peak-value location at x/c = 1.0. In the separated flow
region, the models based on the specific dissipation rate w seem to predict somewhat
higher levels of shear stress compared to the ¢-a-UMIST model. It is interesting
to note that the EASM-2D predicts the highest levels of shear stress of all models
even though the constant C’Ef f = —0.56; ~ 0.055, in the eddy viscosity relation, is
significantly reduced compared to the generally accepted value of Cﬁf f =0.09 or
the prediction of the ¢-a-UMIST model, which gives ijff = Cp =~ 0.095. The
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FIGURE 6.6: Velocity profiles at different stations in the flow field. Symbols
correspond to experimental data of Greenblatt et al. (2004, 2006).

(—) k-w-SST, (- - -) ¢-a-UMIST, (— - —) EASM-2D.

rather low value predicted by the EASM relations is a consequence of the sensitivity
of C’ﬁf f to strain and rotation rate. The overall insufficient levels of shear stress in

the free-shear layer consequently results in an over-prediction of the recirculation
length.

In the prediction of the normal-Reynolds-stress and anisotropy components a clear
trend becomes noticeable. At almost all stations in the flow field the EASM-2D is
clearly superior in predicting the correct magnitude of the normal-Reynolds-stress
components away from the wall. The same holds for the anisotropy tensor com-
ponents, where significant improvements of the EASM-2D over the models based
on a linear stress-strain relationship can be observed. Even though the near-wall
behaviour of the wall-normal fluctuations v'v’ seems to be in agreement with ref-
erence data at most locations, predictions of the streamwise fluctuations ' and
both anisotropy components are largely in error. This behaviour is consistent to
what has been observed in the prediction of the planar channel flow in section 6.2.
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FIGURE 6.7: Components of the Reynolds-stress tensor. Symbols correspond to
experimental data of Greenblatt et al. (2004, 2006). (—) k-w-SST,

(- - ) ¢-a-UMIST, (— - —) EASM-2D.
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6.4 Three-Dimensional Diffuser

The last test case considered is the flow in an asymmetric three-dimensional diffuser.
The flow in the diffuser includes three-dimensional boundary-layer separation and
turbulence-driven secondary motion in the corners of the diffuser, which makes it
a challenging test case for any RANS turbulence model, but especially for models
based on a linear stress-strain relationship. This case has been subject to the
13th/14th ERCOFTAC/IAHR Workshop on Refined Turbulence Modelling. The
diffuser has a rectangular cross section, as depicted in figure 6.9, with a geometric
expansion of 11.3° and 2.56°, respectively. The Reynolds number is Rey = 10000,
based on the channel height H and bulk velocity Uy, or approximately Re, &~ 588
at the diffuser inflow. In the experiments of Cherry et al. (2008, 2009) a long
rectangular channel has been used upstream of the diffuser, which results in a
fully developed turbulent flow at the diffuser inlet. Magnetic-resonance velocimetry
has been used to measure the three-dimensional velocity field in the entire diffuser
volume. In addition, surface-pressure measurements at the bottom wall and stream-
wise velocity fluctuations are also available for comparison. The experimental data
show an uncertainty of as much as 10% at maximum. Simulations are performed
with the EASM-2D and EASM-3D and the results of the k-w-SST and p-a-UMIST

turbulence model are included as a reference.

P - / 4H
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" 3H H 15H 13H
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3.33H

(a) Isometric view (b) Top: z-y plane. Bottom: z-z plane.

FIGURE 6.9: Three-dimensional diffuser geometry.

6.4.1 Computational Setup

The simulations are performed on a computational grid with approximately 2.1 x 10°
cells (335 x 65 x 97) for the diffuser domain. In order to generate fully developed
turbulent inflow conditions a short rectangular channel is computed simultaneously

and the flow is mapped to the inlet of the diffuser domain. The boundary conditions
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of the inflow channel are periodic in the streamwise direction and the flow is driven
by an imposed pressure gradient. The pressure gradient is adjusted iteratively to
yield the desired bulk velocity U,. The computational grid of the separate channel-
flow domain has approximately 400000 cells. The convective fluxes are discretised
using a second-order accurate upwind-difference scheme. The viscous terms use a
second-order central-difference scheme. Steady-state results are obtained using the
SIMPLE pressure-correction algorithm. No-slip boundary conditions are specified
for all walls and zero-gradient boundary conditions are used at the diffuser outlet.
It should also be mentioned that the diffuser used in the experiment joins the inflow
duct by a small radius. The small radius is not modelled here and approximated
by a sharp corner, which considerably simplifies the grid generation process. A
grid convergence study was conducted on a computational grid with a 50% increase
in cells in each coordinate direction (502 x 98 x 145) and with a total number of
approximately 7 x 10° cells for the diffuser domain. Since the velocity field predicted
by the coarser computational collapses with predictions on the finer mesh, all results

presented subsequently are obtained on the coarse computational grid.

6.4.2 Results

The presentation of results is split into two parts. First, a comparison of the flow
field at the spanwise location z/L, = 0.5, where L, = 3.33H is the spanwise width
of the inflow channel, is presented. This is followed by an analysis of the streamwise

evolution of the three-dimensional flow.
Centre Plane z/L, = 0.5

The predictions of the surface-pressure distribution C, = (p — prer)/(0.5pU?) at
the bottom wall (y/H = 0) is shown in figure 6.10. The reference pressure p,.s
is evaluated at the bottom wall, where the geometric expansion starts, /L = 0,
where L = 15H is the length of the diffuser. It is obvious that none of the turbu-
lence models investigated here is capable of predicting the correct pressure recovery
observed in the experiment. All of the turbulence models have difficulties in pre-
dicting particularly the initial, rapid pressure recovery, which extents up to the
location z/L =~ 0.5. For the streamwise locations /L > 0.5, all models predict the
reduced, slower rate of pressure recovery, which agrees with the trend observed in
the experiment. However, the magnitude of C, remains significantly too low for
x/L > 0.5. The k-w-SST shows the largest departure from reference data. The
EASM-2D and ¢-a-UMIST give very similar results, which are in better agreement
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with the experimental data. The EASM-3D, which might be expected to be better
suited for predicting truly three-dimensional flows, gives a surface-pressure distribu-
tion, which is less accurate compared to EASM-2D. Most of the turbulence models
investigated in the 13th/14th ERCOFTAC/IAHR Workshop, including more so-
phisticated DRSM closures, show a similar trend with an under-prediction of C),

as observed here.
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FIGURE 6.10: Surface-pressure coefficient C), at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
k-w-SST, (- - -) p-a-UMIST, (—-—) EASM-2D and (—--—) EASM-
3D.

Some more insight into the flow field predictions can be gained from figure 6.11,
which shows the streamwise velocity contour U/U, at the centre plane z/L, = 0.5.
The figure also includes a thick line, which corresponds to the zero-velocity contour
line and gives the extent of the separated flow region. The experimental data show a
large separation zone, which extents approximately from /H ~ 7to x/H ~ 19. It is
now obvious that the initial, rapid, pressure recovery occurs in the region x/H < 7,
where the flow is still attached. The region of a slowed pressure recovery corresponds
to the separated flow region downstream of x/H ~ 7. It is important to note that the
boundary-layer separation is a three-dimensional process and starts much further
upstream in the corner of the diffuser. None of the turbulence models predicts the
extent of the recirculation zone in satisfactory agreement with reference data. The
p-a-UMIST model fails to predict any separation apart from the tiny recirculations
zone just downstream of the sharp corner, where the geometric expansion starts.
This is also predicted by all other models. The main recirculation zone predicted
by the k-w-SST starts too far upstream, at ©/H ~ 4, and only extents to x/H ~ 11.
The EASM-2D predicts a very small recirculation zone ranging from z/H ~ 13 to
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x/H =~ 18. The location of the recirculation zone predicted by EASM-3D is closest
to the reference data, even though the extent from x/H ~ 11 to x/H ~ 17 is still too
small. Another fundamental difference becomes obvious from the velocity contour
plots. The experiment shows that the flow discharged into the diffuser propagates
towards the centre of the diffuser, away from the bottom wall. All turbulence models

predict the flow to remain too close to the bottom wall.

xH

(c) -a-UMIST. (d) EASM-2D.

[ 5 10 xH 15 20

(e) EASM-3D.

FIGURE 6.11: Streamwise velocity contours U/U, at the plane z/L, = 0.5.

A more detailed comparison of the flow field on the centre plane is shown in figures
6.12 and 6.13, where the velocity profile U/U,, Reynolds-stress and anisotropy ten-
sor components are plotted at the four streamwise locations, /H = 1, x/H = 5,
x/H =12 and x/H = 16. The flow at the diffuser inlet, /H = 0, was also analysed
but the results are not shown here. The diffuser inflow condition are better pre-
dicted by the EASM-2D and EASM-3D model, which predict 5% less streamwise
velocity magnitude in the centre of the channel and hence show better agreement
with the reference data. It may be argued that improved inflow conditions are a
consquence of the non-linear stress-strain relationship of the EASM, which is able
to resolve the anisotropy-induced secondary motion developing in the corners of the
inflow duct. The experimental data show a slight asymmetry in the velocity profile
at the inflow, which is not captured by any of the turbulence models investigated
here. It is not clear whether the flow at the diffuser inlet in the experiment is
indeed asymmetric or whether the asymmetry stems from inaccuracies of the mea-

surements. It should be kept in mind that the flow in the diffuser is sensitive to the
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inflow boundary conditions and the asymmetry in the velocity profile may cause
the flow in the diffuser to develop differently compared to a symmetric velocity
profile. At the location z/H = 1, the same trend as for the inflow is still visible.
Both EASM models predict the velocity magnitude, in the centre of the diffuser, in
better agreement with the experimental data than the k-w-SST and ¢-a-UMIST.
Further downstream, at station #/H = 5, the location of peak velocity has moved
away from the bottom wall towards the centre of the diffuser. A similar trend is
captured by all turbulence models. However, the location of peak velocity remains
too close to the bottom wall. In addition, the magnitude of streamwise velocity is
significantly over-predicted with a difference of the order of 15% of U,. At the top
wall, overall good agreement is observed for most turbulence models, apart from the
k-w-SST, which already shows separated flow at this station. The error in predict-
ing the location of peak velcoity becomes more pronounced for the stations farther
downstream, x/H = 12 and x/H = 16. The measurements show that the location
of peak velocity is close to the centre of the diffuser, whereas the predicted peak
velocity location remains too close to the bottom wall. The p-a-UMIST model
shows overall the greatest departure in the velocity profile from reference data. It
not only fails in predicting the location of peak velocity, but it also significantly
under-predicts the velocity magnitude. In fact, at the station x/H = 16, the flow is
almost uniform over the entire diffuser height. The k-w-SST model does somewhat
better in predicting the peak velocity magnitudes, but it also fails in predicting the
flow close to the top wall. The EASM-2D and EASM-3D show overall the best,
but not satisfying, agreement with the reference data. Improvements are not only
observed for the location of peak velocity and velocity magnitude, the EASM mod-
els also predict the flow at the top wall, at /H = 16, in good agreement with the

reference data.
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FIGURE 6.12: Velocity and Reynolds-stress components at the centre plane
z/L, = 0.5. Locations from left to right: z/H = 1, x/H = 5,
x/H = 12 and x/H = 16. Symbols correspond to experimental
data of Cherry et al. (2008, 2009). (—) k-w-SST, (- - -) ¢-a-
UMIST, (- - —) EASM-2D and (- --—) EASM-3D.
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The predictions of the Reynolds-stress and anisotropy tensor are discussed next.
Unfortunately, experimental data are only available for the component ers JUp. Tt
is obvious from figure 6.12, that there is a significant difference in the predictions
for the streamwise and wall-normal velocity fluctuations predicted by the EASM
models and by the models based on a linear stress-strain relationship. The non-
linear stress-strain relationship of the EASM formulation clearly provides improved
predictions for the streamwise velocity fluctuations JTmS/Ub. The linear models
tend to under-predict the intensity of the streamwise fluctuations and over-predict
the intensity of wall-normal fluctuations, similar to the predictions for the channel
flow in section 6.2. This is particularly visible at stations /H = 12 and z/H = 16.
The EASM models provide higher levels of streamwise velocity fluctuations and
a lower magnitude for the wall-normal fluctuations, which is in better agreement
with the reference data. For the predictions of shear stress u'v'/UZ in sub figure (f),
another difference between the EASM and the k-w-SST and ¢-a-UMIST models
becomes apparent. The shear stress predicted by both EASM models is larger in
magnitude, even though the variable Cﬁf F = —0.5p; reduces the contribution of the
linear term in the stress-strain relationship to the shear stress of the order 10-20%

compared to a constant C,, = 0.09.

The ability of the EASM models to predict more realistic levels of normal-Reynolds-
stress components is reflected in the predictions of the anisotropy tensor, shown in
figure 6.13. The linear stress-strain relationship of the k-w-SST and p-a-UMIST
models only predicts a very weak anisotropy state for the normal components aq;
and ags at all stations in the flow field. This is not too surprising, since linear model
are not intended to predict anisotropy, unless the anisotropy is directly induced
through the strain-rate tensor (a;; = —2(vr/k)S};). Unfortunately, no reference data
are available for the anisotropy tensor. However, both EASM models predict much
higher levels of anisotropy throughout, which seem more realistic. Nevertheless, the
EASM models are not capable of predicting the correct limiting state ags — —2/3

as the wall is approached.
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FIGURE 6.13: Components of the anisotropy tensor a;; at the

z/L, = 0.5. Locations from left to right: z/H = 1, «/H = 5,
x/H = 12 and z/H = 16.

(= -—) EASM-2D and (— - -—) EASM-3D.
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Three-Dimensional Flow Field

Further insight into the predictions of the three-dimensional flow field can be gained
from figures 6.14 and 6.15, which show contour plots of streamwise velocity compo-
nent U /U, and streamwise velocity fluctuations Urms /Uy at the streamwise locations
x/H =1, z/H =5, x/H = 12 and x/H = 16. Figure 6.14 also includes the con-
tour line with zero velocity in order to visualise the extent of the separated flow
region. At the first cross section, ©/H = 1, the experimental data show incipient
boundary-layer separation emanating from the two upper corners in the diffuser.
The same trend is reproduced by all turbulence models with the tendency of a too
large separation zone in the corners. At the next station downstream, z/H = 5, the
separation is limited to the top right corner in the diffuser. All turbulence models
are able to capture this trend. However, the shape and extent of the recirculation
zone depart somewhat from the reference data. In the predictions of the k-w-SST
model the flow is already completely detached from the side wall. At the next two
stations downstream, z/H = 12 and x/H = 16, the flow in the experiment has com-
pletely detached from the top wall and the recirculation zone has become almost
two-dimensional with no variation in the spanwise direction. In the predictions of
the k-w-SST and @-a-UMIST models the flow fully separates from the right wall
and not from the top wall. It is somewhat surprising and counter-intuitive, that
separation is predicted at the side wall, where the geometrical expansion is much
smaller (2.56°) compared to the top wall with an expansion of 11.3°. One possible
explanation for the departure from reference data might be the failure of the linear
stress-strain relationship to predict the anisotropy-induced secondary motion in the
corners of the inflow duct. Even though the magnitude of the secondary motion
is relatively weak, approximately 3.5% of the bulk velocity, it was demonstrated in
Schneider et al. (2010a) by means of LES, that the flow topology in the diffuser is
sensitive to the secondary motion in the corners of the inflow duct. The EASM-2D
and EASM-3D models both resolve the secondary motion in the inflow duct and
the predictions are indeed somewhat improved, although not entirely satisfying.
The EASM-2D predicts the flow to remain attached in parts to the side wall and
only separates fully from the top wall at the location #/H ~ 16. The separation
zone remains fully three-dimensional and does not show much resemblance with the
separation zone observed in the experiment. The EASM-3D also predicts a fully
three-dimensional separation zone where parts of the flow remain attached to the
top wall and the side wall is fully separated. Even though the secondary motion

is resolved by the EASM, the magnitude of the secondary motion is less than 1%
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of the bulk velocity and therefore quite different to what is observed in the exper-
iment. This might be an explanation for the improved, but not fully satisfactory
predictions of the flow topology in the diffuser by the EASM. It would be intersting
to investigate the sensitivity of the flow in the diffuser by artificially enhacing the
magnitude of the secondary motion, similarly to what has been done by Schneider

et al. (2010a) using LES. This study is left for future investigation.

The contours of streamwise velocity fluctuations Urms/ U, in figure 6.15 are pre-
dicted very similar by all turbulence models investigated here. As discussed before,
the EASM models predict a somewhat too high intensity of streamwise velocity
fluctuations compared to the k-w-SST and ¢-a-UMIST model and hence, shows

better agreement with the reference data.
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FIGURE 6.14: Streamwise velocity contours predicted by the k-w-SST, @-a-
UMIST, EASM-2D, EASM-3D and experimental data of Cherry
et al. (2008, 2009). Thick line corresponds to zero-velocity con-
tour line. The spacing between contour lines corresponds to
AU /U, = 0.1 and dashed lines denote negative velocities.
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FIGURE 6.15: Streamwise velocity fluctuations ers/Ub predicted by the k-w-
SST, ¢-a-UMIST, EASM-2D, EASM-3D and experimental data
of Cherry et al. (2008, 2009).
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6.5 Summary

Based on the test cases considered a fairly consistent picture of the performance
of the EASM closure is emerging. The two- and three-dimensional EASM closures
are capable of providing improved predictions for the flow in the three-dimensional
diffuser, over turbulence models based on a linear stress-strain relationship. Im-
provements are not limited to predictions of the Reynolds-stress and anisotropy
tensor but are also reflected in more realistic predictions of the mean-velocity field.
However, the EASM closures show deficiencies in predicting the near-wall behaviour
of turbulence kinetic energy and the Reynolds-stress and anisotropy tensor when
compared to the reference data. The EASM closures also failed to provide im-
proved predictions for the mean-velocity field of the massively separated flow around
the NASA hump configuration despite improved predictions of normal-Reynolds-
stress components. This shortcoming is attributed to the behaviour of the variable
Cﬁf f = —0.58; in the free-shear layer, which is sensitive to strain- and rotation-
rate, and which reduces the contribution of the linear term in the stress-strain
relationship to the shear stress. This has the consequence that the extent of the
recirculation zone is over-predicted. The test cases also reveal that the two- and
three-dimensional formulations of the EASM closure predict equivalent or very sim-
ilar results in three-dimensional flows. The three-dimensional EASM closure is not
found to give improved or significantly different predictions, which suggests that
the considerable additional numerical expense compared to the two-dimensional

formulation is not justified.






Chapter 7

Accounting for Wall-Induced
Anisotropy

The baseline EASM, as presented in chapter 6, is from a theoretical point of view
only valid for high-Reynolds-number flows and away from solid boundaries, since
neither the transport equations nor the quasi-homogeneous pressure-strain model
used in the EASM formulation include modifications to account for various effects
the wall exerts on the flow. Nevertheless, a distinct advantage of the EASM based
on the k-w framework is that it can be used on fine near-wall grids, which resolve
the viscous sublayer and low-Reynolds-number region close to the wall, despite the
lack of appropriate near-wall and low-Reynolds-number modifications. It has been
shown in chapter 6 and in Weinmann & Sandberg (2009), where the baseline EASM
closure is applied to a range of test cases, that the EASM is capable of provid-
ing significantly improved predictions of the normal-Reynolds-stress and anisotropy
tensor away from solid walls, over turbulence models based on a linear stress-strain
relationship. Nevertheless, room for improvements exists for both, modelling the
transport equations and predictions of the Reynolds-stress and anisotropy tensor

close to the wall.

In this chapter several strategies are presented, which aim at improving the predic-
tions of the Reynolds-stress and anisotropy tensor of the baseline EASM close to the
wall. Possible improvements in the near-wall region may be beneficial for a range
of applications, since not only most of the turbulence kinetic energy is generated
in this region but also, because it influences predictions of separation, aerodynamic
drag and heat and mass transfer. The correct asymptotic near-wall behaviour of

the components of the Reynolds-stress and anisotropy tensor close to the wall are
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discussed first. This is followed by a review of existing near-wall modifications and
different strategies to improve the predictions of the baseline EASM close to the

wall.

7.1 Asymptotic Near-Wall Behaviour

It was argued in section 3.4.5, that the two different mechanisms of viscous damping
and non-viscous, kinematic wall-blocking both affect the turbulence close to the
wall. In order to ensure the correct physical behaviour close to the wall, any near-
wall modification needs to be designed such that the asymptotic behaviour of the
fluctuating velocities is correctly reproduced as the wall is approached. Therefore,
the characteristic asymptotic near-wall behaviour is introduced in this section. The
asymptotic near-wall behaviour of the mean and the fluctuating velocity components
can be derived using Taylor-series expansions in terms of the wall-normal distance
y. The no-slip condition at the wall removes the contribution of the zero-order
terms in the series expansions of the fluctuating velocity components. Additionally,
the continuity constraint requires, that the coefficient of the linear contribution of

the fluctuating velocity v vanishes as well, thus

U= auy+ by’ + O®yP),
Vo= by + oy’ + O(y?),
w o = awy + buy? + O(y?), (7.1)

where a, b and ¢ are free coefficients. The asymptotic near-wall behaviours of the

Reynolds-stress components can now be written as

wu = a2y® + 2a,.b.9° + O(y?),

v = B2yt 4 2,00 + O(y0),
ww = EQQ + 2a,b,y° + O(y"),

W'V = abuy’ + (buby + @)yt + O(y),
uw' = Guauy? + (auby + buaw)y® + O(yY),

Vw' = byayy® + (bpby + Colin)yt + O(y°). (7.2)



Chapter 7 Accounting for Wall-Induced Anisotropy 127

It also follows directly, that the turbulence kinetic energy and dissipation rate are

e = v(a2+a2)+O0(y). (7.3)

From the above, the near-wall asymptotic behaviour of the anisotropy tensor com-

ponents, which are relevant for this work, can be derived as

2 a2
a = —— 4+ % + O s
1 37 0sa 1) T OV
2
az = -3+ O(y?),
2 a2,
a = —— 4+ % =+ O s
» 3 0.5(a2 +a2) )
a2 = O(y). (7-4)

It is now obvious that the a;, anisotropy component scales linearly with the wall
distance y and has to vanish at the wall. The wall-normal component as of the
anisotropy tensor has a limiting value of ayy = —2/3 at the wall and the limiting
value is approached to order O(y?). The behaviour of as is a direct consequence
of the wall blocking effect and the limiting value of azy — —2/3 is a requirement
for reproducing the two-component state of turbulence very close to the wall. The
wall-limiting values of the other two normal components a;; and a3z depend on the
constants a, and a,, and therefore, on the flow under consideration. Typical values
for @, and @, in plane channel flow, boundary layers and pipe flow are summarised
in So et al. (1991). Also note that the characteristic variation of ay; and ass is of

order O(y), which is different compared to the O(y?) variation of ags.

The near-wall behaviour of the baseline EASM can now be examined and compared
to the correct physical behaviour of the Reynolds-stress and anisotropy tensor close
to the wall. In order to understand the near-wall behaviour of the baseline EASM,
the assumption of one-dimensional parallel shear flow is invoked, where du/dy is
the only non-zero component of the velocity-gradient tensor. In this specific case,

the components of the anisotropy tensor predicted by the baseline EASM reduces
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to
ap = (;52 % — 254) o? — (%m + 2835 + 259) ot
age = (%52 — é B3 + 254) o? — (%57 — 205 — 259) ot
ass = (—gﬁQ + ﬁ3> o + 36704,
ae = Bio — 260", (7.5)

where 0 = (1/2)(k/e)du/dy. The quantity o becomes very large close the wall and
has an asymptotic near-wall behaviour, which is of the order O(y?). It is therefore
instructive to investigate the near-wall behaviour of the baseline EASM by assuming
a large value for o. In this case, the variable N, which represents the ratio of rate
of turbulence kinetic energy production to its dissipation, scales as Noco, and the
invariants scale as Ilg, [Iqoco?, [IIg = IV = 0 and Voco*. The behaviour of the

B; coefficients can now be estimated as

BIOC]-/O-7 62aﬁ37/84<x1/0-2a ﬂSaBGOC]-/OB? 577/38769OC1/0-4' (76)

Substituting this into equations 7.5 confirms the picture, that was emerging from
the channel-flow simulation in section 6.2 (figure 6.1), namely that the level of
normal-anisotropy close to the wall is approximately constant. This behaviour is

not consistent with the physically correct asymptotic limits.

The relations (7.5) are also useful, since they allow identification of the contribution
of each term in the tensorial expansion to each component of the anisotropy tensor.
For example, the coefficients 31, 85 and (g do not contribute to the normal com-
ponents of the anisotropy tensor and, therefore, do not need any alteration when
modifications for the normal-anisotropy components are introduced. Further, the
contribution to the shear stress is not limited to the linear term associated with
the By coefficient, but the higher-order term associated with the Sg coefficient also
contributes to the shear stress and therefore, requires special treatment. It is inter-
esting to note that the contribution of the g term to the shear stress is only present
if the full three-dimensional EASM approximation is used; for the two-dimensional

EASM approximation, this coefficient, amongst others, vanishes.
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7.2 Review of Existing Near-Wall Modifications

Possibly the best and most consistent way to include near-wall effects into an EASM
closure is to start the derivation from a DRSM, which includes appropriate modifi-
cations of the quasi-homogeneous pressure-strain model, such that the presence of
solid boundaries is adequately accounted for. This approach has been pursued by
Manceau (2003), who derived a k-e-ae EASM model from the elliptic-blending DRSM
of Manceau & Hanjalic (2002). The variable « is governed by an elliptic equation,
which modifies the redistribution term in the DRSM, such that the two-component
limit is achieved at the wall. This approach allows the correct near-wall behaviour
to be included into a two-equation model. Although initial results for channel flow
seem very promising, the resulting model is extremely complex and a fourth-order
polynomial equation needs to be solved using an iterative procedure. In addition,
the derivation of the EASM was limited to a three-term tensorial expansion for a;;,
i.e. to two-dimensional mean flow. Due to the complexity of the resulting model
an extension to three-dimensional mean flow seems too cumbersome. At present
it is not clear whether the k-e-ao EASM provides improved robustness at a lower

computational cost when compared to a full DRSM.

The second approach is to derive the EASM based on a quasi-homogeneous pressure-
strain model and subsequently modify the [3; coefficients to reproduce the correct
near-wall behaviour. Wallin & Johansen (2000) (WJ) introduce viscous blending
and damping functions where the anisotropy predicted from the quasi-homogeneous
EASM is blended towards a fixed anisotropy state at the wall. WJ chose to fix the
limiting anisotropy values at the wall such that they correspond to the limiting
values in a planar channel flow. Since the anisotropy state at the wall is fixed, it
cannot adjust itself for different types of flows. This must be considered a disadvan-
tage and limits the application to channel flow-type cases. The correct asymptotic
near-wall behaviour is achieved by the blending functions, which reproduce the cor-
rect asymptotic behaviour at the wall. Karlatiras & Papadakis (2006) used the
elliptic-blending function of Manceau & Hanjalic (2002) to replace the viscosity-
based blending/damping function in the approach of WJ. Rahman et al. (2001)
extended the EASM of Gatski & Speziale (1993) by a low-Reynolds-number cor-
rection. They introduced viscosity-dependent damping functions, in the same way,
as is commonly done for two-equation models. However, they neglected the fact
that additional modifications are required to rectify the erroneous predictions of
the quasi-homogeneous EASM for the highly anisotropic state of turbulence close
to the wall.
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Some NLEVM, which seem particularly suitable for providing improved and more
accurate predictions for the Reynolds-stress and anisotropy close to the wall are
introduced next. Note that other NLEVM are also discussed in the literature review
in section 3.7. Durbin (1995b6) and Lien & Durbin (1996) proposed a non-linear
stress-strain relationship for the elliptic-relaxation k-e-v?> model. The stress-strain
relationship is derived by imposing the constraints a;; = a0 and agy = v?/k—2/3,
where the velocity scale v? is obtained from the transport equation. The empirical
function oy = —1—6 55| /(15+|S}5|) is designed by reference to shear flow data and
approximately gives the correct behaviour of the anisotropy component aq;. Suga
& Abe (2000) proposed a cubic nonlinear k-e-A model, where A denotes the use of
a transport equation for Lumley’s flatness parameter, A = 1 —(9/8) (I1, — I11,).
The flatness parameter A vanishes at the two-component state close to the wall
and is unity in isotropic turbulence. The flatness parameter A is used to modify
the NLEVM such that it produces the correct two-component limit at the wall.
Apsley & Leschziner (1998) derived a cubic NLEVM where the free coefficients of
the model were modified to reproduce the correct near-wall behaviour of turbulent
boundary layers and channel flow. Abe et al. (2003) modified the model of Abe et al.
(1997) by introducing additional terms and wall-direction indicators, which enhance
the anisotropy state close to the wall and hence, provide improved predictions of

Reynolds stress and anisotropy close to the wall.

7.3 Near-Wall Modifications for the Baseline EASM

In this section three different strategies are presented, which improve the predictions
of the normal-Reynolds-stress and anisotropy components of the baseline EASM
close to the wall. The near-wall modifications are to some extent based on modelling
concepts that can be found in the literature, but all of them require adjustment or
re-calibration to work in conjunction with the present baseline EASM. In addition,
modifications to the transport equations are introduced such that the turbulence
kinetic energy is correctly predicted as the wall is approached. In order to highlight
the performance of the resulting modified EASM, predictions for the planar channel

flow configuration of section 6.2 are presented.
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7.3.1 Near-Wall Anisotropy Modifications

The near-wall modifications are initially introduced for the two-dimensional EASM
formulation and may be extend later to the full three-dimensional EASM formu-
lation, if required. This decision is motivated by the observation that the predic-
tive capabilities of the two-dimensional EASM may be very similar in a range of
complex three-dimensional flows when compared to the much more complex three-
dimensional EASM formulation. In addition, the two-dimensional EASM is numer-
ically much more efficient and only requires slightly more resources (approx. 7%)

compared to standard two-equation models.

For one-dimensional mean flow the anisotropy tensor (7.5) reduces to the simplified

form

1
aip = fio, an = <§52 — 254) o

1 2
(g2 = <§52 + 254) o, ag = —55202- (7.7)
The correct near-wall behaviour for the normal and off-diagonal components of the
anisotropy tensor can now be imposed by modifying the 3; coefficient such that the
correct asymptotic behaviour is reproduced. Since 3; only influences the predictions
of the a5 component, the modification for the off-diagonal and normal-anisotropy

components can be performed independently of each other.

7.3.1.1 Anisotropy Component a;;

It has been shown above that the coefficient Sy0cl/o as o becomes large, which
results in an approximately constant value of a5 close to the wall. In order to
achieve the correct asymptotic behaviour of a2 = O (y), the coefficient can be
modified by a damping function, which imposes the correct near-wall behaviour.
The damping function needs to be of O (y) as the wall is approached. Thus, the

near-wall corrected coefficient 5y is given by

51 = flﬂ{lv (78)

where 7 is obtained from the baseline EASM relations, which are derived from
a quasi-homogeneous pressure strain model. Multiplication with a van-Driest-like
damping function of the form f; = 1 — exp(—y*/A") would introduce the correct
near-wall behaviour. However, using y* is problematic, especially in situations

where the wall shear stress vanishes. It is therefore preferred to base the damping
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function on quantities like Re, = Vky/v or Rep = k*/ve. The damping function
initially used here is obtained from Wallin & Johansen (2000) and takes the form

fi=1—exp (—C;«/Rey — C;R%) , (7.9)
where C; = 2.4/26 and Cg = 0.003/26.

Figure 7.1 shows predictions of Cﬁf 7 and the anisotropy component a;y = —QCﬁf fo
for the baseline EASM (C¢// = —0.541), the modified EASM (C&// = —0.5f137)
and a standard k-e¢ two-equation model without near-wall damping (C’ﬁf F'=10.09)
using a priori study, based on the DNS data of Moser et al. (1999) for a planar

channel flow at Re, = 590. It is obvious that a constant Cﬁf 7 is not applicable close
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F1GURE 7.1: A priori study for predictions of Cﬁf I and a12 in a planar channel
flow at Re, = 395. (o) DNS data of Moser et al. (1999). (—)
modified EASM | (- - -) baseline EASM, (— - —) k-e model.

to the wall and will result in non-realisable values (|aja| < 1.0) for the anisotropy
component ais. It can be argued that the damping for standard two-equation
turbulence models is required in order to eliminate non-realisable values at large
strain-rate (see, for example, Hanifi et al., 1999). The damping of Cfo is more
naturally included in the baseline EASM, since the coefficient 37 is sensitive to the
strain-rate invariant /g, which results in an approximately constant value for the
a1o component at the wall. The correct asymptotic near-wall behaviour for C’l‘jf f

and ay5 is eventually recovered by using the modified fi} coefficient.
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7.3.1.2 Normal Anisotropy Components

Three different possibilities are introduced next to account for the highly anisotropic
region close to the wall. The first one is a generalisation of the blending approach of
Wallin & Johansen (2000). The second and third approaches are largely based on
the ideas of Abe et al. (2003), where additional terms are used to locally enhance the
anisotropy close to the wall. The difference between the second and third approach

is the use of additional wall-direction-dependent terms.

Blending Functions

The first EASM model, which has been proposed including near-wall modifications
is the model of Wallin & Johansen (2000). Their approach has been discussed
above and is not repeated here. Wallin & Johansen have chosen the constants in
the pressure-strain model such that a simplified form of the tensorial expansion for
a;; is obtained. In the course of the present work, the near-wall modifications of
Wallin & Johansen have been extended to EASM formulations, which use a three-
term expansion for a;;. Since the extension to a three-term basis cannot be found
in the literature, such a formulation is given here. Following the idea of Wallin &

Johansen, the blending approach can be written as

an = (G =200) 0 = s+ (1= ) (B~ 23).

o = (G4 20) 0 = fadly + (1= ) (273,

2
as3 = —§5202 = faaly + (1 — f2) (Bss —2/3), (7.10)
where By = a2/(0.5(a2 + a2)) = 1.8, Bss = a2,/(0.5(a2 + a2)) and f, is a blending
function. Note that quantities with superscript A are computed from the EASM
relations presented in chapter 6 and are based on a quasi-homogeneous form of the

pressure-strain model, for example, af, = ((1/3)85 — 2}) 0.

In order to achieve the correct behaviour of the normal components of the anisotropy
tensor, only the coefficients 3 and (4 are available to impose the correct behaviour.
In other words, the system of equations (7.10) is overdetermined, since there are
two unknowns in three equations. The modifications introduced subsequently are
derived by imposing the correct near-wall behaviour on a;; and ass. This seems
justified, since the component aq; is the largest in magnitude for shear flows and

a9y is crucial in achieving a two-component state at the wall. Solving the equations
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for the unknown coefficients 5, and (4 gives

B2 = faB5 + (1= f2) mai?[l}s_jfl[;q]’ (7.11)
Bi=faBy — (1= fa) Bu (7.12)

2max [I1g, [T]

A few points should be made here. First, the variable o2 is replaced and generalised
by 0? = IIg/2. Second, the invariant Ilg in the denominator would result in a
numerically ill-behaved model, since Ilg vanishes at points where the strain rate
vanishes. Singular behaviour is avoided by introducing the equilibrium value I7¢! =
5.05 as a lower bound. Last, the blending function f; needs to be designed such that
the correct asymptotic near-wall behaviour of the normal components is obtained.
Since it is not possible to satisfy the correct asymptotic behaviour for all normal-
anisotropy components, Wallin & Johansen chose f, = f2, which makes f, behave
as fo = O(y?), and hence reproduces the correct asymptotic behaviour of the ag

component.

Local Enhancement of Anisotropy
The idea here is to retain the behaviour of the 8! coefficients close to the wall, but to
use additional terms to compensate for the erroneous near-wall behaviour. This idea
has also been used in Abe et al. (2003). The tensor a;; is added to the anisotropy
tensor obtained from the baseline EASM model a?j and the total anisotropy tensor
is as follows:

a; = a?j + (1= f2) ag;. (7.13)

The activation of a;j needs to be restricted to the near-wall region. This is achieved
by the function f,, which shuts off the additional term away from solid boundaries.
In order to introduce a O(y?) behaviour, the function f, is taken to be f; = f2.

The additive fragment a;; is expressed in the following form

o 1

(7.14)

Oy
+ Sik Qi — QiSki) | -
T T TTs o — ’“)]
The function f, = (Il + I1s)/(IIq — I1s) is used to ensure an activation of the
near-wall correction for shear-dominated flows only, i.e. f,. = 0 for pure shear flow.
The calibration constants a; could be determined from an apriori study using DNS

data. In present study, the constants «; are obtained by optimisation for a planar



Chapter 7 Accounting for Wall-Induced Anisotropy 135

channel flow at Re, = 590 and take the following values
as = 0.9, ay = —0.49. (7.15)
Rearranging equation (7.13) gives the modified, near-wall improved coefficients

=B+ (=) (= 1) 7o (7.16)

Bi=5— (1= f2) (1= 1)) (7.17)

Oy
1+ =IIoITs
Local and Directional Enhancement of Anisotropy
The near-wall modifications based on a local enhancement of the near-wall anisotropy
obviously relies on the invariants I/g and Ilg. In order to improve the anisotropy
predictions in situations where the invariants vanish, it is suggested in Abe et al.
(2003) to use an additional term, which modifies the anisotropy state independent
of the invariants Il and Ilg. The model from above can therefore be extended to
ai; = a?j + (1= fo) [a;;. — 0.5Mij] , (7.18)
where M;; = N;; —(1/3)d;; is the deviatoric part of the tensor obtained from taking
the outer product of the wall-normal vector N;; = n;n;. Different possibilities exist
for how the wall-normal vector can be evaluated. The formulation used here avoids
the computation of the distance to the closest wall, which cannot uniquely be defined
in complex geometries involving multiple walls. Instead, the wall-normal vector can
be obtained with sufficient accuracy from a variable, which shows a characteristic
wall-normal variation. In this study, the damping function f; is used to compute the
wall-normal vector using the relation n; = (Vf1);/ |V fi|. The calibration constants
a; are again determined by optimization for a planar channel flow at Re, = 590.

The values are given as
72 = 1.4, 4 = —0.23. (7.19)

7.3.2 Near-Wall Consistent Transport Equation

It has been shown in section 6.2, that the high-Reynolds-number form of the trans-
port equations for £ and w fail in predicting the correct near-wall asymptotic be-
haviour of turbulence kinetic energy k. As a consequence, the asymptotic behaviour

of all other derived quantities, such as € = f*kw or 7 = k/e, will also be largely
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in error close to the wall. In order for the near-wall modifications to work as in-
tented, it is crucial that the near-wall asymptotic behaviour of £ and w is correctly
reproduced. In the following, modifications to the transport equation of turbulence
kinetic energy are introduced, which rectify the erroneous predictions close to the

wall and yield the correct asymptotic behaviour for k as the wall is approached.

The balance of the k and w equations very close to the wall reduces to

O’k *w
I/%? — €= O, V@ — B(.UQ = 0. (720)

J

It is easy to show that close to the wall the solution to the w equation is given by
w = a,/y?. The constant a, can be determined from (7.20) as a, = 6v/3. Hence,
the near-wall balance of the w equation is satisfied providing w — 6v/8y? as the
wall is approached. In order to ensure the correct behaviour of w close to the wall
it is common practice to prescribe the solution of w at the first grid point (or cell)
adjacent to walls as w; = 6v/By?, where y; is the distance of the first grid point
to the closest wall. Alternatively, the somewhat arbitrary wall boundary condition
wy, = 10 - 6v/By? (see, for example, Menter, 1994) can be used. From experience
gained in this work, the specification of the boundary conditions w; or w, may
not always be sufficient to fully reproduce the correct asymptotic behaviour of w
close to the wall, particularly if the grid resolution near the wall is not adequate.
In order to ensure that w behaves correctly as the wall is approached, the present
formulation prescribes the asymptotic solution w = 6v/By? in the near-wall region,
where y* = *Y/4E12y /1 < 2.0.

Next, the near-wall balance of the turbulence kinetic energy equation is considered.
Assuming the turbulence kinetic energy behaves as k = ay? close to the wall and
using the model for the dissipation rate ¢ = *kw, the near-wall balance reduces to
1-36*/B = 0. This constraint is obviously not fulfilled in the high-Reynolds number
formulation, and explains the incorrect asymptotic behaviour of k. In order to take
this constraint into account, the first option would be to apply a damping function
to the closure coefficient 3 (see Speziale et al., 1992). In the present formulation a
damping function fsz« is applied to the model for the dissipation rate € = fz«5*kw.
The function fg+ needs to satisfy the limiting value of fg+ — §/35*. This ensures
that the near-wall balance is satisfied. The damping function follows the proposal
of Wilcox (1998) and depends on the turbulence Reynolds number Rer = k/vw,

thus
fon = B/38* + (Rer/Rg)"
T 1+ (Rer/Ry)?

(7.21)
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The constant Rg controls the turbulence kinetic energy dissipation rate close to the
wall and has to be adjusted to give the correct log-law behaviour of a turbulent
boundary layer. For the present formulation the correct behaviour is reproduced
for Rg = 8. Note that the other two functions of Wilcox (1998) k-w model for
transitional flows, which multiply the eddy viscosity and production of specific

dissipation rate, are not needed here.

7.4 Planar Channel Flow

In order to highlight the performance of these near-wall modifications, the modified
EASM formulations are applied to the planar channel flow configuration of section
6.2. The results are summarised in figure 7.2 and show the mean-velocity profile
U™, the normal components of the anisotropy tensor a;; = m/k: — (2/3)d;;, the
Reynolds-stress components Kuf, the asymptotic behaviour of the Reynolds-stress
components, the I11,-11, invariant map and the balance of the turbulence kinetic

energy equation.

The predictions of the mean-velocity profile are the same as for the baseline EASM
formulation. The small under-prediction of velocity magnitude in the buffer region,
and centre of the channel, is still present. Very clear improvements can be observed
for the predictions of the Reynolds-stress and anisotropy tensors. Good agreement
is now achieved in the near-wall regions for both the Reynolds-stress and anisotropy
tensor components. The asymptotic behaviours of the normal-Reynolds-stress com-
ponents, particularly for W and W, show significant improvements. The ww
component departs slightly from the reference data. Even though the near-wall
behaviour of the normal-anisotropy components are in much better agreement with
the reference data, none of the modifications are able to resolve the reduction of
the anisotropy components aq; and as3 between the peak locations and the wall.
This deficiency is also reflected in the anisotropy-invariant map (e), where all near-
wall modifications predict a two-components state at the wall, but none is able to
predict the correct variation along the two-component line. The budget of turbu-
lence kinetic energy (f) also shows significant improvements close to the wall. The
damping function fg« is effective in reducing the artificial peak of the dissipation
rate € close to the wall, which eliminates the severe under-prediction of turbulence
kinetic energy kT observed for the baseline EASM. The damping function not only
improves the predictions of k* close to the wall, but it also improves predictions of

the viscous and turbulent diffusion terms.
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FIGURE 7.2: Predictions for a planar channel flow at Re; = 590. Symbols cor-
respond to DNS (Moser et al., 1999). (—) EASM based on the
blending approach, (- - -) EASM based on local enhancement of
anisotropy , (—-—) EASM based on local and directional enhance-
ment of anisotropy.



Chapter 8

A Novel Non-Linear
Elliptic-Blending RANS Model

In this chapter, a new approach is presented, which aims at combining the ad-
vantages of the elliptic-blending approach for modelling near-wall flows with the
advantages of a non-linear stress-strain relationship to provide more accurate pre-
dictions of the Reynolds-stress and anisotropy field in complex flows. The resulting
non-linear elliptic-blending RANS model contains several novelties. First of all, any
viscosity-dependent blending or damping functions as they are used for the near-wall
anisotropy modifications and for modelling the transport equations in section 7 are
abandoned and their effect is more naturally included based on the elliptic-blending
approach. Second, the elliptic-blending approach of Keshmiri et al. (2008) is used
in conjunction with a k-w framework and not, as usual, in conjunction with a k-e
model. This seams a reasonable decision due to the previously discussed superiority
of the w equation to predict the flow in adverse pressure gradient or strong non-
equilibrium conditions. Finally, a non-linear stress-strain relationship is proposed,
which recovers the normal-Reynolds-stress and anisotropy predictions of the base-
line EASM model away from the wall, where the quasi-homogeneous pressure-strain
model of Speziale et al. (1991) provides good predictions for the Reynolds-stress
and anisotropy tensor. A near-wall-consistency constraint and additional near-wall
anisotropy modification are introduced in order to improve the predictions of the
quasi-homogeneous pressure-strain model close to the wall, such that the highly
anisotropic state of turbulence and the limiting two-component state is correctly
reproduced as the wall is approached. In order to assess the performance of the

new turbulence model, simulations are performed for the flow in a planar channel,

139
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the flow over the NASA hump configuration and the flow in a three-dimensional

diffuser and the results are assessed by comparing to reference data.

8.1 Transport Equations

The proposed RANS model is based on a transport equation for the inverse turbulent
time scale or specific turbulence dissipation rate w. The transport equation from
the baseline EASM can be retained and do not require re-calibration or further
modifications. The transport equations for the turbulence kinetic energy k and the

specific dissipation rate w take the following form (see Hellsten, 2004, 2005)

Dk 0 ok
_—~ _p - — — 8.1
Dt k et aiCj |:(l/ + UkVT) a.fll'j:| ’ ( )
Dw w 0 ow 04
—— =P, — B+ — wlT) =— — Dy, 0), 2
o = 1z h Puw* + o l(u—i—a vr) axj] + - max (C' Dy, 0) (8.2)
where P, = —u;u;ﬁﬂi/ﬁa:j is the rate of production of turbulence kinetic energy

and CDy, = (0k/0x;)(0w/dx;) is the turbulent cross-diffusion term, which stems
from the transformation of the standard k-e model to a k-w framework. The cross-
diffusion term is effective in reducing the model sensitivity to free-stream values of

w. The turbulence kinetic energy dissipation rate is now modelled as

€= fg*ﬁ*k:w, (83)

where fz+ is a novel damping function, which relies on the wall-normal fluctuation
ratio ¢ = ’1}_2/ k, as predicted by the elliptic-blending approach, rather than using
the turbulence Reynolds number Rer. A damping function, which satisfies the

constraint 5*/5 — 1/3 as the wall is approached is given by

_ B/38" + (¢/8")°
L+ (g/8%)°

The constants in fg« are chosen such that the correct log-layer behaviour of the

[ (8.4)

mean-velocity profile is reproduced. The present formulation employs the p-a model
of Keshmiri et al. (2008), which is based on the elliptic-blending concept of Manceau
& Hanjalic (2002). The ¢-a model solves a transport equation for the normalised

wall-normal fluctuating velocity scale ¢ = ’U_2/k’ and an elliptic equation for the
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parameter a. The constitutive equations for ¢ and « take the form

Dy , oy 2 ok op 0 Jp
Dt - (1 a )fwall Ta fhom k‘Pk + ]{3 (UkVT) al'j 5mj + 6xj (V + O-LPVT) 51’j ’

The redistribution term f,,, is based on the quasi-homogeneous pressure-strain
model of Speziale et al. (1991), thus

from = —(1/7) (Cy =1+ CaPife) (9 = 2/3),  fuan = —%- (8.6)

The damping function fz+ in the model for the turbulence kinetic energy dissipation
rate not only ensures that the turbulence kinetic energy is correctly predicted of the
order k = O(y?) as the wall is approached. It also guarantees, that the near-wall
balance of the ¢ equation is satisfied, and that the correct behaviour ¢ = O(y?) is

reproduced.

The eddy viscosity, which contains the correct near-wall damping through the nor-

malised velocity scale ¢, is as follows

vr = ClpkT. (8.7)

In order to take viscous effects into account, a lower bound on the viscous time 7
and length scales L is introduced. In addition, the realisability constraint of Durbin
(1996) is imposed, such that

. [k 0.6 \/?
T=max |min| —,——— | ,Cx/—
ViClsil) N

£3/2 E1/2 3\ /4
L = Cp max [ min , Nes <—> : (8.9)
€ V6C,up|Sy|

8.2 Non-linear Stress-Strain Relationship

[

The Reynolds-stress tensor u;u; of the new RANS model constitutes a non-linear
stress-strain relationship, which can be written as wyu; = (2/3)kd;; + kag;, where

the anisotropy tensor is given by

ai; = —2(vr/k)Sj; + a5y . (8.10)
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The most general form of the extra-anisotropy tensor in the limit of two-dimensional

mean flow is given by the following relation:

1
aii = o (Sikskj — gIIS(Sij) + B4 (SieQj — QirSkj) 5 (8.11)
with the invariants
]]S =tr {S,kSkJ} s _[IQ =1{r {szij} . (812)

Recall that it was demonstrated in chapter 6 and in Weinmann & Sandberg (2009)
that the baseline EASM, which is based on the quasi-homogeneous pressure-strain
model of Speziale et al. (1991) (SSG), is capable of providing realistic predictions
for the Reynolds-stress and anisotropy tensor in complex three-dimensional flows
away from solid boundaries. It was also found that the SSG model fails to predict
the highly anisotropic state of turbulence and the limiting two-component state as

the wall is approached.

In order to improve the predictions of the quasi-homogeneous pressure-strain model
close to the wall, a near-wall-consistency constraint and additional near-wall anisotropy
modification are introduced. These constraints result in a set of modified coefficients
B, which include the correct near-wall behaviour, and which recover the solution
of the quasi-homogeneous EASM model away from solid boundaries. Thus, away
from solid boundaries, the new model recovers the coefficients 5% of the quasi-

homogeneous EASM. The coefficients 3! are given by

By = 2A414:/Q, B =—A1/Q (8.13)

where 5
Q=N*-2II; — §A§]IS. (8.14)

The constants A; are directly determined from the model of Speziale et al. (1991),

and are given as
A =122, Ay =047, A3=0.88, A;=237.

The variable N appearing in (8.14) corresponds to the ratio of turbulence kinetic

energy production to dissipation rate and is governed by a non-linear relation. For
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two-dimensional flows the non-linear equation has the explicit solution

A (P VP) + (P —vP) P20
M= A 4 2(PE - Py cos l% arccos ( P?PZ)] , Py <0 (8.15)
with Ag Ad 2., ,
P = <2—7 + <T - §A2> Il — §HQ> As, (8.16)
Py = Py — (%g + (% + gAg) IIs + 2119)3. (8.17)

Near-Wall Consistency and Anisotropy Modifications

The main objective for the proposed model is to introduce the ability to account
for the highly anisotropic state of turbulence close to a wall. The correct near-wall
behaviour of the coefficients f3; is achieved by imposing the following constraints on

the anisotropy tensor:
an = afy + fualy, ax = fy (9 —2/3) + (1= fy) ab,. (8.18)

That is, the a;; anisotropy component is obtained as the sum of the contribution
from the quasi-homogeneous EASM model a’;, and the extra component a',, which
enhances the anisotropy state close to the wall. The function f,, ensures that the
anisotropy modifications are only activated close to the wall. The a9 anisotropy
component is designed such that the anisotropy state obtained from the wall-normal
velocity scale (¢ —2/3) is used in the near-wall region and blended towards the
anisotropy state predicted by the EASM relations af, away from solid boundaries.
The blending is achieved by the specifically designed blending function f,. The
present formulation ensures that the Reynolds-stress and anisotropy predictions of
the baseline EASM model are recovered away from solid boundaries. Note that no
constraint is placed on ass, since only two relations are required to determine the

new coefficients [y and (.

New expressions for the coefficients 5, and (4 are derived by considering two-

dimensional parallel mean flow, where (8.10) reduces to
ajp = —QCfoU, a1 = ((1/3)B2 — 24) o,

age = ((1/3)Ba +2B4) 02, ass = —(2/3) 307, (8.19)
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where 0 = (1/2)rdu/dy and C¢// = C¥¢. Using the relations (8.19) to rewrite the
tensor a?j and the wall anisotropy modification tensor a;} in terms of Bt and B,
and substituting both into (8.18) yields a system of equations that can be solved.

The result is

3 —2/3 1 1
o= i e (G et) e (G esr). 20
b= i+ 2max [115,5.05] 1" <E53+ 55‘}5) Rk (Eﬁ2 * 554) - (32

The strain rate o has been replaced and generalised using the relation 0% = 0.51 1,
and is limited to the equilibrium value in order to avoid numerical difficulties in
situations where Ilg vanishes. The coefficients 3" for the near-wall-anisotropy

corrections are taken as

(%) Oy

T b = 14+ /—TIsily

The constants «; are calibrated using planar channel flow and take the values oy =

By (8.22)

0.9 and oy = 0.49. The auxiliary function f;, is a modified version of Menter’s
blending function F; and ensures that the consistency constraint is only invoked
in a region close to the wall, where the stress and anisotropy state predicted by
the baseline EASM model is largely in error. Alternatively, the region where the
consistency constraint is invoked could easily be extended to a region of almost
the entire boundary layer by using Menter’s original functions f, = F} or f, = F5.
The function f,,, which ensures that the near-wall-anisotropy modifications are only
activated close to the wall, uses the elliptic-blending variable a to detect the presence
of solid boundaries. Since the near-wall modifications are derived by assuming
parallel shear flow, the function f, = (IIg + IIg) /(I1o — I1s) is introduced to f,,
in order to ensure that the modifications are only active in shear-dominated flows

for which f, — 0. The auxiliary functions take the form

TTg + 100

fo=tanh (16I3), fo=(1—0a%) (1—f7) 7.4 100° (8.23)

where T'y = 500v/wy?. The invariant Tfs = tr {gzkgk]} is determined from §ij =
75} using the time scale 7 = min (ﬁ/e, 0.6/v/6C,,p ‘SZ}D> which does not impose a
lower viscous limit. The invariant I[g is necessary in order to correctly model the

variation of the anisotropy components a;; and azz between the peak location and
the wall.



Chapter 8 A Novel Non-Linear Elliptic-Blending RANS Model 145

The suggested closure coefficients for the new ¢-a-EASM can be summarised as

Set 1: 73 = 0518 B, =00747 ox, = 1.1 0., =053 o4 = 1.0
Set 20 4 =0440 B, =0.0828 o, =11 o, =100 o4 =04
Cr=022 C =17 (=12 p=3 o,=1 Cp=0.161
C,=6 C,=90 a;=10 oay=049 R, =001 f*=0.09

TABLE 8.1: Closure constants for the p-a-EASM

8.3 Discussion

The new p-a-EASM differs from the baseline EASM in the following ways: 1)
the inclusion of additional near-wall-anisotropy modifications, which are used in
conjunction with a near-wall-consistency constraint and 2) the redefinition of Cﬁf 7
which is given here as C’Ef F = Cp, and for the baseline EASM as Cﬁf F = —-0.580
with 88 = —A;N/Q. With the present formulation, several shortcomings of the
coefficient 3% are obviated. Consider, for example, two-dimensional parallel shear
flow. It can be shown that for large strain rates o, the coefficient 3 behaves as
Blocl/o, with the consequence that ais is approximately constant close to the wall.
Therefore, the damping inherent in S? is not sufficient and additional damping
functions are required in order to achieve the correct behaviour of a;p = O(y) as
the wall is approached. In the present formulation the wall damping is naturally
included and a1 = O(y?). Note that the behaviour a;o = O(y?) is a spurious feature
of the elliptic-blending/-relaxation technique and is tantamount to a turbulence
viscosity vp, that behaves as O(y*) instead of O(y?®), as it should, as the wall
is approached. This is not considered a problem, since vy is sufficiently small
close to the wall such that the total effective viscosity vefs = v + vp is correctly
reproduced (see Durbin, 1991). Second, in case of vanishing strain rate, o — 0, the
coefficient 3 takes excessive values. For example, the predicted Cﬁf =058 at
the centerline of a planar channel flow reaches values close to C’ﬁf F '~ 0.7. This is
clearly in contradiction to the generally accepted value of C’Zf f'=0.09. The present

formulation does not suffer from this issue.

Finally, the authors recent experience has shown that for separated flows the EASM
formulation is sometimes inferior to traditional linear two-equation models. One
source of deficiency of the EASM framework was identified to be the coefficient 3%,
which reduces the contribution of the linear term in the stress-strain relationship

to the shear stress in the separated shear layer, through C’Zf f = —0.58" by up
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to 30% (when compared to C’;‘jf F'=0.09). The insufficient level of shear stress in
the separated shear layer consequently leads to an over-prediction of the separation
or recirculation zone. These observations are confirmed by Jang et al. (2002) who
investigated the performance of several NLEVMs and EASMs in massively separated
flows. The model presented here avoids this issue by using C’ﬁf = C,p, which
does not reduce in free shear layers. This feature effectively shortens excessive

recirculation zones frequently observed with EASM models.

Even though the present modifications solve some of the common issues related to
EASM models in shear-dominated flows, it might do so by sacrificing some of the
capabilities inherent in ], particularly the sensitivity to rotational effects through
the invariant I, to predict flows with strong streamline curvature or imposed
system rotation. However, the present formulation has been tested for the strongly
curved flow in a two-dimensional U-duct and the predicted results for the mean flow
and turbulence quantities were found to be very similar to the baseline EASM. For
this reason, no further action has been taken to retain the original coefficient 37 of

the baseline EASM formulation for rotational flows.

8.4 Planar Channel Flow

In order to highlight the performance of the new p-a-EASM model, it is applied
to the planar channel flow configuration of section 6.2. The results are summarised
in figure 8.1, which shows the mean-velocity profile U*, the normal components
of the anisotropy tensor a;; = Tu;/k — (2/3)di;, the Reynolds-stress components
?uf, the I11,-11, invariant map and the balance of the turbulence kinetic energy
equation.

The mean-velocity profile U™ follows the same trends, which were observed for the
baseline EASM formulation, i.e. a slight under-prediction of velocity magnitude at
the centre of the channel and in the buffer region (y* ~ 10 — 30). The predictions
of the components of the anisotropy tensor has improved over the baseline EASM
and over the modified EASM, as discussed in section 7.3. The present model is
able to capture the reduction of the normal components a;; and as3 between the
peak locations and the wall. It is also able to maintain higher levels of anisotropy
as the centre of the channel is approached. This is related to the fact, that the
erroneous behaviour of C;’f f for ¢ — 0 is eliminated in the new p-a-EASM model.
The components of the Reynolds-stress tensor and the asymptotic behaviour of the

normal components are both in excellent agreement with the reference data. Only
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the w'w’ component shows a small kink close to the wall. Note that the k-e-ov of
Manceau (2003) shows a similar dip for w'w' at approximately the same location.
The excellent predictions of the anisotropy tensor are also reflected in the I11,-11,
invariant map, where the new model is able to fully reproduce the DNS data. The
predictions of the near-wall budget of the turbulence kinetic energy equation has
not changed much. This is not too surprising, since the £ and w equations remain
the same as for the near-wall modified EASM of section 7.3, apart from the newly

designed damping function fgs.
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FIGURE 8.1: Predictions for a planar channel flow at Re; = 590. Symbols cor-
respond to DNS (Moser et al., 1999). (—) new ¢-a-EASM model.
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8.5 NASA Hump

The NASA wall-mounted hump has already been introduced in section 6.3 and
is used here again in order to evaluate the performance of the new p-a-EASM
model to predict separation from a smooth surface, recirculation and subsequent
reattachment of the flow. As a reference, the results of the EASM-2D and ¢-a-
UMIST models are also included in the compassion with the experimental data of
Greenblatt et al. (2004, 2006).

The predicted streamwise velocity contour U/U, and computed streamlines are
shown in figure 8.2. The p-a-EASM model predicts the separation point at the
location zz/c = 0.665, which is identical to the locations predicted by the EASM-
2D. The reattachment point is located at z,/c = 1.16 and has moved much closer
to the reattachment location of the experiment z,/c = 1.1. The error in the reat-
tachment location has reduced from approximately 13% of chord of the EASM-2D
to 5% of chord of the p-a-EASM. As a consequence, the small recirculation zone
observed in the experiment is now much better predicted by the ¢-a-EASM com-
pared to the other turbulence models. The shortening of the recirculation zone is
a direct consequence of the redefinition of Cﬁf f= Cl.p, which does not reduce the
contribution of the linear term in the stress-strain relationship to the shear stress in
the free-shear layer. This is in contrast to the baseline EASM, where the sensitivity

of C’ﬁf  to strain and rotation reduces the shear stress in the free-shear layer.
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FIGURE 8.2: Streamwise velocity contours and streamlines for the NASA hump
case.
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Figure 8.3 shows predictions of the surface-pressure coefficient C, = (p—pyes)/(0.5pU%)
and skin-friction coefficient C; = 7,,/(0.5pUZ) distributions. Upstream of the sep-
aration point, the surface-pressure distribution of the p-a-EASM matches the re-
sults of the p-a-UMIST and reference data, whereas the baseline EASM shows a
small under-prediction of the low-pressure peak. In the separated flow region, the
surface-pressure distribution is slightly improved over the p-a-UMIST, but remains
somewhat higher compared to the EASM-2D. After reattachment, the p-a-EASM
shows recovery of surface pressure, which is in better agreement with the reference
data. The skin-friction distribution of the ¢-a-EASM closely follows that of the
EASM-2D. In the region upstream of the separation point, the @-a-UMIST model
shows a much lower magnitude of skin friction compared to the ¢-a-EASM and
EASM-2D models. Within the recirculation zone, the p-a-EASM and EASM-2D
predict much lower levels of skin friction, which is in better agreement with the ref-
erence data, whereas the ¢-a-UMIST model shows excessive levels of skin friction.
The EASM-2D seems to be slightly superior in predicting the correct magnitude of
skin friction in the recirculation zone. Downstream of the reattachment point, only
the p-a-EASM and EASM-2D models are able to recover the correct magnitude of

skin friction.

Ar 0.008

0.002f

0.000 Lt ¥

(a) Surface-pressure coefficient C), (b) Skin-friction coefficient C'y

FIGURE 8.3: Surface-pressure coefficient €}, and skin-friction coefficient C'y dis-
tribution. Symbols correspond to experimental data of Greenblatt
et al. (2004, 2006). (—) ¢-a-EASM, (- - -) ¢-a-UMIST, (- - —)
EASM-2D.

The velocity profiles for the streamwise and vertical velocity components U/U, and
V' /Uy are shown in figure 8.4 for the stations z/c = 0.65, z/c = 0.8, z/c = 1.0 and
x/c = 1.2. At the first station, x/c = 0.65, immediately upstream of the separation
point, the ¢-a-EASM model predicts both components of the velocity in excellent
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agreement with the experimental data and does not show the defect of the EASM-
2D of too strong a retardation of the streamwise velocity component close to the
wall. At the second and third stations, z/c = 0.8 and z/c = 1.0, the ¢-a-EASM and
p-a-UMIST predict the streamwise velocity component very similar and in good
agreement with corresponding measurements. Some advantages can be observed
for the ¢-a-EASM in predicting the velocity component V/U,. At the last station,
x/c = 1.2, just after reattachment, the superiority of the new p-a-EASM becomes
clearly visible in the predictions of the streamwise velocity profile. Both the EASM-
2D and @-a-UMIST show a small amount of reverse flow close to the bottom wall,
whereas the flow of the p-a-EASM has already reattached. The earlier reattachment

reflects significant improvements of the velocity profile close to the wall.
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FIGURE 8.4: Velocity profiles at different stations in the flow field. Symbols
correspond to experimental data of Greenblatt et al. (2004, 2006).
(—) ¢-a-EASM, (- - -) p-a-UMIST, (—- —) EASM-2D.

The shear stress v'v’ and normal-stress components «'«’ and v'v” are shown in figure
8.5. The shear-stress prediction at z/c = 0.65 by the g-a-EASM model has now a
pronounced peak close to the wall, which is absent in the predictions of the other
models and from the reference data. In the region of the free-shear layer, the ¢-a-
EASM model predicts higher overall shear stress, which is in better agreement with
the experimental data. The location of the shear-stress peak value has also moved
towards the location of maximum shear stress found in the experiment. The higher

overall levels of shear stress are responsible for the shortening of the recirculation
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zone. At the last station, z/c = 1.2, the new ¢-a-EASM recovers the predictions of

the EASM-2D.
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FIGURE 8.5: Components of the Reynolds-stress tensor. Symbols correspond
to experimental data of Greenblatt et al. (2004, 2006). (—) y-a-
EASM, (- - -) ¢-a-UMIST, (— - —) EASM-2D.

Similar to the shear stress, the normal-stress component u'u” at station z/c = 0.65
of the p-a-EASM shows a large peak close to the wall, which is not predicted by the
other models, and which is not observed in the experimental data. This peak stems
from the normal-anisotropy modifications of the ¢-a-EASM and seems to be too
intense. At all other stations, the normal-stress component w'u’ has improved over
the EASM-2D and the ¢-a-UMIST models. The ¢p-a-EASM model shows higher
intensities of normal stress «'u’ close to the wall and in the free-shear layer. The

location of the peak normal stress has also slightly improved.
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The predictions of the normal-stress component v'v’ show less scatter. At station
x/c = 0.65, the p-a-EASM and EASM-2D show significantly better predictions,
even though the intensity of Vv’ remains too high close to the wall. At all other
stations, the results are very similar and good agreement is observed with the ref-

erence data.

In order to illustrate the effect of the near-wall consistency and anisotropy modifi-
cations used in the p-a-EASM, it is convenient to analyse the components of the
anisotropy tensor. The a;; and asy components of the anisotropy tensor are shown
in figure 8.6. It is again obvious, that the p-a-EASM and EASM-2D model provide
good agreement with the reference data for the region away from the wall. It should
be emphasised that the anisotropy predictions away from the wall of both models
are very similar, as expected, since the ¢-a-EASM recovers the normal anisotropy
of the EASM-2D model, as desired. At z/c = 0.65 and x/c = 0.8, the effect of
the near-wall consistency and anisotropy modification becomes apparent. The ai;
components show a large peak close to the wall, and the ass component approaches
the correct limiting value of agy — —2/3 at the wall. The rate at which the wall
limit is approached is somewhat too rapid compared to the reference data. At the
last two stations, x/c = 1.0 and z/c = 1.2, it is much harder to detect the effect of
the near-wall consistency and anisotropy modifications, since they are limited to a

region very close to the wall.

Finally, the anisotropy-invariant map is presented in figure 8.7. The first to notice
is that all anisotropy states are bound inside the triangle. This indicates that the
p-a-EASM model predicts physically realisable results. Second, the new model is
able to reproduce the physically correct two-component state of turbulence at the
wall. This is linked to the correct limit of agy — —2/3. Unfortunately, no reference

data are available, which prevents further comparison and evaluation.
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8.6 Three-Dimensional Diffuser

The three-dimensional diffuser has already been introduced in section 6.4 and is used
here again in order to evaluate the performance of the new ¢-a-EASM model to
predict three-dimensional flow including boundary-layer separation. As a reference,
the results of the EASM-2D and p-a-UMIST turbulence models are also included
in the comparison with experimental data of Cherry et al. (2008, 2009).

The flow field at the spanwise location z/L, = 0.5 is presented first. This is followed
by a more detailed analysis of the streamwise evolution of the three-dimensional flow

field.
Centre Plane z/L, = 0.5

The predictions of the surface-pressure distribution C, = (p — pres)/(0.5pU7) at
the bottom wall, y/H = 0, are shown in figure 8.8. The new ¢-a-EASM model
clearly shows improved predictions over the EASM-2D and p-a-UMIST models for
the surface-pressure distribution downstream of /L ~ 0.3. The ¢-a-EASM model
shows the highest magnitude of C), throughout and is therefore in better agreement
with the reference data. The other models more severely under-predict the surface-
pressure distribution. All of the models exhibit the same difficulties in reproducing
the initial, rapid pressure recovery, which extents up to the location /L ~ 0.5. The
p-a-EASM model is slightly superior in this respect and predicts the correct trend
up to approximately z/L ~ 0.2.
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FIGURE 8.8: Surface-pressure coefficient C), at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
p-a-EASM, (- - -) ¢-a-UMIST, (— - —) EASM-2D.
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More insight into the flow field predictions can be gained from figure 8.9, which
shows the streamwise velocity contour U/U, at the centre plane z/L, = 0.5. The
figure also includes a thick line, which corresponds to the zero-velocity contour line
and gives the extent of the separated flow region. The experimental data show a
large separation zone, which extents from approximately =/H ~ 7 to z/H ~ 19.
The p-a-EASM and ¢-a-UMIST both predict no separation at the centre plane,
apart from a very small recirculation zone just downstream of the sharp corner at
x/H = 0. The EASM-2D gives a more realistic picture of the separation zone, even
though agreement is also not fully satisfactory. Similar to the other models, the
p-a-EASM model fails to predict the spreading of the flow away from the bottom

wall, towards the centre of the diffuser.

04-0102 05 08 1.1

5 10 xH

x/H

(a) Exp. (b) p-a-EASM

(d) EASM-2D

FIGURE 8.9: Streamwise velocity contour U /U, at the centre plane z/L, = 0.5.

A more detailed comparison of the flow field in the centre plane is shown in figures
8.10 and 8.11, where the velocity profiles and Reynolds-stress tensor components
are plotted at the four streamwise locations #/H =1, x/H =5, x/H = 12 and

x/H = 16. Although not shown in the figures, the diffuser inflow conditions are
better predicted by the p-a-EASM, similar to the EASM-2D. Both predict the
centre-line velocity in better agreement with reference data than the ¢-a-UMIST
model, which over-predicts the streamwise velocity in the centre of the channel. At
x/H = 1 and x/H = 5, the same trend as for the inflow is still visible, in that,
both the p-a-EASM and EASM-2D predict the velocity magnitude in the centre
of the diffuser in better agreement with experimental data. Further downstream,
at ©/H = 12 and x/H = 16, the over-prediction of streamwise velocity magni-
tude is considerably reduced and the magnitudes are closer to the reference data.
Nevertheless, the location of the streamwise velocity peak remains too close to the
bottom wall, and does not move towards the centre of the diffuser as observed in

the experiment. The p-a-EASM gives the best agreement near the bottom wall and
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the location of the peak streamwise velocity is at all stations predicted further away
from the bottom wall. However, the overall agreement with reference is still not en-
tirely satisfactory. The streamwise velocity near the top wall is best reproduced by
the EASM-2D model. As discussed before, the p-a-EASM and ¢-a-UMIST model
do not predict any flow separation at the top wall. This is reflected in the velocity

profiles, which show a too large streamwise velocity magnitude at the top wall.

For the streamwise velocity fluctuations Urms /Uy close to the wall, clear differences
can be observed between the p-a-EASM and EASM-2D model (figure 8.10 (d)).
The differences are most pronounced at x/H = 1 and /H = 5, where the ¢-a-
EASM shows a significantly higher intensity close to the wall. The higher level
of streamwise velocity fluctuations can be attributed to the near-wall-anisotropy
modifications used in the p-a-EASM model. Further downstream, at /H = 1 and
x/H =5, the influence of the near-wall modifications is less pronounced compared
to the stations upstream. Away from the wall, @-a-EASM predicts the stream-
wise velocity fluctuations in close agreement with the EASM-2D. This behaviour
is expected, since the p-a-EASM model recovers the normal-Reynolds-stress and
anisotropy predictions of the EASM-2D away from the wall. The non-linear stress-
strain relationship of both EASM-based models shows clearly more realistic predic-
tions compared to the p-a-UMIST model. However, the p-a-EASM model predicts
wall-normal velocity fluctuations Frms /Uy that are similar to the EASM-2D model,
and which are significantly lower in intensity than from ¢-a-UMIST model. Even
though the lower intensity seems more realistic, no experimental data are available

to confirm this.

Predictions for the «'v” shear stress reveal that the p-a-EASM closely follows the
predictions of the EASM-2D. Both models show significantly higher values of shear
stress, particularly at /H = 12 and /H = 16. It is somewhat surprising, that
at the last two stations, the EASM-2D model predicts higher levels of shear stress
compared to the p-a-EASM model, even though the non-constant coefficient Cﬁf f=
—0.5p3; reduces the contribution of the linear term in the stress-strain relationship

to the shear stress.

The ability of the EASM-based models to predict more realistic levels of normal-
Reynolds-stress components is also reflected in the predictions of the anisotropy
tensor, as shown in figure 8.11. The difference between the ¢-a-EASM and the
EASM-2D model and the effectiveness of the near-wall consistency and anisotropy

modifications becomes more obvious in predictions of the anisotropy tensor. The
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near-wall-anisotropy modifications introduce a peak in the aq; anisotropy compo-
nent close to the wall, which is not predicted by the baseline EASM model. In
addition, the near-wall-consistency constraint ensures that the ass anisotropy com-
ponent approaches the correct limit of asy — —2/3 at both walls. Tt is also obvious
that the anisotropy components from the p-a-EASM model away from the wall, re-
duce to the predictions of the baseline EASM-2D model. Even though no reference
data are available for the anisotropy tensor, the significantly higher anisotropy of
the p-a-EASM and EASM-2D models seem more realistic than the predictions of
the p-a-UMIST model.

Finally, the anisotropy-invariant map is presented in figure 8.12. The first to notice
is that, for this internal flow case, all anisotropy states are bound within the trian-
gle. This indicates that the p-a-EASM model predicts physically realisable results.
Second, the new model is able to predict the physically correct two-component state
of turbulence at both walls. This is a direct consequence of predicting the correct

limit ase — —2/3 as the wall is approached.
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FIGURE 8.10: Velocity and Reynolds-stress tensor components at the centre
plane z/L, = 0.5. Locations from left to right: «/H =1, 2/H =5,

x/H = 12 and z/H = 16. Symbols correspond to experimental

data of Cherry et al. (2008, 2009). (—) ¢-a-EASM, (- - -) p-a-
UMIST, (- - —) EASM-2D.
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-0.5

Components of the anisotropy tensor a;; at the centre plane
z/L, = 0.5. Locations from left to right: z/H = 1, «/H = 5,
x/H =12 and z/H = 16. (—) p-a-EASM, (- - -) p-a-UMIST,
(—-—) EASM-2D.
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Three-Dimensional Flow Field

Further insight into the predictions of the three-dimensional flow field can be gained
from figures 8.13 and 8.14, which show contour plots of streamwise velocity compo-
nent U /U, and streamwise velocity fluctuations Urms /Uy at the streamwise locations
x/H=1,2/H =5, x/H =12 and x/H = 16. Figure 8.13 also includes the contour

line with zero velocity in order to visualise the extent of the separated-flow region.

At the first cross section, x/H = 1, the experimental data show incipient boundary-
layer separation emanating from the two upper corners in the diffuser. The same
trend is reproduced by all turbulence models with a small tendency to over-predict
the amount of separation in the corners. At the next station downstream, x/H = 5,
the separation is limited to the top right corner and again, all turbulence models
are able to capture this trend. However, the shape and extent of the recirculation
zone departs slightly from the reference data. The EASM-2D shows separation in
the top left corner, which is not observed in the experiment or by the p-a-EASM
and ¢-a-UMIST models. At the next two stations downstream, x/H = 12 and
x/H = 16, the flow in the experiment has completely detached from the top wall,
and the recirculation zone has become almost two dimensional, with no variation in
spanwise direction. Only the EASM-2D model is able to predict the complete flow
separation from the top wall, even though this occurs far too late, at approximately
x/H ~ 16. Both the ¢-a-EASM and ¢-a-UMIST models show separation from
the right wall, which is in contradiction to the experimental data. The shape of
the recirculation zone is slightly different between both models. The p-a-EASM
additionally shows flow separation in the top left corner, similarly to the EASM-2D
model. It is somewhat surprising that the p-a-EASM provides improved predictions
for the surface-pressure distribution and the velocity profiles at the centre plane,
even though, the three-dimensional flow topology is better predicted by the EASM-
2D. It is also worth mentioning that the intensity of the secondary motion in the
corners of the inflow duct of the p-a-EASM has almost doubled, to 1.7% of U,,
compared to the baseline EASM-2D. This is in better agreement to reference data,

but did not result in improved results for the three-dimensional flow topology.

The contours of streamwise velocity fluctuations Urms /Uy in figure 8.14 are again
predicted very similar by all turbulence models investigated here. As discussed
before, the EASM models predict a somewhat higher intensity of streamwise velocity
fluctuations compared to the p-a-UMIST model. This is in better agreement with

the reference data.
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Chapter 9

A Modified Flow Simulation
Methodology

In this section a modified Flow Simulation Methodology (FSM) is presented, which
is expected to provide the required amount of turbulence modelling for any mesh
resolution, and seamlessly operate between RANS and DNS mode. In order to
further enhance the reliability and predictive accuracy of the FSM approach, a
hybrid convection discretisation scheme is proposed. The free parameters in the
FSM approach are calibrated for stationary homogeneous isotropic turbulence, in
order to provide proper LES behaviour and a physically consistent energy cascade.
The FSM approach is proposed in conjunction with three different underlying RANS
closures of different levels of sophistication. The turbulence models include the
k-w-SST, EASM-2D and ¢-a-EASM model.

9.1 The Hybrid RANS/LES Model Formulation

In the combined RANS/LES approach of Speziale (1998b,a) (see also discussion
in section 4.5.4) the unresolved-stress components are computed by damping the
Reynolds-stress tensor predicted from a state-of-the-art RANS turbulence model.

Hence, the unresolved-stress components are given by

- ——RANS
! !/ 77
wu; = F - uu; : (9.1)

where F'is a damping function. The damping function F' allows for a continuous

blending between RANS and DNS mode, depending on the local and instantaneous
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grid resolution, and hence is expected to provide the required amount of turbulence
modelling for any mesh resolution. This feature seems highly desirable for any
hybrid RANS/LES method to be successfully employed in a commercial solver en-
vironment, because it may automatically compensate for inadequate grid resolution
by elevated contribution of the unresolved-stress tensor. In general, the blending
function needs to be designed such that F' — 0, if the grid resolution is sufficient
to perform DNS and to resolve the smallest scales of turbulence. In the coarse-grid
or infinite-Reynolds-number limit, F' needs to approach unity to recover a RANS
closure. For values 0 < F' < 1, the model is able to operate in LES mode, where
most of the turbulence kinetic energy is resolved in the simulation, or in a VLES
mode, where large amounts of turbulence kinetic energy are not resolved and are

statistically represented by the turbulence model.
Consistency of FSM

The consistency issue of FSM has been addressed in section 4.5.4. Recall that at
least two possibilities exist for the computation of the Reynolds-stress tensor. The
first approach is to determine the Reynolds-stress tensor by performing explicit av-
eraging of the flow field and only use averaged quantities as an input in the RANS
model. This could be achieved by an a-priori RANS simulation, or by computing
averaged quantities ‘on the fly” as the simulation progresses. Computing the average
as the simulation progresses seems not desirable, since accuracy is only achieved for
long-time averages and additional averaging may be required for cases, which are
statistically unsteady. In addition, the averaging operation removes all information
about the local and instantaneous state of the flow and modelling the unresolved
component of the local and instantaneous velocity field based on mean-flow quan-
tities seems questionable. Therefore, if mean-flow quantities were used to compute

——RANS

(0 , at least one additional element needs to be introduced, such that the tur-

bulence model may adjust its contribution to the local and instantaneous nature of
——RANS

!

the flow field, but without influencing the mean-flow field determined by u;uj
The hybrid RANS/LES approach of Uribe et al. (2010) is based on an idea similar
to this. The present FSM approach is designed such that the turbulence-model con-
tribution adjusts to the local and instantaneous state of the flow. This is achieved
by using the local and instantaneous filtered flow field to determine the Reynolds-
stress tensor mRANS. The instantaneous flow field provides sufficient information
to model the unresolved scales at a certain instant in time and space. In this case,
the resulting Reynolds-stress tensor should be considered as a subgrid-stress ten-
sor and the turbulence kinetic energy k£ and dissipation rate € computed from the

transport equation, turn into the subgrid quantities ky4s and €445, respectively.
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The main problem of traditional URANS is that the length-scale-providing equation
is designed and calibrated to reproduce mean-flow quantities. Therefore, URANS
does not predict the correct length scale or turbulence dissipation rate if resolved
turbulence fluctuations exist in the flow field. On dimensional grounds, the turbu-

lence viscosity and the turbulence kinetic energy dissipation rate are given by
vp = OMVTLT> € = Vr_l%/Le, (92)

where Lr and L, are two characteristic turbulence length scales and V7 is a charac-
teristic velocity scale. In traditional RANS predictions, L7 and L. are characteristic
length scales of the mean flow, which are too large and therefore not adequate in
the presence of resolved turbulence. This has the consequence that the magnitude
of € is too small and the resulting magnitude of vy is too high. In order to make
the URANS equations resolve or sustain turbulence fluctuations, the magnitude of
the characteristic length scales L and L, needs to be consistent with the smallest
turbulence length scales present in the flow. Since the un-resolved turbulence length
scales are much smaller than the length scale of the mean flow, the turbulence dis-
sipation rate is naturally increased and the turbulence viscosity is decreased. The
characteristic velocity scale V7 depends on the characteristic turbulence length scale
i
obtained from a transport equation for the turbulence kinetic energy, Vi = k2. It

Ly. In the simplest case of a mixing-length RANS model, V7 = LS., or when
is important to note that the velocity scale V7 is sensitive to the resolved flow field
through g:} or through the production term P in the turbulence kinetic energy
equation. Vr also has the correct order of magnitude providing the length scale Ly
is consistent with the smallest resolved length scale in the flow field. Therefore,
in order to make the URANS equations resolve turbulence, only the characteristic
turbulence length scales or turbulence dissipation rate € needs to be modified, but

not the way the turbulence velocity scale V7 is obtained.

In two-equation DES models, the length scale L. is modified to be of the order of
the grid resolution A, which corresponds to the smallest turbulence scales that can
be resolved. However, this is not fully consistent, since the length scale Ly in the
turbulence viscosity relation is left unchanged. This not only increases the turbu-
lence viscosity, but it also affects the magnitude of the diffusion terms, which are
usually modelled using the turbulence viscosity. In contrast, FSM aims at rescaling
the Reynolds-stress tensor, which using the Boussinesq approximation 3.10, can be
written as F - KU;RANS = (2/3)Fko;; — 2F Vngj. From the discussion above, the
first term on the right-hand side should not be damped, since it has the correct

magnitude, providing the correct length scale is used in the transport equation for
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k. The second term on the right-hand side suggests that F' can be used to rescale
the characteristic length scale Ly in the turbulence viscosity relation to a smaller
magnitude F - Ly. However, this is again not fully consistent, since the length scale
L. in the turbulence dissipation rate e is left unchanged. Another argument, to
limit the damping function F' to the turbulence viscosity only and not to damp the
entire Reynolds-stress tensor, is that the diffusion terms are computed consistently,
i.e. with a turbulence viscosity of the correct magnitude. Yan et al. (2009) investi-
gated different hybrid RANS/LES formulations by replacing the turbulence length
scales following the idea of DES and FSM and a consistent formulation where both
L7 and L. are modified. The application to a coaxial jet clearly demonstrated the

superior performance of the consistent formulation.

Therefore, the URANS equations can be transformed into a subgrid-scale model by
modifying both length scales Ly and L.. The simplest of such a modification is to
take LyocA and L.ocA, which would reduce the URANS equations to exactly the
same form as a typical one-equation SGS model for LES (see, for example, Menon
et al., 1996)

Dksgs - ﬁaﬂz k?gﬁ 0 Vsgs al{sgs
5 _uiujﬁa:j - C. A + 5—% v+ o —&Ej , (9.3)

with vggs = C’MkiﬁA and 7;; = (2/3)ksgs0ij — 2ngS§Z-. Note, the closure constants of
the RANS model are designed to predict a statistically steady mean-flow field. In
the present formulation, the standard RANS closure constants C), and C¢; in (9.3)
are modified by the calibration procedure discussed in section 9.4 such that FSM
provides proper turbulence resolving capabilities with a physically correct energy

cascade.

The original proposal of Speziale to rescale the Reynolds-stress tensor is reduced
to a damping of the characteristic length scale Ly = k'/2/*w, computed from the
RANS equations. Thus, the effective, or hybrid, length scale in FSM is given as
Ly, = F - Ly. The way this is implemented into a two-equation RANS model is

discussed in the next section.
A New Damping Function

The damping function F' is particularly important for the success of the FSM ap-

proach. The original damping function by Speziale was based on the ratio of grid
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spacing to Kolmogorov length scale A/L, and was given by

F=f= [1—exp <_ZA)]H. (9.4)

This function is expected to provide the correct behaviour in the DNS limit. How-

ever, the Kolmogorv length scale is not a relevant characteristic length scale when
performing LES. Therefore, there is no guarantee that this damping function will
provide the correct magnitude of damping in LES mode. It seems even more ques-
tionable how this damping function would recover a RANS mode in case of too-
coarse grids. The first modification to the FSM approach, that has been made in
this work, is to retain the original damping function f, to ensure that FSM reaches
the DNS limit. Another advantage of this approach is that the two free parameters
n and S can more easily be tuned. Figure 9.1 shows the dependency of the damping
function f, on the parameters n and . For example, the values n = 4 and 8 = 0.5
yield a damping function, which rapidly goes to zero as the ratio A/L,, drops below
10. The issue of choosing [ is revisited in section 9.4, where the modified FSM

approach is calibrated for homogeneous isotropic turbulence.
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FIGURE 9.1: Dependency of f, on the parameters n and 3.

The second modification ensures that FSM provides the correct damping in LES
mode. In the LES region, most of the turbulence kinetic energy production and
turbulence kinetic energy is explicitly resolved by the simulation. This requires a
grid resolution such that the resolution cut-off is located in the inertial subrange
of the energy spectrum. In LES the grid size represents the characteristic length
scale of the unresolved turbulence, with Lj,,ocA. Therefore, the additional element
fa = CoA/Ly is introduced to the damping function F', where C, is a constant
that needs to be calibrated. With the modifications so far, the damping function F'
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can be written as

F=f,fa= [1 — exp (—ﬁL—A)] %TA (9.5)

The filter length scale is defined in this work as the cube root of the cell volume, i.e.
A = dV'/3. Note that many other definitions are possible, but this one is suitable
for cells of arbitrary polyhedral shapes.

If the filter width is smaller than the local characteristic length scale, C,A < Ly,
the FSM approach will operate in LES mode, with F' < 1. This usually occurs away
from the wall where the grid size is sufficiently fine to resolve turbulence fluctuations.
As the wall is approached, the length scale Ly goes to zero, since the turbulence
kinetic energy vanishes at the wall, k,, = 0. As a consequence, C'\,A > L close to
the wall, which gives F' > 1. A damping function larger than unity is not desirable,

since its need to be able to recover the RANS mode. Thus,

F =min|[f,fa,1] :minl<1—exp (—%))n%A,l] . (9.6)
n T

This modification ensures that the hybrid formulation operates in a URANS mode
for C,A > Lp. Recall that for C,A < Ly the FSM approach reduces to the exact
form as a one-equation subgrid-scale model for LES. It is not very likely that the
present formulation would return to URANS mode away from the wall, even if the
grid resolution becomes too coarse to resolve turbulence fluctuations. On too-coarse
grids the length scale definition Ljp,ocA becomes increasingly inappropriate, and
the FSM approach effectively operates as a sort of badly calibrated one-equation
RANS model. In order to completely revert back to RANS mode, or to enter the
VLES regime, another element needs to be introduced to the damping function,
such that F' approaches unity. The v. Karman length scale L, may be a suitable
candidate. However, this issue has not been investigated in the current work due

to time constraints.

The present FSM formulation suffers from the same grid sensitivity issues as DES.
It is therefore essential to introduce another element to the damping function F,
which ensures that the switch from RANS to LES occurs outside the boundary

layer. This is easily achieved by the function
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The ‘shielding’ function can be chosen as F, = F} or F, = F,, where F; and
Fy are blending functions, which are required for the underlying k-w turbulence
model described in the next section. Therefore, the resulting new formulation of

the damping function, including a boundary-layer shield, is given as

F = min[f, faf., 1] = min [(1 — exp (—i—A>> CETA <1 _lF ) ,1] . (9.8)

n

9.2 Choice of underlying RANS model

It is natural to assume that a more sophisticated RANS model will provide improved
predictions in the RANS region within a hybrid RANS/LES framework. This offers
enough incentive to employ a state-of-the-art RANS turbulence model with, for
example, a non-linear constitutive stress-strain relationship and strain- and rotation-
dependent coefficients within a hybrid RANS/LES method. Such features are likely
to provide more realistic predictions of the Reynolds-stress and anisotropy tensor,

and better performance in non-equilibrium flows.

The benefits of using a more sophisticated RANS model will also be reflected in
the quality of the predictions in the LES region, where the RANS model functions
as a subgrid-scale model. A more sophisticated RANS model will presumably pro-
vide a more realistic representation of the modelled subgrid-stress and hence will
improve the predictions in the LES region. Improvements are expected to be most
pronounced in situations where the unresolved subgrid flow is not in equilibrium
and contains a significant degree of anisotropy. Such situations are likely to be
encountered in engineering and industrial applications where the mesh quality and
resolution is sometimes sacrificed in favour of short turnaround times. For example,
on anisotropic computational grids the resolved turbulence structures will contain
a forced anisotropy, which is also reflected in anisotropy of the modelled subgrid-
stress. Close to the wall, the turbulence is highly anisotropic and so will be the
unresolved subgrid-stress. In situations where the computational grid is too coarse
and the resolution cut-off is located in the large scales, the unresolved turbulence
will not be in equilibrium and will be anisotropic. In all these cases a sophisti-
cated turbulence model, which contains advanced elements to accurately predict

the subgrid flow is considered highly desirable.

In fact, a range of LES subgrid-scale models have been developed with the intention
of providing a more realistic representation of the unresolved turbulence as it is pos-

sible with a linear stress-strain relationship. For example, scale-similarity models
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explicitly filter the resolved flow field in order to obtain a more accurate description
of the structure of the unresolved turbulence. Similarly, non-linear and differen-
tial subgrid-scale models (see, for example, Deardorff (1973) or Lund & Novikov
(1992)) have been introduced with the intention of providing a more realistic rep-
resentation of the subgrid-stress and anisotropy field. Fureby et al. (1997a,c) have
investigated differential subgrid-scale models and confirmed that improved mean-
velocity predictions and second-order statistics could be obtained. Marstropp et al.
(2009) proposed an explicit algebraic subgrid-stress model and found that for coarse
resolution the mean velocity and Reynolds stresses were better than those given by
the dynamic Smagorinsky model. In addition, the predictions were found to be
much less sensitive to the resolution of the computational grid. These findings were
confirmed in Rasam et al. (2011).

In order to investigate the sensitivity of results with respect to the underlying RANS
model, the Flow Simulation Methodology is used in conjunction with three different
RANS turbulence models of different levels of sophistication. The first RANS model
is the k-w-SST model, which is based on a linear stress-strain relationship. The
second model is the baseline EASM-2D model, which contains strain- and rotation-
dependent coefficients and is based on a non-linear constitutive stress-strain rela-
tionship. The last model is the p-a-EASM model, which includes consistency and

anisotropy modifications for improved predictions of the flow close to the wall.

FSM-k-w-SST

The transport equations for the turbulence kinetic energy k£ and the specific dissi-

pation rate w of the k-w-SST model are unchanged and take the form:

Dk - 0 ok
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Within the hybrid FSM approach the turbulence kinetic energy dissipation rate is
given by
e =F'8*w, (9.11)

and the turbulence viscosity is obtained as

alk
max(ajw, SFy)

(9.12)

VT:F
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Note that this formulation is consistent with replacing the characteristic turbulence
length scale in the definition of the dissipation rate and in the turbulence viscosity,
with Ly, = FLyp, where Ly = kY/2/3*w.

FSM-k-w-EASM

The transport equations for the turbulence kinetic energy k£ and the specific dissi-

pation rate w of the baseline EASM-2D model take the following form:
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Within the hybrid FSM approach the dissipation rate is given by
e = F'5%kw, (9.15)
and the turbulence viscosity is
vp = F(—=0.56,kT). (9.16)

Note that the turbulence time scale is given by 7 = 1/5*w and is not limited by
the viscous time scale. The non-linear stress-strain relationship of the EASM model
u;u; = (2/3)ké;; + ka;j;, also requires that the damping function is applied to the

extra-anisotropy tensor according to

ai; = —2(vr/k)Sj; + I - afj. (9.17)

FSM-p-a-EASM

The transport equations for the turbulence kinetic energy k£ and the specific dissi-

pation rate w of the new p-a-EASM model take the following form:

Dk 0 ok
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where the turbulence dissipation rate is given by

€= Ffu frkw. (9.20)
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In addition, the transport equation for the wall-normal velocity scale ratio and the

elliptic operator are given as

D o2 ok dp 0 dp
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The homogeneous and wall redistribution term are computed using the RANS dis-
sipation rate e. It has been found that in this way the near-wall modifications
remain inactive away from the wall, in case of resolved turbulence. Therefore, the

redistribution terms are given by

from = —(1/7) (01 —1+ f@ié—f’l;w) (gp — g) o fwan = —@fa 0. (9.22)

In order to avoid a double-damping of the turbulence viscosity
vr = F - CppkrT, (9.23)

the turbulence time and length scale are also computed using the RANS dissipation

1 0.6 v
T = max | min , On | ———|, 9.24

E1/2 E1/2 3 1/4
L = Cp max [ min , Cp | ————— : 9.25
- T Vicup]5e] )< (fﬁ*ﬁ*kw) (5:25)

The same holds for the time scale 7 used in the near-wall consistency and anisotropy

rate, thus

modification.

The non-linear stress-strain relationship of the p-a-EASM model wyu; = (2/3)kd;; +
ka;; also requires that the damping function is applied to the extra-anisotropy

tensor, according to
ai; = —2(vr/k)Sj; + F - afj. (9.26)
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9.3 A tailored Hybrid Convection Scheme

In this section a tailored hybrid convection scheme is proposed, where the face fluxes
are obtained by a linear combination of the central-difference scheme (CDS) and a
second-order upwind scheme, using a flow-dependent flux-blending function. This
scheme is intended to be used in conjunction with the modified FSM approach. A
similar hybrid convection scheme tailored to Detached Eddy Simulation has been
presented in Travin et al. (2004b).

The motivation for using a hybrid convection scheme stems from the conflicting
demands RANS and LES place on the discretisation scheme. In LES applications,
the subgrid-scale (SGS) model has to provide an adequate amount of dissipation,
such that the energy cascade is correctly reproduced and no energy accumulates at
the smallest resolved scales. The amount of dissipation provided by the SGS model
is usually very small, with the consequence that any elevated level of numerical
dissipation will inevitably contaminate the resolved flow field. Therefore, higher-
order schemes with low levels of numerical dissipation, such as the CDS, are the
preferred choice in LES. The unboundedness of CDS may result in spurious oscilla-
tions if the stability constraints are not satisfied. According to Hirsch (1994), the
following constraints need to be satisfied: Pe-o < 2 and 23 < 1, where the Peclet
number is defined as Pe = o/ = u/(I'/A,), the variable 0 = ©At/A, corresponds
to the Courant-Friedrichs-Lewy number and the diffusion number 3 = T'At/A2
where At denotes the time step and A, the grid spacing. Since fine grids are re-
quired for LES and the diffusivity I' is small, the pure CDS is often applicable.
However, in strongly convective conditions it may be necessary to introduce a very
small amount, say 5%, of second-order upwind in order to stabilise the solution. In
general, higher-order upwind or TVD schemes are not recommended for turbulence
resolving simulations, since the additional numerical dissipation introduced by these
schemes is significant, and will contaminate the resolved flow field. It will be shown
later, in section 9.4 and chapter 10, that when higher-order upwind or TVD schemes
are used in the LES region, the results will inevitably deteriorate. In RANS ap-
plications, the source terms and high-order nonlinearities present in the transport
equations for turbulence quantities require more robust, yet less accurate, upwind
or TVD schemes to ensure numerical stability. The increased levels of numerical
dissipation induced by the second-order upwind or TVD schemes is usually smaller
than the large diffusivity I provided by the RANS model and hence, will not affect

the predictions as much as in the case of LES.
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Based on this discussion, a second-order accurate hybrid convection scheme is pro-
posed, which employs the linear-upwind (LUD) scheme in the RANS region and the
CDS scheme in the LES region. Alternatively, the LUD scheme could be replaced
by a TVD scheme. The face fluxes of the hybrid convection scheme are obtained

from a linear combination of the form

¢r = (1—0) ¢r.cps + ovdsLUD, (9.27)

where oy, is a flow-dependent blending function. The blending function is designed
such that o, = 1 if FSM operates in RANS mode (F' = 1) and rapidly drops to
zero if the damping function is F' < 1. The following function provides the desired
behaviour

op = tanh (A%), A =max[f,faf. —0.6,0]. (9.28)

Note that other possibilities exist to combine CDS and LUD/TVD schemes, for
example, a switch or blending between both schemes based on the local Peclet
number would be a viable option. Since the FSM scheme has been found to work
as intended, no further effort has been devoted to the implementation and testing

of other numerical schemes.

Figure 9.2 shows contours of the blending function o} for the flow around two inline
tandem cylinders and the flow in a diffuser, using the modified FSM approach. Both
cases are described in more detail in chapter 10. It is obvious that the free-stream
and boundary layers on both cylinder are computed using the upwind-difference
scheme (o, = 1). In the wake of the first and second cylinder, o, drops sharply
to zero and the resolved flow is computed using the central-difference scheme. It
should be noted that no stable solution could be obtained for the tandem cylinder
case if the central-difference scheme was employed everywhere in the domain. The
blending function also works as intended for the flow in the diffuser. The near-wall
RANS region is computed using the upwind-difference scheme whereas the flow away
from the wall is computed using the central-difference scheme. It will be shown in
chapter 10 that the hybrid FSM schemes provides almost identical results to those

obtained using the central-difference scheme.
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A

(a) Tandem Cylinders.

(b) Diffuser.

FI1cURE 9.2: Flux blending function oy.

9.4 Calibration of the modified FSM approach

The remaining task to complete the model formulation is to determine suitable val-
ues for the free parameters C,, § and n, which appear in the damping function F'
Homogeneous isotropic turbulence (HIT) is used to calibrate and validate the LES
capabilities of the proposed modified FSM approach. In the calibration process the
total turbulence kinetic energy dissipation rate € = €545 + €, + €pum, resulting form
the combined effect of turbulence model formulation, viscosity and numerical frame-
work, is optimised such, that the FSM approach provides proper LES capabilities
with resolved turbulence, as depicted in figure 9.3, and with a physically consistent
energy cascade. It is important that the numerical dissipation is included in the
calibration study, since the magnitude may be of the same order as the dissipation
provided by the turbulence model. For this reason, the calibration is performed in

conjunction with the hybrid FSM convection scheme presented in section 9.3.

HIT is probably the most simple turbulent flow conceivable. In HIT the spatial
gradients of mean flow and turbulence statistics vanish and with that all produc-
tion and transport processes. This has the consequence that the turbulence kinetic
energy decays according to dk/dt = —e. Typically, decaying HIT is used for the
calibration of virtually all trusted turbulence-resolving approaches such as, DES,

SAS and many LES sugbrid-scale models. In the calibration process the model
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FIGURE 9.3: Homogeneous isotropic turbulence.

constants are adjusted and results for the energy spectra are matched to experi-
mental or DNS data. One of the major difficulties associated with temporal sim-
ulation of decaying homogeneous isotropic turbulence is that physically realistic
initial conditions are required for the three-dimensional velocity field. With the
availability of reference DNS data, the three-dimensional velocity field from DNS
can be re-sampled/truncated to the grid resolution used for the calibration study.
The situation is slightly more difficult when experimental data are used as a ref-
erence. Usually only energy spectra are available from experiments, which need
to be converted into a three-dimensional flow field using inverse Fourier transform.
Even though the spectral energy distribution of the flow field can be re-created,
the resulting velocity field lacks physically consistent spatial correlations. In the
calibration procedure the simulation is started from the initial flow field and after a
certain time has elapsed, the instantaneous energy spectra is compared to reference
data. The simulation time, of course, needs to be long enough such, that the flow
field recovers from unphysical initial conditions and to allow the flow to adapt to

the contributions from the turbulence model.

In the calibration study conducted here, the potential sensitivity of the results
to initial conditions is avoided by performing simulations of stationary homoge-
neous isotropic turbulence, where the natural decay of turbulence is circumvented
by adding an artificial forcing term to the momentum equations. The forcing term
maintains a certain level of turbulence kinetic energy. This procedure not only
allows to achieve arbitrarily high Reynolds numbers, with a significant inertial sub-

range, it also allows to obtain statistically converged turbulence statistics.
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9.4.1 Computational Setup

The forcing scheme employed in this work follows the proposal of Eswaran & Pope
(1988) and has previously been used in Fureby et al. (1997b). The energy is only
added to wavenumbers below k = |k| < 2.5[1/m]. This ensures that the statistics of
the small-scale motion close to the grid cut-off wavenumber are not contaminated by
the artificial forcing mechanism, which mainly consists of spatially random white
noise. Even though some of the small-scale quantities are set by the large-scale
motion, e.g. dissipation rate, it has been shown in Eswaran & Pope (1988), that
forcing at low wavenumbers does not significantly influence the dynamics of the

small-scale motion and hence the statistics at high wavenumbers.

Simulations are performed in a cubic box with a side length of L = 2x[m] and with
periodic boundary conditions in all directions. The Reynolds number investigated
here is Rey = UpmsAr/v = 732, with u,s = A/(2/3) k), {k) = (1/2) {u;u;) and
the Taylor length scale Ay = (<uzul>/<(Vuj)2>) 1/2, where the brackets () denotes
space-averaged quantities. This Reynolds number is also studied in Kaneda et al.

(2003) using DNS, and their results are used here as a reference.

In order to assess potential grid dependencies of the calibration constants, the cal-
ibration study is conducted for two different grid resolutions using 32 (HIT32)
and 64 (HIT64) cells in each direction of the cubic box. The physical time step
is set to At = 0.05[sec] for the coarse mesh and At = 0.025[sec] for the fine
mesh and yields a CFL number of CFL < 0.4. The resulting energy spectra are
averaged over more than 30 samples, which are sufficiently separated in time to
ensure that they are not correlated. In all simulations the integral length scale
Ly = (7/2Ums) 37 k1 E(k)drk did not exceed L; < 0.2L, such that the use of

0
periodic boundary conditions is justified.

9.4.2 Calibration of C,

The closure constant C, is the most important one and controls the behaviour of
FSM for an LES-like resolution of the flow. Recall that the Taylor-scale Reynolds
number is Re), = 732 and the ratio of grid spacing to Kolmogorov length scale
is A/L, = 187 for the coarse mesh and A/L, = 93 for the finer mesh, where
the Kolmogorov length scale L, is obtained from DNS data. This high ratio is
reflected in the damping function f;, which controls the behaviour of FSM close

to the DNS limit. For the two grid resolutions f, remains inactive (f, = 1). As a
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consequence, only the constant C, for the damping function fa can be determined,
and the constant 3 appearing in f, has to be determined using a different strategy

or smaller Reynolds number.

Before the results of the calibration study are presented some additional comments
about the calibration strategy are necessary. It is important to note again that all
underlying RANS models used here are based on a set of closure constants, which
are obtained by blending between the k-w and k-e framework using the blending
function F. The blending function Fj is designed to be unity close to the wall and
to decay to zero away from the wall. For the case F; = 1 the closure constants
of the k-w framework are active and for F; = 0 the closure constants of the k-¢
framework are active. The present calibration case does not involve any walls and
the closure constants of the RANS model therefore corresponds to the k-e¢ model.
It would seem natural to perform the calibration for both limits F} = 1 and F; = 0,
and to obtain two constants C,, and C,,, which are blended according to F;. How-
ever, this has been found not to be necessary for the following reason. Consider the
cases where parts of the boundary layer are shielded using either f, = 1/(1 — F})
or f, = 1/(1 — Fy). In both cases FSM will be operating in a RANS mode in re-
gions where 7 = 1 or F;, = 1 with the consequence, that the value of C,, becomes
irrelevant. In case f, is not used to shield parts of the boundary layer, it might
potentially occur that the damping function F' reduces the model contribution to
LES mode and the blending function F is still close to unity. Only in this specific
case would it be beneficial to have an optimised value of C,,, since FSM will try
to resolve turbulence with the baseline RANS model operating in the k-w regime.
However, it has been observed in practical applications that when FSM reduces the
model contribution to an LES level, the blending function Fj also sharply drops to
zero. This means that the k-w regime is almost exclusively used in a pure RANS
mode, which does not require the constant C,,. For this reason and for the sake
of reducing the complexity of the FSM approach, a blending function for C, is not

considered here.

Results

The constants C, resulting from the optimisation study are summarised in table
9.1 for all three underlying RANS models and for both mesh resolutions. Figure 9.4
shows the corresponding three-dimensional energy spectra E(k), which are obtained

by performing integration over spherical shells and where £ = |k| is the wavenumber
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magnitude. For comparison, results of IDDES, SAS and with no subgrid-scale model
(UDNS), are shown as well.

FSM | C, (HIT 32) C, (HIT 64)
SST 1.0 0.85
EASM 2.4 2.1
p-a-EASM 1.0 0.85

TABLE 9.1: Model constants C, for the FSM approach.

(a) HIT 32 (b) HIT 64

FIGURE 9.4: Energy spectra E(k). Symbols correspond to DNS of Kaneda et al.
(2003). (—) FSM-SST, (- - -) FSM-EASM, (- — —) FSM-p-a-
EASM, (---) IDDES , (—-—) SAS, (—--—) UDNS .

The simulations with no sub-grid scale model are clearly not very successful in
reproducing the correct energy cascade at the cut-off and show an spurious ac-
cumulation of energy at the high wavenumbers. The energy spectra for the low
resolution case (HIT32) is predicted consistently by all models in good agreement
with DNS data. The small discrepancies at low wavenumbers can be attributed to
the artificial forcing mechanism, which is active in this range. It is interesting to
note that the constant C, of the FSM-EASM model is significantly larger compared
to the values for the FSM-SST and FSM-p-a-EASM models. This implies that the
dissipative nature of the FSM-EASM model is significantly less compared to the
other two RANS models and needs to be compensated by a larger value of C,.
The difference in the dissipative nature is explained by the sensitivity of C’ﬁf I to
strain and rotation rate. In the present case Cﬁf I of the FSM-EASM reduces to
<Cﬁf ! > = 0.028, where brackets () denote averaging in time and space. This value
is significantly less compared to the generally accepted value of C’Ef F'=0.09 (away
from solid walls). The FSM-EASM model introduces a dynamic response to the
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flow field under consideration through the sensitivity of C’;’jf f to strain and rotation
rate. It is generally acknowledged that the closure constants in LES subgrid-scale
models, for example, Cs in the Smagorinsky model, are not universal and take
significantly different values for different types of flow. The flow dependency of
the calibration constants Cg explains the success of dynamic subgrid-scale models,
which dynamically adjust the model constants to the flow under consideration. It
might be argued that the behaviour of the FSM-EASM model is somewhat similar
to a dynamic subgrid-scale model in the sense of providing the capability to adapt
to different types of flows depending on strain and rotation-rate. This seems a very

appealing feature and makes it worthwhile to explore in more detail.

The ¢-a-EASM can also adapt to the flow through C’ﬁff = 0.22¢. However, the
variable ¢ does not reduce much in the case of a resolved flow field and predicts
<Cﬁf ! > ~ 0.09. This results in almost the same dissipative behaviour as the FSM-
SST formulation. Note that the wall-damping function fg+ in the turbulence kinetic
energy equation used in the p-a-EASM model is also based on the variable ¢. This
damping function maintains a value of unity in the resolved flow field, and does not
erroneously activate the near-wall damping, as observed for low-Reynolds-number
turbulence model formulations, where viscosity-dependent parameters such as Rep
are used. The similar dissipative behaviour of the FSM-SST and FSM-p-a-EASM
also suggests that the extra non-linear terms in the stress-strain relationship do not

significantly alter the dissipative behaviour of the model.

The calibration constants C,, for the higher resolved case (HIT64) are optimised to
reproduce a —5/3 slope at the cut-off wavenumber. Note that the DNS of Kaneda
et al. (2003) predicts a slope of the inertial range close to —1.77 rather than exactly
—5/3. In order to achieve the correct dissipative behaviour in the HIT64 case, all
constants C, have to be reduced compared to the HIT32 case. The IDDES and
SAS model show a similar resolution sensitivity. On the fine grid, the SAS model
shows too large a damping of the smallest resolved scales with insufficient energy
in the smallest scales. IDDES predicts a slope at the cut-off wavenumber, which is
somewhat too step, —1.95, even though this is not clearly visible in figure 9.4. The
dependence of the results of IDDES to the grid resolution has also been observed
in Mockett (2009).

These findings are worrying, since the calibration constant does not only depend
on the flow under investigation but also on the level of resolution of the flow field.
Perhaps the most promising way to tackle this issue would be to introduce a dy-

namic procedure to determine the constant C,. This, however, adds considerable
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complexity and is therefore not considered at this stage. Nevertheless, to complete
the calibration effort a constant C\, needs to be chosen. It could be argued that
the calibration constants corresponding to the lower resolution (HIT32) would be
more appropriate for practical applications, since the computational cost associated
with fine meshes are currently often not affordable. On the other hand, it could be
argued that on coarse meshes the application of low dissipative schemes, as they
are used in the calibration study, are often problematic and some upwinding may
be required to stabilise the simulation. As mentioned before, any form of upwind-
ing inevitably introduces additional numerical dissipation. With that in mind, the
larger values of C, combined with upwinding stabilised numerical schemes might
be too dissipative. For this reason the lower values of the constants C, will be used

in the simulations to follow in chapter 10.

9.4.3 Calibration of

A straightforward approach to determine the constant S would be to choose a
value such that f, approaches zero for a certain ratio of A/L,, say A/L, ~ 10.
However, this approach does not take into account the uncertainty associated with
determining the Kolmogorov length scale L,, using the subgrid dissipation rate €.
It has been found that for the high-Reynolds-number case Rey, = 732, the estimated
ratio of grid length scale to Kolmogorov length scale is (A/L,» = 26.2, which is a
factor 7 smaller compared to DNS, which gives A/L, = 187. In order to obtain a
suitable value for the constant 3, a Taylor-scale Reynolds number of Rey = 35 is
considered here. This Reynolds number is low enough to achieve DNS resolution on
the the HIT32 and HIT64 grids. For example, Jimenez et al. (1993) performed DNS
of isotropic turbulence at Rey = 35 using a box of 64 cubed cells. Eswaran & Pope
(1988) used a box of 32 cells for DNS at Rey ~ 30. Therefore, the parameter 3 will
be determined here such that the FSM contribution function reduces to F' = 0 for
the HIT32 and HIT64 resolutions at a Taylor-scale Reynold number of Rey = 35.
Since the energy spectra do not provide any additional insights, only the resulting
constant (3 is given for which the contribution function approaches zero. The result
of this study is that a value of 5 < 1.0 is sufficient to ensures that all FSM models
approach the DNS limit. For all following simulation a value of § = 0.75 will be

used, unless stated otherwise.
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9.4.4 Influence of Numerical Discretisation

The calibration study presented above gives suitable values of the calibration con-
stants of the FSM approach when used in conjunction with the hybrid FSM convec-
tion scheme. Since it is not possible to repeat the calibration study for all possible
numerical discretisation schemes, this section investigates the dissipative behaviour
and the error introduced when FSM is used in conjunction with other convection dis-
cretisation schemes. For this purpose, five different convection schemes, which are
all formally second-order accurate, will be assessed for the same calibration case. All
tested schemes are likely to be employed in unsteady simulation of turbulence using
commercial finite-volume codes. The schemes considered are the central-difference
scheme (CDS), a bounded central-difference scheme with 20% TVD conformity
(TVD), the hybrid convection scheme of Travin et al. (2004b), a second-order lin-
ear upwind scheme (LUD), a blend between LUD and CDS with 20% upwinding
(BDS20) and the new hybrid FSM convection scheme (FSM scheme). It should be
noted that the hybrid convection scheme of Travin et al. (2004b) has been designed
for the combination of a fourth-order CDS and third/fifth-order upwind scheme. It

is used here in conjunction with a second-order accurate CDS and LUD schemes.

The resulting energy spectra at Re), = 732 are shown in figure 9.5 for a box of 32
and 64 cells, obtained by FSM-SST using the optimised constants C,, from section
9.4.2.

(a) HIT 32 (b) HIT 64

FIGURE 9.5: Energy spectra E(k). Symbols correspond to DNS of Kaneda et al.
(2003). (—) CDS, (---) TVD , (- - -) Travin et al. (2004b), (—-—)
BDS20, (—--—) LUD, (= — —) new hybrid FSM scheme .
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The numerical schemes with the smallest amount of numerical dissipation are the
CDS and the new hybrid FSM convection scheme. The new blending function oy, of
the FSM convection scheme is zero for both mesh resolutions, with the consequence
that the hybrid FSM scheme operates in pure CDS mode. The hybrid scheme of
Travin et al. (2004b) is somewhat more dissipative and shows a small departure
from the —5/3 energy cascade at the cut-off. This behaviour can be traced back
to the blending function o,, which takes a non-zero value (o) ~ 0.03 and which
exhibits localised regions where oy, is close to unity; see figure 9.6. The non-zero
value of o, might be necessary in terms of stability requirements when the hybrid
scheme is used in conjunction with a fourth-order accurate CDS, as suggested in
Travin et al. (2004b). However, the small amount of upwinding is not required in
the present case in order to stabilise the full second-order CDS. The new hybrid
FSM convection scheme is preferred in this respect, since it recovers a full CDS and

avoids contamination of the resolved small scales of turbulence.

1 1
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(a) Blending function of Travin et al. (b) Blending function of the FSM con-
(2004b) vection scheme

FIGURE 9.6: Blending function o, of the hybrid convection scheme.

The BDS20 and the TVD scheme are slightly more dissipative than the hybrid
scheme of Travin et al. (2004b) and the departure from a —5/3 energy cascade at
the cut-off wavenumber is clearly visible. It also turns out that the TVD variant is
slightly more dissipative than the BDS20 scheme. The LUD scheme provides the
most damping of the small-scales of turbulence. Even though the LUD is second-
order accurate it cannot be recommended for the use within the hybrid RANS/LES

environment unless the constant C,, is significantly lowered.






Chapter 10

Applications of the FSM
Approach

In this chapter the proposed modifications and extensions to the Flow Simulation
Methodology (FSM) are assessed on a range of test cases, which cover both internal
and external flows. The flow around a tandem cylinder configuration is used to
investigate the performance of FSM when operated in its basic, ‘natural’, mode,
where the entire attached boundary layer is treated in RANS mode and the mas-
sively separated flow outside the boundary layer is treated in LES mode. The use
of the basic FSM may become overly restrictive for many internal flows where it
is beneficial to resolve some turbulence in the outer layer of the boundary layer.
The other two test cases are selected to investigate the performance of FSM when
operated in an ‘extended’ mode, where only the near-wall region is treated in RANS
mode and the flow away from the wall, both inside and outside the boundary layer, is
treated in LES mode. This extended mode can be referred to as wall-modelled LES
(WMLES), where the computationally expensive near-wall region is bridged using
a state-of-the-art RANS model. The first internal flow case considered is the flow in
a planar channel. This case is mainly used to investigate the extent of the log-layer
mismatch frequently observed when the switch from RANS to LES occurs inside
the boundary. The second case is the flow in a three-dimensional diffuser, where
the incoming fully developed turbulent duct flow experiences a three-dimensional

boundary-layer separation.

Simulations are performed with FSM based on three different underlying RANS
closures with different levels of sophistication, that is, the k-w-SST, EASM-2D and
the new p-a-EASM model. All cases include an assessment of the statistical con-

vergence of results, investigations of the sensitivity and influence of the resolution
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of the computational grid and numerical convection discretisation scheme. The
results are compared to reference data and to results obtained with other hybrid
RANS/LES methods, such as IDDES and SAS.

10.1 Planar Channel Flow

The flow in a planar channel is used here in order to investigate the performance of
the FSM framework to provide basic WMLES capabilities. In addition, a parameter
and sensitivity study is conducted to investigate the influence of the convection
discretisation scheme and the calibration parameters C, and g of the FSM model.
Simulations are performed for both low and high-Reynolds-number channel flow
at Re, = 395 and Re, = 18000, respectively. The simulations are conducted
without the function f, included in the damping function F' of the FSM, unless
stated otherwise. Results are compared to the DNS of Moser et al. (1999) and
to the correlation of Reichardt (1951) for the mean-velocity profile. In order to
improve the predictions of the mean-velocity profile in WMLES mode, an additional

modification is introduced to the FSM framework.

10.1.1 Computational Setup

Planar channel flow can be considered as the flow between two parallel plates. It
is approximated here as the flow through a domain with the streamwise extent of
L, = 2w H, the spanwise width of L, = mH and a channel height of L, = 2H,
where H is the channel half-height. These dimensions correspond to the channel
used by Moser et al. (1999) for DNS at Re, = 395. Periodic boundary conditions
are used in the spanwise and streamwise directions. The domain size is large enough
to accommodate the streamwise streaks close the wall with A} = 1000 — 1600, and
to allow the spanwise and streamwise correlations to reduce to a sufficiently small
magnitude in order for periodic boundary conditions to be applicable. The simula-
tion at the lower Reynolds number Re, = 395 is performed on a computational grid
with 54 x 54 x 54 cells. This corresponds to a maximum resolution in wall units of
AT =46, Ay = 0.8 and AF = 23, where Af is the first grid spacing adjacent to
walls. The simulations for the higher Reynolds number case, Re, = 18000, are per-
formed on a computational grid with 96 x 124 x 96 cells. This provides a resolution
of AY = 1178, Af = 0.8 and A = 588 in wall units.
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The convective fluxes in the flow equations are discretised using the hybrid FSM dif-
ference scheme and a second-order upwind scheme is used for the turbulence trans-
port equations. The viscous terms use a second-order central-difference scheme.
Time stepping is performed using an implicit second-order accurate backward-
difference scheme and the coupling between the pressure and velocity is achieved
by the PISO algorithm. The time step is set as 1.6 x 1073 H /u, such that the CFL

number does not exceed 0.5.

In order to maintain a constant flow rate through the channel, an additional mo-
mentum source term is introduced to the streamwise momentum equation. In the
present simulations, the pressure gradient required to yield the desired Re, is com-
puted from the momentum balance in the streamwise direction. The required pres-
sure gradient is obtained from the relation dp/dz = 7,,/H, with the wall shear stress

Tw = pui and the skin-friction velocity u..

Initialisation

Without special consideration of the initial flow field the transition process from the
initial flow field to a fully turbulent state may require a large number of channel flow-
through times. In order to speed up the transition process the following strategy
has been found very effective in quickly generating turbulence structures. The same
strategy has also been employed in de Villiers (2006). The velocity field is initialised
by prescribing a laminar parabolic velocity profile, where the streamwise velocity
component near the wall is perturbed with parallel streaks of high- and low-speed
streamwise velocity. These streamwise streaks are further modified by introducing
a periodic spanwise perturbation of approximately +/-10% of the bulk velocity.
This procedure is applied only to the first simulation of this series. Every following

simulation is re-started from an instantaneous solution of the previous run.

10.1.2 Averaging and Statistical Convergence

Before any results are presented, the averaging procedure and statistical conver-
gence is discussed. For all simulations the flow is allowed to develop from the initial
flow field for approximately 15H /u, time units. After the initial settling period,
statistical quantities are computed by averaging over 80H /u., time units, which ap-
proximately corresponds to 200 flow through times. For post-processing purposes
the time-averaged quantities are additionally averaged over both homogeneous di-

rections.
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In order to verify the statistical convergence of the flow field, results for the mean
velocity U™, the modelled, resolved and total turbulence kinetic energy k* and
the modelled, resolved and total shear stress W+, are presented in figure 10.1,
after averaging over 23H /u,, 43H /u, ,63H /u, and 80H /u, time units. It is obvious
that after averaging over only 23H /u, time units the mean-velocity profile is already
converged. However, the statistics for the shear stress and turbulence kinetic energy
are not yet fully converged. When averaging over more than 43H /u, time units the

statistics for the shear stress and turbulence kinetic energy are also fully converged.
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(a) Mean velocity profile U™ . (b) Turbulence kinetic energy k+. (c) Shear-stress u'v’ .
FIGURE 10.1: Statistical convergence of the flow field. (—--—) t = 23H/u,,

(=-=)t=43H/u:, (---) t = 63H/u; and (—) t = 80H /u,.

10.1.3 Influence of Convection Discretisation

The sensitivity of results with respect to the numerical convection discretisation
scheme is investigated next. Four different second-order accurate schemes are con-
sidered in this study. The numerical schemes include the central-difference scheme
(CDS), the hybrid FSM convection scheme (FSM) with a flow-dependent model for
the flux-blending function, a bounded central-difference scheme with 20% TVD co-
formity (BCD20) and the linear upwind scheme (LUD). Simulations are performend
using the FSM-SST formulation and C, = 0.85, § = 0.75 and n = 4. Results for
the mean velocity U™, damping function F' and the modelled, resolved and total

o ‘
shear stress /v’ are shown in figure 10.2.

The results clearly demonstrate that the mean-velocity profile and shear stress ex-
hibit a large sensitivity to the convection discretisation scheme, even though the
resulting damping function F' is considerably less sensitive to the numerical scheme.

All damping functions collapse onto one curve close to the wall and take slightly
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FIGURE 10.2: Sensitivity with respect to the convection discretisation scheme.
Symbols correspond to DNS of Moser et al. (1999). (—) CDS,
(- - -) hybrid FSM scheme, (— - —) BCD20, (—--—) LUD .

different values away from the wall. It is obvious that with increasing level of numer-
ical dissipation inherent in the discretisation scheme the results increasingly depart
from the reference data. The LUD scheme predicts a mean-velocity profile, which
grossly departs from the reference data and which is not within typical predictive
tolerances required for engineering applications. The situation is slightly improved
with the BCD20 scheme, which predicts the velocity profile and shear stress in bet-
ter agreement with reference data. However, the overall accuracy of the BCD20
scheme is still not satisfying. Both the LUD and BCD20 schemes predict reduced
levels of resolved shear stress when compared to the more accurate CDS scheme.
The reduced resolved shear stress is not compensated by a sufficient increase in
modelled shear stress, such that reasonable predictions for the total shear stress
and hence the velocity profile are obtained. Only the CDS and hybrid FSM scheme
are capable of predicting results in reasonable agreement with the reference data. It
should be noted that the FSM-SST formulation is not optimised for WMLES. That
is why the CDS and hybrid FSM scheme over-predict the velocity magnitude in the
log layer by a small margin. The results of the hybrid FSM scheme are very encour-
aging and are in close agreement with the CDS. This indicates that the numerical
dissipation of the hybrid FSM scheme in the resolved flow region is of similar mag-
nitude to that of the CDS. It also indicates that the enhanced numerical dissipation
of the LUD scheme employed in the RANS region does not adversely affect the flow
in the LES region. For this reason, the hybrid FSM convection scheme will be used

for all further studies, unless stated other wise.
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10.1.4 Sensitivity to the Underlying RANS Model

The sensitivity of the results with respect to the underlying RANS model is investi-
gated in this section. Simulations are performed using the FSM-SST, FSM-EASM
and FSM-p-a-EASM formulation in conjunction with the hybrid FSM convection
scheme. Results for the mean velocity U™, damping function F' and the modelled,

resolved and total shear stress u'v = are presented in figure 10.3.
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(a) Mean velocity profile U™ . (b) Damping function F. (c) Shear stress u'v’ .

FIGURE 10.3: Sensitivity of FSM with respect to the underlying RANS model.
Symbols correspond to DNS of Moser et al. (1999). (—) FSM-
SST, (- - -) FSM-EASM, (- - —) FSM-p-a-EASM.

At first sight the predictions for the channel flow are clearly sensitive to the under-
lying RANS model. However, the differences in the predictions are mainly caused
by the damping function F, which takes significantly different shapes and values
depending on the underlying RANS model. The different shapes of the damping
functions are caused by differences in the predictions of k£ and w, which are both

used to compute the relevant length scales in the damping function.

The damping function resulting from the supposedly most sophisticated RANS
model, the p-a-EASM, seems not very well suited for the channel flow predictions
and the results for the mean-velocity profile in the log-layer region show the greatest
departure from the reference data. This is caused by a large reduction of the
damping function close to the wall, which results in a vanishing modelled shear
stress and in a general under-estimation of the total shear stress between the wall
and approximately y* ~ 30. The FSM-SST and FSM-EASM models predict a
thicker RANS layer (F' = 1) close to the wall, which results in elevated levels
of modelled shear stress and in reduced levels of resolved shear stress. The total
shear stress is now better predicted in the near-wall region, which is also reflected
in improved predictions for the mean-velocity profile in the log-layer region. The
FSM-EASM shows the largest extent of the near-wall RANS layer and provides the
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best overall agreement with the reference data. It is important to note that both
the FSM-SST and FSM-EASM show too low levels of total shear stress between the
locations y™ ~ 20 and y* ~ 80. This defect is responsible for the too high velocity
magnitude in the log layer. In order to reduce the velocity magnitude in the log
layer it is necessary to enhance the modelled shear stress at the switching location
from RANS to LES, such that the total shear stress is not under-predicted in this

region.

Since the predictions strongly depend on the shape of the damping function, it is
unfortunately not very clear to what extend the non-linear stress-strain relation-
ship of the EASM model, or the improved near-wall treatment of the ¢-a-EASM,
influences the predictions. The influence of the underlying RANS model can only
be rigorously assessed if the same damping function is used for all three underlying

turbulence models. This study is left for future investigations.

10.1.5 Sensitivity to the Constant C,

The sensitivity to the calibration constant C, appearing in the damping function
F' is investigated next. The sensitivity study is conducted using the FSM-SST
formulation in conjunction with the hybrid FSM convection scheme. Simulations
are performed with C, = 0.7, C, = 0.85 and C,, = 1.0. The results for the mean
velocity U™, damping function F' and the modelled, resolved and total shear stress
W are presented in figure 10.4. The same sensitivity study was conducted for
the FSM-EASM and FSM-p-a-EASM models. Since the results show exactly the

same trend as for the FSM-SST formulation, they are not presented here.
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(a) Mean velocity profile U™ . (b) Damping function F. (c) Shear stress u'v' .

FIGURE 10.4: Sensitivity of the results to the calibration constant C,. Symbols
correspond to DNS of Moser et al. (1999). (—) Co = 0.7, (- - -)
Co =085, (—-—) Cy =1.0.
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The different values for C, are reflected in different magnitudes of the damping
function F' in the LES region. However, the overall differences in the resulting mag-
nitude of F' are rather small. Nevertheless, the variation of C', would be enough to
observe a noticeable difference in the energy spectra for isotropic turbulence (see
section 9.4). Lower values of C,, result in a reduction of modelled shear stress and in
an increase of resolved shear stress, such that the total shear stress remains approx-
imately the same for all values of C,. Since the total shear stress does not change

significantly the velocity profile is very similar for all values of C,, investigated here.

10.1.6 Sensitivity to the Constant

The sensitivity of results to the calibration constant § appearing in the damp-
ing function F' is investigated next. The sensitivity study is conducted using the
FSM-SST formulation in conjunction with the hybrid FSM convection scheme. Sim-
ulations are performed with g = 1.0, 8 = 0.75, 8 = 0.5 and 8 = 0.25. The results
for the mean velocity U*, damping function F' and the modelled, resolved and total

7t .
shear stress w'v'  are presented in figure 10.5.
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(a) Mean velocity profile U™ . (b) Damping function F. (c) Shear stress u'v' .

FIGURE 10.5: Sensitivity of the results to the calibration constant 5. Symbols
correspond to DNS of Moser et al. (1999). (—) 8 = 1.0, (- - -)
=075, (--—)B=05(—--—) =025

The calibration constant § is much more effective in modifying the level of damping
in the LES region than C,. For values of [ smaller than 5 ~ 0.25, the FSM-SST
formulation reduces to a quasi-DNS for large parts of the channel, while the extent
of the RANS region (F' = 1) is not much altered by different values of 5. It is
somewhat surprising that the three constants, 5 = 1.0, § = 0.75 and g = 0.5, result
in the same levels of resolved and modelled shear stress and consequently in the same

velocity profile. At first sight this seems not very intuitive, since the magnitude of
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the damping function F' away from the wall is significantly different. In addition,
the sensitivity study of the calibration constant C, has shown that different values
of F' away from the wall result in different levels of resolved and modelled shear
stress. However, a closer inspection of the damping function F' reveals that close to
the wall (y* < 30) different values of § collapse onto one curve, with the exception
of B = 0.25. This is not the case in the sensitivity study for the calibration constant
Cq, where different values of C, result in a different distribution of the damping
function close to the wall (y* < 30). It seems that the level of damping in the
near-wall region (y* < 30) controls the magnitude of resolved fluctuations away
from the wall. The magnitude of the damping function away from the wall seems
to have a negligible effect on the resolved shear stress. This is probably only true
for sufficiently small values of the damping function, such that the flow field away
from the wall is not contaminated by overly large levels of modelled dissipation.
Even though the levels of damping differ significantly for different values of 3, the
velocity profile is not significantly affected by the values of § investigated here.

10.1.7 Introducing f., for WMLES

The sensitivity study so far has revealed that the resulting damping function may
take significantly different shapes and values depending on the underlying RANS
model. The FSM-p-a-EASM, for example, shows a significant reduction of the
damping function close to the wall, which results in an almost vanishing modelled
shear stress and in an over-prediction of the velocity magnitude in the log-layer
region. It was also shown, that the damping function close to the wall controls the
levels of resolved and modelled shear stress. In addition, changing the calibration
constants C, and 3 is not an effective way to improve the predictions of the velocity
profile in the log-layer region. In the following, an attempt is presented, which aims
at modifying the damping function close to the wall such that it takes a more
consistent shape for all underlying turbulence models and also provides improved
predictions of the velocity profile. For this purpose, the function f, is introduced,
which effectively controls the extent of the RANS region (F' = 1) close to the wall.
The shielding function f, is given by

[z = (10.1)

where

(10.2)
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The constant C, controls the extent of the RANS region close to the wall. The

resulting damping function is now given as

F =min[f,faf.,1]. (10.3)

In order to illustrate the effect of the shielding function, simulations are performed
with the FSM-SST, FSM-EASM and FSM-p-a-EASM formulation using the new
function f, and the optimised constant C, = 16. Results for the mean velocity U™,
damping function F', the modelled, resolved and total shear stress Wv " and the
total (resolved plus modelled) normal-Reynolds-stress components are presented in
figure 10.6. In addition, results of the IDDES model based on the k-w-SST are also

included as a reference.
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F1GURE 10.6: Influence of the shielding function f,. Symbols correspond to DNS
of Moser et al. (1999). (—) FSM-SST, (- - -) FSM-EASM, (—-—)
FSM-p-a-EASM, (—--—) IDDES .

It is obvious that the shielding function f, is effective in modifying the damping
function F' close to the wall. The RANS region close to the wall is generally enlarged
and all three underlying turbulence models now show a more consistent distribution

of F. As a consequence of the enlarged RANS region, the modelled shear stress is
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increased close to the wall, and the resolved shear stress is reduced away from the

wall, when compared to simulations without f,, as seen in figure 10.3.

The enlarged RANS region, which now extends up to y* ~ 100, significantly im-
proves predictions of the velocity profile in the buffer and log-layer region. Recall
that predictions without f, show a large over-prediction of the velocity profile in
the log-layer regions. Even though the velocity profile is generally improved, the
onset of a secondary, resolved log layer becomes visible in the results. Again, this is
caused by an under-prediction of the total shear stress around the switching loca-
tion from RANS to LES mode. When the shielding function is included, the most
sophisticated RANS model, the p-a-EASM, provides the best predictions of the ve-
locity profile and matches the centerline velocity of the reference data. Surprisingly,
the IDDES formulation also over-predicts the velocity magnitude in the log-layer
region, even though, it includes the function f,, which is designed to enhance the
modelled shear stress at the switching location and hence compensates for the drop
of total shear stress. The effect of the function f, is visible in figure 10.6 (b) as a

small peak in the predictions of the length-scale ratio L,/ L.

The total normal-Reynolds-stress components are discussed next. Note that the
results are normalised by the skin-friction velocity u,, which is the same for all
simulations, since the pressure gradient is fixed in the simulation, which gives
Uy = \/W . Therefore, the differences between the predictions are solely
caused by the turbulence model formulation and not by the scaling with w,. The
FSM-SST, which is based on a linear-constitutive stress-strain relationship, shows
the greatest overall departure from the reference data. The v component is
significantly under-predicted in the near-wall region, whereas the other two normal
components, v and W+, are over-predicted. The FSM-EASM shows more
realistic wall-normal fluctuations v'v’ compared to the FSM-SST. The FSM-p-a-
EASM more accurately reproduces the near-wall peak of the streamwise velocity
fluctuations W+, which is a consequence of the near-wall anisotropy modifications
employed in the p-a-EASM model. In addition, the FSM-p-a-EASM shows im-
proved asymptotic near-wall behaviours of all normal-Reynolds-stress components.
The IDDES formulation results in a much smaller RANS region close to the wall.
As a consequence, IDDES shows the lowest levels of modelled shear stress and
the highest levels of resolved shear stress. Additionally, the smaller RANS region
allows turbulence fluctuations to penetrate much more deeply into the near-wall
region, which is reflected in a larger intensity of streamwise velocity fluctuations
W close to the wall. Tt is also obvious that all models show a reduction of total

—— ——+ . :
normal-Reynolds-stress components v'v"  and w'w’ around the interface location.
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The turbulence activity in the RANS region at y™ = 10 and in the LES region at
yT = 200 is visualised in figures 10.7 and 10.8, using the instantaneous vorticity
magnitude |w| H/u.. Note that the resolution of the computational grid is relatively
high and should be able to the resolve the dominant near-wall turbulence structures.
This is achieved by IDDES, which shows more turbulence structures at the wall
distance y™ = 10. All FSM models damp most of the turbulence fluctuations close
to the wall, and show un-physically large ‘super’ streaks, similar to what has been
observed in Baggett (1998). The difference in the level of turbulence activity stems
from the extent of the RANS region close to the wall, which for the FSM models,
is significantly larger and extents up to y™ ~ 100. Nevertheless, fluctuations from
the LES zone penetrate deep into the RANS zone and result in an over-prediction
of total (modelled plus resolved) Reynolds stress. Clearly, IDDES is superior in
resolving as much as possible of the near-wall turbulence structures on the same
computational grid. However, since the velocity profile is reasonably reproduced
by the FSM models, no further modifications are introduced at this stage. In the
log layer, at the wall distance y™ = 200, the resolved turbulence activity is overall
very similar for all models. The FSM-EASM and FSM-p-a-EASM both show the
presence of a large streamwise structure. The existence of very large structures
in the log layer was experimentally observed by Hutchins & Marusic (2007) and
was referred to as ‘superstructures’. The superstructures present in the log layer
are much larger than the near-wall streaky structure and are reported to be of the
streamwise extent 20H and of a spanwise width 0.3—0.5H (see Hutchins & Marusic,
2007). Whether the observed structure in the simulations of the FSM-EASM and
FSM-p-a-EASM corresponds to such superstructures, or whether they are linked

to the near-wall super streaks has not been investigated further.
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FIGURE 10.7: Instantaneous vorticity magnitude |w| H /u, at the plane y™ = 10.
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FIGURE 10.8: Instantaneous vorticity magnitude |w|H/u, at the plane y™ =
200.

10.1.8 Performance at High Reynolds Number

In the final investigation of this flow, the FSM-SST, FSM-EASM and FSM-¢-a-
EASM formulations to provide WMLES capabilities at a much higher Reynolds
number is evaluated. All FSM models include the shielding function f, in the
damping function F. The Reynolds number under consideration is Re, = 18000.
The results are compared to the correlation of Reichardt (1951) for the velocity
profile. In addition, results obtained from IDDES based on the k-w-SST model are
also included as a reference. Results for the mean velocity U, damping function

F and the modelled, resolved and total shear stress WV are shown in figure 10.9.
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FIGURE 10.9: Planar channel flow at Re, = 18000. Symbols correspond to
the correlation of Reichardt (1951). (—) FSM-SST, (- - -) FSM-
EASM, (- - —) FSM-¢-a-EASM, (—--—) IDDES .
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Even though all FSM formulations include the shielding function f,, the resulting
distribution of the damping function F' is quite different, particularly in the near-
wall region. The FSM-SST and FSM-p-a-EASM formulations both show a RANS
zone close to the wall, which extents up to y* ~ 160. For y* > 160 the damping
function drops sharply to a lower value. The FSM-EASM, on the other hand,
shows a RANS zone, which extents up to y™ ~ 450 and the damping function drops
relatively slower to lower magnitude. This difference is reflected in the predictions
of the velocity profile as well as in the modelled and resolved shear stress. The
FSM-SST predicts the smallest level of modelled shear stress and the highest level
of resolved shear stress. It also shows the most pronounced log-layer mismatch
of all models investigated here. The FSM-p-a-EASM gives the highest levels of
modelled shear stress and the lowest level of resolved shear stress, which results
in a reduced log-layer mismatch. The FSM-EASM and IDDES formulations show
intermediate levels of resolved and modelled shear stress and provide more accurate
results of the velocity profile, with a smaller log-layer mismatch. The result of the
FSM-EASM is particularly encouraging, since it matches the prediction of IDDES.
Note that the IDDES implementation used here shows a slightly more pronounced
log-layer mismatch than the results of Shur et al. (2008). However, Shur et al.
(2008) employ a fourth-order accurate numerical scheme, which might explain the

observed differences.

10.1.9 Summary

It is demonstrated that the elevated level of numerical dissipation of the upwind and
TVD schemes results in reduced levels of resolved shear stress when compared to
the more accurate Central-Difference Scheme. The reduced resolved shear stress is
not compensated by a sufficient increase in modelled shear stress, such that reason-
able predictions for the total shear stress, and hence the mean-velocity profile, are
obtained. Both schemes results are beyond the level of accuracy normally required
in engineering applications. Only the new hybrid FSM convection scheme delivers
results in close agreement with predictions from the CDS. This shows that the nu-
merical dissipation of the hybrid FSM scheme is of a similar magnitude to that of
the CDS in the resolved-flow region, and that the enhanced numerical dissipation
of the upwind scheme employed in the RANS region, does not adversely affect the
flow in the LES region.

It is also shown that the mean-velocity predictions are insensitive to the choice of

the calibration constants C, and 5. Although the shape of the damping function
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F' depends on the calibration constants, the total shear-stress and mean-velocity
predictions are very similar, almost independent of the value of the calibration
constants. On the other hand, the results are very sensitive to the underlying
RANS model. It is argued that the sensitivity with respect to the RANS model is
mainly caused by different distributions of the damping function F'. For this reason,
an extension to FSM is introduced, which modifies the damping function close to
the wall, such that it has a more consistent shape for all underlying turbulence
models and also provides improved predictions of the mean-velocity profile. With
this modification included, the most sophisticated underlying RANS model, the -
a-EASM, provides the best predictions of the mean-velocity profile and asymptotic
near-wall behaviour of all normal-Reynolds-stress components for the Re, = 395
case. The small log-layer mismatch present in the results is caused by an under-
prediction of total (resolved plus modelled) shear stress at the switching location;
this mismatch could potentially be eliminated by enhancing either the resolved
or modeled contribution to the shear stress at the switching location. For the
high-Reynolds-number channel flow (Re, = 18000), the FSM-EASM and FSM-¢-
a-EASM models provide improved predictions over FSM based on the k-w-SST
model. The FSM-EASM model shows the best prediction, with minimal log-layer
mismatch and good agreement with predictions from IDDES. Nevertheless, more
testing is required, particularly in more complex flows, in order to confirm the good
performance of the FSM-EASM.
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10.2 Three-Dimensional Diffuser

The next test case is the flow in an asymmetric three-dimensional diffuser. This
case has already been introduced in section 6.4. In was demonstrated in sections
6.4 and 8.6, as well as in the 13th/14th ERCOFTAC/IAHR Workshop on Refined
Turbulence Modelling, that even the most sophisticated RANS model exhibits dif-
ficulties in predicting the correct boundary-layer separation and flow topology in
the three-dimensional diffuser. Even though the Reynolds number is moderate and
would allow for wall-resolved LES (Schneider et al., 2010b) and even DNS (Ohlsson
et al., 2010), this case is used here in order to investigate the performance of the

FSM approach to provide WMLES capabilities for complex internal flows.

10.2.1 Computational Setup

In order to generate fully developed turbulent inflow conditions, a periodic, rect-
angular channel of the streamwise extent 3H is computed simultaneously and the
flow mapped to the inlet of the diffuser domain. This approach is computation-
ally relative cheap and provides physically correct turbulence fluctuations to the
diffuser domain. However, the relatively short streamwise extent of the periodic
inflow channel has the consequence that a spurious periodicity is induced in the
diffuser domain. The primary recycling frequency, determined by the convection
speed in the centre of the channel and channel length, is approximately 0.4[H z].
The undesirable recycling frequency and higher harmonics can be observed in the
diffuser domain. The alternative is to use a much longer section upstream of the
diffuser in order to achieve a fully developed flow field at the inlet. Ohlsson et al.
(2010), for example, use a development section of 63H and specify laminar flow at

the upstream boundary.

The boundary conditions of the rectangular inflow channel are periodic in the
streamwise direction and the flow is driven by an imposed pressure gradient, which
is adjusted iteratively to yield the desired bulk velocity U,. Convective boundary
conditions of the form d¢/dt +wdp/on = 0, where n is the outward pointing normal
direction, are used at the diffuser outlet. The convective boundary condition is
placed 13H downstream of the diffuser. It is therefore expected that the boundary

condition at the outlet is not significantly influencing the flow in the diffuser.

The simulations are performed on a computational grid with approximately 2.1 x 10°
cells (335 x 65 x 97) for the diffuser domain and approximately 400000 cells for the
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separate duct flow domain. The average first wall-normal grid spacing is around
y7 = 0.5 and the maximum value is y = 0.8. The convective fluxes in the flow
equations are discretised using the hybrid FSM difference scheme and a second-order
upwind scheme is used for the turbulence transport equations. The viscous terms
use a second-order central-difference scheme. Time stepping is performed using
an implicit second-order accurate backward-difference scheme, and the coupling
between the pressure and velocity is achieved by the PISO algorithm. The time
step is set to 0.007H /U, such that the CFL number does not exceed 0.5.

Initialisation

The initial conditions of the inflow duct require special attention, in order to speed
up the transition to a fully developed turbulent flow. The parabolic initial velocity
field in the periodic inflow channel is perturbed in the same way as described for
the planar channel flow simulation in section 10.1. This procedure is applied only
to the first simulation of this series. Every following simulation is re-started from

an instantaneous solution of the first run.

10.2.2 Averaging and Statistical Convergence

The statistical convergence of the flow field is discussed first. For all simulations, the
flow is allowed to develop for approximately 200D/U, time units. After the initial
settling period, statistical quantities are computed by averaging over 2300D/U,
time units. In order to verify the statistical convergence of the flow field, results
for the surface-pressure coefficient C,, distribution on the bottom wall, as well as
the streamwise velocity component U/U, and the streamwise velocity fluctuations
W rms OL the centre plane at z/L, = 0.5, are presented in figures 10.10 and 10.11,
for averaging intervals of 600D/U,, 1100D/Uy, 1700D /U, and 2300D/U, time units.

It is obvious that after averaging over only 600D /U, time units the surface-pressure
distribution C), = (p — pres)/(0.5pUZ) at the bottom wall (y/H = 0), at z/L, =
0.5, is already converged. However, the streamwise velocity profile and velocity
fluctuations at the last two stations, x/H = 12 and z/H = 16, are not yet fully
converged. Even averaging over 1100D /U, does not provided fully converged results
for the streamwise turbulence intensity. Averaging over more than 1700D /U, time

units is required for the mean flow and turbulence statistics to be fully converged.
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FIGURE 10.10: Surface-pressure coefficient C), at the bottom wall. (—..-—) ¢t =
600D/Uy, (— - —) t = 1100D/Uy, (- - -) t = 1700D/Up, (—
t =2300D/U,.
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FIGUurE 10.11: Streamwise velocity and turbulence fluctuations at the centre
plane z/H = 0.5. Locations from left to right: z/H =1, /H =
5, z/H = 12 and z/H = 16. (—--—) t = 600D/Up, (— - —)
t =1100D /Uy, (- - -) t = 1700D/Up, (—) t = 2300D /U,

10.2.3 Inflow Duct Results

The quality of the predictions provided by the inflow duct is assessed. For this
purpose, the streamwise velocity profile and streamwise turbulence fluctuations
UTmS/Ub at the spanwise location z/L, = 0.5 are shown in figure 10.12, for the
predictions of the FSM-SST, FSM-EASM, FSM-p-a-EASM and IDDES models.
All models predict a very similar velocity profile with a too high velocity magnitude
in the centre of the duct compared to corresponding measurements. In addition, the
experimental data show a asymmetry of the velocity profile, which is not reproduced
by any of the simulations. In the centre of the duct, the resolved streamwise turbu-
lence fluctuations are in good agreement with the reference data. The differences
in the near-wall treatment becomes noticeable close to the wall. All FSM model

resolve much lower turbulence intensities close to wall than the IDDES model. As
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discussed before, this is linked to the larger RANS region of the FSM models, which

damps the turbulence fluctuations close to the wall.

u/-
(] 0.1 0.2 0.3
u_ /U

rms’ ~'b

(a) Velocity component (b) Urms/U;3
U/JU,

FIGURE 10.12: Streamwise velocity profile and turbulence fluctuations in the
inflow duct, at the centre plane z/L, = 0.5. Symbols correspond
to experimental data of Cherry et al. (2008, 2009). (—) FSM-
SST, (- - -) FSM-EASM, (—-—) FSM-¢-a-EASM, (—--—) IDDES.

10.2.4 Influence of Convection Discretisation

The sensitivity of results with respect to the numerical convection discretisation
scheme is investigated. Three second-order accurate schemes are considered in this
study. The numerical schemes include the hybrid FSM convection scheme (FSM)
with a flow-dependent model for the flux-blending function, a bounded central-
difference scheme with 20% TVD conformity (BCD20) and the central-difference
scheme (CDS). All simulations are performed using the FSM-SST model with C,, =
0.85, 8 =0.75 and n = 4.

The prediction of the surface-pressure distribution C,, at the bottom wall (y/H = 0)
is shown in figure 10.13. There are significant differences in the predictions of the
surface-pressure distribution. The CDS and hybrid-FSM scheme give similar re-
sults in reasonable agreement with the reference data, whereas the bounded BCD20
scheme significantly over-predicts the pressure recovery in the diffuser. Note that
the jump in C, at /L = 1.86 is caused by the boundary conditions specified at
the outlet. The results for the pressure distribution suggest that the velocity field
predicted by the BCD20 scheme also differs from the predictions of the other two
convection schemes. This is confirmed in figure 10.14, which shows the streamwise
velocity contour U/U, at the centre plane, z/L, = 0.5. The figures also include a

thick line, which corresponds to the zero-velocity contour and gives the extent of
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FIGURE 10.13: Surface pressure coefficient C), at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
CDS, (- - -) hybrid FSM scheme, (— - —) BCD20.

the separated-flow region. The hybrid FSM scheme and CDS again give a very sim-
ilar picture of the separated-flow region. Both show a separated-flow region, which
extents from approximately x/H ~ 1 to x/H =~ 18. On the other hand, BCD20 only
predicts very shallow separation at the top wall. Even though separation occurs too
early with the CDS and hybrid FSM scheme, the agreement with reference data is
much better than with the BCD20 scheme.

A more detailed comparison of the flow field on the centre plane is shown in figure
10.15, where the streamwise velocity profile and streamwise turbulence fluctuations
 yms /Uy are plotted at the four streamwise locations z/H = 1, z/H = 5, z/H = 12
and z/H = 16. The CDS and hybrid FSM scheme again predict similar results
for both streamwise velocity and streamwise turbulence fluctuations. At x/H = 12
and z/H = 16, where the differences in the velocity profiles are most pronounced,
the CDS and hybrid-FSM scheme are clearly in much better agreement with the
reference data. A similar trend is evident in the streamwise velocity fluctuations.
The CDS and hybrid-FSM scheme again predict similar results, that agree better
with the reference data, whereas the BCD20 scheme over-predicts the magnitude of
velocity fluctuations at the bottom wall for the first two stations. At the last two
stations, the turbulence streamwise intensity predicted by BCD20 is overall smaller

in magnitude and the agreement with the reference data deteriorates.

The three-dimensional velocity field in the diffuser has also been analysed, but is not
shown here. Predictions of the three-dimensional flow field reflect what has already
been said above. The CDS and hybrid-FSM scheme predict the flow field in much
better agreement with the reference data. On the other hand, the BCD20 scheme
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FIGURE 10.14: Streamwise velocity contours U /U, at the plane L./H = 0.5.

almost completely suppresses flow separation at the top wall and hence shows a

greater departure from the reference data.

Figure 10.16 shows the frequency power spectral density distribution of the stream-
wise velocity component at the locations ©/H = 8,y/H = land x/H = 14,y/H = 2
in the centre plane (z/L, = 0.5). The CDS and hybrid-FSM scheme both allow for a

5/3 where the Strouhal number is defined as

physically realistic energy cascade ocSt™
Sy = fH/U,, over approximately one decade at both locations. This suggests that
the resolution of the computational grid is in principle adequate to resolve a fair
amount of turbulence structures. The bounded central-difference scheme BCD20

5/3 region and shows an overly large damping of the

only sustains a very short St~
high-frequency content. The damping originates from the additional numerical dis-
sipation introduced by the BCD20 scheme. The study of the numerical convection
scheme illustrates that the hybrid-FSM convection scheme provides results as ac-
curate as the CDS with significantly improved robustness in the RANS region. It
also indicates that boundedness of the numerical scheme inevitably contaminates

the resolved flow and hence deteriorates the results.
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FIGURE 10.15: Velocity and Reynolds-stress components at the centre plane
z/H = 0.5. Locations from left to right: «/H =1, x/H =5,
x/H =12 and x/H = 16. Symbols correspond to experimental
data of Cherry et al. (2008, 2009). (—) CDS, (- - -) hybrid FSM
scheme, (—-—) BCD 20.
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FIGURE 10.16: Power spectral density of streamwise velocity at two different
locations. Left: /H = 8,y/H = 1,z/H = 1.665; right: «/H =
14,y/H = 2,z/H = 1.665. (s—=u) CDS, (e—e) hybrid-FSM
scheme, (e—e) BCD 20.
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10.2.5 Grid and Parameter Sensitivity Study

In this section the influence of the resolution of the computational grid is investi-
gated together with the effect of the shielding function f,, as developed in section
10.1.7 for improved WMLES capabilities of FSM. In order to assess the effectiveness
of the shielding function for WMLES, simulations with and without the shielding
function are performed and compared. The grid sensitivity is investigated by per-
forming a simulation on a computational grid with a 50% increase in cells in each
coordinate direction (502 x 98 x 145), which gives a total number of approximately
7 x 10° cells within the diffuser. All simulations are performed using the FSM-SST
model and with C,, = 0.85, 8 = 0.75 and n = 4.

An instantaneous snapshot of the spanwise vorticity w, H /U, contour at the centre
plane, z/L, = 0.5, is shown in figure 10.17. The shielding function f, enforces a
significantly enlarged RANS layer, which suppresses turbulence fluctuations close to
the wall. The reduced turbulence activity in the RANS layer has the consequence
that the incoming boundary layer at the top wall requires much longer streamwise
distances before the flow breaks down into fine-scale turbulence. When the shield-
ing function f, is not used, turbulence fluctuations are allowed to penetrate much
closer to the wall, with the effect of a much faster breakdown into turbulence down-
stream of the sharp corner. The same effect is achieved on the fine grid, where
resolved turbulence fluctuations develop much faster downstream of the sharp cor-
ner. Moreover, the computational grid with the higher resolution clearly allows
finer turbulence structures to develop, compared to the relatively coarse baseline

computational grid.

(c) FSM-SST fine with f.

FIGURE 10.17: Instantaneous spanwise vorticity w,H /U, contour at the plane
z/L, = 0.5.
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The predictions of the surface-pressure distribution C, at the bottom wall (y/H =
0), at z/L, = 0.5, are shown in figure 10.18. The simulation on the coarse grid and
including the shielding function shows the greatest departure of the rapid pressure
recovery, up to /L ~ 0.5. However, further downstream, at x/L > 0.5, it provides
the best agreement with reference data. The simulations on the fine grid and the
simulation on the coarse grid without the shield function better predict the rapid
initial pressure rise in the diffuser. The fine resolution case also provides good
agreement of surface pressure at x/L > 0.5. The simulation without the shielding
function shows overly large surface-pressure values downstream of z/L ~ 0.5. The
shielding function developed for improved WMLES is also effective in the present

case and improves the overall quality of the predictions.
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FIGURE 10.18: Surface-pressure coefficient C), at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
FSM-SST coarse with f,, (- - -) FSM-SST coarse no f,, (—- —)
FSM-SST fine with f,.

The differences in the surface-pressure distribution can be explained from the stream-
wise velocity U /U, contour in the centre plane, z/L, = 0.5, which is shown in figure
10.19. The figure also includes a thick line, which corresponds to the zero-velocity
contour and gives the extent of the separated-flow region. In the predictions on
the coarse grid and including the shielding function, flow separation occurs almost
immediately downstream of the sharp corner and extents up to x/H ~ 18. The
premature separation from the top wall explains the relatively slow pressure recov-
ery downstream of the sharp corner. This is probably a consequence of the delayed
breakdown of the flow from the RANS layer into resolved turbulence fluctuations.
The simulations on the fine grid and the simulation without the shielding function,
both predict a shallow recirculation region just downstream of the diffuser inlet.
This results in better predictions of the initial, rapid, pressure rise in the diffuser.

The improved predictions are likely related to the much faster breakdown of the flow
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(c) FSM-SST coarse no f. (d) FSM-SST fine with f.

FIGURE 10.19: Streamwise velocity contours U /U, at the plane z/L, = 0.5.

from the RANS layer into resolved turbulence fluctuations. The flow in the simu-
lation without shielding function reattaches to the top wall and separates again at
x/H ~ 12. This is significantly delayed compared to the reference data, and results
in a too-small recirculation zone. The fine resolution case provides the best overall
agreement with the reference data, in terms of predicting the correct extent of the
recirculation region. This is reflected in good agreement of the surface-pressure

distribution.

A more detailed comparison of the flow field on the centre plane is shown in figure
10.20, where the streamwise velocity profile and streamwise fluctuations Urms/ U,
are plotted at the four streamwise locations /H = 1, x/H = 5, x/H = 12 and
x/H = 16. The velocity profile at the first station, z/H = 1, is predicted very
similarly by all simulations. At the second station, x/H = 5, the fine- and coarse-
resolution cases show the same velocity distribution close to the bottom wall and
under-predict the streamwise velocity magnitude at the top wall. The case without
shielding function shows improved agreement at the top wall, which is not much of
a surprise, since it predicts no flow separation at this station, which is in agreement
with the reference data. The flow close to the top wall, at x/H = 12 and x/H = 16,
is better reproduced if the shielding function is included. This is linked to a more
realistic prediction of the extent of the recirculation zone. At the bottom wall the
two cases with shielding function exhibit a somewhat higher streamwise velocity
magnitude compared to the case without shielding function. The lower magnitude

is in better agreement with the reference data.

It has been discussed before, that without the shielding function included, turbu-
lence fluctuations are allowed to penetrate much closer to the wall. This is reflected

in significantly increased streamwise fluctuations Urms/ Uy, at x/H = 1, close to
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the wall. At the other stations, farther downstream, this difference is much less
pronounced or even non existent. The coarse-grid simulation using the shielding
function shows the highest level of streamwise fluctuations throughout. The sim-
ulations on the fine grid and the simulation without the shielding function show
a smaller intensity of the streamwise fluctuations, particularly at the centre of the

diffuser, and hence provide better agreement with the reference data.

(b) U'r‘ms/Ub

FIGURE 10.20: Velocity component U/U, and streamwise velocity fluctuations
W rms/Up at the centre plane z/L, = 0.5. Locations from left to
right: «/H =1, x/H =5, x/H = 12 and x/H = 16. Symbols
correspond to experimental data of Cherry et al. (2008, 2009).
(—) FSM-SST coarse with f,, (- - -) FSM-SST coarse no f,
(—-—) FSM-SST fine with f,.
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10.2.6 Sensitivity to the Turbulence Model

The sensitivity of results to the underlying RANS model is investigated. Simulations
are performed using the FSM-SST, FSM-EASM and FSM-¢-a-EASM formulation
in conjunction with the hybrid FSM convection scheme. In addition, results ob-
tained by IDDES based on the k-w-SST model are also included in the comparison
with the reference data. Simulations have also been performed using the Scale-
Adaptive Simulation (SAS) methodology. However, SAS was not able to sustain
any turbulence fluctuations in the inflow duct and in the diffuser, and are therefore

not included in the subsequent discussion.

The presentation of results is split into three parts. First, the instantaneous flow
field is discussed, followed by a comparison of the mean-flow field at the spanwise
location z/L, = 0.5. Finally, analysis of the streamwise evolution of the three-

dimensional flow field is presented.
Instantaneous flow field at the centre plane z/L, = 0.5

An instantaneous snapshot of the spanwise vorticity contours w, H /Uy, at the centre
plane z/L, = 0.5, is shown in figure 10.21. It is evident, that all FSM models resolve
very long streamwise structures at the bottom wall. In the predictions of the IDDES
model these elongated turbulence structure do not exist and instead, many more
fine-grained turbulence structures are resolved close to the wall. As previously
discussed, this is related to the extent of the RANS region adjacent to the wall,
which is much smaller for IDDES than for the FSM models, where the function f,
enforces a larger RANS layer. The excessive damping in the RANS region eliminates
most of the turbulence structures, that are observed in the IDDES predictions
close to the wall. This issue has already been discussed in section 10.1 and is
clearly visualised in figure 10.7 for the flow in a planar channel. The suppression of
turbulence fluctuations close to the wall by the FSM models has the consequence,
that the incoming boundary layer at the top wall requires much longer streamwise

distances before the breakdown into fine-scale turbulence occurs.
Mean flow field at the centre plane z/L, = 0.5

The surface-pressure distribution C), at the bottom wall (y/H = 0), is shown in
figure 10.22. All of the employed hybrid RANS/LES models have difficulties in
reproducing both, the initial rapid pressure recovery, which extents up to 2/L ~ 0.5,
and the correct magnitude of surface pressure downstream of /L ~ 0.5. The

IDDES model gives good predictions for the initial, rapid, pressure recovery in the
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(c) FSM-p-a-EASM (d) IDDES

FIGURE 10.21: Spanwise vorticity w,H /Uy at the plane z/L, = 0.5.

diffuser but over-predicts the magnitude of C,, for /L > 0.5. On the other hand, all
FSM models show deficiencies in predicting the correct pressure recovery up to the
location /L ~ 0.5. Downstream of x/L ~ 0.5, the predictions of the FSM models
improve and the FSM-SST and FSM-EASM models achieve reasonable agreement
with the reference data. The FSM-p-a-EASM model under-predicts the magnitude
of €, and therefore provides least agreement with the reference data, compared
to the other FSM models. Note that many of the LES and hybrid RANS/LES
simulation presented at the 13th/14th ERCOFTAC/TAHR Workshop show trends
similar to that observed here. They show either good agreement for the initial,
rapid, pressure recovery with over-prediction of C, for x/L > 0.5, or they fail to
predict the rapid pressure rise but predict a more realistic magnitude of C, farther

downstream.
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FIGURE 10.22: Surface-pressure coefficient C), at the bottom wall. Symbols cor-
respond to experimental data of Cherry et al. (2008, 2009). (—)
FSM-SST, (- - -) FSM-EASM, (— - —) FSM-¢p-a-EASM, (—--—)
IDDES.
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Some more insight into the flow-field predictions can be gained from figure 10.23,
which shows the streamwise velocity contour U/U, at the centre plane z/L, = 0.5.
The figure also includes a thick line, which corresponds to zero-velocity contours,
which reveal the extent of the separated flow region. The streamwise velocity con-
tour and particularly the amount of separation explains the departure in the predic-
tions of the surface-pressure distribution from the reference data. The experimental
data show a large separation zone, which extends from approximately z/H ~ 7 to
x/H ~ 19. Tt is now obvious that the initial, rapid, pressure recovery occurs in
the region x/H < 7, where the flow is still attached. Downstream of z/H ~ 7, the
recirculation zone reduces the effective cross section, which is responsible for the ob-
served reduced rate of pressure recovery in the diffuser. The IDDES model predicts
a very shallow recirculation zone just downstream of the sharp corner and the main
separation from the top wall occurs far too late, at approximately x/H =~ 11. The
fact that the flow remains attached to the top wall is consistent with the reference
data, and is reflected in accurate predictions of the surface-pressure distribution in
this region. The erroneous prediction of the location and size of the recirculation
zone is again reflected in an over-prediction of the magnitude of C), in this region.
On the other hand, all FSM models predict flow separation to occur almost immedi-
ately downstream of the sharp edge, at approximately x/H =~ 1, and the thickness
of the recirculation zone to be much larger and hence in better agreement with
the reference data. This explains the departure observed in the predictions of the
surface-pressure distribution by the FSM models up to z/L ~ 0.5, and the better

agreement further downstream.

A more detailed comparison of the flow field on the centre plane is shown in figure
10.24, where the mean-velocity profiles and resolved Reynolds-stress components
are plotted at the four streamwise locations ©/H = 1, x/H = 5, x/H = 12 and
x/H = 16. The quality of the streamwise velocity component at the first location,
x/H =1, is similar for all hybrid RANS/LES models. All models show a too high
streamwise velocity magnitude in the centre of the diffuser. At the second station,
x/H =5, the flow predicted by the IDDES model is still attached to the top wall,
which is reflected in good agreement of the velocity profile with the reference data
at the top wall. All FSM models predict flow separation at this location, and for
this reason, show a departure in the streamwise velocity profile at the top wall. All
hybrid models show too large peak values of streamwise velocity magnitude near
the bottom wall. The models, which predict the thickest recirculation zone at this
station consequently predict the largest peak value of streamwise velocity. That is,

the IDDES model shows, relative to the other models, the lowest peak value and
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FIGURE 10.23: Streamwise velocity contours U /Uy, at the plane z/L, = 0.5.

the FSM-EASM and FSM-p-a-EASM models predict the highest peak values. In
addition, all hybrid RANS/LES predict the location of maximum streamwise veloc-
ity too close to the bottom wall. At the last two stations, ©/H = 12 and z/H = 16,
all hybrid RANS/LES models show significantly improved predictions compared to
the RANS results (see section 6.4). Close to the bottom wall, the IDDES and FSM-
EASM models provide better agreement for the location of maximum streamwise
velocity. The peak streamwise velocity location of the FSM-SST and FSM-¢-a-
EASM models remain too close to the bottom wall and the velocity magnitude is
generally over-predicted. The FSM formulation with the most sophisticated under-
lying RANS model (¢-a-EASM) shows the greatest departure from the reference
data at the bottom wall. The streamwise velocity profile at the top wall confirms
what has been said in the discussion about the size of the recirculation zone. The
IDDES model predicts the least amount of reverse flow and therefore slightly over-
estimates the streamwise velocity. It should be noted that the streamwise velocity
profiles obtained by the wall-resolved LES of Schneider et al. (2010b) and the DNS
of Ohlsson et al. (2010) also do not achieve perfect agreement with the experimental

data, particularly for the stations downstream of z/H ~ 15.

The predictions of the resolved Reynolds-stress components are discussed next. At
the first station, x/H = 1, the IDDES model predicts significantly higher val-
ues of streamwise velocity fluctuations, U,,ms /Uy, wall-normal velocity fluctuations,

Urms/ U, and shear stress, W/ U2, compared to the FSM approaches. The reason
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for the more intense fluctuations of IDDES is, that more turbulence structures are
allowed to develop close to the wall. The FSM models employ a larger RANS zone,
where resolved turbulence fluctuations are strongly suppressed. At the next station
downstream, at x/H = 5, the IDDES model shows the lowest levels of resolved
turbulence fluctuations in the centre of the channel, which is in better agreement
with the reference data. This is probably linked to the more rapid breakdown into
smaller-scale turbulence fluctuations of the incoming boundary layer at the top wall.
On the other hand, the FSM models show a delayed breakdown of the flow from
the RANS layer into turbulence fluctuations, which results in more energetic large-
scale turbulence motion at that location. This trend continues throughout to the
downstream stations, /H = 12 and z/H = 16, where the IDDES model consis-
tently shows lower levels of turbulence fluctuations than the FSM approaches. It is
also obvious that the FSM-¢-a-EASM model consistently predicts the highest levels
of resolved turbulence fluctuations. The FSM-SST and FSM-EASM formulations
show very similar levels of resolved turbulence fluctuations with an intensity lower
than the FSM-¢-a-EASM model, but higher than the IDDES model.
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Three-Dimensional Flow Field

Further insight into the predictions of the three-dimensional flow field can be gained
from figures 10.25 and 10.26, which show contour plots of streamwise velocity U /U,
and resolved streamwise velocity fluctuations Urms/ U, at the streamwise locations
x/H =1, «/H =5, x/H = 12 and x/H = 16. Figure 10.25 also includes the
contour line with zero-velocity, in order to visualise the extent of the separated-flow
region. The flow field at the first station, x/H = 1, is well predicted by the FSM-
SST and FSM-EASM models. Both show a small recirculation region in the top left
and top right corners. FSM-¢-a-EASM and IDDES both predict flow separation at
the entire top wall at this station, which is not consistent with the reference data.
At the second station, x/H = 5, the size of the recirculation zone in the top right
corner has grown significantly, but the flow still remains attached on parts at the
top wall. All three FSM models predict the flow to be completely separated from
the top wall at this station. The flow predicted by IDDES has re-attached at the
top wall, and shows a recirculation zone in the top right corner, consistent with the
experimental data. The extent of the recirculation zone is slightly under-predicted.
At the last two stations, /H = 12 and z/H = 16, the flow has completely detached
from the top wall and the recirculation zone has become almost two-dimensional,
with no variation in the spanwise direction. All hybrid models are able to correctly
predict the flow separation from the top wall. The shape of the recirculation region
exhibits some variation in the spanwise direction and hence does not fully match
the reference data. Nevertheless, all hybrid models predict the mean-flow topology
in satisfying agreement with the reference data, and are therefore clearly superior
to the RANS predictions of section 6.4, which completely failed to predict a realistic
flow topology in the diffuser.

The contour plots of resolved streamwise velocity fluctuations Urms/Ub in figure
10.26 illustrate again the differences in resolved turbulence fluctuations between the
FSM and IDDES approach. The levels of resolved turbulence fluctuations predicted
by the IDDES, at the plane x/H = 1, is significantly higher, particularly close to the
wall, compared to the FSM models, and hence in better agreement with the reference
data. At the second plane, z/H = 5, the opposite trend can be observed. All FSM
models predict higher intensities of streamwise velocity fluctuations, whereas the
IDDES model predicts lower intensities, which is, again, in better agreement with
the reference data. At the last two planes, z/H = 12 and x/H = 16, the IDDES
model consistently predicts lower resolved streamwise fluctuations, compared to the

FSM models. The higher levels of streamwise fluctuations of the FSM models now
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better matches the reference data. Although, the FSM-EASM and FSM-p-a-EASM
models predict still somewhat too high intensities at the plane x/H = 12.
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10.2.7 Summary

The simulations of the flow in a three-dimensional diffuser confirm that a bounded
convection discretisation scheme in the LES region adversely affects the results. The
bounded scheme almost completely suppresses flow separation on the centre plane,
whereas the CDS and hybrid FSM schemes give a similar picture of the separated
flow region, in much better agreement with the reference data. In addition, both
schemes allow for a more realistic spectral distribution of velocity fluctuations and

show a more distinct —5/3 energy cascade.

All hybrid RANS/LES models considered here provide significantly improved results
over pure RANS predictions, and are able to predict the correct flow topology in
the diffuser. However, for the simulations on the relatively coarse baseline grid,
none of the investigated turbulence models provides a satisfactory prediction of
the flow field, in good agreement with the corresponding measurements. The SAS
method is not able to sustain any turbulence fluctuations in the diffuser. In the
predictions of the IDDES model, separation from the top wall occurs too late and
results in too small a recirculation zone. On the other hand, all FSM models
exhibit premature separation just downstream of the sharp corner. The differences
in the predictions are related to the capabilities of each model to resolve turbulence
fluctuations close to the wall. The IDDES model resolves more turbulence structures
close to the wall than does FSM, which influences the predictions of the boundary-
layer separation in the diffuser. It is shown that grid refinement improves the
predictions of the separated-flow region just downstream of the sharp corner, and
provides better agreement with the reference data. Concerning the sensitivity of
results with respect to the underlying RANS model, the FSM-SST and FSM-EASM
models give slightly better overall predictions, compared to the more sophisticated
FSM-¢-a-EASM, which shows a pronounced over-prediction of streamwise velocity

close to the bottom wall.
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10.3 Tandem Cylinders

The configuration consists of two in-line, tandem cylinders, where the first cylinder
creates an unsteady wake, which interacts with the downstream cylinder. For this
reason, tandem cylinder flows are classed as a problem of wake interference (see
Zdravkovich, 1987). The separation between the cylinders sets the type of wake
interaction. When the cylinders are close to each other, vortex shedding from the
upstream cylinder has been found to be suppressed. As the cylinder spacing is in-
creased, a variety of flow modes are encountered, with upstream shear layer reattach-
ment occurring first on the downstream cylinder, followed by the re-establishment
of vortex shedding behind the upstream cylinder. This canonical wake/bluff-body
interaction problem has recently received much attention in an effort to improve
the understanding of sound generation mechanisms of landing-gear components,
and has been subject of a workshop on Benchmark problems for Airframe Noise
Computations (BANC) (see Lockard, 2011). Most tandem-cylinder studies have
been performed at relatively low Reynolds number. However, a recent experimen-
tal program has been performed at high Reynolds number (1.66 x 10°) by Lockard
et al. (2007), Khorrami et al. (2007) and Jenkins et al. (2006), that provides one
of the most comprehensive data sets available for aerodynamic and aeroacoustic

simulation validation.

The tandem cylinder configuration is used here to investigate the performance of
FSM and other hybrid RANS/LES methods when operated in its basic, ‘natural’,
mode, where the entire attached boundary layer is treated in RANS mode and
the massively separated flow outside the boundary layer is treated in LES mode.
The tandem cylinder configuration has a gap spacing of x/D = 3.7 (from centre
to centre) and a Reynolds number of Rep = 1.66 x 10° based on the cylinder
diameter D and free-stream velocity Uy. The cylinder spacing of /D = 3.7 is
large enough, such that regular vortex shedding occurs on the front cylinder. The
boundary layer on the upstream cylinder was tripped in the experiments of the QFF
and BART facilities (Lockard et al. (2007), Khorrami et al. (2007) or Jenkins et al.
(2006)). The boundary-layer tripping ensures, that the flow is fully turbulent prior
to separation and hence corresponds to a super-critical flow regime. It is argued in
Lockard (2011), that due to the tripping, the resulting pressure distribution of the
single front cylinder corresponds to a Reynolds number greater than 8 x 10°. The
boundary-layer tripping justifies the use of a fully turbulent simulation approach,
where all boundary layers are fully turbulent and transition is not accounted for. It

also facilitates a comparison between experiment and CFD.
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In order to successfully reproduce the experimental data, it is important to cor-
rectly predict the boundary layer, flow separation and the development free-shear
layer from the front cylinder, since any error in the predictions may significantly
alter the downstream development of the flow. The main challenge associated with
the flow around the downstream cylinder is to accurately capture the interaction
of the wake and the cylinder, as well as, the development of the boundary layer on
the downstream cylinder. Experimental data show that the wake of the rear cylin-
der strongly depends on the state of the boundary layer and associated separation
points. Recall that the front cylinder is tripped in all experiments. Two data sets
are available, with and without tripping of the boundary layer on the rear cylinder.
The fully turbulent simulation approach more closely resembles the experimental

data with tripping of the boundary layer on both cylinders.

10.3.1 Computational Setup

The computational setup consists of a three-dimensional C-type domain with a
spanwise extend of z/D = 3. The up-stream boundary is placed 25D away from
the cylinders and the outflow boundary is located at x/D = 30 downstream of the
centre of the first cylinder. Periodic boundary conditions are used in the spanwise
direction, and zero-gradient boundary conditions on the outflow boundary. Each
two-dimensional plane (z-y) (see figure 10.27) is discretised with approximately
52000 cells using an average first wall-normal grid spacing, on both cylinders, of
around y;" = 0.7 and a maximum value of 37 = 1.7. The number of cells in the
spanwise direction is 40, so as to achieve almost isotropic cells in the gap region
between the cylinders. The total cell count is approximately 2 x 10° cells. Note that
the total number of cells of the baseline grid is significantly less compared to what
was used in other contributions to the BANC I workshop (typically 7 — 133 x 10°
cells). The turbulence kinetic energy and specific dissipation rate at the inflow are
respectively prescribed as kq = 107°UZ and wy = 5Uy/D (see Spalart & Rumsey,

2007) such that immediate transition occurs in the boundary layer.

The convective fluxes in the flow equations are discretised using the hybrid FSM dif-
ference scheme and a second-order upwind scheme is used for the turbulence trans-
port equations. The viscous terms use a second-order central-difference scheme.
Time stepping is performed using an implicit second-order backward-difference
scheme, and the coupling between the pressure and velocity is achieved by the
PISO algorithm. The time step is set to 0.003D /U, such that the CFL number

does not exceed 0.5.
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FiGURE 10.27: Computational grid.
10.3.2 Averaging and Statistical Convergence

Before any results are presented the averaging procedure and statistical convergence
is discussed. For all simulations, the flow is allowed to develop from the initial
flow field for approximately 115D/U, time units. After the initial settling period,
statistical quantities are computed by averaging over 700D /U, time units. For post-
processing purposes the time-averaged quantities are additionally averaged over the

homogeneous spanwise direction.

In order to verify the statistical convergence, the distributions of mean-surface-
pressure coefficient C, and fluctuating-surface-pressure coefficient Cp; __are shown
in figure 10.28, for both cylinders, for averaging over 230D /Uy, 460D /Uy and 690D /U,
time units. In addition, the predictions of mean streamwise velocity and resolved
two-dimensional turbulence kinetic energy k2L = (1/2) (W+W) JUZ on the
centerline, y/D = 0, are shown in figure 10.29. It is obvious that the mean-surface-
pressure distribution is already converged after averaging over 230D /U, time units.
The fluctuating-surface-pressure distribution requires time-averaging over at least
460D/Uy time units before adequately converged statistics are obtained. The same
holds for the streamwise velocity and turbulence kinetic energy distributions. Av-

eraging over more than 460D /U, time units does not change the statistics.
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10.3.3 Influence of Convection Discretisation

The sensitivity of results to the convection discretisation scheme is investigated.
Three different second-order schemes are considered in this study. The numerical
schemes include the hybrid FSM convection scheme (FSM) with a flow-dependent
model for the flux-blending function, a central-difference scheme with 20% TVD
conformity (BCD20) and a fully TVD conformal central-difference scheme (BCD).
Unfortunately, no results could be obtained using the unbounded central-difference
scheme, due to the presence of severe numerical oscisllations in the flow field. This
highlights the advantages of an accurate hybrid scheme, such as the newly devel-
oped FSM scheme. The results presented here are obtained using the FSM-SST
formulation and the baseline grid. This study focuses on differences in the predic-
tions between each numerical scheme and is thus not so much concerned with the

discussion of the overall agreement with reference data.
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The distributions of mean-surface-pressure coefficient C), and fluctuating-surface-
pressure coefficient Cp;ms are shown in figure 10.30, for the upstream and down-
stream cylinder. The three convection schemes show negligible differences in mean-
surface-pressure distribution on both cylinders. The fluctuating-surface-pressure
distribution is predicted very similarly by the FSM and BCD20 schemes. Only the
BCD scheme predicts overall higher levels of surface-pressure-fluctuations, which
is particularly pronounced on the upstream cylinder, and which deteriorates the

agreement with the reference data.
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FIGURE 10.30: Mean-surface-pressure ), and fluctuating-surface-pressure coeffi-
cient Cy . Front cylinder: (o) BART, (o) QFF. Rear Cylinder:
(o) BART, (v) BART (rear cylinder tripped). (—) new FSM
convection scheme, (- - -) BCD20, (— - —) BCD.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

2D

lence kinetic energy k..

on the centerline, y/D = 0, are shown in figure 10.31. Sig-
nificant differences can be observed for the velocity distribution in the gap region.
Only the hybrid FSM scheme is able to provide predictions in excellent agreement
with the reference data. Both bounded central-difference schemes, BCD20 and

BCD, over-predict the size of the recirculation zone and predict lower intensities
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of maximum streamwise velocity in the gap region at around z/D = 2.5. It seems
that the additional numerical dissipation of the BCD20 and BCD schemes damps
the natural shear layer instability mechanism, which results in a delayed breakdown
of the separated shear layer. This results in an over-prediction of the recirculation
zone behind the upstream cylinder, and in reduced entrainment of free-stream fluid,
into the gap region, which manifests as an under-prediction of maximum streamwise
velocity. Even though the velocity distribution obtained by the FSM scheme is in
excellent agreement with reference data, the resolved turbulence kinetic energy in
the central part of the gap region is significantly over-predicted. The more dissipa-
tive schemes, BCD20 and BCD, show lower levels of turbulence intensity in the gap
between the cylinders, which is in better agreement with the reference data. Con-
cerning the velocity distribution downstream of the rear cylinder, it can be noted,
that the experimental data strongly depend on whether, or not, the boundary layer
is trip on the rear cylinder. Without tripping the boundary layer on the rear cylin-
der, a much smaller recirculation zone behind the rear cylinder is observed, whereas
in the tripped case, a significantly enlarged recirculation zone is observed. The size
of the recirculation zone is directly linked to the separation point on the rear cylin-
der and the resulting trajectory of the free-shear layer. This clearly demonstrates,
that the boundary-layer development on the rear cylinder is important, even though
the rear cylinder is located in the highly turbulent wake of the upstream cylinder.
Further, it is not too surprising, that the fully turbulent simulation approach, which
does not account for laminar-turbulent transition, reproduce the experimental data
for which the flow was tripped on the rear cylinder. The velocity distribution down-
stream of the rear cylinder is predicted by all schemes in good agreement with the
reference data. The turbulence kinetic energy distribution downstream of the rear
cylinder shows exactly the opposite trend observed for the gap region. The FSM
scheme, with the lowest amount of additional numerical dissipation, exhibits the
lowest intensity of turbulence fluctuations. The more dissipative schemes predict
higher levels of turbulence intensity throughout. This seems counterintuitive, since
increased levels of numerical dissipation enhances the damping of turbulence fluc-
tuations, which should result in reduced levels of turbulence intensity. More insight
into this issue can be gained from the power spectral density of streamwise velocity

discussed next.
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Predictions of the power spectral density (PSD) of surface pressure at the locations
6 = 135°, on the front cylinder and 6 = 45° on the rear cylinder, are shown in
figure 10.32. In addition, the PSD of streamwise velocity on the centreline, at
x/D = 2.5 and x/D = 4.5, are also shown. The PSD of surface pressure on the
upstream cylinder shows clear differences between each discretisation scheme. The
new hybrid FSM scheme provides predictions clearly superior to BCD20 and BCD.
The FSM scheme predicts the secondary peak at St ~ 0.5, where the Strouhal
number is defined as St = fD/Uy. This peak is absent from the results obtained by
BCD20 and BCD. In addition, FSM gives overall a more realistic picture of the PSD
for Strouhal numbers St > 1. The predictions on the downstream cylinder show
significantly less scatter, and all discretisation schemes provide good agreement with
the reference data. Clear differences between each numerical scheme are also evident
in the PSD of streamwise velocity. At both locations the hybrid FSM scheme shows
the largest extent of St~%3 behaviour. The more dissipative schemes, BCD20 and

BCD, are not able to reproduce a —5/3 region due to an overly large damping
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of turbulence fluctuations for St > 1. The BCD scheme shows, as expected, the
most pronounced damping at higher Strouhal numbers. It also seems that at the
second location, downstream of the rear cylinder, the energy contained in the low
Strouhal numbers is smaller for the FSM scheme, and more pronounced for the
BCD20 and BCD schemes. This may explain why the FSM scheme predicts overall

lower turbulence intensities downstream of the rear cylinder.
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10.3.4 Effect of Spanwise Domain Width

The baseline computational grid has a spanwise domain width of L, = 3D. However,
the experiments were performed using cylinders with a span of between 12D and
16D, and show that the spanwise surface-pressure correlation does not go to zero
until approximately 7D. This indicates that three-dimensional effects are present
in the flow. The question then arises, whether the spanwise domain width (3D) is
sufficient to resolve the dominant three-dimensional effects in the flow, or whether
a larger domain is required in order to improve the correlation with experiment.
Therefore, the effect of the spanwise width of the computational domain is investi-
gated in this section. For this purpose, simulations are performed on three different
computational grids with different spanwise extents. The first grid has a spanwise
width of 3D and 40 cells in the spanwise direction (FSM-3-40), the second grid has
a spanwise width of 6D and 80 cells in the spanwise direction (FSM-6-80) and the
largest grid has a spanwise width of 12D and 160 cells in the spanwise direction
(FSM-12-160).

The distributions of mean-surface-pressure coefficient C), and fluctuating-surface-
pressure coefficient Cplms are shown in figure 10.33, for the upstream and down-
stream cylinder. The mean-surface-pressure distributions on both cylinders are
virtually indistinguishable and are therefore not sensitive to the spanwise domain
width. Small differences can be observed for the fluctuating-surface-pressure coef-
ficient on the front cylinder. With increasing spanwise domain width, the intensity
of surface-pressure fluctuations reduces, and hence provides better agreement with
the reference data. However, the difference is very small and probably does not
justify the considerably increased computational effort required for larger domains.
The fluctuating-surface-pressure on the downstream cylinder is again predicted very

similar by all domain widths.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

2D
kres

lence kinetic energy on the centerline, y/D = 0, is shown in figure 10.34. The
streamwise velocity distributions show only a very small sensitivity to the width of
the computational domain. The FSM-12-160 predicts a slightly larger recirculation
region and a slightly reduced maximum streamwise velocity magnitude, at around
x/D = 2.5, in the gap between the cylinders. Similarly, the differences in resolved

two-dimensional turbulence kinetic energy are also very small. The FSM-12-160

2D
res

predicts a slightly lower magnitude of k27, in the gap region, which is in better

agreement with the reference data.
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Predictions of the spanwise surface-pressure correlation R,, and PSD of surface-
pressure at 8 = 135°, on the front and rear cylinder, are shown in figure 10.35.
The spanwise correlation is an indicator of whether the resolution (cell count and
domain extent) in the spanwise direction is adequate to reproduce the characteristic

three-dimensional variation of the flow field.

Recall that the experiments were performed using cylinders with a span of between
12D and 16D. The experiments show that the spanwise surface-pressure correlation
does not go to zero until approximately 7D. This indicates that three-dimensional
effects are present in the flow. The spanwise surface-pressure correlation is well
reproduced on both cylinder up to the spanwise distance of z/D ~ 1.0 for all
domain widths. The spanwise domain width 3D of the FSM-3-40 case is clearly
too small, since the spanwise correlation does not drop below R,, ~ 0.7, and the
flow is constrained by the periodic boundary conditions to maintain an artificially

high correlation in the spanwise direction. The larger domains allows the spanwise
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FIGURE 10.34: Streamwise velocity profiles U /Uy and 2D TKE on the centreline
(y/D = 0). (o) BART, (o) BART (rear cylinder tripped). (—)
FSM-3-40, (- - -) FSM-6-80, (— - —) FSM-12-160.

correlation to reduce further. However, the spanwise correlation never drops below
R,, =~ 0.5 on both cylinders, even for the largest domain width of 12D. This suggests
that periodic boundary conditions are not fully justified, even for the largest domain
width of 12D. The same trend for the surface-pressure correlation is also observed
in most of the simulations of the BANC I workshop participants, even on domain
widths of 16D and with periodic boundary conditions in the spanwise direction.
Only one simulation, with a domain width of 16D, and where initially random
suction and blowing on the cylinder walls is used to promote the development of
vortex shedding, gave a surface-pressure correlation that goes to zero at z/D ~
7 (see Lockard, 2011). It is not clear why the surface pressure remains highly
correlated in the spanwise direction. Further insight could be gained by eliminating
the uncertainty introduced by the periodic boundary conditions and by using a
computational domain, which more closely resembles the experimental setup, i.e. a

spanwise domain width of 12.4D or 16D with vertical side plates.
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The PSD of surface pressure confirms the trend above for the fluctuating-surface-
pressure distribution. On the upstream cylinder, the overall magnitude of surface-
pressure fluctuations is reduced for increasing domain widths. The reduced intensity
predicted on the FSM-12-160 grids is in better agreement with the reference data
for the Strouhal number range St ~ 0.3 — 0.7. For Strouhal numbers St > 0.7,
the intensity is too low and the FSM-3-40 grid provides better agreement with the
reference data. On the downstream cylinder, the predictions are again similar for
all domain widths. The results presented above clearly show that no systematic
improvements are obtained for increasing domain widths. For this reason, the ad-
ditional computational effort, required for larger spanwise domain widths, does not

seem justified.
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FIGURE 10.35: Spanwise surface-pressure correlation R,, and PSD of surface
pressure at the locations § = 135°. (o) and (—) BART measure-
ments. (—) and (s—u) FSM-3-40, (———) and (a—a4) FSM-6-80,
(—-—) and (e—e) FSM-12-160.
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10.3.5 Effect of Grid Resolution

It is very tempting, particularly for two-dimensional configurations, to reduce the
computational cost of a turbulence resolving simulation by using a small number
of cells in the spanwise direction. The first objective of this section is to inves-
tigate the sensitivity of results with respect to the spanwise grid resolution. For
this purpose simulations are performed on three different computational grids with
different spanwise resolutions. All grids have a spanwise width of 6D and approxi-
mately 52000 cells in each xy-plane. The first grid has a spanwise resolution of 40
cells (FSM-6-40), the second grid has a spanwise resolution of 80 cells (FSM-6-80)
and the finest grid has a spanwise resolution of 160 cells (FSM-6-160). The total cell
counts are approximately 2 x 10%, 4 x 10% and 8 x 10° cells, respectively. Note that
the FSM-6-80 case results in almost isotropic cells in the gap region between both
cylinder. In addition to this study, the effect of a finer resolution in the xy-plane is
investigated by performing a simulation on a grid with 82000 cells in the xy-plane
and 150 cells in the spanwise direction, which makes a total of approximately 12 x 10°
cells. The spanwise domain width had to be reduced to 3D for this case in order to
keep the computational cost affordable. The grid design of the finer grid is overall
very similar to other grids used. The main difference is the increased grid density
in the gap region and in the wake of the rear cylinder, and the use of a rectangular
domain shape. The first wall-normal grid point is located at approximately y™ = 1.
This grid was kindly provided by M. Strelets from New Technologies and Services,
St. Petersburg and will be referred to as the FSM-Strelets case. The Strelets grid
is depicted in figure 10.36.
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FiGURE 10.36: Computational grid of Strelets.
The distributions of mean-surface-pressure coefficient ), and fluctuating-surface-

pressure coefficient C’pfr __are shown in figure 10.37 for both cylinders. The predic-

tions of C,, obtained on the grid with the coarsest spanwise resolution (FSM-6-40)
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clearly differ from the results obtained with a finer spanwise resolution. The coarse
resolution case consistently predicts too high values of C, on both cylinders, and
hence shows the greatest departure from the reference data. The FSM-6-80 and
FSM-6-160 cases show similar results in good agreement with the reference data.
The FSM-Strelets case provides a slightly too low base pressure, and predicts the
lowest values of C), at the suction peaks at the locations # = 90° and 6 = 270°.
The fluctuating-surface-pressure coefficient shows a much more pronounced sensi-
tivity to the grid resolution. The predictions of the fluctuating surface pressure on
the upstream cylinder are improved when the resolution is doubled from the coarse
(FSM-6-40) to the medium (FSM-6-80) spanwise resolution. It would be natural to
expect, that a further grid refinement would again result in improved predictions,
but surprisingly, a further increase in resolution shows the exact opposite trend.
The two finest grids, FSM-6-160 and FSM-Strelets, predict the highest intensity of
surface-pressure fluctuations and hence show the largest departure from the refer-
ence data. The same observation also holds for the downstream cylinder. It should
be noted that the present results are only valid for the sepcific spanwise domain
width used in the simulations. It may well be, that the trends observed here do not

hold for simulations using a different spanwise domain width.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-

2D
res

lence kinetic energy k22 on the centerline, y/D = 0, are shown in figure 10.38.
The coarse spanwise resolution case, FSM-6-40, shows a significantly too large re-
circulation zone behind the first cylinder, and a too low magnitude of maximum
streamwise velocity in the gap region. Both fine resolution cases, FSM-6-160 and
FSM-Strelets, show the exact opposite trend. The extent of the recirculation zone
is predicted to be too small, and the maximum streamwise velocity in the gap re-
gion is too high compared to the corresponding measurement. Although, it is not
clear why, the FSM-6-80 case is able to provide good agreement with reference data
for the velocity distribution in the gap region between both cylinders. Note that
the results presented in Garbaruk et al. (2010) using IDDES on the same grid as
the FSM-Strelets case are qualitatively very similar to the results obtained here
using the FSM-SST model. In order to shed some light on the possible cause of
the large differences in the results, the instantaneous spanwise vorticity contours
w,D /Uy are presented in figure 10.39. It is obvious that the too-large recirculation
zone predicted on the FSM-6-40 grid is related to an overly large damping of the
natural instability mechanisms in the free-shear layer, which results in a signifi-
cantly delayed roll-up or breakdown of the free-shear layer. It seems likely that

the overly large damping is a result of the increased turbulence model contribution
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FIGURE 10.37: Mean-surface-pressure C, and fluctuating-surface-pressure coeffi-
cient Cy . Front cylinder: (o) BART, (v) QFF. Rear Cylinder:
(o) BART, (o) BART (rear cylinder tripped). (—) FSM-6-40,
(- - -) FSM-6-80, (— - —) FSM-6-160, (— - -—) FSM-Strelets.

through the turbulence model length scale A = (A,A,A,)Y3, which is increased
by the factor 2% compared to the FSM-6-80 case, which results in much better
predictions. It should be noted at this stage that the O-grid topology of the com-
putational grid makes it virtually impossible to provide a good numerical resolution
of the free shear-layer in the direction perpendicular to the free-stream. The coarse
resolution of the free-shear layer makes it difficult to accurately resolve the natural
instability mechanisms of the shear layer and hence puts significant pressure on
the turbulence model to provide the appropriate amount of damping in order to
compensate the coarse numerical resolution. The FSM-6-80 case with the reduced
turbulence model contribution through the length scale A seems to provide the cor-
rect amount of damping, such that the free-shear layer breaks down more quickly,
and consequently results in the correct velocity distribution in the gap region. On
the other hand, when the resolution in the spanwise direction is further refined,

such as for the FSM-6-160 case, the damping of the turbulence model may actually
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become insufficient to compensate the coarse resolution of the free-shear layer, and
consequently results in a too quick breakdown of the shear layer and in a too short

recirculation zone.

The distribution of turbulence kinetic energy in the gap region reflects the pre-
dictions of streamwise velocity. The FSM-6-40 case under-predicts the turbulence
intensity in the gap region. The lower turbulence activity is less efficient in en-
training high-speed free-stream fluid into the gap between the cylinders, which may
shorten the recirculation zone and increase the maximum streamwise velocity in the
gap. The FSM-6-160 and FSM-Strelets case predict excessive levels of turbulence
intensity in the gap region, which results in enhanced entrainment of free-stream
fluid and in a too short recirculation zone and too high magnitude of streamwise
velocity in the gap region. The FSM-6-80 resolved intermediate levels of turbulence
intensity, which are too high compared to the reference data, but seem to result
in the correct amount of entrainment of free-stream fluid into the gap region, and

good predictions of the velocity distribution.
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FIGURE 10.38: Streamwise velocity profiles U /Uy and 2D TKE on the centreline
(y/D = 0). (o) BART, (o) BART (rear cylinder tripped). (—)
FSM-6-40, (- - -) FSM-6-80, (— - —) FSM-6-160, (— - -—) FSM-
Strelets.
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(e) FSM-Strelets.

F1GURE 10.39: Normalised instantaneous spanwise vorticity w,D/Uy.

Predictions of spanwise surface-pressure correlation R, and PSD of surface pressure
at the locations 6 = 135°, on both cylinders, are shown in figure 10.40. All cases
predict similar spanwise correlations, in good agreement with the corresponding
measurements up to the location z/D ~ 1 on both cylinders. For z/D > 1, the
departure in the predictions becomes more pronounced. The spanwise correlation
on the upstream cylinder reaches an approximately constant value for z/D > 2 and
does not drop below R, ~ 0.7 for all cases investigated here. The same behaviour
is observed for the downstream cylinder, where FSM-6-80 and FSM-6-160 drop
to an almost constant value of R,, ~ 0.7. The correlation R,, predicted by the
FSM-6-40 case reduces to a slightly lower value of R,, ~ 0.6. The plots of PSD of
surface pressure confirms the predictions of C; discussed before. The two cases
with the finest resolution, FSM-6-160 and FSM-Strelets, consistently show too high
levels of surface-pressure fluctuations over almost the entire Strouhal number range.
The FSM-6-40 case slightly under-predicts the magnitude of the peaks and primary
vortex shedding frequency. In addition, the broadband content in the Strouhal
number range St ~ 0.4 — 1 is over-predicted and the secondary peak in the spectra,
which is present in all other cases, is absent in FSM-6-40. The FSM-6-80 case is able
to predict the magnitude and frequency of the primary and secondary peaks, as well
as the broadband content up to St ~ 1, in good agreement with the reference data,
and hence provides the best overall performance. On the downstream cylinder,

there is significantly less scatter in the results and the broadband content, as well
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as the magnitude of the primary peak is well reproduced by all models. Only the
FSM-6-40 case predicts a too low magnitude and frequency of the primary peak
in the spectra. In addition, the secondary peak is absent in the results, and the

broadband content is under-predicted compared to the other cases.
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FIGURE 10.40: Spanwise surface-pressure correlation R,, and PSD of surface
pressure at the locations § = 135°. (o) and (— — —) BART
measurements. (s—mu) FSM-6-40, (a—a) FSM-6-80, (¢—) FSM-
6-160, (e—e) FSM-Strelets.
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10.3.6 Sensitivity to the Turbulence Model

The sensitivity of results with respect to the underlying RANS model is investigated.
For this purpose, simulations are performed using the FSM-SST, FSM-EASM and
FSM-p-a-EASM formulations. In addition, results obtained by IDDES and SAS,
based on the k-w-SST model, are also included in the comparison with the reference
data. Note that the SAS model completely failed to resolve turbulence fluctuations
in the three-dimensional diffuser case, since the instability mechanisms were insuf-
ficient to trigger flow unsteadiness. Nevertheless, the SAS model contains some
interesting and unique features, and since SAS is expected to perform much better
in the present case, due to the presence of strong instability mechanisms, it is in-
cluded in the comparison. The FSM models are used in conjunction with the new
hybrid FSM convection scheme; IDDES and SAS use the hybrid convection scheme
of Travin et al. (2004b). All simulations are performed on the baseline computa-

tional grid with a spanwise width of 3D and 40 cells in the spanwise direction.
Instantaneous Flow Field

Instantaneous snapshots of the flow fields are visualised in figure 10.41 using iso-
contours of the second invariant of the velocity gradient tensor () = % (QZ"]Q:‘J - 55 S;;)
This quantity can be used to identify coherent or vorticity-dominated structures in

the flow field. It is evident, that all hybrid RANS/LES methodologies show the
presence of resolved turbulence structures in the flow field. Nevertheless, there are
some visible differences in the results obtained from the different simulations. The
FSM-SST model shows the most rapid growth of shear layer instability. All other
turbulence models predict a somewhat delayed onset of shear layer instability and
the shear layer predicted by the FSM-EASM model does not show much resemblance
to the typical Kelvin-Helmholtz instability mechanisms. Most of the flow fields show
the presence of streamwise vortices in the gap region, with a characteristic spanwise
extent of 2-3 cell widths A,. These structures seem to be less pronounced in the
predictions of the FSM-EASM and FSM-p-a-EASM models, which are both based
on a non-linear stress-strain relationship, and which exhibit more chaotic, irregular
vortical structures in the flow field. The IDDES and SAS turbulence models show in
general, somewhat larger vortical structures compared to the FSM approaches. This
indicates a slightly higher contribution of the turbulence model, which effectively
eliminates the smaller-scale turbulence structures observed in the predictions of the
FSM models. The predictions of the flow field in the wake of the downstream cylin-
der is similarly resolved by all turbulence models. Only the FSM-EASM is able to

maintain turbulence structures much farther downstream of the rear cylinder. This
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is associated with the variable constant Cﬁf /in the eddy-viscosity relation, which
reduces to Cﬁff ~ 0.04 — 0.05 for the EASM model.

(e) SAS

FI1GURE 10.41: Iso-contours of Q) = 1.5U8/D2, coloured by the instantaneous
streamwise velocity.

These observations are confirmed in figure 10.42, which shows contour plots of
instantaneous spanwise vorticity w,D/Uy, obtained from the simulations and PIV
data from the experiment. It is again clearly visible, that the FSM models are
able to resolve finer-scale turbulence structures in the gap region and give better
overall agreement with the PIV reference data, compared to the IDDES and SAS
models. Despite the fairly coarse resolution of the free-shear layer, the development
of Kelvin-Helmholtz type instabilities can be observed in the results from IDDES,
FSM-SST and FSM-p-a-EASM.
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FIGURE 10.42: Normalised instantaneous spanwise vorticity w,D/U.

Alternative Mean Flow Field

In has already been mentioned in the introduction to this test case, that the dis-
tance between the cylinders sets the type of interaction. Most of the computational
grids and turbulence models used in this work converge to a state where vortices
are being shed from the upstream cylinder. However, the simulation using IDDES
converges to an alternative state where the vortex shedding from the upstream
cylinder is suppressed, and the shear layer re-attaches to the downstream cylinder.
Interestingly, the IDDES simulation converges to the first state with vortex shed-
ding from the upstream cylinder for the first 120000 iterations, or 380D/U, time
units. After a transition phase and a simulation time larger than 500D /U, time
units, IDDES converges to a second state, with suppressed vortex shedding from
the upstream cylinder. The resulting mean-flow fields of both states and instanta-
neous spanwise vorticity contours are presented in figure 10.43. The second state
has also been observed in a simulation using the FSM-SST model on a grid with
finer spanwise resolution, and has also been reported by some participants of the
BANC I workshop (see Lockard, 2011). The suppression of vortex shedding from
the upstream cylinder is usually observed for smaller gap spacings than used here.
Nevertheless, according to Lockard (2011), some experiments conducted with the
same gap spacing of 3.7D at different Reynolds number and spanwise lengths of the
cylinders have also shown the alternative state predicted by the IDDES model. It is
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not clear what causes the transition to the alternative state but, it is expected, that
a range of parameters such as boundary conditions, computational grid, turbulence

model and numerical discretisation contribute.

(c¢) Instantaneous spanwise vorticity w,D/Up (d) Instantaneous spanwise vorticity w,D/Ug

FIGURE 10.43: Alternative mean flow states.

Lift and Drag

The predicted drag coefficient Cp = F,/(0.5pUyA) is summarised in table 10.1,
together with the primary vortex-shedding frequency and rms-values of fluctuating
liftt and drag coefficients. The primary vortex-shedding frequency measured in the
experiment is 178[Hz], which corresponds to a Strouhal number of St = 0.231.
Unfortunately, force measurements are not available as a reference. It is surprising
that only the FSM-SST, FSM-EASM and SAS models are able to accurately predict
the primary-vortex shedding frequency observed in the experiment. The FSM-¢-a-
EASM predicts a Strouhal number approximately half of the measured value and
IDDES predicts a Strouhal number that is too high, St = 0.279. In addition, the
drag coefficient Cp, on the upstream cylinder as well as the CL; _, are too small on
both cylinders. Note that the IDDES results are evaluated for the first 380D/U,
time units only where the vortex-shedding from the upstream cylinder is still present
in the simulation. The differences observed for the IDDES model can possibly be
explained by the location of the separation point on the first cylinder. The IDDES
model predicts the separation point of the mean flow at 8 ~ 102°,258°, whereas, for
example, the FSM-EASM predicts earlier separation at 6 ~ 96°,264°. Due to the
delayed separation predicted by the IDDES model, the development of the wake
exhibits the behaviour of a wake at an effectively higher Reynolds number, which,
according to Schewe (1983), shows a similar trend to what is observed here, namely

an increase in vortex-shedding frequency and a reduction in drag coefficient. The
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upstream cylinder downstream cylinder
Model St [ Cp [Cp [ Oy Cp [Cp | Cpy

FSM-SST 0.228 | 0.616 | 0.139 | 0.029 | 0.419 | 0.695 | 0.098
FSM-EASM 0.234 | 0.626 | 0.148 | 0.022 | 0.383 | 0.695 | 0.098
FSM-p-a-EASM | 0.101 | 0.559 | 0.128 | 0.023 | 0.353 | 0.523 | 0.070
IDDES 0.279 | 0.397 | 0.036 | 0.017 | 0.409 | 0.425 | 0.059
SAS 0.228 | 0.614 | 0.171 | 0.040 | 0.415 | 0.665 | 0.101

TABLE 10.1: Lift and drag coefficients.

cause for the delayed separation of the IDDES model is not quite clear, since the
FSM-SST and SAS models, which are based on the same underlying RANS model,
do not show this behaviour. There might also be a connection between the delayed
separation and the occurrence of the alternative mean flow state in the predictions
of the IDDES model. An investigation of this issue is left for future investigations.
The separation point predicted by the FSM-¢p-a-EASM model is the same as for
the FSM-EASM model, and can therefore not be used to explain the failure to
predict the correct vortex-shedding frequency. Unfortunately, a close inspection of
the flow field and turbulence quantities did not reveal any possible sources which
would explain the failure of the FSM-¢-a-EASM model.

Mean Flow Field

The distributions of the mean-surface-pressure coefficient C, and fluctuating-surface-
pressure coefficient Cpﬁ-ms are shown in figure 10.44. All turbulence models are able
to predict the surface-pressure coefficient in good agreement with the reference
data. The IDDES model shows the most pronounced suction peaks at 8 ~ 90° and
0 ~ 270° and also predicts a somewhat too high base pressure magnitude in the re-
circulation region on both cylinders. On the upstream cylinder, all other turbulence
models reproduce the base pressure level observed in the BART facility, and predict
a magnitude of the suction peaks, which matches the data from the QFF facility.
On the downstream cylinder, the simulations are in good agreement with the refer-
ence data, and reproduce the measurement of the BART facility, which included a
boundary-layer trip on the downstream cylinder. This is not surprising, since the
fully turbulent simulation approach is not able to correctly predict the transitional

flow occurring in the experiment without tripping of the boundary layer.
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The predictions of fluctuating-surface-pressure coefficient on the upstream cylin-
der reflects the predictions of the rms-values of lift and drag coefficient discussed
above. The IDDES model, which showed the lowest values of C';; and Cpy , also
consistently predict a too low magnitude of surface-pressure fluctuations C' o In
addition, the location of the peak values, which approximately correspond to the
separation location, are too far downstream and confirm the delayed separation.
Similarly, the SAS model show the highest levels of C';; —and Cpy —and hence
significantly over-predicts the intensity of surface-pressure fluctuations. All FSM
models predict the same results of Cp; __in the separated flow region and show a
slightly too high magnitude compared to the reference data. An interesting trend
can be observed for the intensity of the peak values predicted by the FSM mod-
els. The arguably simplest underlying RANS model, FSM-SST, shows the most
pronounced over-prediction of the peak values compared to the other FSM mod-
els. The FSM-EASM model shows reduced magnitude and the FSM-p-a-EASM
an even lower magnitude, which is in excellent agreement with the reference data.
Concerning the predictions of fluctuating-surface-pressure coefficient on the down-
stream cylinder, all models are able to predict the correct location of the first
and dominant peak, at 8 ~ 45° 315°. These peaks correspond to the impinge-
ment points of the unsteady wake from the upstream cylinder. Nevertheless, the
magnitude of fluctuating-surface-pressure shows significant differences among the
models. The boundary-layer tripping on the downstream cylinder not only reduces
the magnitude of the secondary peaks but also shifts the location of the peaks,
which are associated with the separation location, further upstream compared to
the untripped case. All simulations more closely reproduce the BART data with
boundary-layer tripping on the downstream cylinder. The IDDES model predicts
the lowest intensity of surface-pressure fluctuations around the impingement points
but predicts the second and smaller peak, at 8 ~ 135°,225°, in excellent agreement
with the reference data. The FSM-p-a-EASM model predicts the magnitude of
surface-pressure fluctuations at the impingement point in best agreement with the
reference data, but shows too low levels of C’p/T . and the largest departure around
the separation points, and in the recirculation region. In addition, the secondary
peaks, and with that the locations of the separation points, is predicted farther up-
stream compared to reference data, and predictions of the other turbulence models.
The FSM-EASM shows the most pronounced peaks at the impingement locations
but predicts realistic values of CprT _at the separation points and in the recircula-
tion region. The FSM-SST and SAS models predict almost identical results with
too intense pressure fluctuations around the impingement points and the highest

magnitude of €y at the separation points and in the recirculation region.
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FIGURE 10.44: Mean-surface-pressure C, and fluctuating-surface-pressure coeffi-
cient Cy . Front cylinder: (o) BART, (v) QFF. Rear Cylinder:
(o) BART, (o) BART (rear cylinder tripped). (—) FSM-SST,
(- - -) FSM-EASM, (— — —) FSM-¢-a-EASM, (— - —) IDDES,
(—--—) SAS.

The predictions of mean streamwise velocity and resolved two-dimensional turbu-
2D

res

lence kinetic energy k22 on the centerline, y/D = 0, are shown in figure 10.45. In
addition, contour plots of turbulence intensity I, = Urms/ Up and I, = F,«ms/Uo
are shown in figures 10.46 and 10.47. The velocity in the gap region clearly show a
large sensitivity to the turbulence model. The FSM-SST model predicts the velocity
distribution in excellent agreement with reference data. The FSM models based on
more sophisticated RANS models, i.e. FSM-EASM and FSM-p-a-EASM, show a
somewhat too small recirculation zone, but show good agreement for the maximum
reverse flow intensity occurring at /D ~ 1.2 in the recirculation region. In ad-
dition, the maximum streamwise velocity in the gap region is over-predicted. The
same observation holds for the SAS model with the difference, that the maximum
streamwise velocity at approximately x/D ~ 2.5 is lower and hence in better agree-

ment with the reference data. The IDDES model shows exactly the opposite trend;
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the extent of the recirculation zone behind the upstream cylinder is too large and
the maximum streamwise velocity in the gap region is under-predicted. Concern-
ing the velocity distribution downstream of the rear cylinder, FSM-SST, IDDES
and SAS provide similar predictions in excellent agreement with the reference data.
Note that the simulations match the BART data with the boundary-layer tripped
on the downstream cylinder. The FSM-EASM and FSM-p-a-EASM models both
over-predict the extent of the recirculation region behind the rear cylinder. This is
associated with the mean separation point being slightly too far upstream, which
consequently changes the trajectory of the free-shear layer and hence results in the

too large recirculation zone.
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FIGURE 10.45: Streamwise velocity profiles U /Uy and 2D TKE on the centreline
(y/D = 0). (o) BART, (o) BART (rear cylinder tripped). (—)
FSM-SST, (- - -) FSM-EASM, (— — —) FSM-p-a-EASM, (—-—)
IDDES, (—--—) SAS.

The resolved turbulence kinetic energy in the gap region is predicted very similar
by most hybrid RANS/LES turbulence models. Only the IDDES model predicts
much lower levels of resolved turbulence kinetic energy throughout the gap region.

The low intensity of velocity fluctuations results in less efficient entrainment of
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(e) IDDES. (f) SAS.

FIGURE 10.46: Turbulence intensity I, = Urms /Uo.

(a) Experiment. (b) FSM-SST.
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FIGURE 10.47: Turbulence intensity I, = v'yms/Ub.

high-speed fluid from the free-stream, which contributes to the over-prediction of
the size of the recirculation zone behind the upstream cylinder. Nevertheless, the
IDDES model predicts the correct location of maximum turbulence intensity in the
gap region. All other turbulence models predict the location of maximum turbu-

lence kinetic energy too far upstream and over-predict the magnitude of maximum
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turbulence kinetic energy, compared to the reference data. The higher intensity of
velocity fluctuations is more efficient in entraining fluid from the free-stream, which
may add to the shortening of the recirculation zone behind the upstream cylinder.
Even though FSM-SST follows the same trend, the resulting velocity distribution
in the gap region agrees very well with the reference data. The predictions of re-
solved turbulence kinetic energy behind the downstream cylinder shows significantly
more scatter. All turbulence models show the same tendency of too low levels of
turbulence intensity up to /D ~ 4.8, and the location of maximum turbulence
intensity is predicted too far downstream compared to the reference data. It should
be noted that the measurements correspond to the BART data without tripping the
boundary layer on the downstream cylinder. It can be expected that measurements
including a boundary-layer trip on the downstream cylinder will be different in
terms of the overall magnitude and location of maximum turbulence kinetic energy.
Nevertheless, FSM-SST predicts overall the highest levels of turbulence kinetic en-
ergy and hence shows the best agreement with the reference data. The FSM-EASM
and FSM-p-a-EASM models predict much lower magnitudes of turbulence kinetic
energy, and the FSM-p-a-EASM shows the greatest departure from the reference
data. Downstream of the rear cylinder, the departure observed in the predictions
of turbulence kinetic energy by the FSM-EASM and FSM-p-a-EASM model seem
to correlate with the departure of the mean-velocity distribution from the reference
data. The IDDES and SAS models both significantly under-predict the turbulence
kinetic energy, but predict the mean-velocity distribution downstream of the rear

cylinder in good agreement with the reference data.

The total (resolved plus modelled) shear stress is discussed next. Figure 10.48 shows
two profiles of total shear stress, at the locations /D = 1 and /D = 2.7, in the gap
between the cylinders. The region of interest at the first location, z/D = 1, is the
free-shear layer at approximately y/D ~ 0.5. The highest levels of shear stress are
predicted by the SAS and FSM-p-a-EASM models. The high levels of shear stress
are also reflected in the predictions of streamwise velocity in the gap region. Both
model show the smallest extent of the recirculation behind the upstream cylinder.
The FSM-EASM shows reduced levels of shear-stress in the free-shear layer, which
are in good agreement with the experimental data. Nevertheless, the extent of
the recirculation zone is still somewhat too small. The FSM-SST predicts levels of
shear stress, which are slightly smaller compared to the corresponding measurement.
However, the velocity distribution in the gap region shows the best agreement with

the reference data of all models. The IDDES model shows the most pronounced
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under-prediction of shear stress, which consequently results in the largest recircu-
lation zone. Further downstream, at the location z/D = 2.7, the scatter in the
results is significantly reduced. All models under-predict the peak-value of shear
stress at the location y/D ~ 4.0. The FSM-SST predicts overall the highest level
of shear stress, and hence shows the best agreement with the reference data. The
peak-values of shear stress predicted by the FSM-EASM, IDDES and SAS models
are almost identical. However, the peak-value predicted by the IDDES model is lo-
cated much closer to the centreline. The FSM-p-a-EASM now predicted the lowest
level of shear stress. It is not clear why the shear stress of the FSM-p-a-EASM
has significantly reduced from the locations x/D = 1, where it was too high, to the
location z/D = 2.7.
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FIGURE 10.48: Profiles of total (resolved plus modelled) shear-stress. Left: at
/D =1 and right: at /D = 2.7. (—) FSM-SST, (- - -) FSM-
EASM, (— — —) FSM-¢p-a-EASM, (—-—) IDDES, (—--—) SAS.

Predictions of spanwise surface-pressure correlation R, and PSD of surface pressure
are shown in figure 10.49. The IDDES model allows the spanwise surface-pressure
correlation to drop to approximately R,, ~ 0.7 on the first cylinder, and hence pro-
vides good agreement with the reference. In the predictions of all other cases, the
spanwise correlation only drops to R, ~ 0.8 and remains too high, compared to the
corresponding measurements. The correlation of the FSM-SST and SAS models are
almost indistinguishable. The FSM-EASM and FSM-¢-a-EASM show overall the
highest level of correlation R,,. The high levels of correlation is also reflected in the
iso-contour plots of @) in figure 10.41, where the free-shear layer shows a strong two
dimensionality with almost no variation in the spanwise direction. On the down-
stream cylinder, the IDDES model again shows a rapid drop of R,, and reaching
levels much below the corresponding measurements. The best agreement is achieved
by the SAS model, which nicely follows the trend observed in the experiment. The
results of the FSM-SST model is of a similar quality, however, the correlation R,,
remains somewhat too high. The more advanced FSM-EASM and FSM-p-a-EASM
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models show least agreement with the reference data, and the spanwise correlation

remains significantly too high over the cylinder span.

The PSD of surface pressure is discussed next. The results of the IDDES and FSM-
p-a-EASM models are not included in the comparison, since both models did not
reproduce the correct primary vortex shedding and the results are largely in error.
On the upstream cylinder, all three turbulence models, FSM-SST, FSM-EASM and
SAS, show good agreement around the primary vortex shedding frequency, with
a small over-prediction of the peak magnitude. The simulations are also able to
predict the secondary peak at St ~ 0.5. The secondary peak is best predicted
by the FSM-SST model, with both other models showing a significantly too high
peak magnitude. The broadband contribution for St > 1 is also best resolved
by FSM-SST. Both FSM-EASM and SAS under-predict the broadband levels by
quite some margin. The predictions on the downstream cylinder show significantly
less scatter compared to the upstream cylinder. All three turbulence models show
good agreement around the primary vortex shedding frequency. In addition, all
models are able to resolve the secondary peak, but under-predict the broadband
levels. The FSM-SST model gives the highest broadband levels, and hence is in

best overall agreement with the reference data.
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FIGURE 10.49: Spanwise surface-pressure correlation R,, and PSD of surface

pressure. (o) and (—) BART measurements. (—) and (=—m)
FSM-SST, (- - -) and (a—a) FSM-EASM, (— — —) FSM-p-a-
EASM, (—-—) IDDES, (—--—) and (e—s) SAS.
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10.3.7 Summary

The simulations clearly demonstrate the advantages of a hybrid convection discreti-
sation scheme. No results could be obtained with the unbounded CDS scheme, and
the bounded TVD schemes significantly over-predicts the size of the recirculation
zone behind the upstream cylinder. The hybrid FSM scheme, with a flow-dependent
flux blending function, is able to deliver results in good agreement with the refer-
ence data. The tandem cylinder case is a difficult case to predict accurately, due
to a high sensitivity of the flow to the resolution of the computational grid and
turbulence model. A particularly high sensitivity of results is observed with respect
to the resolution of the computational grid in the spanwise direction, as well as to
the resolution in the zy-plane. Too-coarse spanwise resolution completely fails to
provide reasonable predictions for the mean-flow field. Spanwise resolution, which
yields approximately isotropic cells in the gap region between the cylinders, is found
to provide the best results. The grids with finer resolution in the spanwise direc-
tion and with finer resolution in the xy-plane are found to deteriorate the results,
compared to the coarser baseline grid. This seems not-intuitive, but may point to-
wards a favourable cancellation of errors induced by the coarse grid and turbulence
modelling. However, further testing is required to confirm this hypothesis. It was
also argued that the definition of the turbulence length scale A may contribute to
this behaviour and that the turbulence model might benefit from redefinition of this
length scale. On the other hand, most results are insensitive to the spanwise domain
width. This is linked to a spurious strong correlation of the flow in the spanwise
direction, which does not completely vanish on the largest spanwise domain of 12D.
With increasing spanwise domain width, the intensity of surface-pressure fluctu-
ations on the upstream cylinder reduces somewhat, and hence provides improved
agreement with the reference data. Nevertheless, the difference is not pronounced
enough to justify the increased computational cost associated with large spanwise
domain widths. The flow is also very sensitive to the turbulence model used. The
IDDES model transitioned after long simulation times to an alternative mean-flow
state, where the vortex shedding is suppressed from the upstream cylinder. The
FSM approach based on the most sophisticated RANS model predicts the funda-
mental vortex-shedding frequency of half the experimental value. The FSM-SST
model provides the best agreement with reference data on the baseline computa-
tional grid followed by the SAS and FSM-EASM models.






Chapter 11

Summary and Outlook

11.1 Summary

A summary of the most important achievements and findings of this study is given

in the following.

e The performance of two- and three-dimensional EASM closures is assessed on
a range of different test cases, ranging from simple channel flow to massively
separated flows and to complex three-dimensional flows. Based on these test
cases, a fairly clear picture of the performance of the baseline EASM closure
emerges. It is shown, that two- and three-dimensional EASM closures are
capable of providing improved predictions for the three-dimensional flow in a
three-dimensional diffuser, compared to turbulence models based on a linear
stress-strain relationship. The more realistic predictions of the mean-velocity
field are a consequence of improved predictions of the Reynolds-stress and
anisotropy tensors. Nevertheless, the EASM closure shows deficiencies in pre-
dicting the correct near-wall behaviour of turbulence kinetic energy and the
Reynolds-stress and anisotropy tensors when compared to the experimental
reference data. For the massively separated flow over the NASA hump con-
figuration, the mean-velocity field predicted by the EASM is not improved
over more simple liner two-equation models, despite improved predictions of
normal-Reynolds-stress components One of the shortcomings of the EASM is
attributed to the behaviour of the variable C’ﬁf f. which depends on the stain-
and rotation-rate, and which reduces the contribution of the linear term in

the stress-strain relationship to the shear stress in the free-shear layer, and
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consequently over-predicts the extent of the recirculation zone. An important
conclusion drawn from the test cases considered in this work is that the two-
and three-dimensional formulations of the EASM closure predict equivalent or
very similar results in three-dimensional flows. The three-dimensional EASM
closure is not found to give improved, or significantly different, predictions,
which suggests that the considerable additional numerical expense compared

to the two-dimensional formulation is not justified in those cases.

Several strategies and modifications are introduced to the baseline EASM,
which aim at improving the predictions of the Reynolds-stress and anisotropy
tensor close to the wall. The free parameters appearing in the near-wall-
anisotropy modifications and in the damping function for the turbulence ki-
netic energy dissipation rate are optimised to provide the correct behaviour
for planar channel flows. The modifications achieve improved predictions for
both the Reynolds-stress and anisotropy tensors in the near-wall region, and
predict the physically correct two-components state of turbulence near the
wall. In addition, the near-wall budget of turbulence kinetic energy shows
significant improvements over the baseline EASM. However, none of the mod-
ifications capture the reduction of the anisotropy components aq; and ass very
close to the wall, and fail to improve the anisotropy predictions at low strain

rates, that occur towards the centre of the channel.

A new RANS model is presented, which combines the advantages of the
elliptic-blending approach for modelling near-wall flows, with the advantages
of a non-linear stress-strain relationship to provide more accurate predictions
of the Reynolds-stress and anisotropy fields in complex flows. The new non-
linear elliptic-blending RANS model completely abandons viscosity-dependent
blending or damping functions and their effect is more naturally included.
The elliptic-blending approach is used in this work in conjunction with a k-w
model and not as usual, within the k-¢ modeling framework. The proposed
non-linear stress-strain relationship recovers the normal-Reynolds-stress and
anisotropy predictions of the baseline EASM model away from the wall, where
the quasi-homogeneous pressure-strain model of Speziale et al. (1991) provides
good predictions for the Reynolds-stress and anisotropy tensor. Close to the
wall, a near-wall-consistency constraint and additional near-wall-anisotropy
modification are introduced, in order to improve the predictions of the quasi-
homogeneous pressure-strain model. As a consequence, the highly anisotropic
state of turbulence and the limiting two-component state are correctly repro-

duced as the wall is approached. The new ¢-a-EASM further improves the
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predictions of the normal-anisotropy components a;; and as3 very close to the
wall and in situations, where the strain rate becomes small. It is also capable

of fully reproducing the appropriate anisotropy-invariant map.

The new turbulence model predicts a higher overall magnitude of shear stress
in the free-shear layer of the NASA hump configuration, which effectively
shortens the recirculation zone and hence provides improved agreement with
the reference data over the baseline EASM and ¢-a-UMIST model. In ad-
dition, predictions of the anisotropy component a;; show an enlarged peak
close to the wall, which is not predicted by the baseline EASM model; the
near-wall-consistency constraint ensures that the ass component approaches
the correct limiting value of asy — —2/3 at the wall. For the flow in the three-
dimensional diffuser, the new ¢-a-EASM model shows the best predictions
of the surface-pressure distribution. However, no systematic improvement of
the mean-velocity field in the asymmetric diffuser was obtained by the new

model.

e A hybrid RANS/LES/DNS framework is presented, which is able to pro-
vide the required amount of turbulence modeling for any mesh resolution,
and seamlessly operates between RANS and DNS mode. This is achieved
by a revised Flow Simulation Methodology, where the turbulence modelling
contribution of a RANS model is rescaled using a damping function. The
Flow Simulation Methodology is proposed in conjunction with a newly de-
veloped damping function and a tailored convection discretisation scheme,
which further enhances the reliability and predictive accuracy of FSM. The
hybrid convection scheme is based on a linear combination of the second-
order central-difference and the linear-upwind scheme, with a flow-dependent
flux-blending function. Such blended schemes are available in many CFD
codes, which makes the implementation straightforward. It is conjectured
that a sophisticated RANS model will improve the overall quality of the pre-
dictions of any hybrid RANS/LES model, not only in the RANS region, but
also in the LES region. For this reason, the FSM approach is presented and
calibrated for three different underlying RANS closures of different levels of
sophistication. The turbulence models include the k-w-SST, EASM-2D and
p-a-EASM schemes. The free parameters are calibrated for stationary ho-
mogeneous isotropic turbulence, in order to provide proper LES behaviour
and a physically consistent energy cascade. It is demonstrated that the cal-

ibration constants exhibit an undesirable grid or resolution dependency, and
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that any attempt to achieve boundedness of the convection discretisation in-
evitably deteriorates the results, unless the calibration constants are adjusted

accordingly.

The basic wall-modelled LES mode of FSM has been investigated for planar
channel flow. It is demonstrated that the results for the mean-velocity profile
and shear stress exhibit a gross sensitivity with respect to the convection dis-
cretisation scheme. The second-order upwind scheme and the TVD scheme
are not recommended to be employed within a turbulence-resolving simula-
tion, because the reduction of resolved shear stress is not compensated by an
sufficient increase in modelled shear stress. This results in an under-prediction
of total shear stress and in a mean-velocity profile, which is beyond the level
of accuracy required in engineering applications. The hybrid FSM convection
scheme, on the other hand, delivers results almost as accurate as the Central-
Difference Scheme. It is further shown that the mean-velocity predictions are
insensitive to the choice of calibration constants C, and [, but are sensitive
to the underlying RANS model. Even though the shape of the damping func-
tion F' is influenced by the specific choice of the calibration constants, the
total shear stress and hence the mean-velocity profile is predicted very consis-
tently, almost independently of the specific value of C,, and 3. The sensitivity
with respect to the RANS model is mainly caused by different distributions
of the damping function F'. In order to eliminate the strong sensitivity of the
damping function on the underlying RANS model, an extension to FSM is in-
troduced, which modifies the damping function close to the wall, such that it
takes a more consistent distribution for all underlying turbulence models. In
addition, the modification provides improved predictions of the mean-velocity
profile. With the modification included, the most sophisticated underlying
RANS model, p-a-EASM, provides the best predictions for the mean-velocity
profile and asymptotic near-wall behaviour of all normal-Reynolds-stress com-
ponents, for the Re, = 395 case. It is shown that the small log-layer mismatch
visible in the results is caused by an under-prediction of total (resolved plus
modelled) shear stress at the switching location. It is, consequently, suggested
that the mismatch could potentially be eliminated by enhancing either the re-
solved or modelled contribution to the shear stress at the switching location.
For the high-Reynolds-number channel flow (Re, = 18000), the FSM-EASM
and FSM-p-a-EASM models provide clearly improved predictions over FSM
based on the k-w-SST model. The FSM-EASM shows the best predictions,
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with the log-layer mismatch almost eliminated and similar to the predictions

of IDDES.

e The performance of the wall-modelled LES mode of FSM is assessed for the
complex flow in a three-dimensional diffuser, which inlcudes three-dimensional
boundary-layer separation. The sensitivity study of the convection discrectisa-
tion scheme confirms that a bounded scheme is not recommended in turbulence-
resolving simulations, since it will inevitably deteriorate the results. The
bounded-difference scheme almost completely suppresses flow separation on
the centre plane, whereas the CDS and hybrid FSM schemes give results in
much better agreement with the reference data. The hybrid FSM schemes
retains the accuracy of the CDS, and does not contaminate the resolved flow
field with elevated levels of numerical dissipation. This also ensures a more

realistic —5/3 behaviour of the velocity fluctuation spectra.

All hybrid RANS/LES models investigated in this work predict the correct
flow topology in the diffuser and therefore provide significantly improved pre-
dictions compared to pure RANS simulations. Only the SAS method is gen-
erally not able to sustain any turbulence fluctuations in the diffuser and effec-
tively operates in RANS mode. The FSM and IDDES models show a slight
departure from the reference data, for the simulations on the coarse baseline
grid, in terms of predicting the correct extent of the separated flow region in
the diffuser. In the predictions of the IDDES model, separation from the top
wall occurs too late and results in too small a recirculation zone. All FSM
models, on the other hand, exhibit premature separation just downstream
of the sharp corner. It is found that different levels of resolved turbulence
fluctuations provided from the inflow duct simulation, particularly close to
the wall, influence the downstream development of the flow in the diffuser
and are responsible for the observed differences between each model. A grid
refinement improves the predictions of the separated flow region downstream
of the sharp corner and hence provides results in good agreement with ref-
erence data. The results of FSM are also sensitive to the underlying RANS
model. The FSM-SST and FSM-EASM give slightly better overall predic-
tions, compared to the more sophisticated FSM-p-a-EASM, which shows the
most pronounced over-prediction of streamwise velocity close to the bottom

wall.

e The simulations of the flow around the tandem cylinder configuration clearly
highlight the advantages of an accurate hybrid convection discretisation scheme,

with a flow-dependent flux blending function. In the present case, no results
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could be obtained with the unbounded central-difference scheme and all TVD
schemes result in over-prediction of the size of the recirculation zone behind
the upstream cylinder. An extensive grid sensitivity study is conducted and
reveals a high sensitivity of results to the resolution of the computational grid
in the spanwise direction, as well as to the resolution in the xy-plane. The
baseline computational grid, which has a spanwise resolution such that approx-
imately isotropic cells are obtained in the gap region between the cylinders,
is found to provide the best results and good agreement with the reference
data. On the other hand, the computational grid with too coarse a spanwise
resolution is found not suitable for a turbulence-resolving simulation and fails
to provide sufficiently accurate predictions of the mean-flow field. The com-
putational grids with a finer resolution in spanwise direction and with a finer
resolution in the zy-plane are found to deteriorate the results, compared to
the coarser baseline grid. It is speculated that this is might be caused by a
favourable cancellation of errors induced by the coarse grid and the turbu-
lence model. Further testing is required to confirm this hypothesis. It is also
argued that the definition of the turbulence length scale A may contribute
to this behaviour and that the turbulence model might benefit from redefi-
nition of this length scale. The sensitivity study has also revealed that most
results are insensitive to different spanwise domain widths. Only the intensity
of surface-pressure fluctuations on the upstream cylinder reduces somewhat
with increasing domain width, and hence provides improved agreement with
the reference data. Nevertheless, the difference is not pronounced enough to
justify the large computational cost associated with large spanwise domain
widths. The very small sensitivity of the results with respect to the spanwise
domain width is associated with a spurious, too strong spanwise correlation
of the flow. The spanwise surface-pressure correlation does not go to zero on
the largest computational grid, with a span of 12D. It is argued that lateral
periodic boundary conditions contribute to this effect. The flow around the
tandem cylinder configuration is also very sensitive to the turbulence mod-
elling approach. The IDDES model transitioned after long simulation times to
an alternative mean-flow state where the vortex shedding from the upstream
cylinder is suppressed. The FSM approach, based on the most sophisticated
underlying RANS model, predicts a fundamental vortex shedding frequency
of half the experimental value. The FSM-SST model provides overall the best
agreement with reference data on the baseline computational grid, followed
by the SAS and FSM-EASM models.
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11.2 Outlook

In the following, a few points are discussed that have not been covered in the present

work, but are suggested as being worthwhile topics for future exploration.

e The near-wall anisotropy modifications presented in chapter 7 have only been
applied and tested for the flow in a planar channel. Since they are compu-
tationally less expensive, compared to the new ¢-a-EASM model, it may be
worthwhile to investigate how these rather simple modifications perform in

more complex flows.

e The new p-a-EASM model presented in chapter 8 exhibited convergence dif-
ficulties for some cases. During the course of this work no satisfying solution
could be found to improve this situation. In addition, the near-wall anisotropy
and consistency modifications are targeted to improve the predictions in shear
flows, and are inactive in cases of, for example, flow impingement. Even
though reattaching flows have been part of the test cases presented in this
work, it seems worthwhile to also investigate and potentially optimise the
performance of the new model for the isolated flow impingement normal to a

wall.

e The modified Flow Simulation Methodology presented in chapter 9 is able to
operate in a RANS/LES and DNS mode. From an industrial perspective, it
seems very appealing to introduce the capability to operate in VLES mode,
where most of the turbulence kinetic energy is statistically represented by the
turbulence model, and only a fraction is resolved by the simulation. No satis-
fying solution could be found here to introduce VLES capabilities. However,

it is believed that this issue may be worthwhile to explore in the future.
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