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Abstract

Objective
This thesis examines the measurement of skin microvascular blood flows from
Laser Doppler Flowmetry (LDF) signals. Both healthy subjects and those
with features of the metabolic syndrome are studied using signal processing
techniques such as the Fourier and Wavelet transforms. An aim of this study
is to investigate whether change in blood flow at rest can be detected from
the spectral content of the processed signals in the different subject groups.
Additionally the effect of insulin is examined via hyperinsulinemic euglycemic
clamp together with measurements made from a low power 1mW, standard
separation (0.5mm) probe and a high power 20mW, wide separation (4mm)
probe.

Research design and Methods
We studied a cohort of individuals with 3 or more features (obesity, insulin
resistance, etc) of metabolic syndrome (MS) as group 1 (n = 17), and also
second measurements of the same subjects taken 6 months later as group 2
(n = 12 because not every subject in group 1 participated a second measure-
ment). Our study also included 3 healthy people as the healthy group. Skin
blood flow was recorded using LDF monitoring device at rest and in response
to insulin during hyperinsulinemic euglycemic clamp. We used fast Fourier
transform (FFT) and Wavelet transform (WT) based methods to assess skin
blood flow and developed models to characterize insulin-induced blood flow
changes.

Results
We demonstrated the application of Fourier and Wavelet analysis in analyz-
ing LDF skin blood signals. For group 1 subjects, by using power spectral
density (PSD) and average scalogram, we showed changes of blood flow in
response to insulin during hyperinsulinemic euglycemic clamp in all five char-
acteristic frequency bands are not statistically significant. Between group 1
and the healthy group, changes in relative spectral power contributions of
some frequency components are statistically significant. We constructed a
time-evolution model derived from WT scalogram, and this can be used to
study the time-evolutionary changes of the endothelial activity in response
to insulin. A preliminary analysis of endothelial activities (pre, low, high
insulin) in the time-evolution model is attempted using multiple sinusoidal
fitting, the dominant amplitude term has an oscillation of 0.005 rad/s with



very small standard deviation, and the less dominant amplitude oscillation
has an oscillation of about 0.0127 rad/s. However, we find it difficult to in-
terpret these oscillations physiologically.

Conclusions
FFT (spectral analysis) and WT (scalogram) based methods together with
statistics can be adequately used to investigate controls of skin blood flow
by detecting the frequency content of LDF signals. Wavelet analysis has the
advantage of obtaining better frequency resolution for lower frequency com-
ponents (e.g., endothelial activity).

In this cohort of individuals with central obesity who are at risks of devel-
oping cardiovascular diseases (CVD), our analyses show that insulin-induced
vasodilatory effects are impaired.
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Chapter 1

Introduction

1.1 Overview

Laser Doppler Flowmetry (LDF) is a non-invasive method for monitoring
blood flow in superficial tissues, e.g., skin microcirculation. It has been widely
used as a clinical and research tool ever since its introduction in 1975 [52] to
explore microvascular perfusion changes under physiological and pathophys-
iological conditions. One major advantage of LDF is that it is capable of
quantifying changes of blood flow in response to stimuli without disturbing
the normal state of the subject [52]. These stimuli may include endothelium-
related dilator substances, delivered by iontophoresis, arterial occlusion and
local heating. It is sensitive and therefore able to capture blood flow changes
in response to stimuli [13].

LDF signals are made up of a number of physiological oscillations and
when analyzed in the frequency domain, their peaks can be noticed. These
oscillations include: 1. Cardiogenic activity (0.4-1.6 Hz) represents the heart
beat; 2. Respiratory activity (0.15-0.4 Hz) is the rhythmicity of breath; 3.
Myogenic activity (0.06-0.15 Hz) represents rhythmic activity of vessels, 4.
Neurogenic activity (0.02-0.06 Hz); 5. Endothelial activity (0.0095-0.02 Hz)
corresponds to metabolic activity [51] [50].

Literature suggests that the relative contribution of power spectral den-
sity (PSD) of these bands is indicative of vascular (function) health and
reactivity. Changes in vascular function are well recognized to be associated
with cardiovascular diseases (CVD) such as hypertension, coronary heart dis-
ease, peripheral vascular disease and diabetes. There are a number of CVD
risk factors that give rise to changes in vascular functions, e.g, obesity, in-
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sulin resistance, and aging. Metabolic syndrome is mainly characterized by
obesity and insulin resistance. And this will be briefly reviewed in Chapter 2.

This thesis studies changes to blood flow measured by LDF at rest for
healthy people and in response to insulin for a cohort of individuals with
features of metabolic syndrome by exploring the frequency components of
LDF signals using Fourier and Wavelet based methods.

1.2 Chapters

Chapter 2 contains the background literature review relevant to this thesis.
Related physiology is briefly described, this is followed by a short review
of common assessment methods used in assessing vascular functions. LDF
is introduced in more detail which includes measurement and limitations.
The relevant and necessary mathematical foundations of Fourier analysis
and Wavelet analysis are then briefly summarized. Information on ethics
committee approval and softwares used are given at the end of the chapter.

Chapter 3 describes our study population, LDF monitoring device set
up (laser probes), and followed by descriptive statistics of the data sets.
Fourier analyses of the LDF signals are presented, including PSD. Normality
of results is tested before relative spectral power contributions are compared
using two-tailed Student t-test. Sensitivity of Fourier transform parameters
are also tested, i.e., choice of window function and overlap percentage.

Chapter 4 employs Wavelet transform to analyze LDF signals due to its
advantage in having good frequency resolution for lower frequency compo-
nents. Comparisons have been made with PSD from the average scalogram.
Results obtained are in general agreement with Fourier analysis as would be
expected.

Chapter 5 attempts to exploit the WT’s advantage in resolving lower fre-
quencies, which may suit our study of the endothelial activity band. A time-
energy evolution model is presented which gives us a different perspective for
analyzing the LDF signal. A sinusoidal fitting scheme of the endothelial band
time-evolution curves is also described, changes in oscillatory differences for
pre, low and high insulin measurements are presented.

Chapter 6 summarizes this work and presents ideas for further research.
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Chapter 2

Background

2.1 Overview

In this chapter, we will review the following background literature:

• A brief introduction of human/skin circulation, insulin-resistant states
associated with microvascular dysfunctions.

• Laser Doppler flowmetry.

• Fourier analysis.

• Wavelet analysis.

2.2 Physiology and Methods

2.2.1 Human Circulation

Overview

Cells as individual identities have long evolved into organs or tissues with
increasing complexity. To keep this collective system functional and stable,
homeostasis must be maintained, therefore an evolutionary necessity of this
is the development of a circulatory system to deliver nutrients, transport
oxygen, hormones and remove waste products of metabolism [50] to organs
and tissues. Circulation also regulates body temperature [33].

The cardiovascular system consists of the heart, blood vessels and blood [47],
this can be illustrated in Fig. 2.1. Blood is ejected from left ventricle (sys-
tole) and flows through the aorta and then is progressively distributed to
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smaller arteries, arterioles and the capillary bed where major regulation of
tissue perfusion occurs. Blood returns to the heart via the venous system
and eventually fills the right ventricle and atrium from where it will be trans-
ported to the pulmonary system (Lung) and oxygenated, after oxygenation
blood again enters the left atrium (diastole) and completes a full body circu-
lation. Mechanically, the system maintains a balanced relationship between
pressure and resistance [22] through local and systemic controlling mecha-
nisms. Blood flow is proportional to blood pressure and inversely propor-
tional to vascular resistance. However vascular resistance is also modified by
biochemical agents through vasodilatory and vasoconstrictive mechanisms.

Figure 2.1: Artistic impression of the human circulation. Reproduced from
Dorling Kindersley Clip Art

Microcirculation describes blood flow of small vessels (diameter< 100µm),
this is represented as webbed microvascular beds in the above figure. These
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vessels include arterioles (mean diameter: 30µm), capillary (8µm) and venules
(20µm) [47]. It is the primary site for exchange of materials between inter-
stitial. A typical capillary bed can be illustrated in Fig. 2.2.

Figure 2.2: Artistic impression of the a capillary bed. Reproduced from
Dorling Kindersley Clip Art

There are many types of diseases associated with macro and microcir-
culation dysfunction, for example, atherosclerosis, hypertension, peripheral
vascular disease, coronary disease and diabetes, which is a major risk factor
for cardiovascular diseases (CVD) [29] whose microvascular complications in-
clude retinopathy, neuropathy, diabetic foot, nephropathy, etc.

Metabolic syndrome (MS) is defined by a cluster of factors that may
predispose individuals to cardiovascular diseases (CVD) and type 2 diabetes.
Prevalence of metabolic syndrome in the adult population in developed world
is suggested to be around 15%-30% [9]. For example, in the U.S. the age-
adjusted prevalence is about 23.7% [20].

According to ATP-III (the National Cholesterol Education Program Adult
Treatment Panel-III), having 3 or more of the 5 features (central obesity,
raised triglycerides, reduced HDL-cholesterol, hypertension, raised fasting
plasma glucose) can be classified as MS [9]. These features have been known
to be associated with impairment in tissue blood flow, e.g., impaired skin
capillary recruitment [45], impairment in endothelium-dependent vasodila-
tion [19], altered functional hyperemia [27] and endothelial dysfunction oc-
cur during the early onset of MS [18] and type 2 diabetes [35] which usually
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happen before more serious vascular damage.

Insulin resistance is responsible for obesity, hypertension, type 2 diabetes
and atherosclerotic CVDs [17]. And insulin resistance is probably the cause
of endothelial dysfunction [40]. Features of MS and type 2 diabetes may be
called the insulin-resistant states.

Cardiovascular risks may be assessed by examining endothelial function,
reactivity and sensitivity of blood flow in response to functional challenges
such as post-occlusive hyperemia, local heating, or in response to certain bio-
chemical stimulants, such as insulin, acetylcholine, and sodium nitroprusside.

Skin Blood Flow

The human skin is the largest tissue of the human body, about 16% of total
human body weight [47]. It contains multiple layers: the epidermis (around
100µ m) which forms a protective barrier, dermis and hypodermis, as shown
in Fig. 2.3. The hypodermis (around 10mm) contains adipose tissue for in-
sulation (thermal and mechanical).

Dermis (around 1.3mm) is a loose connective tissue that contains blood
vessels, muscles & etc. This region contains a microvascular network where
nutrients and waste products exchange. Circulation at this region is some-
times known as nutritional flow. In human extremities, arteriovenous anas-
tomoses (AVA) exist to regulate temperature. And blood flow through arte-
rioles and venules is the thermoregulation flow [33]. These vessels are under
cutaneous sympathetic vasomotor control.

Skin blood flow is sensitive to thermoregulation, and is essential for deliv-
ering nutrients, it’s part of the microcirculation network, and therefore many
local and central mechanisms are present in the skin blood flow, and it is also
probably the most accessible site for experiments. Hence skin can be used a
surrogate of deeper tissues such as muscle, kidney or tissues and organs which
are less accessible. Using a non-invasive technique to continuously monitor
skin blood flow may therefore enhance our understanding of the endothelial
function as a whole.
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Figure 2.3: Artistic impression of the human skin anatomy. Reproduced
from [36].

Endothelial Function

Endothelium is a cell-lining on the lumen and connected to the basal lamina
of vessels. [33] A coating of biopolymer on endothelial cells is called the gly-
cocalyx. The glycocalyx and endothelial cells form the endothelium, thus the
endothelium plays the central role in regulating vascular homeostasis, its pri-
mary role is to retain blood plasma while allowing nutrients to pass through
(a semi-permeable membrane). The endothelium releases vasodilator agents
such as nitric oxide (NO), initially known as the endothelium-derived relax-
ing factor (EDRF) [28], endothelium-derived hyperpolarizing factors (EDHF)
and prostacyclin in response to sensing the shear stress generated by blood
flow [23], as well as in response to acetylcholine [24].

The primary role for NO is the continuous modulation (through vasodi-
lation) of basal tone. Basal tone is the initial (partial) contraction state of
resistance vessels [33], this can be illustrated in Fig. 2.4. Shear stress stim-
ulation accounts for approximately 60-80% of NO production while insulin’s
role is less important, i.e., a less potent dilator during hyperinsulinemia [14].
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Figure 2.4: A scheme for endothelial cells and the release of NO to relax
vascular smooth muscle cells . Reproduced from [41].

The vascular effects of insulin as an endothelium-dependent vasodilator
has been studied by various authors [15] and it is known that insulin has a di-
rect action on blood vessels to modulate endothelial activity and vasomotion
responses. There is sufficient evidence that insulin is capable of increasing
access to insulin itself and muscle cell glucose uptake [15] through capillary
recruitment [11].

The endothelium also secretes another vasoconstrictive agent, known as
the endothelin (ET-1) [57]. And it is suggested that endothelin may con-
tribute to the basal tone of resistance vessels to a small amount. It is also
reported that insulin stimulates both endothelin and NO in human forearms,
these two vasoactive agents have opposing effects [10]. ET-1 may be an im-
portant component of endothelial dysfunction, as it is found that level of
ET-1 is elevated in subjects with insulin resistance [34].

2.3 Assessment Methods

Previously high resolution ultrasound has been used in the assessments of en-
dothelial function of arteries through flow-mediated dilation, such as endothelium-
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dependent vasodilator NO or prostacyclin, for example, on the brachial
artery, but with poor reproducibility [26]. Other techniques include pulse
wave velocity and augmentation index on the brachial artery measured using
pulse wave analysis [56].

There are several assessment methods for measuring microvascular func-
tions. For example, the strain-gauge venous plethysmography for studying
forearm blood flow, the results are usually reproducible, but this method is
invasive (requires brachial artery catheterization) [13].

LDF has been used extensively by researchers to assess endothelial func-
tion in both healthy, athletic subjects and those who have vascular dis-
eases [43] [32] [16]. In these studies, experiments were designed specifically
to assess various microcirculatory functions, measured at baseline, during
occlusion, and post-occlusive reactive hyperaemia (PORH), and also during
hyperinsulinemic euglycemic clamp.

Spectral analysis is a common tool for breaking down time series into
constituent cycles and is used extensively in engineering disciplines such as
electronics and statistics. It has been previously used to analyze human
blood flow before and after exercises [32]. Wavelet analysis is a technique
that has also been used in analyzing low-frequency oscillations of LDF blood
signals [31]. LDF blood flow signals are captured as time series. The ability
of LDF to capture oscillations existing in blood flow may be illustrated in
Fig. 2.5.
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Vasomotion – Power Spectral 
Density Analysis of Blood Flux 

0                            5                             10  min

0                     1                              2                              3                              4                              5  min    

0                             20                           40                              60                            80                           100 sec    

Figure 2.5: LDF measurements zoomed at 100 sec, 5 min and 10 min respec-
tively.

2.3.1 Laser Doppler Flowmetry

The LDF technique takes advantage of the Doppler effect, which is seen as a
frequency shift in coherent monochromatic light waves scattered from moving
red blood cells (erythrocytes) in the blood [37]. A LDF device uses two laser
probes, one is the light-emitting probe and the other is the receiving probe.
The emitted light is able to penetrate a certain amount of tissue depth. A
scheme is illustrated in Fig. 2.6.
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Figure 2.6: LDF measurement scheme. Reproduced from [36].

For our study, we use the DRT4 LDF device (as illustrated in Fig.2.7)
manufactured by Moor Instruments Ltd, UK, a 785nm wavelength, high
power 20mW, wide separation (4mm) probe (DP1-V2-HP probe, Moor In-
struments UK) and a 785nm wavelength, low power 1mW, standard separa-
tion (0.5mm) probe (class 3A per BS EN 60825-1:1994) which have been esti-
mated (using Monte Carlo simulation [12]) to peak at approximately 1.7mm
and 0.7mm (tissue depth) respectively, signifying that the high power probe
can detect significantly more photons, as shown in Fig. 2.8. This indicates
that the high power probe may be used in detecting vessels in deeper tissue,
i.e., muscles. All our LDF measurements are taken at a sampling rate of
40Hz.
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Figure 2.7: LDF device, DRT4, Moor Instruments.

Figure 2.8: Monte Carlo simulation of laser probe detection depth. Repro-
duced with permission from [12].
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2.3.2 Measurement

A typical LDF skin blood signal of baseline is illustrated in Fig. 2.9 which
contains measurements of flux, red blood cell concentration, speed and am-
bient temperature. F1 is measured by high power probe and F2 is measured
by standard probe. Flux is related to the product of average speed and con-
centration of moving red blood cells in the tissue sample volume. This is the
parameter most widely reported in laser Doppler publications. Red blood
cell concentration gives an indication of the number of moving red blood
cells in the tissue sample volume. Speed gives an indication of the average
speed of red blood cells moving in the tissue sample volume.

Arbitrary units are used for measuring blood flux, red blood cell concen-
tration and speed.

Our instrument also has the capability to record temperatures, as re-
flected in the following figure. Varying skin temperature is used as a stimuli
for assessing microcirculatory functions.

Figure 2.9: LDF signal as displayed on a PC.

All participating subjects fasted and refrained from caffeine containing
drinks for at least 2 hours before experiment and acclimatized for 30 min
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prior to measurement of blood flow. Experiments were performed in a tem-
perature controlled quiet room (23-24◦C). Subject should maintain a supine
body position. And our measurements were taken at the calf muscle (tibialis
anterior muscle of the lower leg). The whole experimental setup can be il-
lustrated in Fig. 2.10

Figure 2.10: Measurement of LDF skin blood flow signal taking place.

2.3.3 Hyperinsulinemic Euglycemic Clamp

The hyperinsulinemic euglycemic clamp was used to measure insulin-mediated
glucose disposal rate (M/I). Insulin sensitivity was measured as glucose up-
take during infusion of human insulin (Actrapid, Novo Nordisk) initially at
a rate of 0.2 mU kg−1 min−1 for one hour and then at 1.5 mU kg−1 min−1

for a further 2 hours. All individuals achieved euglycaemia (normal blood
glucose concentration) with glucose concentrations clamped at 5.0 mmol/l.
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During this 2 h process, we recorded a LDF signal as the pre-insulin
measurement before low dose insulin infusion in the last 30 min of low dose
insulin infusion, another LDF signal was recorded as the low-insulin measure-
ment, and in the last 30 min at the end of high insulin infusion, a last LDF
signal was recorded as the high-dose insulin measurement. This protocol is
shown in Fig. 2.11 and was constrained by clinical considerations during this
procedure.

Figure 2.11: A scheme for describing the Hyperinsulinemic Euglycemic
Clamp and LDF measurement.

2.3.4 Limitations

Arbitrary Unit

The LDF blood flux uses arbitrary perfusion unit as the exact physical unit
(ml/100gm/minute) varies because of the nature of the flow in capillaries
and connecting small blood vessels, and the effect of varying skin color and
structure, one of LDF’s intrinsic limitations.

Movement artifacts

Movement between the probe tip and tissue being measured will cause a
Doppler shift and thus produce blood flux artifacts. This can be reduced
by fixing the LDF probes with a double-sided sticky ring. Some movement
artifacts may be characterized as having the shape of an abrupt spike in the
signal. We rejected signals that contain obvious movement artifacts.
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Reproducibility

Our data sets were measured from either lower leg or forearm. Even repeated
measurements at the same spot (probe location) show temporal variations
of up to 25% difference [53]. One study investigated the LDF measurements
under identical conditions, on the same site of arm and at the same time
of the day, the variation was found to be up to 25.5% [1]. And since mi-
crocirculation is subject to multiple factors, we feel that this limitation is
difficult to overcome. However, with experiment procedural standardization
(i.e., controlled temperature, quiet room) we can minimize the variations.

2.4 Information on Medical Ethics

The study was approved by the Southampton General Hospital Research
Ethics Committee (LREC05/Q1704/38) and conducted in accordance with
the declaration of Helsinki. All participants were unpaid volunteers and gave
informed written consent.

2.5 Software

All Fourier and Wavelet based analyses were performed on MATLAB 2009b
(MathWorks Inc). Statistical analysis was performed on SPSS 18.0 (PASW).
Other softwares used include Microsoft Excel and LATEX for preparing this
thesis.
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2.6 Fourier Analysis

2.6.1 Introduction

The LDF signals we acquired from experiments are represented in time series,
i.e., in the time domain. The amount of information we can derive from time
domain is rather limited. We require methods which can map signals from
time domain to frequency domain to interpret the LDF signals from a differ-
ent perspective. In the frequency domain we view the signal in terms of the
distribution of power spectrum by which the characteristic peaks at certain
frequencies can be visualized. Both time and frequency domain methods are
complimentary and could provide insights from different perspectives [54].

2.6.2 Fourier Transform

Mathematical Overview

Fourier analysis is based on the mathematical idea of Fourier series, where
a time series or continuous function (provided the Dirichlet conditions are
satisfied) can be represented as a sum of trigonometric functions. These si-
nusoidal functions contain frequencies that are harmonics of the fundamental
frequency, and thus establish the link between the frequency and time do-
mains.

We begin by reviewing the fundamentals, the evolution and application
of Fourier analysis in the biomedical signal processing context from Fourier
series to Fourier transform, and from continuous transform to discrete trans-
form respectively.

Fourier Series

The basis functions Fourier chose to represent periodic functions are harmon-
ically related complex sinusoidal functions, written as

exp (jnω0t) (2.1)

or
exp (jn2πft) (2.2)

where T is the fundamental period and ω0 = 2π/T = 2πf is the fundamen-
tal frequency, n ∈ N. Eq (2.1) refers to the sets of periodic functions with
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frequencies that are all multiples of fundamental frequency 2π/T . f is fre-
quency in Hz.

A time series x(t) with period T (i.e., x(t) = x(t+T )) can be represented
as a linear combination of trigonometric basis functions, or

x(t) =
∑
n∈Z

cn exp (j2πfnt), (2.3)

where the coefficients cn’s are averaged over the inner product of x(t) and
basis functions

cn =
1

T
〈x(t), exp (j2πfnt)〉 (2.4)

=
1

T

∫ T/2

−T/2
x(t) exp (−j2πfnt)dt. (2.5)

Fourier Transform

While the Fourier series is useful for time series trigonometric basis function
expansion, the Fourier transform (FT) is essential and necessary when repre-
senting the trigonometric series expansion of aperiodic continuous functions,
which is the case for most biomedical signals.

For example, the LDF signals are aperiodic, i.e., there is no obvious pe-
riod associated with them, otherwise the problem of analyzing these signals
would become trivial. The Fourier series is an expansion technique for pe-
riodic function or series. 15 years after Fourier published his paper that
explored Fourier series, he once again found out ways to represent aperiodic
functions as weighted integrals of complex sinusoids that are not harmoni-
cally related as opposed to Fourier series of periodic functions. For aperiodic
functions, we assume that the fundamental period is infinite, or the funda-
mental frequency (inverse of period) is infinitesimally small. This requires us
to resort to integrals in evaluating the Fourier transform of aperiodic signals.

In short, the Fourier transform of an aperiodic continuous function f(t)
is expressed

X(f) =

∫ ∞
−∞

x(t)e−j2πfntdt. (2.6)

and x(t) can be recovered from X(f) as

x(t) =
1

2π

∫ ∞
−∞

X(f)ej2πfntdf. (2.7)
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However, nearly all biomedical signals are analogue signals acquired from
electronic devices which need to be sampled at a particular frequency for
analysis. The nature of such a sampling process requires us to explore them
in discrete time without loss of information.

The Sampling Theorem

For analogue signals to be analyzed with digital computers, they must first
be digitized, a process that involves sampling and quantization. Sampling
is the process of discretizing the analogue signal with a uniform time inter-
val ∆t, (equally spaced) the sampling interval, and the sampling rate is the
inverse of the sampling interval: fs = 1/∆t. It’s a proven fact that it’s pos-
sible to reconstruct a bandwidth-limited signal from equally spaced samples
by Whittaker-Shannon interpolation formula [39].

We start from reviewing the Nyquist-Shannon Sampling Theorem, and
move on to the discrete representation of Fourier transform.

Mathematically the sampling theorem [38] [46] is stated as follows: Sup-
pose a continuous time signal x(t) is band-limited such that X(f) = 0 for
|f | > fM . Then x(t) is uniquely determined by its samples x(nT ), n ∈ N
provided the sampling frequency fs satisfies

fs > 2fM ,

where for periodic functions fs = 2π/T . This provides a theoretical basis for
determining a sampling rate that preserves information content of a signal.

Discrete-time FT

After the sampling process we obtain x[n], a truncated N-point discrete
signal with period N . Since the Fourier basis functions are complex sinu-

soids, the fundamental frequency is simply 2π/N and kth harmonic is just
exp (jkn2π/N). Similar to Eq. (2.4), the discrete-time Fourier conversion
for periodic functions can be written as, the coefficients

c[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn. (2.8)
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Suppose it’s sampled from x(t) with a sampling rate of fs (samples/second).
Then the period in seconds is N/fs, and the fundamental frequency becomes
the reciprocal of the this period, i.e. fs/N Hz. For non-periodic x[n], the
period may be assumed to be infinite, i.e., N → ∞ hence the fundamental
frequency defined above fs/N is infinitesimally small, this means the DTFT
would be a continuous function in the Fourier domain, or

X(Ω) =
∑
n∈Z

x[n]e−jΩn, (2.9)

where Ω is a multiple of the fundamental frequency.

It’s possible now to obtain a reconstruction of x[n] from the DTFT via
its inverse transform

x[n] =
1

2π

∫
2π

X(Ω)ejΩndΩ. (2.10)

Here we use Ω for DTFT to distinguish from continuous-time FT which uses
ω.

Discrete FT

Again we need to discretise frequencies Ω so as to realize numerical imple-
mentation. Based on DTFT (Eq. (2.9)), when we discretize frequencies we
obtain the following:

X[k∆Ω] =
∑

x[n]e−j(k∆Ω)n. (2.11)

For numerical implementation, we can only have a finite number of points.
Suppose we have N points, and since the Fourier transform X(Ω) is 2π-
periodic, the frequency resolution is therefore ∆Ω = 2π/N . We thus have
the Discrete Fourier Transform (DFT) and its inverse:

X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn (2.12)

x[n] =
1

N

N−1∑
k=0

X[k]ej
2π
N
kn. (2.13)

DFT assumes that the N points of any sampled function x[n] are a single
period of x[n], which corresponds to a truncated DTFT of x[n]. In any case,
the DFT is periodic in the Fourier domain with an interval of N ·(fs/N) = fs
Hz.
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Fast Fourier Transform

The Fast Fourier Transform (FFT) is a fast mathematical algorithm [49] that
greatly reduces the number of calculations used for obtaining the DFT of a
signal. FFT is achieved fastest at a cost of only taking n samples into calcu-
lation, where n is a power of 2.

Properties Fourier Transform

When taking the Fourier transform of time signal f multiplied by a window
function g, we use the following identity,

F(f · g) = F ? G. (2.14)

Eq. 2.14 shows that the FT of a product of a signal and a window function is
equivalent to applying the convolution of their respective Fourier transform.

2.6.3 Power Spectral Density

Overview

The FFT can be used to reveal the periodicities contained within the signal,
thus it enables us to roughly determine the overall shape and local spectral
features. However the frequency resolution of the FFT is fixed across the
spectrum and the estimation of power spectral density (PSD) is not usually
reliable in analyzing biomedical signals. For example, a direct FFT of LDF
signals reveals that the signal energy is clustered mostly around the lower
frequency range, but it can hardly give us more details, this will be shown in
the next section.

Direct FFT is a classical method for estimating PSD, however it implic-
itly assumes that data is zero outside the analysis range. This could lead to
distortions in the estimate [44]. To improve the reliability of FFT PSD esti-
mation we resort to methods such as average periodogram with overlapping
windows, e.g., Welch method [49].

Periodogram

Having reviewed Fourier transform techniques for both continuous and dis-
crete functions, we can apply FT techniques to find out the energy contained
within a signal in the frequency domain. Parseval’s theorem states that the
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Fourier transform preserves the signal’s energy in both domains, for an anlog
signal x(t), we have ∫ ∞

−∞
|x(t)|2 =

∫ ∞
−∞
|X(f)|2df. (2.15)

|X(f)|2 in the right hand side of Eq (2.15) is defined as the power spectral
density or power spectrum, or

PSD(f) = |X(f)|2. (2.16)

The periodogram is defined as a direct FFT of a signal followed by averaging,

Pxx(f) =
1

N
|X(f)|2 (2.17)

and is therefore a measure of the PSD. The periodogram is equivalent to the
Fourier transform of the autocorrelation function [49].

Welch Method

To improve the reliability of PSD estimation by periodogram, one resorts to
average periodogram with segments (windowing), or even better, average pe-
riodogram with overlapping segments (overlapped windowing), which could
statistically improve the estimation. Welch suggested [49] using an overlap-
ping of 50%, which he considers a good compromise.

By default, any truncated data (e.g., taking 600 seconds from LDF blood
flux baseline) from a signal for estimating the PSD is multiplied by a rectan-
gular function. The Fourier transform of such a window has slowly decaying
sidelobes. In fact the sidelobes decay at a rate of approximately 6dB ev-
ery octave (where an octave is a change in frequency with a factor of 2 or
1/2) [48]. Such a window may not be an optimal window depending on the
type of signals we wish to analyze. For example, in LDF signals, the PSD
exhibits clustering at lower frequency range while the high frequency (car-
diogenic activity) is noticeable compared with surrounding frequencies and
separated at a distance. It is thus beneficial to choose a window with faster
decaying sidelobes to prevent the sidelobes from overpowering the cardio-
genic activity frequency band. We will have more discussions on this in the
Fourier analysis section.
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2.7 Wavelet Analysis

2.7.1 Overview

Wavelet analysis from the 1990s has been used extensively in biomedical sig-
nal processing and many other fields such as telecommunications, mechanical
engineering, etc. It has applications as diverse as detecting engine knocks
and oil pipe leakage [42]. In Civil Engineering, Wavelet transform (WT) has
been used for system identification [30]. In medical fields, it has been used in
analyzing irregular heart rate, turbulent blood flow, hearing aids and other
diagnoses [2]. WT can also be used in conjunction with clustering and clas-
sification to extract medically useful information [3].

Motivation

Unlike the Fourier transform which transforms time series to the frequency
domain only without retaining any time information, the Short-time Fourier
transform (STFT) and Wavelet transform simultaneously retain time and
frequency information. Like the Fourier transform, the STFT is limited by
a fixed time-frequency resolution box, i.e., to resolve high frequency compo-
nent, the time window needs to be short and vice versa. This poses a disad-
vantage when analyzing biomedical signals which usually have very dynamic
frequency characteristics. For a signal like LDF blood flux that contains mul-
tiple frequencies, using STFT, we are forced to choose a frequency resolution
that is compromised (not optimal) for all frequencies. Wavelet analysis on
the other hand is adaptive in terms of time-frequency resolution.

In other words, we choose the WT over STFT for its ability to be adaptive
and a joint time-frequency representation that provides us different perspec-
tives where we can view a signal’s time-energy evolution.

Introduction

A fundamental difference of the WT from STFT is the indirect (however,
equivalent) manipulation of frequency, i.e., WT treats frequencies as scales.
Scale is a concept that is similar to frequency but oppositely defined as we
shall see later. WT is achieved by multiplying baby wavelets (generated by a
mother wavelet function through dilation) to the original time signal. WT’s
adaptivity can be interpreted as being able to resolve higher frequency com-
ponents using small time windows and lower frequency components using
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large time windows.

Therefore an intrinsic feature of Wavelet analysis is that it can have very
good time resolution for the higher frequency component, and very good fre-
quency resolution for lower frequency components. This is good news for
us because LDF skin blood flux signals contain several characteristic lower
frequency bands, namely the endothelial and neurogenic bands. And an even
lower frequency peak was found to exist in LDF skin blood flux, i.e., which
is present in the 0.005-0.0095 Hz band and may involve the endothelium-
derived hyperpolarizing factor (EDHF) mechanism [31].

We will primarily use the continuous wavelet transform (CWT) to obtain
a time-frequency representation and construct average scalogram from CWT
coefficients (which is equivalent to FT coefficients). We use these construc-
tions to perform similar analyses as that will be achieved using FFT. For
example, PSD is comparable to the average scalogram.

We emphasize that the Wavelet analysis is not itself superior than the
Fourier analysis, but it’s not bound by the same fate of FT & STFT (having
fixed time-frequency resolution for the entire analysis). WT’s time-frequency
representation feature is achieved at a cost of having redundant coefficients
at each scale (frequency). However the beauty of Wavelet analysis lies in
its time-energy evolution perspective. And it also provides us with many
interesting applications that cannot be realized by Fourier analysis.

2.7.2 Continuous Wavelet Transform

The notion of the Wavelet transform is to compare the time signal with
a series of wavelets generated by the mother wavelet. Mathematically it’s
defined as an inner product of the signal and the basis function (wavelet),
this may be expressed as

W (a, b) = 〈f(t), ψ(
t− b
a

)〉 (2.18)

=
1√
a

∫
f(t)ψ∗

(
t− b
a

)
dt. (2.19)

The scalogram is similarly defined as the spectrogram for STFT

Scalogram = |W (a, b)|2. (2.20)
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The inverse CWT can be used to recover f(t), it’s expressed as

f(t) =
1

Cψ

∫
da

a2

∫
W (a, b)

1√
a
ψ

(
t− b
a

)
db. (2.21)

In Eq.(2.18), a is known as the dilation factor, b is the shifting factor.
ψ(t) is the mother wavelet and ψ((t−b)/a) is the translated and dilated baby
wavelet. We therefore have for each scale, a fully decomposed transform.

Wavelet Selection

When performing WT, we ask what kind of mother wavelet we should use.
The CWT resembles the cross-correlation function, and thus is a measure of
similarity between the signal and the wavelet function. The choice of wavelet
greatly influences the success of wavelet applications. However, the process
of selecting the most appropriate wavelet can hardly be explained by math-
ematics alone. The best strategy is probably by trial and error [42].

If the wavelet function has good resemblance to the signal of analysis,
then we stand a good chance of getting good coefficients [42]. This can best
be verified by visual inspection and by trial and error [42].

Previous studies [31] [8] [51] [32] [7] of LDF blood flux by Wavelet analysis
have used the complex Morlet wavelet. These authors contend that Morlet
wavelet is a good compromise in both time and frequency resolution, i.e.,
both time and frequency resolution are good. We are forced to make a com-
promise when choosing a mother wavelet for WT because each individual
time-frequency box still cannot escape the fate of Heisenberg Uncertainty
principle. This is a similar situation as when we choose Hamming window
function for FT.

Morlet Wavelet
The Morlet wavelet in complex form (real Morlet is just a special case of the
complex Morlet) is defined to be

ψ(t) =
1√
πfb

ei2πfcte−t
2/fb (2.22)

=
1√
πfb

[cos(2πfct) + i sin(2πfct)]e
−t2/fb (2.23)

where fc is the central frequency in Hz and fb is the bandwidth parameter.
As we can see, Morlet is a Gaussian function modulated by sine waves, as
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shown in Fig. 2.12.
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Figure 2.12: Complex morlet wavelet, real and imaginary parts.

The Heisenberg Uncertainty principle states that only Gaussian-like func-
tions can achieve best time-frequency localization [42], this is the motivation
behind choosing the complex Morlet wavelet. By Parseval’s theorem, Fourier
transform preserves energy in both time and frequency domains. The energy
of a Morlet wavelet, E, time (tc) and frequency (ωc) centres are defined re-
spectively in Eq. 2.24

E =

∫ +∞

∞
(|f(t)|)2dt =

1

2π

∫ +∞

−∞
(|F (ω)|)2dω (2.24)

tc =
1

E

∫ ∞
∞

t(|f(t)|)2dt

ωc =
1

2πE

∫ ∞
−∞

ω(|F (ω)|)2dω

We can also define time (∆t) and frequency (∆ω) widths as

∆t =

√
1

E

∫ ∞
−∞

(t− tc)2(|f(t)|)2dt (2.25)

∆ω =

√
1

2πE

∫ ∞
−∞

(ω − ωc)2(|F (ω)|)2dω

For an ideal localization in time, the wavelet function f(t) should con-
centrate near the time centre, i.e., a small ∆t. This is also true for frequency
localization. Thus to achieve good localization in both time and frequency
domains, the product ∆t∆ω should be small. Next we show that this product
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cannot exceed a constant value. Assume our wave function has both time
and frequency centres at the origin, i.e., tc = 0, ωc = 0

∆2
t∆

2
ω =

1

2πE2

∫ ∞
−∞

t2|f(t)|2dt
∫ ∞
−∞

ω2|F (ω)|2dω (2.26)

By Cauchy-Schwarz inequality we have the following

∫ ∞
−∞

t2f 2(t)dt

∫ ∞
−∞

∣∣∣∣dfdt
∣∣∣∣2dt ≥ ∣∣∣∣ ∫ ∞

−∞
tf(t)

df

dt
dt

∣∣∣∣2 (2.27)

since the inequality says for any square integrable functions (finite energy)
f(t) and g(t) defined on the interval [a, b], we have∫ b

a

|f(t)|2dt
∫ b

a

|g(t)|2dt ≥
∣∣∣∣ ∫ b

a

f(t)g(t)dt

∣∣∣∣2.
Observe that the right hand side of Eq 2.27 becomes∫ ∞

−∞
tf(t)

df

dt
dt =

∫ ∞
−∞

t
d(f 2/2)

dt
dt (2.28)

= t
f 2

2

∣∣∣∣∞
−∞
−
∫ ∞
−∞

f 2

2
dt (2.29)

= −1

2

∫ ∞
−∞

f 2dt (2.30)

= −E
2

(2.31)

using chain rule for differentiation and integration by parts, and since in the
above equation

t
f 2

2

∣∣∣∣∞
−∞

(2.32)

when evaluated in the range of [−∞,∞] is 0. Note also that the Fourier
transform of df/dt is simply iωF (ω) since by definition

F
(
df

dt

)
=

∫ ∞
−∞

df

dt
e−iωtdt (2.33)

= f(t)e−iωt
∣∣∣∣∞
−∞
−
∫ ∞
−∞

fde−iωt (2.34)

= −
∫ ∞
−∞

f(t)(−iω)e−iωtdt (2.35)

= iωF (ω) (2.36)
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With Parseval’s theorem, this implies∫ ∞
−∞

∣∣∣∣dfdt
∣∣∣∣2dt =

1

2π

∫ ∞
−∞

ω2|F (ω)|2dω. (2.37)

Now subsitute Eq. 2.37 and Eq. 2.31 into Eq. 2.27∫ ∞
−∞

t2f 2(t)dt

∫ ∞
−∞

∣∣∣∣dfdt
∣∣∣∣2dt ≥ ∣∣∣∣ ∫ ∞

−∞
tf(t)

df

dt
dt

∣∣∣∣2 (2.38)

⇒ 1

2π

∫ ∞
−∞

t2f 2(t)dt

∫ ∞
−∞

ω2|F (ω)|2dω ≥ E2

4
(2.39)

⇒ E2∆2
t∆

2
ω ≥

E2

4
(2.40)

⇒ ∆2
t∆

2
ω ≥

1

4
. (2.41)

In other words, the time and frequency resolutions cannot both be arbitrarily
small. And in fact the above inequality holds only for Gaussian-like functions,
because in order for Eq. 2.27 to hold, the following must hold

d

dt
f(t) = m · tf(t) (2.42)

i.e., df/dt being proportional to tf(t), in which case the ordinary differential
equation Eq. 2.42 is solved to be Gaussian-like.

Scale and Frequency

Suppose the transform of a mother wavelet ψ(t) at the origin (t = 0), ψ̂(ω)
is concentrated at ω = ω0, then for a dilated and translated version of ψ(t)
which is ψ(a−1(t− b)) has time and frequency centres at t = b and ω = ω0/a
respectively. In this way W (a, b), a time-scale representation of signals, also
becomes a time-frequency representation function.

To implement continuous wavelet transform, we need to discretize scales.
We use the following scheme to discretize scales a. Let a0 be a constant such
that a = am0 where m is an integer. And we use the following formula to
convert scales to frequencies:

f =
fc
a ·∆

(2.43)

where ∆ is the sampling period (inverse of sampling frequency). For Morlet
wavelet, we usually choose fc to be 1 for convenience (the default central
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frequency for real Morlet wavelet is about 0.8 Hz). For example, if we set
a0 = 1.05, with f ranging from 0.0095 Hz to 1.6 Hz, we are able to discretize
a into 107 scales.

2.8 Summary

In this chapter, we summarized the background literature relevant to this
thesis. In physiology, this includes human circulation, especially skin micro-
circulation, and that microvascular dysfunctions causes changes in vascular
functions. And this can be assessed by performing experiments using LDF to
measure microcirculation. Skin can be used as a surrogate tissue for this pur-
pose for its accessibility and that it contains both non-nutritive and nutritive
flows. LDF experimental setup and equipments are specified, e.g., subject
body position, site of measurement, room temperature, etc. The procedure
for hyperinsulinemic euglycemic clamp is also included. Information on med-
ical ethics and softwares used are also included.

LDF recordings can be further analyzed using FFT and Wavelet based
methods, e.g., to explore LDF signal’s frequency content we could use PSD or
average scalogram, since it is reported that LDF signals contains at least five
characteristic frequency bands, as we have introduced in Chapter 1. These
bands represent cardiogenic (0.4-1.6 Hz), respiratory (0.15-0.4 Hz), myogenic
(0.06-0.15 Hz), neurogenic (0.02-0.06 Hz) and endothelial (0.0095-0.02) ac-
tivities. In light of this, the related mathematical foundations of Fourier
analysis and Wavelet analysis are also included and discussed.

We briefly proved the uncertainty principle, and showed that time and
frequency resolutions cannot both be arbitrarily small, and that Gaussian-
like functions can achieve optimal time-frequency resolution.
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Chapter 3

Fourier Analysis

3.1 Overview

We have described in the previous chapter the relevant mathematical back-
ground for analyzing LDF signals by the traditional Fourier based methods.
As such we will look at the signal in the frequency domain, choose an ap-
propriate window and use the Welch method to examine the power spectral
density distribution. Based on this method, we will perform the following
analyses:

• Estimate PSD for baseline LDF blood flux based on the Welch method.

• Based on estimated PSD, calculate relative energy contribution for each
frequency band for signals using high power and standard probes, as
well as insulin doses.

• Examine sensitivity to FFT parameters: window, number of overlap.

• Use statistical tests to determine whether changes of blood flow are
significant.

The statistics of relative spectral powers are presented in box-whisker
plots. Each box is composed of the minimum, lower, upper quartiles, median
and maximum values of a sample.

For all statistical tests, we use the two-tailed Student t-test with the null
hypothesis that the two samples have equal mean on the 0.05 level of sig-
nificance. Before these tests, we test normality of samples to ensure they
can be used for Student t-test. Test of normality is achieved by using SPSS
(Statistical Package for the Social Sciences) 18.
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Because our data contain small samples (n = 17 or n = 12), which is
smaller than 30 (the rule of thumb as required by central limit theorem in
probability theory [6]), we use the Shapiro-Wilk normal test [55], the null hy-
pothesis is that the data are normally distributed. For p-values smaller than
0.05, the null hypothesis can be rejected. Normality can also be observed on
a normal Q-Q plot.

For example, Fig. 3.1 and 3.2 show the Shapiro-Wilk test result and the
normal Q-Q plot of the relative spectral power of endothelial activity for 17
subjects measured by high power probe, where p-value is 0.145 and the null
hypothesis is not rejected.

Figure 3.1: Shapiro-Wilk test result.
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Figure 3.2: Normal Q-Q plot.

3.1.1 Subject Information

For our study, subjects are divided into three groups. The first group (Group
1) contains measurements of 17 subjects, the second group (Group 2) con-
tains measurements of 12 subjects (same subjects as in group 1, but) taken
6 months later, the number is smaller because not everyone in group 1 par-
ticipated a second visit. There is also a group that contains 3 measurements
from healthy subjects (lean mass, non-smoking). These subjects typically
have 3 or more features of metabolic syndrome, e.g., obesity (BMI> 30),
insulin resistance, etc. Refer to Table 3.1.1 for group 1 subjects information.

Each subject undergoes 3 blood flux measurements, i.e., pre-insulin, low-
dose insulin and high-dose insulin during hyperinsulinemic euglycemic clamp
as described in Chapter 2.

Mathematically the data are organized as having 2 layers in measurement
types and 3 layers in types of insulin dosage challenge or as follows:
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Table 3.1: Summary of Participating Subjects
Group 1 (µ± σ)

Age (years) 50.40±7.4
BMI (kg/m2) 30.46±3.89
Mean arterial blood pres-
sure(mmHg)

96.59±8.64

Table 3.2: Data Layers
Pre-insulin Low-dose insulin High-dose insulin

High Power Probe
√ √ √

Standard Probe
√ √ √

Our measurements of the healthy subjects excluded hyperinsulinemic eu-
glycemic clamp test. And due to control of study, detailed information on
these measurements will not be stated here, such as age, sex, BMI, mean
arterial blood pressure & etc. These three subjects are non-obese (BMI<24)
and non-smoking males.

3.2 Analysis of Data

3.2.1 Blood Flux Analysis

Mean, minimum, maximum values and standard deviation are the simplest
elements of descriptive statistics. The descriptive statistics of blood flux for
group 1 and group 2 LDF signals measured from the high power probe are
tabulated in Table 3.3 and 3.4. These data reflect that blood flux (measured
by the high power probe) decreases after low-dose insulin infusion and in-
creases again after high-dose insulin infusion, for both group 1 and group 2
subjects.

Statistics for the standard probe measurements are summarized in Table
3.5 and 3.6. For both group 1 and group 2 subjects, we observe slowly in-
creasing blood fluxes after low-dose and high-dose infusions respectively.

The mean blood flux of group 1 and group 2 are illustrated in Fig. 3.3 in
the form of box-whisker plots as described in the beginning of this chapter.
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Table 3.3: High power probe / Group 1 Statistics (AU)

Baseline mean std deviation min max
Pre-insulin 81.49 29.03 49.22 172.89
Low dose insulin 76.01 25.67 37.55 129.59
High dose insulin 98.09 36.01 38.05 173.74

Table 3.4: High power probe / Group 2 Statistics (AU)

Baseline mean std deviation min max
Pre-insulin 84.01 21.45 46.63 111.90
Low dose insulin 75.96 29.65 38.44 143.4
High dose insulin 88.21 32.05 41.55 131.30
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Figure 3.3: Mean blood fluxes for pre, low and high insulin. High power
probe/ Group 1&2
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Table 3.5: Standard probe / Group 1 Statistics (AU)

Baseline mean std deviation min max
Pre-insulin 9.35 2.26 5.84 31.96
Low dose insulin 10.29 1.75 6.60 24.62
High dose insulin 11.38 1.74 7.01 21.71

Table 3.6: Standard probe / Group 2 Statistics (AU)

Baseline mean std deviation min max
Pre-insulin 9.26 1.73 6.18 22.57
Low dose insulin 8.39 1.63 5.46 19.40
High dose insulin 8.52 1.70 5.18 23.99
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Figure 3.4: Mean blood fluxes for pre, low and high insulin. Standard probe/
Group 1&2

When comparing the mean blood fluxes between group 1 and group 2, we
are assessing the changes of microcirculation of these subjects in a course of
6 months. Presumably, if the subjects have altered their diets and exercised
more often, we may be able to detect some differences. However, we did
not record the weight, BMI, etc of these subjects during their second visit
(group 2). We therefore cannot make further conclusions. The p−values
for comparing changes between group 1 and group 2 mean blood fluxes are
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greater than 0.05 (smallest p = 0.0547), i.e., there is no statistically signif-
icant change of blood flux in response to insulin in a course of 6 months time.

For the high power probe, low-dose insulin decreases mean blood flux (as
compared with pre-insulin), high-dose insulin only slightly increases mean
blood flux for both groups. For the standard probe, there are small increases
for low-dose and high-dose insulin for group 1, for group 2, low-dose and
high-dose insulin decrease mean blood flux.

3.2.2 Pre-processing

Before we perform Fourier analysis on the data sets, we need to perform a
few pre-processing procedures. We first take one segment of 600 usable sec-
onds from flux baseline before occlusion. This segment is then re-sampled at
10Hz (the original signals have sampling rate of 40Hz) (to get greater res-
olution over the frequency band of interest) using a low-pass finite impulse
response (FIR) filter. A moving average filter of 200s is then applied to re-
move slow-moving trend. A span of 200s is equivalent to a moving trend of
0.005Hz [12] [5]. The mean is then removed. These procedures attempt to
reduce spectral leakage and subsequent PSD estimate bias for the very slow
oscillations, i.e., endothelial band (0.0095Hz-0.02Hz).

3.2.3 Power Spectral Density

Power spectrum can be estimated the autocorrelation function. However, we
find that estimation of PSD by Fourier transform is more interesting as it
gives us more flexibility in controlling parameters (window function, overlap-
ping).

We choose the Hamming window and by default specify a segment length
of 200s (one periodogram) with 50% overlapping. 200s is sufficient to contain
at least 1 cycle (actual: 1.9 cycles) of the lowest frequency 0.0095 Hz. Hence
a total of 5 segments are generated for averaging the periodogram for a signal
of 600s. PSD estimation is achieved by the Welch method. Average power
is integrated for each of the five characteristic frequency bands. A typical
estimation of PSD is illustrated in Figure 3.5.
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Figure 3.5: An example PSD estimation of signals measured from high power
and standard power probes.

3.2.4 Relative Spectral Power

Since individual LDF blood flux varies with amplitude, it’s not wise to di-
rectly compare flux or spectral amplitude. We use a percentage based quan-
tity to make comparisons. After the PSD is constructed, we calculate relative
spectral power contribution of each of the 5 frequency bands using the trape-
zoidal numerical integration function in MATLAB to integrate the PSD. We
will display our results in the next section.

3.2.5 Comparisons

Having looked at Table 3.2, we realize that there are many combinations for
cross comparisons. However, typically we would compare differences between:

• High power and standard probes;

• Insulin challenge dosages (pre, low and high).

• A cohort of individuals characterized with metabolic syndrome features
(Group 1) and healthy subjects (Healthy Group).
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The numbers on x-axis on subsequent box-plots represent the five char-
acteristic frequency bands (in order to save space on plots) and they are
explained as follows:

• 1 is for the endothelial band (0.0095 - 0.02 Hz),

• 2 is for the neurogenic band (0.02 - 0.06 Hz),

• 3 is for the myogenic band (0.06 - 0.15 Hz),

• 4 is for the respiratory band (0.15 - 0.4 Hz),

• 5 is for the cardiogenic band (0.4 - 1.6 Hz).

Fig. 3.6, 3.7 and 3.8 show the relative spectral power of pre, low and high
insulin dosages respectively for Group 1 (high power and standard probes).
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Figure 3.6: Relative spectral power: pre-insulin, high power and standard
probes.
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Figure 3.7: Relative spectral power: low-dose insulin, high power and
standard probes.
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Figure 3.8: Relative spectral power: high-dose insulin, high power and
standard probes.

Probe differences

It has been reported [12] that for skin LDF signals of non-obese subjects
(with BMI<24) the majority of the signal comes from deeper tissue for the
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high power probe measurement, while the majority of signals comes from
superficial tissue for the standard probe. Deeper tissues are predominantly
vasculature in the sub-dermal layer. And this is also confirmed by Monte
Carlo simulation in one study [12]. Also in the literature, for the high power
probe, relative spectral power of cardiogenic activity contributes significantly
more than other frequency bands, and for the standard probe, the endothe-
lial, neurogenic and myogenic activities contribute more than the cardiogenic
activity. This applies to the healthy cohort in our study.

However for our cohort of individuals with metabolic syndrome features,
cardiogenic activity did not contribute a significant portion of the signal mea-
sured by the high power probe, it is weaker than most other activities. This
can be viewed in Fig. 3.6, 3.7 and 3.8.

Insulin challenge dosages

We summarize in Table 3.7 and 3.8 the mean relative spectral power from
wide and standard probes for group 1 and 2 (29 subjects) and 3 healthy
subjects in percentage respectively.

Table 3.7: Mean Relative Spectral Power from high power probe. G1/G2
& Healthy, value in percentage (%).

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
pre 21.40/30.01 38.33/39.70 19.83/17.36 10.28/6.19 10.16/6.75
low 24.50/30.97 36.19/42.27 16.53/14.13 10.61/5.61 12.17/7.02
high 21.13/24.69 38.35/44.54 17.93/13.95 12.11/6.04 10.48/10.77
healthy 9.35 18.8 16.09 13.02 41.23

For group 1 and group 2 individuals, a slight increase in endothelial ac-
tivity is observed after low-dose insulin infusion, from 21.40% to 24.50%,
and this effect is not observed after high-dose insulin. For neurogenic activ-
ity, the contrary is observed, i.e., there is a decrease of neurogenic activity
after low-dose insulin. Myogenic activity decreases after insulin infusions.
Respiratory activity slightly increases after low-dose and high-dose insulin.
Low-dose insulin has a greater effect on cardiogenic activity than high-dose
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insulin.

Table 3.8: Mean Relative Spectral Power from standard probe. G1/G2 &
Healthy, value in percentage (%).

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
pre 22.06/25.79 35.72/38.13 21.64/20.39 13.96/10.24 6.62/5.45
low 22.03/28.89 38.4/38.84 18.12/17.34 13.85/9.84 7.61/5.09
high 17.87/23.71 39.11/38.37 20.81/18.89 14.21/12.77 8.00/6.75
healthy 8.54 23.51 18.53 6.44 41.48

A weaker contribution from cardiogenic activity is observed from standard
probe, as compared with that from a high power probe. Accordingly, we
observe slightly stronger myogenic and respiratory activities.
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Figure 3.9: Relative spectral power: healthy subjects, muscle and skin
probes.

For healthy subjects, we observe a stronger spectral power contribution
from cardiogenic activity (high power probe: 41.23% and standard probe:
41.48%), a slight increase in power from the neurogenic activity (high power
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probe: 18.8% and standard probe: 23.51%). The respiratory activity (6.44%)
from the standard probe is much lower than the value obtained from the high
power probe (13.02%).

We calculated p-values (using two-tailed Student t-test) to test whether
the changes in relative spectral power in the above mentioned frequency
bands are statistically significant, in other words, we want to find out whether
differences in mean are induced by chance alone or they have physiological
origins. The p-values for comparing relative power spectra between Group 1
and the Healthy group are also presented, to show if there are any differences
between the two groups.

Table 3.9: p-values for comparing pre, low, high insulin dosages, high power
probe, G1.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
pre vs. low 0.2257 0.7305 0.3179 0.8904 0.2025
pre vs. high 0.8904 0.8095 0.5353 0.9177 0.8633
low vs. high 0.2704 0.7305 0.5128 0.9725 0.2150

Table 3.10: p-values for comparing pre, low, high insulin dosages, standard
probe, G1.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
pre vs. low 0.6794 0.9725 0.2416 0.9177 0.6297
pre vs. high 0.6543 0.5353 0.6297 1 0.5728
low vs. high 0.1296 0.9451 0.4282 0.8363 0.7566

47



Table 3.11: p-values for comparing G1 pre-insulin and Healthy measure-
ments, high power probe.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
G1 pre vs. H 0.0343 0.0149 0.5966 0.5966 0.0081

From Table 3.9 and 3.10, we are able to tell that for group 1 data, the
change from low to high-dose insulin is most notable in endothelial activity
frequency band (p = 0.1296, the smallest p-value, although not in the 95%
confidence interval), this is supported by data in Table 3.7 where mean val-
ues drop from low to high insulin measurements, i.e., from 22.03 to 17.87.
Other notable changes include endothelial activities from pre to low, and low
to high insulin, cardiogenic activities from pre to low and low to high insulin.

Table 3.12: p-values for comparing G1 pre-insulin and Healthy measure-
ments, standard probe.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
G1 pre vs. H 0.0263 0.0903 0.4587 0.1123 0.0081

We also obtained p-values for comparing pre-insulin measurement from
group 1 subjects with measurements from the healthy subjects. The purpose
of this test is to compare the differences in relative spectral powers between
healthy and a cohort of individuals with features of metabolic syndrome. The
endothelial and cardiogenic activities are vastly different between these two
groups in both probes. p-values for these frequency bands are < 0.05. For
the neurogenic band, p < 0.05 in the high power probe measurement but not
in the standard probe measurement (p = 0.0903). The myogenic and res-
piratory activities are less different (i.e., difference is not significant). This
possibly reflects that the endothelial, nervous and cardiovascular functions
may be impaired or altered in people with metabolic syndrome.
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3.3 Sensitivity to FFT Parameters

PSD estimation via FFT is dependent on a several parameters, namely,
choice of window, window size and overlap percentage. Although we have
the theoretical and empirical knowledge of different shapes and their respec-
tive Fourier transforms, it is usually through trial and error that we find the
optimal parameters that best suit our analysis.

3.3.1 Choice of Window

The window function’s primary role in Fourier analysis is to reduce spec-
tral leakage. Spectral leakage occurs when we perform DFT, and because
sidelobes of the FT of window function are separated by null points where
frequencies are not calculated due to the finite length of DFT. One way to
reduce spectral leakage is through the use of a window function with better
frequency response.

As we have mentioned before, truncating a signal to obtain a segment of
data for analysis is equivalent to applying a rectangular window to the signal.
In other words, an absence of window function is by default a rectangular
window. The resulting periodogram may not be optimal due to the frequency
characteristics of the rectangular window, a normalized frequency response
of this window function is illustrated in Figure 3.10, i.e., the distance be-
tween the partial mainlobe and the first sidelobe peak is about 13 dB [4] and
subsequent peaks attenuate slowly. As we mentioned earlier, the sidelobes
decay at a rate of 6dB per octave. In time domain, an abrupt ending can be
observed at the two ends of the window function.
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Figure 3.10: Rectangular window (left) time function and its frequency char-
acteristics.

The general feature of our LDF signal can be roughly estimated from a
direct FFT, as shown in Figure 3.11. Within the range of 0.0095 Hz to 1.6
Hz, we see two groups of clustered frequencies at around 0-0.15 Hz and 1.2
Hz covering the endothelial, neurogenic, myogenic and cardiogenic activities.
These two groups separate at a distance. For a signal with such a frequency
characteristic, it may be best to choose a window with moderately decaying
sidelobes, so as not to weaken too much the higher frequency part of the
signal spectra, since we still have a higher frequency component located at
some distance apart.
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Figure 3.11: Power spectrum by direct FFT shows the general frequency
characteristics of a typical LDF signal.

Therefore for LDF signals, we have to make a compromise in choosing the
window function. The default rectangular window has sidelobes that decay
too slowly, which will strengthen some frequencies with weak amplitudes.
Another extreme is to choose a window that has rapidly decaying sidelobes.
These extreme windows may include Blackman Harris as illustrated in Fig.
3.12, where a level difference of about 90 dB from mainlobe (compared with
13 dB for rectangular window).
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Figure 3.12: Blackman Harris window (left) time function and its frequency
characteristics.
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The Hamming window on the other hand has moderately decaying side-
lobes, which can be illustrated in Fig. 3.13. The first sidelobe has a level
difference of about 40 dB from mainlobe (which is in between the rectangular
and the Blackman Harris window).
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Figure 3.13: ) time function and its frequency characteristics.

Properties for the three chosen window functions can be summarised in
the following table.

Table 3.13: Properties for rectangular, Hamming, and Blackman Harris win-
dows.

Leakage Factor RSA* Mainlobe Width (-3dB)
rect 9.25% -13.2dB 0.078
hamm 0.04% -40.6dB 0.125
blackman 0% -91dB 0.180

Where RSA* stands for Relative Sidelobe Attentuation, and is the dis-
tance between mainlobe peak to the first sidelobe peak. These properties
are calculated from MATLAB (Matrix Laboratory, a versatile program for
numerical manipulation).
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3.3.2 Overlap Percentage

The Welch method assumes a 50% overlap between consecutive windows. As
long as the overlap is smaller than 100% and greater than 0%, it is math-
ematically feasible for performing calculations, however, the resulting peri-
odogram may be different. We only know that going to the extremes may
be bad for the analysis, e.g., 99% or 1% overlap. Hence we will perform
tests with different window functions and overlapping at 25%, 50% and 75%
respectively and observe the differences.

3.3.3 Results

We calculated the averaged relative spectral power using three different win-
dow functions and overlapping percentages for the high power probe signals
of Group 1 and Healthy group. The results are presented in Fig. 3.14 and
3.15. A table of summary is presented, where p-values are also calculated to
test whether the differences of relative spectral power resulted from different
window functions and overlapping percentages are significant.

Notice that for both Group 1 and Healthy group, both Blackman Harris
and Hamming windows weaken the endothelial activity frequency band (a
narrowing of average spectrum) and strengthen slightly the neurogenic and
cardiogenic activity bands. This shows that window functions indeed have
influence on the power spectral density estimation, although changes are very
small in some cases. Notice also that for the rectangular window, there is
almost no change in relative spectral power across all five frequency bands,
when using different overlapping percentages, since it’s unity everywhere in
the support (the defined region).

From the results, we first test whether different overlapping percentages
using the same window function produce statistically significant difference
in relative spectral power across different frequency bands. We use the two-
tailed Student t-test to test whether the probability (p-value) that the pair
of two samples come from the same distribution, in other words, we want to
determine whether the difference is induced by chance.
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Table 3.14: p-value for different overlaps, Blackman Harris, Group 1, high
power probe.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
25% vs. 50% 0.4084 0.9451 0.8363 0.7829 0.9725
25% vs. 75% 0.5582 0.8633 0.9725 0.8633 1
50% vs. 75% 0.8633 0.8363 0.6054 1 0.8904

Table 3.15: p-value for different overlaps, Hamming, Group 1, high power
probe.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
25% vs. 50% 0.5582 0.8633 0.8633 0.9177 0.9725
25% vs. 75% 0.7048 0.9451 0.7048 0.9177 0.9725
50% vs. 75% 1 0.8633 0.7566 0.8904 0.9725

Figure 3.14: Different window functions and overlapping percentages for the
high power probe, Group 1.
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Figure 3.15: Different window functions and overlapping percentages for the
high power probe, Healthy Group.

From these two tables we find that differences between different over-
laps (within the same window) are small (with p > 0.05). However, notice
that the p-values at endothelial frequency bands are generally smaller than
those from other frequency bands, and especially that the p-values p(25%
vs. 50%)<p(25% vs. 75%)<p(50% vs. 75%), e.g, from Table 3.14 we have
0.4084 < 0.5582 < 0.8633, and in Table 3.15, 0.5582 < 0.7048 < 1. This con-
firms that both Blackman Harris and Hamming windows narrows spectrum
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in this band, especially with an overlapping of 25%. Next we will calculate
the p-values of different window functions with the same level of overlapping.

Table 3.16: p-value for different window functions, same overlapping, Black-
man Harris vs. Hamming, Group 1, high power probe.

Endothelial Neurogenic Myogenic Respiratory Cardiogenic
H25% vs. BH25% 0.8904 0.9451 0.8363 0.8095 0.9725
H50% vs. BH50% 0.8633 0.8094 0.6794 1 1
H75% vs. BH75% 1 1 1 1 1

As with Table 3.14 & 3.15 from Table 3.16 we may conclude with great
confidence that the differences induced by different window functions (same
overlapping) are small and it is statistically significant (not occurring by
chance).

We may choose a variety of different window functions, ranging from
low-dynamic-range windows (such as rectangular window) to high-dynamic-
range windows (such as Blackman Harris window) and also moderate win-
dows (Hamming), to test the sensitivities of frequency bands within the LDF
signals toward different window functions. Although window functions and
overlapping percentage indeed have influences on spectral power as we have
mentioned before, the p-values we calculated above reveal that these varia-
tions are small.

3.4 Summary

In this chapter we briefly described our data sets, e.g., information on mea-
surements, subject information, the statistical test we employed to compare
data and the test of normality. Some descriptive statistics were presented
before pre-processing and Fourier analysis. These statistics include mean,
standard deviation, minimum and maximum values of the LDF blood flux
baseline signals, to provide a general overview of the kinds of signal we will
analyze.

The pre-processing procedures involve removing undesirable trend and
mean, which are necessary to ensure reliable results in the analysis.
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We chose estimation of PSD by Fourier transform instead of classical au-
tocorrelation calculation due to Fourier analysis’s flexibility and power. PSD
by the Welch method is the standard procedure we follow as it’s proven to
be superior to estimation by periodogram.

We also tested the sensitivities of relative spectral power with different
window functions and overlapping percentages. Although there are varia-
tions in some frequency bands, the changes are small. p-values reveal these
changes are likely to have occurred by chance.

This poses us a question of what kind of window we should use to produce
true (or as close as possible) power spectra of LDF signal, and whether there
exists a benchmark to make comparisons. There may never be a perfect way
to construct the true power spectra of a given signal, however, we can always
look for other methods, for example, from Wavelet Analysis we may look at
this problem from a different perspective.

In theory, since the high power probe has a greater penetration depth
and so possibly samples larger resistance vessels (diameter > 100µm), these
blood vessels are more influenced by heart beat through pulse wave propaga-
tion and we should see an increase in cardiogenic activity in the high power
probe compared with that in the standard probe. For the healthy group,
our analysis shows the cardiogenic activity contributes greatest among all
five characteristic frequency bands in the high power probe which samples a
greater volume of tissue [12]. However group 1 data do not have this feature.
And we also do not see a decrease of cardiogenic activity in the standard
probe signal from healthy data, but we do see a decrease of cardiogenic ac-
tivity from group 1 data. This may suggest that cardiogenic activity in our
cohort of individuals with features metabolic syndrome is impaired.

Since our healthy group only contains three data samples, we may need
more samples to make meaningful conclusions, by central limit theorem we
should increase this number to 30 or more. At this stage, we can only pos-
tulate that because the BMI index of group 1 subjects is very high (around
30kg/m2), i.e., more adipose tissue in the subcutaneous tissue and arteri-
oles and venules are embedded in this layer of tissue, which may undermine
LDF measurements in the high power probe. Indeed, for people with obesity,
structural changes can lead to altered muscle blood flow [27]. Capillary rar-
efaction (a reduction in capillary density) is observed in people with obesity
and hypertension [21].
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On the other hand, for the hyperinsulinemic euglycemic clamp tests, we
do not observe statistically significant changes in blood flux from pre to low or
high insulin dosages in all five characteristic frequency bands. There is small
change in endothelial and cardiogenic activity frequency bands, although
p−values associated with these do not reach statistical significance at 0.05
level. Our data suggest that in the obesity/insulin resistance cohort studied,
hyperinsulinemia does not increase local tissue blood flow.

58



Chapter 4

Wavelet Analysis

4.1 Introduction

Similar to Fourier analysis described in previous chapters, in this chapter we
will analyze LDF blood signals using Wavelet transform. We will perform
the following analyses:

• Build 2D and 3D scalogram from continuous wavelet transform (CWT)
coefficients of LDF blood signal using complex Morlet wavelet, this is
a time-scale (frequency) representation.

• Calculate average scalogram and make comparisons with PSD obtained
in Fourier analysis.

• To characterize the dynamics, we calculate relative wavelet spectra
(similar to relative spectral power in Fourier analysis) of each char-
acteristic frequency bands.

We use the same data sets, i.e., group 1 (n = 17) and healthy group
(n = 3) for Wavelet analysis. The pre-processing procedures involving de-
trending, mean removal are also the same as used previously in Chapter 3.

4.2 Scalograms

One of the major advantages of using Wavelet analysis is to obtain a time-
frequency representation of a given LDF blood signal. CWT with parameters
fb = 2 and fc = 1 is performed on these signals. The convention for choosing
fc = 1 is due to the fact that when Jean Morlet formulated this wavelet, he
used a constant known as κσ, the admissibility criterion. When κσ is small,
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typically κσ < 10−5, i.e., σ > 5, we can ignore (simplify) some terms in the
original Morlet wavelet. And since σ = 2πfc, setting fc = 1 is an appro-
priate trade-off between time-frequency resolutions. The choice of fb = 2 is
also a convention used by Jean Morlet and others in the literature [25]. We
obtain a matrix of CWT coefficients, and take the absolute values of these
coefficients. These absolute values of coefficients are meshed and plotted in
two or three coordinates, i.e., time, scale (frequency) and amplitude.

4.2.1 2D Scalogram

An example of 2D a scalogram is illustrated in Fig. 4.1. The 2D scalogram
is not as intuitively helpful as the 3D scalogram. The horizontal axis of 2D
scalogram is for time and the vertical axis is for scales. It’s comparable to the
spectrogram based on STFT which is also a time-frequency representation.
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Figure 4.1: 2D Scalogram, a time-scale representation constructed from ab-
solute CWT coefficients.
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On the y-axis of this figure are labeled scales, x-axis the time in seconds.
In grey-scale plot, brighter portions indicate large values of CWT coefficients.
For example, the scales from 6 to 23 are associated with frequencies in the
range of 0.4-1.6 Hz or the cardiogenic activity frequency band, we observe a
whitened strip at around scales 6 to 7. This can be better visualized in the
3-dimensional scalogram to be introduced below.

4.2.2 3D Scalogram

The 3D scalogram is constructed by adding another quantity, amplitude, to
the z-axis. From the 3D scalogram Fig. 4.2 we are able to see at around 1Hz
there is a wave-like structure across the time axis, known as the cardiogenic
activity, and at around 0.3Hz the respiratory activity, 0.1Hz the myogenic
activity and more strikingly at around 0.0095-0.02Hz the endothelial activity.
The 3D scalogram is visually more information-rich than the 2D scalogram.

The frequency ranges of the five characteristic bands are labeled in the
frequency axis (0.0095-0.02 Hz, 0.02-0.06 Hz, 0.06-0.15 Hz, 0.15-0.4 Hz and
0.4-1.6 Hz). The small peak at around 1 Hz is the cardiogenic activity peak
that represents heart beat frequency.

4.2.3 Average Scalogram and PSD

However, we do not just use Wavelet analysis to achieve some visually stim-
ulating figures. We will work out an alternative to the PSD, known as the
average scalogram. To construct the average scalogram, we average the ab-
solute wavelet transform amplitude at each scale, and present it in a two-axis
figure, one axis being the scale (frequency), the other axis being the (aver-
aged) amplitude. And this is compared with PSD obtained from FFT. This
is illustrated in Fig. 4.3. Data used for computing the average scalogram
and PSD is from one of the subjects in group 1.
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Figure 4.2: 3D Scalogram constructed from absolute CWT coefficients.
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Figure 4.3: Average Scalogram constructed from absolute CWT coefficients
vs. PSD from FFT of a signal measured by the high power probe.
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In this figure, the five characteristic frequency bands are separated by red
dotted lines.

The average scalogram is similar to the PSD. However, because they are
estimated from two different mathematical transforms, they do not have com-
parable units for us to make direct comparisons. Therefore the y-axis of Fig.
4.3 is labeled both in AU (arbitrary unit) and power per frequency dB/Hz
(a PSD unit).

Through visual inspection, we are able to tell some differences between
the two. We only get a general trend in the PSD for frequencies smaller than
0.4 Hz, the details are very minimal. While for the average scalogram, peaks
in each characteristic frequency bands are distinctly demonstrated, i.e., we
can spot the myogenic activity (0.06-0.15 Hz) peak at around 0.08 Hz; the
neurogenic activity (0.02-0.06 Hz) peak at around 0.03 Hz; and finally the
peaks within the endothelial activity bands.

On the other hand, the cardiogenic activity peak is small compared with
the other band peaks and not as distinct as that in the PSD. This shows
that wavelet analysis has the advantage of having very good frequency res-
olutions for lower frequency content (endothelial, neurogenic and myogenic
activities) and comparably poor frequency resolution for higher frequency
content (cardiogenic activity).

4.3 Analysis

4.3.1 Overview

Now that we can construct the average scalogram for each individual LDF
signal, we proceed to calculate the relative wavelet spectral power of each
characteristic frequency band. The procedure is similar to what we have
employed for the PSD, i.e., using trapezoidal numerical integration.

We first compute insulin-specific relative wavelet spectral power for Group
1 data sets to investigate the effects of insulin on skin blood perfusions. We
then compute for each group the relative wavelet spectral power for both the
wide and standard probes. p-values will be calculated to establish differences
between the two methods.

The results are summarized in Table 4.1 for group 1, Table 4.2 for group
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2 and Table 4.3 for the healthy group. Box-plots are presented in Fig. 4.4,
4.5 and 4.6 respectively. The major and most striking difference between
box-plots produced by Wavelet analysis box-plots produced by Fourier anal-
ysis is that lower frequency components (0.0095 - 0.15 Hz) have better fre-
quency resolution, and high frequency components (0.15 - 1.6 Hz) are relative
suppressed. As can be shown in the following figures, the cardiogenic and
respiratory activities are not very notable in Wavelet analysis.
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Figure 4.4: Relative wavelet spectral power, Group 1, high-power / standard
probes, pre-insulin.

64



0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

R
el

at
iv

e 
W

T 
Po

w
er

High power probe / Low dose insulin

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5
R

el
at

iv
e 

W
T 

Po
w

er

Standard probe / Low dose insulin

Figure 4.5: Relative wavelet spectral power, Group 1, high-power / standard
probes, low-insulin.

The differences between pre-insulin and low-dose insulin signals are ob-
servable in that the endothelial activity is increased after low-dose insulin
infusion, and comparatively the neurogenic activity is slightly suppressed.
Prior to insulin infusion (pre-insulin), the neurogenic activity is slightly more
dominant than other activities. Cardiogenic activity is slightly stronger when
measured from high-power probes.

As also can be seen in the following figures, respiratory activity mea-
sured from high-power probe in the healthy cohort is more notable than that
measured from standard probe. On the other hand, neurogenic activity is
stronger when measured from standard probe.
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Figure 4.6: Relative wavelet spectral power, Group 1, high-power / standard
probes, high-insulin.
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Figure 4.7: Relative wavelet spectral power, Healthy Group, high-power /
standard probes, without insulin.

Fig. 4.4, 4.5, 4.6 and 4.7 are box-plots summarizing the statistics of
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relative wavelet powers of the five frequency bands. These results are not di-
rectly comparable to PSD obtained because although Wavelet Transform has
very good frequency resolution for lower frequency components, it has poor
frequency resolution for higher frequency components within a signal. This
makes WT ideal for analyzing low oscillations in a physiological signal, but
potentially biases average scalogram estimates at higher frequencies. How-
ever, we are still able to utilize average scalogram for analysis within the
Wavelet analysis framework.

Table 4.1: p-values for comparing pre, low, high insulin dosages, Group 1
wide probe.

endo neuro myo resp cardio
pre vs. low 0.2557 0.2280 0.1212 0.9177 0.3524
pre vs. high 0.9451 0.7566 0.3524 0.7566 1
low vs. high 0.1055 0.1212 0.4909 0.8363 0.2150

Table 4.2: p-values for comparing pre, low, high insulin dosages, Group1
standard probe.

endo neuro myo resp cardio
pre vs. low 0.5353 0.7566 0.2025 0.8633 0.6297
pre vs. high 0.1792 0.5353 0.8904 0.4084 0.2025
low vs. high 0.0192 0.3015 0.1480 0.3892 0.3348

Table 4.3: p-values for comparing G1 pre-insulin and Healthy measurements,
wide probe.

endo neuro myo resp cardio
pre vs. low 0.2898 0.1384 0.3971 0.3408 0.0081
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Table 4.4: p-values for comparing G1 pre-insulin and Healthy measurements,
standard probe.

endo neuro myo resp cardio
pre vs. low 0.1688 0.9157 0.2898 0.4587 0.0081

As with analysis made in the Fourier Analysis section, for hyperinsuline-
mia tests, all calculated p-values are greater than 0.05. Therefore statistical
analysis performed within the Wavelet analysis framework confirmed the re-
sult obtained in the Fourier analysis framework, i.e., no observed change in
blood flow under the effect of insulin dosages (low and high).

For comparing healthy group with group 1, p-values in the cardiogenic
activity frequency band is the same as the result we obtained in FFT anal-
ysis (both p = 0.0081). However, p-value for endothelial activity frequency
band is greater than 0.2898, this is different from the FFT analysis (p < 0.05).

4.4 Summary

In this chapter we used Wavelet transform as a framework for analysis and
performed similar tests, constructed models based on scalogram (2D, 3D and
Average Scalogram). The 2D and 3D scalograms are time-frequency repre-
sentations. They enable us to simultaneously view the signal in both time
and frequency domains. The average scalogram is similar to PSD, it char-
acterizes the average wavelet power contained in a signal. From the average
scalogram we calculated the statistics of relative wavelet power contributions
for each of the 5 characteristic frequency bands.

We have shown that the average scalogram is superior at displaying infor-
mation at lower frequency range, i.e., 0.0095-0.15 Hz covering the endothelial,
neurogenic and myogenic activities, compared with a standard PSD model.
However, the cardiogenic activity amplitude estimated in the average scalo-
gram tends to be small, this may be due to the intrinsic properties of Wavelet
transform, i.e., very good frequency resolution for lower frequencies, poor
frequency resolution for higher frequencies (in other words, very good time
resolution for the higher frequencies). We will exploit this feature of Wavelet
transform in the next chapter to analyze the signal in a energy time-evolution
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perspective.

p-values are calculated for results obtained in this Wavelet framework,
and are in general agreement with p−values obtained in the Fourier frame-
work. These p-values are summarized in tables in the above section.

In short, Wavelet analysis is an alternative to the traditional Fourier anal-
ysis. It is only superior in resolving lower frequency components contained
in a signal. It is also a time-frequency representation, which can enable us
to look at the signal in both time and frequency domains. It is an invaluable
tool for biomedical signal processing.
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Chapter 5

Time-energy Evolution

5.1 Introduction

With models based on FFT, we lose information on the time domain entirely,
for example the PSD contains only frequencies and amplitudes. A joint time-
frequency representation such as STFT, WT, EMD (empirical mode decom-
position) or WVD (Wigner-Ville distribution) may help solve this problem
by adding another dimension to aide the analysis. We argued that Wavelet
analysis has superiority in resolving lower frequency components over STFT,
and we are interested in knowing how the endothelial activity frequency band
energies evolve in time and we construct a new model to examine this.

The 3D scalogram contains characteristic frequency peaks in the fre-
quency axis, these peaks also have varying amplitudes in the time axis. There
are more peaks in the time axis for higher frequency components, e.g., the
cardiogenic activity, and far fewer peaks for the endothelial activity. This is
the first impression we get when visualizing the 3D scalogram.

We will briefly describe a time-evolution model based on this notion.
Based on this time-evolution model, we will analyze particularly the en-
dothelial activities during pre, low and high-insulin measurements.
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5.2 Temporal Frequency

5.2.1 Model Overview

The time-energy evolution model proposed here is a continuation from Wavelet
analysis we performed in a previous chapter. The motivation is that instead
of looking at the wavelet frequency spectrum as a whole in terms of time,
we look at the average absolute wavelet transform of each frequency band
against time. For example, for the endothelial activity band, we average
the absolute CWT in the frequency range 0.0095-0.02 Hz and plot it against
time. This is can be illustrated in Fig. 5.1.
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Figure 5.1: Time-Energy evolution of five characteristic bands.

For a signal length of 600s, we expect a lot of oscillatory fluctuations
happening in the cardiogenic activity frequency band, as is confirmed in Fig.
5.1, the same can be said for respiratory activity.

The sinusoid-like shape of these oscillations suggests that each activity
frequency band may contain multiple oscillations that are under the influence
of multiple mechanisms. Whether they are unknown or these oscillations in-
fluence each other, we do not know the dynamics. However, based on this
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model, we compare the effects of insulin dosages on blood flux at this par-
ticular band - endothelial activity. This may help us to gain insights on how
hyperinsulinemia specifically affects the endothelial activity.

Spike-induced Ripple Effect

From constructing this time-evolution model, we find that spikes have a large
rippling effect on the endothelial activity. Often LDF blood flux signals are
subject to body movement or other artifacts of unknown sources, this may
be presented in Fig. 5.2 with two spikes at around 140s and 160s.
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Figure 5.2: A LDF Signal with some spikes.

For this signal, we plot the time-evolution for each of the five frequency
bands, see Fig. 5.3.
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Figure 5.3: Time-Energy evolution of all frequency band, without insulin,
high power , G1

These two spikes correlate with activities of all five frequency at around
140s and 160s as shown in Fig. 5.3, the ripple effect of this spike on en-
dothelial band is most notable. These effects are likely the consequence of
artifacts on our analysis methods, i.e., wavelet transform. Also observe that
in different frequency bands, as reflected in Fig. 5.3, the consequence of this
effect is amplified, likely a result of dilating and shifting wavelet functions.

5.2.2 Endothelial Activity

We will show that a typical endothelial activity band-specific time evolution
(for pre, low and high insulin measurements) in Fig. 5.4 where the black, blue
and red lines are for the pre, low and high insulin measurements respectively.
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Figure 5.4: Time-Energy evolution of endothelial activity frequency band for
typical pre, low and high insulin measurements.

In Fig. 5.4, we are seeing that these measurements vary in both ampli-
tudes and frequency of oscillations. For example, the following observation
in terms of their local maxima can be made. The pre-insulin curve reaches a
local maximum at around 70s while the low-insulin reaches a local maximum
at around 105s. There seems to be a shift of another 70s when both pre-
insulin and low-insulin curves reach their respective second local maximum
at around 230s and 300s. They both reach a third maximum at around 430s.

There are many aspects one may wish to analyze. Average absolute
wavelet transform (amplitude) can be calculated to determine which of pre,
low, high-insulin measurements has the highest amplitude in this band. In-
tegration of the absolute wavelet spectrum can be used to obtain the amount
of energy contained in each measurement. Local maxima may be associated
with physiological changes of state, e.g., a change in endothelial response
mediated by insulin.

5.2.3 Analysis

Under normal physiological conditions for healthy people, we would see an
increase in skin blood flux power in the endothelial frequency band from
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pre to low-insulin dosage, and from low to high-insulin dosage. Based on
this notion and the time-evolution model, we calculate the mean amplitudes
endothelial activity of pre, low and high dose insulin measurements of all
subjects in group 1 (n = 17).

Figure 5.5: Average WT amplitude at endothelial activity frequency band
of all 17 subjects, Group 1, and proposed endothelial insulin function classi-
fication.

As we have already concluded in Chapter 3 and 4, that in this cohort
of obese and insulin-resistant individuals, there is no change of blood flux
in response to hyperinsulinemia. Fig. 5.5 summarizes the calculated mean
amplitudes. Given the sample size for the analysis we may not be able to
draw any definitive conclusions. We can only conclude by reporting that
based on our model, only two subjects show corresponding increase in mean
amplitudes (in endothelial activity) in response to both low and high dose
insulin. The remaining 15 subjects show abnormal endothelial activity.
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5.3 Sinusoidal Fitting

5.3.1 Introduction

We realize that the insulin curves in the time-evolution model resemble su-
perpositions of sinusoidal functions. Sinusoidal functions have long been used
to study vibrations and oscillations. For example, sin(px) has frequency p/2π
and period 2π/p. We are able to fit the endothelial activity curves of the
time-evolution model into a sum of multiple sinusoidal functions and this
scheme may help us understand the nature of these oscillations. For exam-
ple, in Fig. 5.6 we fit a pre-insulin curve (purple) with multiple sinusoidal
functions (red) with 8 sinusoids to considerable degree of accuracy, in the
form of f(x) = a1 sin(b1x + c1) + a2 sin(b2x + c2) + · · · + a8 sin(b8x + c8).
We then summarize our findings by collecting statistics about the fitted pa-
rameters, mainly a1 the dominant amplitude and its associated frequency
b2.
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Figure 5.6: Fitting using multiple sinusoidal wave.

For example, a fit of curve with 3 sinusoids may be expressed analytically
as

f(x) = 32.07 sin(0.00408x+ 0.2972)+ (5.1)

6.509 sin(0.01863x− 0.5116)+ (5.2)

5.794 sin(0.03131x+ 1.514) (5.3)
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with three oscillations: 0.00065 Hz, 0.003 Hz and 0.005 Hz. On the other
hand, for a low-insulin curve (from the same subject), we have the following
result:

f(x) = 32.57 sin(0.004216x+ 0.5574)+ (5.4)

8.154 sin(0.01578x− 1.267)+ (5.5)

3.412 sin(0.02711x− 4.129) (5.6)

with three oscillations: 0.0067 Hz, 0.0025 Hz and 0.0043 Hz. The corre-
sponding high-insulin curve has the following fit:

f(x) = 42.94 sin(0.004023x+ 0.7096)+ (5.7)

16.05 sin(0.01775x− 1.382)+ (5.8)

6.438 sin(0.02933x− 3.3129) (5.9)

with three oscillations: 0.00064Hz, 0.0028Hz and 0.0047Hz.

Table 5.1: Goodness of Fit
SSE R-Square Adjusted R-Square RMSE
69.72 0.9981 0.9981 0.3435
723.5 0.988 0.9878 1.106
380.4 0.997 0.997 0.8023

where SSE is the sum of squared errors and RMSE is the root mean square
error, two commonly used measures for the difference between observed data
and values predicted by model.

The fitted function contains three parameters: amplitude, phase, and fre-
quency. Therefore we should note these oscillations are under the influence of
these three parameters. Each fitted function contains a dominant amplitude
a1, a less dominant a2, and a least dominant a3. We will introduce a fitting
scheme in the next section.

5.3.2 Fitting Scheme and Results

We fit each insulin curve with 8 sin functions to obtain as close a fit as
possible. Often a 3-sin fit is sufficient to ensure a good fit. We will compare
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the oscillatory changes of the two most dominant terms which contain the
largest two amplitudes , i.e., a1 and a2 for pre, low, and high insulin curves
of 17 data sets from group 1 (cohort of individuals with features of metabolic
syndrome).

Results (group 1 data)

The fitting results (high power probe data) are summarized in Table 5.2

Table 5.2: Fitted parameters of the first 8 data sets for group 1 using 8-sin
fit. High power probe.

No. a1 b1 c1 a2 b2 c2

1. pre 94.5273 0.0053 0.4153 25.2028 0.0095 1.8760
1. low 115.7317 0.0053 0.1177 57.0701 0.0093 2.5914
1. high 77.6010 0.0048 0.1196 31.4393 0.0123 0.9151
2. pre 131.6 0.0035 0.4976 44.4184 0.0129 0.7257
2. low 82.2030 0.0040 0.4002 23.7412 0.0200 1.4650
2. high 131.6689 0.0044 0.3753 13.9136 0.0179 0.0006
3. pre 107.0551 0.00386 0.4811 40.1183 0.0705 7.3300
3. low 54.3792 0.0035 0.4217 25.6257 0.0070 2.9644
3. high 75.6526 0.0040 0.4178 63.7699 0.0123 0.7064
4. pre 64.0079 0.00388 0.3222 39.7140 0.0208 4.7835
4. low 131.0495 0.0044 75.9775 0.0086 3.1866
4. high 127.4031 0.0042 0.0002 34.7773 0.0062 1.5488
5. pre 57.8146 0.0038 0.8641 18.1619 0.0174 4.4896
5. low 79.7443 0.0056 0.1392 51.5632 0.0133 1.1190
5. high 65.8649 0.0045 0.0311 34.8355 0.0115 1.4586
6. pre 50.3905 0.0053 0.4387 36.8328 0.0132 1.8141
6. low 43.3261 0.0046 0.3976 7.0184 0.0160 2.7745
6. high 76.7233 0.0048 0.4778 8.3260 0.0181 1.8099
7. pre 66.1956 0.0050 0.1286 34.5953 0.0089 2.2902
7. low 57.4093 0.0044 0.4262 19.4187 0.0148 4.5236
7. high 41.9206 0.0053 0.0004 20.6267 0.0117 1.1663
8. pre 50.3905 0.0053 0.0057 10.2174 0.0191 0.5795
8. low 51.2200 0.0050 0.0105 24.9633 0.0113 1.4503
8. high 73.9815 0.0054 0.3016 52.5505 0.0127 0.5540
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Table 5.3: Fitted parameters of the last 9 data sets for group 1 using 8-sin
fit. High power probe.

No. a1 b1 c1 a2 b2 c2

9. pre 189.7833 0.0043 0.4477 75.3044 0.0098 2.0060
9. low 84.0428 0.0049 0.0015 35.0979 0.0114 1.0056
9. high 225.1587 0.0052 0.0002 76.8568 0.0097 2.1529
10. pre 36.6088 0.0051 0.0006 8.6990 0.0137 0.6469
10. low 38.5638 0.0056 0.1429 17.1560 0.0146 0.5443
10. high 38.2595 0.0064 0.1564 17.8286 0.0107 0.9318
11. pre 44.9962 0.0043 0.0680 22.4971 0.0083 1.7307
11. low 56.8093 0.0051 0.1397 22.9819 0.0103 2.5082
11. high 28.2497 0.0045 0.3545 6.4727 0.0163 3.1739
12. pre 93.9052 0.0050 0.2319 23.3132 0.0104 1.8827
12. low 99.3106 0.0042 0.3704 19.4576 0.0064 3.2626
12. high 48.5839 0.0043 0.4618 13.9370 0.0111 1.5232
13. pre 89.2567 0.0043 0.4255 58.9435 0.0096 2.9390
13. low 84.3052 0.0047 0.4898 60.5712 0.0084 3.5575
13. high 66.4526 0.0045 0.0032 13.9472 0.0186 1.7621
14. pre 95.7718 0.0047 0.1969 16.1647 0.0125 0.0008
14. low 120.0742 0.0039 0.4675 54.8379 0.0076 2.6576
14. high 113.4608 0.0047 0.2128 44.6584 0.0077 2.9785
15. pre 63.1746 0.0041 0.4500 34.9075 0.0054 3.4642
15. low 46.0202 0.0047 0.4290 22.9877 0.0097 1.9764
15. high 53.9877 0.0046 0.2688 25.9289 0.0089 2.3732
16. pre 85.5007 0.0047 0.2334 38.4016 0.0104 1.1657
16. low 74.9541 0.0049 0.2385 24.5957 0.0100 1.5535
16. high 76.6451 0.0051 0.2182 14.9592 0.0241 0.8367
17. pre 68.7240 0.0049 0.1856 22.2248 0.0101 1.6487
17. low 65.3792 0.0050 0.0411 26.7635 0.0114 1.4129
17. high 69.7175 0.0046 0.2815 25.6429 0.0110 1.1841

It can be observed that values of amplitudes a1, a2 fluctuate, while values
of the b1 term do not vary as much. The mean and standard deviation for
the above data as well as data from the standard probe are formulated in
Table. 5.4, 5.5, 5.6, 5.7.
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Table 5.4: Mean (µ) for the fitted parameters (group 1). High power probe.

mean a1 b1 c1 a2 b2 c2

pre 80.8201 0.0045 0.2924 30.3470 0.0118 1.7996
low 75.5601 0.0047 0.2774 33.5193 0.0109 2.2678
high 81.8430 0.0048 0.2165 29.4394 0.0130 1.4751

Table 5.5: Standard deviation (σ) for the fitted parameters (group 1). High
power probe.

std dev. a1 b1 c1 a2 b2 c2

pre 35.1565 0.0006 0.2311 18.5901 0.0047 1.2087
low 28.0122 0.0006 0.1794 19.0668 0.0034 1.0655
high 46.8746 0.0006 0.1697 19.9967 0.0046 0.8450

Statistics for data sets measured from standard probe (skin) are summa-
rized in the following tables:

Table 5.6: Mean (µ) for the fitted parameters (group 1). Standard probe.

mean. a1 b1 c1 a2 b2 c2

pre 12.0739 0.0046 0.3151 5.5887 0.0125 1.9434
low 10.0568 0.0046 0.3276 5.2279 0.0128 2.3145
high 7.8923 0.0045 0.2869 3.1730 0.0129 1.5558

Table 5.7: Standard deviation (σ) for the fitted parameters (group 1). Stan-
dard probe.

std dev. a1 b1 c1 a2 b2 c2

pre 9.2604 0.0009 0.3515 5.5608 0.0051 1.1841
low 5.3061 0.0009 0.3170 4.7570 0.0060 1.2071
high 3.0411 0.0006 0.2326 1.5766 0.0047 1.2558
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Results (group 2 data)

The 12 sets of fitted parameters for group 2 data are obtained in a similar
way as for group 1 data and are hence omitted here for displaying. The mean
and standard deviation are summarized in the following tables.

Table 5.8: Mean (µ) for the fitted parameters (group 2). High power probe.

std dev. a1 b1 c1 a2 b2 c2

pre 83.5124 0.0049 0.1805 34.6813 0.0114 1.6539
low 101.9574 0.0046 0.1663 36.7413 0.0134 1.1796
high 74.8012 0.0047 0.2635 27.8534 0.0105 1.9184

Table 5.9: Standard deviation (σ) for the fitted parameters (group 2). High
power probe.

std dev. a1 b1 c1 a2 b2 c2

pre 27.8079 0.0005 0.1679 14.7690 0.0038 0.7805
low 93.9438 0.0015 0.1680 23.9048 0.0047 1.1116
high 37.2021 0.0005 0.2209 14.6083 0.0019 0.9133

Table 5.10: Mean (µ) for the fitted parameters (group 2). Standard probe.

std dev. a1 b1 c1 a2 b2 c2

pre 6.6661 0.0043 0.4153 4.0313 0.0111 2.2557
low 7.6021 0.0042 0.3195 3.1778 0.0178 1.2957
high 6.5560 0.0042 0.3492 3.3166 0.0107 2.0767

81



Table 5.11: Standard deviation (σ) for the fitted parameters (group 2). Stan-
dard probe.

std dev. a1 b1 c1 a2 b2 c2

pre 4.4071 0.0007 0.3656 4.5696 0.0032 1.3803
low 5.1712 0.0014 0.2317 3.8489 0.0147 1.3326
high 3.5555 0.0014 0.4166 1.8784 0.0030 1.1958

Analysis

For the purpose of simple interpretations of the above results, consider the
ratio of standard deviation to mean (σ/µ), summarized in the following table.

Table 5.12: σ/µ ratio for group 1, high power probe data sets.

std dev. a1 b1 c1 a2 b2 c2

pre 43.50% 13.46% 79.04% 61.26% 39.38% 67.15%
low 37.07% 12.42% 64.48% 56.88% 30.97% 46.98%
high 57.27% 11.98% 78.40% 67.92% 35.20% 57.28%

Table 5.13: σ/µ ratio for group 1, standard probe data sets.

std dev. a1 b1 c1 a2 b2 c2

pre 76.70% 20.46% 111.6% 99.50% 40.57% 60.93%
low 52.76% 19.62% 96.77% 90.99% 46.49% 52.16%
high 38.53% 13.93% 81.07% 49.69% 36.26% 80.71%

Table 5.14: σ/µ ratio for group 2, high power probe data sets.

std dev. a1 b1 c1 a2 b2 c2

pre 33.30% 10.74% 93.03% 42.58% 33.52% 47.19%
low 92.14% 32.96% 101.1% 65.06% 35.34% 94.23%
high 49.73% 10.44% 0.5245% 18.31% 47.61% 95.80%
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Table 5.15: σ/µ ratio for group 2, standard probe data sets.

std dev. a1 b1 c1 a2 b2 c2

pre 66.11% 17.09% 88.02% 113.4% 28.34% 61.19%
low 68.02% 33.88% 72.51% 121.1% 82.80% 102.9%
high 54.23% 32.09% 119.3% 56.63% 28.16% 57.58%

The ratio of standard devation to mean is known as the coefficient of
variation (CV), is dimensionless, and thus making it easier for us to compare
fitted parameters. A lower value of CV implies a good fit of model. Observe
that b1s are very similar in value (the mean does not fluctuate much) and this
is reflected by the lower values of CV. This gives us a hint that the dominant
amplitude is modulated by a frequency that’s in the range of 0.0042 rad/s
to 0.0049 rad/s for all fitted data sets. However, we do not know whether
this modulation is of a physiological nature or of some other sources. This
is an interesting observation from the model we’ve set up so far that’s based
on the Wavelet analysis framework we described in a previous chapter.

For b1s in Table 5.4, the student-t test reject the null hypothesis at 0.05%
significance level for a mean µ of 0.0382 to 0.00474 (confidence interval), such
a value is in the 95% confidence interval on the mean of the sample. The
next table summarizes 95% confidence intervals.

Table 5.16: 95% confidence intervals for selected fitted parameters. Group
1, high power/standard probes.

high b1 b2 std b1 b2

pre 0.0038-0.0047 0.0094-0.0142 0.0041-0.0050 0.0099-0.0151
low 0.0033-0.0051 0.0091-0.0126 0.0041-0.0051 0.0097-0.0159
high 0.0034-0.0051 0.0106-0.0154 0.0042-0.0048 0.0105-0.0153
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Table 5.17: 95% confidence intervals for selected fitted parameters. Group
2, high power/standard probes.

high b1 b2 std b1 b2

pre 0.0045-0.0052 0.0090-0.0138 0.0038-0.0047 0.0091-0.0131
low 0.0036-0.0056 0.0104-0.0164 0.0033-0.0051 0.0084-0.0271
high 0.0044-0.0051 0.0093-0.0117 0.0034-0.0051 0.0088-0.0126

5.4 Summary

We have shown in this chapter, within the Wavelet analysis framework that
we are able to look at the LDF signal from a different perspective, the time
energy evolution of all five frequency bands. We focus especially on the en-
dothelial band, thanks to Wavelet transform’s ability to obtain very good
frequency resolution for lower frequency components.

For signals that contain spikes, large ripple effects can be observed on
each of the frequency band, especially on the endothelial band, as shown in
Fig. 5.3. The origin of these spikes is unknown. For a signal that seemingly
contains no obvious artifact, e.g., Fig. 5.1, we also observe spikes in each fre-
quency band in a time-synchronous manner, e.g., there are two notable spikes
in the myogenic activity band at around 350s and 410s, the corresponding
pair spikes can also be found in the neurogenic band. We would perhaps
need to know the dynamics that influence these five frequency bands before
being able to properly interpret this phenomenon. At this present stage, we
can only use Wavelet analysis for observations that we otherwise can hardly
discern.

The parameter (average WT amplitude) calculated from the this time-
evolution model, and the criteria used may be helpful in identifying whether
a subject has abnormal insulin function, e.g., insulin resistance. We observe
that 15 out of the 17 subjects who have features of metabolic syndrome have
abnormal insulin function. We cannot achieve this just from time domain
analysis of LDF signals.

In the end, the time-evolution curve for the endothelial activity frequency
band is fitted with multiple sin functions. Sin functions have been used to
study oscillations and vibrations, the multiple (we used 8) sin function can
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be fitted to our data to very good accuracy. There are three parameters as-
sociated with the shapes (or time-evolution) of these oscillations: amplitude,
phase, and frequency. The dominant sinusoidal term has a fitted frequency
of approximately 0.005 rad/s, but we do not know the physiological origin of
this frequency, the less dominant term has a oscillatory frequency of approx-
imately 0.01 rad/s to 0.03 rad/s. We understand that these frequencies are
different from the physiological frequency band of the endothelial activity,
i.e., 0.0095-0.02Hz or the slower oscillation 0.005-0.0095Hz which may be re-
lated to the endothelium-derived hyperpolarizing factor mechanism. This is
because we are assessing the temporal change of WT amplitude (or energy),
not the temporal change of the signal itself.
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Chapter 6

Conclusions

Both Fourier analysis and Wavelet analysis based approaches can be used to
investigate control of tissue perfusion under physiological and pathophysio-
logical conditions. This is shown in PSD and average scalogram’s sensitivity
in detecting the five characteristic frequency bands in the frequency domain.
These approaches can be used together with statistics to characterize changes
in blood flow both at rest and in response to hyperinsulinemia euglycemic
clamp test.

6.1 Limitations

6.1.1 LDF

The non-invasiveness and continuous recording of skin blood flow for long
duration have made LDF an invaluable tool for assessing microcirculation of
human skin [13]. Motion artifacts are still a problem that can easily contami-
nate LDF signals as well as temporal variations. The arbitrary unit of signals
is also one of the major limitations of LDF, and it has been suggested to take
the more physiological method of expressing data as conductance (AU/mm
Hg), i.e., flux over blood pressure. However, our experiments lacked mea-
surements of real-time arterial pressure.

6.1.2 Sample size

Our sample is perhaps a bit small to obtain significant results, e.g., we only
have 3 data sets for the healthy subjects and 2 groups (one with 17, another
with 12) of data sets for a cohort of subjects with features of metabolic
syndrome. For a small sample size, we may be constrained in having limited
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preciseness in estimating model parameters. The problem is that for large
sample size, the mean will approximate a normal distribution. For a small
sample size, this may not be the case. An in-depth power analysis and
experimental design may be required in future studies.

6.2 Remarks on Signal Analysis

We observed only slight changes (p > 0.05, not statistically significant) of
blood flow from pre to low or high insulin dosages for group 1 data sets
(metabolic syndrome) from both standard and wide probes. We can notice
some changes in the endothelial, cardiogenic activity bands, but calculated
p−values cannot reject the null hypothesis that two samples have equal mean
in the 0.05 level significance, most likely that we will need to increase our
sample size.

When comparing healthy subjects (n = 3) with group 1 subjects, cal-
culated p−values (p = 0.0343 for endothelial activity band, p = 0.0149 for
neurogenic band and p = 0.0081 for cardiogenic activity) suggest statistically
significant changes in relative spectral powers.

The same results obtained using average scalogram in Wavelet analysis
can be in general supported by using PSD obtained from Fourier analysis,
this was summarized in Chapter 4.

6.2.1 Fourier Analysis

For Fourier analysis, challenges remain for the post-processing of LDF signals,
e.g., we’ve observed in Chapter 3 that choice of window function has subtle
influences on PSD estimation. However, from calculated p-values (p > 0.05)
we may conclude that there are no statistically significant differences, i.e.,
variations in mean are very small and are within the 95% confidence interval.

6.2.2 Wavelet Analysis

The analysis of oscillations of endothelial activity band in the time-evolution
model is very challenging. We observe oscillatory changes for pre, low and
high insulin dosages, but it’s very difficult to make physiological interpre-
tations at this stage. However, we did attempt to analyze the oscillatory
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changes by fitting multiple sinusoidal functions to these curves, two oscilla-
tions are found, one from the dominant amplitude term, about 0.005 rad/s,
and the other from the less dominant amplitude term, about 0.0127 rad/s.
The result is limited, and leaves spaces for future work.

We also observe suppressed cardiogenic activity power estimated from
average scalogram, compared with that estimated by PSD from Fourier anal-
ysis. This is in accordance with several other Wavelet applications on LDF
signals [8], but we do not know the mathematical origin of this problem,
perhaps it’s due to Wavelet’s poor frequency resolution for higher frequency
components.

6.3 Future Work

In the future if opportunities permit, we perhaps could increase our sample
size by obtaining more measurements on both MS patients and healthy sub-
jects, and extend measurement duration to improve the reliability of analysis.

Standardized experimental protocols could perhaps minimize temporal
variations and motion artifacts, thus increasing overall LDF signal post-
processing reliability. For example, cuff inflator with automatic release can
minimize movement artifacts at the end of arterial occlusion.

The discrete wavelet transform may have interesting applications (e.g.,
multi-resolution analysis) for LDF signals if one investigates further. Other
signal processing techniques such as empirical mode decomposition, Wigner-
Ville distribution may also be studied and used for comparisons with Fourier
and Wavelet analysis.
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