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Recent advances in synthetic chemistry made available a new class of fascinating
compounds in which a molecule of hydrogen is encased inside the hollow cavity of
the highly symmetric fullerene C60. There is a great interest in studying endohedral
fullerene complexes owing to the rigidity, symmetry, homogeneity and isolation pro-
vided by the carbon cages. On one side these properties result in very detailed and well-
resolved spectra even in the condensed phase. On the other side such supermolecules
are a unique real-world example of a quantum rotor confined in an almost spherical trap,
whose dynamics can be directly and accurately treated from first principles. The study
of the quantum dynamics and the analysis of the spectroscopic observations of H2@C60

provide a stepping stone for the characterization of the carbon-hydrogen interaction in
curved nanocarbons.

In this work symmetry is employed to simplify the analytical treatment of the dy-
namics of the endohedral hydrogen, by expanding the non-bonding confining potential
in terms of spherical multipoles and by using a spherical basis to represent the effective
rotational-translational Hamiltonian. The thesis features the first study of an endohe-
dral hydrogen fullerenes, H2@C60, by infrared spectroscopy . The quantization of the
translational motion, the high rotational freedom and rotational-translational couplings
clearly show up in the infrared spectra. The successful assignment of the IR peaks to
transitions between the quantum states of the confined hydrogen by means of the pre-
sented theoretical model has lead to the first accurate determination of the molecular
vibro-rotational parameters and effective hydrogen-cage potentials in H2@C60.

The nuclear spin dynamics is very sensitive to the local environment around the
hydrogen molecules. Nuclear magnetic resonance spectroscopy at cryogenic tempera-
tures shows that the symmetry at the center of the cages is reduced by solid state effects
and/or occluded impurities. The observations of small but not yet completely under-
stood discrepancies in the lineshapes and relaxations of two samples of H2@C60 stress
the influence of the preparation, storage and manipulation on the nuclear spin dynamics
of endohedral hydrogen fullerenes.
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Chapter1
Introduction

The supramolecular complex H2@C60, represented in figure 1.1, combines H2, the sim-
plest molecule of all, with one of the most symmetric molecules, the fullerene C60.
While hydrogen is among the most well known and studied molecules C60 was dis-
covered in 1985 in the vapors of a laser-ablated graphite rod [4]: it is composed of 60
carbon atoms arranged so to form a soccer ball shaped molecule. It is the prototype
of fullerenes, a class of carbon based molecules in which the atoms organize in closed
and often very symmetric nanoscopic structures. The nomenclature stresses the guest-
at-host configuration: hydrogen is included inside the cavity of the fullerene molecule.

In this introductory chapter the basic properties and structure of the two molecu-
lar units, hydrogen and C60, the procedure adopted to synthesize the complex and the
principal spectroscopic techniques used so far to study it are reviewed.

Figure 1.1: The supra molecular complex H2@C60.

1.1 Spin isomers of molecular hydrogen

Because of its simplicity hydrogen has always been used to test the understanding of
quantum mechanics. The prediction of the existence of para- and ortho-hydrogen as
the two distinct allotropes (isomeric forms of a single element) of molecular hydrogen
was an early triumph of quantum mechanics. The quantum basis for the two forms is

1
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as follows: H2 is composed of two sets of identical spin 1/2 particles, two protons and
two electrons. Both electrons and protons are fermions. The Pauli principle requires the
total molecular wave-function to be antisymmetric for exchange of the space and spin
coordinates of the two indistinguishable protons. The proton spins can combine in a
symmetric way to give a total nuclear spin of 1 or in an antisymmetric way to give a to-
tal nuclear spin of 0, giving rise to the distinct species of ortho and para-hydrogen. In a
diatomic molecule, with no net electronic angular momentum and spin, the spatial sym-
metry for exchange of the nuclei is determined by the parity (−1) j where j = 0, 1, . . .
is the rotational angular momentum quantum number. As a result, in the electronic
ground state, para-H2 (antisymmetric singlet spin function) is associated with symmet-
ric rotational functions ( j = 0, even), and ortho-H2 (symmetric triplet spin function)
is associated with rotational wave-functions that are antisymmetric ( j=odd). Similar
considerations hold for the heavier isotopomer D2 whose nuclei are bosons with spin
1. In that case the molecular wave-function is symmetric by exchange of the nuclear
coordinates and the symmetric spin combinations (ortho-D2) have either spin 2 or 0
while the antisymmetric combination (para-D2) has spin 1. In the electronic ground
state ortho-D2 is associated with symmetric rotational functions ( j = 0, even) while
para-D2 is associated with antisymmetric rotational functions ( j = odd). The concept of
spin isomerism has no sense in the heteronuclear HD molecule and there is no selective
link between the nuclear spin state and the rotational quantum number.

The existence of ortho and para isomers is relevant in hydrogen since interconver-
sion between the two species is slow in the absence of a catalyst. The reason is that
for light molecules the separation between rotational energy levels is large and typical
intramolecular interactions are either spin independent or symmetric by exchange of
the two equivalent nuclei. The role of a catalyst, usually a paramagnetic substance, is
to introduce a non-symmetric spin interaction at the nuclei which connects efficiently
ortho and para manifolds so enhancing the conversion process. In the absence of a spin
catalyst, ortho and para isomers form two independent thermal reservoirs since internal
thermalization among all the degree of freedom is reached much faster than interconver-
sion. The thermal equilibrium at room temperature is a statistical mixture of ortho- and
para- species with a ratio 3:1 in the case of H2 and 2:1 in the case of D2. Many measur-
able quantities are determined by the relative abundance of the ortho and para species
which depends on the history and preparation of the sample. Farkas’ book [5] is an ex-
cellent introduction to the basic theoretical aspects and early experimental observations
of spin isomerism and spin interconversion in molecular hydrogen.

1.2 Overview of C60 structure

In the C60 fullerene molecule the 60 carbon atoms are arranged at the vertices of a trun-
cated icosahedron. This structure has been proposed on the discovery of the molecule
and received numerous confirmations since then. In a truncated icosahedron there are
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12 pentagonal faces and 20 hexagonal faces: each pentagonal face is surrounded by 5
hexagons and each hexagonal face is surrounded by three pentagons alternating with
three hexagons. The figure is characterized by the presence of the following rotational
elements of symmetry: 6 primary C5 symmetry axes passing through opposite pen-
tagonal faces, 10 C3 symmetry axes passing through opposite hexagonal faces and 15
C2 symmetry axes passing through the center of opposite hexagon-hexagon edges, see
figure 1.2. Each rotational symmetry element is replicated into an improper one by
composition with the inversion operation (with respect to the geometric center) for a
total of 120 symmetry operations. C60 belongs to the icosahedral point group Ih and is
the closest realization of a spherical molecule. In the real molecule the atoms are not
disposed according to a regular icosahedron since the bonds in the pentagonal faces and
in the hexagonal-hexagonal edges have different length, 1.46

◦

A (single bond) and 1.40
◦

A (double bond) respectively [6]. The geometric diameter is 7.1
◦

A but the molecule
extends to 10.4

◦

A in consideration of the electronic shell.

C5 C3 C2

7.1 A
o

Figure 1.2: View of the icosahedral C60 molecule and its rotational symmetry elements:
C5 axes cross opposite pentagonal faces, C3 axes cross opposite hexagonal faces, C2
axes cross opposite edges.

In virtue of Van der Waals interactions C60 forms a molecular solid in normal con-
ditions. At normal pressure the centers of the molecules are arranged on a face centered
cubic (fcc) lattice with constant 14.17

◦

A corresponding to a nearest-neighbor center-
to-center distance about 10

◦

A. The phase diagram of solid C60 is characterized by the
existence of a transition at 260 K between a high-temperature fcc phase and a low-
temperature simple cubic (sc) phase. Such transition corresponds to an abrupt change
in the molecular reorientational dynamics while the arrangement of the cage centers
remains unchanged [7, 8]. In the high-temperature phase molecules enjoy free uncor-
related rotational motion resembling identical spherical balls: the solid belongs to the
space group Fm3m with four equivalent spherical C60 per unit cell (one vertex and three
nearest face centers), see figure 1.3. Below 260 K the molecules exhibit orientational
order: fullerenes on opposite faces get oriented in the same way leading to a simple
cubic (sc) lattice Pa3 with four non equivalent C60 per unit cell [9, 10]. Although not
obvious a priori the inter-molecular potential has two configurational local minima sep-
arated by a potential barrier: a low-energy p orientation in which each electron-poor
pentagonal face is directly opposed to one electron-rich hexagonal edge of the nearest
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surrounding molecules and a high-energy h orientation in which hexagonal faces are ad-
jacent to hexagonal double bonds of the nearest molecules [6]. In the low-temperature
phase molecules perform thermal-activated jumps between the inequivalent p and h
orientations and the corresponding 60 symmetrically equivalent orientations. At lower
temperatures jumps among the inequivalent configurations are less frequent and a small
fraction of molecules freezes in the less favorable h configuration leading to merohe-
dral disorder. A third transition happens when the ratcheting motion among equivalent
position gets frozen as well [11]. The exact temperatures at which this glassy transition
is observed depends on the time response of the probe used; it is between 180 K and
100 K.

Figure 1.3: High-temperature face centered cubic crystal structure of solid C60 at T >
260 K. Each C60 rotates freely and independently of the others behaving as a spherical
ball. Vertices are equivalent to face centers and middle points of the edges are equivalent
to the body center. All these sites have octahedral symmetry.

1.3 Endohedral hydrogen fullerene synthesis

The possibility of inserting small atoms or molecules in the hollow cavity of fullerenes
has attracted the interest of the scientists soon after their recognition. The first endo-
hedral fullerene complexes were metallo-fullerenes obtained by laser vaporization/arc
vaporization of graphite rods impregnated with the metal[12, 13, 14]. Interesting ex-
amples are fullerene encapsulating clusters that would not be stable otherwise, such as
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a) b)

c)

Figure 1.4: Low-temperature simple cubic crystal structure of solid C60 T < 260
K. In a) only four inequivalent C60 in the unit cell are shown. The C3 axes of the
molecules orient along the principal diagonal of the cubic structure as shown. The four
molecules are rotated along this axes so to be in one of the two minimal energy configu-
rations shown on the right: b) p configuration and c) h configuration have double bonds
electron-rich edges opposite to pentagonal and hexagonal faces respectively.

trimetalnitride complexes inside C80 [15] and C2Sc2C84 [16, 17] which is a remarkable
example of a quantum gyroscope. Noble gas atoms were inserted by exposing fullerenes
to high temperatures and pressures [18, 19, 20]. However difficulties remain in prepar-
ing and separating macroscopic amounts of pure complexes and only a small fraction
of fullerenes (up to few percent) can be filled using such methods. A breakthrough in
the field came when Komatsu and co-workers established a completely synthetic route,
schematically represented in figure 1.5 for the encapsulation of H2 in C60 [21, 22, 23].
Firstly a sufficiently large orifice is cut in the carbon structure through a series of con-
trolled reactions. By applying high temperature and high pressure molecular hydrogen
is then forced into the open cages (100% load) where it remains trapped once normal
conditions are restored. Finally the hole is sewed up without any hydrogen escape by
another series of chemical reactions. High performance liquid chromatography sepa-
rates out the residual amount of empty fullerenes leaving 100% of the fullerenes filled.
Using this molecular surgery procedure one hydrogen molecule can be enclosed in C60

and up to two molecules inside C70 [24]. All the samples of endohedral fullerenes
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C60H2@C60

H2@ATOCF

ATOCF

Figure 1.5: Molecular surgery multi-step reaction for the synthesis of H2@C60. In step
4 the empty azacyclic-thiacyclic-open-cage-fullerene (ATOCF) is filled with hydrogen
to give H2@ATOCF.

studied in this thesis were produced by the group of Komatsu and coworkers at Kioto
University (Japan) or Turro and coworkers at Columbia University (USA) following the
synthetic procedure described above.

1.4 Quantum dynamics of H2@C60

The availability of endohedral hydrogen fullerene complexes in relatively large amounts
prompted their theoretical and experimental investigations. H2@C60 is a unique com-
plex that can be compared to clathrates, molecules trapped in the interstices of a crystal
lattice or molecules trapped in a carcerand. However, due to the rigidity, stability, sym-
metry, and simplicity of the carbon framework, it can be treated with a rigor far beyond
these other cases. The dynamics of the endohedral molecule is essentially determined
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by supra molecular non-covalent interactions with the carbon atoms of the cage. Early
ab initio calculations suggested that hydrogen rotates freely inside C60 rather than stick-
ing to the walls of the cage [1]. The small mass of hydrogen combined with the small
available room inside the cavity lead to highly quantistic dynamics with large spac-
ing between sparse energy levels. Indeed the translational motion associated with the
molecular center of mass is quantized in H2@C60: the continuum of states typical of the
free molecule splits into discrete translational levels. The walls of C60 act as a spring
force recalling the molecule to the center of the cage and introduce couplings between
the translational and the rotational motion. The coupled rotational-translational levels
are organized following patterns that reflect the symmetry and the strength of the con-
fining potential. The high symmetry of C60 allows considerable simplification of the
theoretical analysis and facilitates the interpretation of spectroscopic data in terms of
transitions between the quantized modes of the confined molecule. For H2@C60 the dif-
ference between icosahedral and spherical symmetry is not of relevance in most cases.
The intuitive picture of H2@C60 as an unhindered vibrating quantum rotor trapped in
a nearly harmonic spherical cage and subjected to translational-rotational coupling is
definitively corroborated by several spectroscopic observations [25], part of which are
discussed in this thesis.

1.5 Outline of the thesis

The thesis is organized as follows. In the first chapter the mathematical framework un-
derlying the quantitative analysis of the quantum dynamics and spectroscopy of H2@C60

is introduced. The chapter is centered on spherical tensors, in particular bipolar spheri-
cal harmonics as a spherical basis to describe the angular motion of a confined diatomic
molecule in a highly symmetric environment. The Wigner-Eckart theorem is used to
derive matrix elements of spherical operators over such spherical basis. In the second
chapter the Hamiltonian of H2@C60 is derived showing that in the spherical approxima-
tion the motion of the endohedral hydrogen is decoupled from the rotations of the cage.
The spherical approximation is justified by the smallness of non spherical versus spher-
ical terms in the multipole expansion of the confining potential. For any reasonable
choice of the non-bonding carbon-hydrogen interaction the confining potential is given
by a large harmonic isotropic term combined with small anharmonic and rotational-
translational corrections. In each vibrational manifold the rotational-translational quan-
tum dynamics of H2, determined by an effective potential with parametric dependence
on the vibrational quantum number, is described in the basis of an harmonic oscillator
whose orbital motion is coupled to the rotation of the molecule. The third chapter con-
tains the experimental infrared spectra of H2@C60 and their analysis. The confinement-
induced electric dipole is discussed in term of symmetry rather than of fundamental
physical mechanisms. When combined with the quantum dynamical model of H2@C60

this approach allows one to obtain a complete description of the infrared spectra. Low
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temperature spectra provide the main input for the assignment process, allowing the
determination of the vibrational frequency and rotational constants, translational exci-
tation and translation-rotation couplings in the first excited vibrational state. The re-
finement of the model over the high temperature spectra allow the determination of the
effective potential in the ground and first vibrational state. The agreement between the
refined model and the experiments is satisfactory but some minor features remain to be
addressed. In the fourth chapter the 1H NMR spectroscopy of two samples of H2@C60,
prepared in slightly different way, is reported. The low temperature lineshapes and spin-
lattice relaxation times show significant but yet unexplained differences. The chapter
contains a study of the lineshape and spin-lattice relaxations between 2 and 0.1 K. The
fifth chapter provide the theoretical framework for the interpretation of the nuclear spin
dynamics in the system. A conclusive chapter summarizes the results obtained in this
work and contains perspectives for future studies.



Chapter2
Mathematical tools

In this chapter I discuss some mathematical aspects related to the high symmetry en-
countered in the study of a diatomic molecule confined in the C60 cavity. For a free
rotor in a spherical potential the angular part of the nuclear wave-function is given in
terms of bipolar spherical harmonics which generalize the spherical harmonics to a set
of two angular variables: in the specific case these are the polar angles of the center
of mass and of the internuclear vector with respect to a given reference frame. The
rank of the bipolar harmonics coincides with the total angular momentum which is a
good quantum number for the eigenstates of the confined rotor wave-function. Bipolar
spherical harmonics can be used not only to describe the quantum state of endohedral
fullerenes but as basis to expand local operators such as the intermolecular potential
between the fullerene cage and the hydrogen molecule. The Wigner-Eckart theorem
reduces the evaluation of matrix elements of spherical operators over the spherical basis
to the evaluation of Wigner j-symbols. The property of the Wigner symbols allows one
to obtain selection rules for spherical operators straightforwardly.

The chapter is organized as follows. At first the basic properties and definitions of
geometric rotations in three-dimensions, angular momentum operators, commutation
rules, irreducible representations of the rotation group, Euler angles and Wigner matri-
ces are recalled. The Wigner j-symbols, with emphasis on the 3- j symbols, are then
introduced in connection with the topic of composition of angular momenta. Spherical
tensor operators are defined and the Wigner-Eckart theorem for simple and composite
system is discussed first generally and then for the specific case of operators associated
to spherical and bipolar spherical harmonics. All these topics fall within the wider field
of the quantum theory of angular momentum. The relationships reported here form
the mathematical background for the description of the enodhedral hydrogen quantum
dynamics and the quantitative analysis of the low and high temperature infrared spec-
troscopy of H2@C60, which is the topic of the next two chapters.

9



10 ‖ Chapter 2. Mathematical tools

2.1 Rotations in three dimensions

A rotation in the three-dimensional space is defined by a unit vector, n, which deter-
mines the axis about which the rotation is performed, and the rotation angle Θ: R̂n (Θ).
The geometric effect of a rotation over a point is to move it through an angle Θ over
the circle located in the plane perpendicular to n. The sense of the rotation is clockwise
for a positive Θ when looked along the direction defined by n and anticlockwise for
negative Θ. This convention is called the ‘right-hand’ convention and it will be used
throughout all this work. The set of rotations through axes which all have one point O
in common is a non commutative group:

R̂n1 (Θ1) R̂n2 (Θ2) , R̂n2 (Θ2) R̂n1 (Θ1). (2.1)

A rotation with Θ = 0 along any n is the identity operation 1, since it does not produce
any net transformation. The inverse of a rotation is another rotation defined as[

R̂n (Θ)
]−1 def

= R̂−n (Θ) = R̂n (−Θ) . (2.2)

It is possible to prove that in a system of Cartesian orthogonal coordinates OXYZ

R̂n (Θ) = e−iΘĴn (2.3)

with Ĵn = nX ĴX + nY ĴY + nZ ĴZ , {nX, nY , nZ} and
{
ĴX, ĴY , ĴZ

}
being the Cartesian com-

ponents of n and of the angular momentum operator Ĵ, respectively.
{
ĴX, ĴY , ĴZ

}
are

the generators of the rotation group since any element of the group can be obtained
by exponentiation, equation (2.3). Geometrical arguments show that the commutator
between infinitesimal rotations around orthogonal axes satisfy [26][

R̂X (δΘ) , R̂Y (δΘ)
] def

= R̂X (δΘ) R̂Y (δΘ) − R̂Y (δΘ) R̂X (δΘ) = R̂Z (δΘ) (2.4)

at first order in δΘ, which implies[
ĴX, ĴY

]
= ĴX ĴY − ĴY ĴX = iĴZ . (2.5)

Applying the argument above cyclically in {X,Y, Z}, the commutator of the angular
momentum components follows[

Ĵi, Ĵ j

]
= εi jk Ĵk i = X,Y,Z (2.6)
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where the Levi-Civita symbol εi jk is defined as:

εi jk =


1 if i jk is an even permutation of XYZ

0 if i jk contains any two equal indices

−1 if i jk is an odd permutation of XYZ

(2.7)

Equation (2.6) defines angular momentum operators. The set of commutation rules[
Ĵ2, Ĵi

]
= 0 i = X,Y,Z, (2.8a)[

ĴZ , Ĵ±
]

= ±Ĵ±, (2.8b)[
Ĵ+, Ĵ−

]
= 2ĴZ (2.8c)

follows from equation (2.6), with

Ĵ2 = Ĵ2
X + Ĵ2

Y + Ĵ2
Z . (2.9a)

Ĵ± = ĴX ± iĴY . (2.9b)

The square of the angular momentum Ĵ2 commutes with all the angular momentum
components. Ladder operators Ĵ± are used to find explicit representations of angular
momentum operators.

2.1.1 Representation of angular momentum operators and rotations

It is well known that the finite dimensional representations of the rotations operator have
dimensions 2 j + 1 with j integer or half integer. In other words for any given j there is
an orthonormal basis, | j,m j〉 in ket notation, for which

Ĵ2| j,m j〉 = j( j + 1)| j,m j〉 (2.10a)

ĴZ | j,m j〉 = m j| j,m j〉 (2.10b)

Ĵ±| j,m j〉 =
[
j( j + 1) − m(m ± 1)

]1/2
| j,m j ± 1〉 (2.10c)

with m j integers or half integers according to the value of j and
∣∣∣m j

∣∣∣ ≤ j. In particular
Ĵ+| j, j〉 = 0 and Ĵ−| j,− j〉 = 0. j and m j are referred as the square and the Z-projection
values of the angular momentum respectively. The argument is based on the commu-
tation relationships Equations (2.10a), (2.10b) and (2.10c) and detailed discussions can
be found in any textbook on angular momentum theory [27, 28].

Euler angles

Any rotation can be described by a set of three angles: the most obvious being the
rotation angle Θ and the two polar angles {θ, φ} defining the rotation axis n in a given
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reference frame OXYZ. A rotation can be ‘decomposed’ into three consecutive rotations
along two orthogonal axis of the reference frame OXYZ obtaining the same geometrical
effect. For example one can choose the Z and the Y direction (Z-Y-Z convention) so that:

R̂n (Θ) = R̂Z (α) R̂Y (β) R̂Z (γ). (2.11)

The sequence {α, β, γ} is a set of ‘Euler angles’. The explicit relationships among the
Euler angles {α, β, γ} and the polar parameters {ω, θ, φ} can be found in [29].

Any rigid frame superimposed to the orthogonal axes of the reference frame is trans-
ported into a frame OX′Y ′Z′ by the three consecutive rotations according to equation
(2.11): a first rotations of an angle γ around the Z axis, a second rotations of angle β
around the Y axis and a third rotation of angle α around the Z axis. For any β , 0
the line of nodes N is the intersection of the OXY and OX′Y ′ planes positive oriented
according to positive Y axis. The same transformation can be accomplished by a set of
three rotations in reversed order [30]:

• first rotate through α about the fixed axis Z, bringing the Y axis on the line of
nodes;

• then rotate through β about the line of nodes N, bringing the Z axis on the Z′ axis;

• finally rotate through γ about the Z′ axis to bring in position the X′ and Y ′ axes.

This second definiton is easier to follow geometrically and gives a clearer interpretation
of the Euler angles, see figure 2.1: α is the angle between Y and the line of nodes, β is
the angle among Z and Z′ and γ is the angle between the line of nodes and Y ′. Note that
if β = 0 only α + γ is defined and if β = π only α − γ is defined. In the former case
Z and Z′ are coincident and α + γ represents the angle between Y and Y ′ while in the
latter case Z and Z′ are opposite and the angle between Y and Y ′ is given α − γ.

Rotation matrices

Euler angles may be used to form the (2 j + 1)-dimensional matrix representations of
rotations in the | j,m j〉 basis:

D j
m′j,m j

(α, β, γ) = 〈 j,m′j|R̂Z (α) R̂Y (β) R̂Z (γ)| j,m j〉 = e−i
(
m′jα+m jγ

)
d j

m′j,m j
(β) (2.12a)

d j
m′j,m j

(β) = 〈 j,m′j|R̂Y (β)| j,m j〉 (2.12b)

D j
m′j,m j

and d j
m′j,m j

are referred as the Wigner and the ‘reduced’ Wigner matrices, respec-

tively. The general formula to evaluate the reduced Wigner matrices elements d j
m′j,m j

in
function of the Euler angles {α, β, γ} is given in [29], along with explicit matrix forms
for low j-values.
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X

Y

Z

X`

Y`Z` β

α

γ

N

Figure 2.1: Euler angles in the Z-Y-Z convention. The rigid orthogonal frame OXYZ
is transported onto the orthogonal rigid frame OX′Y ′Z′ by a set of three consecutive
rotations. The dotted line represents the intersection between the XY plane and the X′Y ′
plane (line of nodes).

2.2 Addition of angular momenta

The coupling of angular momenta is a central topic in quantum mechanics. For a single
particle the total angular momentum Ĵ is the sum of the orbital angular momentum L̂
and of the spin Î: Ĵ = L̂ + Î. For two particles the total angular momentum Ĵ is the sum
of the angular momenta, Ĵ1 and Ĵ2, of each particle: Ĵ = Ĵ1 + Ĵ2. In general the total
angular momentum of a system is the ‘sum’ of the angular momenta of the constituents.
The sum of two (commuting) angular momenta is an angular momentum because the
components of Ĵ satisfy equation (2.6). The finite dimensional matrix representation of
the sum of two angular momenta has dimension 2 j+1 with j integer or half integer. For
given values of the angular momenta, j1 and j2, the angular momentum j can assume
only certain values according to the triangular inequality [26]:

| j1 − j2| ≤ j ≤ j1 + j2. (2.13)

In other words the (2 j1 + 1) × (2 j2 + 1)-dimensional representation can be reduced in
2 j+1−dimensional blocks with j = j1+ j2, . . . , | j1− j2| each with basis | j,m j; j1, j2〉. The
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Clebsch-Gordan coefficients are the projection of the uncoupled basis over the coupled
one:

C j m
j1 m1, j2 m2

= 〈 j,m; j1 j2| j1,m1; j2,m2〉. (2.14)

Following the phase convention of Condon and Shortley [29], the Clebsch-Gordan co-
efficients are real. For fixed j1 and j2 they represent the entries of the unitary transfor-
mations linking the coupled basis and the uncoupled one:

| j,m; j1, j2〉 =
∑

m1,m2

C j m
j1 m1, j2 m2

| j1,m1; j2,m2〉, (2.15a)

| j1,m1; j2,m2〉 =
∑
j,m j

C j m
j1 m1, j2 m2

| j,m; j1, j2〉. (2.15b)

2.2.1 Wigner symbols

The Clebsch-Gordan coefficients are the simplest example of coupling coefficients.
More complex coefficients are obtained on coupling three or more angular momenta.
In such case there is more than one state | j,m〉 with given values of j and m. The or-
der in which angular momenta are coupled in pairs in successive steps is relevant and
specific notation is used to stress the use of the particular recoupling scheme s. Wigner
3n- j coefficients relate the total angular momentum eigenstates when coupling n + 1
angular moments according to different schemes. All the recoupling coefficients can be
written in terms of Clebsch-Gordan coefficients or 3- j symbols, see below. The various
angular momentum values ji and projection mi enter in the Clebsch-Gordan coefficients
in an asymmetric way. A more symmetric symbol is the 3- j Wigner symbol:(

j1 j2 j3
m1 m2 m3

)
= (−1) j3+m3+2 j1 1√

2 j3 + 1
C j3 m3

j1 −m1, j2 −m2
(2.16)

C j3 m3
j1 m1, j2 m2

= (−1) j1− j2+m3
√

2 j3 + 1
(

j1 j2 j3
m1 m2 −m3

)
(2.17)

Some properties of the 3- j symbols are [29]:

• the 3- j symbol in equation (2.16) is zero if the arguments in the first row j1, j2, j3
does not form a triangular triad satisfying equation (2.13) or if m1 + m2 + m3 , 0;

• the value of a 3- j symbol does not change by an even permutation of its columns
but is multiplied by a factor (−1) j1+ j2+ j3 by an odd permutation of its columns.
For example(

j1 j2 j3
m1 m2 m3

)
=

(
j3 j1 j2

m3 m1 m2

)
= (−1) j1+ j2+ j3

(
j1 j3 j2

m1 m3 m2

)
; (2.18)

• the value of a 3- j symbol is multiplied by a factor (−1) j1+ j2+ j3 if the sign of all the
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momentum projections is changed:(
j1 j2 j3

m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3
−m1 −m2 −m3

)
. (2.19)

In the following only 3- j, 6- j and 9- j symbols will be used. The 6- j symbols are
defined by

〈 j1 j2 ( j12) , j3; jm| j1, j2 j3 ( j23) , j′m′〉 = δ j, j′δm,m′(−1) j1+ j2+ j3+ j

×
√

(2 j12 + 1) (2 j23 + 1)
{

j1 j2 j12

j3 j j23

}
(2.20)

and their definition in term of the Clebsch-Gordan coefficients is given by{
a b c
d e f

}
= (−1)d+e+ f +δ+ε+φ

∑
α,β,γ
δ,ε,φ

(
a b c
α β γ

) (
a e f
α ε −φ

) (
d b f
−δ β φ

) (
d e c
δ −ε γ

)
(2.21)

where only three summation indices are independent because of the property of the 3- j
symbols.[29] The 9- j symbols are defined by

〈 j1 j2 ( j12) , j3 j4 ( j34) , jm| j1 j3 ( j13) , j2 j4 ( j24) , j′m′〉 =

δ j, j′δm,m′
[
(2 j12 + 1) (2 j13 + 1) (2 j34 + 1) (2 j34 + 1)

]1/2


j1 j2 j12

j3 j4 j34

j13 j24 j

 (2.22)

and their definition in terms of the Clebsch-Gordan coefficients is given by
a b c
d e f
g h j

 =
∑
α,β,γ
δ,ε,φ
η,µ,ν

(
a b c
α β γ

) (
d e f
δ ε φ

) (
g h j
η µ ν

) (
a d g
α δ η

) (
b e h
β ε µ

) (
c f j
γ φ ν

)

(2.23)
where only five summation indices are independent because of the first property of the
3- j symbols [29]. A more efficient formula for the computation of 9- j symbols makes
use of a single sum over 6- j symbols [31]:

a b c
d e f
g h j

 =
∑

x

(−1)2x(2x + 1)
{

a d g
h j x

}{
b e h
d x f

}{
c f j
x a b

}
(2.24)
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where x takes integer values from 0 to the greatest integer compatibile with non-null 6- j
symbol.

Analytical formulae and tables of 3- j, 6- j, 9- j symbols and Clebsch-Gordan coeffi-
cients can be found in [29]. Computational software, such as Mathematica [32], provide
built-in routines for the evaluation of 3- j and 6- j symbols while 9- j symbols have been
computed by using equation (2.24) .

2.3 Spherical tensor operators

Classically the effect of a rotation over a physical system can be defined in two steps

• first rotate all the coordinates (position and velocities) of the particle composing
system;

• then recalculate all the physical observables in the new configuration.

The physical properties that remain unchanged in the initial and rotated configuration
are scalars or invariants (under rotation). Other physical quantities change whenever the
system is rotated: for example the electric dipole moment associated with a charge dis-
tribution changes its direction if the system is rotated (in the same way as vector does).
Higher multipole moments transform under rotation in a more complicated way. The
way in which a physical quantity transforms under the effect of a rotation is encoded in
its tensorial rank, a concept clarified below referring directly to the quantum mechanical
case.

The use of Wigner matrices allows one to describe algebraically the action of a
rotation through equation (2.11) and equation (2.12a) on a quantum state:

R̂n (Θ)
[
| j,m〉

]
= R̂ (α, β, γ)

[
| j,m〉

]
=

∑
m′
| j,m′〉D j

m′,m (α, β, γ) (2.25)

The notation R̂n (Θ)
[
| j,m〉

]
emphasizes that the rotation is acting on the ket | j,m〉. By

extension, an irreducible spherical tensor of (integer) rank k is by definition a set of
2k + 1 functions, labelled by an index q = −k, . . . , k, which transforms according to
equation (2.25):

R̂n (Θ)
[
T k

q (A)
]

= R̂ (α, β, γ)
[
T k

q (A)
]

=
∑

q′
T k

q′ (A) Dk
q′,q (α, β, γ) . (2.26)

where A denotes the set of variables on which the tensor depends. T k
q (A), q = −k,−k +

1, . . . , k, are the components of the spherical tensor.
In quantum mechanics physical observables are represented by operators. The ac-

tion of a rotation on an operator Ô is obtained by sandwiching it between the rotation
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operator, equation (2.3), and its inverse:

ˆ̂Rn (Θ)
[
Ô
] def

= e−iΘĴnÔ eiΘĴn. (2.27)

Here Ĵ is the angular momentum of the system. In other words in the space of linear
operators a rotation is represented by a superoperator ˆ̂Rn (Θ).

An irreducible spherical tensor operator (ISTO) is by definition a set of 2k+1 opera-
tors, labelled by an index q = −k,−k + 1, . . . , k, which transforms according to equation
(2.26):

ˆ̂Rn (Θ)
[
T k

q

(
Ô
)]

= R̂ (α, β, γ)
[
T k

q

(
Ô
)]

=
∑

q′
T k

q′
(
Ô
)

D j
q′,q (α, β, γ) . (2.28)

An equivalent definition of an ISTO is [26][
ĴZ ,T k

q

(
Ô
)]

= qT k
q

(
Ô
)

(2.29a)[
Ĵ±,T k

q

(
Ô
)]

=
[
k(k + 1) − p(p ± 1)

]1/2 T k
q−1

(
Ô
)

(2.29b)

2.3.1 ISTO for single quantum system

An example of a spherical tensor of rank 1 is given by the angular momentum Ĵ with
components organized in the following way:

T 1
0

(
Ĵ
)

= ĴZ (2.30a)

T 1
±1

(
Ĵ
)

= ∓
1
√

2

(
ĴX ± iĴY

)
(2.30b)

Spherical tensor operators of higher rank can be built by coupling Ĵ recursively [26]:

T k
q

(
Ĵ
) def

=

1∑
q1=−1

Ck q
k−1 q−q1,1 q1

T k−1
q−q1

(
Ĵ
)

T 1
q1

(
Ĵ
)
. (2.31)

For example the rank two spherical tensor is

T 2
±2

(
Ĵ
)

= T 1
±1

(
Ĵ
)

T 1
±1

(
Ĵ
)
,

T 2
±1

(
Ĵ
)

=
1
√

2

[
T 1
±1

(
Ĵ
)

T 1
0

(
Ĵ
)

+ T 1
0

(
Ĵ
)

T 1
±1

(
Ĵ
)]
,

T 2
0

(
Ĵ
)

=
1
√

6

[
T 1

1

(
Ĵ
)

T 1
−1

(
Ĵ
)

+ 2T 1
0

(
Ĵ
)

T 1
0

(
Ĵ
)

+ T 1
−1

(
Ĵ
)

T 1
1

(
Ĵ
)]
.

(2.32)
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The adjoint of a spherical operator is found easily:

T k
q

(
Ĵ
)†

= (−1)qT k
−q

(
Ĵ
)
. (2.33)

The spherical tensor operators defined above are important for quantum systems
with finite (integer or half integer) value I of total angular momentum I. In this class the
most notable example is given by nuclear spins. The maximum spherical rank supported
is k = 2I + 1 and the spherical operators T k

q (I) form a basis of independent (orthogonal)
operators. The norm of a spherical operator, in the trace sense, depends on I as follows

∣∣∣T k
q (I)

∣∣∣ def
= TrMI

[
T k

q (I)† T k
q (I)

]
=

k!

2
k
2

√(
2I + k + 1

2k + 1

)
(2.34)

where the round parentheses contain a binomial coefficient. Spherical tensors can be
built from any vectorial quantity or operator Ô={ÔX, ÔY , ÔZ}, replacing Ĵ with Ô in
equations (2.30a) and (2.30b).

2.3.2 ISTO for composite quantum system

In a composite quantum system spherical tensor operators can be built in a similar way
by multiplying two spherical tensors by the use of Clebsch-Gordan coefficients:

[
T k1

(
Ô1

)
⊗ T k2

(
Ô2

)]k

q

def
=

k1∑
q1=−k1

Ck q
k1 q1,k2 −q−q1

T k1
q1

(
Ô1

)
⊗ T k2

q2

(
Ô2

)
. (2.35)

⊗ is the direct product of operators. As in angular momenta addition, the ranks which
enter in the composite spherical tensor satisfy the triangular inequality: |k1 − k2| ≤ k ≤
k1 + k2. In particular the tensor scalar product (invariant under rotation) is defined as

T k
(
Ô1

)
· T k

(
Ô2

) def
=

k∑
q=−k

(−1)qT k
q

(
Ô1

)
T k
−q

(
Ô2

)
= (−1)k

√
2k + 1

[
T k

(
Ô1

)
⊗ T k

(
Ô1

)]0

0

(2.36)
having used C0 0

k q1,k q2
= δq1,−q2(−1)k−q1/

√
2k + 1 in equation (2.35). More than one op-

erator can be obtained for a given rank k and component q when composing more than
two spherical operators and the coupling scheme s should also be specified [33].

2.3.3 Wigner-Eckart theorem

Spherical tensors allows one to to exploit the symmetry of a quantum system under
rotation by the use of Wigner-Eckart theorem [27]. For a quantum system with basis
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|τ, j,m j〉 the matrix elements of a spherical operators T k
p (A) can be obtained by:

〈τ, j,m|T k
q

(
Ô
)
|τ′, j′,m′〉 = (−1) j−m

 j k j′

−m q m′j

 〈τ, j‖T k
(
Ô
)
‖τ′, j′〉. (2.37)

The label τ denotes the set of quantum numbers, apart from the angular momentum
ones, that are needed to completely define a quantum state of the system. The reduced
matrix element 〈τ, j‖T k

(
Ô
)
‖τ′, j′〉 is independent of the angular momentum compo-

nents m,m′, q. The factor (−1) j−m comes from the relative phase between the bra 〈τ, j,m|
and the ket |τ, j,m〉. The power of the Wigner-Eckart theorem stems from the fact that
the evaluation of (2 j + 1)(2k + 1)(2 j′ + 1) matrix elements is essentially reduced to the
evaluation of an algebraic factor, the 3- j symbol, and one quantity, the reduced matrix
element, which retains all the physical content of the matrix elements. A useful conse-
quence of the Wigner-Eckart theorem is the ‘replacement’ theorem, which relates the
matrix elements between two spherical operators with the same rank:

〈τ, j,m|T k
q

(
Ô1

)
|τ′, j′,m′〉 =

〈τ, j‖T k
(
Ô1

)
‖τ′, j′〉

〈τ, j‖T k
(
Ô2

)
‖τ′, j′〉

〈τ, j,m|T k
q

(
Ô2

)
|τ′, j′,m′〉. (2.38)

In the operator version of the replacement theorem, the operator T k
q

(
Ô
)

is replaced by

the corresponding angular momentum tensor operator T k
q

(
Ĵ
)
:

T k
q

(
Ô
)∣∣∣∣ j= j′
τ=τ′

=
〈τ, j‖T k

(
Ô
)
‖τ′, j〉

〈 j‖T k
(
Ĵ
)
‖ j′〉

T k
q

(
Ĵ
)

(2.39)

in a subspace with τ = τ′ and j = j′ or when the mixing of states with different j can
be neglected. The reduced matrix element of the rank k angular momentum spherical
tensor operator in equation (2.31) is proportional to the norm of the operator [34]:

〈 j‖T k
(
Ĵ
)
‖ j′〉 = δ j, j′

√
(2k + 1)

∣∣∣T k
q (I)

∣∣∣ = δ j, j′
k!

2
k
2

√
(2k + 1)

(
2I + k + 1

2k + 1

)
. (2.40)

Matrix elements for composite angular momentum operators

The Wigner-Eckart theorem can be used to evaluate matrix elements of products of
spherical tensor operators. Consider two spherical operators T k1

q1

(
Ô1

)
and T k2

q2

(
Ô2

)
act-

ing on two subsystems independently, i.e. T k1
q1

(
Ô1

)
commutes with all the operators

relative to the subsystem 2 and in particular with Ĵ2 with similar considerations apply-
ing to T k2

q2

(
Ô2

)
. The matrix elements of the tensor product operator in the coupled basis
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of the full system are given by

〈τ, j,m; τ1, j1, τ2, j2|
[
T k1

(
Ô1

)
⊗ T k2

(
Ô2

)]k

q
|τ′, j′,m′; τ′1, j′1, τ

′
2, j′2〉 =

(−1) j−m

 j k j′

−m q m′j

 〈τ, j; τ1, j1, τ2, j2‖
[
T k1

(
Ô1

)
⊗ T k2

(
Ô2

)]k

q
‖τ′, j′; τ′1, j′1, τ

′
2, j′2〉

(2.41)

according to equation (2.37). The reduced matrix element can be expressed as product
of the algebraic factor represented by a 9- j symbol and the product of the individual
space reduced matrix elements

〈τ, j; τ1, j1, τ2, j2‖
[
T k1

(
Ô1

)
⊗ T k2

(
Ô2

)]k

q
‖τ′, j′; τ′1, j′1, τ

′
2, j′2〉 =

[
(2 j + 1)(2 j′ + 1)(2k + 1)

] 1
2

×


j1 j′1 k1

j2 j′2 k2

j j′ k


∑
τ′′

〈τ; τ1, j1‖T k1
(
Ô1

)
‖τ′′; τ′1, j′1〉〈τ

′′; τ2, j2‖T k2
(
Ô2

)
‖τ′; τ′2, j′2〉 (2.42)

and the sum over τ′′ is usually not necessary [35].
The evaluation of matrix elements for operators acting only one subsystem, let us

say 1, in the coupled basis of the full system proceeds similarly

〈τ, j,m; τ1, j1, τ2, j2|T k1
q1

(
Ô1

)
|τ′, j′,m′; τ′1, j′1, τ

′
2, j′2〉 = δτ2,τ

′
2
δ j2, j′2(−1) j−m

 j k1 j′

−m q1 m′j

×
× 〈τ, j; τ1, j1, j2‖T k1

q1

(
Ô1

)
‖τ′, j′; τ′1, j′1, j2〉. (2.43)

In such case the reduced matrix element can be expressed as [35]

〈τ; τ1, j1, j2‖T k1
(
Ô1

)
‖τ′; τ′1, j′1, j2〉 = (−1) j1+ j2+ j′+k1

[
(2 j + 1)

(
2 j′ + 1

)] 1
2

{
j1 j j2
j′ j′1 k1

}
×

× 〈τ; τ1, j1‖T k1
(
Ô1

)
‖τ′; τ′1, j′1〉 (2.44)

A completely equivalent formula applies when an operator acts only on the subspace 2
by exchanging indices 1↔ 2.

2.4 Spherical harmonics and bipolar spherical harmon-

ics

In this section we introduce the spherical harmonics as a basis for the irreducible repre-
sentations for a system that can be described in terms of scalar wave-functions. Bipolar
spherical harmonics are then defined as a spherical basis for composite systems. Suc-
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cessively it will be shown how spherical and bipolar spherical harmonics may be used
as spherical operators.

Consider a system that can be described by a wave-function Ψ (P) with P = {X,Y,Z}
or P = {r, θ, φ} using Cartesian or spherical coordinates respectively. The action of a
rotation over a wave-function is defined by the following equations

Ψ
R̂n(Θ)
→ Ψ′ = R̂n (Θ) [Ψ] , (2.45a)

Ψ′ (P) def
= Ψ

([
R̂n (Θ)

]−1
[P]

)
. (2.45b)

This corresponds an active rotation of the object Ψ in the reference frame OXYZ. The
angular momentum operators are then represented by differential operators:

ĴX = −i
(
Y
∂

∂Z
− Z

∂

∂Y

)
= i

(
sin φ

∂

∂θ
+ cot θ cos φ

∂

∂φ

)
(2.46a)

ĴY = −i
(
Z
∂

∂X
− X

∂

∂Z

)
= −i

(
cos φ

∂

∂θ
− cot θ sin φ

∂

∂φ

)
(2.46b)

ĴZ = −i
(
X
∂

∂Y
− Y

∂

∂X

)
= −i

∂

∂φ
(2.46c)

Ĵ2 = −
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
−

1
sin2 θ

∂2

∂2φ
(2.46d)

in Cartesian and polar coordinates respectively. The irreducible angular momentum
representations have dimensions (2 j + 1) where j is an integer. Explicitly the basis
| j,m〉 is given by the spherical harmonics

| j,m〉 = Y jm (θ, φ) = Θ j m (θ)Φm (φ) (2.47)

with

Θ j m (θ) =

[
2 j + 1

2
( j − m)!
( j + m)!

]1/2

P j m (cos θ) , (2.48a)

Φm (φ) =

√
1

2π
eimφ, (2.48b)

where P j m (cos θ) are the associated Legendre polynomials. For negative m the phase
convention of [36] is followed: P j m (cos θ) = (−1)mP j |m| (cos θ). The spherical harmon-
ics satisfy equation (2.10) and are normalized according to∫

0

π ∫ 2π

0
sin θdθdφY∗jm (θ, φ)Y j′m′ (θ, φ) = δ j, j′δm,m′ , (2.49)

Y∗jm (θ, φ) being the complex conjugate of Y jm (θ, φ).
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Bipolar spherical harmonics F j1 j2
jm are a generalization of spherical harmonics for a

system composed by two subsystems described by scalar wafefunctions in the indepen-
dent variables {r1, θ1, φ1} and {r2, θ2, φ2}. The (commuting) orbital angular momenta of
two subsystems J1 and J2 can be combined to give the total orbital angular momen-
tum: J = J1+J2. The irreducible representations are built according to the prescriptions
given in 2.2. The coupled basis is given by bipolar spherical harmonics obtained as the
composition of spherical harmonics

| j,m; j1, j2〉 = F j1 j2
jm (θ1, φ1, θ2, φ2) def

= C j m
j1 m1, j2 m2

Y j1m1 (θ1, φ1)Y j2m2 (θ2, φ2) (2.50)

according to equation (2.15b). Any positive integer power of the scalar product of two
vectors can be expanded in terms of bipolar harmonics of rank 0 as

(r1 · r2)n = 4π(r1r2)n
∑

l

(−1)l
√

2l + 1n!
(n − l)!!(n + l + 1)!!

F ll
00 (θ1, φ1, θ2, φ2) (2.51)

where the index l assumes the values l = 0, 2, . . . , n−2, n if n is even and n = 1, 3, . . . , n−
1 if n is odd [29, 37].

2.4.1 Associated spherical operators

Spherical harmonics Ykq (θ, φ) with given k define a spherical tensor operator acting
multiplicatively over functions Ψ (r, θ, φ)

T k
q

(
Ŷ
)
Ψ

def
= Ykq (θ, φ)Ψ (r, θ, φ) , (2.52a)

T k
q

(
Ŷ
)

[c1Ψ1 + c2Ψ2] = c1T k
q

(
Ŷ
)
Ψ1 + c2T k

q

(
Ŷ
)
Ψ2. (2.52b)

Similarly bipolar spherical harmonics Fk1k2
kq with given k define a spherical tensor op-

erator acting multiplicatively over functions Ψ (r1, θ1, φ1 r2, θ2, φ2) of two independent
polar coordinate sets

T k,k1k2
q

(
F̂
)
Ψ

def
= F j1 j2

jm (θ1, φ1, θ2, φ2) Ψ (r1, θ1, φ1 r2, θ2, φ2) , (2.53a)

T k,k1k2
q

(
F̂
)

[c1Ψ1 + c2Ψ2] = c1T k,k1k2
q

(
F̂
)
Ψ1 + c2T k,k1k2

q

(
F̂
)
Ψ2. (2.53b)

Note the use of a different symbol to distinguish the use of spherical harmonics and
bipolar spherical harmonics as spherical operators from their use as states.

The matrix element of the spherical operator, equation (2.52a), over the spherical
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basis, equation (2.47), is given by the integral

〈 j,m|T k
q

(
Ŷ
)
| j′,m′〉 =

∫
0

π ∫ 2π

0
sin θdθdφY∗jm (θ, φ)Ykq (θ, φ)Y j′m′ (θ, φ)

= (−1) j−m
(

j k j′

−m q m′

) (
j k j′

0 0 0

) [
(2 j + 1) (2k + 1) (2 j′ + 1)

4π

]1/2

,

(2.54)

whence the reduced matrix element for the spherical harmonic operator, compare equa-
tion (2.37), is

〈 j‖T k
(
Ŷ
)
‖ j′〉 =

(
j k j′

0 0 0

) [
(2 j + 1) (2k + 1) (2 j′ + 1)

4π

]1/2

. (2.55)

The matrix element of a bipolar spherical operator, equation (2.53a), over the coupled
basis, equation (2.50), can be evaluated using the Wigner-Eckart theorem for composite
systems, equation (2.41):

〈 j,m; j1, j2|T k,k1k2
q

(
F̂
)
| j′,m′; j′1, j′2〉 = (−1) j−m

(
j k j′

−m q m′

)
〈 j; j1 j2‖T k,k1k2

q

(
F̂
)
‖ j′; j′1, j′2〉

(2.56)
where, according to equation (2.42),

〈 j; j1, j2‖T k,k1k2
q

(
F̂
)
‖ j′; j′1, j′2〉 =

[
(2 j + 1)(2 j′ + 1)(2k + 1)

] 1
2


j1 j′1 k1

j2 j′2 k2

j j′ k


× 〈 j1‖T k1

(
Ŷ
)
‖ j′1〉〈 j2‖T

k2
(
Ŷ
)
‖ j′2〉 (2.57)

and finally the individual reduced matrix elements can be evaluated with the use of
equation (2.55).

The evaluation of matrix elements in the way outlined here provides a powerful
tool for the analysis of the quantum dynamics and the spectroscopy in endohedral di-
hydrogen fullerenes. Quantum mechanical operators, such as the translation-rotation
interaction and the dipolar spin Hamiltonian, may be written in terms of bipolar spher-
ical harmonics, equation (2.53a), for which equations (2.56) and (2.57) allow one to
evaluate matrix representations in the coupled basis.





Chapter3
Theory

In this chapter the dynamics of endohedral hydrogen trapped in C60 is discussed. The
aim is to provide the theoretical framework for the interpretation and the analysis of
infrared spectroscopy observations. The classical Hamiltonian for the nuclear motion
of a diatomic molecule confined in a rigid fullerene cage is presented and the confining
potential is expanded in spherical multipoles. The confining potential is determined by
the high symmetry and its strength can be estimated either by basic ab initio compu-
tations or by semi-empirical two body carbon-hydrogen interactions. The evidence is
that molecular hydrogen behaves as a vibrating rotor rattling in an approximate isotropic
potential: the translational motion is expected to be quantized and coupled to the molec-
ular rotations because of the confinement. The potential for the translational motion is
shown to be mainly harmonic: anharmonic corrections and roto-translational couplings
can be treated as perturbations. In absence of more detailed ab initio calculations the
vibrational energy levels are described by the use of few parameters (vibrational fre-
quency, vibrational anharmonic correction, and roto-vibrational correction) rather than
referring to the inter-nuclear potential for the confined case. Since the vibrational en-
ergy is large, the rotational-translational motion is studied via an effective Hamiltonian.
In each vibrational state the distribution of the roto-translational energy levels depends
on the coefficients of the expansion of the confining potential in terms of spherical mul-
tipoles. Such coefficients have been written in terms of the parameters describing the
carbon-hydrogen interactions for a Lennard-Jones 12-6 potential. Ideally the compari-
son between theory and experimental spectra provides indirect access to such parame-
ters that can be reliably used to study the dynamics of hydrogen in similar systems.

3.1 Classical description of a dihydrogen molecule inside

a rigid C60 cage

A basic relationship of classical mechanics, repeatedly used in the following deriva-
tions, is discussed first. In classical mechanics the kinetic energy of a system of two

25
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material points can be rewritten as sum of the kinetic energies of the center of mass and
that of the relative vector. Explicitly, given two points with mass m1 and m2 and linear
momenta p1 and p2, the kinetic energy is given by

K.E. =
p2

1

2m1
+

p2
2

2m2
=

P2

2M
+

p2

2µ
. (3.1)

Here P and p are the linear momenta associated to the center of mass R and relative r
vector, respectively. The mass associated with the center of mass vector is the total mass
M = m1 + m2 and the mass associated to the relative motion is the reduced mass µ =

m1 ∗ m2/(m1 + m2). Equation 3.1 is a direct consequence of the following relationships
among pairs of conjugated dynamical variables, {(P, R), (p, r)} and {(p1, r1), (p2, r2)}:

P = MṘ = p1 + p2 R =
m1r1 + m2r2

m1 + m2
(3.2)

p = µṙ = µ

(
p2

m2
−

p1

m1

)
r = r2 − r1 (3.3)

The inverse relationships are given by

p1 =
m1

M
P − p p2 =

m2

M
P + p (3.4)

r1 = R −
µ

m1
r r2 = R +

µ

m2
r (3.5)

In a given reference frame the configuration of a rigid C60 molecule can be defined
by its center of mass vector RC60 and its orientation with respect to the axis system.
The orientation of a C60 molecule is more precisely defined by a set of 3 Euler angles,
collectively denoted by ΩC60 , relating a frame rigidly bounded to the fullerene to the
laboratory frame. In an analogous way the configuration of a diatomic molecule AB
is defined by its center of mass vector RAB and its orientation ΩRAB . The orientation
of a linear molecule is determined by two polar angles defined by the internuclear A-
B relative vector rAB in the given frame. If AB is not considered rigid the relative
nuclear distance rAB has to be included among the dynamical variables. In C60 the center
of mass coincides with the geometrical center of the molecule while for a diatomic
molecule this happens only in the homonuclear case. The classical Hamiltonian for a
diatomic molecule in a rigid C60 cage is given by the sum of their kinetic energies plus
the intramolecular potential of AB and the intermolecular potential between the cage
and the endohedral molecule:

H =
P2

C60

2mC60

+
IC60ω

2
C60

2︸               ︷︷               ︸
(K.E.)C60

+
P2

AB

2mAB
+

p2
AB

2µAB︸            ︷︷            ︸
(K.E.)AB

+VA−B(rAB) + VC60−AB(ΩC60 , RC60 , RAB, rAB)

(3.6)
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where

• PC60 is the linear momentum of C60 associated with its center of mass vector RC60;

• IC60 is the momentum of inertia of C60 (a spherical top) with respect to its center
and ωC60 is the modulus of the angular speed associated with the rotation of C60;

• PAB is the linear momentum of AB associated with its center of mass vector RAB

and mAB = mA + mB;

• pAB is the linear momentum associated with the internuclear vector rAB and µAB =

mA ∗ mB/(mA + mB) is the reduced mass of the diatomic molecule;

• VA−B is the intramolecular potential for the molecule AB;

• VC60−AB is the intermolecular potential between C60 and AB.

The potential VC60−AB depends on the relative position of the center of mass and on the
orientation of AB and C60:

VC60−AB(ΩC60 , RC60 , RAB, rAB) = VC60−AB(ΩC60 , RAB − RC60 , rAB). (3.7)

Using equation (3.1) the Hamiltonian can then be rewritten as

H =
P2

T

2mT
+

IC60ω
2
C60

2
+

p2
AB@C60

2µAB@C60

+
p2

AB

2µAB
+ VA−B(rAB) + VC60−AB(ΩC60 , RAB−RC60 , rAB)

(3.8)
where

• PT is the linear momentum associated with the center of mass vector of the com-
plex AB@C60: RAB@C60 = (mABRAB + mC60 RC60)/(mAB + mC60);

• pAB@C60 is the linear momentum of AB associated with the difference of center of
mass vectors RAB − RC60;

• µAB@C60 = mABmC60/(mAB + mC60) is the reduced mass of the confined molecule.

Equation (3.8) shows that the translational motion of the center of mass of the system is
decoupled from all the internal dynamics. This degree of freedom will be neglected in
the following. A first approximation, justified by the high molecular symmetry, consists
in neglecting the terms in the potential that depend explicitly on the orientation of C60:

VC60−AB(ΩC60 , RAB − RC60 , rAB)→ VC60−AB(RAB − RC60 , rAB). (3.9)

That is completely equivalent to considering C60 as a spherical molecule. In this ap-
proximation the rotational motion of C60 is decoupled from the internal dynamics and
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can also be neglected. The Hamiltonian for the motion of AB@C60 in the spherical
approximation is given by:

H =
P2

2M
+

p2

2µ
+ UAB@C60 (R, r) (3.10a)

UAB@C60 (R, r) = VA−B(r) + VC60−AB (R, r) . (3.10b)

where a simplified notation was used

P = pAB@C60 , (3.11a)

M = µAB@C60 , (3.11b)

p = pAB, (3.11c)

µ = µAB, (3.11d)

R = RAB − RC60 , (3.11e)

r = rAB. (3.11f)

Note that R is the vector going from the center of C60 to the center of mass of AB and
{P, R}, {p, r} are conjugate dynamical variables. For clarity the set of vectors defining
the configuration of a diatomic molecule AB in a reference frame centered at C60 is
shown in figure 3.1. The main result of this section is contained in equations (3.10a)
and (3.10b) which state that the motion of a confined diatomic molecule in a spherically
symmteric cage can be studied by using reduced masses and that the confining poten-
tial given by the sum of the intramolecular component VA−B and of the intermolecular
component VC60−AB. The intra molecular component depends on the separation r of the
two nuclei but not on the orientation. The explicit form of the intramolecular potential
and of the intermolecular potential is discussed in the following sections.

Symmetry considerations for the intermolecular potential

It is very convenient to expand the intermolecular potential VC60−AB (R, r) in terms of
bipolar spherical harmonics where the angular variables are the polar angles ΩR and Ωr.
Assuming a spherical approximation for C60, the intermolecular potential is invariant for
any rotation of the cage or equivalently for any rotation of R and r:

VC60−AB
[
R̂n (Θ) R, R̂n (Θ) r

]
= VC60−AB (R, r) (3.12)

In the language of spherical tensors VC60−AB is a tensor of rank 0, i.e. a scalar. As a
consequence of the completeness of the bipolar spherical harmonics and assuming that
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Figure 3.1: Graphical representation of the geometrical vectors defining the configura-
tion of a diatomic molecule inside C60. R is the vector going from the center of C60 to
the center of mass of AB and r is the relative vector of AB. si is the vector going from
the center of the fullerene to the i − th carbon atom. The coordinate system is centered
at the center of the full system: diatomic molecule+fullerene.

the potential is an analytic function of its arguments the following expansion holds:

VC60−AB (R, r) =
∑
l, j

∑
n

V l j;n
00 (r) RnF l j

00 (ΩR,Ωr) (3.13)

where the indices satisfy

(i) l and j are null or positive integers;

(ii) l = j from the triangle relation;

(iii) n is a null or a positive integer; because of equation (2.51) coefficients with n
odd must have l = odd and terms with n even must have l = even;

(iv) V l j;0
00 = 0 unless l = 0 because when the center of mass of the diatomic molecule

is at the center of the fullerene the potential cannot depend on the corresponding
angular variables;

(v) for homonuclear molecules only even j terms are allowed;

(vi) for homonuclear molecules n is even.

Bipolar spherical harmonics can be used to expand the intermolecular potential even
when the real icosahedral symmetry of C60 is considered. In icosahedral symmetry the
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dependence on the cage orientation ΩC60 cannot be discarded. The intermolecular po-
tential is invariant under any symmetry operation of the group Ih and belongs to the
total symmetric representation A1g. In such a case the following terms in the multipolar
expansion are represented by bipolar spherical harmonics of rank 6, 10, . . . [38]. Mul-
tipoles of rank higher than 0 are responsible for lifting the degeneracy of the quantum
energy levels obtained in the spherical approximation, for homogeneous broadening of
spectroscopic lines and for the coupling between the rotation of the endohedral molecule
and that of C60. In the following the spherical approximation will be assumed and the
orientation/rotational motion of the fullerene will become irrelevant for the quantum
dynamics of the confined hydrogen: all the angular variables will be then referred to the
laboratory system. It will be understood that AB = HD or H2 or D2.

3.2 Potential for a dihydrogen molecule inside C60

In a molecule the electrons move fast while the heavier nuclei hardly move from their
equilibrium position. This observation is the basis for the study of molecular dynamics
in the Born-Oppenheimer approximation: the Schrödinger equation for the electrons in
the molecule is solved with the nuclei at fixed positions for all the possible nuclear con-
figurations. The energy associated with the motion of the electrons (electronic energy)
is then a function of the coordinates of all the nuclei. The dependence of the electronic
energy, which includes the internuclear Coulombian repulsion energy, on the nuclear co-
ordinates can be visualized as a potential electronic surface (PES). The nuclei perform
small oscillations around the equilibrium position defined by the minimum/minima of
the PES. The scheme depicted above describes accurately a molecule in its electronic
ground state.

The PES for a diatomic molecule confined in a rigid molecular frame is a function
of the nuclear coordinates of the diatomic molecule, for a total of six variables. The
computational evaluation of the six dimensional PES for an hydrogen molecule moving
inside the cavity of a fullerene, considered as rigid, is a formidable task. No high
level calculations faced such a problem up to now. A quantum dynamical evaluation
by Cross[1] of few points of the PES of H2@C60 showed that the confined hydrogen
molecule, approximated as rigid, does not stick to the wall of the C60 cage but rather
rotates almost freely in the confining potential. This justifies the treatment of endohedral
dihydrogen fullerenes as made by two units: the hydrogen molecule and the enclosing
cage. The internuclear (hydrogen-hydrogen) potential is only slightly modified by the
confinement and the hydrogen molecule can be thought as a whole object moving in
the external potential determined by the cage. For endohedral hydrogen the potential
energy surface is then the sum of the internuclear potential plus the confining potential.
The justification of such an approximation relies in the consistency and in the matching
of theoretical predictions with experimental observations. Figure 3.2 shows the PES
for a rigid hydrogen molecule inside C60 as computed in [1]. The confining potential
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has mainly a parabolic character with a minimum when the fullerene is at the center of
the cage, i.e at R = 0. A very small dependence on the orientation of the internuclear
vector is evident when the H2 is off center: such anisotropy torque is responsible for the
translation-rotation interaction term in the potential.

˚
Figure 3.2: The potential electronic surface for H2@C60 from ab initio calculation has
been explored moving the center of a rigid H2 molecule along the fivefold symmetry
axis of a rigid fullerene: the (+) and (×) symbols represent the computed energy for H2
parallel and perpendicular to such axis, respectively. The two lines represent the best
fits to the computed points. Adapted from [1].

Intermolecular potential

The difficulty of computing a reliable PES for a hydrogen molecule inside C60 by ab
initio methods and therefore to estimating the influence of the confinement on the dy-
namics of the confined molecule is circumvented by assuming that the interaction of the
hydrogen molecule with the cage can be written as a pairwise additive potential of the
form [39]:

VC60−AB (rA, rB) =

60∑
k=1

VC−AB (rA, rB, sk) (3.14)

where the variables rA, rB correspond to the positions of the nuclei, A and B, and
sk, 1 ≤ k ≤ 60 corresponds to the fixed positions of each of the sixty carbon nuclei.
In other words, the carbon atoms interact independently with the hydrogen molecule
and the confining potential is the sum of such interactions over all the carbon atoms.
Since in a dihydrogen molecule the electronic configuration depends on the charge of
the nuclear species rather than on its mass, it is safe to assume that the instantaneous
interaction of a single hydrogen molecule with a carbon atom does not depend on the
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hydrogen isotopomer so that VC−AB = VC−H2 . A realistic potential has to take in account
that in the hydrogen ground electronic state most of the electronic density is located at
the geometric center of the molecule (rA + rB)/2 and not only around the two hydrogen
nuclei. In reference [2] the authors suggested that a three site potential may represent
well such a situation:

VC−H2
3 sites (rA, rB) = VC−H(s, rA) + VC−H(s, rB) + wVC−H(s,

rA + rB

2
) (3.15)

where VC−H is the interaction between the carbon atom placed in s and the site located
at nuclear positions rA and rB and w is a multiplicative factor weighting the interaction
with the site located at the geometric center of the hydrogen molecule. If one defines
the interaction between the cage and a site by summing the single site interaction VC−H

on all the carbon atoms as

VC60−H(x) =

60∑
i=1

VC−H (si, x) , (3.16)

the fullerene-hydrogen potential can be written as the sum of interactions between the
cage and each of the three sites as follows:

VC60−AB (rA, rB) = VC60−H(rA) + VC60−H(rB) + wVC60−H(
rA + rB

2
). (3.17)

by using equation (3.15) and the definition equation (3.16). In the spherical approxima-
tion the interaction with carbon atoms is spread evenly on the surface of a sphere so that
the sum over the carbon atoms in equation (3.16) can be replaced by an integral over a
spherical distribution

VC60−H(x) =

60∑
i=1

VC−H (si, x)→ VC60−H
S (x) =

60
4π

∫
Sphere

dΩs VC−H (s, x) . (3.18)

By symmetry arguments VC60−H
S depends only on the distance from the center of the

fullerene x = |x|. As a further step the single site potential VC−H can be described in
terms of a Lennard-Jones (LJ) 6-12 potential:

VC−H(x) = 4ε

( σ
|x|

)12

−

(
σ

|x|

)6 . (3.19)

In equation (3.19) the power-12 term describes the repulsive interaction for short inter-
nuclear distance while the power-6 term represents the attractive tail of the potential at
long distance. ε is the minimum value of the potential and σ is related to the equilibrium
distance by |x|E =

6√2σ. Neglecting the constant term, the polynomial approximation
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Figure 3.3: Comparison between the spherical approximation of the confining potential
VC60−H(R) inside a fullerene cage (red line) and its best polynomial approximation up to
R6 (black line). The spherical potential was obtained by smearing the carbon-hydrogen
interactions over a sphere, see equation (3.18). The two curves are explicitly obtained
from the 12-6 Lennard-Jones potential VC−H, equation (3.19), with parameters from [2].
The vertical scale is in arbitrary units.

for VC60−H
S (x) up to order 6 in x,

VC60−H
S (x) ≈ F0x2 + H0x4 + J0x6, (3.20)

is satisfactory for a wide range of the parameters ε and σ. In figure 3.3 the spherical po-
tential, equation (3.18), is compared to the polynomial approximation, equation (3.20),
using the values given in [2]. The difference is negligible for hydrogen moving within
a sphere x ≤ 1

◦

A.

The polynomial approximation in equation (3.20) is valid also when other forms
of carbon-hydrogen interaction VC−H are used and so it will be assumed without any
reference to a specific potential VC−H. In such a case the cage-molecule interaction,
equation (3.17), can be written in terms of the center of mass vector R and relative
internuclear vector r as:

VC60−AB (R, r) = VC60−H
(
R −

µAB

mA
r
)
+VC60−H

(
R +

µAB

mB
r
)
+wVC60−H

(
R +

mA − mB

2(mA + mB)
r
)

(3.21)
where µAB is the reduced mass of the diatomic molecule. For the heteronuclear HD the
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potential in equation (3.21) can be expanded as

VC60−HD(R, r) = 4π
[
(2 + w)F0 +

5(20 + w)
54

H0r2 +
7(272 + w)

1296
J0r4

]
︸                                                              ︷︷                                                              ︸

V00;2
00 (r)

R2F00
00+

4π
[
(2 + w)H0 +

7(20 + w)
36

J0r2
]

︸                                    ︷︷                                    ︸
V00;4

00 (r)

R4F00
00 −

2π

3
√

3

[
2(2 + w)F0r +

(56 + w)
9

H0r3
]

︸                                            ︷︷                                            ︸
V11;1

00 (r)

RF11
00

−
2π

3
√

3

[
4(2 + w)H0r +

7(56 + w)
15

J0r3
]

︸                                             ︷︷                                             ︸
V11;3

00 (r)

R3F11
00+

2π

9
√

5

(
4(20 + w)

3
H0r2 +

(272 + w)
9

J0r4
)

︸                                               ︷︷                                               ︸
V22;2

00 (r)

R2F22
00 +

8π

9
√

5
(20 + w)J0r2︸                ︷︷                ︸

V22;4
00 (r)

R4F22
00+

−
8π

135
√

7
(56 + w)J0r3︸                      ︷︷                      ︸

V33;3
00 (r)

R3F33
00 +

(20 + w)
36

F0r2 +
(272 + w)

1296
H0r4︸                                   ︷︷                                   ︸

Vconf(r)

.

(3.22)

considering terms up to R4 and r4. Here the dependence of the bipolar harmonics on
the polar angles of R and r is understood. The potential has been reorganized to stress
the connection with the multipole expansion, equation (3.13). Note that odd and even
powers of R appear with odd and even bipolar harmonics respectively. In the following
only the dynamics of homonuclear hydrogen A2 = H2,D2 will be discussed leading to
a simplified form of the confining potential

VC60−A2(R, r) = 4π
[
(2 + w)F0 +

5
3

H0r2 +
7
8

J0r4
]

︸                                     ︷︷                                     ︸
V00;2

00 (r)

R2F00
00 + 4π

[
(2 + w)H0 +

7
2

J0r2
]

︸                        ︷︷                        ︸
V00;4

00 (r)

R4F00
00

+
16π
√

5

(H0

3
r2 +

J0

4
r4

)
︸                  ︷︷                  ︸

V22;2
00 (r)

R2F22
00 +

16π
√

5
J0r2︸   ︷︷   ︸

V22;4
00 (r)

R4F22
00 +

F0

2
r2 +

H0

8
r4︸          ︷︷          ︸

Vconf(r)

.

(3.23)

In the homonuclear case only even powers of R are present. Only four spherical mul-
tipoles are sufficient to describe the intermolecular potential VC60−A2 . The r−only de-
pendent part of VC60−A2 is incorporated into the vibrational potential as discussed in
the next section while the remaining part constitutes the confining potential driving the
dynamics of endohedral hydrogen.

It is worth giving an estimate of the magnitude of the coefficients using the values
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reported in [2] for the LJ 12-6 potential: ε = 5.94 ∗ 10−24 J and σ = 2.95
◦

A:

F0 = 0.12 J m−2 (3.24a)

H0 = 0.20 × 1020 J m−4 (3.24b)

J0 = 0.10 × 1040 J m−6 (3.24c)

These values imply that the internuclear part of the confining potential Vconf(r) is small
compared to the internuclear potential in the free molecule, as will be shown in section
3.2: the former can be treated as a small perturbation of the latter. The expressions for
the confining potential, equations (3.22) and (3.23), in terms of the parameters F0,H0, J0

may be cumbersome but they give an indication of which terms have to be considered
in the spherical multipole expansion. Furthermore the expected order of magnitude of
the coefficients was obtained as function of the internuclear distance r.

Internuclear potential

For the isolated hydrogen molecule the electronic energy depends only on the internu-
clear distance r. For low excitation energies the nuclei perform only small oscillations
around the minimum of the potential. It follows that for low energy vibrations such
a potential can be approximated by a quadratic function centered at the equilibrium
position rF

e

VA−B(r) ≈ feF(r − rF
e )2, (3.25)

neglecting the constant term at the minimum of the internuclear potential. The super-
script F refers to free molecule parameters. In the quadratic approximation, neglecting

molecular rotation, the vibrational motion is purely harmonic with ωF
e =

√
feF/2µ. A

better approximation is given by the inclusion of cubic and quartic corrections

VA−B(r) ≈ feF(r − rF
e )2 + ge

F(r − rF
e )3 + he

F(r − rF
e )4. (3.26)

The anharmonic corrections ge
F accounts for the asymmetry of the internuclear potential

around re. The influence of the cubic and quartic terms can be treated as perturbation of
the quadratic one so that the vibrational motion is that of an anharmonic oscillator.

The effect of the confinement in the C60 case is to add further terms to the inter-
nuclear potential of the free molecule with the net result of modifying the internuclear
distance, the vibrational frequency and the values for the coefficients of the cubic and
quartic corrections, see equation (3.23). The influence of the confining potential Vconf

on the internuclear potential is completely negligible as can be seen by comparing the
values of the coefficients in equations (3.24) with the approximate values for the coeffi-
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cients of VA−B of free H2:

feF ≈ 286.6 J m−2, (3.27a)

ge
F ≈ −556.9 × 1010 J m−3, (3.27b)

he
F ≈ 631.4 × 1020 J m−4. (3.27c)

This set of coefficients is obtained by comparing the theoretical expansion of the energy
levels with the experimental spectra of the free molecule as explained in 3.3. An analo-
gous analysis can also be done for D2. At this point it is worth noting that the influence
of the confinement on the internuclear dynamics can not be included only into Vconf.
Quantum dynamical effects that influence the distribution of electrons in the endohe-
dral molecule are not well incorporated into a potential energy surface derived from a
Lennard Jones potential. Although a LJ type potential is adequate for describing the
intermolecular part of the interaction in confined hydrogen it is not correct to assume it
is the only source of corrections to the free molecule internuclear potential. The Vconf

potential is part of the endohedral potential Vendo(r) which includes all the effects of the
fullerene on the vibrational potential:

Vvib(r) = VA−B(r) + Vendo(r). (3.28)

Assuming Vendo(rF
e ) << VA−B(rF

e ), the effect on the internuclear potential may be evalu-
ated by performing a series expansion of the internuclear potential in the neighborhood
of the equilibrium distance:

Vvib(r) = fe (r − re)2 + ge (r − re)3 + he (r − re)4

≈ ( feF + δ fe)
[
r − (rF

e + δre)
]2

+ (ge
F + δge)

[
r − (rF

e + δre)
]3

+

+ (he
F + δhe)

[
r − (rF

e + δre)
]4
.

(3.29)

The variation of the internuclear equilibrium distance depends mostly on the first deriva-
tive of Vendo(r) at r = rF

e

δre ≈ −

∂Vendo(r)
∂r

∣∣∣∣
r=rF

e

2 fe
, (3.30)

while the corrections induced by higher order derivatives of Vendo are less important
than the variation of internuclear distance in determining the coefficients fe, ge, he so
that

δ fe ≈ 3geδre, (3.31a)

δge ≈ 4heδre, (3.31b)

δhe ≈ 0. (3.31c)
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The variation of δre has opposite sign to the first derivative of the endohedral potential
at re. A positive variation in the internuclear distance δre > 0 is reflected in a reduction
of fe and hence a redshift of the classical vibrational frequency and vice versa δre < 0
implies blueshift since ge < 0 for endohedral hydrogen. If the fullerene cage acts
attractively on the endohedral molecule δre is expected to be positive and the vibrational
frequency is expected to be redshifted and if the interaction is repulsive the opposite is
expected.

3.2.1 Classical Hamiltonian for homonuclear hydrogen in C60

According to the discussion relative to the confining potential for homonuclear hydro-
gen in C60 given in the previous section, the classical Hamiltonian can be separated into
three parts:

H = HV-R +HT + VR-T. (3.32)

The vibrational-rotational Hamiltonian HV-R is that of a vibrating rotor with cubic and
quartic corrections and equilibrium length re:

HV-R =
p2

2µ
+ fe(r − re)2 + ge(r − re)3 + he(r − re)4︸                                          ︷︷                                          ︸

Vvib(r)

(3.33)

The translational HamiltonianHT is that of a harmonic oscillator with anharmonic cor-
rections:

HT =
P2

2M
+ +V00;2

00 (r)R2F00
00︸                      ︷︷                      ︸

HHar
T

+ V00;4
00 (r)R4︸      ︷︷      ︸
HAn

T

(3.34)

The potential VR-T represents the coupling between the translational degrees of freedom
and the rotational degrees of freedom:

VR-T(r,R) =
[
V22;2

00 (r)R2 + V22;4
00 (r)R4

]
F22

00. (3.35)

A very simple but illuminating example to discuss is the harmonic approximation for
both the VH−C60 and Vvib(r):

VH−C60(x) = F0x2,

Vvib(r) = f0 (r − r0)2

⇒ HA2 =
P2

2M
+ (2 + w)F0R2 +

p2

2µ
+ f0(r − r0)2. (3.36)

Classically the confining potential has a parabolic shape with a minimum when the
geometric center of hydrogen is at the center of the cage. Within the harmonic approx-
imation there is no coupling between the translational and the vibro-rotational motion.
It is easy to see that the translational (subscript T ) motion of the center of mass vector
and the vibrational (subscript e) motion of the internuclear vector perform harmonic
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oscillations independently and with classical frequencies given by:

ωT =

√
(2 + w)F0

M
, (3.37a)

ωe =

√
2 fe
µ
. (3.37b)

Using the values equations (3.24) and (3.27), the purely harmonic translational and vi-
brational frequencies are expected to be around 180 cm−1 and 4400 cm−1 for H2@C60

and 140 cm−1 and 3100 cm−1 for D2@C60, respectively. Such values needs to be cor-
rected by considering the influence of anharmonicities and interactions with the rota-
tions prior to any comparison with experimental data. The separation of the Hamilto-
nian in equation (3.36) into two independent parts, harmonic vibrational and harmonic
translational, suggests a perturbative study of the fully coupled dynamics in terms of the
eigenfunctions of a vibrating rotor (internuclear vector) and an oscillator (center of mass
vector) with both motions perturbed by anharmonic corrections. The classical Hamil-
tonian in equation (3.32) is the starting point for the study of the quantum dynamics of
homonuclear dihydrogen enclosed in C60.

3.3 Quantum dynamics of the vibro-rotational motion

The quantum Hamiltonian of a vibrating rotor with small anharmonic corrections is
given by

HV-R =
p2

2µ
+ Vvib(r) = −

~2

2µ
r
∂2

∂2r
1
r

+
~2 Ĵ2

2µr2 + fe(r− re)2 + ge(r− re)3 + he(r− re)4 (3.38)

where Vvib(r) given in equation (3.29) and spherical coordinates {r, θ, φ} have been used
in the second line. The explicit form of the square of the angular momentum Ĵ2

is given
by the differential operator in the variables {θ, φ}, equation (2.46d). The centrifugal
term ~2 Ĵ2

/(2µr2) acts as a potential barrier at short distance. The radial symmetry of
the vibration-rotation Hamiltonian, equation (3.38), allows one to separate the solution
of the Schrödinger equation into a product of a radial times an angular part

HV-Rψ
v,J,MJ
vib-rot (r, θ, φ) = Ev,J

V-Rψ
v,J,MJ
vib-rot (r, θ, φ) , (3.39a)

ψv,J,MJ
vib-rot (r, θ, φ) = ψv,J

vib (r)︸ ︷︷ ︸
radial

YJMJ (θ, φ)︸      ︷︷      ︸
rotational

. (3.39b)
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In Dirac’s ket notation the eigenfunctions in equation (3.39b) can be written as |v, J,MJ〉.
The rotational part of the wave-function is given by spherical harmonics

|J,MJ〉
def
= YJMJ (θ, φ). (3.40)

The integer quantum numbers J and MJ define the quantum angular momentum for ro-
tation of the internuclear vector. J corresponds to the number of rotational quanta. The
quantum number v labels the radial part of the wavefunctions together with J. In general
the vibration-rotation Hamiltonian is not separable, even in the case of purely harmonic
vibration potential, because vibrations and rotations are coupled by the dependence of
the centrifugal term on 1/r2. Anyway the vibration rotation Hamiltonian of hydrogen
can be approximatively separated into the Hamiltonian of a vibrator (for the radial part)
and the Hamiltonian of a rotator (for the angular part) in the sense specified below. In
such an approximation, the radial part of the eigenfunctions is given by

|v〉 def
= ψv

vib (r) =

(
βe

π

) 1
4
(

1
2vv!

) 1
2 1

r
e−

βe(r−re)2

2 Hv

[ √
βe(r − re)

]
(3.41)

with
βe =

µωe

~
(3.42)

and the vibrational frequency defined by equation (3.37b). The radial wave-function
depends only on the (null or positive) integer v referred as the number of quanta of
vibrations. Hv are Hermite polynomials [36]: explicitly H0(x) = 1 and H1(x) = x for
v = 0, 1. The wave-function is centered at r = re and its spatial extension is determined
by:

〈∆r〉v
def
=

[
〈ψv

vib (r)|(r − re)2|ψv
vib (r)〉

] 1
2

=

√(
v +

1
2

)
1
βe

(3.43)

since the probability density falls down to 0 quickly within a few 〈∆r〉v from re. The
vibrational rotational levels |v, J〉 are (2J + 1)-fold degenerate. The energy is approxi-
mately given by the sum of the vibrational energy Ev

V and the rotational energy vEJ
R:

Ev,J
V-R ≈ ~

vωV

(
v +

1
2

)
︸         ︷︷         ︸

Ev
V

+ vB J (J + 1) − De [J (J + 1)]2︸                               ︷︷                               ︸
vEJ

R

(3.44)

For the sake of simplicity all terms which are constant with respect to v and J have
been dropped because they do not have direct observable spectroscopic effect. The
vibrational energy is the energy of a one dimensional quantum harmonic oscillator with
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vibrational frequency depending on the vibrational state:

vωV = ωe

[
1 − xe

(
v +

1
2

)]
(3.45)

The adimensional parameter xe takes into account the effect of anharmonic corrections
on the vibrational frequency. In particular the vibrational frequency for the pure vibra-
tional transitions between v = 0 and v = 1 is

ω0 = ωe (1 − 2xe) (3.46)

The rotational energy is essentially the centrifugal energy with an effective v rotational
constant vB:

vB = Be − αe

(
v +

1
2

)
(3.47)

where Be is the momentum of inertia of a rigid molecule with internuclear distance re

Be =
~2

2µr2
e

(3.48)

and αe is the lowest order vibration correction to the rotational constant. The term with
coefficient De represents the lowest higher order centrifugal correction to the rotational
energy. The relationships between the coefficients xe, αe and De and the molecular and
potential parameters are given by [40, 3]

xe = −
3
4

[
5ge

2

4 fe2βe
−

he

feβe

]
, (3.49a)

αe =
3
2

B2
e

~ωe

[
gere

fe
− 1

]
, (3.49b)

De = 4
B3

e

(~ωe)2 . (3.49c)

according to perturbation theory applied to the vibration-rotation Hamiltonian equation
(3.38). Table 3.1 reports the numerical values for the vibrational and rotational constants
of free homonuclear hydrogen, H2 and D2, in the electronic ground state, obtained by
matching the experimental frequency of spectroscopic data to equation (3.44). Specifi-
cally the numerical estimates for the coefficients fe, ge and he in H2, equation (3.27), can
be obtained from the values ωe, ωexe and αe given in the tables by using the expressions
equations (3.37b), (3.49a) and (3.49b).
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ωe
2πc /cm−1 Be

hc /cm−1 ωe xe
2πc /cm−1 αe

hc /cm−1 De
hc /cm−1 0-1ωV

2πc /cm−1 re /
◦

A ∆r0 /
◦

A

H2 4395.2 60.80 117.9 2.99 0.05 4155.0[41] 0.741 0.07
D2 3118.4 30.43 64.09 1.05 0.005 2994.0[41] 0.741 0.05

Table 3.1: Numerical values for the vibrational and rotational constants of free homonu-
clear hydrogen in the electronic ground state, adapted from [3]. All the values reported
in the columns, except the last three, are obtained by matching the theoretical equa-
tion (3.44) with experiments. 0-1ωV is the experimental frequency for the pure ground-
state vibrational transition |v = 0, J = 0〉 → |v = 1, J = 0〉 obtained directly by Raman
spectroscopy experiments. ∆r0 and re are calculated from the first two entries using
equations (3.42), (3.43) and (3.48).

The conditions for the validity of the approximate solutions are given by [40]

〈∆r〉v
re

<< 1, (3.50a)[
2Be j(J + 1)
~ωe

]2

<< 1, (3.50b)

ge
〈∆r〉v

fe
<< 1, (3.50c)

he
〈∆r〉v

2

fe
<< 1, (3.50d)

Be

~ωe

gere

fe
<< 1. (3.50e)

The first inequality requires the spatial extension of the eigenstate to be small compared
to the internuclear separation at equilibrium. The second inequality requires rotational
energies to be small compared to the vibrational ones and ensure that higher order cen-
trifugal corrections are small, De << Be. The first two inequalities ensure that the
vibrational and rotational motions are separable and it is possible to write the radial part
of the wavefunctions of the three dimensional vibrating rotor as in equation (3.41). The
third and the fourth inequalities ensure the validity of the harmonic approximation for
the vibrational motion and that xe << 1. The last inequality ensures that αe << Be. The
inequalities above fix implicitly the maximum values of the vibrational quanta and ro-
tational quanta, v and J, for which the energy and wavefunctions of the Hamiltonian in
equation (3.38) can be safely approximated by equation (3.39b) and equation (3.44), re-
spectively. All these conditions are clearly satisfied for endohedral hydrogen fullerenes
in the lowest vibrational-rotational states because the confinement induces only small
changes in the internuclear potential parmeters with respect to the free molecule.

In summary the vibro-rotational Hamiltonian of hydrogen is approximately separa-
ble into a vibrational and a rotational part so that: a) the eigenstates can be written as
|v〉|J,MJ〉, where |v〉 represents the radial wavefuncion in equation (3.41) and |J,MJ〉

represents a spherical harmonic, equation (3.40); b) the energy can be written as sum of
the vibrational and rotational energy, equation (3.44).
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3.3.1 Effective quantum Hamiltonian for the rotational-translational

motion

In molecular hydrogen vibrations are characterized by higher frequencies than transla-
tions (and rotations). The coupling between vibrations and the other degrees of freedom
is small compared to the separation in energy between vibrational states. The quantum
motion of rotations and translations can be studied independently within each vibra-
tional state. The interference among levels in different vibrational manifolds are negli-
gible and can be included parametrically into an effective Hamiltonian. Specifically, at
the level of approximation needed for the analysis of the available spectroscopic data of
endohedral hydrogen fullerenes, the vibro-rotational Hamiltonian may be written as

vHV-R = Ev
V + vHR (3.51)

where the effective rotational Hamiltonian is

vHR = vBJ2 + DeJ4. (3.52)

As far as the translational motion is concerned, the molecule vibrates so fast that the po-
tential experienced by the confined molecule is an average of the instantaneous potential
over the vibrational eigenfunction:

VC60−A2(R, r)→ vVC60−A2(R,ΩR,Ωr) = 〈ψv
vib (r)|VC60−A2(R, r)|ψv

vib (r)〉. (3.53)

The dependence on the internuclear distance is eliminated through a quantum average
over the vibrational state. The vibrationally averaged coefficients of the multipole ex-
pansion, equation (3.13), are defined as

vV lJ;n
00 = 〈ψv

vib (r)|V lJ;n
00 (r)|ψv

vib (r)〉. (3.54)

It follows that, in a given vibrational state v, the translational Hamiltonian and the
rotational-translational potential can be written as:

vHT =
P2

2M
+ vV00;2

00 R2F00
00︸                 ︷︷                 ︸

vHHar
T

+ vV00;4
00 R4︸   ︷︷   ︸
vHAn

T

, (3.55a)

vVR-T =
[
vV22;2

00 R2 + vV22;4
00 R4

]
F22

00. (3.55b)

The Hamiltonian for the coupled roto-translational (R-T) motion is reduced to a five di-
mensional Hamiltonian with a parametric dependence on the vibrational quantum num-
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ber v:
vHR-T = vHR + vHT + vVR-T = vHR + vHHar

T︸         ︷︷         ︸
vHR-T

0

+ vHAn
T + vVR-T︸         ︷︷         ︸

vHR-T
1

(3.56)

The separation of vHR-T into a zero-order and a first-order term is made in view of a
perturbative treatment of the coupled roto-translational quantum dynamics. In a given
vibrational state, the endohedral hydrogen molecule behaves as a rotor with rotational
constant vB moving in an external spherically symmetric potential. The full quantum
Hamiltonian, comprehensive of the vibrational energy

vH = Ev
V + vHR-T (3.57)

is diagonal in v since vHR-T does not mix vibrational states.

Zero-order rotation-translation Hamiltonian

The zero-order roto-translational quantum Hamiltonian is separable:

vHR-T
0

= vHR + vHHar
T (3.58)

The eigenstates, the energies and the degeneracies of the rotation Hamiltonian have been
discussed in 3.3. The harmonic part of the effective Hamiltonian vHT is the starting point
for the analysis of the translational motion. The quantum Hamiltonian for the motion in
an isotropic harmonic potential with frequency vωT is given by

vHHar
T =

P2

2M
+ vV00;2

00 R2F00
00 = −

~2

2M
R
∂2

∂2R
1
R

+
1
2

MvωT
2R2 +

~2L̂2

2MR2 (3.59)

where {R,Θ,Φ} are spherical coordinates for the center of mass vector and the oscilla-
tion frequency is given by

vωT =

√
vV00;2

00

2πM
. (3.60)

The spherical symmetry allows one to find exact eigenvalues and eigenvectors

vHHar
T

vψN,L,ML
T (R,Θ,Φ) = vEN

T
vψN,L,ML

T (R,Θ,Φ) (3.61a)
vψN,L,ML

T (R,Θ,Φ) = vψN,L
tran (R)︸   ︷︷   ︸
radial

YLML (Θ,Φ)︸        ︷︷        ︸
angular

. (3.61b)

The angular part of the eigenfunction is given by spherical harmonics: |L,ML〉 =

YLML (Θ,Φ). The integer quantum numbers L and ML define the quantum angular mo-
mentum for rotations of the center of mass vector with respect to the center of the
fullerene. The quantum number N is a positive or null integer labelling the radial part
of the wavefunctions together with L. For a given N, the quantum number L is re-
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stricted to be in the range L = N,N − 2, . . . , 1 or 0 depending on N being odd or even,
respectively. Explicitly the normalized radial part of the eigenfunctions is given by[42]:

|N, L; v〉 = vψN,L
tran (R) = ζ

(
N f , L f ,

vβT

)
(vβT R2)

L
2 e−

vβT R2

2 La
L+ 1

2
N−L

2
(vβT R2) (3.62)

where

ζ
(
N f , L f ,

vβT

)
= 2

1
2

[
( N−L

2 )!
]1/2[

( N+L+1
2 )!

]3/2
vβT

3
4 (3.63)

is the normalization factor and vβT = MvωT
~

determines the length scale of the system.
Here Laαn (x) are the generalized Laguerre polynomials, [36]. Explicitly Laα0 (x) = 1 and
Laα0 (x) = α+ 1/2− x for any α > −1. The energy for the harmonic translational motion
is given by:

vEN
T = ~vωT

(
N +

3
2

)
. (3.64)

The spatial degeneracy of the translational energy levels is (N + 1)(N + 2)/2.
The eigenstates of the zero-order Hamiltonian in equation (3.58) are exactly given

by
|N, L,ML, J,MJ; v〉 = |J,MJ〉|N, L,ML; v〉 ⊗ |J,MJ〉 (3.65)

with energy

vEJ,N
R-T;0 = vB J(J + 1) + De [J(J + 1)]2 + ~vωT

(
N +

3
2

)
. (3.66)

The degeneracy of the energy level is the product of the rotation and translation degen-
eracies: (2J + 1)(N + 1)(N + 2)/2.

Coupled basis for rotation-translation motion

Separating the full Hamiltonian into a zero-order part and a first-order part allows one to
use perturbative method to study the dynamics of the system. Eigenstates and eigenval-
ues of the full Hamiltonian can be connected to the ones of the zero-order unperturbed
Hamiltonian. To evaluate the energy for the full Hamiltonian one needs an explicit ma-
trix representation of the perturbative Hamiltonian in a parental basis. The choice of the
basis used to study the quantum dynamics of a system is a matter of convenience. The
best choice is to reorganize the basis of the zero-order Hamiltonian in order to exploit
the symmetry of the full system. The advantage is that the matrix representation of
the full Hamiltonian becomes block-diagonal according to the (irreducible) representa-
tion of its symmetry group: the matrix elements between states belonging to different
representation are exactly zero. Since the endohedral potential for C60 is spherical to
a good approximation, it is no surprise that the total orbital angular momentum of the
endohedral hydrogen molecule Λ̂ = L̂ + Ĵ provides approximate good quantum num-
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bers (exact in spherical symmetry) for the eigenstates of the coupled rotation-translation
Hamiltonian. The quantum dynamics of rotation-translation is then better analyzed in
the following basis of eigenstates of Λ̂:

|N, L, J,Λ,MΛ; v〉 def
= vψN,L

tran (R) FLJ
ΛMΛ

(Θ,Φ, θ, φ). (3.67)

ψtran is given by equation (3.62) and the bipolar spherical harmonics F are discussed in
section 2.4. All the quantum numbers are positive or null integers. For a given L and J
the quantum number Λ is an integer within the range |L− J| ≤ Λ ≤ L + J and |MΛ| ≤ Λ,
according to the general theory of angular momentum. The limitation on the values of
L with respect to N was discussed in the previous section. In the coupled basis the zero-
order roto-translation Hamiltonian is diagonal. Another reason for using the coupled
basis equation (3.67) is that molecular hydrogen is characterized by large rotational
constants compared to translation-rotation coupling so that J is an approximate good
quantum number for the endohedral hydrogen.

Since the translational anharmonic potential and the roto-translational potential are
sums of terms each proportional to RkFLJ

00 , the matrix elements between initial and final
spherical states | f ; v f 〉 and |i; vi〉 (neglecting the spin part) are given by

〈 f |RkF l j
00|i〉 = 〈N f , L f ; v f |Rk|Ni, Li; vi〉︸                        ︷︷                        ︸

radial

〈L f , J f ,Λ f ,MΛ f |F
l j
00|Li, Ji,Λi,MΛi〉︸                                         ︷︷                                         ︸

angular

. (3.68)

Both the radial and the angular matrix elements reduce to algebraic factors. The eval-
uation of the matrix elements for the bipolar spherical harmonics in the coupled basis
has been discussed in 2.4. The radial matrix element can be expressed after expanding
the product of two Laguerre polynomials as

〈N f , L f ; v f |Rk|Ni, Li; vi〉 =
1
2
ζ
(
N f , L f ,

v f βT

)
ζ (Ni, Li,

viβT )

×

(
1

viβT

) k+3
2

( v f βT
viβT

) L f
2

 2

1 +
v f βT
viβT


L f +Li+k+3

2

×

N f −L f
2∑

r=0

Ni−Li
2∑

s=0

1
r!s!

 N f +L f +1
2

N f−L f

2 − r

 ( Ni+Li+1
2

Ni−Li
2 − s

) ( v f βT
viβT

)r
− 2

1 +
v f βT
viβT


r+s

Γ

(
r + s +

L f + Li + k + 3
2

)
(3.69)

where the round paratheses contain binomial coefficients and Γ is the standard gamma
function [36]. This last formula is cumbersome but it is reported here because it is
completely algebraic and it can be applied to states with v f βT , viβT compared to the
one in [43].
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Effect of the exclusion principle

The full quantum state of the nuclear wave-function is defined by (a linear combination
of) the product of a space part and a spin part according to:

ψnuclear = ψspaceψspin. (3.70)

The quantum dynamics of homonuclear molecules is affected by the spin of its con-
stituents according to the Pauli principle. The total wavefunctions describing a quan-
tum system has a definite parity P, either +1 or -1, by exchange of the (space and spin)
coordinates of any pair of identical constituents:

Ψ(x1, x2, . . .) = P Ψ(x2, x1, . . .). (3.71)

The Pauli exclusion principle links the parity of a quantum system to the spin of the
identical particles whose coordinates are exchanged: the parity must be -1 (and the
wave-function is said antisymmetric) if the exchanged particles have half-integer spin
(fermions) while the parity is +1 (and the wave-function is said symmetric) if the ex-
changed particles have integer spin (bosons). In an electronic state with zero electronic
spin and zero electronic angular momentum, such as the ground electronic state of hy-
drogen, the parity of the molecular wavefuntion is determined by the parity of the nu-
clear wave-functions only [44], which is given by the product of the parities of the
space and spin kets. As for the space part of nuclear wave-functions, the exchange of
coordinates of the two nuclei corresponds to the following transformation of spherical
coordinates

{R,Θ,Φ, θ, φ} → {R,Θ,Φ, π − θ, 2π − φ} (3.72)

so that the parity of the space ket, equation (3.67), is P = (−1)J. For the spin ket
of homonuclear diatomic molecules the parity by exchange of the spin coordinates is
(−1)I . It follows that:

• since acceptable wavefunctions for H2 must have P = −1 by exchange of the two
protons (1H has spin 1/2) the allowed ket for the space part has J = even for
para-H2 (I = 0), and J = odd for ortho-H2 (I = 1);

• since acceptable wavefunctions for D2 must have P = −1 by exchange of the two
deuterons (2H has spin 1) the allowed ket for the space part has J = even for
ortho-H2 (I = 2, 0), and J = odd for para-D2 (I = 1).

Within a given electronic state no mixing between states with even and odd J is allowed.
Ortho and para isomers can be studied independently using the space part of the kets
since the Hamiltonian of the spatial degrees of freedom does not contain spin operators
explicitly.



3.3. Quantum dynamics of the vibro-rotational motion ‖ 47

3.3.2 Energy level strucure

For free hydrogen each of the discrete vibrational-rotational levels, described by equa-
tion (3.44), is flanked by a continuous set of infinitely degenerate translational energy
levels. In the confined geometry the set of translational energy levels becomes quantized
leaving only a discrete set of translational levels with finite degeneracy. The separation
between consecutive translational energy levels is related to the strength of the con-
finement: the more the center of mass gets localized the more the sparseness of the
energy levels increases. For isotropic harmonic confinement, the translational levels
are uniformly spaced with a separation of ~vωT . In presence of small anharmonicities
and rotation-translation coupling, the spacing is no longer uniform and each vibration-
rotation-translation level |v, J,N, L〉 is split into a multiplet. The number of components
of a given multiplet is

# (J,N, L) =


(N+1)(N+2)

2 if J ≥ N
(N+1)(N+2)−(N−L+1)2

2 − if J < N and N − J = odd
(N+1)(N+2)−(N−L+1)2−1

2 − if J < N and N − J = even

(3.73)

In the spherical approximation, each level in the multiplet has a degeneracy g = 2Λ + 1
depending only on the total orbital angular momentum. Each spherical level has a finer
structure when the real icosahedral symmetry is taken into account according to the
irreducible representations of the Ih group. In the homonuclear case ortho and para
energy levels form separate manifolds. This situation is illustrated in figure 3.4 with
reference to the lowest rotational energy level of ortho-hydrogen, J = 1.

The energy separations together with the splittings and the ordering of Λ for a given
multiplet can be obtained by diagonalization of the translation-rotation Hamiltonian in
the basis defined by equation (3.67). The numerical procedure is to build and diagonal-
ize a finite-dimensional matrix representation of the Hamiltonian over the coupled basis
with J ≤ Jmax and N ≤ Nmax for some chosen Jmax and Nmax and keep increasing the
size of the basis until some convergence criteria are satisfied. The spherical symmetry
reduces greatly the size of the ortho and para matrices to be evaluated: because of the
degeneracy on MΛ the size of the Hamiltonian coincides with the number of compo-
nents of the multiplets. The Hamiltonian matrix reduces to block diagonal form, each
block labeled by the total angular momentum of the states. For example, good starting
values are Nmax = 2 with Jmax = 3 for ortho hydrogen and Jmax = 2 for para-hydrogen,
respectively. Within such values there are 100 ortho states and 60 para states but the
Hamiltonian matrices to diagonalize have reduced sizes 18 × 18 and 14 × 14 respec-
tively. The ortho Hamiltonian is formed by six diagonal blocks, each with Λ = 0, . . . , 5
and sizes 1, 5, 4, 5, 2, 1 respectively; the para Hamiltonian has 5 diagonal blocks, each
with Λ = 0, . . . , 4 and sizes 3, 3, 5, 2, 1 respectively.

In conclusion a given energy sublevel |i,MΛi〉 with angular momentum Λi is written
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Figure 3.4: Increasing complexity in the structure of the energy levels of a confined
hydrogen molecule. The figure refers specifically to the energy levels of ortho-H2 in
the rotational state J = 1. a) Free hydrogen: the continuum of (infinitely degenerate)
translational levels is represented by a vertical line; b) Hydrogen in harmonic isotropic
confinement: the quantized translational levels are labeled by the number of transla-
tional quanta N and the relative orbital angular momentum L. The energy of the lowest
level is shifted upward because of the zero point energy of the confined state. The spac-
ings between the levels is uniform. Each level is finitely degenerate; c) Translational
states are split into multiplets when anharmonic terms and rotation-translation coupling
are considered, according to equation (3.73). The levels in a multiplet are labeled by the
total angular momentum Λ. The order of Λ in a given multiplet depends on the specific
form of the coupling potential. The effect of icosahedral symmetry (not shown here) is
to lift the degeneracy for levels with Λ ≥ 3.

in the spherical basis as

|i,MΛi〉 =
∑

Ja,Na,La

vcJa,Na,La |Na, La, Ja,Λi,MΛi〉 (3.74)

where the sum extends up to L ≤ N ≤ Nmax and J ≤ Jmax. The coefficients vcJa,Na,La

are obtained by diagonalizing the translational-rotational Hamiltonian and are functions
of the parameters specifying the dynamics in the vibrational state v. For homonuclear
hydrogen in C60 these parameters are: ωe, xe, Be, αe, De, vV00;2

00 , vV00;4
00 , vV22;2

00 , vV22;4
00 as

explained in sections 3.3 and 3.3.1.



Chapter4
Infrared spectroscopy of dihydrogen
fullerenes

While heteronuclear diatomic molecules are infrared-active because of the permanent
electric dipole moment it may be surprising that a homonuclear diatomic molecule like
hydrogen is infrared-active at all. However, the interactions with atoms or molecules
can produce small distortions of the molecular charge distribution so inducing a small
dipole moment. For example IR activity is induced in molecular hydrogen in the
gas phase [45] by collisions and in the condensed phase [46] by interactions between
molecules. The theoretical background for the interpretation of collision-induced IR
spectra in hydrogen has been laid by van Kranendonk et al. in several papers [47, 48,
49]. More recently, IR spectroscopy of H2 intercalated in the the voids among the cages
in crystalline C60 has been reported [50, 51, 52]. A rigorous treatment requires ab ini-
tio evaluation of three main induction mechanisms (dispersion, electron exchange, and
electric multipolar) in a similar way to that done for H2-noble gas systems [53, 54]. In
the following section the attention will be focused on the electric dipole for hydrogen
in C60. Symmetry arguments will be combined with considerations about the mecha-
nism inducing an electric dipole moment to determine selection rules and absorption
coefficients in the homonuclear case.

4.1 Induced dipole moment in endohedral fullerene

A quantitative analysis of the induced IR activity can be performed by expanding the
instantaneous dipole moment, which is a function of the configuration coordinates of the
endohedral molecule, in terms of appropriate spherical multipoles as described below.
Remaining in the spherical approximation of the C60 cage, symmetry arguments imply

49
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an expansion of the dipole moment in terms of bispherical harmonics of rank one [55]:

µq(R, r) =
4π
√

3

∑
l, j

Al j (R, r) F l j
1q(Θ,Φ, θ, φ)

=
4π
√

3

∑
l, j

∑
n

Al j;n (r) RnF l j
1q(Θ,Φ, θ, φ),

(4.1)

independently of any microscopic fundamental mechanism inducing the dipole mo-
ment. In the second line an expansion of the coefficients Al j in powers of R was used.
There are restrictions on the allowed l, j and n values entering in the multipole expan-
sion:

• in general n is a positive or null integer which is even for l even and odd for l odd;

• j + l must be odd. More precisely l = j ± 1 from the triangle relation;

• for homonuclear molecules µq(R,−r)=µq(R, r) and only even j terms are allowed;

• it follows that only odd powers n are allowed in the expansion above for homonu-
clear molecules.

Let us note that µq(0, r) = 0 for a homonuclear diatomic molecule in C60 because of
symmetry under inversion.

The dipole moment induced by the interaction of the hydrogen molecule with C60

can be thought as a sum, over all the 60 atoms, of the two body carbon-hydrogen in-
duced dipole moment. In a system of reference with origin in the center of the fullerene
the dipole moment induced by the i− th carbon atom can be written in terms of bispher-
ical harmonics:

µi,q(R, r) =
4π
√

3

∑
l, j

Bl j (|R − si|, r) F l j
1q

(
ΩR−si ,Ωr

)
(4.2)

where si is the vector pointing to the given carbon atom and ΩR−si and Ωr are the polar
angles of the subscripted vectors (in the given reference frame), see figure 3.1. The sum
runs over the integer indices l and j with the same restrictions given above for the full
dipole moment. The induced dipole moment to first-order in the displacement R from
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the center of the cage is

µq(R, r) =

60∑
i=1

µi,q(R, r) ≈
60∑
i=1

4π
√

3

∑
l, j

R · ∇R
[
Bl j (|R − si|, r) F l j

1q
(
ΩR−si ,Ωr

)]
R=0

=
4π
√

3
R ·

60∑
i=1

∑
l, j

∇−si

[
Bl j (| − si|, r) F l j

1q
(
Ω−si ,Ωr

)]
=

4π
√

3

∑
l, j

60
4π

R ·
∫

dΩs ∇s
[
Bl j (|s|, r) F l j

1q
(
Ωs ,Ωr

)]
=

4π
√

3

∑
j=0,2

20R
[
∂B1 j(s, r)

∂s
+

2
s

B1 j(s, r)
]

s=RC60︸                                       ︷︷                                       ︸
A1 j(R,r)

.

(4.3)

having exchanged the gradient on R with the gradient on −si in the second step and
having replaced the sum over the carbon atoms by an integral (spherical approximation)
in the third equality. The last equality has been obtained using the spherical tensor
formulation of the scalar product and the explicit form of the spherical components of
the gradient of bispherical harmonics [29]. This derivation shows that the multipole
expansion of the induced dipole moment at first-order in R contains only two terms: A1 j

with j = 0, 2.

4.1.1 Selection rules and transition probabilities for electric dipole

transitions

Electric dipole transitions are organized in vibrational bands labeled by the initial and
final vibrational quantum numbers: v f -vi. The dipole moment for a transition in the
band v f -vi is defined by

µ
v f -vi
q

def
= 〈v f |µq|vi〉 (4.4)

and can be expanded as in equation (4.1) with the replacements

Al j → A
l j
v f -vi

(R) def
= 〈ψ

v f

vib(r)|Al j(R, r)|ψvi
vib(r)〉 (4.5a)

Al j;n → A
l j;n
v f -vi

def
= 〈ψ

v f

vib(r)|Al j;n(r)|ψvi
vib(r)〉 (4.5b)

The dependence on the internuclear distance is absorbed into a parametric dependence
on the vibrational quantum numbers.

It is worth exploring how symmetry introduces selection rules based on the multi-
pole expansion in the case of hydrogen confined in an isotropic harmonic potential. The
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energy levels are written in the coupled spherical basis as

|a,ma〉 = |Ja,Na, La,Λa,MΛa; va〉|Ia,MIa〉, (4.6)

|b,mb〉 = |Jb,Nb, Lb,Λb,MΛb; vb〉|Ib,MIb〉, (4.7)

where I and MI are explicit spin quantum numbers and the levels are degenerate in
the projection quantum numbers m = {MΛ,MI}. The dependence on the vibrational
quantum number is parametric. Using the Wigner-Eckart theorem the matrix element
of the dipole moment, equation (4.4), can be written as

〈a,ma|µ
vb-va
q |b,mb〉 = δIb,IaδMI b,MI a︸        ︷︷        ︸

spin

(−1)Λb−MΛb

(
Λb 1 Λa

−MΛb q MΛa

)
× 〈Nb, Lb, Jb,Λb; vb‖µ

vb-va‖Na, La, Ja,Λa; va〉 (4.8)

where the reduced matrix element is

〈Nb, Lb, Jb,Λb; vb‖µ
vb-va‖Na, La, Ja,Λa; va〉 =

4π
√

3

∑
l, j,n

A
l j;n
vb-va
〈Nb, Lb; vb|Rn|Na, La; va〉︸                         ︷︷                         ︸

radial

× 〈Lb, Jb,Λb‖F
l j
1 ‖La, Ja,Λa〉︸                            ︷︷                            ︸

angular

. (4.9)

The spin selection rule ∆I = 0 follows from the independence of the multipolar expan-
sion on spin operators. It states that electric dipole transitions between spin isomers are
forbidden and IR spectroscopy can probe ortho and para species separately. The selec-
tion rule on the total angular momentum ∆Λ = 0,±1 is determined by the property of
the 3- j symbol. It states that a maximum change of one unity is allowed for dipole tran-
sitions. The radial integral is a complicated algebraic expression, see equation (3.69).
The angular integral in equation (4.9) is given by

angular =
[
3(2l + 1)(2 j + 1)

] 1
2 ×


Lb La l
Jb Ja j
Λb Λa 1

 〈Lb‖T l
(
Ŷ
)
‖La〉〈Jb‖T j

(
Ŷ
)
‖Ja〉 (4.10)

according to equations (2.56) and (2.57). The selection rules |∆L| = odd and |∆J| =

even for homonuclear molecules follows from the reduced matrix elements of spherical
harmonics,equation (2.55), being l odd and j even. Since L is odd or even according to
N being odd or even it follows also that |∆N| = odd.

Using the expansion of the dipole moment at first-order in R, the selection rules on
L and J become more restrictive: ∆L = ±1 and ∆J = 0,±2. The selection rule on the
translation quantum number becomes ∆N = ±1 if the translational frequencies in the
initial and final vibrational states do not differ much. This can be seen from the fact that
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the dipole coefficients are ∝ R, equation (4.3), and the radial integral simplifies to

〈N + ∆N, L + ∆L; v f βT |R|N, L; viβT 〉 =

√
1

2viβT

[
−δ∆N∆L,1 (N + L + ∆N + 2)

1
2

+δ∆N∆L,−1 (N − L + ∆N + 1)
1
2

] (4.11)

when v f βT ≈
viβT [43].

In general anharmonic corrections to the translational potential and translational-
rotational interactions imply that the energy levels are linear combination of the isotropic
oscillator states. In spherical symmetry the energy levels are still spherical states and
the total angular momentum is a good quantum number. The Wigner-Eckart theorem
can be applied to evaluate vibrational transition probabilities. In particular the probabil-
ity of transition between an initial level |i〉 and final level | f 〉 is given by the sum of the
square of the electric dipole matrix element over the projection quantum numbers and
the polarization:∑

q
MI f ,MI i
MΛ f ,MΛi

∣∣∣〈 f ; MΛ f ,MI f |µq|i; MΛi,MI i〉
∣∣∣2 = δI f ,Ii (2Ii + 1) |〈 f ‖µ‖i〉|2 (4.12)

where

|〈 f ‖µ‖i〉|2 =

∣∣∣∣∣∣∣∣∣∣
∑

Nb,Lb,Jb
Na,La,Ja

v f c∗Nb,Lb,Jb

vicNa,La,Ja〈Nb, Lb, Jb,Λ f ; v f ‖µ
v f -vi‖Na, La, Ja,Λi; vi〉

∣∣∣∣∣∣∣∣∣∣
2

(4.13)
The transition probability for unpolarized light does not have any specific directional
dependence as expected from the complete spherical symmetry of the system.

4.1.2 Integrated absorption for endohedral hydrogen fullerene

In this section the integrated absorption for infrared optical transitions in endohedral
hydrogen fullerene is derived. In the following discussion the incident light will be
supposed to be unpolarized and the sample to be a homogeneous dielectric characterized
by a frequency-independent refraction index η.

In a typical infrared experiment the intensity of a light beam passing through a
sample, intended as the energy falling on the detector in the unit of time, is compared to
that of the incident beam: at specific frequencies the amount of light passing through the
sample is reduced owing to absorption phenomena in the material. Such a reduction is
quantified by the absorbed intensity Iabs, defined as the difference between the intensity
of the incident beam and that of the through beam. For a thin layer of material the
absorption coefficient is rewritten in terms of fraction of absorbed intensity (over the
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incident beam intensity) divided by the sample thickness δ:

α(ω) def
= −

1
δ

ln
Iδ(ω)
I0(ω)

≈
1
δ

I0(ω) − Iδ(ω)
I0(ω)

=
1
δ

Iabs
δ (ω)
I0(ω)

. (4.14)

Here Iδ is the intensity of light reaching the detector after passing through the sam-
ple. Obviously the intensity of the beam incident on the sample coincides with the
zero thickness intensity I0(ω). In any experimental situations broadening mechanisms
ensures that absorption peaks are not infinitely narrow but have a finite width. The phys-
ical quantity of interest is the integrated absorption, i.e. the integral of the absorption
coefficients over a specified frequency interval R containing the peak of interest

S R =

∫
R

dωα(ω). (4.15)

The absorption process can be understood at a microscopic level by considering the
detailed energy transfers under stationary conditions: 1) some energy is absorbed by
the sample at frequencies which correspond to transitions between energy levels of the
system and 2) some energy is re-emitted by the sample with the same characteristic
of the incident beam (stimulated emission). The energy removed from the beam is
given by the difference of the two processes above and at last is either radiated out
by spontaneous emission or absorbed by the material through non-radiative processes.
Einstein coefficients link the microscopic description of light-matter interaction to the
macroscopic absorption coefficients. Consider two energy levels, i and a final f , of the
material quantum system with energy E f > Ei. Observing that the amount of energy
per unit of time lost by the through beam coincides with the intensity of absorbed light
one has [56]

Iabs
δ (ω f i) =

(
B f←iNV

i − Bi← f NV
f

)
W(ω f i)~ω f i (4.16)

where NV
i (NV

f ) are the number of particles contained in the volume V = s δ that are
in the quantum state i ( f ) and ~ω f i = E f − Ei is the energy of the absorbed photon.
B f←i and Bi← f are the Einstein coefficients, absorption and stimulated emission, for
the transition between the given energy levels, W(ω) is the energy density per unit of
frequency of the radiation in the dielectric: their product gives the number of transitions
per unit of time. The energy density in the incident beam is W0(ω)=W(ω)/η. Assuming
for sake of simplicity that the incident beam has a constant intensity I0 over the spectral
region ∆ω larger than the extension of the peak, the energy density of the incident beam
is W0(ω) = I0/(cs∆ω). NV

f << NV
i for all the transitions involved in the IR experiments

discussed later and stimulated emission is completely negligible. It follows that the
absorbed intensity for the considered transition can be written as

Iabs
δ (ω f i) = δ

NV
i

V
B f←i

I0

cη∆ω
~ω f i. (4.17)
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Consequently the absorption area S f ,i is

S f ,i =
dN

cη
Pi(T ) B f←i ~ω f i (4.18)

where it is assumed that the peak is narrow and where dN = N/V is the numeric density
of absorption centers and Pi(T ) is the equilibrium thermal population of the energy level
i (gi being its degeneracy):

Pi(T ) =
gie
−

Ei
kBT∑

m gme−
Em
kBT

. (4.19)

The Einstein coefficients depend on the physical mechanism determining the absorp-
tion of light. They determine how well a pair of energy level of the system is coupled
to a resonant electromagnetic field. For dipole transitions between a gi−fold degenerate
initial level and a g f−fold degenerate final level [57]

B f←i =
π

3ε0~2

∑
q

∑
m f ,mi

|〈 f ,m f |µq|i,mi〉|
2

gi
(4.20)

where µq is the q = −1, 0, 1 spherical component of the electric dipole moment in the
SI system. The indices m f and mi represents a set of quantum numbers distinguishing
the states in the degenerate levels. All these states contribute to the line at the frequency
ω f i. The sum over the components q depends on the fact that the light is supposed to
be unpolarized. Finally the matrix element of the electric dipole moment determines
which transitions are IR active.

Using equations (4.19), (4.20) and (4.12) the theoretical absorption area, equation
(4.18), for a vibrational transition in endohedral fullerene can be written as

S k
f ,i = δI f ,Ii

πdN

3ε0~cη
nkω f i

e−
Ei

kBT∑
m(2Λm + 1)e−

Em
kBT

|〈 f ‖µ‖i〉|2 (4.21)

where the index k is used to distinguish between ortho and para transitions in the
homonuclear case. nk is the fraction of the specified spin isomer in the sample which,
in absence of ortho-para conversion, is determined by its preparation history. Note that
only the spatial factor g = 2Λm + 1 is retained in equation (4.21). The reduced matrix
element of the dipole moment is given by equation (4.13). dN = 1.48 ∗ 10−27m3 is the
numeric density of absorbing centers in solid C60. In the mid infrared region the refrac-
tive index of C60 can be assumed to frequency independent and approximatively equals
to 2 [58].

In the experiments presented later the measured transmittance T=Iδ(ω)/I0(ω) is con-
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verted to α(ω) by means of

α(ω) = −
1
δ

ln
[

T (ω)
(1 − R)2

]
, (4.22)

where the reflection index R = [(1 − η)/(1 + η)]2 accounts for the amount of light
lost by reflection. For well-resolved peaks the integrated absorptions are obtained by
integrating the absorbance equation (4.22) over non overlapping regions. When the
peaks are partly overlapping a deconvolution procedure is used to obtain the individual
absorptions. Each experimental integrated absorption is then compared to the integrated
area, equation (4.21), considering all the transitions whose frequencies fall within the
width of the experimental peak.

4.2 Experimental results

The infrared (IR) spectroscopy of endohedral hydrogen fullerenes has been performed
in collaboration with the research group of Toomas Rõõm and coworkers at KFBI in
Tallinn, Estonia. All the experimental findings and the analysis of the IR spectroscopy
of H2@C60 reported in the following have been published [59, 60].

Transmission spectra were obtained using a Bruker interferometer Vertex 80v equip-
ped with a halogen lamp as source, KBr beam splitter and a HgCdTe or an InSb detector.
The apodized resolution was typically 0.3 cm−1 or better. Two identical vacuum tight
chambers with Mylar windows were employed in the IR measurements. The chambers
were put inside an optical cold finger type cryostat with KBr windows. In the low
temperature measurements, the chamber containing the sample for analysis was filled
with He exchange gas while the empty chamber served as a reference. The temperature
of the sample could be set anywhere in the range from 300 K down to 6 K.

Two samples were used for IR study: a normal endohedral hydrogen fullerene was
prepared at Kyoto University by the molecular surgery method [22, 23] and a para en-
riched sample prepared at Columbia University using molecular oxygen as a spin cat-
alyst for ortho-para conversion [61, 62]. Briefly, the H2@C60 adsorbed on the external
surface of a NaY zeolite was immersed in liquid oxygen at 77 K for 30 minutes, thereby
converting the incarcerated H2 spin isomers to the equilibrium distribution at 77 K (or-
tho to para ratio 1:1). The oxygen was pumped away before the endofullerene-NaY
complex was brought back rapidly to room temperature. The para enriched H2@C60

was extracted from the zeolite with CS2 and the solvent was evaporated by continuously
flowing argon on it. Both of the samples were in powder form. For IR measurements
the powder was pressed into thin pellets under vacuum. The diameter of the sample
pellets was 3 mm and their thickness ∆x = 0.25 mm (H2@C60) or ∆x = 0.12 mm (para
enriched H2@C60).

The analysis of the temperature dependence of the IR spectra leads to the identifica-



4.2. Experimental results ‖ 57

Figure 4.1: Infrared spectra of H2@C60 at 300 K (upper, red) and at 6 K (lower, black)
in the 3800-5000 cm−1 region. Narrow peaks around 4250, 4600 and 4800 cm−1 are
related to transitions in the hydrogen-fullerene system, see text and figure 4.2. The
low frequency oscillations with a period of 300 cm−1 are caused by a difference in the
optical length between the sample and the reference chambers.

tion of the peaks in terms of transitions between energy levels of endohedral hydrogen.
Temperature and spin isomer enrichment can be used as editing tools for the experi-
mental spectra giving some control on the enhancement/reduction of the intensity of
specific sets of peaks. The temperature determines the population of the levels in the
ortho and para manifolds while spin enrichment is helpful in solving ambiguities in the
assignment since at a fixed temperature the line intensity is proportional to the relative
abundance of ortho and para molecules.

Infrared transmittance spectra of H2@C60 at 300 K and 6 K are reported in figure
4.1. Sharp peaks are evident in the regions around 4250, 4600 and 4800 cm−1. They are
more pronounced in the 6 K spectrum. Some less intense set of peaks are visible at the
base of the 4250 cm−1 sharp peak at 300 K. A similar ‘brush’ of less intense lines are
visible around 3800 cm−1 in the 300 K spectrum only.

IR spectra were recorded at intermediate temperatures between 300 K and 6 K and
inspected for peaks by scrolling through suitable rescaled horizontal windows. All the
peaks appeared to be gathered in four narrow spectral regions around the frequencies
discussed above. The only exceptions consisted of two weak peaks at approximately
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4065 and 4070 cm−1 (both observable only at low temperatures). Baseline corrected
absorption spectra are reported in figure 4.2 for four representative temperatures. For
clarity only the regions containing IR peaks are extracted from the full spectral window.
At this scale the richness of details is apparent. Many peaks with widths of 1-2 cm−1

or less are visible. The peaks are narrow because of the homogeneity of the confine-
ment in the sample. Fewer peaks are observed at 6 K: when the temperature increases
their intensity is reduced and several less intense peaks emerge. The intensity of the
IR absorption lines is related to the thermal distribution of particles in the energy lev-
els of the system. The IR spectra at low temperatures are less congested because the
observed transitions involve only few macroscopically populated levels as initial states.
For the same reason the intensity of the lines is high resulting in enhanced spectro-
scopic sensitivity. When the temperature increases more levels become populated, each
of them with lower fractional population, resulting in more numerous but less intense
lines. There is no appreciable shift in the frequency of the lines with temperature. Few
peaks in the region around 4420-4440 cm−1 appear only at high temperature in corre-
spondence of strong background absorption, are reported successively in figure 4.6

The frequency of the observed lines is too high to be attributed to the vibrational
modes (fundamental and combination modes) of solid C60 which span the region from
270 to 3500 cm−1 [63]: the accurate detection of IR-active C60 combination modes at
high frequency is feasible on large single C60 crystals but is very difficult on powder
samples. The observed peaks are at higher frequency compatible with transitions in the
first vibrational band of endohedral hydrogen: they can be described as combinations
of the forbidden vibrational transition v = 0→ v = 1 with the IR allowed translational-
rotational modes.

4.3 Analysis of the IR spectra

IR spectra of H2@C60 are analyzed using the information obtained from the simpler
low temperature case to understand the more complex high temperature spectra. In this
section the energy levels are labelled by the sequence of quantum numbers |vNLJΛ〉

defining the related zero-order spherical state. Transitions will be defined by the initial
and final set of quantum numbers of the levels involved. Since the rotational quantum
number J is an approximately good quantum number, the standard notation for IR tran-
sitions in diatomic molecules is used [3]: for example transitions with ∆J= 0 and 2 are
denoted as Q(Ji) and S (Ji) respectively, where Ji is the value for the initial state. Selec-
tion rules play a fundamental role in the assignment process: for homonuclear hydrogen
in spherical trap these are ∆Λ = 0,±1, ∆J = 0,±2, ∆N = ±1, see section 4.1.1.

The computational method for the analysis of infrared spectra is the following. First
the extent of the translational-rotational spherical basis in each of the two vibrational
manifolds of interest has to be chosen. Then the reduced dipole moment equation (4.9)
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between all the spherical states in the initial and final vibrational manifolds is evaluated
and stored. Specifically the radial integral is given by equation (3.69) or in first approx-
imation by equation (4.11). After diagonalizing the effective translational-rotational
Hamiltonian in the vibrational manifolds of interest the energy E and the coefficients
vcJNL are found, refer to section 3.3.2. The reduced matrix element of the dipole oper-
ator, equation (4.13) may be then evaluated for any choice of the coefficients A

l j;n
v f -vi

. A
simulated stick spectrum is obtained by plotting the absorption area between all the ini-
tial and final energy levels versus their frequency. In the fitting procedure the simulated
spectrum is compared to high-resolution experimental spectra at different temperatures
by changing the parameters in the Hamiltonian and the coefficients in the dipole expan-
sion to match the positions and the intensities of the lines.

4.3.1 Low temperature

The experimental low temperature IR absorption spectra of H2@C60 at 6 K are reported
in figure 4.3 together with the scheme of the involved energy levels. In panel a) two
weak lines are visible just above the noise. In panel b) one can distinguish clearly four
separate peaks. The line at 4255 cm−1 is broader with a shoulder suggesting the presence
of more than one component while the line at 4161 cm−1 is split into two peaks. In each
of the panel c) and d) only one line is visible with some asymmetry/shoulder in the shape
of the 4590 cm−1 line and a broad feature at the base of the 4802 cm−1 line. In the analy-
sis presented below the interest is focused on the gross structure of the spectra and these
finer details are neglected. At low temperature only the ground vibrational-rotational-
translational ortho and para states are populated: the initial levels of all the observed
transitions are either |00011〉 for ortho-H2 or |00000〉 for para-H2. The two very weak
peaks at 4065.4 and 4071.4 cm−1 are assigned be the fundamental vibrational transi-
tions for ortho (Q(1), |01001〉 → |11001〉) and para (Q(0) |00000〉 → |10000〉) species,
respectively. Both transitions are redshifted by about 90 cm−1 with respect to free H2

at 4155.0 and 4161.2 cm−1. These transitions are forbidden according to the selection
rule ∆L = odd. Their activity must follow from solid-state effects since, due to the real
icosahedral symmetry of C60, pure vibrational transitions of H2@C60 are not allowed.
The assignment of the lines to fundamental transitions is based on the following obser-
vations. Firstly vibrational transition with comparable redshifts have been observed in
interstitial hydrogen in solid C60 [50]). Secondly the difference between the two pure
vibrational frequencies, ≈ 6 cm−1, is simlar to that of free hydrogen. This is expected
since this difference is mainly determined by the first-order vibration-rotation coupling
αe which is not affected much by the confinement. Finally this assignment is consistent
with the analysis of high temperature spectra as discussed below.

The four lines in the 4250 cm−1 region are intense and must correspond to the lowest
allowed IR-active transitions in the observed vibrational band. The transitions from the
ground states to the lowest excited translational states account for the four observed
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Figure 4.3: Experimental baseline-corrected IR absorption spectra of H2@C60 at 6 K
(black) and the best fit simulated theoretical spectrum (red, shifted) in panels a)-d). a)
Fundamental vibrational transitions; these are forbidden in theory and the simulated
spectrum contains no peaks. Note that the experimental spectrum has been scaled by
a factor 40. b) Q transitions with ∆J = 0 and ∆N = 1. c) Para-H2 and d) ortho-H2 S
transitions with ∆J = 2 and ∆N = 2. For clarity the relevant energy levels are shown
beside. The energy levels were refined against low-T IR data as explained in the text.
The energy levels of free H2 are shown on the left while the effect of confinement by C60
is shown on the right, separately for para- and ortho-H2. The arrows show transitions
corresponding to the observed low-T IR peaks. All transitions are from the vibrational
state v = 0 to v = 1. The letter indicates the change in J: Q for ∆J = 0 and S for
∆J = 2 and the number in parentheses is the initial J value. The fundamental vibrational
transitions, marked by dashed lines, are dipole forbidden.

peaks, see figure 4.3. The excited translational state v = 1, N = 1, L = 1 is split
into three levels with Λ =0, 1, 2 in the ortho manifold where J = 1 because of the
translational-rotational coupling; in the para manifold where J = 0 there is only one
excited translational state with Λ = 1. These lines are Q transitions, ∆J = 0, with
∆N = 1, in which the vibrational excitation is accompanied by the excitation of one
translational quantum.

The two lines in the 4600 and 4800 cm−1 regions fall at frequencies about 6 and 10
times the rotational constant for H2 above the 4250 cm−1 region. These lines correspond
to IR transitions in which the vibrational mode is accompanied by the excitation of one
translational quantum and two rotational quanta. These are S lines, ∆J = 2, with
∆N = 1. Because of the selection rule on the total angular momentum Λ only one para
S (0) transition is expected to be active within the set of levels with J = 2 and N = 1
and only ortho S (1) transition is expected to be active in the set of levels with J = 3 and
N = 1, see figure 4.3.

A quantitative interpretation of the low temperature IR spectroscopy follows from
the study of the effective Hamiltonian equation (3.56) in v = 1 to first-order in pertur-
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NLJΛ ∆E |〈 f ‖µ‖i〉|2

2Λi+1

Initial v = 0 Final v = 1
Q(0) |00000〉 |10001〉 0 0
Q(1) |00011〉 |10011〉 −2αe 0

Q(1) |00011〉 |11111〉 ~1ωT

(
1 + 1∆An − 51∆R-T

)
− 2αe

1
3

(
ρ10+ ρ12

√
2

)2
no

Q(1) |00011〉 |11112〉 ~1ωT

(
1 + 1∆An + 1∆R-T

)
− 2αe

5
9

(
ρ10 −

√
2ρ12

10

)2
no

Q(0) |00000〉 |11101〉 ~1ωT

(
1 + 1∆An

) (
ρ10

)2
np

Q(1) |00011〉 |11110〉 ~1ωT

(
1 + 1∆An + 101∆R-T

)
− 2αe

1
9

(
ρ10 −

√
2ρ12

)2
no

S (0) |00000〉 |11121〉 ~1ωT

(
1 + 1∆An + 51∆R-T

)
+ 6

(
Be −

3
2αe

) (
ρ12

)2
np

S (1) |00011〉 |11132〉 ~1ωT

(
1 + 1∆An + 41∆R-T

)
+ 10

(
Be −

17
10αe

)
3
5

(
ρ122) no

1ωT =

√
1V00;2

00
2πM ; 1βT = ~

M1ωT
; 1∆An = 5

2

1V00;4
00

1βT
1V00;2

00
; 1∆R-T =

√
5

20

1V00;2
00

1V22;2
00

ρl j = A
l j;1
0-1 〈N = 1, L = 1; 1βT |R|N = 0, L = 0; 0βT 〉

Table 4.1: Analytical expressions for the line positions and intensities in first-order
pertubation theory for the low temperature IR specta of endohedral molecular hydrogen
fullerene. From left to right the columns represent the type of transition, the quan-
tum numbers for the initial and final states involved, the energy shift and the intensity
factor. The energy shifts are referred to the fundamental vibrational transition and the
corresponding frequency shifts in cm−1 are obtained dividing by hc. αe represents the
strength of vibration-rotation coupling, Be is the rotational constant, 1ωT is the trans-
lational frequency, 1∆R-T and 1∆An are first-order corrections to the energy, due to the
rotation-translation coupling and the anharmonic potential. The relationships with the
potential parameter are at the bottom of the table. The integrated absorption is obtained
by multiplying the intensity factor in the last column by dNπ/(3ηε0hc). no and np repre-
sents the ortho and para fractional abundance (no + np = 1). ρl j represents the quantum
average of the radial electric dipole coefficents Al j over the vibrational and translational
wavefunctions, see bottom of the table for the explicit definiton.

bation theory, table 4.1. The relative position of the fundamental vibrational transitions
fixes αe. The position of the remaining lines depends on the combination of harmonic
and anharmonic terms ~1ωT (1 + 1∆An): the low temperature data does not allow one
to establish the contribution of the anharmonic corrections to the translational excita-
tion energy. Interestingly the ortho to para ratio can be estimated from the ratio of the
intensity factor of the S (1) and S (0) lines, see the last two rows of table 4.1.

The indications of the perturbative approach have been extended by numerical di-
agonalization of the full roto-translational Hamiltonian over a spherical basis set with
N ≤ 2, J ≤ 2[59]. Three potential parameters 1V00;2

00 , 1V00;4
00 and 1V22;2

00 , the rotational
constant Be, the dipole coefficients ρ10 and ρ12 and the ortho/para ratio no/np were fitted
to match 12 experimental values, 6 frequencies and 6 intensities. The position of the
fundamental vibrational transitions was used as input in the fit procedure. Only one set
of values is found to reproduce quite accurately the experimental line positions and in-
tensities. The best values for the potential parameters in the first vibrational state were
1V00;2

00 = (27± 6) J m−2, 1V22;2
00 = (1.5± 0.2) J m−2 and 1V00;4

00 = (−2± 20)1020 J m−4. The
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Experimental Calculated JNLΛ

ω (/cm−1) S (cm−1) σ (cm/molecule) ω (cm−1) S (cm−1) σ (cm/molecule) Initial v = 0 Final v = 1

4065.44 0.09 6.3×10−23 4065.44∗ 0 0 0000 0001 Q(0)
4071.39 0.01 7.4×10−24 4071.39∗ 0 0 0011 0011 Q(1)
4244.5 18.8 3.8×10−21 4244.1 4.9 3.0×10−21 0000 1111 Q(1)
4250.7 4.9 1.3×10−20 4250.7 20.0 1.4×10−20 0011 1112 Q(1)
4255.0 10.9 7.1×10−21 4255.5 11.2 7.6×10−21 0011 1101 Q(0)
4261.0 8.7 5.9×10−21 4261.0 10.0 6.8×10−21 0011 1110 Q(1)
4591.5 3.1 2.1×10−21 4590.7 2.9 2.0×10−21 0000 1121 S (0)
4802.5 5.6 3.8×10−21 4803.0 5.1 3.4×10−21 0011 1132 S (1)

Table 4.2: Experimental and calculated center frequenciesω, integrated absorption area
S and cross sections σ for the IR-active transitions in the vibrational band v = 0→ v =
1 of H2@C60 at 6 K. The experimental data refers to the non-enriched sample. The
quantum numbers N, L, J,Λ are needed to identify the initial and final energy levels.
The integrated cross section is obtained by dividing the absorption area by the numeric
density, dN = 1.48× 10−21cm−3. The first two rows correspond to the experimental fun-
damental vibrational transitions for ortho and para hydrogen, respectively. The intensity
of these transitions is null in the spherical model used for the fit but their frequency was
used as reference in the fitting procedure (labeled by a ∗).

low temperature data are insufficient to derive accurately the anharmonic corrections
which are poorly defined by transitions involving only N = 0 and N = 1. This is re-
flected in the large uncertainty on 1V00;4

00 . The fitted rotational constant is Be = 59.3±0.2
cm−1 while αe = 2.98 ± 0.10 cm−1 is obtained directly by the difference in the funda-
mental vibrational frequencies. The ratio between the induced dipole coefficients is
ρ12/ρ10 = −2± 0.2. The ortho to para ratio no/np = 2.8± 0.2 is consistent with an equi-
librium temperature warmer than 120 K, suggesting negligible spin conversion during
the duration of the experiment. Further discussion relative to the best fit parameters is
postponed after the analysis of the high temperature data.

Experimental data and best fit results are summarized in table 4.2. The best fit
simulated spectrum is in good agreement with experimental one in figure 4.3: in the
simulated spectrum the line were artificially broadened maintaining the value of the in-
tegrated absorption. The numerical analysis solved the ambiguity in the assignment of
the Q lines in the 4250 cm−1 region: the line at 4255 cm−1 are para transition and the
lines at 4244 4250 and 4261 cm−1 are ortho transitions with Λ =1, 2 and 0, respec-
tively. The relative disposition of the Q lines depends on the sign of the roto-translation
coupling, compare rows 3-6 in table 4.1.

The low temperature assignment was confirmed later when para enriched samples
became available [62]. In figure 4.4 the para peaks, as assigned above, are more intense
than in the non-enriched sample. At the time of the experiment the ortho/para ratio was
estimated to be no/np = 1.4 from the ratio of the area S (1)/S (0) and Q(1)/Q(0) in the
enriched and non-enriched sample.
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Figure 4.4: Comparison of the low temperature infrared Q and S transitions of H2@C60
for the non-enriched sample recorded at 6 K (black) and the para-enriched sample
recorded at 20 K (red). Note that the para lines Q(0) and S (0) are more intense in
the enriched sample than in the non-enriched one.

4.3.2 High temperature

The availability of a para-enriched sample is even more appreciated for line assignment
at higher temperatures when the number of observed peaks increases as a consequence
of excited translational levels becoming populated. For example figure 4.5 shows two
spectra of para-enriched H2@C60 at 300 K in the region 4220-4310 cm−1: the first
spectrum (black line) was recorded four days after the para enrichment process and the
second one (red line) was recorded after leaving the same sample at room temperature
for a further 19 days. During this period some of the para molecules converted back to
ortho. The intensity of para lines decreased while the intensity of ortho lines increased
and most of the lines could be assigned to either ortho or para transitions.

The spectrum at 200 K was chosen for extensive study because it provides the best
compromise between spectroscopic detail and sensitivity. At this temperature lines orig-
inating from excited translational states with N = 1 and N = 2 are visible. At higher
temperatures no new details appear and the signal to noise ratio for the observed lines is
reduced since the intensity spreads over many levels, see figure 4.2. From the analysis
of the 200 K spectrum the parameters for the confining potential in the ground vibra-
tional state v = 0 can be determined and the values in v = 1, obtained from the 6 K
data, can be improved as well. The computational methodology for the analysis of the
IR spectra has been discussed in 3.3.1 and at the beginning of 4.3. The basis has been
extended up to N = 7 and J = 3 for a total 192 para and 292 ortho states in each of
the two vibrational manifolds v = 0 and v = 1. In the specific case the parameters de-
termining the position and the intensity of the lines are the potential parameters vV00;2

00 ,
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Figure 4.5: IR spectra of para-enriched H2@C60 at 300 K in the region around 4250
cm−1. The black line corresponds to the spectrum collected 4 days after enrichment
and the red line to the spectrum collected after a further 19 days. Para to ortho spin
conversion is evident. Some lines did not change their intensity appreciably: they cor-
respond to overlapping transitions. Using the information about line intensity from the
non-enriched sample the ortho to para ratio was estimated to be no/np ≈ 1.36 (black
line) and no/np ≈ 2.89 (red line).

vV00;4
00 , vV22;2

00 , vV22;2
00 with v = 0 and v = 1; the vibrational and rotational parameters

ω0 = ωe(1 − 2xe), Be, αe, De and the dipole coefficients A
10;1
1-0 , A

12;1
1-0 and the ratio no/np.

The values of the parameters and the assignment at low temperature are used as starting
input for the fitting procedure of the high temperature data.

The best fit spectrum along with the experimental spectrum at 200 K is displayed
in figure 4.6. The agreement is good for most of the lines. For clarity the variations in
the rotational and translational quantum numbers are reported for each spectral region.
Panels figure 4.6b), d) and e) shows transitions with ∆N = 1. These panels correspond
to the same kind of transitions observed at 6 K. The lines spread over larger intervals
because the spacing between successive N is not uniform due to anharmonicity in the
confining potential. In addition allowed transitions with ∆N = −1 become observable:
these are shown in figure 4.6a) and in figure 4.6c). The former region contains Q lines
(∆J = 0). The latter region contains ortho S (1) lines (∆J = 2) but in the experimental
spectrum only the line at 4431.9 cm−1 is recognizable since strong background absorp-
tion covers the remaining ones. The splittings observed in the experimental spectrum
at 4255, 4261, 4267 cm−1 cannot be understood within the spherical approximation for
the fullerene cage. They may be related to crystal field effects or inhomogeneity in the
sample. In any case it is not clear why and how a mechanism may affect so visibly only
these lines but not any others. The experimental line positions and intensities together
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with their theoretical values are reported in table 4.3. Here the transitions are identified
giving the relevant quantum numbers for the initial and the final states involved. Table
4.4 report the energy levels identified by the quantum numbers of the spherical state
which has the highest probability |vcJNL|

2.
The validity of the model used so far is confirmed by the analysis of the temperature

dependence of the integrated absorptions: for a given transition S is proportional to the
population of the initial level according to equation (4.21), assuming that the ortho/para
ratio remains constant, i.e. that there is negligible spin conversion during the experi-
mental session. Figure 4.7 shows a comparison between the normalized experimental
absorption area of some selected transitions and the predicted normalized populations
(normalization to one at their respective maxima). The agreement between the experi-
mental normalized integrated absorptions and the theoretical normalized population is
good below 220 K. Above such temperature there is not a perfect agreement although
experiments and theory shows a similar decrease in intensity with temperature. The
reason for such deviations are not clear in the theoretical framework developed so far.
Note that the temperature dependence of the populations can be evaluated only after the
energy of all the levels is determined and that the comparison can be done only after
assigning the experimental lines.

4.3.3 Comments

The values for the best fit parameters are reported in the table 4.5. The potential param-
eters depend on the vibrational state. The harmonic terms correspond to translational
oscillations with frequency equal to 0ωT =138.4 and 1ωT =146.1 cm−1, see equation
(3.60). Anharmonic corrections contribute to 22% of the separation between transla-
tional states with N = 0 and N = 1, which are respectively 179.5 and 184.4 cm−1, see
table 4.4. In particular the calculated values of the separation between the para transla-
tional states N = 0 and N = 1 in the ground vibrational state is in agreement with the
findings (179.9 cm−1) of neutron scattering experiments [64]. The potential parame-
ters vV00;n

l j show a characteristic dependence on the vibrational quantum number v. The
coefficients of the quadratic terms with n = 2 increase and the coefficient of the quartic
terms (n = 4) decrease on passing from v = 0 to v = 1. Also for n =2, 4 the absolute
value of the variations of the best fit coefficients with j = l = 0 are larger than the
corresponding coefficient with j = l = 2. The fact that all the coefficients are positive
is consistent with a positive value of the coefficients F0, H0, J0 in the spherical poten-
tial VC60−H

S (x), as reported in equation (3.24). The increase in the quadratic coefficients
could be anticipated from equation (3.23). Indeed the vibrational averaged values for
r2 and r4 increase with the vibrational quantum number. Also the absolute value of the
variation of vV00;2

00 could be anticipated to be between 8 and 10 times larger than vV22;2
00 .
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Experimental Calculated JNLΛ

ω (/cm−1) S (cm−1) ω (cm−1) S (cm−1) Initial v = 0 Final v = 1
3855.6 0.77 3855.6 0.41 1201 1112 ortho-Q(1)

3866.0 0.47 3866.0 0.09 0200 0111 para-Q(0)
3866.1 0.27 1201 1110 ortho-Q(1)

3872.2 1.18 3873.2 0.16 2113 2002 para-Q(2)
3871.6 0.38 1221 1111 ortho-Q(1)

3876.0 1.13 3874.9 0.27 1333 1222 ortho-Q(1)
3876.3 0.85 1110 1001 ortho-Q(1)

3878.6 1.22 3878.4 0.35 0333 0222 para-Q(0)
3884.9 1.88 1112 1001 ortho-Q(1)

3884.9 2.80 3884.7 0.64 0222 0111 para-Q(0)
3884.9 1.88 1112 1001 ortho-Q(1)

3891.3 1.49 3890.5 0.50 1111 1001 ortho-Q(1)
3891.8 0.77 0111 0000 para-Q(0)

4223.3 0.28 4222.2 0.07 0111 2002 para-S (0)
4222.7 0.24 3003 3114 ortho-Q(3)

4226.2 0.21 4233.1 0.22 3003 2112 ortho-Q(3)
4233.1 0.22 4233.1. 0.22 2002 2113 ortho-Q(3)
4239.8 0.64 4239.6 0.64 2002 2113 para-Q(2)

4244.4 2.54 4244.5 0.47 2002 2111 para-Q(2)
4244.4 1.95 1001 1111 ortho-Q(1)

4250.7 7.83 4252.5 0.20 2112 2223 para-Q(0)
4250.9 7.71 1001 1112 ortho-Q(1)

4255.6 4.29 4255.8 3.65 0000 0111 para-Q(0)
4257.3 0.22 1112 1222 ortho-Q(1)

4261.3 4.11 4261.4 3.74 1001 1110 ortho-Q(1)
4261.8 0.08 2111 2220 ortho-Q(2)

4263.0 4262.8 2.10 1111 1222 ortho-Q(1)

4272.1 3.70 4272.1 2.78 0111 0222 para-Q(0)
4272.7 1.77 1111 1221 ortho-Q(1)

4281.2 4.33 4281.2 4.90 1223 1334 ortho-Q(1)
4286.5 0.89 4286.4 1.41 0222 0333 para-Q(0)

4290.2 2.72
4289.9 0.49 0111 0200 para-Q(0)
4289.7 2.13 1112 1201 ortho-Q(1)
4291.3 0.90 1201 1312 ortho-Q(1)

4294.8 1.08 4294.8 0.28 0200 0311 para-Q(0)
4296.2 0.26 1221 1311 ortho-Q(1)

4300.0 0.30 4298.3 0.001 1334 1444 ortho-Q(1)
4306.7 0.92 4305.2 0.19 1222 1311 ortho-Q(1)

4316.4 1.37 4316.8 0.84 1334 1445 ortho-Q(1)
4318.4 0.51 1332 1443 ortho-Q(1)

4407.4 0.05 4407.2 0.07 1201 3112 ortho-S (1)

4426.8 0.35 4427.4 0.34 1223 3114 ortho-S (1)
4428.0 0.06 1222 3113 ortho-S (1)

4431.9 0.44 4432.5 0.53 1112 3003 ortho-S (1)
4592.0 0.90 4592.4 0.79 0000 2111 para-S (0)
4608.9 0.37 4608.9 0.31 0111 2221 para-S (0)
4624.3 0.27 4624.5 0.25 0111 2202 para-S (0)
4630.0 0.10 4629.4 0.12 0222 2331 para-S (0)
4802.6 1.80 4802.5 1.94 1001 3112 ortho-S (1)

4814.8 0.39 4815.5 0.16 1112 3222 ortho-S (1)
4816.2 0.32 1110 3221 ortho-S (1)

4821.6 0.49 4821.0 0.52 1111 3222 ortho-S (1)
4829.7 0.26 4830.3 0.30 1111 3221 ortho-S (1)
4836.2 0.55 4835.8 0.66 1112 3203 ortho-S (1)

4846.4 0.23 4845.2 0.05 1222 3331 ortho-S (1)
4848.1 0.03 1223 3133 ortho-S (1)

4864.5 0.17 4862.9 0.02 1212 3312 ortho-S (1)
4864.8 0.03 1333 3444 ortho-S (1)

Table 4.3: Experimental and calculated center frequencies ω and integrated absorption
areae S and cross sections σ for the IR-active transitions in the vibrational band v =
0 → v = 1 in H2@C60 at 200 K. The experimental data refers to the non enriched
sample. The quantum numbers N, L, J,Λ are needed to identify the initial and final
energy levels. The last column identifies the type of transition.
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para-H2@C60
v = 0 v = 1

∆E JNLΛ |c|2 ∆E JNLΛ |c|2 ∆E JNLΛ |c|2 ∆E JNLΛ |c|2

0.0 0000 0.97 730.0 2220 0.87 0.0 0000 0.98 723.2 2220 0.89
179.5 0111 0.93 741.5 2202 0.72 184.4 0111 0.94 732.6 2202 0.74
347.9 2002 0.95 815.3 0444 0.84 330.3 2002 0.97 823.2 0444 0.85
371.1 0222 0.85 878.1 0422 0.67 380.3 0222 0.89 877.4 0422 0.70
389.7 0200 0.81 906.4 0400 0.61 398.1 0200 0.84 901.8 0400 0.65
523.5 2112 0.94 914.1 2333 0.78 509.7 2112 0.95 909.4 2334 0.85
528.5 2113 0.91 914.4 2334 0.82 516.2 2113 0.93 909.4 2333 0.80
532.7 2111 0.92 921.6 2332 0.71 521.1 2111 0.94 917.1 2332 0.72
573.2 0333 0.92 924.7 2335 0.81 586.2 0333 0.83 920.4 2335 0.83
601.9 0311 0.68 933.3 2331 0.80 613.2 0311 0.72 929.1 2331 0.82
713.6 2223 0.88 943.9 2312 0.60 704.6 2223 0.90 937.8 2312 0.62
714.7 2222 0.80 956.7 2313 0.63 705.8 2222 0.80 950.3 2313 0.67
721.2 2224 0.87 963.1 2311 0.66 713.3 2224 0.89 956.5 2311 0.70
724.8 2221 0.87 717.0 2221 0.89

ortho-H2@C60
v = 0 v = 1

∆E JNLΛ |c|2 ∆E JNLΛ |c|2 ∆E JNLΛ |c|2 ∆E JNLΛ |c|2

0.0 1001 0.97 943.0 3224 0.88 0.0 1001 0.98 922.2 3224 0.90
174.9 1111 0.94 950.5 3222 0.87 179.0 1111 0.95 930.0 3222 0.89
180.4 1112 0.93 952.5 3225 0.86 185.6 1112 0.94 933.0 3225 0.88
189.1 1110 0.92 958.9 3221 0.78 196.0 1110 0.94 940.0 3221 0.75
363.7 1222 0.89 971.5 3203 0.71 372.4 1222 0.90 950.8 3203 0.72
372.4 1223 0.88 1038.2 1555 0.83 382.0 1223 0.89 1046.0 1555 0.84
372.8 1221 0.68 1064.6 1556 0.80 382.2 1221 0.65 1068.1 1556 0.80
395.3 1201 0.62 1066.3 1554 0.75 404.7 1201 0.61 1071.6 1554 0.77
562.8 1333 0.83 1127.9 1533 0.57 547.5 3003 0.98 1123.0 1533 0.48
575.0 1332 0.68 1141.0 3334 0.79 575.6 1333 0.85 1124.6 3334 0.81
575.1 1334 0.81 1144.9 3335 0.82 588.3 1334 0.84 1128.3 3335 0.84
577.2 3003 0.97 1146.1 3333 0.67 588.6 1332 0.69 1130.4 3333 0.52
591.9 1331 0.70 1152.2 3332 0.29 603.6 1311 0.74 1137.4 3332 0.81
609.8 1312 0.56 1154.8 1532 0.51 621.2 1312 0.59 1142.8 3336 0.79
623.6 1310 0.65 1158.4 3336 0.78 634.6 1310 0.70 1143.5 3331 0.81
752.0 3113 0.94 1158.7 3331 0.76 726.4 3113 0.95 1146.3 1532 0.43
758.7 3114 0.93 1163.4 3330 0.81 734.5 3114 0.94 1147.7 3330 0.83
761.0 3112 0.93 1166.3 1534 0.35 737.1 3112 0.94 1151.7 1534 0.34
799.0 1444 0.85 1173.2 3313 0.59 808.1 1444 0.86 1155.2 3313 0.62
819.6 1445 0.84 1185.1 1511 0.47 826.6 1445 0.85 1170.3 3312 0.67
819.7 1443 0.76 1188.6 3312 0.63 827.8 1443 0.77 1173.4 1511 0.53
860.2 1422 0.69 1195.9 3314 0.40 862.1 1422 0.72 1177.8 3314 0.39
875.9 1421 0.39 1248.7 1512 0.33 876.0 1421 0.41 1221.6 1512 0.38
892.8 1423 0.58 1277.5 1510 0.47 888.8 1423 0.61 1244.5 1510 0.51
933.1 1401 0.31 1379.7 3445 0.83 921.2 3223 0.79 1359.1 3445 0.84
942.1 3223 0.79 1383.0 3444 0.80 922.2 1401 0.31 1362.3 3444 0.81

Table 4.4: Calculated energies in cm−1 for para-H2@C60 up to JNLΛ = 2311 and
ortho-H2@C60 up to JNLΛ = 3444 in the vibrational states v = 0 and v = 1. The
energies are referenced with respect to the ground rotational-translational para state
JNLΛ = 0000. Explicitly 0E0000 = 2390.6 cm−1 for v = 0 and 1E0000 = 6456.0 cm−1

for v = 1. The levels are identified by giving the set of quantum numbers JNLΛ of the
spherical state with the largest probability vcJNL.
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Figure 4.7: Temperature dependence of selected IR absorption line area of ortho-H2 in
(a) and para-H2 in (b) of transitions starting from states with N = 0 (squares � and down
triangles O), N = 1 (circles ◦) and N = 2 (up triangles, 4). Solid lines are calculated
thermal populations of the corresponding initial states, equation (4.19) as obtained from
the theoretical model with the best-fit parameters at 200 K. S f ,i and Pi(T ) have been
normalized to one at their maxima.

The decrease of the coefficient for the quartic corrections with n = 4 is surprising. This
can be related to a slight over-estimate of the corresponding coefficients with n = 2.

The best fit value for the vibrational transition ω0/2πc = 4062.4 cm−1 is not equal
to the observed fundamental para frequency, 0-1ωV/2πc =4071.4 cm−1 because of the
small difference in the zero-point translational energy in different vibrational levels.
The harmonic zero-point translational energy 3

2~(
1ωT −

0ωT ) contributes about 8 cm−1

to the difference between the two fundamental vibrational frequencies. The remaining
2 cm−1 comes from the anharmonic terms. The fundamental vibrational transition ω0 in
H2@C60 is redshifted approximately 100 cm−1 from that in free H2, 4159.4 cm−1, com-
pare equation (3.46) and table 3.1. This redshift has two contributions: the zero-point
vibrational energy related to ωe and anharmonic corrections to the vibrational energy
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v = 0 v = 1 Unit
vV00;2

00 14.27 ± 0.03 15.95 ± 0.03 J m−2

vV22;2
00 0.562 ± 0.006 1.20 ± 0.01 J m−2

vV00;4
00 (2.21 ± 0.01)1021 (2.192 ± 0.009)1021 J m−4

vV22;4
00 (2.21 ± 0.02)1020 (1.03 ± 0.009)1021 J m−4

ω0/2πc 4062.3 ± 0.3 cm−1

Be/2πc 59.86 ± 0.07 cm−1

αe/2πc 2.974 ± 0.025 cm−1

De/2πc (4.83 ± 0.05)10−2 cm−1

A
10;1
1-0 (9.1 ± 0.3)10−22 C

A
10;1
1-0 (−4.3 ± 0.4)10−22 C

no/np 2.89 ± 0.05

Table 4.5: Best fit parameters from the analysis of the infrared spectra of H2@C60 at
200 K.

related to xe, see section 3.3. Since the observed lines involve only two vibrational
states v = 0 and v = 1 it is not possible to evaluate separately their contributions to the
observed redshift. The rotational constant Be for H2@C60 is slightly reduced relative
to free H2 for which Be = 60.8cm−1 , signalling an increase of 0.8% in the internu-
clear distance, table 3.1. This increase is consistent with the observed redshift of the
fundamental vibrational frequency: according to equation (3.31a) the theoretical shift
is expected −120cm−1, when the values of fe and ge from equations (3.27a) and (3.27b)
are used. The longer internuclear distance and the redshift of the vibrational frequencies
are consistent with an attractive interaction between the hydrogen atoms and the cage.

The ratio of the dipole coefficients A
12
1-01/A

12
1-21 = −2.1 ± 0.3 is consistent with the

low temperature one. Only the relative sign of the coefficients can be determined from
the experimental data since the intensity of the lines does not depend on sign exchange.
The absolute signs and values of the dipole coefficients in C60 can be determined from
the pair-wise H2−C induced dipole, equation (4.2). A first principles study of B jl for the
H2 − C pair is out of the scope of this work. Anyway the obtained values are consistent
with the theoretical analysis of the pair-wise induced dipole moment in H2 − He where
B10 and B12 have opposite sign and the latter has the smaller absolute value [53].

The magnitude of the induced dipole moment can be estimated for the absorption
area S = 10.6 of the ortho line at 4255 cm−1 at 6 K: µ = 9.8×10−3 D. This corresponds
to an effective charge of 6 × 10−3 C considering that the vibrational average of 〈R〉10

is 0.36
◦

A. For comparison the dipole moment of free HD in a J → J + 1 transition is
5 10−5 D. The IR activity originates from the displacement of such a small charge when
translational excited H2 bounces off the center of cage.
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4.4 Conclusions and final remarks

In this chapter the infrared spectroscopy of H2@C60 has been presented and analyzed.
The experimental spectra are very informative since the lines are narrow and well-
resolved compared to hydrogen confined in other environments. The interpretation
of this high-quality spectroscopic data allows one to obtain information about carbon-
hydrogen interactions in nanocarbons. The high symmetry of the confinement has been
exploited to obtain selection rules and transition probabilities. Infrared spectra have
been simulated in terms of a few parameters describing the confining potential, the
induced dipole moment and the ortho to para ratio. The agreement between the exper-
iments and the simulations, at optimized value of the parameters, is very good both at
low and high temperature, figure 4.3 and 4.6. The roto-translational potentials in the
ground and first vibrational state and the dipole moment for the dipole transitions in the
first vibrational band have been obtained. The redshift in the vibrational frequency and
the longer internuclear separation (compared to the free molecule) are consistent with
an attractive interaction between C60 and each of the atoms in H2.

The data reported here and their interpretation constitute a benchmark for any first-
principles calculations addressing the full six-dimensional quantum dynamics and for
induced dipole moment study in H2@C60. In any case the obtained results stand inde-
pendently of the detailed interactions between the endohedral hydrogen and the cage.
In perspective it would be convenient to analyze the high temperature data directly in
terms of fundamental parameters defining the carbon-hydrogen interaction. One of such
potentials optimized on H2@C60 IR data at 6 K[2] was used to study hydrogen trapped
in more complex structures[65].

A final remark is due in regard of the evidence of solid state effects in H2@C60. Or-
tho and para fundamental transitions have integrated absorptions of the same order of
magnitude. The mechanism responsible for the infrared activity of such modes must be
identical for the two lines. Although a quadrupole moment may be responsible for the
ortho fundamental transition, it is worth noting that the fundamental para transition is
absolutely forbidden in spherical approximation since any two levels with Λ f = Λi = 0
cannot be connected by any electric multipole operator. Group theoretical arguments
prove that in isolated C60 with real icosahedral symmetry the fundamental para line can
not be active. In each para-H2 vibrational manifold the rotational-translational ground
state correlates with the total symmetric representation of the icosahedral group Ag: a
necessary condition for a mode to be active is that the product of the irreducible repre-
sentation of the initial state, final state and electric multipole operator contains the total
symmetric representation Ag. Electric dipolar and electric quadrupolar operators belong
to the representation T1u and Hg of the symmetry group Ih of C60 and the product with
an Ag state is T1u or Hg, respectively. The most plausible mechanism refers to a local
field with reduced symmetry at the center of C60. The local field can originate from
molecular packing in the solid, from impurities or from the distribution of ortho/para
molecules in nearby cages. In particular a small field allowing non-zero matrix ele-



4.4. Conclusions and final remarks ‖ 73

ments between spherical states with ∆Λ = 1,∆N = 1 can mix the ground translational
states, N = 0, with the first excited translational states N = 1: the mixing coefficient
is proportional to the magnitude of the field divided by the translational frequency. IR
activity of the fundamental vibrational line is consistent with a local field of few tenth
of cm−1, by comparing the absorption area of the fundamental para vibrational line at
4071.4 cm−1 and the para line at 4250 cm−1. Such a local field may be relevant for the
lineshape of the proton nuclear magnetic resonance at cryogenic temperature.





Chapter5
Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a widespread spectroscopic tool in scientific re-
search where it is mainly used for the characterization of molecular systems in the solid,
liquid and gas phases. The power of the technique lies in the extreme sensitivity of the
nuclear spins to the local environment and in the possibilty to modify the coherent spin
dynamics almost at will by applying specifically designed sequences of radiofrequency
pulses. Structural and dynamical information is encoded in the nuclear spin spectra and
spin relaxation times. Here a study of the NMR of H2@C60 in the solid phase is re-
ported. The aim is to use molecular hydrogen as probe to determine if the icosahedral
symmetry of C60 is reduced in powder samples of endohedral fullerenes. The chapter is
organized as follows. First a quick introduction to the NMR dynamics (at level of Bloch
equations) and to the used pulse sequences is given. Then the proton NMR lineshape
and spin-lattice relaxation of two H2@C60 samples is compared between room temper-
ature and 1.8 K. The two samples have similar NMR spectra and relaxation times with
some remarkable but not yet understood differences. Finally lineshapes and spin-lattice
relaxations times have been studied between 2 and 0.1 K. The low-temperature data
presented here show that the local symmetry is lower than cubic, at least in part of the
sample and point out the importance of the history of the sample (preparation, storage,
etc.) in the NMR of solid H2@C60.

5.1 Basics of NMR

In a sample placed in a static magnetic field the nuclear spins tend to get oriented parallel
to the field giving rise to a tiny magnetization ME. Assuming that the static field is
directed along the Z axis of the laboratory frame, B0 = B0nZ , the interaction of the
nuclear spin ~Î with the field is described by the Zeeman Hamiltonian:

HZ = −γB0 · Î = ~ω0 ÎZ (5.1)

75
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where γ is the gyromagnetic ratio, which is specific to the nuclear species considered,
and ω0 = −γB0 is the Larmor frequency. For example γH = 267.513 MHz T−1 for
hydrogen and γD = 41.065 MHz T−1 for deuterium. Larmor frequencies falls in the
radio frequency (rf) region of the electromagnetic spectrum in typical laboratory fields
of a few T. The energy levels of the Zeeman Hamiltonian are the eigenstates |I,MI〉 of
the spin angular momentum operator ÎZ with energy ~ω0MI . The separation between
consecutive energy levels ~ω0 is uniform and proportional to the applied magnetic field.

At thermal equilibrium at a temperature T , the nuclear magnetization ME = M0nZ

points along the field direction and is proportional to the number of spins N in the
sample

M0 = Nγ〈ÎZ〉 = Nγ
I(I + 1)

3
~ω0

kBT
(5.2)

having assumed for simplicity the high temperature limit ~ω0 << kBT . In typical labo-
ratory conditions where the maximum field attainable is order of 20 T, the high temper-
ature condition is satisfied for any temperature greater than a few millidegrees K.

The equilibrium magnetization can be flipped by a resonant pulse applied at the
nuclear Larmor frequency ωRF = ω0. For example, a radio frequency field pointing
along an axis making an angle φ with the X axis in the XY plane

B1(t) = 2B1
[
nX cos φ + nY sin φ

]
cos(ω0t) (5.3)

can flip ME to

M(τ) = M0
[
nZ cos(ω1τ) + nX sin(ω1τ) sin(φ) − nY sin(ω1τ) cos(φ)

]
(5.4)

at the end of the time interval of duration τ during which the field is on. Here ω1 = γB1.
The flipping angle is given by θ = ω1τ and the pulse is usually denoted as θφ. For
θ = π/2 the magnetization is flipped by π/2 on the XY plane. After the pulse the
transverse XY-magnetization precesses at the nuclear Larmor frequency:

MXY(t) = M0 sin(ω1τ)
[
nX sin(ω1t) sin(φ) − nY cos(ω1t) cos(φ)

]
. (5.5)

The transverse magnetization produces an oscillating magnetic field which in turn in-
duces an oscillating electric potential in a receiving inductance. The induced potential
is proportional to the transverse magnetization and retains the same time dependence so
that the NMR signal oscillates at the Larmor frequency.

Relaxation aspects are missing in this simplified vectorial model discussed so far.
Without relaxation the Fourier transform of the NMR signal would be an infinitely
narrow line and the Z-magnetization would never recover to the thermal equilibrium
value: the NMR experiment could not be repeated twice. The Bloch equations keep
into account relaxation phenomenologically by the introduction of two time constants
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T1 and T2:

MZ(t) = e−t/T1 [MZ(0) −M0] + MZ(0), (5.6a)

MXY(t) = MXY(0)e−t/T2
[
nX cos(ω0tφ) + nY sin(ω0t − φ)

]
. (5.6b)

The spin lattice relaxation time T1 is related to the interactions with the other degrees
of freedom which bring the magnetization back to the equilibrium value along the Z
axis. The spin-spin relaxation time T2 is related to the interaction between neighboring
spins which is ultimately responsible for the loss of coherence and the consequent line
broadening of the NMR signal.

The basic spin dynamics of a system can be understood by using the Bloch equa-
tions for the free evolution period and the flip pulse equation for the evolution under
strong short pulses. Although the Bloch equations are correct only for a system of non
interacting spins with I = 1/2, they can be used for a semiquantitative understanding of
the NMR experiments discussed below. The more exact treatment of the spin dynam-
ics requires the knowledge of the spin Hamiltonian and the formalism of the density
operator [66, 67].

5.2 Used sequences

The pulse sequences in figure 5.1 have been used for observing the NMR of endohedral
hydrogen fullerenes.

(a) One-pulse sequence. A single π/2 pulse is followed by the acquisition of the
NMR signal, i.e. π/2−acq. The main limitation of this pulse sequence is that the sig-
nal acquisition cannot start immediately after the pulse. The high power pulses used to
excite the nuclear spin have not ideal rectangular shape and the hardware needs some
extra time beyond the nominal pulse duration to reduce the power to zero. The receiver
is very sensitive and can be damaged if it is opened before the exciting pulse is ex-
tinguished. This extra time is called the dead time and it is usually few µs in modern
spectrometer. Also ring-down of the probe can be collected if the acquisition is started
too close to the end of a strong pulse. These delays may lead to signal distortions in the
case of rapidly decaying NMR signals. In such cases, spin echoes may be useful (see
below). 1H NMR spectra of static powders are often broad and uninformative, due to
the anisotropic dipole-dipole couplings. However, H2@C60 displays well defined and
informative static proton lineshapes due to the relative isolation of the endohedral H2

molecules.
(b) Solid echo [68]: (π/2)0−τ/2−(π/2)π/2−τ/2−acq. This pulse sequence generates

a spin echo for isolated spin-1/2 pairs, which is the approximate situation for the endo-
hedral ortho-H2 molecules. The second pulse reverses the rapid signal decay caused
by the intra-pair dipole-dipole coupling, leading to a dipolar spin echo. The delay τ/2
is chosen to be larger than the dead time to reduce distortion of the lineshape. Fourier
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transformation of the signal is usually performed from the top of the echo to avoid a
large first-order phase correction. This pulse sequence was used to check the lineshapes
of the endohedral H2 molecules at low temperatures.

(c) Saturation-recovery (SR): π/2 − d1 − π/2 . . . − d1 − π/2 − τ − π/2−acq. The
longitudinal magnetization is reduced to zero by a train of π/2 pulses, separated by
a small delay d1. The magnetization partially recovers through spin-lattice relaxation
during the interval τ, and is converted into transverse magnetization by the final π/2
pulse. The NMR signal after the final pulse is monitored as a function of the recovery
delay τ, in order to determine the spin-lattice relaxation time constant T1. Saturation
recovery experiments can be repeated without waiting for several T1 as in inversion
recovery experiments. This is a definitive advantage at cryogenic temperatures when
the T1 becomes long.

 

Figure 5.1: Pulse sequences used for the NMR experiments on endohedral hydrogen
fullerenes. (a) One-pulse sequence; (b) Solid echo sequence. (c) Sequence for satura-
tion recovery experiment.

5.3 NMR on H2@C60

A comparative NMR spectroscopy study has been conducted on two samples of H2@C60.
Both samples were prepared following a multi-step molecular surgery procedure [22,
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23]. The first sample, labeled I henceforth, was synthesized by the group of Komatsu
and Murata at Kyoto University. The second sample, labeled II henceforth, was synthe-
sized by the group of Turro at Columbia University in New York. After insertion of H2

and reclosure of the fullerene, sample II was dissolved in CS2 and then left under vac-
uum pumping for several days. H2@C60 recrystallized in the form of 1 cm long black
‘needles’ in contrast to normally prepared fullerene samples which look like a brownish
powder. A small amount of H2@C60, 1.1 mg for sample I and 0.3 mg for sample II, was
packed in standard zirconia Varian 4 mm rotors for magic-angle spinning (MAS) NMR
experiments. For static NMR experiments low-proton content pyrex glass tubes were
filled with approximately 3-5 mg of material.

5.3.1 1H NMR spectra

Magic angle spinning (MAS) spectra were recorded to establish the amount of proto-
nated impurities in the two samples. figure 5.2. MAS is useful to clearly distinguish the
endohedral proton signal from exohedral protons. Endohedral atoms/molecules have a
characteristic negative chemical shift due to the shielding of the fullerene cage [22, 69].
The spectra were referenced setting the proton signal of adamantane at 1.8 ppm. In the
figure the main peaks correspond to endohedral hydrogen while the other peaks cor-
respond to occluded protonated solvents, likely toluene, which are repeatedly used in
the synthesis of the material. In sample II the broad background comes from the pro-
tons in the rotor. MAS spectra proved that both samples contained a limited amount of
occluded protonated impurities and that the NMR signal in static experiments is deter-
mined almost exclusively by endohedral hydrogen.

-15 -10 -5 0 5 10 15

a) b)

-15 -10 -5 0 5 10 15

H2@C60 (I) H2@C60 (I)

ω/2π (kHz) ω/2π (kHz)

Figure 5.2: Room temperature 1H MAS spectra of the two H2@C60 samples (I and II)
at 9.4 T: the spinning speed was 12 kHz in both experiments. The spectrum for sample
I, on the left, is an average of 64 scans while the spectrum for sample II, on the right,
is an average of 512 scans. The vertical scale is arbitrary. The highest peaks at -0.71
kHz are from endohedral hydrogen. The other peaks correspond to occluded protonated
impurities. The broad peak in sample II is originated from the protons of the rotor: the
background is visible because only ≈ 0.3 mg were used for sample II in comparison to
1.1 mg for sample I.
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Figure 5.3: Temperature dependence of 1H spectra in H2@C60 (sample I and II) at
14.1T under static conditions (no MAS). In all the experiments the center frequency is
600.435033 MHz. The dead time before acquisition was 5 µs and the dwell time was
1 µs. For sample I the spectra are averages of 2 scans. The duration of the flip pulse
was 3.1 µs for temperatures above 10 K, corresponding to a flip angle of π/2 radians.
Below 10 K the duration of the flip pulse was reduced to 0.6 µs corresponding to a flip
angle of ≈ π/6 radians. For sample II one scan spectra are displayed. The spectra were
collected using flip pulses of π/2 with a duration of the pulse 2.5µs. For sample II two
spectra are shown at 1.8 K: they were acquired after a delay from the saturation pulses
of 140 s and 800 s, respectively.
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Figure 5.4: Solid echo 1H spectra (on bottom) of H2@C60 at 14.1T and 1.7 K under
static conditions (no MAS) for sample I and II. For sample I just one scan was acquired:
the duration of the echo pulses was 3.1µs separated by τ/2 = 65µs. The spectrum for
sample II is an average of four scans with recycle time 20 s: the duration of the echo
pulses was 2.1µs separated by τ/2 = 160µs.

Static proton spectra of H2@C60 were collected from room temperature to 1.8 K
using a 14.1 T FT-spectrometer with cryogenic capability, see figure 5.3. For both
samples the 1H spectra consist of a single narrow line at any temperature down to 10
K. The line fitted a Gaussian shape. The half width at half height (HWHH) of the
line increases when the temperature is reduced: from approximately 3 kHz at 300 K
to 15 kHz at 10 K. Below 10 K the NMR behavior of the two samples shows some
substantial differences. In sample I at 10 K a shoulder appears on the right of the
central main peak, shifted at a frequency 11 kHz higher. The shoulder becomes more
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and more evident at lower temperatures while the intensity of the central peak spreads
over a wider region. At temperatures below 2.4 K the broad region at the bottom of
the spectrum gets more defined: the line is symmetric with respect to the main central
peak and 164 kHz peak to peak wide. At 1.7K two very weak wings twice as large
are barely visible. These features are associated with a dipolar Pake pattern for ortho-
hydrogen in the rotational ground state J=1. This topic will be discussed in more detail
after introducing the ortho-H2 spin Hamiltonian. In the spectra of sample II there is
no evidence of any shoulder beside the central peak at any temperature. Below 10 K
the spectra in sample II are slightly broader than in sample I. At 1.8 K a Pake pattern
emerged at the bottom of the central peak with the same characteristics as for sample I.
For delays longer than 200 s the most prominent part of the lineshape is a very broad
component emerging in the center part of the spectrum. It must be noted that below
10 K a complete recovery of part of the NMR signal is achieved for delays exceeding
1000 s. Quadrupolar echo sequence [68] confirmed that the 1.8 K lineshapes, described
above, were related to nuclear magnetic resonance rather than to instrumental artifacts.
In the solid echo spectra, figure 5.4, the most prominent feature is given by a central
peak. In sample I the shoulder observed by one-pulse experiment is still clearly visible.
As expected the dipolar pattern was refocused by the echoes and is evident in both
samples.

5.3.2 1H spin-lattice relaxation: analysis and results

A detailed experimental study of the spin-lattice relaxation time in H2@C60 at various
magnetic field and over a wide temperature range has been published [69]. The scope
of the present study was not to reproduce previous results but to determine if the nu-
clear spins relax homogeneously through the sample or wether more components can be
identified and eventually related to any specific features in the low temperature spectra.

Spin lattice relaxation times were obtained from the analysis of saturation recovery
experiments. According to equation (5.6a), after a delay τ from the end of the train of
pulses the z-magnetization recovers following the law

MZ(τ) = c +
∑

i

M0,i(1 − e−
t

T1,i ). (5.7)

The sum is over the different components of the spin system in the sample, each with its
own relaxation time T1,i. The constant c =

∑
i MZ,i(0) takes into account the possibility

of a small residual magnetization due to incomplete saturation. The observed NMR
signal is proportional to the recovered magnetization MZ(τ). When the components fall
in distinct resonances of the NMR spectrum, the relaxation times can be obtained by
matching the recovery of the intensity of each peak to a single exponential. In practice
some components may resonate at the same frequency or very close to each other and
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then fall under one peak because of instrumental limitations or intrinsic line broadening
effects. In such a case the number of components can be established by matching the
recovery curve of the resonance to a multi-exponential recovery. The reliability of the
relative intensities and relaxation times obtained from analysis of the recovery curve
depends on the quality of the experimental data.

Figure 5.5 shows typical saturation recovery curves of the proton signal for samples
I and II at three different temperatures. Sample I shows a bi-exponential recovery from
300 down to 50 K with a fast relaxing component (T1 order of tens of ms) and a slightly
slower one (T1 order of hundreds of ms). The ratio of the signal is in favor of the short
component for high temperatures but the situation is reverted below 100 K. At lower
temperatures the fast component is decreasingly important and the recovery becomes
single exponential. Sample II has a similar relaxation behavior between 300 and 50
K: a fast and a slow component are present with relaxation times consistent with the
ones in sample I. The ratio of the equilibrium magnetization of the short component
to that of the long component in sample II is different than in sample I but it follows
the same temperature trend: it is reduced when the temperature lowers. Most impor-
tantly a very slow relaxing component appears at around 30 K and gets increasingly
larger below. The presence of a large component with very long relaxation time ham-
pered the exact measurements of spin lattice relaxation times at low temperature in our
experimental setup where only a limited supply of helium was available per experimen-
tal session. The situation is particularly evident at 4.8 K, in figure 5.5IIc). Here two
components, a slowly relaxing component and an extremely slow relaxing component
can be discerned. From the analysis of the partially recovered signal at 4.8 K the esti-
mated T1 of the extra-slow component is ≈ 2000s, i.e. two orders of magnitude longer
than the other component present. A general consideration about saturation recovery
experiments needs to be done here. According to equation (5.2) the equilibrium magne-
tization depends linearly on the inverse of the temperature (Curie law). H2@C60 makes
no exception as it has been observed experimentally [69]: since the rate of ortho-para
conversion is very small (in absence of paramagnetic impurities) there is no deviation
of the NMR signal from the Curie law during a few-days-long experimental session.
For each of the H2@C60 samples studied here the experimental conditions were kept
homogeneous at different temperatures. One of the criteria used to establish when the
magnetization was fully recovered at low temperatures was to compare the integrated
intensity of the NMR signal with that expected from the high temperature spectra. In
sample I the signal was found to have recovered almost completely to the expected value
at any temperatures within less than 100 s after the saturation pulses. If the slow relax-
ing component was missed for sample I because the recovery delay was not extended
sufficiently, its contribution could estimated to be less than 10% of the total NMR sig-
nal. The temperature dependence of spin-lattice relaxation times from the analysis of
saturation recovery experiments is summarized in figure 5.6.

It is worth comparing the recovery of the 1H NMR signal at 1.8 K for the two
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Figure 5.6: Temperature dependence of 1H spin lattice relaxation time T1 in H2@C60 at
14.1 T under static conditions (no MAS): sample I is on the left and sample II is on the
right. The dots are experimental points. The size of the points is proportional to relative
weight of the component in the NMR signal. For sample I between 1.7 and 10 K the
relaxation times seem to follow a simple power law dependence T1 ∝ T−0.7 (dashed
line). At higher temperature the analysis of the saturation recovery curve indicate that
there are two components, a fast relaxing (blue dots) and a slow relaxing one (red dots).
For sample II the situation is similar at high temperature but at low temperature the most
relevant part of the signal comes from an extremely slow relaxing component (magenta
dots).

samples, figure 5.7. In sample I the recovery is still single exponential with a relaxation
time of 18 s: the main central peak, the smaller side peak and the dipolar pattern recover
at the same rate. In sample II the recovery is only partial and the relaxation times can
not be established with certainty. However it can be observed that the Pake pattern and
the central peak grow at a similar rate up to 50 s and then only the central peak keeps
increasing in intensity. A broader feature appears clearly below the central peak using
240 s delay. The slow relaxing part of the NMR signal is linked to this broader feature.
The Pake pattern structure seems to have the same relaxation rate as in sample I (∼20 s).
These observations suggests that the local environment around each H2 is homogeneous
in sample I while in sample II there at least two components. Another possibility is that
spin diffusion in sample I is more effective in leading to a common relaxation rate for
the nuclear spins.

In conclusion the two samples behave similarly between 300 K and 50 K when
there are two components with comparable relaxation rates. The relaxation behavior
is different at low temperature where the relaxation of sample I can be described by
a single exponential while in sample II there is evidence of a second extremely slow
relaxing component. The analysis of the recovery curves at 1.8 K shows that the dipolar
pattern relaxes at the same rate in both samples while the extra slow component in
sample II relates to a broad feature visible in the center of the spectrum at long recovery
delays.
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Figure 5.7: Saturation recovery 1H NMR lineshapes of H2@C60 at 14.1T and 1.7 K
under static conditions (no MAS) for various delays: sample I is on the left and sample
II is on the right. In sample I the lineshape relaxes uniformly and the recovery is single
exponential with a T1 of 18 s ca. In sample II the lineshape relaxes with two different
rates at the side of the Pake Pattern and at the center, respectively. The Pake pattern
relaxes with a time constant of 20 s ca. The time constant of the broad peak could not
be evaluated properly since recovery is not reached within 200 s but it is expected to
exceed 2000 s.

5.4 mK experiments on H2@C60

The NMR spectroscopy of H2@C60 was studied at temperatures below 2 K using a
FT-NMR spectrometer equipped with a mK refrigerator made available by John Owers-
Bradley at the University of Nottingham, UK. The hardware and the electronic for NMR
at mK temperatures are similar to the ones used in ‘high’ temperatures FT-NMR spec-
troscopy. Temperatures between few mK and 2 K are achieved by using a 3He-4He di-
lution refrigerator whose working principle is based on the phase diagram of the helium
mixture. The experimental setup is described in [70]. The experimental apparatus was
a KelvinoxLTM Oxford Instrument refrigerator with a top loading probe and equipped
with cryogenic solenoids. The solenoids could provide a magnetic field from 2.5 up
to 15 T. All the measurements reported here were performed at 2.9 T. Low tempera-
tures were maintained for a long time by operating the closed cooling system cyclically.
The temperature was monitored using a calibrated RuO2 resistor placed in the maxing
chamber near the sample. A 2mm glass tube open on one side was filled with 5mg of
H2@C60 from the batch labeled II. The open side was covered with teflon tape to avoid
dispersing the sample during measurements in liquid He.

The NMR spectra were obtained using one-pulse sequence and the spin lattice relax-
ation times were obtained using a saturation recovery sequence. In all the experiments
the center frequency of the spectrometer was kept at 123.720 MHz, the dead time was
2-4 µs and the dwell time for acquisition was 0.25 µs. The power of the resonant field
was calibrated so to reach a flip angle of π/2 with a pulse of 20 µs. Observe pulses 1 µs
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Figure 5.8: Temperature dependence of 1H line shape in H2@C60, sample II, at 2.90
T. No change is observable in the line shape. The width of the line at half height is 50
kHz.

long have been used, corresponding to a tipping angle θ ≈ 5◦.

Due to the very long relaxation time at low temperatures it was impractical to wait
for the magnetization to equilibrate before repeating the measurements. Spectra were
recorded sequentially by repeating several times a basic cycle of excitation-acquisition-
delay with T2«delay«T1. The amplitude of the signal diminished slowly but continu-
ously from one experiment to the next and more than 100 excitation pulses were nec-
essary to reduce it to half of its initial value. The lineshape did not show appreciable
changes during the continuous acquisition experiment. Figure 5.8 show representative
spectra, average of 32 consecutive acquisitions, from 2 K to 28 mK. Only a single line
50 kHz broad is visible at all temperatures down to 28 mK. Interestingly there is no
evidence of any dipolar powder pattern in the spectra.

Spin-lattice relaxation times were obtained in a similar manner. The recovery of the
signal was monitored at successively longer delays saturating the longitudinal magne-
tization only once at the beginning of the experiment. For small tipping angle of the
observe pulse the magnetization at the i − th delay measured in this way is scaled by
factor (cos θ)i−1 with respect to the one obtained in a regular saturation recovery exper-
iment. The integrals of the experimental spectra were corrected to take into account
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this factor and then fitted to a single exponential recovery, equation (5.7). Major de-
viations from exponential behavior were not observed and the contributions of minor
components could not be assessed properly due to the reduced signal to noise ratio for
one scan acquisitions. The temperature dependence of the spin-lattice relaxation times
is summarized in figure 5.9. As expected the relaxation time gets longer at lower tem-
peratures: for temperature higher than 1 Kelvin the relaxation time is few minutes but it
is longer than 1 day below 100 mK. Using a log-log representation the relaxation times
appeared aligned according to an inverse power law with different exponents for the
low and the high temperature end, respectively. A least chi-square fit of the data to the
model 1/T1(T ) = A T n1 + B T n2 gave the following values n1 = 1.0±0.3, n2 = 3.0±0.2,
A = (2.0 ± 1.5) × 10−5s−1, B = (14 ± 2) × 10−5s−1. At temperatures higher than 0.9 K
the relaxation times are proportional to T−3. At lower temperatures the relaxation times
are consistently shorter than what expected according to T−3 law and below 200 mK are
proportional to T−1 .

Temperature T / K 

102

105

T
1   

/ s
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103

104

T1 (T) ∼ T -3

T1   (T)  ∼ T -1

Best fit
T1   (T) = 105 / (2 T +14 T3)

Experiment

Figure 5.9: Temperature dependence of 1H spin lattice relaxation time in H2@C60,
sample II, at 2.90 T. The black points are experimental data and the blue line is the best
fit to 1/T1(T ) = A T n1 + B T n2 . The relaxation times T1 follow a T−1 power law on the
low temperature side (red dashed line) and T−3 power law on the high temperature side
(magenta dashed line).

The results reported in this section are consistent with the observations at higher
magnetic field. The lineshape observed in the experiments at 2.9 T reminds of the broad
slow-relaxing bump observed at 14.1 T, figure 5.7(II). The measured T1 = 110s at 2.9 T
and 1.8 K is consistent with the estimated T1 ∼2000 s for the slow-relaxing component
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at 14.1 T and at the same temperature assuming that the relaxation times scale with the
square of the magnetic field. However the absence of an observable dipolar pattern in
the mK spectra is surprising. Indeed the dipolar pattern observed in the lineshape in a
field of 14.1 T and 1.8 K should become more definite at lower temperatures due to a
larger population difference among the sublevels in the ground state of ortho-H2. The
asymptotic signal intensity at long delays is shown to follow the Curie law, equation
(5.2), implying no evident spin conversion during the experimental session.

Figure 5.10: Temperature dependence of the NMR signal intensity for H2@C60 be-
tween 2 and 0.1 K at 2.9 T. The points represent the asymptotic value M(+∞) from the
analysis of saturation recovery experiments, compare equation (5.7). The dotted line is
the Curie law M0 ∝ 1/T.

5.5 Conclusions

The NMR spectra and spin-lattice relaxation times of two H2@C60 samples with differ-
ent preparation history were studied at various temperatures in a field of 14.1 T. The
two samples show a similar response between 300 and 10 K: spectra consist of a narrow
line and relaxation times are order of 10 ms. Below 5 K a powder Pake pattern becomes
apparent at the base of the prominent narrow peak in the spectra of both samples. The
presence of such a pattern proves that the degeneracy of the ground state of ortho-H2 is
lifted at least in part of the sample. At low temperature the different relaxation behavior
of the two samples is striking. In sample I all the observed features in the NMR line



5.5. Conclusions ‖ 89

relax uniformly according to a single exponential law with a characteristic time of ≈ 20
seconds. In sample II there are two components with different relaxation rates. The
largest part of the signal comes from a slow relaxing component, T1 � 2000s associated
to a broad feature visible in the NMR spectrum at 1.8 K. These differences have not
been understood yet. They may be related to impurities trapped in the voids between
cages during the synthesys or later manipulations of the material. For example it has
been observed that solid C60 intercalates easily oxygen at normal conditions particu-
larly under illumination with UV/VIS light [71, 72]. The NMR of H2@C60 in sample
II was then studied at 2.9 T between 0.02 and 2K. In this range of temperatures the
spectrum consists a 50 kHz broad line with no other evident feature, the relaxation is
single exponential and 1/T1(T ) ∝ (AT + BT 3).





Chapter6
Nuclear spin dynamics for H2@C60

6.1 NMR Hamiltonian

In this section the 1H NMR Hamiltonian for ortho-H2 in its vibrational-rotational-
translational ground state will be discussed. The starting point is the molecular beam
Hamiltonian of ortho-H2 in the rotational state J = 1 in a magnetic field B0. As shown
by Ramsey and coworkers [73, 74], the Hamiltonian contains four terms: one Zeeman
term for the nuclear spin I and one Zeeman term for the rotational angular momen-
tum J describing the respective coupling with the magnetic field; a term describing the
spin-rotation interaction and a term describing the dipolar interaction between the two
protons. In spherical tensor notation that is:

HI−J = ωHT 1
0 (I) + ωJT 1

0 (J) + ωcT 1 (I) · T 1 (J) +
3
5
ωdT 2 (I) · T 2 (J) (6.1)

where spherical tensors and scalar product are defined in 2.3. The Larmor frequencies
are ωH = −γHB0, ωJ = −γJB0 and the gyromagnetic ratios are γH = 267.513 MHz T−1,
γJ = −42.200 MHz T−1, respectively. The spin-rotation coupling isωc ≈ −715.680 kHz.
The dipolar coupling is ωd = µ0γ

2
H~/(4πr3) with an approximate value of ωd ≈ 1.8623

MHz for r = 0.74
◦

A [74]. The molecular beam Hamiltonian in equation (6.1) describes
two interacting spins-1: the nuclear spin I and the molecular spin J associated with
molecular rotations. In high magnetic field the spin-rotation and the dipolar Hamiltoni-
ans are smaller than the Zeeman part and the full Hamiltonian can be truncated for the
purpose of finding the eigenvalues of the system

HI−J ≈ ωHT 1
0 (I) + ωJT 1

0 (J) + ωcT 1
0 (J) T 1

0 (I) +
3
5
ωdT 2

0 (J) T 2
0 (I) (6.2)

91
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The eigenvectors are the Zeeman eigenstates in the laboratory frame |MI ,MJ〉 with en-
ergies

E(MI ,MJ) = MIωH + MJωJ + ωcMI MJ +
1
10
ωd

(
3MI

2 − 2
) (

3MJ
2 − 2

)
(6.3)

The single quantum nuclear spin resonance can be found as transitions with ∆MJ = 0
and ∆MI = 1. For each MJ = −1, 0, 1 there are two transitions at frequency ω(MJ)/(2π)
for a total of six resonances:

ω(MJ)
2π

−
ωH

2π
=
ωc

2π
MJ ±

3
10
ωd

2π

(
3MJ

2 − 2
)
. (6.4)

In high field approximation the position of the resonances in the 1H NMR molecu-
lar depends on ωc and ωd. A simulated spectrum with the corresponding energy level
structure is reported in figure 6.1. Such a spectrum has been actually observed in molec-
ular beam experiments on hydrogen [74]. The resonances are narrow because collisions
between molecules in collimated molecular beams are infrequent (on the NMR time
scale). A spectrum like the molecular beam one is expected to be observed also for
H2 confined in highly symmetric environments when broadening effects and rapid ex-
change among the rotational sublevels, characterized here by MJ, are negligible.

0 100 200

ω/2π  (kHz)

mI = -1  
mI =  0  
mI =  1  

mJ= -1   mJ= 1   mJ= 0   

Figure 6.1: Simulated 1H spectrum for H2 in molecular beam nuclear resonance exper-
iment at high field. The lines represents the energy level structure. Each single quantum
resonance is assigned to a specific transitions with ∆MI = −1,∆MJ = 0. The lines were
artificially broadened by multiplying the time domain signal by an exponential decay.
The spectrum is centered at the proton Larmor frequency ωH.
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6.1.1 Hamiltonian in the confined case

In the isolated H2@C60 molecule the energy levels are not labeled by the rotational
quantum number J but by the values of the total orbital angular momentum Λ. The
rotational J and orbital L quantum numbers are still good quantum numbers for the
levels because of the smallness of anisotropic interactions compared to the rotational
and translational energies so that at lowest order the wavefunction is

Ψ
Λ,MΛ

N,JL ≈ ψ
N
tranFΛMΛ

JL (6.5)

neglecting the dependence on the vibrational quantum number v. These energy lev-
els are degenerate in the quantum number MΛ and have definite parity (−1)L+J under
inversion.

The NMR Hamiltonian in the state with definite angular momentum equation (6.5)
may be obtained from the molecular beam Hamiltonian replacing the rotational angular
momentum J with Λ according to equation (2.38) with the use of equations (2.40) and
(2.44):

HI−Λ = ωHT 1
0 (I) + ωΛT 1

0 (Λ) + c1T 1 (I) · T 1 (Λ) + c2T 2 (I) · T 2 (Λ) (6.6)

where

ωΛ = αJLΛ1ωJ (6.7a)

c1 = αJLΛ1ωc (6.7b)

c2 = (−1)JαJLΛ2
3

(2J + 3)(2J − 1)
ωd (6.7c)

and

αJLΛk = (−1)J+L+Λ+k(2Λ + 1)
{

J Λ L
Λ J k

}
(6.8)

The important point is that the various interactions are scaled by a factor α depend-
ing on their rank and the angular momenta quantum numbers. In endohedral hydrogen
fullerene the couplings, spin-rotation and dipolar, are rescaled according to the three an-
gular quantum numbers in equation (6.7). Also the thermal distribution of the particles
in excited states is clearly affected by quantization of the translational motion. In the
ground roto-translational state of ortho-hydrogen (J = 1, L = 0, Λ = 1) there is no harm
in replacing the rotational angular momentum J with Λ directly in equation (6.1) since
the scaling factor is α101k = 1 independent of the rank of the operator. Scaling factors
are relevant only for the analysis of nuclear spin relaxation at high temperature, when
excited translational energy levels become populated. In the remaining of the chapter
only the spin dynamics of the ground state will be considered.

In the solid state there are electric field gradients depending on the microscopic
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packing of the molecules. Hydrogen molecules with non zero angular momentum have
a quadrupole moment which is sensitive to such gradients. In undiluted endofullerene
samples the distribution of ortho and para molecules is also relevant owing to the electric
field generated by hydrogen molecules with non-null quadrupole moments in the nearby
cages. In solid hydrogen the distribution of spin isomers determines essentially the
rotational spin dynamics [75]. However the influence of the local fields on the dynamics
of confined hydrogen can be described by a simple effective Hamiltonian independently
of its fundamental physical origin. In solid H2@C60 the local field may reduce the
symmetry of the Hamiltonian compared to the isolated molecule case. This can induce
splittings of the sub-rotational energy levels which are directly observable by infrared
or neutron scattering spectroscopy. Low and high temperature IR experiments [59,
60] and inelastic neutron scattering experiments [64] show that the splittings induced
by crystal field on the energy levels of H2@C60 in the solid phase is no more than
2 cm−1 (60 GHz). This is confirmed also by specific heat studies on H2@C60 [76].
Such observations put an upper limit on the magnitude of the local fields. The local
fields can be treated as small perturbation of the confining potential of the fullerene and
can be expanded in multipoles Fλm

l j . Since in ortho-H2@C60 the lower energy levels
are composed essentially by states with Λ = 1 the only spherical multipoles that are
relevant in the study of the spin dynamics can be effectively replaced by rank 2 spherical
operators in the angular momentum Λ. The effective local field Hamiltonian has the
standard form of the interaction of a quadrupolar nuclei with an electric field gradient:

HQΛ
= δ

{
T 2

0 (ΛP) + η
[
T 2

2 (ΛP) + T 2
−2 (ΛP)

]}
(6.9)

where ΛP correspond to the angular momentum in the principal axis frame of the inter-
action and ΩL→P is the set of three Euler angles determining the orientation of prin-
cipal axis frame of the interaction with respect to the laboratory frame. The prin-
cipal axis frame is defined as the frame where the only non null Cartesian compo-
nent VC.-F.

XX ,VC.-F.
YY ,VC.-F.

ZZ are on-axes. The parameter δ = VC.-F.
ZZ is related to the size

of the crystal field and the parameter η = (VC.-F.
YY − VC.-F.

XX )/VC.-F.
ZZ is related to the de-

viation from the axial symmetry. 0 ≤ η ≤ 1 with the choice of the axes such that
|VC.-F.

XX | ≤ |V
C.-F.
YY | ≤ |V

C.-F.
ZZ |. In terms of the angular momentum operator in the laboratory

frame the spherical tensors in equation (6.9) are expressed by

T 2
m (ΛP) =

2∑
m′=−2

T 2
m′ (Λ) D2

m′,m(ΩL→P). (6.10)
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The full Hamiltonian for ortho-H2@C60 in its ground spatial state is

HI−Λ(δ, η,ΩL→P) = ωHT 1
0 (I)︸    ︷︷    ︸
HZI

+ωcT 1 (I) · T 1 (Λ)︸               ︷︷               ︸
HS R

+
3
5
ωdT 2 (I) · T 2 (Λ)︸                 ︷︷                 ︸

HDD

+ ωΛT 1
0 (Λ)︸     ︷︷     ︸
HZΛ

+ δ

[
T 2

0 (ΛP) +
η
√

6

(
T 2

2 (ΛP) + T 2
−2 (ΛP)

)]
︸                                              ︷︷                                              ︸

HQΛ

.
(6.11)

For H2@C60 the spin system consists of the nuclear spin I coupled to the molecular
rotational degrees of freedom of H2 which in turn interact with the fullerene modes. Λ
plays the role of an effective molecular spin. Figure 6.2 shows the various interactions in
H2@C60. The nuclear spin I and the molecular spin Λ are interacting with the external
magnetic field through the Zeeman Hamiltonians, HZI and HZΛ . The molecular spin is
subject to a local field HQΛ

which depends on the orientation of the crystalline frame
with respect to the static magnetic field. The nuclear and molecular spin communicate
through the dipolarHDD and the spin-rotationHS R interactions. In pure H2@C60 there
is no obvious direct interaction between the nuclear spin and the fullerenes. The spin
system interacts with the fullerene modes (lattice) only through the molecular spin.

Nuclear Spin I

C60 Rotations 

C60 Vibrations 

HZI

HQΛ
HSR

HZΛ

HDD

"Molecular spin" Λ

C60 Phonons

Figure 6.2: The cartoon shows the NMR interactions in H2@C60. The nuclear spin I
of H2 is subject to a Zeeman interaction HZI with the magnetic field and is coupled to
Λ by a smaller dipolar and spin rotation Hamiltonian. The molecular spin Λ is subject
to a Zeeman interaction and a local field interaction and it is coupled to the C60 lattice
(intramolecular vibrations, rotations, phonons).
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6.2 NMR line

The NMR spectrum of H2 in condensed phase is the result of the rotational energy level
structure as determined by the crystal field, their thermal populations and the transition
rates among these levels. At high field the NMR Hamiltonian is truncated in Î by the
Zeeman Hamiltonian as

HI−Λ ≈ ωHT 1
0 (I) +ωcT 1

0 (I) T 1
0 (Λ) +

3
5
ωdT 2

0 (I) T 2
0 (Λ)

+ ωΛT 1
0 (Λ) + κωΛ

[
T 2

0 (ΛP) +
η
√

6

(
T 2

2 (ΛP) + T 2
−2 (ΛP)

)]
︸                                                                   ︷︷                                                                   ︸

HΛ

(6.12)

where the adimensional parameter κ = δ/ωΛ has been introduced. A quantitative anal-
ysis can be performed diagonalizing the rotational Hamiltonian HΛ and studying the
dependence of the eigenvalues and eigenstates on the parameters κ and η. The energy
levels are determined by the weight of the crystal fieldHQΛ

with respect to the Zeeman
rotational Hamiltonian. The task is complicated by the fact that there is also an orien-
tational dependence on the Euler angle set ΩL→P. For any orientation there are three
eigenstates, denoted |ni(ΩL→P)〉, i = 1, 2, 3 with energy Ei(ΩL→P). In the following the
dependence of ni and Ei on ΩL→P will be understood. For each of the three rotational
eigenstates there are two spin resonances:

ω±
2π

(ni) −
ωH

2π
=
ωc

2π
〈ni|T 1

0 (Λ)|ni〉 ±
3
10
ωd

2π
〈ni|T 2

0 (Λ)|ni〉 (6.13)

The two limiting cases η = 1 and η = 0 and large |κ| >> 1 can be discussed analyt-
ically. In the biaxial case η is exactly 1 and each of the |ni〉 is also an eigenstate (with
null eigenvalue) of the angular momentum operator projected along each of the three
orthogonal axes in the quadrupolar Hamiltonian PAF, respectively. The expectation val-
ues of the projection of the angular momentum Λ along any direction on the |ni〉 basis
are null (angular momentum quenching) and the resonances are at:

ω

2π
(βi) =

ωH

2π
+ ±

3
10
ωd

2π
(3MJ

2
P − 2)

(
3 cos2 βi − 1

2

)
(6.14)

where βi, i = 1, 2, 3 are the angles between the Z-axis of the laboratory frame and the
orthogonal axes in the PAF ofHQI . In the uniaxial case η is exactly 0 and the Z-axis of
the principal axis frame of the quadrupolar interaction is the quantization axis for the Ĵ
angular momentum so that |ni〉 = |MJ P〉. The resonances are at:

ω

2π
(β) =

ωH

2π
+
ωc

2π
MJ P cos β ±

3
10
ωd

2π
(3MJ

2
P − 2)

(
3 cos2 β − 1

2

)
, (6.15)
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where β is the angle between the Z-axis in the PAF ofHQI and the Z-axis in the labora-
tory frame.

The nuclear spin lineshape depends strongly on the dynamics of the rotational mo-
tion. For example when the external fluctuations induce slow relaxation of the rotational
levels, the intensity of NMR lines at frequency ω±

2π [ni(ΩL→P)] is proportional to the pop-
ulation of the rotational level

pni(T ) =
1

Z(T )
e−

E(ni)
kBT , (6.16)

where

Z(T ) =

3∑
i=1

e−
E(ni)
kBT (6.17)

is the partition function. The dependence of the intensity on the temperature T is small
except when T ≤ Ei. On the other side when the relaxation among the rotational level
is fast, the three pairs of resonance blend into an average pair ω±

ω±
2π

(ΩL→P,T ) −
ωH

2π
=

ωc

2π

3∑
i=1

〈ni|T 1
0 (Λ)|ni〉pni(T ) ±

3
10
ωd

2π

3∑
i=1

〈ni|T 2
0 (Λ)|ni〉pni(T )

(6.18)

It should be noted that at high temperature when the population are distributed uni-
formly over the subrotational levels, pni(T ) = 1/3, the NMR resonances collapse into
a single line since the trace of the spherical operators is null. This corresponds to the
classical view of the molecular hydrogen tumbling isotropically inside the cage. At
lower temperature the difference in population is reflected into a lineshape with residual
non null anisotropic interactions. Fast and slow exchange refers to the timescale of ro-
tational relaxation compared to the timescale of the evolution of the NMR signal which
in H2@C60 is order of µs.

In a solid powder the NMR spectrum is given by the superposition of the signal
coming from a large number of crystallites covering all possible orientations. Assuming
random orientations the spectrum is simulated by an average over the set of angles and
weights that reproduce the NMR signal from a uniform distribution of crystallites over
the sphere.

6.2.1 Lineshape simulations

The upper limit of 60 GHz for the size of the crystal field translates into a an upper
limit of |κ| < 600 in a magnetic field of 14.1 T where ωJ ≈ 100 MHz. The space of
parameters |κ| < 600 and 0 ≤ η ≤ 1 is then divided into three zones. In the region
κ ≤ 0.2 and the quadrupolar Hamiltonian has negligible effects for any value of the
biaxiality parameter η. The resonances show a very weak dependence on ΩL→P and



98 ‖ Chapter 6. Nuclear spin dynamics for H2@C60

the spectrum is expected to be the similar to the molecular beam one, equation (6.4)
and figure 6.1. In the intermediate band 0.2 ≤ |κ| ≤ 20 the Zeeman and quadrupolar
Hamiltonian have comparable size. In this region the rotational energy levels show a
strong dependence on the crystallite orientation with interlevel crossing and the NMR
resonances can not be predicted from analytical expressions. Finally the quadrupolar
Hamiltonian is dominant in the region |κ| > 20. In any case the low-temperature spectra
can be obtained by simulation. Figures 6.3 and 6.4 report simulations at 2 K of 1H
NMR spectra for H2@C60 in the slow and fast exchange limit. In all the simulations
with η = 0 powder averaging was obtained by using the angular set GQβ8191 (Gaussian
quadrature in beta), composed by 2048 β-orientations; in all the remaining simulations
with η , 0 the set ROSELEB10100 (Regularized Octahedral Symmetry Expansion
Lebedev), composed by 10100 {α, β} orientations, was used [77, 78].

In the slow exchange limit spin resonances for all the crystallites form a broad and
rich lineshape. The influence of temperature on the populations of the rotational levels
is more pronounced in the spectra with η = 0. The NMR lineshape is narrower in the
fast exchange limit when thermal averaging among the subrotational levels is effective
except for large local fields at |κ| >> 1. The uniaxial spectrum, κ >> 1 and η = 0, has
been observed in NMR experiments on H2 intercalated in solid C60: hydrogen is trapped
in octahedral voids, which at low temperatures have axial symmetry S 3 [79, 80]. The
asymmetric spectrum, κ >> 1 and η = 1, is typical of H2 trapped in low symmetry
sites and it has been observed in low temperature NMR experiments on solid H2 [81]
and on H2 encased in an asymmetric open cage fullerene [82]. In the former case the
asymmetry in the quadrupolar field is related to the local distribution of ortho and para
molecule while in the latter case it is related to the low symmetry of the confining
molecular field. The powder spectrum associated to the NMR transitions in equation
(6.14) is characteristic of dipolar interaction in the solid phase as observed by Pake for
the first time [83]: neglecting broadening effects the spectrum extends in frequency for
a value double the dipolar constant and a peak to peak separation given by one dipolar
constant. In ortho-H2 the quantum average over the rotational state with J = 1 reduces
effectively the dipolar constant by a factor 3/5.

From the simulations it is not clear which situation represent the experimental NMR
spectra observed at low temperatures in H2@C60, figure 5.3 and 5.8. The observed low-
temperature spectra may be related to large anisotropies in the fast exchange limit or
moderate anisotropies in the slow exchange limit. When the temperature is lowered the
slow exchange limit is expected to become more and more significant. Interestingly the
simulated spectra with small local field (|κ| = 2 and large biaxiality η = 0.66, 1) in figure
5.3 display a definite central peak with a clear shoulder for η < 1 and look similar to
the experimental ones at 14.1 T, figure 5.3. So the presence/absence of a shoulder in
the low-temperature experimental spectra of the two H2@C60 may be related to slightly
different local fields depending on the different amount or type of occluded impurities.
Anyway the broad pattern at the base of the simulated spectra has not been observed
even in the quadrupolar echo experimental spectra, figure 5.4. In the real sample the
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situation may be complicated by a distribution of local fields and rotational rates. It is
also likely that the observed spectra are in an intermediate dynamical regime. At the
moment none of the possible scenarios should be ruled out without further experimental
and theoretical analysis.

6.3 Spin-lattice relaxation

In this section the theory of nuclear spin-lattice relaxation in H2@C60 is presented.
Although the discussion is not complete, the reported results represent a reference for
future theoretical developments aiming to the interpretation of the experimental data in
solid endohedral hydrogen fullerenes.

The nuclear spin relaxation for hydrogen in solid non magnetic host was studied by
Fedders [84, 85] in the high temperature limit kBT > ~δ. Within such limitation his
results can be extended directly to the ground state of H2@C60 without any considera-
tion of the translational motion. In this section the theory is extended beyond the high
temperature approximation in order to be able to discuss experimental observations in
H2@C60 below 2 K.

In high magnetic field the spin-rotation and the dipolar interaction are small com-
pared to the nuclear Zeeman Hamiltonian. The nuclear spins are affected by the lat-
tice dynamics, however fast that is, through the bottleneck of spin-rotation and intra-
molecular dipolar interaction. The study of nuclear spin relaxation can be reduced into
two steps: first determine the influence of the lattice dynamics on the molecular spin
and then transfer this information on the nuclear spin. The spin-lattice relaxation time
of a nuclear spin I = 1 with the Hamiltonian of equation (6.11) is

(T1)−1 = ω2
c

1∑
q=−1

q2 J1
qq(qωH) +

9ω2
d

50

2∑
q=−2

q2 J2
qq(qωH)

= 2ω2
c J1

11(ωH) +
9ω2

d

25

[
J2

11(ωH) + 4J2
22(2ωH)

] (6.19)

in the assumption that the nuclear spin has a negligible influence on the molecular spin
dynamics [84]. This result follows directly from Redfield relaxation theory at second-
order [86], assuming no cross-correlation between spherical operators with different
spherical rank. The influence of the lattice on the spin system is conveyed by spec-
tral densities Jk

qq which are Fourier transforms of the correlation functions of spherical
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operators

Jk
q1q2

(ω) = Re
∫

0

∞

Gk
q1q2

(t) e−iωtd t (6.20a)

Gk
q1q2

(t) = 〈
[
T k

q1
(Λ)

]†
T k

q2
(Λ) (−t)〉 = TrMΛ

[[
T k

q1
(Λ)

]†
T k

q2
(Λ) (−t)ρΛ(T )

]
(6.20b)

where

ρΛ(T ) =
e
~HΛ
kBT

TrMΛ
e
~HΛ
kBT

(6.21)

is the molecular spin density at thermal equilibrium. The time dependence of the spher-
ical operators is determined by the Liouvillian of the molecular spin, see below.

When the quadrupolar interaction HQΛ
is larger than the Zeeman interaction it is

convenient to work with the correlation functions and the spectral densities in the prin-
cipal frame of the former Hamiltonian. The correlation functions in the principal frame
are denoted by a bar and are obtained by replacing Λ by ΛP in equation (6.20) and in
equation (6.27). The correlation functions in the laboratory frame and in the principal
frame are related by Wigner matrices. For example

Jk
qq(ω) =

∑
q1,q2

[
Dk

q,q1
(α, β, γ)

]∗
Dk

q,q2
(α, β, γ)J

k
q1q2

(ω). (6.22)

The idea is that at large local field the angular dependence of J is weak and J depend on
the orientation mainly through the Wigner matrices. To simplify the treatment only the
dependence on β is considered in the following, i.e. α=γ=0. When the relaxation time
depends on the orientation of the local field with respect to the static magnetic field the
orientation-averaged rate

(T1a)−1 =
1
2

∫ [
T1(β)

]−1 sin βdβ (6.23)

determines the recovery of the signal for t << T1a:

s(t) =
1
2

∫
e−t/T1(β)dβ ≈ e−t/T1a . (6.24)

The discussion will be now be divided according to the local symmetry at the H2

site. To simplify the notation we introduce the Lorentz function

J(ω,Γ) =
Γ

ω2 + Γ2 , (6.25)
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which is recurring frequently in the evaluation of spectral densities and the parameters

δ′ =
√

3/2δ, (6.26a)

x = ~δ′/(kBT ). (6.26b)

6.3.1 Cubic symmetry

In an environment with cubic symmetryHQΛ
=0. At any temperature of interest the high

temperature approximation holds: ~HZΛ/kBT << 1. As a consequence ρΛ(T ) ≈ 1/3 and
the evolution of the spherical tensors in Λ is determined by the equation of motion [84]

dT k
q (Λ)

dt
= −i

[
T k

q (Λ) ,HΛ

]
− Γk T k

q (Λ) (6.27)

Γk plays the role of decay rates (inverse of correlation times) for the rotational operator
of rank k and depends parametrically on the angular momentum of the state. For rank 1
and 2 one has [87, 84]

Γ1 = 5JL(0), (6.28a)

Γ2 = 3JL(0), (6.28b)

where JL(ω) is the correlation function for the lattice. The main assumption here is
that the lattice correlation function is flat in the frequency range determined by the
exchanged quanta in the nuclear spin molecular spin system: JL(ω) = JL(0).

The spherical tensors are normal modes of the Liouville equation (6.27)

T k
q (Λ) (t) = e(i qωΛ−Γk)t T k

q (Λ) (6.29)

so that the correlation functions are

Jk
qq(ω) =

∣∣∣T k (Λ)
∣∣∣2

(2Λ + 1)
J(qω − qωΛ,Γk)⇒

J1
qq(ω) = 2

3J(qω − qωΛ,Γ1),

J2
qq(ω) = 1

3J(qω − qωΛ,Γ2).
(6.30)

where the norm of the a spin operator is given by equation (2.34): for Λ = 1,
∣∣∣T 1 (Λ)

∣∣∣2 =

2 and
∣∣∣T 2 (Λ)

∣∣∣2 = 1. The relaxation time is given by the well-known expression [88, 89,
84]:

(T1)−1 =
4
3
ω2

cJ(ωH − ωΛ,Γ1) +
3
25
ω2

d [J (ωH − ωΛ,Γ2) + 4J (2ωH − 2ωΛ,Γ2)] .
(6.31)
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6.3.2 Axial symmetry

At site of axial symmetry η = 0. For sake of simplicity only the case of large local
field ωH << δ′ will be discussed. It is not possible to assume a priori that ρΛ(T ) = 1/3
in equation (6.20) unless ~δ′ << kBT . When ~δ′ ≥ kBT one has to use a modified
equation of motion, rather than equation (6.29), to take into account the temperature
dependence of the Liouvillian [90]. In the limit of large electric field the projection of
the molecular spin along the axis of symmetry is a good quantum number. The spectral
densities J

k
q1q2

(ω) with q1 , q2 or |q1| = |q2| = 1 are depressed as Γ/δ′. The relevant
non-null correlation functions are:

J
1
00(ω) =

2
2 + e2xJ(ω,Γ10) (6.32a)

J
2
00(ω) =

3 + tanh x
3(3 − tanh x)

J(ω,Γ20) (6.32b)

J
2
±2±2(ω; β) =

1
2 + e2xJ

(ω ± 2ωΛ cos β,Γ22) (6.32c)

where

Γ10 = 4JL(0) + JL(3κ) [1 + tanh x] (6.33a)

Γ20 = JL(3κ) [3 − tanh x] (6.33b)

Γ22 = 2JL(0) + JL(3κ) [1 + tanh x] (6.33c)

Averaging of the Wigner matrices over the β angles in equation (6.22) accounts for a
reduction of a factor 1/3 of the spin-rotation relaxation path (rank 1) and a factor 3/5
for the dipolar relaxation path with respect to the cubic symmetry. The dependence
of the correlation functions on the angle β, equation (6.32), is taken into account by a
first-order expansion in ωΛ/ωH. The orientation-averaged rate is

(T1a)−1 =
2
3
ω2

c J
1
00(ωH) +

9
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ω2
d

[
J

2
00(ωH) + 2J

2
22(ωH;

π

2
)
(
1 + 4ωHωΛ

J(ωH,Γ22)
3Γ22

)
+

+4J
2
00(2ωH) + 8J

2
22(2ωH;

π

2
)
(
1 + 16ωHωΛ

J(2ωH,Γ22)
3Γ22

)]
. (6.34)

Higher order corrections modify the rate by less than 1%.

6.3.3 No symmetry

At sites where there is no special symmetry η , 0. Only the case of large local field
δ′ >> ωH and maximum biaxaility η = 1 will be considered. In the limit of large electric
field all the spectral densities J

k
q1q2

(ω) with rank 1 or with |q1| = |q2| = 1 are depressed
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as Γ/δ′: the spin-rotation mechanism is completely quenched and relaxation is purely
dipolar. Using the definitions in equation (6.26) the finite correlation functions of rank
2 are written as

J
2
00(ω) = f (s, t)J(ω,Γ2) + g(s, t)J(ω,Γ′2), (6.35a)

J
2
02(ω) = J

2
20(ω) =

√
2
3

(
3 − s
1 + s

)
f (s, t)J(ω,Γ2) +

√
2
3

(
3 + s
1 − s

)
g(s, t)J(ω,Γ′2),

(6.35b)

J
2
±2±2(ω) = J

2
∓2±2(ω) =

2
3

(
3 − s
1 + s

)2

f (s, t)J(ω,Γ2) +
2
3

(
3 + s
1 − s

)2

g(s, t)J(ω,Γ′2).

(6.35c)

where the correlation rates are

Γ2 = JL(κ)
[
3 + s

3 − s2

1 + s2

]
(6.36a)

Γ′2 = JL(κ)
[
3 − s

3 − s2

1 + s2

]
(6.36b)

and the supporting functions are

f (s, t) =

 (1+s)2(4s+t)
32s(3+s2) if δ′ < 0,

(1+s)2(4s−t)
32s(3+s2) if δ′ > 0.

(6.37a)

g(s, t) =

 (1−s)2(4s−t)
32s(3+s2) if δ′ < 0,

(1−s)2(4s+t)
32s(3+s2) if δ′ > 0.

(6.37b)

with s =
√

1 + sech x and t = tanh x.
Since the correlation functions does not depend explicitly on the angle β, the orientation-

averaged rate is obtained by integrating the angular dependence of the Wigner matrices

(T1a)−1 =
3

125
ω2

d

[
3J

2
00(ωH) + 12J

2
00(2ωH) + 2J

2
22(ωH) + 14J

2
22(2ωH)

−2
√

6J
2
20(ωH) + 12

√
6J

2
20(2ωH)

]
. (6.38)

6.3.4 Interaction with the lattice

In H2@C60 the lattice consists of all the degrees of freedom that are associated to the
fullerene cages. For each C60 molecule there are 174 normal vibrational modes, 3 rota-
tional modes and 3 translational modes. In the solid state the translational modes of the
fullerenes are not independent but form a bath of phonons. Vibrational modes, rotations
and phonons are the quantum lattice for H2@C60. The intramolecular vibrational modes
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are not involved in the dynamics of the sub-rotational levels since their frequency are
greater than 250 cm−1. In H2@C60 the coupling constant between the rotations of C60

and the ones of H2 is related to small non spherical term in the cage-hydrogen potential.
Relaxation though this channel is a second-order effect that depends on the mixing of
the rotational ground state with excited roto-translational state with Λ ≥ 5. Relaxation
through interaction with the rotational modes of C60 is negligible. At any temperatures
of interest for the study of ortho-H2@C60, the relaxation of the spin system is expected
to be determined only through the phonon channel. The exact evaluation of the cou-
pling between phonons and rotations in C60 and the evaluation of the quantum corre-
lation functions are necessary for a quantitative comparison between the experimental
and the theoretical relaxation rates. This last step will be subject to future theoretical
developments.

6.4 Conclusions

In this chapter the spin dynamics of H2@C60 has been discussed. The general spin
Hamiltonian of H2 in the confined fullerene is discussed with attention to the scaling
factors for spin-rotation and dipolar interactions in excited roto-translational states. The
discussion of the scaling factors is fundamental for the analysis of high-temperature re-
laxation studies. NMR spectra of H2@C60 in the ground rotational-translational state
are simulated in the limiting case of fast and slow thermal exchange among the rota-
tional levels. The expressions of spin-lattice relaxation rates are given extending Fed-
ders’ theory to temperatures lower than the eventual splitting in the ortho-H2 ground
state.

The model discussed here is the starting point for more detailed studies of nuclear
spin dynamics in H2@C60. A more complete formulation of the problem, which in-
corporate the dynamics of the rotational levels from the beginning by use of Liouville
formalism, is in progress. The assumption of the independence of the combined nu-
clear spin molecular rotation Hamiltonian among nearby molecules is questionable.
Although the protective cage is supposed to isolate the reciprocal interactions among
hydrogen molecules, it is possible that electric quadrupole-quadrupole interactions may
play a role in the dynamics of the rotational modes. More experimental studies on dif-
ferently prepared sample, for example H2@C60 dilute with empty C60, are in progress.



Chapter7
Conclusions and final remarks

The aim of this Ph.D. thesis is to elucidate the quantum dynamics of the prototypical
endohedral hydrogen-fullerene complex H2@C60 by means of theory and experiments.
Infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) have been used to
probe the spatial and nuclear spin dynamics in H2@C60, respectively. The first part of
the thesis deals with the development of the theoretical framework used to describe the
vibrational-rotational-translational dynamics of the confined hydrogen, followed by a
detailed analysis of the IR spectra of H2@C60. The second part of the thesis deals with
the investigations of nuclear spin lineshapes and relaxation rates at cryogenic tempera-
tures. The main outcomes of this work may be resumed in the following points:

• an efficient computational method for the representation of the Hamiltonian and
electric dipole moment of endohedral hydrogen fullerenes. The method is based
on the expansion of the confining potential and electric moment in terms of spher-
ical multipoles and has been implemented in Mathematica[32] notebooks for fast
simulations of the IR spectra of H2@C60 and recently HD@C60 and D2@C60[91];

• the quantitative analysis of the infrared spectroscopy of H2@C60 between 300 to 6
K via the method discussed above leading to molecular parameters of the confined
molecule, effective potentials for the roto-translational motion in the ground and
first vibrational states and estimates of the induced dipole moment;

• a comparative NMR study of two samples of H2@C60 with different preparation
histories;

• the study of the proton NMR lineshape and spin-lattice relaxation between 2 and
0.1 K;

• a preliminary theoretical framework for the analysis of the NMR spin dynamics
in the solid state.

The agreement between the experimental IR spectra and the theoretical model is
remarkable proving that the quantum dynamics and the infrared activity of endohedral
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hydrogen are determined by non-bonding interactions between the two molecular enti-
ties at the level of a single supra-molecular unit. In particular it was found that:

• the rotational constant of the endohedral hydrogen, 59.9 cm−1, is approximately
0.8% smaller than in free hydrogen, implying a longer internuclear equilibrium
distance in the confined case.

• the fundamental vibrational frequency is redshifted approximatively 100 cm−1

than in free hydrogen;

• the longer internuclear distance and the redshift in vibrational frequency with
respect to the free molecule are consistent with an attractive interaction between
the hydrogen atoms and the C60 walls;

• the fundamental translational excitations, N = 0 to N = 1, in the ground and
first excited vibrational state are 179.5 and 184.4 cm−1, respectively. The largest
contributions, about 130-140 cm−1, comes from the harmonic attractive potential
towards the center of the cage and the residual 20-25% from anharmonic correc-
tions.

The experimental low-temperature NMR spectra show evidence of a dipolar powder
pattern typical of free rotating ortho-hydrogen trapped in sites with reduced symme-
try. NMR simulations indicate that observed spectra are consistent with a small local
fields capable to lift degeneracy of the rotational levels in icosahedral symmetry. Such
anisotropies may be related to distribution of ortho/para molecules in the nearby cages,
imperfections in the lattice or occluded impurities.

Although the successful overall interpretation of the IR spectra, some of the ob-
served features can not by explained in terms infrared activity in a single isolated super-
molecule. These comprise the observation of the fundamental vibrational transitions
and few splittings in some of the IR lines. The topic of infrared activity in the solid
including static effects, as crystal fields induced by a low symmetry in the lattice, and
dynamical effects, i.e. lattice vibrations, have not been discussed here and deserve a
proper quantitative treatment. These deviations from the perfect icosahedral symme-
try are consistent with the NMR findings. The advancement in the interpretation of
the NMR observations is linked to a better understanding of the rotational dynamics in
H2@C60. Experimental studies on diluted hydrogen fullerenes as well as on other con-
fined isotopomers, that may improve the understanding of the nuclear spin dynamics,
and the development of a more complete theoretical model to be used in the analysis of
the NMR lineshapes and spin relaxations in endohedral fullerenes are in progress.
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