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UNIVERSITY OF SOUTHAMPTON

Abstract

Faculty of Engineering, Science & Mathematics

School of Engineering Sciences

Doctor of Philosophy

Analysis of an Alternative Topology for Steel-Concrete-Steel Sandwich

Beams Incorporating Inclined Shear Connectors

by Manit Leekitwattana

This thesis presents a new concept in steel-concrete-steel sandwich construction in which

a bi-directional corrugated-strip core is proposed as an alternative inclined shear con-

nector. The focus is on the feasibility study of fabrication techniques and the theoretical

study of the structural responses of both unfilled and concrete-filled steel-concrete-steel

sandwich beams under static flexural loading using numerical and analytical methods.

Two possible fabrication techniques to create the proposed bi-directional corrugated-

strip core are presented. The unfilled sandwich beam is studied using a finite element

method and three analytical methods referred to as the modified stiffness matrix, the

braced frame analogy, and the discrete beam methods The finite element method is

used to investigate the stiffness and strength behaviour of the unfilled sandwich beam.

The modified stiffness matrix method provides good correlation with the finite element

method. The other two analytical methods are less accurate. The assessment of the ef-

fect of geometrical parameters defining the bi-directional corrugated-strip core is carried

out. The responses of the strength and stiffness, especially the transverse shear stiffness,

are examined and discussed. The optimum configuration of the core is found at the angle

of the inclined part of the corrugation is about 45◦. The concrete-filled sandwich beam

is studied using the finite element method. The finite element method is used to inves-

tigate the transverse shear strength and the crack development of a four-point loaded

concrete-filled sandwich beam. The assessment of the effect of geometrical parameters

defining the inclined shear connectors is carried out. The responses of the concrete-filled

sandwich beam are examined and discussed. The optimum advantage of the transverse

shear strength of the concrete-filled sandwich beam is also found when the inclined shear

connectors align at an angle 45◦. It is found that creating the proposed core with a 45◦

pattern provides a great advantage in transverse shear stiffness and strength in both the

unfilled and concrete-filled sandwich beams.
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Chapter 1

Introduction

1.1 Background

The need for large structures with higher specific strength and stiffness is increasing.

This is especially true of recent engineering structures such as ship and building struc-

tures where there is an interest in increasing the payload to structure weight ratio. To

deliver such structures, engineers can either find a new structural material or produce

a new structural topology. The former method is however quite difficult to complete

because a qualification for new materials is expensive and time consuming. The latter

method is more realistically possible because engineers can select any combination of ex-

isting materials and arrange them into a desired structural topology such as a sandwich

structure.

A sandwich structure represents a special form of plate structure where two relatively

thin, strong, and stiff face plates are separated from each other by a relatively thick

and lightweight core. The potential result is a special plate structure with high stiffness

and strength to weight ratio. Another benefit of the sandwich structure is a variety of

structural designs. While the face plates are usually made of metal- or composite-based

materials and shaped in a conventional plate pattern, the core can be either made of

any relatively lightweight solid material or shaped in any structural topology pattern.

These two advantages have led to the wide usage of sandwich structures in engineering

disciplines such as for aerospace, automotive, civil, and marine applications.

In civil engineering applications, a steel-concrete-steel (SCS) sandwich construction has

been developed using the sandwich structure concept. It is another combination of steel

and concrete materials that have played significant roles in the creation of a vast array

of engineering structures. The SCS sandwich construction represents a special form of

1
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sandwich structure. It consists of two steel face plates and concrete core that are con-

nected together by mean of a series of shear connectors. The state-of-the-art construction

forms of the SCS sandwich structures are (1) double-skin sandwich construction (DSC),

(2) Bi-Steel sandwich construction (Bi-Steel), and (3) alternative SCS sandwich con-

struction. They are different only due to the pattern of their shear connectors, as shown

in Fig. 1.1.

(a) (b) (c)

Figure 1.1: Sketches of (a) double-skin, (b) Bi-Steel, and (c) alternative steel-concrete-
steel sandwich construction

Being an alternative construction technique, the DSC was introduced for the Conwy

River submerged-tube-tunnel crossing project in the mid 1980s. Although the DSC is

similar to steel-concrete composite construction, it was not qualified for this project due

to the difficulties of on-site construction, especially the depth control of the sandwich

core [1]. The Bi-Steel form overcame some of the existing on-site construction problems

of the DSC. Having the innovative prefabrication technique developed by British Steel

(later, Corus) [1], both ends of a shear connector can be simultaneously fixed to the steel

face plates. The alternative SCS sandwich construction with the innovative J-J hook

connectors has also been recently proposed as a competitive construction form [2–6].

It seems to be an advantageous solution as a simplified low-cost-construction technique

because it just requires simplified construction tools that are now generally available at

the construction site.

Although the SCS sandwich construction was originated in civil/structural engineering

applications, it has been further researched and developed not only for civil applications

but also for shipbuilding/offshore applications [2, 7–10]. With an increasing variety of

concrete types, lightweight concrete has become a suitable alternative to standard civil

construction concrete and therefore suitable for the highly weight critical marine industry

[8]. The initial idea is to deliver a competitive solution against a conventional stiffened

plate. Figure 1.2 shows the concept of using an SCS sandwich panel for a shipbuilding

application presented by Dai and Liew [10]; it may be adapted, for example, for tanker

ships, LNG ships, or large offshore structures.

The behaviour of the SCS structures has been widely researched, for example, in [6, 11,

12]. However, recent developments for shipbuilding may be divided into two fields: to

introduce either a lightweight concrete core [2–8] or a new shear connector system [2–6].
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SCS Sandwich Plate

Stiffened Plate

Figure 1.2: A concept of replacing the stiffened plate of a ship hull structure by a
steel-concrete-steel sandwich plate presented by Dai and Liew [10]

This research deals with the latter in which a new concept design of shear connector is

introduced.

Considering the existing construction forms of SCS structures, it may be seen that

all of the current types of shear connector are similar in alignment pattern. They all

align in the vertical direction – the axis of shear connector is normal to the face plates.

However, it is known that a concrete-filled SCS sandwich beam under bending load

suffers diagonal shear cracks [4, 11–15]. In the opinion of the author, this may be

alleviated using inclined shear connectors. Therefore, it is proposed to further research

this alternative engineering solution.

1.2 Aims and Objectives

This research presents a new alternative to the SCS sandwich construction in which

a bi-directional corrugated-strip core (Bi-CSC) system is used as shear connectors, as

conceptually illustrated in Fig. 1.3. The research aims to present the possibility to

implement this novel SCS sandwich construction using available construction techniques

and to present the potential advantages of this novel sandwich construction.

(a) (b)

Figure 1.3: Steel-concrete-steel sandwich construction with bi-directional corrugated-
strip core (a) an unfilled sandwich structure, and (b) a concrete-filled sandwich structure

Having the inclined parts of each corrugation unit, it can be seen that the whole Bi-

CSC system consists of a series of inclined members. The inclined members would

therefore act as inclined shear connectors for a concrete-filled SCS sandwich beam and

also as additional bracing members for an unfilled SCS sandwich beam. Therefore, the
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research aims to study not only the concrete-filled SCS sandwich beam but also the

unfilled beam. The objective is to address the advantage of stiffness and strength of this

proposed sandwich beam using numerical and analytical methods. The main focus is

on the effect of configuration of the Bi-CSC system, especially the angle of the inclined

part of the corrugation unit, to the transverse shear stiffness and strength of both the

unfilled and concrete-filled SCS sandwich beams. One of the barriers to understanding

the response of the Bi-CSC system is an efficient method of analysing the structure.

As this construction is truly three dimensional, a finite element analysis is likely to be

computationally expensive. Therefore, one key objective is the development of simplified

analytical methods for the assessment of the Bi-CSC response.

1.3 Novelties and Contributions

In order to propose the new alternative SCS sandwich construction with Bi-CSC, it is

necessary to present the concept design and to understand its structural responses. Of

such these requirements are the fabrication techniques to create the Bi-CSC topology

and the understanding of the effect of the Bi-CSC configurations to the stiffness and

strength of both the unfilled and concrete-filled SCS sandwich beams.

To the current knowledge of the author, it has been found that there are no existing

SCS sandwich beam studies with inclined shear connectors used in SCS sandwich con-

struction. Therefore, this research will contribute to the current engineering knowledge

of the SCS sandwich construction. The novelties and the contributions of this research

are listed as follows:

• The novel SCS sandwich construction with the Bi-CSC topology and the concep-

tual fabrication techniques.

• The understanding of the stiffness and strength responses of the unfilled SCS

sandwich beam with Bi-CSC as a function of core configurations.

• The simplified analytical methods to obtain the flexural and transverse shear stiff-

nesses of the unfilled SCS sandwich beam with Bi-CSC and other similar cores.

• The understanding of the transverse shear strength response of the concrete-filled

SCS sandwich beam with inclined shear connectors as a function of the angle of

shear connectors.

The major novelty of this research is the novel SCS sandwich construction with the

Bi-CSC topology. This proposed sandwich structure presents a new alternative form
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of the SCS sandwich construction in which the alternative inclined shear connectors is

represented in the form of the Bi-CSC topology. The literature has shown that there

is no similar SCS sandwich construction with the proposed Bi-CSC topology or the

proposed inclined shear connectors used in the SCS sandwich construction. Although

similar sandwich structures with CSC can be found in Ray [16, 17], it is found that those

cores are different from the proposed Bi-CSC topology. Besides the proposed Bi-CSC

topology, two conceptual fabrication techniques referred to as the top-down method

(TDM) and the slide-rotate method (SRM) are probably originally presented in this

research.

The understanding of the stiffness and strength responses of the unfilled SCS sandwich

beam with Bi-CSC as a function of core configuration is the knowledge contribution in

the unfilled corrugated-like core sandwich construction. In addition to the experimental

study of the similar sandwich structures with CSC by Ray [18], this research presents

the other responses of the beam using the numerical and analytical methods. It is found

that this research can contribute additional response of the beam with Bi-CSC to the

existing experimental results of other similar sandwich structures with CSC [18]. While

the results presented in Ray [18] are limited to some structural responses of the beam

with uni-directional CSC topology, the results presented in this research can further

represent the structural responses of the beam with the Bi-CSC topology.

The simplified analytical methods to obtain the flexural and transverse shear stiffnesses

of the unfilled SCS sandwich beam with Bi-CSC and other similar cores presented in this

research are the further contributions of the theoretical study of the unfilled corrugated-

like core sandwich construction. In this research, three simplified analytical methods,

referred to as the modified stiffness matrix method (MSM), the braced frame analogy

method (BFA), and the discrete beam method (DBM), are presented as the alternative

simplified methods to overcome an indeterminate core topology such as the proposed

Bi-CSC topology. It is found that the MSM can extend the theoretical method to obtain

the transverse shear stiffnesses of the unfilled truss core sandwich beam presented by

Lok et al. [19, 20] which is limited to only a determinate core topology. The BFA and the

DBM may also be the alternative methods to overcome the indeterminate core topology

if they are later refined in their conceptually techniques.

The understanding of the transverse shear strength response of the concrete-filled SCS

sandwich beam with inclined shear connectors as a function of the angle of shear con-

nectors is also a new knowledge contribution in the concrete-filled SCS sandwich con-

struction. To the current knowledge of the author, the research of the SCS sandwich

construction with the proposed inclined shear connectors or other similar inclined shear



Chapter 1. Introduction 6

connectors has not been presented in any public publications of this subject. There-

fore, any understanding of the responses of the concrete-filled SCS sandwich beam with

the proposed inclined shear connectors should dominate the recent research of the SCS

sandwich construction.

1.4 Structure of the Thesis

This thesis is divided into nine chapters and is described diagrammatically in Fig. 1.4.

First, Chapter 1 presented here introduces the motivations, aims, objectives, and nov-

elties and contributions of this research. It also outlines the contents of this thesis.

Chapter 2 reviews the existing sandwich constructions, especially the state-of-the-art

SCS sandwich constructions. The major gaps in the existing research and development

of the SCS sandwich constructions are introduced.

Chapter 3 presents the possibility to implement the proposed SCS sandwich construction

with the Bi-CSC system using available construction techniques. The methods to set

corrugated-strip plates out in bi-directional format are conceptually proposed.

Then, the next four chapters present the numerical and analytical studies of the unfilled

SCS sandwich beam with the Bi-CSC topology.

The numerical study of the unfilled type of the SCS sandwich beam with the Bi-CSC

system using three dimensional (3D) finite element (FE) model is presented in Chapter 4.

The main focus is on the stiffness and strength behaviour of the proposed unfilled SCS

sandwich beam under static load condition. In addition, the deformation of the sandwich

beam is also observed and discussed.

Rather than using the computational expensive 3D FE approach, three analytical meth-

ods are presented in the next three chapters as alternative simplified approaches to

obtain the response of the unfilled sandwich beam with the Bi-CSC topology. The nu-

merical solutions obtained from Chapter 4 are used as a reference for the validation of

these three simplified analytical methods.

The adopted analytical method based on the force-distortion relationship of a repetitive

unit cell and the stiffness matrix method is proposed in Chapter 5. This proposed

method is named as the modified stiffness matrix method (MSM). It is used to derive the

transverse shear stiffness of the proposed Bi-CSC topology. The MSM is proposed in this

research to overcome the high indeterminacy of the proposed structural core topology.

The validation of the MSM with existing analytical solutions [19, 20] and numerical



Chapter 1. Introduction 7

solutions (Chapter 4) is also presented in this chapter. This analytical method is then

used to assess the effect of geometric parameters defining the Bi-CSC. The performance

of the unfilled SCS sandwich beam with the Bi-CSC system compared with other unfilled

corrugated-like core sandwich beams is then examined and discussed.

Next, Chapter 6 presents another alternative analytical method based on the force-

distortion relationship and the braced frame analogy; this method is therefore named

as the braced frame analogy method (BFA). It is used to decompose the stiffness of

the unfilled SCS sandwich beam into two parts: sandwich face plates and sandwich

core. Although the BFA seems to be valid with some assumptions and some specific

configurations of the unfilled sandwich beam, it is introduced to be used as a simplified

method to evaluate the stiffness contribution of the proposed core topology to the overall

stiffness and strength of the unfilled SCS sandwich beam. The BFA can be further refined

to achieve a solution that is more accurate.

Chapter 7 also presents one more alternative analytical method to study the stiffness

behaviour of the unfilled SCS sandwich beam with the Bi-CSC system. This alternative

method is based on the discrete beam approach; therefore, it is named as the discrete

beam method (DBM). The DBM is proposed in the earlier stage of this research and

used as a method to decompose the stiffness of the unfilled sandwich beam into the

face plates and core components. The comparison between the DBM and BFA is also

presented in this chapter. It seems that the DBM agrees with the BFA in some specific

configurations of the unfilled sandwich beam. However, the DBM may need to be further

refined with more accurate assumptions.

The numerical study of the concrete-filled SCS sandwich beam with an inclined shear

connector system is then presented in Chapter 8. This chapter first introduces the

fundamental behaviour of the diagonal shear crack failure along with the rational of

transverse shear reinforcement system. The limitations of the state-of-the-art Bi-Steel

sandwich beam are also reviewed. The concrete-filled SCS sandwich beam with the

inclined shear connector system is then studied using the 3D FE approach. The potential

advantage of the proposed sandwich beam compared in various core configurations is

then examined and discussed. The main focus is on the transverse shear strength and

the diagonal shear crack behaviour of the concrete-filled SCS sandwich beam.

Last, Chapter 9 concludes the major contents of the research. The suggestions for

the future research of the SCS sandwich beam with the Bi-CSC or the inclined shear

connector systems are also introduced.

In addition to the major contents presented from Chapter 1 to 9, some supplementary

information is noted in appendix. Appendix A presents explanatory notes of derivation
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of the neutral axis of the unfilled sandwich beam with the Bi-CSC topology and the

constants kb and ks used for the BFA in Chapter 6.

Chapter 1

Motivation
Aims and Objectives

Chapter 2

Literature Review
SCS Sandwich Construction

Chapter 3

Feasibility Study
Fabrication Techniques

Chapter 4

Numerical Study
3D FE Approach

Chapter 5

Analytical Study
MSM Approach

Chapter 6

Analytical Study
BFA Approach

Chapter 7

Analytical Study
DBM Approach

Chapter 8

Numerical Study
3D FE Approach

Chapter 9

Conclusion

Appendix A

Supplementary Note
BFA Approach

Identification of Gaps in the Current Knowledge of SCS Sandwich Construction

Study of Fabrication and Construction Techniques

Study of Unfilled SCS Sandwich Beam with Bi-CSC System

Study of Concrete-Filled SCS Sandwich Beam
with Inclined Shear Connector System

Figure 1.4: The diagrammatical structure of the thesis



Chapter 2

Literature Review of Sandwich

Construction

2.1 Background

A sandwich structure represents a special form of plate structures where two relatively

thin, strong and stiff face plates referred to as sandwich face plates are separated from

each other by a relatively thick and lightweight core. They are connected to each other by

a number of connecting methods, for example, adhesive bonding, riveting, and welding.

Practically, the sandwich face plates are designed to withstand bending and axial stresses

and the core is designed to withstand a transverse shear stress.

The potential advantages of sandwich structures are their high stiffness and strength

to weight ratios and their variety of structural designs. The former is probably the

most well-known and most advantageous characteristic often quoted in literature, for

example, in [21, 22], and is the result of separating the sandwich face plates away from

each other by the sandwich core. If both the sandwich face plates and the core can

properly work together as a unique system without delaminating or disconnecting, the

stiffness of the sandwich structures increases as they get thicker [21, 22]. The latter

advantage, previously described, is also important. It allows engineers to select two or

more desired materials and then to combine them together to perform the sandwich

structures. For example, a steel plate may be used as the sandwich face plate on one

side and an aluminium plate may be used as the other sandwich face plate on the other

side. The sandwich core may be of another material such as polymeric foam. While

the sandwich face plates can resist structural loads, the polymeric foam core can be a

sound barrier and a thermal insulator. In addition, the sandwich core can be designed

9
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in various forms of either a solid core or a structural core. Designers have the freedom to

select any combinations of engineering materials that meet specific design requirements.

In terms of core topologies, the sandwich construction may be classified into two major

groups: (1) solid core sandwich construction, and (2) structural core sandwich construc-

tion, as shown in Fig. 2.1.

Sandwich Construction

Solid Core

Balsa Wood

Foam

Polymer

Metal

Concrete

Structural Core

Honeycomb

Corrugated

Web

Opened Cellular

Others

Combination

Reinforced Solid Core Solid-Filled Core

SCS Construction

DSC

Bi-Steel

Alternative

Figure 2.1: A classification of sandwich construction

The solid core sandwich construction is probably the earliest sandwich construction

form. It was initially developed in the period of the World War I and II [22]. The core

is typically made of lightweight materials such as balsa wood or polymeric foam and

shaped in a rectangular block.

The balsa wood is probably the first material used as the sandwich core [22]. It is an

anisotropic material which has high strength in the direction of fibre growth. Therefore,

it is normally cut in a cubic block with its fibre direction perpendicular to the plane

of the block; as a result, the fibre direction is also perpendicular to the sandwich face

plates [22].

The polymeric foam, e.g., polyurethane (PUR), polystyrene (PS), and polyvinylchloride

(PVC), is commonly used as the sandwich core. This is because of its relatively light

weight; most polymeric foam has density lower than 500 kg/m3 [22].
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In addition to the polymeric-based material, foam can be made of a metallic-based

material such as aluminium. It has recently been developed as the sandwich core [23, 24].

The metallic foam is considerably more advantageous than the polymeric foam in some

mechanical behaviour, for example, being higher stiffness, being higher temperature

resistance [23, 24], and being higher impact energy absorption [25]1.

Concrete – a popular engineering material used in civil/structural applications – is also

the available material choice of the solid core sandwich construction. Although the

weight of concrete is relatively heavy, the use of concrete in the solid core sandwich

construction has been developed for shipbuilding applications for a few years [2, 7–

10, 27]. It demonstrates some advantages of safety performance such as high energy

impact absorption [8]. In addition, the lightweight concrete with dry density of below

1,000 kg/m3 is now available [8].

Figure 2.2 shows the variety of the state-of-the-art concrete types. It can be seen that

there is lightweight concrete such as autoclaved aerated concrete or foamed concrete

available to select as an engineering material. Both the lightweight concrete types are

the special concrete with plenty of air bubbles formed inside the mass of concrete. They

are practically different only in their mixing methods. While the autoclaved aerated

concrete is made by mixing normal concrete compounds, i.e., cement, sand, and water,

with a bubble catalyst such as aluminium powder [28, 29], the foamed concrete is made

by injecting stable pre-formed foam into ready-mixed slurry-state concrete [30]. The

result of these methodologies is solid-state concrete with an amount of air bubbles; as

a result, these concrete types are relatively light compared with standard construction

concrete. The dry weight of, for example, foamed concrete ranges between 400 and 1,600

kg/m3 [30]. Therefore, it is possibly a competitive sandwich core material.

Concrete

Normal Weight Concrete Lightweight Concrete

Lightweight Aggregate Concrete Cellular Concrete

Autoclaved Aerated Concrete Foamed Concrete

Figure 2.2: A classification of concrete

1 cited by Sypeck and Wadley [26]
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The structural core sandwich construction is the other major sandwich construction

form. While the solid core is practically shaped in a rectangular solid block, the struc-

tural core can be designed in various structural forms. It is probably further sub-

classified into five minor groups: (1) honeycomb core, (2) corrugated core, (3) web core,

(4) opened cellular core, and (5) other structural cores.

The honeycomb core is probably the first popular structural core [20]. It was developed

in the aerospace industry in the late 1940s [22]. The structural shape of the core is ini-

tially designed to be similar to a natural honeycomb cell. It has been further developed

in various shapes such as a square cell, an over-expanded hexagonal cell, and a deformed

honeycomb cell [22, 31]. Although honeycomb core sandwich structures are quite expen-

sive and difficult to produce, they are widely used in many engineering applications due

to their high strength and stiffness to weight ratios. Moreover, the innovative folded-

honeycomb production technology introduced by EconCore N.V. [32] is the successive

method to combine the mechanical advantages of the honeycomb core sandwich struc-

tures with the automated production of corrugated cardboard. This concept provides

the cost efficient continuous production of honeycomb core sandwich structures made

using thermoplastic sheets.

The corrugated core is another type of the structural core sandwich construction. A

corrugated core sandwich structure typically consists of two face plates and a corru-

gated sheet formed in various corrugation profiles such as trapezoidal shape, sinusoidal

shape, and triangular shape. Instead of arranging the corrugated sheet in a one-way

pattern, however, the corrugated sheet can be arranged in a two-way pattern [33]. In

addition, the corrugated core can be designed in various advanced patterns such as an

offset-corrugated core [34, 35], a bi-directionally corrugated core [16, 36], and a cross-

corrugated core [17]. These corrugated cores consist of a series of corrugated-strip plates

which are arranged in either uni- or bi-directional format.

The web core also represents another form of the structural core sandwich construction.

The core is a series of strong stiffeners which have cross section in various shapes such

as I-, C-, Z- and O-sections [37]. The sandwich face plates and the web core can be

connected to each other by any mechanical means such as spot welding or riveting

[38]. Moreover, they may be welded together from the outside of sandwich structures

using laser-welding technology [39]. Therefore, it seems that there are no limitations to

the possible web core topology. In current practice, the stiffeners are arranged in the

longitudinal direction of the sandwich plates; as a result, it is strong in this longitudinal

direction and relatively weak in the transverse direction.

The opened cellular core is now competitive with other structural cores [26]. It is con-

siderably more advantageous than some of other structural cores, for example, allowing
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fluids to pass through the core [40] and being stronger and stiffer than the metallic foam

core for the same relative density [33]. The Kagome and the Pyramidal cores developed

by Cellular Materials International Inc. [33] are the state-of-the-art examples of this

sandwich construction. The advanced fabrication technique of these cores can be found

in Wadley et al. [41].

Other structural cores such as a prismatic core [42] or a second-order core [43] are the

examples of the structural core sandwich construction. Three-dimensional (3D) shell

cores such as an egg-box core [41] or a dimpled shape core [21] are also the other examples

of the structural core sandwich construction. These structural cores are being developed

to achieve a higher performance sandwich structure. For example, the strength to weight

ratio of a second-order corrugated core sandwich structure is more than that of an

equivalent corrugated core sandwich structure for the same relative density [43]. The

compressive strength of a second-order honeycomb core sandwich plate is also three to

six times as much as that of an equivalent honeycomb sandwich plate [44, 45]2.

In addition to the stand-alone solid core or the structural core, the sandwich core can

be any combinations of the solid and structural cores to form either a reinforced solid

core or a solid-filled structural core. For the former, a simple solid block made of

foam can be stitched with metallic rods to form a 3D pin reinforced solid core [46]. The

transverse stiffness and the strength of this special sandwich construction is considerably

more improved than those of an unreinforced solid core [47]. For the latter, the void of

structural cores such as the web core or the honeycomb core may be filled by a solid

core material such as balsa wood, polymeric foam, and concrete. It was found that, for

a solid-filled web core sandwich panel, the shear stiffness in the perpendicular direction

to the axis of stiffeners was increased [48]3. For a solid-filled honeycomb core, the cell

walls of the unfilled honeycomb core were also reinforced by solid foam [49].

2.2 Steel-Concrete-Steel (SCS) Sandwich Construction

Because of the variety of the design and construction of the existing sandwich structures,

it may be concluded here that there are no limitations of further invention and develop-

ment to achieve a higher performance sandwich structure. A steel-concrete-steel (SCS)

sandwich construction is another example of the sandwich construction which has been

proposed, researched, and developed since the mid 1980s [1]. The development trend is

to introduce a new type of concrete and/or a new type of shear connectors [2–8]. It is
2 cited by Kooistra et al. [43]
3 see Paper B: H. Kolsters and D. Zenkert. Numerical and experimental validation of a stiffness

model for laser-welded sandwich panels with vertical webs and a low-density core.
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also further adapted from civil to shipbuilding engineering applications [2, 7–10]. This

motivation challenges the author to present another novel construction form of the SCS

sandwich construction, and to develop a means of assessing its performance.

The SCS sandwich construction represents another special form of sandwich construction

which may be classified into the group of reinforced solid core sandwich construction.

It consists of two steel face plates and a concrete core which are connected together by

means of a series of shear connectors. It is another combination of steel and concrete

which have played significant roles in the creation of steel-concrete composite structures.

To perform fully composite action, the internal loads between the steel face plates and

the concrete core are transferred from each other by the shear connectors.

2.2.1 Construction Forms

The state-of-the-art construction forms of the SCS sandwich structures are (1) double-

skin sandwich construction (DSC), (2) Bi-Steel sandwich construction (Bi-Steel), and

(3) alternative SCS sandwich construction. They are different in the pattern of their

shear connectors, as shown in Figs. 1.1 and 2.3.

The DSC is probably the first form of the SCS sandwich construction. It consists of

two steel plates, a concrete core, and a group of shear stud connectors. A shear stud

connector is mechanically welded to either the top steel face or the bottom steel face

plate using a stud welding gun. The length of the shear stud can be either shorter

than or equal to the depth of the concrete core. Obviously, the DSC is similar to steel-

concrete composite construction. The DSC was originally proposed as the alternative

construction method for the Conwy River submerged-tube-tunnel crossing project in the

UK by the Tomlinson brothers in the mid 1980s [1, 12]. By that time, however, it was

not qualified and selected for the project due to the difficulty in on-site quality control,

especially controlling the depth of the sandwich core in the unfilled stage [1]; moreover,

there was no previous evidence to demonstrate the efficiency of this construction method.

Nevertheless, the proposal of the DSC has challenged engineers to further invent another

SCS sandwich construction.

The Bi-Steel is the second form of the SCS sandwich construction. It also consists of two

steel plates, a concrete core, and a group of shear stud connectors. Unlike the DSC, how-

ever, both ends of the shear stud connector of the Bi-Steel are simultaneously welded to

both the top and bottom steel face plates using the innovative prefabrication technique

developed by British Steel plc. (later, Corus) [1]. As a result, the Bi-Steel can minimise

some on-site construction problems of the DSC. The Bi-Steel is the commercially avail-

able product of Corus (formerly, British Steel plc.) [50]. It was initially proposed when
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Mr H. G. Bowerman4 realised that the problems of the DSC could be solved if both the

two ends of the shear stud connector could be welded to the top and bottom steel face

plates simultaneously. This objective was achieved [14] and the Bi-Steel product has

been manufactured since 1997 [51].

In addition to the first two types of the SCS sandwich construction, the research group of

the National University of Singapore has also proposed another alternative SCS sandwich

construction. Instead of using the shear stud connectors, this alternative consists of two

steel face plates, a concrete core, and a group of innovative J-hook connectors [2–6].

This alternative SCS sandwich construction is probably proposed for shipbuilding and

offshore applications [2, 9, 10]. It seems to be the advantageous solution of a simplified

low-cost-construction technique compared with the Bi-Steel [2, 3] because it just requires

simplified construction tools which are now generally available at construction sites.

Similar to the shear stud connector, the J-hook connector can also be welded to either

the top steel face plate or the bottom steel face plate using a modified stud welding gun

[4, 5]. The research and development of this alternative SCS sandwich construction is

probably in progress.

Considering the existing SCS sandwich construction, it can be seen that the state-of-

the-art shear connectors are a single-ended friction-welded stud connector, a both-ended

friction-welded bar connector, and a single-ended friction-welded J-hook connector; they

are used in the DSC, the Bi-Steel, and the alternative SCS sandwich construction, re-

spectively. However, there are a few more alternative shear connectors conceptually pre-

sented by Liew and Wang [2], for example, a bolt-and-nut connector and a self-adhesive

slot connector. All shear connector types mentioned here are graphically illustrated in

Fig. 2.3.

(a) (b) (c)

(d) (e)

Figure 2.3: Sketches of shear connectors used in steel-concrete-steel sandwich con-
struction (a) single-ended friction-welded stud connectors, (b) both-ended friction-
welded bar connectors, (c) single-ended friction-welded J-hook connectors, (d) bolt-

and-nut connectors, and (e) self-adhesive slot connectors

4 Mr Hugh Gordon Bowerman – a former technical manager of Corus Bi-Steel [1]
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2.2.2 Applications

Being the alternative construction technique of civil/structural engineering applications,

the DSC was originally introduced in the UK in the mid 1980s [1]. Although it was not

qualified for the proposal of the Conwy River submerged-tube-tunnel crossing project,

the concept of the SCS sandwich construction has been further developed. The Bi-Steel

is probably the well-known SCS sandwich construction form used in recently engineering

applications, for example, blast protection structures, perimeter security walls, and shear

walls of tall building structures [52].

The applications of the SCS sandwich construction have also been feasibly studied for

nuclear power plants [53]. The idea is to deliver high performance solutions against a

conventional construction form such as a reinforced concrete (RC) structure. Conceptu-

ally, it seems that an SCS sandwich beam is stronger and stiffer than an equivalent RC

beam. At the same strength, the depth of the SCS sandwich beam is less than that of

the RC beam because of the optimum positioning of the steel face plates. In addition,

the constructability of the SCS sandwich structures seems to be better than that of

the RC structures. Figure 2.4 demonstrates the construction process of the SCS sand-

wich construction compared with the RC construction; it can be seen that the overall

construction time may be reduced by 50% [53].

Rebar Arrangement Form Work Assembly Concrete Placement Form Work Removal

RC

13 days 7 days 4 days 4 days

SCS

10 days 4 days

Figure 2.4: A comparison of construction process between a steel-concrete-steel sand-
wich structure and a reinforced concrete structure [modified from 53]

Although the SCS sandwich construction was originated in civil/structural engineering

applications, it has been also further researched and developed for shipbuilding/offshore

applications [2, 7–10]. The initial concept is to deliver competitive solutions against

conventional stiffened plates, as previously compared in Fig. 1.2. The applications are

possibly, for example, tanker ships, LNG ships, and large offshore structures. With

the variety of concrete materials, the lightweight concrete with dry density of below
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1,000 kg/m3 is now available to be the alternative material for marine applications

[8]. The potential advantages of steel-lightweight concrete-steel sandwich structures to

shipbuilding applications have been noted by Kujala and Noury [54]. The advantages are,

for example, an increase in plate buckling and hull torsion stiffnesses, an improvement

in noise and vibration damping properties, and an increase in energy absorption (in

case of collision or grounding). The past and on-going development projects of the SCS

sandwich construction for shipbuilding applications may be found at Aker Yards [54]

and Keppel offshore and marine Ltd. [2].

2.2.3 Research and Development

The SCS sandwich structures have been being researched and developed since it was pro-

posed as the alternative construction form for the Conwy River submerged-tube-tunnel

crossing project in the mid 1980s. The major timeframe of the research and develop-

ment may be divided into three phases: (1) research of the DSC, from 1985 to 2002, (2)

research of the Bi-Steel, from 1987 to present, and (3) research of the alternative SCS

sandwich construction, from 2005 to present, as chronologically illustrated in Fig. 2.5.

It should be noted that the years indicated here are approximate numbers according to

the information of the research publications listed in Table 2.1.

Initially, the research of the DSC had been intensively studied at the University of Wales,

UK. The experimental research to investigate the structural behaviour and the failure

modes of the DSC structures for the proposal of the Conwy River submerged-tube-

tunnel crossing project was conducted [1]. The fifty-three one-third scale specimens of

the DSC structures were set up to investigate the effect of the thickness of a steel face

plate, the length of a shear stud connector, the spacing between shear stud connectors,

and the compressive strength of concrete. The specimens were divided into eighteen

DSC beams [11], twenty-three DSC columns, and twelve DSC beam-column structures

[55]. In addition, the full scale specimens of six wide DSC beams, two DSC columns

and three DSC beam-columns were also studied [56]. The fundamental failure modes

of the DSC beams subjected to a static load condition were found and reported as, for

example, yielding of the tension plate, horizontal slipping at the interface between the

steel face plate and the concrete core, and vertical shear failing of the concrete core. The

structural behaviour was explained by Oduyemi and Wright [11]. The design criteria

were developed based on the experimental data [56]. The closed-form solutions were

later presented by Wright and Oduyemi [57]. The study of six four-point loaded beams

with relatively low span to depth ratios was later presented by Roberts et al. [58]. The

series of fatigue tests of the DSC beams were also carried out by Roberts and Dogan

[59].
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1984
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DSC

Conceptual Idea

Last Work?

Bi-Steel

Conceptual Idea

Initial Test Program

Commercial Manufacture by CORUS

Present

Future Work

Alternative

Conceptual Idea

Present

Future Work

PhD research of
steel-concrete-steel
sandwich structure
with bi-directional

corrugated-strip core

R&D

Further R&D?

R&D

R&D

R&D

R&D
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Figure 2.5: A timeframe of the research and development of steel-concrete-steel sand-
wich construction

The research to improve the composite strength of the DSC beams by increasing surface

roughness of the steel face plates was conducted by Subedi and Coyle [13]. It was found

that the buckling problem of the compression steel face plate caused by debonding at

the steel-concrete interface could be improved using the surfaced steel face plates such

as the Expamet surfaced steel plate5 or the Wavy wire surfaced steel plate6 [13].

The research of the Bi-Steel had also been mainly conducted in the UK universities.

Most research was carried out by PhD research students, for example, McKinley [60]
5 Expamet surfaced steel plate – a steel plate with 2.16 mm thick expanded metal mesh welded on

to the steel plate [13]
6 Wavy wire surfaced steel plate – a steel plate with sinusoidal bent 6 mm diameter wire laid flat

and welded on to the steel plate [13]
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at City University, Clubley [61] at the University of Southampton, Coyle [62] at the

University of Dundee, and Foundoukos [63] at Imperial College of Science, Technology

and Medicine, the University of London.

The series of sixteen full-scale SCS sandwich beams – included the DSC and the Bi-Steel

beams – were experimentally studied and reported by McKinley and Boswell [64]. The

objective was to investigate the elastic and plastic behaviour of simply supported beams

subjected to a three-point loading condition. It was found that both the DSC and the

Bi-Steel beams yielded the same behaviour of elastic and early plastic deformations and

load characteristics. However, the failure modes of the DSC beams were different from

those of the Bi-Steel beams. Typically, the Bi-Steel beams failed due to local buckling

of the compression face plates whereas the DSC beams failed by pulling the shear studs

out of the concrete core. McKinley and Boswell [64] also further developed analytical

solutions to express the elastic behaviour of the SCS sandwich beam.

In 2007, the experimental study to obtain the static behaviour of eighteen Bi-Steel beams

was reported by Xie et al. [12]. The beams were 400 mm wide with two rows of both-

ended friction-welded bar connectors in the transverse direction and the concrete core

was the ready-mix concrete of grade C40/50. The failure modes of beams subjected

to the static load were observed and reported as a tension plate failure, a bar tension

failure, a bar shear failure, and a concrete shear failure, as graphically shown in Fig. 2.6.

In addition to the static test of Bi-Steel beams, the fatigue tests of eighteen Bi-Steel

beams was also carried out and reported by Foundoukos et al. [65]. It was found that

the beams could also fail in the tension plate failure and in the bar shear failure.

The diagonal shear crack of the concrete core of the Bi-Steel beam under the static

load initially developed from the tensile crack at a bar connector. The behaviour of the

Bi-Steel beam such as the deflection or the tension in the bar connector did not affected

from this initial crack. The diagonal shear crack continually occurred as the applied

load increased. It was found that this following diagonal shear crack was independent

from the initial tension crack and appeared in the tension region of the concrete core at

about 45◦ to the axis of the beam [12].

Numerical and analytical studies were later presented by Foundoukos and Chapman

[15]. It was found that the existing analytical solutions based on a truss model and an

equivalent steel beam model yielded the good prediction of the behaviour of the tension

face plate of the Bi-Steel beams subjected to a three-point loading condition compared

with a numerical study using the ABAQUS/Explicit FE package. However, for the

compression face plate, the truss model was more accurate than the equivalent steel

beam model. Further development of the truss model was carried out to overcome the

Bi-Steel beams subjected to a uniform load case. In this case, the truss model was less
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Table 3
Summary of the test results

Beam
no.

tt
(mm)

P0
(kN)

Pu
(kN)

εPu
(µε)

Pcrack
(kN)

∆0
(mm)

∆u
(mm)

δu
(mm)

FBu
(kN)

HBu,µ=0
(kN)

HBu,µ=0.5
(kN)

τu
(N/mm2)

Beam failure mode

BS1 6.23 1096 1591 >19 837 1176 2.6 18.9 1.2 78 >211 >145 4.97 Tension plate
BS2 7.91 1738 1946 >16 683 1275 4.0 12.7 1.0 83 >255 >174 6.08 Tension plate
BS3 11.96 >1984 >1984 >1684 1176 >4.1 >4.1 >0.7 >82 >305 >223 >6.2 No failure
BS4 6.13 553 727 13 119 589 6.1 14.4 0.9 104 198 168 4.54 Tension plate
BS5 7.91 786 873 2919 687 7.9 11.1 3.2 122 204 172 5.46 Concrete shear
BS6 11.83 >1110 1110 1752 628 >10.9 10.9 2.9 259 306 260 6.94 Concrete shear
BS7 6.20 333 545 >12 492 – 7.1 45.9 0.9 82 >199 >176 3.41 Tension plate
BS8 7.98 465 577 4020 549 9.1 22.4 6.0 127 205 187 3.61 Bar shear
BS9 11.90 >674 674 1912 647 >17.0 17.0 3.4 125 325 297 4.21 Bar shear
BS10 6.10 245 ≥415 >11 685 – 8.9 ≥70.2 0.9 ≥63 ≥194 >177 ≥2.59 Tension plate
BS11 7.98 303 477 >8793 477 9.2 >62.7 1.3 76 >228 >202 2.98 Bar/concrete shear
BS12 11.92 >501 501 2006 501 >20.0 20.0 1.7 140 330 309 3.13 Bar/concrete shear
BS13 10.31 1201 1526 21 000 746 8.3 34.3 7.6 152 236 188 6.36 Tension plate
BS14 11.88 1458 1583 2642 844 13.2 20.4 5.9 >272 257 207 6.60 Bar shear
BS15 10.02 >1047 1047 2083 903 >20.0 20.0 8.1 >272 285 242 4.36 Bar tension/shear
BS16 11.76 >985 985 1472 952 >13.3 13.3 4.5 >272 237 196 4.10 Bar tension
BS17 10.18 758 851 2940 589 13.2 20.2 2.9 177 219 195 3.55 Bar/concrete shear
BS18 11.93 >805 805 1637 549 >15.3 15.3 2.4 106 200 175 3.35 Concrete shear/bar tension

Static beam tests.

Fig. 6. Typical beam static failure modes.

5. Test results and comparisons

5.1. Failure loads and modes

The measured test results and failure modes for the 18
beams are summarised in Table 3. The beams were designed
with the intention that all possible failure modes (except for
compression plate yield or buckling and compression concrete
crushing) would occur, and that failure would occur at a load
within the capacity of the jacks (200 t).

Fig. 6 illustrates four elementary modes of failure observed
in the test beams. Tests were continued beyond maximum
load Pu , until collapse was apparent from bar or concrete
failure. Bar–plate connection failure modes are shown in Fig. 7.

After the concrete was removed, the failed beam showed a
combination of some of these elementary modes of failure.
Plate rupture did not occur, but very high plate strains led to
concrete and/or bar failure; that has been designated “tension
plate failure”. In some cases, due to excessive strain a strain
gauge ceased to function before the maximum load was
reached, and the strain given in the table is the last measurement
taken before the gauge failure.

5.2. Plate forces

In terms of the stress/strain curve for the material, the
tension plate strain εP measured at mid-span is used to estimate
the plate force FP . The tension plate forces according to the
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Fig. 6. Typical beam static failure modes.

5. Test results and comparisons

5.1. Failure loads and modes

The measured test results and failure modes for the 18
beams are summarised in Table 3. The beams were designed
with the intention that all possible failure modes (except for
compression plate yield or buckling and compression concrete
crushing) would occur, and that failure would occur at a load
within the capacity of the jacks (200 t).

Fig. 6 illustrates four elementary modes of failure observed
in the test beams. Tests were continued beyond maximum
load Pu , until collapse was apparent from bar or concrete
failure. Bar–plate connection failure modes are shown in Fig. 7.

After the concrete was removed, the failed beam showed a
combination of some of these elementary modes of failure.
Plate rupture did not occur, but very high plate strains led to
concrete and/or bar failure; that has been designated “tension
plate failure”. In some cases, due to excessive strain a strain
gauge ceased to function before the maximum load was
reached, and the strain given in the table is the last measurement
taken before the gauge failure.

5.2. Plate forces

In terms of the stress/strain curve for the material, the
tension plate strain εP measured at mid-span is used to estimate
the plate force FP . The tension plate forces according to the
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Static beam tests.

Fig. 6. Typical beam static failure modes.

5. Test results and comparisons

5.1. Failure loads and modes

The measured test results and failure modes for the 18
beams are summarised in Table 3. The beams were designed
with the intention that all possible failure modes (except for
compression plate yield or buckling and compression concrete
crushing) would occur, and that failure would occur at a load
within the capacity of the jacks (200 t).

Fig. 6 illustrates four elementary modes of failure observed
in the test beams. Tests were continued beyond maximum
load Pu , until collapse was apparent from bar or concrete
failure. Bar–plate connection failure modes are shown in Fig. 7.

After the concrete was removed, the failed beam showed a
combination of some of these elementary modes of failure.
Plate rupture did not occur, but very high plate strains led to
concrete and/or bar failure; that has been designated “tension
plate failure”. In some cases, due to excessive strain a strain
gauge ceased to function before the maximum load was
reached, and the strain given in the table is the last measurement
taken before the gauge failure.

5.2. Plate forces

In terms of the stress/strain curve for the material, the
tension plate strain εP measured at mid-span is used to estimate
the plate force FP . The tension plate forces according to the

(c)
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Fig. 6. Typical beam static failure modes.

5. Test results and comparisons

5.1. Failure loads and modes

The measured test results and failure modes for the 18
beams are summarised in Table 3. The beams were designed
with the intention that all possible failure modes (except for
compression plate yield or buckling and compression concrete
crushing) would occur, and that failure would occur at a load
within the capacity of the jacks (200 t).

Fig. 6 illustrates four elementary modes of failure observed
in the test beams. Tests were continued beyond maximum
load Pu , until collapse was apparent from bar or concrete
failure. Bar–plate connection failure modes are shown in Fig. 7.

After the concrete was removed, the failed beam showed a
combination of some of these elementary modes of failure.
Plate rupture did not occur, but very high plate strains led to
concrete and/or bar failure; that has been designated “tension
plate failure”. In some cases, due to excessive strain a strain
gauge ceased to function before the maximum load was
reached, and the strain given in the table is the last measurement
taken before the gauge failure.

5.2. Plate forces

In terms of the stress/strain curve for the material, the
tension plate strain εP measured at mid-span is used to estimate
the plate force FP . The tension plate forces according to the

(d)

Figure 2.6: Typical failure modes of Bi-Steel sandwich beams subjected to static
load conditions (a) a tension plate failure, (b) a bar tension failure, (c) a concrete shear
failure, and (d) a bar shear failure [12, see the original photographs in Fig. 6, Page 741]

accurate in the force of the compression face plate than the equivalent steel beam model.

However, Foundoukos and Chapman [15] noted that the truss model may be used as an

analytical method because it was conservative. Further investigation of the transverse

shear capacity of the Bi-Steel beams was also carried out using the FE method.

Moving from the UK to Singapore, the research of the alternative SCS sandwich beams

has been carried out mainly at the National University of Singapore. Most research

was of the alternative SCS sandwich beams with the novel J-hook connectors and the

lightweight concrete core [2–6, 9, 10]. The research objective was to investigate the

structural behaviour of these innovative SCS sandwich beams, especially their fatigue

performance [6, 9] and their structural behaviour under impact loading [3, 5].

To the current knowledge of the author, the previous research may be summarised in

tabular form as presented in Table 2.1.

2.3 Identification of Gaps in the Current Knowledge

The need for high performance sandwich structures, especially of stiffness and strength,

is increasing. This specific requirement leads to the improvement of design and con-

struction of the sandwich structures. To deliver such sandwich structures, engineers can

either adapt an existing or introduce a new production/construction method.

In the structural core sandwich construction, the corrugated core sandwich structures

are the obvious examples of the variety of designs; the cores of these sandwich structures

can be designed in various patterns, as shown in Fig. 2.7. The conventional corrugated

core sandwich structure as shown in Fig. 2.7(a) is theoretically strong in the x-direction,
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but less strong in the y-direction [31]. However, the weak point of this simple arrange-

ment can be improved by arranging the corrugated core in both the x- and y-directions

[33], as shown in Fig. 2.7(b). Moreover, the corrugated core can also be constructed

with corrugated-strip plates such as the offset-corrugated core [35], the bi-directionally

corrugated core [16], and the cross-corrugated core [17], as shown in Figs. 2.7(c), 2.7(d),

and 2.7(e), respectively. These cores consist of a series of corrugated-strip plates which

are arranged in either uni- or bi-directional format. The stiffness of these alternative

corrugated sandwich plates can be controlled in both the x- and y-directions. It was

found by Ray [18] that the transverse shear stiffness per unit weight density of the

offset-corrugated core was 96% higher than that of the conventional corrugated core.

The cross-corrugated core was also more efficient in transverse shear stiffness than the

conventional corrugated core; its shear stiffness was 173% higher [18].

x

y

z

(a) (b)

(c) (d) (e)

Figure 2.7: Sketches of (a) conventional one-way, (b) two-way [33], (c) offset- [35],
(d) bi-directional [16], and (e) cross- [17] corrugated core sandwich construction

The innovative design and construction is also found in the SCS sandwich construction.

The major innovation is to introduce a new shear connector type. However, it may be

seen that all the current shear connector types are similar in an alignment pattern. They

all align in the vertical direction – the axis of the shear connector is normal to the face

plates. Although the consequential improvement is probably a better produce ability or

constructability, the stiffness and strength of the recent SCS sandwich structures may

probably not reach the optimum performance, especially of the transverse shear stiffness

and strength.

In the SCS sandwich construction, it is well known that the shear connector has to act

as a mechanical part to maintain the composite action between the steel face plates and

the concrete core; it has to prevent the horizontal slip and the vertical separation of the

concrete core from the steel face plates [1]. These major functions are similar to those

of the shear connector of steel-concrete composite construction [78, 79].
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In the steel-concrete composite construction, however, it is known that the type of the

shear connector depends on the type of load. Therefore, there are various shear connector

types used in this composite construction, for example, as shown in Figs. 2.8(a) to 2.8(e).

A single-ended friction-welded stud connector is very popular for general load conditions

due to its economy and product ability [1, 80]. This shear connector with typical size

of 19 to 22 mm diameter has been widely used in most steel-concrete composite bridges

for over 40 years [81]. In the case of greater shear stress requirements, however, another

suitable type of the shear connector may be a larger stud connector, a bar connector, or

a perforated plate connector. The use of large stud connector with extra size of 30 mm

diameter may be found in Shim et al. [82] and Lee et al. [83]. In the case of high tensile

stress requirements, a long stud or a hoop connector may be used [78].

The special design of the shear connector is also found in another similar composite

construction. In timber wood-lightweight concrete composite construction, a 45◦-angle

screw connector, as shown in Fig. 2.8(f), was found as an effective shear connector [84].

This is because the inclined screw will be primarily loaded in tension instead of shear.

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Sketches of (a) single-ended friction-welded stud, (b) Perfobond, (c) bar
with hoop, (d) channel, (e) T-shaped shear connectors used in steel-concrete composite
construction [78, 85], and (f) inclined screw shear connectors used in timber-concrete

composite construction [84]

Moving back to the SCS sandwich construction, it is also known that a concrete-filled

SCS sandwich beam under bending load suffers diagonal shear cracks [4, 11–15]. The

diagonal shear crack is one of the typical failure modes of the SCS sandwich beams,

as previously shown in Fig 2.6. Although the concrete shear failure is not the primary

mode of failure, it typically occurs in combination with another failure mode. Xie et al.

[12] recommended that it should be prevented so that the SCS sandwich beam primarily

fails due to the tension plate failure to ensure that the ductility behaviour of the SCS

sandwich beam can be achieved.
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Providing some kind of transverse shear reinforcements is the way to overcome the

diagonal shear crack failure. This method is able to prevent crack propagation and to

increase the strength and the ductility of beams. The concept of providing transverse

shear reinforcements is generally found in conventional RC beams [86, 87]; it is also

found in the SCS sandwich beams [50]. In addition to maintaining the composite action

between the steel face plates and the concrete core, the shear connectors within the SCS

sandwich beam also act as transverse shear reinforcements.

In the conventional RC beams, there is much evidence and research supporting the

concept of using the transverse shear reinforcements to increase the shear strength of

the beams. The transverse shear reinforcements such as a vertical stirrup7, an inclined

stirrup, a 45◦ bent-up bar and a steel plate have been used for many years. Recently, a

carbon-fibre reinforced plastic (CFRP) sheet can also be found as the transverse shear

reinforcements. These mentioned systems can be designed in either a vertical alignment

pattern or an inclined alignment pattern.

The vertical stirrup is very popular in the RC construction because of the ease of use.

The inclined stirrup and the bent-up bar are occasionally used due to the difficulty in

construction process. However, all of them are practically found as the solutions for

shear design of RC beams [87]. For the steel plate system, the experimental study by

Adhikary and Mutsuyoshi [88] showed that the brittle diagonal shear failure mode of

the RC beams was effectively prevented by the transverse shear reinforcements. The

failure mode of the beams also changed from the brittle diagonal shear crack to the

ductile flexural failure mode. The shear strength of the beams with the epoxy bonded

steel plates was increased by 72% compared with the beam without the transverse shear

reinforcements. The experimental study of the CFRP-strip shear reinforcements aligned

in 45◦ angle to the neutral axis of the concrete beams also showed that the shear strength

was increased by approximately 300% [89].

By comparison, the inclined shear reinforcements are considerably more advantageous

than the vertical shear reinforcements. In RC design practices, the inclined stirrup and

the bent-up bar are considerably more efficient than the vertical one [87]. The experi-

mental studies of the CFRP and other similar materials also showed that the inclined

strip shear reinforcements were more advantageous in the transverse shear strength of

the beam than the vertical one [90–93]. Based on the experimental investigation of the

CFRP-strip shear reinforcements, Taljsten [94] recommended that the direction of the

shear reinforcement strips should be perpendicularly aligned to the diagonal shear crack

line to achieve the most effective performance of the shear reinforcements.
7 Stirrup – a close loop or an opened loop of bent rod in, for example, circular shape, rectangular

shape, U shape and W shape for supporting longitudinal reinforcing bars in reinforced concrete structures
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It may be seen from some engineering practices and research of the RC beams, for

example in [93–108], that the shear strength contributed by the transverse shear re-

inforcements significantly depends on the alignment angle of the shear reinforcements.

Most of the formulae provided by these references approximately yield the optimum

point of the shear strength capacity of the shear reinforcements when they are perpen-

dicularly aligned to the diagonal shear crack line. In the opinion of the author, this may

also be alleviated using the inclined shear connectors in the SCS sandwich construction.

Although the SCS sandwich beam and the RC beam are similar in their structural

components, as comparably illustrated in Fig. 2.9, it can be seen that the current design

of the shear connectors of the SCS sandwich beam is limited to the vertical alignment

pattern only, as compared in Table 2.2. Therefore, it may imply that the applications of

the inclined shear connectors – the inclined transverse shear reinforcements – may not

be now clearly understood. In the author’s opinion, it should be further researched and

developed to achieve the possible advantage of this alternative engineering solution.

Steel Reinforcement

Steel Face Plate

Concrete

Shear Connector

Shear Reinforcement

Figure 2.9: A comparison between a steel-concrete-steel sandwich beam and a rein-
forced concrete beam

Table 2.2: A comparison in alignment patterns of transverse shear reinforcement sys-
tems between reinforced concrete (RC) beams and steel-concrete-steel (SCS) sandwich

beams

Alignment Transverse Shear Reinforcement System
Pattern RC Beam SCS Beam

S a BB b SP c SC d BFWC e AC f

Vertical 109, 110 88, 90–92, 108,
111–113

11, 13, 55–60,
62, 64, 66, 67,
69, 71

1, 12, 14, 15,
51, 60, 61, 63–
65, 70, 72–75

2, 3, 62

Inclined 110 88–92, 112–114 There is no current engineering application
using inclined shear connectors.

a S – Stirrup
b BB – Bent-up Bar
c SP – Strip Plate (made of steel or fibre-reinforced polymer (FRP) material)
d SC – Stud Connector
e BFWC – Both-end Fiction Welded Connector
f AC – Alternative Connector

However, it can be clearly seen from column θc of Table 2.1 that the study of the effect

of the inclined shear connectors to the structural behaviour of the SCS sandwich beam
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is missing. This is due to only the vertical shear connectors being used in the state-

of-the-art SCS sandwich construction. The innovative SCS sandwich structure with

the inclined shear connectors and the understanding of its structural behaviour should

dominate and contribute to the current engineering knowledge of the SCS sandwich

construction, both of the unfilled and concrete-filled types.

2.4 Concluding Remark

The literature demonstrates the variety of the design and construction of the sandwich

structures and presents the possibility to invent a new type of sandwich construction.

In the SCS sandwich construction, the major development is to introduce the new shear

connector type; the development trend is from the single-ended friction-welded shear

stud connector to the both-ended friction-welded shear stud connector to the innovative J

hook connector. It can be seen from the existing forms of the SCS sandwich construction

that, however, all shear connector types recently used are aligned in the same pattern,

i.e., in the perpendicular direction to the steel face plates.

According to the literature, it is known that the concrete-filled SCS sandwich beams

may suffer the diagonal shear crack of the concrete core. Although the existing shear

connectors can be incorporated to overcome this problem, they may probably not provide

the optimum strength capacity. In similar construction such as the RC beams, there is

evidence to support the theory that the inclined shear reinforcements are more effective

in terms of strength capacity than the vertical shear reinforcements. Some evidence in

the steel-concrete and timber-wood composite construction also mention the use of the

shear connector corresponding to load conditions.

Therefore, in the SCS sandwich beams, aligning the shear connector in the angular

direction could be an advantage. However, there is no current design and construction

of the SCS sandwich beams with the inclined shear connectors. This may imply that the

understanding of the structural behaviour due to the inclined shear connector is missing

from the current knowledge of the SCS sandwich construction, both in the unfilled and

concrete-filled types.





Chapter 3

Design and Construction of a

Steel-Concrete-Steel Sandwich

Beam with Bi-Directional

Corrugated-Strip Core

3.1 Construction Process

Practically, the construction process of steel-concrete-steel (SCS) sandwich structure is

as diagrammatically illustrated in Fig. 3.1. The process starts from connecting prefab-

ricated steel plates and shear connectors by, for example, a welding method [4, 5, 50].

This process can be either off- or on-site; it can also be done using either portable

man-operated tools [4, 5] or large computer-operated machines [50]. An unfilled SCS

sandwich panel is created and will function as concrete formwork. At this stage, ad-

ditional temporary supports may be needed to control distance between the top and

bottom face plates. After firmly placed, the slurry-state concrete will be poured into

the void of the unfilled SCS sandwich panel, and then be cured until the concrete sets

to a solid state.

Since a concrete pouring technique may follow a qualified procedure of concrete construc-

tions or other existing SCS sandwich constructions, for example in [50], this research

therefore aims to develop the construction process of the unfilled SCS sandwich structure

only.

29



Chapter 3. Design and Construction of a Steel-Concrete-Steel Sandwich Beam ... 30

Connecting Process Unfilled SCS Pouring Process Curing Process Concrete-Filled SCS

Steel Plates Concrete

Shear Connectors Temporary Connectors

if required

Figure 3.1: Construction process of steel-concrete-steel sandwich construction

3.2 Configuration of an Unfilled Sandwich Beam

Figure 3.2 shows the unfilled stage of an SCS sandwich beam with bi-directional corrugated-

strip core (Bi-CSC) system. The main components of this proposed sandwich structure

are the steel face plates and the corrugated-strip plate. The corrugated-strip plate may

be either a single-unit or a continuous-multi-unit of corrugation. The Bi-CSC system

consists of a group of corrugated-strip plates which are aligned in both the x- and y-

directions. The Bi-CSC system then functions as the structural sandwich core for the

unfilled stage and later as the shear connector for the concrete-filled stage.

x y

z

2sc

2fc

fc fc

hc

tc

x

y

z

top face plate

bottom face plate

transverse corrugated-strip plate

longitudinal corrugated-strip plate

(a)

sc sc

d

x y

z
Top Face Plate
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(b)

gty
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sy
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hc
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d

θ
x y

z

(c)

Figure 3.2: Configurations of unfilled steel-concrete-steel sandwich beam with bi-
directional corrugated-strip core (a) an isometric view, (b) a longitudinal view, and (c)

a repetitive unit cell

The dimensional geometry of the sandwich beam is defined by five conventional param-

eters: thickness of the top face plate, tt, thickness of the bottom face plate, tb, depth of

the sandwich core, hc, width of the beam, b, and length of the beam, L. The geometry
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of a repetitive unit of corrugated-strip plate is defined by five parameters: width of the

strip plate, bc, thickness of the plate, tc, horizontal length of the corrugation unit, sc,

length of the flat leg, fc, and height of the corrugation, hc. The corrugated-strip plates

are preferably arranged with equal spacing sc in both the x- and y-directions. However,

it is not necessary to use the same configuration in both directions, as shown in Fig. 3.3.

If applicable, the subscript tc is used to denote any geometric parameter of transverse

corrugated-strip plate, i.e., in the x-direction.

(a) (b)

Figure 3.3: A comparison of the configuration of an unfilled steel-concrete-steel sand-
wich beam with bi-directional corrugated-strip core between the x- and y-directions (a)
the same configuration in both the x- and y-directions, and (b) the different configura-

tion between the x- and y-directions

The width of the corrugated-strip plate can be expressed in terms of the width of

the sandwich beam as bc = kcbb where kcb is defined as a coefficient of width of the

corrugated-strip plate. Practically, the coefficient kcb can vary in the range of 0.0 to

0.50. Figure 3.4 demonstrates four configurations of corrugated-strip core depended on

the coefficient kcb. The possible configurations should probably lie between Fig. 3.4(b)

and 3.4(c).

kcb = 0
(a)

0 < kcb < 0.50
(b)

kcb = 0.50
(c)

kcb > 0.50
(d)

Figure 3.4: Configurations of corrugated-strip plate in terms of the width coefficient,
kcb

Each corrugation unit of the corrugated-strip plate consists of two inclined parts. These

parts align at angle θ with the y-axis – the longitudinal axis of sandwich beam. The

parameter θ can be expressed in terms of previously defined parameters as Eq. 3.1

1
tan θ

=
sc − 2fc
hc − tc

=
sy
d

(3.1)

Instead of the parameter θ, the angle of the inclined part of the corrugation unit can be

indirectly expressed in terms of parameter sy/d. Here, sy is the horizontal projection
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of the extended local neutral axis of the inclined part of the corrugated-strip plate (see

Fig. 3.2(c)); it is equal to sc − (gty + gby). The parameter gty is the horizontal distance

between the intersection point of the local neutral axis of the top face plate and the

extended local neutral axis of the transverse corrugated-strip plate and the intersection

point of the local neutral axis of the top face plate and the extended local neutral axis

of the longitudinal corrugated-strip plate. Similarly, gby is defined in the same manner

where the local neutral axis of the top face plate is replaced by the local neutral axis

of the bottom face plate. The parameters gty and gby can be expressed in terms of

previously defined parameters as Eq. 3.2. In practice, gty and gby do not need to be

equal to each other except the case of a symmetrically geometric section, i.e., tt = tb.

gty = fc −
tt + tc
2 tan θ

(3.2a)

gby = fc −
tb + tc
2 tan θ

(3.2b)

It should be noted that the value of gty or gby may be less than zero if fc < tt+tc
2 tan θ or

fc <
tb+tc
2 tan θ , respectively. In this research, however, the value of gty and gby are limited

to being not less than zero; therefore, the core should be designed so that the following

condition is satisfied.

fc ≥


sc
2

(
tt+tc
tt+hc

)
for gty

sc
2

(
tb+tc
tb+hc

)
for gby

(3.3)

Figure 3.5 demonstrates four major configurations of corrugated-strip core which depend

on the parameter sy/d. Creating a configuration where the inclined part is normal to

the face plates can be achieved by setting sy/d to zero (Fig. 3.5(a)). An angled inclined

part can be achieved by three possible values of sy/d. If sy/d is less than 1.0, the angle

will be greater than 45◦ (Fig. 3.5(b)). The specific inclined angle at 45◦ can be achieved

by setting sy/d to 1.0 (Fig. 3.5(c)). If sy/d is greater than 1.0, the angle will be less

than 45◦ (Fig. 3.5(d)).

90◦

sy/d = 0
(a)

> 45◦

0 < sy/d < 1
(b)

45◦

sy/d = 1
(c)

< 45◦

sy/d > 1
(d)

Figure 3.5: Configurations of corrugated-strip plate in terms of the ratio sy/d
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3.3 Fabrication Techniques

Conceptually, the novel unfilled SCS sandwich structure with the Bi-CSC system pro-

posed in this research can be fabricated and assembled. This is because the compo-

nents of the unfilled stage, i.e., the steel face plate and the corrugated-strip plate, are

similar to existing engineering applications. In addition, the similar techniques to ar-

range the corrugated-strip plates in the bi-directional format, i.e., in both the x- and

y-directions and to assembly them with the steel face plates have been found in the

existing corrugated-core sandwich construction [16, 17] as earlier shown in Figs. 2.7(d)

and 2.7(e).

Figure 3.6 illustrates the conceptual fabrication process proposed by the author. First,

the longitudinal CSCs may be placed on the bottom face plate and firmly fixed to the

plate (Fig. 3.6(a)). Second, the transverse CSCs, if required, may be moved downward

and slid into the holes of the longitudinal CSCs (Fig. 3.6(b)). It may also be firmly fixed

to the plate. Then, the top face plate may be placed on and fixed to both the longitudinal

and transverse CSCs (Fig. 3.6(c)). In the author’s opinion, there is a possibility to bond

the bottom and top face plates to the flat legs of corrugated-strip plates as instructed by

Ray [16, 17]. Moreover, the face plates and the flat legs of the core may be mechanical

connected using spot welds, rivets, or self-tapping screws [38]. They may also be welded

from outside the sandwich face plates using laser-welding technology [39]. As a result,

the top and bottom face plates should be fixed to the core. An SCS sandwich plate may

be later assembled from sandwich beam modules. Then, concrete can be poured into

the unfilled core (Fig. 3.6(d)).

(a) (b) (c) (d)

Figure 3.6: Conceptual construction process of a steel-concrete-steel sandwich struc-
ture with bi-directional corrugated-strip core

In detail, there are two possible methods to set a group of corrugated-strip plates out

in the bi-directional format: the top-down method (TDM) and the slide-rotate method

(SRM).

First, the overview of the TDM is illustrated in Fig. 3.7. After firmly placing the

longitudinal corrugated-strip plates, the first transverse corrugated-strip plate should

be moved downward from the top of the bottom plate (Fig. 3.7(a)). When the lower
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leg of such part is below the top of the longitudinal corrugated-strip plate, as marked

(1), the whole part of this corrugated-strip plate should be rotated and slid leftward

to the hole, as marked (2) (Fig. 3.7(b)). Then, it should be slowly moved downward

and rotated until the other leg of this part is below the top of the other longitudinal

corrugated-strip plate, as marked (3). Afterward, this part should be moved downward

and slid rightward to the other hole, as marked (4) (Fig. 3.7(c)). Then, it should be

moved downward, placed on the bottom plate, and firmly fixed to the bottom plate.

The next transverse corrugated-strip plate should be placed on, one by one, in the same

process (Fig. 3.7(d)).

1
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1
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Figure 3.7: The top-down method

Second, the overview of the SRM is illustrated in Fig. 3.8. After firmly placing the

longitudinal corrugated-strip plates, the first transverse corrugated-strip plate should

be slid throughout the hexagonal holes of the longitudinal corrugated-strip plates from

one side of the bottom plate to the other (Fig. 3.8(a)). Before sliding, the transverse

corrugated-strip plate should be aligned so that its longitudinal axis, i.e., the y-axis,

and the straight line which passes through all centre points of the holes are coincident.

The transverse corrugated-strip plate should be slowly rotated after it reaches position

(Fig. 3.8(b)), and then placed on and firmly fixed to the bottom plate (Fig. 3.8(c)).

The next transverse corrugated-strip plate should be placed on, one by one, in the same

process (Fig. 3.8(d)).

In the SRM, there are two possible planes to insert and slide the transverse corrugated-

strip plate throughout the hexagonal holes of the longitudinal corrugated-strip plates

without collision; they are clearly illustrated in Fig. 3.9. According to the clear distance
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(a) (b)

(c) (d)

Figure 3.8: The slide-rotate method

(a)

φ

ψ

ξ

(b)

Figure 3.9: Possible planes to insert and slide a transverse corrugated-strip plate
through a hexagonal hole (a) the alternative A, and (b) the alternative B

of the hexagonal hole on these inserting planes, the width of corrugated-strip plate bc
is limited to not greater than the minimum value of Eq. 3.4a or 3.4b, for alternative

inserting plane A or B, respectively.

bc ≤


(
sc − hc − tc

sin θ

)
tan θ

hc − 2tc
(3.4a)

bc ≤

(2ld − hc) tanψ

(2ld − hc) tan ξ
(3.4b)
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where

ld =

√(
hc
2
− tc

)2

+
(
fc −

tc
2

tan
θ

2

)2

ψ = 90− φ

ξ = 90− (θ − φ)

φ = arctan

(
fc − tc

2 tan θ
2

hc
2 − tc

)

It should be noted that any limitation presented in this thesis is limited to conceptu-

ally designing proposes only. In industrial practice, further investigation of technical

limitations and production cost should be carried out.

3.4 Applications

The potential use of the innovative unfilled SCS sandwich structure is possibly to sub-

stitute any conventional orthotropic stiffened steel panel which has less transverse shear

strength in the y-direction. This innovative structural topology may be used as any sand-

wich deck panel/plate for ship building, offshore, and railway applications. Moreover, it

may be used as any two-way floor slab for building applications.

In addition to the innovative unfilled SCS sandwich structure, the innovative concrete-

filled SCS sandwich structure could also possibly substitute any current applications

of Bi-Steel sandwich structures in which a relatively high transverse shear strength is

required, for example, a relatively deep and short beam, or a beam subjected to relatively

high concentrated load.

These potentials are presented in Chapters 4 and 5 in which an equivalent unfilled

web-core topology is conceptually compared to the innovative unfilled SCS topology

representing a comparison with more traditional stiffened structure. In Chapter 8, the

equivalent concrete filled Bi-Steel, i.e., 90◦ inclined shear connectors, is compared to the

innovative concrete-filled SCS topology.

3.5 Concluding Remark

The novel SCS sandwich structure with Bi-CSC system is proposed. The configuration

of unfilled stage is the major innovative part of this proposed sandwich structure. It

consists of two conventional steel face plates and a group of corrugated-strip plates. The
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innovative CSC core acts as an additional bracing member of the unfilled stage and later

as an inclined shear connector of the concrete-filled stage of this proposed SCS sandwich

structure.

The novel design and development is to set a group of corrugated-strip plates out in

a bi-directional format and to connect the sandwich face plate and core together. It

was seen that there is a possibility to fabricate and construct this proposed sandwich

structure. The existing construction technique of special corrugated core sandwich plate

[16, 17] may be adapted to this proposed structure. In addition, there are two possible

methods to creat Bi-CSC system, i.e., the TDM and the SRM, originally presented in

this research.





Chapter 4

Numerical Study of the Stiffness

and Strength of an Unfilled

Sandwich Beam

4.1 Background

In the absence of experimental data to assess the performance of the new design concept

of the steel-concrete-steel (SCS) sandwich construction, a finite element (FE) approach

can be used. Provided appropriate steps are taken to provide confidence in the results

obtained. The literature can show that an appropriate FE approach can provide reliable

results compared with experimental testing [37, 115]. Due to the cost of manufacture

of experimental test specimens, an FE approach can often be considered a cost effective

alternative provided validation of the model’s accuracy is assessed.

A few numerical studies using the FE modelling approach have been carried out as an

alternative method to investigate the stiffness and strength of the sandwich beam, for

example, Romanoff et al. [37, 115] used an FE approach to understand the stiffness and

strength behaviour of unfilled web core sandwich beams. Cheng et al. [116] and Zangani

et al. [117] also used the FE approach to deduce the stiffness of corrugated-like core

sandwich beams. Other FE studies of truss-like core sandwich beams can be found, for

example, in [20, 118].

To evaluate the stiffness and strength of the proposed bi-directional corrugated-strip

core (Bi-CSC) sandwich beam, a numerical study based on the FE approach is used

here along with the force-distortion relationship approach of a three-point loaded beam

[117, 119] and of a repetitive unit cell [19, 20, 120]. While the FE approach itself can

39
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represent the stress and deformation of a sandwich beam, the stiffness of the beam needs

to be calculated from the relationship of applied force and distortion of a beam and of

a unit cell.

For a three-point loaded beam, the stiffness of a sandwich beam can be deduced from

a relationship between applied load and corresponding displacement at the midspan of

the beam, as shown in Fig. 4.1(a). The relationship between the applied force, P , and

the total deflection at midspan of beam, ∆z, – the combination of the bending and

shear deflections – can be expressed as Eq. 4.1a. This expression provides the basis for

determination of the flexural stiffness Dy from plotting ∆z/PL
3 and 1/L2, where L is

the length of the beam, from a series of required data P , ∆z and L in which Dy can be

yielded from the approximate interception point on the ∆z/PL
3 axis [119] (see Eq. 4.1b

and Fig. 4.1(b)). Similarly, this expression also provides the basis for determination

of the shear stiffness DQy from plotting ∆z/PL and L2 in which DQy can be yielded

from the approximate interception point on the ∆z/PL axis [119] (see Eq. 4.1c and

Fig. 4.1(c)).

∆z =
PL3

48Dy
+

PL

4DQy
(4.1a)

∆z

PL3
=

1
48Dy

+
1

4DQyL2
(4.1b)

∆z

PL
=

L2

48Dy
+

1
4DQy

(4.1c)

P
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L/2 L/2

x y

z

(a)

1
L2

∆z
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1
48D

(b)

L2

∆z
PL

1
4DQ

(c)

Figure 4.1: Formulation of the stiffness of a sandwich beam using the three-point
loaded beam approach (a) a three-point loaded beam, (b) plot for evaluation of flexural

stiffness, Dy, and (c) plot for evaluation of transverse shear stiffness, DQy



Chapter 4. Numerical Study of ... an Unfilled Sandwich Beam 41

The transverse shear stiffness of a sandwich beam can also be calculated from its repet-

itive unit cell if the relationship between an effort shear force and a corresponding

displacement is known. The unit cell approach has been used as a simplified tool to

deduce the transverse shear stiffness, DQy, of a corrugated-like core sandwich beam (in

the y-direction), for example, in [19, 20]. This unit cell approach can be used to reduce

the complexity of the FE model of a sandwich beam; it can also reduce computation

time.

Figure 4.2(a) shows a two-dimensional (2D) simplified repetitive unit cell cut from a

sandwich beam. The unit cell is subjected to a transverse shear force, Qy, and a couple

of horizontal force, H = Qysc/d, where sc is the half pitch of the corrugation unit of

corrugated-strip plate or the length of the unit cell, and d is the distance between the

neutral axes of top and bottom face plates, to maintain the static equilibrium [120].

Under this configuration, it can be seen that the unit cell is a symmetrical structure

subjected to anti-symmetrical loading. Therefore, the unit cell can be further reduced

into one-half of the structure with the supplementary boundary conditions at the plane

of symmetry [121, 122]. Applying the symmetrical technique, the one-half unit cell, as

shown in Fig. 4.2(b), is fixed at point 1 to eliminate the rigid-body movement of the

unit cell and point 5 is not able to move in the z-direction. The relative displacements,

e.g., δ4
y , δ

8
y and δ4

z of this structure, as shown in Fig. 4.2(c), can be calculated using an

FE method.
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Figure 4.2: Formulation of the transverse shear stiffness of a sandwich beam using
the unit cell approach (a) a unit cell subjected to transverse shear force, (b) a one-half

unit cell, and (c) the deformed shape of a one-half unit cell

Introducing the force-distortion relationship technique and the assumption that the core

is so sufficiently stiff in the vertical direction that the depth of the core is always constant

[20, 120], the transverse shear stiffness, DQy, of the unit cell can be expressed as follows

[19, 20, 120]:

DQy =
Qy

δ4
y+δ8

y

d + δ4
z
sc

(4.2)



Chapter 4. Numerical Study of ... an Unfilled Sandwich Beam 42

The assumption that the depth of the core is always constant means that the displace-

ments in the z-direction of both the top and bottom face plates at the same position in

the y-direction are equal. This assumption had been applied in combination with the

small displacement assumption in the derivation of the transverse shear stiffness, DQy,

of a corrugated core sandwich beam [120] and of a truss core sandwich beam [20]. It

is also applied in this research because of the current study is also limited to the small

displacement response of the beams.

4.2 Finite Element Modelling Approach

4.2.1 General Criteria

The numerical study of the stiffness and strength of an unfilled sandwich beam was

carried out using the FE software ANSYS Release 11.0 [123]. The ANSYS software was

run under the operating software Microsoft Windows XP Professional Version 2002. The

hardware condition was a desktop computer with Intel R© CoreTM2 CPU 6600 @ 2.40

GHz and 1.98 GB of RAM.

The analysis method was static mode with a simplified bi-linear stress-strain behaviour

of steel (see Sec. 4.2.2). The unfilled sandwich beam was modelled in 3D geometry along

with the solid elements (see Sec. 4.2.3). Two major models: 3D FE models of an unfilled

sandwich beam (see Sec. 4.2.4) and of an unfilled unit cell (see Sec. 4.2.5) were studied.

The former was studied to understand its stiffness and strength behaviour. The latter

was analysed to deduce the transverse shear stiffness, DQy. The topologies of the core

varied from truss-like core to bi-directional CSC topologies. The reliability of the FE

results was achieved by checking the convergence of the FE solution with varying mesh

size from 1 mm to 4 mm. It was found that the typical 2 mm mesh size may be used

in this chapter to obtain a possible accurate result with optimum computation time.

It can be seen from Fig. 4.3, which presents the transverse shear stiffness, DQy, of the

unfilled truss core unit cell, that the percentage difference between the 1 mm mesh size

and the 2 mm mesh size is about 1%. The FE results obtained from the model with

the typical 2 mm mesh size were also later validated with the existing solution of the

web and truss core sandwich beams provided by Romanoff et al. [37, 115] and Lok et al.

[19, 20], respectively (see Sec. 4.3). It was found that the presented FE models with the

typical 2 mm mesh size provided good correlation with these references.
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Figure 4.3: A convergence study of finite element model: an example of unfilled unit
cells

4.2.2 Material Properties of Steel

The components of the unfilled sandwich beam are made of steel. Although the stress-

strain relationship of steel is not truly linear as shown in Fig. 4.4(a), the simplified stress-

strain relationship curve may be used for modelling the property of steel. In addition,

its compression behaviour can also be reliably the same as the tension behaviour [71,

124, 125].

The simplified curve may be constructed from a tri-linear line [15, 125] or from a bi-linear

line [71, 124, 125]. In this chapter, the bi-linear stress-strain relationship, as shown in

Fig. 4.4(b), was used to present the perfectly elastic-plastic material property model

of the steel [71, 124]. The compression behaviour was assumed to be the same as the

tension behaviour. The first linear line is used to present the linear elastic behaviour,

as expressed by Eq. 4.3a, from zero up to the yield stress, fy, of the steel. The second

linear line, as expressed by Eq. 4.3b, is used to present the perfectly plastic behaviour of

the steel beyond its yield stress, fy. Beyond the proportional elastic limit, the strain, ε,

continually increases without any increase in the stress, σ, from the proportional strain,

εy, to the strain-hardening strain, εst. This phenomenon is known as the plasticity

behaviour of the steel. The strain εst may be approximately ten to fifteen times the

strain εy [126].

Here, the modulus of elasticity, Es, and the yield stress, fy, were defined as of 206,000

N/mm2 and of 355 N/mm2, respectively, as presented in Table 4.1. As a result, the

strain at yield stress, εy, was equal to 0.0017. The modulus of elasticity, Es, of 206,000

N/mm2 was equal to that used in the FE analysis of web core sandwich beams by

Romanoff et al. [37, 115]; therefore, the FE result of this research can be validated with
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Romanoff et al.’s solutions [37, 115].

fs = Esεs (4.3a)

fs = fy (4.3b)

Table 4.1 summaries the physical properties of steel material used in this chapter.

Table 4.1: Physical properties of the steel

Property Notation Value Unit Remark

Yield Stress fy 355 N/mm2 BS EN10025 1993 Grade S355J2G3
Material for general applications [50]

Modulus of Elasticity Es 206,000 N/mm2 [115]
Poisson’s Ratio νs 0.30 - [15, 50]

In the ANSYS software, three material properties of the steel are required for definition.

The first two fundamental properties, i.e., the modulus of elasticity, Es, and Poisson’s

ratio, νs, are defined using the MP command [123]. The last property is the tensile uni-

axial stress-strain relationship of the steel. It is defined using the TB command with the

BISO option. The BISO option is used to specify the steel material model as bi-linear

isotropic hardening. The steel material behaviour is illustrated by the bi-linear stress-

strain curve starting at the origin with positive stress and strain values. The initial slope

of the curve is taken as the modulus of elastic, Es, of the steel. Beyond the yield stress,

fy, the curve continues along the second slope defined by the other tangent modulus,

Est, [123]. In this chapter, the tangent modulus Est is set to zero. The stress-strain

data at each key point is then defined using the TBDATA command.

4.2.3 Element Type

To create a realistic 3D geometry, solid elements were used to model both the face plates

and the core. The SOLID45 element type in the ANSYS element library was used for

any part made of the steel. This element type was used to model the steel face plates by

Clubley et al. [72] in their numerical study of the shear strength behaviour of Bi-Steel

sandwich panels. Figure 4.5 shows the geometry of the SOLID45 element. The SOLID45

is a general purposed element for the 3D modelling of solid structures. The element is

an eight-node element having three degrees of freedom, i.e., translations in the nodal x-,

y-, and z-directions, at each node. The material property of the SOLID45 element is

defined in the isotropic condition. The element has plasticity, large deflection, and large

strain capabilities.
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Figure 4.5: Geometry of the SOLID45 element [modified from 123]

4.2.4 Modelling an Unfilled Sandwich Beam

4.2.4.1 Geometry

Although a 2D FE model may be used to reduce the complexity for modelling and the

computation time required for analysing, a 3D FE model was decided upon and analysed

in this chapter because of the out-of-plane arrangement of the corrugated-strip plates

in the proposed core topology. Due to a lack of experimental results for validation of

the model’s accuracy, a realistic 3D geometry would present more reliable results than

a simplified/equivalent 2D geometry.

A 3D FE model of an unfilled sandwich beam, as shown in Fig. 4.6(a), was modelled

and analysed to study the stiffness and strength behaviour of the sandwich beam. The

unfilled sandwich beam model consists of the top and bottom steel face plates and

a series of corrugated-strip plates. The connections between the face plates and core

elements are defined as fully rigid.

Although the sandwich beam can consist of infinite repetitive unit cells, the unfilled

sandwich beam studied in this chapter was limited to consist of two to eighteen unit cells.

This decision was made to ensure that the beam model can be run with the computer

hardware specified in Sec. 4.2.1. The length of beam was maintained to consist of n

corrugations of CSC, i.e., L = 2nsc.

Due to the symmetry of the structure, only a quarter of the complete unfilled sandwich

beam model, as shown in Fig. 4.6(b), is required for analysis. This is a substructure of

the complete symmetrical unfilled sandwich beam subjected to symmetrical load; it was

used to reduce the computation time.
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Figure 4.6: Geometry of (a) a three-point loaded unfilled sandwich beam with bi-
directional corrugated-strip core, and (b) its sub-structure

4.2.4.2 Boundary and Constraint Conditions

The conventional boundary conditions of the simply supported beam were set up at all

nodes along the lines 1-1’ and 2-2’. These nodes were not free to move in any directions,

i.e., δx = δy = δz = 0, to simulate the simple support at the end of the bottom and top

face plates. To satisfy the reduced symmetrical structure condition [121, 122], the nodes

on the xz-plane were free to move in the z-direction only, i.e. δx = δy = 0.

In order to reduce the local deformation effect beneath the loading line 5-5’, an additional

constraint boundary condition was set up. This restrained all nodes along the lines 3-

3’ and 4-4’ so that they all equally displace in the z-direction; it was used to perform

virtual stiffener beneath the loading line. Therefore, the depth of the sandwich core on

the xz-plane after deformation remained the same as that of the sandwich core before

deformation. Similar constant-depth conditions can be found in the support location in

which the displacements in the z-direction were restrained at both the top and bottom

face plates.
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It should be noted here that the conventional boundary conditions defined in this chapter

may be an idealised case. As a result, the validity of the numerical study in this chapter is

limited to the presented boundary conditions. In laboratory practice, the real supports

may locate below the bottom face plate only. Therefore, the numerical model may

need to re-modify to demonstrate the realised case so that the comparison between

the numerical and experimental studies can be carried out. Nevertheless, the support

condition used in this chapter is similar to one of the support conditions for the unfilled

Bi-Steel sandwich beam noted in Bi-Steel: Design & Construction Guide [50, Sec. 9.2.5

Effect of boundary conditions] and for the unfilled web core sandwich beams studied

by Romanoff et al. [37, 115]. It was used here to ensure that the core depth is always

maintained as constant at the support edges and it corresponded with Romanoff et al.’s

FE model [37, 115] which will be used to provide some validation of the present models

accuracy.

4.2.4.3 Loading Condition

To simulate a three-point loaded beam, a transverse force per unit width of sandwich

beam, P/b, was imposed along the line 5-5’ on the top face plate. According to the

reduced symmetrical structure condition, however, this load was divided by two. The

uniform load P/b was then proportionally distributed to the element nodes on the line

5-5’. For derivation of stiffness, a total unit load was applied.

4.2.4.4 Formulation of Flexural and Transverse Shear Stiffnesses

To deduce the flexural and transverse shear stiffnesses from the three-point loaded beam,

a series of required data (P , ∆z and L) were recorded from the FE beam model in which

the length of beam varied in terms of the number of corrugations, i.e., L = 2nsc where

2 ≤ n ≤ 18. The vertical displacement of node 4 was recorded as ∆z and then used to

plot with corresponding length L using the technique presented in Sec. 4.1.

4.2.5 Modelling an Unfilled Unit Cell

4.2.5.1 Geometry

Similar to the unfilled sandwich beam, a 3D model of the unfilled unit cell was created.

The 3D FE model of a repetitive unfilled unit cell, as shown in Fig. 4.7(a), was modelled

and analysed to deduce the transverse shear stiffness, DQy. The unfilled unit cell model



Chapter 4. Numerical Study of ... an Unfilled Sandwich Beam 49

also consisted of the steel face plates and steel core. The connections between the face

and core elements were also defined as fully rigid.

Due to the symmetry of the structure, only a quarter of the complete unfilled unit cell,

as shown in Fig. 4.7(b), is required for analysis. This is a substructure of a complete

unfilled unit cell subjected to anti-symmetrical load; it was also used to reduce the

computation time.
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Figure 4.7: Geometry of (a) an unfilled unit cell with bi-directional corrugated-strip
core, and (b) its sub-structure

4.2.5.2 Boundary and Constraint Conditions

To satisfy the conditions as mentioned in Sec. 4.1, two conventional boundary conditions

were set up. First, any nodes of the bottom face plate in the xz-plane was fixed in any

degree of freedom, i.e., δx = δy = δz = 0, to prevent space movement of the model.

Second, the remaining nodes on the xz-plane were free to move in the y-direction only

to satisfy the reduced anti-symmetrical structure condition [121, 122].

In order to maintain the constant-core-depth assumption, an additional constraint bound-

ary condition was applied. This restrained all nodes along the lines 4-4’ and 8-8’ so that

they all equally displace in the z-direction.

4.2.5.3 Loading Condition

A total unit transverse shear force per unit width of sandwich beam, Qy/b, was imposed

on the left plane of the unit cell. A distribution of this force between the top and bottom

face plates had been first randomly studied. According to this preliminary study, any

distribution ratios between the top and bottom face plates yielded the same output value.

Therefore, this study applied the total unit transverse shear force on line 8-8’, i.e., on

the top face plate, only. To maintain the static equilibrium, the unit cell also needs to be
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subjected to a horizontal force couple, Qysc/d, at both the top and bottom face plates

[120], i.e., along the lines 8-8’ and 4-4’, respectively. The uniform unit transverse shear

force was proportionally distributed to the element nodes. This routine procedure was

also applied for the horizontal force couple.

4.2.5.4 Formulation of Transverse Shear Stiffness

To deduce the transverse shear stiffness, DQy, from the unit cell, the horizontal and

vertical displacements of nodes 4 and 8 were recorded as δ4
y , δ

8
y and δ4

z , respectively.

These displacements were then used to calculate the stiffness DQy from Eq. 4.2 using

the technique presented in Sec. 4.1.

4.3 Validation of the Finite Element Models

To evaluate the reliability of the FE model presented by the author, the validation was

carried out against existing results. It was divided into two validation stages: (1) the

validation of the deflection and stress of the beam against the solution of the unfilled

web core sandwich beam provided by Romanoff and Varsta [37], and (2) the validation

of the transverse shear stiffness, DQy, of the beam model and of the unit cell model

against the solution of the unfilled truss core sandwich beam provided by Lok et al.

[19, 20].

For the first validation, four 3D FE models of web core sandwich beams were set up in

the same configuration as those of Romanoff and Varsta [37]; they were defined as case

A, B, C, and D1. However, the element types were different; rather than using the 3D

solid element, Romanoff and Varsta [37] used shell element type. The comparisons of

the maximum deflection at midspan, deformation shape of the beam, and the flexural

stress at the surface of the top face plate were carried out. These comparable values

were set according to the existing available data in the publication of Romanoff and

Varsta [37]. Table 4.2 presents the comparison of the maximum deflection obtained

from the presented FE model and from Romanoff and Varsta [37]. It can be seen that

the FE model presented by the author yields close results to the reference in most cases;

the percentage differences are less than 6%. The significant difference between both

models may be found only in case A where the percentage difference is about 9%. The

differences in each case may arise from the difference in element type. However, another

validation of the deformation shape of the beam, as shown in Fig. 4.8(a), shows that the

presented FE model is the same in development trend as Romanoff and Varsta [37]. The
1 see detail of the configurations A, B, C, and D in Romanoff and Varsta [37], Table 1, Page 484
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similar behaviour can also be found in comparison of the surface flexural stress of the

top face plate, as presented in Fig. 4.8(b); it can be seen that there are few differences

in numerical value from those of Romanoff and Varsta [37], Fig. 7, Page 485 and Fig. 9,

Page 486.

Table 4.2: Comparison of the maximum deflection of the unfilled web-core sand-
wich beams obtained from the presented finite element method and the Romanoff and

Varsta’s solution [37]

Configuration a A B C D
I1/4× 80/80 I4/4× 20/80 I3/4× 40/120 I5/1× 150/50

Romanoff and Varsta [37] −4.7030 −0.2325 −0.8985 −1.2890
Presented FE Method −4.3012 −0.2384 −0.9387 −1.3633
Percentage Difference −8.54% 2.52% 4.47% 5.76%
a see detail of the configurations A, B, C, and D in Romanoff and Varsta [37], Table 1,
Page 484 – the general notation used to identify the beams is Case ID I[tf ]/[tw] ×
[hc]/[sc], in mm unit

P P

sc sc

L/2 L/2

tw hc

tfx y

z

For the second validation, the FE models of the unfilled sandwich beam and of the

unfilled unit cell with a compatible truss core to that of Lok et al. [19, 20] were set

up. The sandwich cross section was symmetrical, i.e., both the top and bottom face

plates were identical in material and section properties. This section was selected due

to the analytical solution provided by Lok et al. [19, 20] was valid for only symmetrical

section. The material property of the steel was linear elastic. Poisson’s ratio effect was

not included. The configuration of the truss core was designed with non-dimensional

parameters. All configuration parameters were kept constant except for the sy/d ratio.

The transverse shear stiffness, DQy, obtained from the FE three-point loaded sandwich

beam model referred to as FE-TPB and from the FE unit cell model referred to as

FE-UC presented by the author were then compared with the solutions obtained from

the analytical method of Lok et al. [19, 20]. Figure 4.9 shows the comparison of the

transverse shear stiffness, DQy, obtained from the FE-TPB, the FE-UC, and Lok et al.

[19, 20]. It can be seen that the solutions obtained from the FE-UC are very close to

those of Lok et al. [19, 20] without any significant percentage differences. The percentage

differences of FE-UC solution compared with Lok et al.’s solution [19, 20] are less than

2% for most values of sy/d in the range of 0 ≤ sy/d ≤ 5.0. The value greater than 3%

can be found only at sy/d = 0.25 (see Table 4.3).
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For the validation of the FE-TPB, it can also be seen from Fig. 4.9 that the FE-TPB

gives the similar trend of the stiffness DQy to Lok et al. [19, 20]. Although the results

appear to diverge when sy/d > 1.0, both the curve lines seem to be continuingly parallel

with approximately 8% of difference (see Table 4.3).

It should be noted that the evaluation of the FE-TPB was limited in the range of

0 ≤ sy/d ≤ 2.0. This is because of the limitation of the computational processing unit

used in this chapter. Beyond the point of sy/d > 2.0, the FE-TPB needs to solve a huge

number of the FE equations. However, the range of 0 ≤ sy/d ≤ 2.0 is reasonable since

it covers the effective range of sy/d as previously found in the unit cell model using the

method of Lok et al. [19, 20] and the FE-UC method.
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Figure 4.9: Comparison of the transverse shear stiffness, DQy, of the unfilled truss
core sandwich beam obtained from the presented finite element methods (the FE-TPB

and the FE-UC) and Lok et al.’s method [19, 20]

Table 4.3: Comparison of the transverse shear stiffness, DQy, of unfilled truss core
sandwich beams obtained from the presented finite element methods (the FE-TPB and

the FE-UC) and the Lok et al.’s method [19, 20]

DQy

sy/d Lok et al. [19, 20] FE-TPB PD-L a FE-UC PD-L a PD-T b

0.00 0.0002 N/A N/A 0.0002 -2.35% N/A
0.25 0.0102 0.0107 5.60% 0.0099 -3.07% -8.21%
0.50 0.0201 0.0207 3.16% 0.0196 -2.37% -5.36%
0.75 0.0261 0.0273 4.49% 0.0257 -1.77% -5.99%
1.00 0.0292 0.0310 6.17% 0.0288 -1.33% -7.06%
1.25 0.0299 0.0317 6.26% 0.0295 -1.05% -6.88%
1.50 0.0289 0.0310 7.41% 0.0286 -0.90% -7.73%
1.75 0.0268 0.0290 7.90% 0.0266 -0.84% -8.10%
2.00 0.0243 0.0263 8.07% 0.0241 -0.86% -8.26%
3.00 0.0150 N/A N/A 0.0148 -1.29% N/A
4.00 0.0093 N/A N/A 0.0091 -1.62% N/A
5.00 0.0061 N/A N/A 0.0060 -1.82% N/A
a PD-L – Percentage Difference, compared with Lok et al. [19, 20]
b PD-T – Percentage Difference, compared with the FE-TPB

According to the validation of the unfilled web and truss core sandwich beams, it can be

seen that the FE models presented by the author provides correlation with the existing
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solutions provided by Romanoff and Varsta [37] and by Lok et al. [19, 20], respectively.

Therefore, it is reasonable to conclude that these FE models give accurate results and

can be further used in this research.

4.4 Evaluation of the Performance of the Proposed Core

Topology

In this section, the performance of the presented Bi-CSC topology was evaluated and

also compared with two similar core topologies, i.e., the truss core [19, 20] and the X-

truss core (previously referred to as the offset-corrugated core [18, 35]) with some values

of the width coefficient of the corrugated-strip plate, kcb. The configurations of these

selected core topologies were similar, as shown in Fig. 4.10. They were set to verify the

contribution of each pattern of the core topology to the stiffness and strength behaviour

of the unfilled sandwich beam. All geometric parameters were kept constant except the

ratio of sy/d. This parameter indirectly represents the angle of the inclined part of the

corrugation which can vary from 0◦ to 90◦. Here, sy/d varies from 0 to 2.0; therefore, the

angle varies from 26.6◦ to 76.0◦. Table 4.4 summarise the value of geometric parameters

used in this section.

(a) (b) (c)

Figure 4.10: Configurations of the unfilled sandwich beam case studies with (a) truss
core, (b) X-truss core, and (c) Bi-CSC

Table 4.4: Configuration of the case studies

Parameter Case Study Note
truss core X-truss core Bi-CSC

b 100
tt 12 tt/tb = 1
tb 12
kcb 1.00 0.50, 0.25, and 0.10 0.30, 0.25, and 0.20
tc 2 tc/tb = 1/6
sc vary in terms of sy/d where 0 ≤ sy/d ≤ 2.0
fc 20 fc/tb = 10/6
hc 120 hc/tb = 10

Conceptually, the presented configurations of the Bi-CSC topology studied in this chap-

ter (also the next two chapters) may possibly be produced using either the top-down

method (TDM) or the slide-rotate method (SRM) presented in Section 3.3, Chapter 3.
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As previously mentioned in Section 3.3, there are limitations to the SRM fabrication

technique. Figure 4.11 demonstrates the limitation if applying the SRM for the presented

configurations of the Bi-CSC topology. In this figure, the star-marked and the cross-

marked lines present the maximum limitation of kcb (kcb = b/bc) which can be defined

so that the width of corrugated-strip core, bc, is not greater than the limitation of the

alternative inserting plane A and B, i.e., the limitation of bc obtained from Eq. 3.4a

and 3.4b, respectively. It can be seen that the studied configurations of the Bi-CSC

topology with selected kcb of 0.30, 0.25 and 0.20 can be fabricated using the SRM (only

the alternative inserting plane A) if sy/d ≥ 1.0; otherwise, the TDM should be used.

0.5 1.0 1.5 2.0
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0.60

0.40

0.20

0

-0.20

-0.40

-0.60

sy/d

k
c
b

SRM Alternative A

SRM Alternative B

Figure 4.11: Possible maximum value of kcb obtained from the slide-rotate method
to make the unfilled Bi-CSC topology studied in this chapter

4.4.1 Flexural Stiffness

Based on the formulation technique presented in Sec. 4.1, the flexural stiffness, Dy,

of the unfilled sandwich beam with three different core topologies, i.e., the truss core,

the X-truss core, and the Bi-CSC, were obtained. The flexural stiffness, Dy, was first

normalized by the flexural stiffness, Do, where Do is the contribution of the face plates

to the flexural stiffness of the sandwich beam; here, the stiffness Do equals to Ebtbd2/2

[21, 22]. The normalized flexural stiffness Dy was then plotted against sy/d in the range

of 0.25 ≤ sy/d ≤ 2.0.

It can be seen in the results presented in Fig. 4.12 that the normalised flexural stiffness,

Dy, of the configurations of the unfilled sandwich beam studied in this section are about

1.0. Therefore, it may be concluded that the flexural stiffness, Dy, contributed by the

presented core topology can be neglected. This is a similar result found for another

unfilled sandwich beam with very weak core [21, 22].
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4.4.2 Transverse Shear Stiffness

In addition to the flexural stiffness, Dy, the transverse shear stiffness, DQy, of the

unfilled sandwich beam with these three different core topologies were also analysed.

The transverse shear stiffness, DQy, was obtained from both the unfilled sandwich beam

model and the unfilled unit cell model using the formulation techniques presented in

Sec. 4.1. The transverse shear stiffness, DQy, was first factorised by Ebtb. Then, it was

plotted against sy/d in the range of 0.0 ≤ sy/d ≤ 5.0 for the truss core unit cell model.

However, the evaluation of the transverse shear stiffness, DQy, of the sandwich beam and

unit cell with the X-truss and the Bi-CSCs were limited in the range of 0.25 ≤ sy/d ≤ 2.0.

The evaluation was not carried out at sy/d = 0.0 because the core did not perform as an

X-like core. In addition, the evaluation was not carried out beyond sy/d > 2.0 because

these points seem to be out of the effective range of sy/d, as initially seen from the study

of the truss core sandwich beam and the truss core unit cell (see Fig. 4.9).

Unlike the behaviour of the flexural stiffness, Dy, the transverse shear stiffness, DQy,

significantly depends on sy/d; it is also not able to be neglected. For the truss core

sandwich beam, it can be seen from Fig. 4.9 that increasing sy/d from 0.0 to 1.25 yields

an increase in value of DQy. As sy/d continues to 5.0, DQy then gradually reduces.

This trend infers that the alignment angle of the inclined part of the truss core sig-

nificantly affects to the transverse shear stiffness, DQy, of the unfilled sandwich beam.

The optimum point of the stiffness, DQy, of the truss core occurs at sy/d = 1.25 (at

θ = 38.7◦). At this configuration, the stiffness DQy is approximately 200% greater than

that of sy/d = 0.25.

The similar behaviour of transverse shear stiffness, DQy, can also be found in the other

core topologies. For the X-truss core sandwich beam, for example, it can be seen from

Fig. 4.13. that increasing sy/d from 0.25 to 1.0 yields an increasing value of DQy from

0.0169 to 0.0453. Then, the stiffness DQy gradually reduces to 0.0302 as sy/d continues

to 2.0 (see Table 4.5(a)). The optimum point of the stiffness DQy of the X-truss core

occurs at sy/d = 1.0 or θ = 45◦. At this configuration, the stiffness DQy is approximately

2.7 times the stiffness DQy at sy/d = 0.25. The similar behaviour can be found at all

values of kcb, i.e., 0.50, 0.25, and 0.10, studied in this section.
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Table 4.5: Transverse shear stiffness, DQy, of unfilled sandwich beams with various
core topologies obtained from the presented finite element methods (the FE-TPB and

the FE-UC)

(a) unfilled X-truss core sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

kcb = 0.50
FE-TPB 0.0169 0.0347 0.0434 0.0453 0.0432 0.0390 0.0346 0.0302
FE-UC 0.0158 0.0332 0.0420 0.0440 0.0422 0.0386 0.0345 0.0304
PD-T a −6.69% −4.13% −3.28% −2.91% −2.13% −1.02% −0.24% 0.39%

kcb = 0.25
FE-TPB 0.0089 0.0187 0.0236 0.0243 0.0227 0.0203 0.0178 0.0154
FE-UC 0.0081 0.0178 0.0225 0.0233 0.0220 0.0197 0.0173 0.0151
PD-T −9.06% −5.22% −4.44% −4.08% −3.36% −2.79% −2.36% −2.06%

kcb = 0.10
FE-TPB 0.0041 0.0083 0.0104 0.0105 0.0097 0.0085 0.0074 0.0064
FE-UC 0.0035 0.0077 0.0097 0.0099 0.0092 0.0081 0.0070 0.0061
PD-T −13.70% −7.46% −6.22% −5.90% −5.23% −4.85% −4.66% −4.66%

(b) unfilled bi-directional corrugated-strip core sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

kcb = 0.30
FE-TPB 0.0182 0.0276 0.0323 0.0324 0.0297 0.0262 0.0226 0.0194
FE-UC 0.0141 0.0242 0.0293 0.0299 0.0279 0.0249 0.0217 0.0188
PD-T −22.37% −12.51% −9.34% −7.78% −6.30% −5.10% −4.04% −3.21%

kcb = 0.25
FE-TPB 0.0135 0.0219 0.0261 0.0263 0.0242 0.0214 0.0185 0.0159
FE-UC 0.0107 0.0194 0.0239 0.0244 0.0227 0.0203 0.0177 0.0153
PD-T −20.87% −11.28% −8.43% −7.33% −5.99% −5.05% −4.29% −3.56%

kcb = 0.20
FE-TPB 0.0098 0.0168 0.0203 0.0205 0.0189 0.0167 0.0145 0.0125
FE-UC 0.0079 0.0151 0.0188 0.0192 0.0179 0.0159 0.0139 0.0120
PD-T −19.11% −9.98% −7.49% −6.48% −5.50% −4.79% −4.22% −3.66%
a PD-T – Percentage Difference, compared with the FE-TPB

Figure 4.14 presents the similar behaviour of the transverse shear stiffness, DQy, as a

function of sy/d for the unfilled bi-direction CSC sandwich beam. For this core topology,

it can also be seen that the optimum point of the transverse shear stiffness, DQy, for all

coefficient kcb occur at sy/d between 0.75 and 1.0 or θ between 53◦ and 45◦.

In comparison, arranging the corrugated-strip plates in a bi-directional format yields a

few more advantages in transverse shear stiffness than the X-truss. Figure 4.15 presents

the comparison in transverse shear stiffness obtained from the FE-TPB method between

these two core topologies. These cores are, for example, compared at the same kcb of

0.25. It can be seen that arranging the corrugated-strip plates in a bi-directional format

can provide about 51% more transverse shear stiffness than the X-truss format compared

at sy/d = 0.25. This advantage still occurs at any sy/d greater than 0.25. However, the

trend of percentage advantage seems to decrease. At sy/d = 1.00, the Bi-CSC yields

about 8% more transverse shear stiffness than the X-truss core. At sy/d = 2.00, the

Bi-CSC yields about 3% more transverse shear stiffness than the X-truss core.
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Figure 4.15: Comparison in transverse shear stiffness obtained from the presented
finite element method (FE-TPB) between the X-truss core and the bi-directional

corrugated-strip core (compared at kcb = 0.25)

4.4.3 Stress in the Sandwich Beam

Figure 4.16 presents the development of normal stress, σy, obtained at the outer surface

of the top face plate of the unfilled sandwich beam. The unfilled sandwich beam consisted

of ten repetitive unit cells of the truss core, the X-truss core with kcb = 0.50, the X-truss

core with kcb = 0.25, and the Bi-CSC with kcb = 0.25. All cores were set up in the same

dimensional configuration. The parameter sy/d was set to 1.00; as a result, the length

of the beam was 3200 mm.

For the truss core sandwich beam, it can be seen from Fig. 4.16(a) that the normal

stress, σy, at the surface of the top face plate develops as a repetitive zigzag pattern.

The stress σy starts from 0.0 MPa at x = 0.0 mm and linearly increases to 0.32 MPa

at x ≈ 140 mm; it then suddenly drops to −0.43 MPa at x ≈ 180 mm. Beyond

this minimum point, the stress rebounds to reach the second maximum point of stress

located in the next unit cell. The same zigzag pattern is again found in the next unit cell.

The development of stress σy in the zigzag pattern may imply that the top face plate

is deformed in double-curvature pattern in each unit cell, as can be seen, for example,

from Fig. 4.17.

For the X-truss core sandwich beam with kcb = 0.50, it can be seen from Fig. 4.16(b)

that the normal stress, σy, at the surface of the top face plate also develops in the

repetitive zigzag pattern. However, the difference of stress between the upper and lower

peaks of the zigzag line of each unit cell is seen to decrease. In comparison with the

truss core sandwich beam, the stress σy at the upper peak of, for example, the first unit

cell is about half that of the truss core. The stress σy at the lower peak is also about half

that of the truss core. This may imply that arranging the core in the X-truss pattern

is better than the conventional truss core pattern; the normal stress, σy, is significantly
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Figure 4.17: Deformation of the face plates in double curvature pattern: an example
of unfilled truss core sandwich beams

reduced. The similar zigzag line is also found in the X-truss core sandwich beam with

kcb = 0.25 (see Fig. 4.16(c)).

The Bi-CSC sandwich beam with kcb = 0.25 was also investigated. It is found that the

normal stress, σy, also distributes in the zigzag pattern along the top face plate. However,

it can be seen from Fig. 4.16(d) that the stress σy at the upper peak is significantly

reduced. Compared with the X-truss core sandwich beam with kcb = 0.50, the stress at

this point is about 10% less. This may imply that introducing the X-truss core in the

bi-directional format, i.e., the Bi-CSC, can more evenly distribute the normal stress, σy,

along the outer surface of the top face plate without creating significantly high stress

concentration. Therefore, the Bi-CSC seems to be a better arrangement of core topology

compared with the truss core and the X-truss core with kcb = 0.50.

Considering the normal stress, σy, at the local neutral axis of the top face plate, i.e.,

at the mid-height of the top face plate, it can be seen from Fig. 4.18 that the stress

distribution along the length of the beam is improved. The stress distribution changes

from a step function for the truss-core sandwich beam (Fig. 4.18(a)) to an approximately

linear function for the X-truss core sandwich beam and the Bi-CSC sandwich beam

(Figs. 4.18(b) to 4.18(d), respectively). This may imply that arranging the core in the

X core or the Bi-CSC topology provides a uniform distribution of the normal stress at

the neutral axis of the face plate and consequent reduces the stress concentration at the

connection point of the core.
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4.5 Concluding Remark

The numerical study of the unfilled sandwich beam with various core topologies was

carried out using the 3D FE models. Both the unfilled sandwich beam and the repetitive

unit cell were modelled and analysed using the FE software ANSYS Release 11.0 [123].

While the stress of the beam was obtained from the FE model itself, the flexural stiffness,

Dy, and the transverse shear stiffness, DQy, were obtained from the FE result along with

the force and distortion relationship of the three-point loaded beam and the unit cell

approaches.

The FE beam model was validated with the existing FE solution of the unfilled web core

sandwich beam provided by Romanoff and Varsta [37]. In addition, the transverse shear

stiffness, DQy, obtained from both the FE beam and the unit cell models were validated

with the existing analytical solution of the unfilled truss core sandwich beam provided

by Lok et al. [19, 20]. The validation showed that the presented FE models agreed well

with the references. To deduce the transverse shear stiffness, DQy, a unit cell approach

could be used to reduce the complexity and computation time of the FE beam model.

The presented FE models were then used to evaluate the performance of the proposed

core topology and also compared with the truss core and X-truss core topologies. It

was found that the flexural stiffness, Dy, of all cores studied in this chapter can be

neglected. However, it was found that the transverse shear stiffness performance of the

core varies with the ratio of sy/d and may not be neglected. The optimum point of the

transverse shear stiffness, DQy, of the presented core topology was found at sy/d about

1.0; this phenomenon was similar to the truss and the X-truss core topologies. It was

found that the proposed Bi-CSC topology yields a few more advantages in transverse

shear stiffness compared to the X-truss core topology. The study of the stress at the

face plate of the sandwich beam showed that introducing the Bi-CSC topology could

yield a more uniform distribution of the normal stress and also reduced the peak stress

at the connection point of the web.

The next chapter presents a simplified analytical method referred to as the modified

stiffness matrix method (MSM). The MSM is one of three simplified analytical methods

to obtain the stiffness of the unfilled sandwich beam with the Bi-CSC topology presented

in this research. Rather than using the computational expensive FE method presented

in this chapter, the MSM is presented as an alternative approach to overcome a high

degree of indeterminacy of the proposed Bi-CSC topology.





Chapter 5

Modelling the Transverse Shear

Stiffness of an Unfilled Sandwich

Beam using a Modified Stiffness

Matrix Method

5.1 Background

To derive the transverse shear stiffness of an unfilled corrugated-like core sandwich beam,

a simplified analytical approach of a unit cell based on the force-distortion relationship

technique may be used. This technique relies on the estimation of the sandwich property

into an equivalent property. The force-distortion relationship technique assumes that

the stiffness of the sandwich structure could be found if the deformation of the unit cell

could be known. Consequently, the relationship between effort forces and responding

displacements, i.e., the stiffness, could be known.

The force-distortion relationship technique had been used to derive the equivalent elastic

constants of corrugated core sandwich plates. Libove and Hubka [120] presented the

well-known formulas for evaluating the elastic constants of the corrugated core sandwich

plate in which the core was a curve-straight shape. Ko [127] derived the effective elastic

constants for a super-plastically formed/diffusion-bonded unidirectional corrugated core

sandwich structure in which the thickness of the corrugated sheet is not uniform due to

the production technique. Nordstrand et al. [128] proposed the theoretical solutions for a

curved, corrugated core based on the ordinary curved beam theory. Various corrugation

patterns were studied and compared in their effective transverse shear modulus. Ray

67
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[18] further adapted the concept of Libove and Hubka [120] to determine the transverse

shear stiffness of his innovative offset-corrugated core sandwich beam.

For web-like core sandwich structure, the force-distortion relationship technique had also

been used to derive the equivalent elastic constants of a C-core sandwich beam [129] and

a Z-core sandwich beam [130]. Further theoretical analysis to include the contraction

force between the C- or Z-core and the sandwich face plates was also developed by Fung

et al. [38, 131]. For the Z-core sandwich beam, it was found that the arrangement of

the Z-core and the direction of applied shear force affect the transverse shear stiffness in

two manners: namely, weak or strong arrangement. The equivalent stiffness parameters

of an extruded truss-core sandwich beam were also studied based on the force-distortion

relationship technique by Lok et al. [19, 20].

In practice, the deformation of a unit cell can be calculated using any plane-frame struc-

tural analysis method such as the unit load method [19, 20]. Nevertheless, the force-

distortion relationship technique would be too complicated for an indeterminate struc-

tural core topology such as the proposed bi-directional corrugated-strip core (Bi-CSC)

topology because it needs to perform complex equilibrium, constitutive and compati-

bility equations. Therefore, another simplified analytical method named the modified

stiffness matrix method (MSM) is presented in this research to overcome a high degree

of indeterminacy of the proposed core topology.

5.2 Modified Stiffness Matrix Method

5.2.1 Assumptions

In this chapter, some assumptions have been set as follows:

• The stress-strain relationship of the steel material is limited to only the linear elas-

tic region. The compression behaviour is also the same as the tension behaviour.

• The deformation of the unit cell is assumed small.

• The Bi-CSC is assumed to be sufficiently stiff in the z-direction so that the depth

of the sandwich core after deformation remains the same as before deformation.

If applicable, this assumption also applies to other similar core topologies. This

assumption is set in accordance with the deformed behaviour of the FE sandwich

beam model (Chapter 4) in which there is slightly different deformation in the

z-direction between the top and bottom face plates. It can be seen from Fig. 5.2

and Table 5.1 that the percentage difference obtained from the FE sandwich beam
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model between the top and bottom face plates are less than 0.30% for all case

studies presented in Table 5.1.

Table 5.1: Comparison of the vertical distortion of the top and bottom face plates of
unfilled sandwich beams with various core topologies obtained from the finite element

method of three-point loaded beam (FE-TPB)

(a) an unfilled truss core sandwich beam

y-coordinate 0 320 640 960 1280

Top Face Plate 0 −0.0115 −0.0223 −0.0315 −0.0387
Bottom Face Plate 0 −0.0115 −0.0223 −0.0316 −0.0386
PD a N/A −0.03% 0.05% −0.15% 0.28%

(b) unfilled X-truss core sandwich beams

y-coordinate 0 320 640 960 1280

kcb = 0.50
Top Face Plate 0 −0.0115 −0.0223 −0.0315 −0.0387
Bottom Face Plate 0 −0.0108 −0.0209 −0.0294 −0.0357
PD N/A 0.00% 0.00% 0.00% 0.00%

kcb = 0.25
Top Face Plate 0 −0.0115 −0.0223 −0.0315 −0.0387
Bottom Face Plate 0 −0.0121 −0.0235 −0.0333 −0.0409
PD N/A 0.00% 0.00% 0.00% 0.00%

(c) an unfilled Bi-CSC sandwich beam

y-coordinate 0 320 640 960 1280

kcb = 0.25
Top Face Plate 0 −0.0115 −0.0223 −0.0315 −0.0387
Bottom Face Plate 0 −0.0119 −0.0229 −0.0325 −0.0398
PD N/A 0.00% 0.01% 0.01% 0.01%
a PD – Percentage Difference, compared with the top face plate

• The Bi-CSC is also assumed to be equally displaced in the y-direction for each unit

cell so that the displacement in the y-direction may be represented by the point

at the mid-width of the sandwich beam. This assumption is also set in accordance

with the deformed behaviour of the FE sandwich beam model in which there is

slightly different displacement in the y-direction between any point of both the

top and bottom face plates of each unit cell. It can be seen from Fig. 5.2 that

the percentage difference obtained from the FE sandwich beam model between the

mid-width and the edge of the sandwich beam are less than 1.0% for the X-truss

core with kcb = 0.50 and 0.25 as well as for the Bi-CSC with kcb = 0.25.

• If applicable, the Bi-CSC is assumed to be connected to the face plates through

rigid-link elements. This assumption also applies to other similar core topologies.

5.2.2 Equivalent Two-Dimensional Plane-Frame Model

Figure 5.3 shows an unfilled sandwich beam cut from a sandwich plate with Bi-CSC

by two parallel planes. The configuration of this unfilled sandwich beam is defined by
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the parameters previously mentioned in Fig. 3.2. Although there may be two different

configurations of the sandwich beam, they are considered equivalent to each other. This

is because their material properties and geometric dimensions are identical. Moreover,

the longitudinal section, i.e., the section cut in the y-direction, of these two configurations

are equivalent to each other.

x

y

z

Sandwich Plate

Sandwich Beam: Configuration A

Configuration B

Figure 5.3: Unfilled sandwich beams with bi-directional corrugated-strip core cut
from an unfilled sandwich plate

The equivalent two-dimensional (2D) plane-frame model (PFM), as shown in Fig. 5.4(b),

is used in this research to represent a real unfilled sandwich beam (Fig. 5.4(a)). Any part

of the unfilled sandwich beam is represented by a single straight line which passes through

the local neutral axis of such a part. The 2D PFM consists of five basic element types.

The first four element types are the top chord, the bottom chord, the inclined chord, and

the vertical chord. They are compatible in material properties and geometric dimensions

with the top face plate, the bottom face plate, the longitudinal corrugated-strip core

(CSC), and the transverse CSC, respectively, as shown in Table 5.2. If applicable, the

fifth element type is used to connect the top or bottom chord with the inclined or vertical

chord. In the 2D PFM, this element type is modelled as a rigid-link element; it is much

stiffer than the previously mentioned four basic element types. The rigid-link element

is used based on the assumption that the connections between the face and the core

are fully bonded so that there are no relative displacements. A similar concept of using

rigid-link element can be found in Libove and Hubka [120] where the corrugated core

was assumed to be connected with the face plates through this element type.

Instead of cutting the unfilled sandwich plate to model the unfilled sandwich beam as

demonstrated in Fig. 5.3, another alternative configuration of the unfilled sandwich beam

may be presented with alternative two parallel cutting planes. Figure 5.5 illustrates two

alternatives of the unfilled sandwich beams with full width, b = 2× sc, (Fig. 5.5(a)) and

half width, b = sc, (Fig. 5.5(b)). Although these two unfilled sandwich beams seem to

be different, it may be seen that they are compatible with each other especially their

longitudinal section. Neglecting torsional effects, both alternatives can be used in this

chapter.
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sc sc

d
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z
Top Face Plate

Bottom Face Plate

Transverse Corrugated-Strip Plate

Longitudinal Corrugated-Strip Plate

(a)

sc sc

d

x y

z
Top Chord

Bottom Chord

Vertical Chord

Inclined Chord

Rigid-Link Element at Connection

(b)

Figure 5.4: (a) a real unfilled sandwich beam, and (b) an equivalent two-dimension
plane-frame model

Table 5.2: Structural models and mechanical properties of the elements of the equiv-
alent two-dimension plane-frame model (2D PFM)

Unfilled Sandwich Beam Equivalent Two-Dimension Plane-Frame Model
Element Structural Model Mechanical Property

Top Face Plate Top Chord Beam Et = Et
At = btt
It = 1

12bt
3
t

Bottom Face Plate Bottom Chord Beam Eb = Eb
Ab = btb
Ib = 1

12bt
3
b

Longitudinal CSC Inclined Chord Beam Ec = Ec
Ac = bctc
Ic = 1

12bct
3
c

Transverse CSC Vertical Chord Beam Etc = Ec
Atc = bc

tc
sin θtc

Itc = 2
[

1
12

(
bc
2

)3
tc

]
– Rigid Link Beam very stiff

x

y
z

bc
2

bc
bc
2

b = 2sc

xy

z

(a)

x

y
z

bc
2

bc
2

b = sc

xy

z

(b)

Figure 5.5: Two alternative configurations of an unfilled sandwich beam cut from an
unfilled sandwich plate (a) a beam with full width (b) a beam with half width
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5.2.3 Formulation of Transverse Shear Stiffness

The transverse shear stiffness, DQy, of the unit cell of the PFM can be formulated using

the technique and Eq. 4.2 mentioned in the previous chapter. This is because the unit

cell of the PFM is equivalent to the unit cell presented in the FE methods.

5.2.4 Formulation of the Stiffness Matrix Equation of a Unit Cell

Based on the stiffness matrix analysis of a plane-frame structure, the relationship be-

tween effort forces and displacements can be expressed as follows:

{F} = [K] {∆} = [T ]T [k] [T ] {∆} (5.1)

where [K] is the global stiffness matrix of a unit cell defined in terms of the local stiffness

matrix, [k], of each element and the coordinate transformation matrix, [T ].

Because of the constant core depth assumption, the displacements δ4
z and δ8

z of the

one-half unit cell (Fig. 4.2(c)) should be identical. To account for such a compatibility

constraint condition, therefore, the stiffness equations must be partitioned to separate

the degrees of freedom, {∆}, into two parts: (1) the compatibility constraint displace-

ments, {∆c}, and (2) the free displacements, {∆f}, as follows:


Ff

. . .

Fc

 =


Kcc

... Kcf

. . . . . .

Kfc
... Kff




∆c

. . .

∆f

 (5.2)

Here, {Fc} are the known forces applied to each point of the unit cell and {Ff} are

the unknown effort forces applied to the constraint points so that the compatibility

constraint condition at these points is achieved. After inversion of Eq. 5.2, as shown by

Eq. 5.3a, the inverted stiffness matrix, [K]−1, is partitioned to give Eq. 5.3b.


∆c

. . .

∆f

 =


Kcc

... Kcf

. . . . . .

Kfc
... Kff


−1

Ff

. . .

Fc

 (5.3a)


∆c

. . .

∆f

 =


KI
cc

... KI
cf

. . . . . .

KI
fc

... KI
ff




Ff

. . .

Fc

 (5.3b)



Chapter 5. Modelling ... using a Modified Stiffness Matrix Method 75

Therefore, {∆c} can be expressed as follows:

{∆c} =
[
KI
cc

]
{Ff}+

[
KI
cf

]
{Fc} (5.4)

Thus,

[
KI
cc

]
{Ff} = {∆c} −

[
KI
cf

]
{Fc} (5.5)

Equation 5.5 will be used to achieve the unknown effort forces at points 4 and 8 of the

one-half unit cell (Fig. 4.2(b)), i.e., the transverse shear forces at the top and bottom

face plates, which correspond to the compatibility constraint condition at these points.

A summation of these two forces should be equal to the effort transverse shear force,

Qy. Introducing the compatibility constraint condition, i.e., δ4
z = δ8

z = δz, and letting

Qby equals the transverse shear force acting on the bottom face plate, one can yield that

[
KI
cc

]{ −Qby
−(Qy −Qby)

}
=

{
δz

δz

}
−
[
KI
cf

]
{Fc} (5.6a)

or

[
KI
cc

]{ −Qby
Qby

}
=

{
δz

δz

}
−
[
KI
cf

]
{Fc} −

[
KI
cc

]{ 0

−Qy

}
(5.6b)

Having the solution for Qby from Eq. 5.6b, then, one can solve for the free displacements,

{∆f}, from the other partitioned matrix of Eq. 5.3b, as follows:

{∆f} =
[
KI
fc

]
{Ff}+

[
KI
ff

]
{Fc} (5.7)

Finally, the transverse shear stiffness of the unit cell can be calculated from Eq. 4.2.

5.2.5 Formulation of the Local Stiffness Matrix of an Element

In this research, the local stiffness matrix, [k], is formulated from a beam element with a

linear rotational spring model at both ends of the beam element. The linear rotational

spring model represents the linear relationship between the moment, M , and rotational

angle, θ, at each end of the beam; this relationship is defined as M = kθ where k is the

linear rotational stiffness [132–134].

The stiffness k is used to represent the flexibility condition at the end of the beam; it

can vary in the range of 0 ≤ k ≤ ∞. The stiffness k is set to zero to account for an
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ideally pinned joint condition at the end of the beam element while it is set to infinity

to account for an ideally rigid end condition.

Having the linear rotational spring model at both ends of the beam element, the local

stiffness matrix, [k], of the beam element can be expressed as Eq. 5.8 [132].

[k] =



EA
L 0 0 −EA

L 0 0

12EI
L3

γi+γj+γiγj
4−γiγj 6EI

L2

2γi+γj
4−γiγj 0 −12EI

L3

γi+γj+γiγj
4−γiγj 6EI

L2

γi+2γj
4−γiγj

4EIL
3γi

4−γiγj 0 −6EI
L2

2γi+γj
4−γiγj 2EIL

3γiγj
4−γiγj

EA
L 0 0

sym 12EI
L3

γi+γj+γiγj
4−γiγj −6EI

L2

γi+2γj
4−γiγj

4EIL
3γj

4−γiγj


(5.8)

Here, γi and γj are the flexibility stiffness factors at the end nodes i and j, respectively,

of the beam element; they are expressed as follows:

γi =
L

L+ 3EI
ki

(5.9a)

γj =
L

L+ 3EI
kj

(5.9b)

Equation 5.8 can express the local stiffness matrix, [k], of the beam element with any

flexibility condition at the end of the beam. In the case of setting ki = kj = ∞, the

flexibility stiffness factors γi and γj will equal one. As a result, the local stiffness matrix,

[k], of a conventional beam element is presented. Conversely, setting ki = kj = 0 leads

to nil flexibility stiffness factors γi and γj . Consequently, the local stiffness matrix, [k],

is of a conventional truss element.

It should be noted here that the local stiffness matrix, [k], of the beam element with

the linear rotational spring model at both ends of the beam element is used instead of a

conventional local stiffness matrix, [k], of the beam element in this research as the basis

for further evaluation of the truss model in the next chapter.

5.3 Validation of the Transverse Shear Stiffness

To evaluate the reliability of the presented MSM, the validation was carried out. It was

divided into two validation stages: (1) the validation of the transverse shear stiffness,

DQy, against the analytical solution of the unfilled truss core sandwich beam provided

by Lok et al. [19, 20], and (2) the validation of the transverse shear stiffness, DQy,
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against the FE solution of the unfilled sandwich beams with various core topologies

obtained from the finite element method of three-point load beam (FE-TPB) presented

in Chapter 4. At the second stage, Lok et al.’s solution [19, 20] is no longer available

for validation because it does not overcome an indeterminate truss-like core topology.

Figure 5.6 shows the configurations of 2D PFM used for validation.

(a) (b) (c)

Figure 5.6: Configurations of the equivalent two-dimension plane-frame model of unit
cells with (a) truss core, (b) X-truss core, and (c) Bi-CSC

At the first stage of validation, the selected configuration of the truss core unit cell was

modelled using the 2D PFM. Here, the connections between the face plates and the

core were rigid-link elements (see Fig. 5.6(a)). The rigid-link elements were much stiffer

than other elements, i.e., their axial and bending stiffnesses were set to 106 ×EcAc and

106 × EcIc, respectively. Having the linear elastic property without Poisson effect, it

can be seen from Fig. 5.7 and Table 5.3 that the MSM agrees very well with Lok et al.’s

solution without any percentage difference. Therefore, the MSM is a reasonably reliable

analytical method and can be used for further study of the unfilled truss core sandwich

beam.
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Lok et al. [19, 20]
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Figure 5.7: Comparison of the transverse shear stiffness, DQy, of unfilled truss core
sandwich beams obtained from the presented modified stiffness matrix method (MSM)

and Lok et al.’s method [19, 20]

At the second stage of validation, the unit cell with two core topologies, i.e., the X-truss

core and the Bi-CSC topologies, were selected to analyse and compare with the FE

solution obtained from the FE-TPB. Neglecting the production process, the face plates

and the core were assumed to be homogeneous. The 2D PFM of these unit cells were
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Table 5.3: Comparison of the transverse shear stiffness, DQy, of unfilled truss core
sandwich beams obtained from the presented modified stiffness matrix method (MSM)

and Lok et al.’s method [19, 20]

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Lok et al. [19, 20] 0.0102 0.0201 0.0261 0.0292 0.0299 0.0289 0.0268 0.0243
MSM 0.0102 0.0201 0.0261 0.0292 0.0299 0.0289 0.0268 0.0243
PD-L a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
a PD-L – Percentage Difference, compared with Lok et al. [19, 20]

modelled in a similar manner as of the truss core unit cell, as illustrated in Figs. 5.6(b)

and 5.6(c).

For the X-truss core topology, it can be seen from Fig. 5.8 that both the MSM and the

FE-TPB solutions are very similar to each other. All configurations with variable kcb
studied in this section show a similar relationship between DQy and sy/d which have

an effective range of sy/d between 0.75 and 1.25. Although the percentage differences

between both methods are quite large at some values of sy/d, it can be seen that such

differences are less than 4.50% when considering the effective range of sy/d (see Ta-

ble 5.4(a)). For kcb = 0.50, the percentage difference at sy/d = 1.00 is about 2.50%.

The percentage difference of kcb = 0.25 at sy/d = 1.00 is only about 0.40%.

Figure 5.9 and Table 5.4(b) present the comparison of the transverse shear stiffness,

DQy, of the unfilled sandwich beam with the Bi-CSC topology obtained from the MSM

and the FE-TPB. It can be seen that both methods also yield close solution when sy/d

is in the ranges of 0.50 and 2.00. In this range, the maximum percentage difference is

not greater than 4.30%. A few higher percentage differences can be found at sy/d equal

to 0.25 where the maximum percentage difference may be, for example, about 16.0% at

kcb = 0.30.

According to the validations of transverse shear stiffness, DQy, it can be seen that

the analytical solutions obtained from the presented MSM are well consistent with the

existing analytical solution [19, 20] and the FE solution obtained from the presented

FE-TPB. Therefore, it is reasonable to conclude that the presented MSM is accurate

enough and can be used for further study of the transverse shear stiffness, DQy, of the

unfilled sandwich beam with at least three core topologies presented and validated in

this chapter.



Chapter 5. Modelling ... using a Modified Stiffness Matrix Method 79

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

1 0

X
-T

ru
ss

C
o
re

:
k
c
b

=
0
.5

0

s y
/
d

DQy/(Ebtb)[N/m]

M
S

M

F
E

-T
P

B

(a
)

k
c
b

=
0
.5

0

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

1 0

X
-T

ru
ss

C
o
re

:
k
c
b

=
0
.2

5

s y
/
d

DQy/(Ebtb)[N/m]

M
S

M

F
E

-T
P

B

(b
)

k
c
b

=
0
.2

5

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

1 0

X
-T

ru
ss

C
o
re

:
k
c
b

=
0
.1

0

s y
/
d

DQy/(Ebtb)[N/m]

M
S

M

F
E

-T
P

B

(c
)

k
c
b

=
0
.1

0

F
ig

u
r
e

5
.8

:
C

om
pa

ri
so

n
of

th
e

tr
an

sv
er

se
sh

ea
r

st
iff

ne
ss

,
D

Q
y
,

of
un

fil
le

d
X

-t
ru

ss
co

re
sa

nd
w

ic
h

be
am

s
ob

ta
in

ed
fr

om
th

e
pr

es
en

te
d

m
od

ifi
ed

st
iff

ne
ss

m
at

ri
x

m
et

ho
d

(M
SM

)
an

d
th

e
fin

it
e

el
em

en
t

m
et

ho
d

of
th

re
e-

po
in

t
lo

ad
ed

be
am

(F
E

-T
P

B
)



Chapter 5. Modelling ... using a Modified Stiffness Matrix Method 80

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

10

B
i-C

S
C

:
k
c
b

=
0
.3

0

s
y
/
d

DQy/(Ebtb) [N/m]

M
S

M

F
E

-T
P

B

(a
)

k
c
b

=
0
.3

0

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

10

B
i-C

S
C

:
k
c
b

=
0
.2

5

s
y
/
d

DQy/(Ebtb) [N/m]

M
S

M

F
E

-T
P

B

(b
)

k
c
b

=
0
.2

5

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

10

B
i-C

S
C

:
k
c
b

=
0
.2

0

s
y
/
d

DQy/(Ebtb) [N/m]

M
S

M

F
E

-T
P

B

(c)
k
c
b

=
0
.2

0

F
ig

u
r
e

5
.9

:
C

om
parison

of
the

transverse
shear

stiffness,
D

Q
y ,

of
unfilled

bi-directional
corrugated-strip

core
sandw

ich
beam

s
obtained

from
the

presented
m

odified
stiffness

m
atrix

m
ethod

(M
SM

)
and

the
finite

elem
ent

m
ethod

of
three-point

loaded
beam

(F
E

-T
P

B
)



Chapter 5. Modelling ... using a Modified Stiffness Matrix Method 81

Table 5.4: Comparison of the transverse shear stiffness, DQy, of unfilled sandwich
beams with various core topologies obtained from the presented modified stiffness ma-
trix method (MSM) and the finite element method of three-point loaded beam (FE-

TPB)

(a) unfilled X-truss core sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

kcb = 0.50
FE-TPB 0.0169 0.0347 0.0434 0.0453 0.0432 0.0390 0.0346 0.0302
MSM 0.0176 0.0357 0.0435 0.0442 0.0412 0.0369 0.0323 0.0281
PD-T a 4.03% 3.03% 0.29% −2.52% −4.41% −5.50% −6.47% −7.22%

kcb = 0.25
FE-TPB 0.0089 0.0187 0.0236 0.0243 0.0227 0.0203 0.0178 0.0154
MSM 0.0092 0.0195 0.0240 0.0242 0.0224 0.0198 0.0172 0.0149
PD-T 3.11% 3.85% 1.66% −0.34% −1.46% −2.31% −2.98% −3.53%

kcb = 0.10
FE-TPB 0.0041 0.0083 0.0104 0.0105 0.0097 0.0085 0.0074 0.0064
MSM 0.0038 0.0082 0.0102 0.0103 0.0094 0.0083 0.0072 0.0062
PD-T −6.68% −1.44% −1.51% −2.27% −2.41% −2.67% −2.99% −3.37%

(b) unfilled Bi-CSC sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

kcb = 0.30
FE-TPB 0.0182 0.0276 0.0323 0.0324 0.0297 0.0262 0.0226 0.0194
MSM 0.0152 0.0273 0.0324 0.0322 0.0293 0.0257 0.0222 0.0190
PD-T −16.09% −1.04% 0.18% −0.72% −1.30% −1.76% −1.98% −2.19%

kcb = 0.25
FE-TPB 0.0135 0.0219 0.0261 0.0263 0.0242 0.0214 0.0185 0.0159
MSM 0.0118 0.0222 0.0266 0.0265 0.0242 0.0213 0.0183 0.0157
PD-T −12.58% 1.48% 2.22% 1.03% 0.25% −0.39% −0.85% −1.12%

kcb = 0.20
FE-TPB 0.0098 0.0168 0.0203 0.0205 0.0189 0.0167 0.0145 0.0125
MSM 0.0089 0.0175 0.0212 0.0211 0.0193 0.0169 0.0146 0.0125
PD-T −8.57% 3.93% 4.21% 2.89% 2.00% 1.22% 0.63% 0.24%
a PD-T – Percentage Difference, compared with the FE-TPB

5.4 Evaluation of the Performance of the Proposed Core

Topology

In this section, the performance of the presented Bi-CSC topology was evaluated and

compared with two similar core topologies, i.e., the truss core and the X-truss core with

kcb = 0.50 and kcb = 0.25. The configurations of these selected core topologies were set

to have the same configuration. All geometric parameters were kept constant except

the ratios sy/d and fc/sc. These two ratio parameters indirectly present the angle of

inclined part of corrugation that can vary from 0◦ to 90◦. Here, sy/d varied from 0 to

2.0; therefore, the angle varied from 26.6◦ to 76.0◦. The ratio fc/sc varied from 0 to

0.5. It should be noted that the angle depends on not only the ratio fc/sc but also

the height of core, hc; therefore, the range of angle varied with the ratio fc/sc should

be later presented in detail in discussion of each specific case study. The width of the

sandwich beam, b, also varied in different three values. Table 5.5 summarise the value

of geometric parameters used in this section.

In the details of modelling using the MSM, the assumption is that the connections



Chapter 5. Modelling ... using a Modified Stiffness Matrix Method 82

Table 5.5: Configurations of the case studies

Parameter Case Study Note
sy/d fc/sc

b 100, 200, 400
tt 12 tt/tb = 1
tb 12
kcb 1.00 for truss core

0.50 and 0.25 for X-truss core
0.25 for Bi-CSC

tc 2 tc/tb = 1/6
sc vary in terms of sy/d 100

where 0 ≤ sy/d ≤ 5.0
fc fc = 20 vary in terms of fc/sc

where 0 ≤ fc/sc ≤ 0.5
hc 120 hc/tb = 10

between the face plates and the core are represented using rigid-link elements. Here, the

truss core and the X-truss core were modelled using only one rigid-link element and the

Bi-CSC was modelled using two rigid-link elements at each connection. The use of two

rigid-link elements in the latter core topology is to ensure that the assumption that the

face plates and the core are fully bonded can be achieved.

The evaluations of the transverse shear stiffness, DQy, affected by the ratios sy/d and

fc/sc are presented in Figs. 5.10 and 5.11, respectively. In each figure, the transverse

shear stiffness, DQy, factorised by Ebtb is presented on the top, and the factorised trans-

verse shear stiffness, DQy/Ebtb, per unit weight of core is presented on the bottom. The

transverse shear stiffness DQy/Ebtb per unit weight of core is also normalised by the

value of the truss core sandwich beam at sy/d = 1.00 and fc/sc = 0.25 for each case

study of variables sy/d and fc/sc.

Considering the performance of the transverse shear stiffness, DQy, of the proposed core

as a function of sy/d, it can be seen from Fig. 5.10 that the transverse shear stiffness of the

truss core sandwich beam is significantly improved when introducing core arrangement

in the X-truss topology pattern. Of the two values of kcb studied in this section, the X-

truss core with kcb = 0.25 is the most effective arrangement which yields the maximum

transverse shear stiffness over unit weight of core material. Compared with the truss

core at sy/d = 0.75 at the same weight of the core, the X-truss core with kcb = 0.25 is

83% stiffer than the truss core. This improvement is similar to the study of the offset-

corrugated core by Ray [18] in which the transverse shear stiffness per unit weight density

of the offset-corrugated core is 96% higher than that of the conventional corrugated core.

The same behaviour is exhibited for every value of the sandwich beam width for both the

truss core sandwich beam and the X-truss core sandwich beam studied in this section.

However, it may be clearly seen from Fig. 5.10 that introducing the CSC in a bi-

directional format does not provide any advantage in the transverse shear stiffness,

DQy, per unit weight of core material over the truss core topology, especially when the
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ratio sy/d is greater than 1.00 (the angle of the inclined part of the CSC is 45◦). A few

benefits of arranging the CSC in the bi-directional format can be found if sy/d is less

than 1.00. At b = 400, for example, this core is about 25.0% when sy/d = 0.50 and

5.0% when sy/d = 0.75 stiffer than the truss core compared at the same unit weight of

the core material. This may infer that introducing the arrangement of the CSC into the

bi-directional format may not yield the most optimum performance of the transverse

shear stiffness, DQy, of the unfilled sandwich beam if considering the weight of the core.

Nevertheless, the transverse shear stiffness, DQy, of the Bi-CSC itself is obviously higher

than that of the X-truss core with kcb = 0.25 if not considering the weight of the core.

This may support the advantage of the arrangement of the CSC into the bi-directional

format. In addition, it should be noted that the transverse CSC needs to be presented

in the proposed Bi-CSC topology so that the transverse shear stiffness, DQ, of the

unfilled sandwich plate can be controlled in both the x- and y-directions. As previously

mentioned in Sec. 2.3, the advantage of another similar core topology, i.e., the cross-

corrugated core, was also noted by Ray [18]. Therefore, further investigation should be

carried out to evaluate the possible performance of the unfilled sandwich plate with the

proposed core topology.

Considering the effect of the ratio fc/sc to the performance of the transverse shear stiff-

ness, DQy, of the proposed core, it can be seen from Fig. 5.11 that the transverse shear

stiffness of the truss core sandwich beam is also significantly improved when introducing

core arrangement in the X-truss topology pattern. The X-truss core with kcb = 0.50 and

kcb = 0.25 yield a similar trend of the transverse shear stiffness per the unit weight of

the core material. The advantage of the X-truss core over the truss core is clearly found

in the range of fc/sc between 0.15 and 0.35. In this range, the transverse shear stiffness,

DQy, of the X-truss core can be 200.0% higher than that of the truss core compared at

the same unit weight of the core at the fc/sc of 0.30.

It can be seen from Fig. 5.11 that introducing the Bi-CSC topology also provides the

advantage of the transverse shear stiffness, DQy, per the unit weight of the core material

over the truss core topology. However, the advantage depends not only on the ratio fc/sc
but also on the width of the sandwich beam, b. Of the studied cases in this section,

a great advantage can be found for both b = 200 and b = 400 at fc/sc approximately

greater than 0.20 (the angle of the inclined part of the CSC is about 63.0◦). At fc/sc
greater than 0.40 (θ = 80.4◦), the Bi-CSC is also more advantageous in the transverse

shear stiffness, DQy, than the X-truss core. It seems that the advantage increases as

fc/sc also increases. Compared with the X-truss core with b = 400 and kcb = 0.25 at

the same weight of the core, the stiffness DQy of the Bi-CSC at fc/sc = 0.40 is about

60.0% higher than that of the X-truss core.
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This may infer that introducing the arrangement of the CSC into the bi-directional

format can provide a better performance in the transverse shear stiffness, DQy, when

the angle of the inclined part of the corrugation approaches 90◦. The advantage is

possibly provided by the presence of the transverse CSC in the x-direction. When the

inclined part of the longitudinal CSC approaches 90◦, the core will nearly perform as

the conventional web core. As a result, the inclined part of each corrugation will lose

its diagonal bracing action and consequent transverse shear resisting capacity presented

from its internal axial force. Contrary to the longitudinal CSC, the transverse CSC may

still provide the same transverse shear resistance due to the plate still remaining in the

same configuration in its transverse direction, i.e., in the local x-direction, which does not

vary with the ratio fc/sc. Figure 5.11 demonstrates three configurations of the sandwich

beam with Bi-CSC. It can be obviously seen that the configurations of transverse CSC

remain the same whereas the configurations of longitudinal CSC significantly changes

in accordance with changing the ratio fc/sc.

fc/sc = 0.05
(a)

fc/sc = 0.25
(b)

fc/sc = 0.50
(c)

Figure 5.12: Configurations of the corrugated-strip plate in terms of the ratio fc/sc

5.5 Concluding Remark

The simplified analytical method named the modified stiffness matrix method (MSM)

was presented. The method was based on the force-distortion relationship of the repeti-

tive unit cell of the unfilled sandwich beam and the conventional stiffness matrix method.

The modified stiffness matrix method was proposed to overcome the high degree of inde-

terminacy of the presented bi-directional corrugated-strip core (Bi-CSC) topology. The

3D configurations of the unfilled sandwich beam with the presented core topology and

other similar truss-like core topologies were simplified as 2D plane-frame structures with

beam elements. The connections between the sandwich face plates and the core were

modelled using rigid-link elements.

The formulation of the transverse shear stiffness, DQy, was presented. The local stiffness

matrix of each element was performed using the model of beam with linear rotational

springs at both ends of the beam element. This specific model of local stiffness matrix

was presented to overcome any flexibility condition at the end of the beam element.
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The presented MSM was validated using other similar core topologies, i.e., the truss core

and the X-truss core. The validations were carried out against the existing analytical

solution of the truss core sandwich beam provided by Lok et al. [19, 20] and against

the FE result based on the 3D FE model of a three-point loaded beam presented in

Chapter 4. The validation showed that the MSM agreed well with other approaches.

The presented MSM was then used to evaluate the performance of the proposed core

topology. The performance of the Bi-CSC topology was then compared with the perfor-

mance of the truss core topology and the X-truss core topology at the same weight of the

core material. It was found that the transverse shear stiffness performance of the core

varied with the ratios sy/d and fc/sc. It also depended on the width of the sandwich

beam, b. By comparison with the ratio sy/d, the Bi-CSC was less advantageous than the

X-truss core. However, it was possibly more advantageous than the truss core if sy/d

was less than 1.00 (the angle of the inclined part of the CSC is 45◦). By comparison

with the ratio fc/sc, the Bi-CSC was also more advantageous than the truss core if fc/sc
was greater than 0.20. It was also more advantageous than the X-truss core in a few

specific ranges of fc/sc. The great benefit occurred when fc/sc approaches 0.50 – the

inclined part of corrugation approaches vertical web core configuration, i.e., θ = 90◦. It

seems that the presented benefit in the transverse shear stiffness, DQy, of the Bi-CSC

topology was provided by the presented transverse CSC in the x-direction.

The next chapter presents another simplified analytical method referred to as the braced

frame analogy method (BFA). The BFA is the second simplified analytical method to

obtain the stiffness of the unfilled sandwich beam with the Bi-CSC topology presented

in this research. The BFA is also proposed to overcome a high degree of indeterminacy

of the proposed Bi-CSC topology, and to separate the stiffness contribution of the core

from the overall stiffness of the unfilled sandwich beam.





Chapter 6

Modelling the Stiffness of an

Unfilled Sandwich Beam using a

Braced Frame Analogy

6.1 Background

In addition to the modified stiffness matrix method (MSM) presented in Chapter 5,

another simplified analytical approach of a unit cell based on the force-distortion re-

lationship technique named the braced frame analogy method (BFA) is presented in

this chapter. This technique also relies on the estimation of the sandwich property into

an equivalent property. This technique also assumes that the stiffness of the sandwich

structure could be found if the deformation of the unit cell could be known. Conse-

quently, the relationship between effort forces and corresponding displacements, i.e., the

stiffness, could be known.

In detail, the BFA assumes that the flexural and transverse shear stiffnesses are obtained

from separate flexural and transverse shear load mechanisms. This assumption is based

on the fact that the deformation of the unfilled sandwich beam with some structural

core topologies, e.g., a web core, may be separated into two deformation modes: (1)

bending deformation, and (2) shear deformation [37, 50].

Although the deformation of a unit cell can be calculated using any plane-frame struc-

tural analysis method such as the unit load method [19, 20] or the MSM presented in

Chapter 5, the simplified analytical method along with the braced frame model with a

truss assumption is proposed in this chapter. This simplified method is used to over-

come the high degree of indeterminacy in the core topology. It is also used to analyse the

89
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stiffness from each component of the sandwich beam separately so that the contribution

of the proposed core topology can be deduced.

6.2 Braced Frame Analogy Method

6.2.1 Assumptions

In addition to the assumptions set in Chapter 5, some additional assumptions have been

set in this chapter as follows:

• The deformation of a sandwich beam is assumed to be deformed into two separate

modes: (1) a bending deformation mode, and (2) a shear deformation mode, as

illustrated in Fig. 6.1. The former is caused by the elongation of the sandwich face

plates in which its response may be calculated using a bending theory. The latter

is caused by the transverse shear load in which its response may be assumed as the

deformation of a shear panel. Similar assumptions have been found in the study

of an unfilled web-core sandwich beam [37] and of an unfilled Bi-Steel sandwich

beam [50].

x y

z

(a)

x y

z

(b)

Figure 6.1: Two deformed shapes of an unfilled sandwich beam (a) a bending defor-
mation mode, and (b) a shear deformation mode

• During bending deformation, the straight plane of the sandwich beam cross section

which is normal to the neutral axis of the undeformed beam remains straight after

deformation. Also, the plane is still normal to the deformed neutral axis.

• During shear deformation, the shear panel is deformed into two separate defor-

mation directions: (1) the shear deformation in the z-direction, and (2) the shear

deformation in the y-direction.
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6.2.2 Equivalent Two-Dimensional Braced Frame Model

In this chapter, the plane-frame model (PFM) used in Chapter 5 is further adapted to be

the equivalent two-dimensional (2D) braced frame model (BFM). The BFM is similar

to the PFM in which all parts of the model are represented by a single straight line

which pass through the local neutral axis of each part and consisted of the top chord,

the bottom chord, the inclined chord, the vertical chord, and if applicable the rigid-link

element. They are compatible in material properties and geometric dimensions with the

top face plate, the bottom face plate, the longitudinal corrugated-strip core (CSC), and

the transverse CSC, respectively, as shown in Table 6.1.

Table 6.1: Structural models and mechanical properties of the elements of the braced
frame analogy method

Unfilled Sandwich Beam Two-Dimension Braced Frame Model
Element Structural Model Mechanical Property

Top Face Plate Top Chord Beam Et = Et
At = btt
It = 1

12bt
3
t

Bottom Face Plate Bottom Chord Beam Eb = Eb
Ab = btb
Ib = 1

12bt
3
b

Longitudinal CSC Inclined Chord Truss a Ec = Ec
Ac = bctc

Transverse CSC Vertical Chord Beam Etc = Ec
Atc = bc

tc
sin θtc

Itc = 2
[

1
12

(
bc
2

)3
tc

]
a in the MSM, the inclined chord is modelled as a beam

However, it should be noted that the ends of the inclined chord connected to other ele-

ments are assumed as a hinge. The inclined chord in this chapter is therefore performed

as a truss element and can be subjected to only an axial force. This is the only aspect

of the BFM which is different from the PFM.

The truss element assumption of the inclined chord is set in accordance with the ana-

lytical result of the unfilled sandwich beam with various truss-like core using the MSM

presented in Chapter 5. For the specific case study presented here, it can be seen from

Table 6.2 that there is no significant difference between modelling the inclined chord as

the beam element or as the truss element. Therefore, the truss element assumption may

be used to model the inclined chord of the BFM. This decision is made to reduce the

number of equations needed to be solved in the proposed BFA so that the analytical

technique and solution may be simplified and calculation time may also be reduced. This

assumption has also been conceptually noted in Allen [31] in which the core of truss-

like core sandwich beams may be modelled as the truss element so that the stiffness is

contributed from only the contraction or the extension of the core.
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Table 6.2: Evaluation of the transverse shear stiffness, DQy, of unfilled sandwich
beams with various core topologies obtained from the presented modified stiffness ma-

trix method (MSM) with and without the truss assumption

(a) unfilled truss core sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

without truss assumption 0.0102 0.0201 0.0261 0.0292 0.0299 0.0289 0.0268 0.0243
with truss assumption 0.0100 0.0199 0.0260 0.0291 0.0298 0.0288 0.0268 0.0243
PD a −1.32% −0.74% −0.58% −0.46% −0.35% −0.25% −0.17% −0.11%

(b) unfilled X-truss core sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

kcb = 0.50
without truss assumption 0.0176 0.0357 0.0435 0.0442 0.0412 0.0369 0.0323 0.0281
with truss assumption 0.0175 0.0357 0.0435 0.0442 0.0412 0.0369 0.0323 0.0281
PD −0.44% −0.13% −0.07% −0.05% −0.03% −0.02% −0.01% −0.01%

kcb = 0.25
without truss assumption 0.0092 0.0195 0.0240 0.0242 0.0224 0.0198 0.0172 0.0149
with truss assumption 0.0092 0.0194 0.0240 0.0242 0.0224 0.0198 0.0172 0.0149
PD −0.44% −0.11% −0.05% −0.03% −0.02% −0.01% −0.01% 0.00%

kcb = 0.10
without truss assumption 0.0038 0.0082 0.0102 0.0103 0.0094 0.0083 0.0072 0.0062
with truss assumption 0.0038 0.0082 0.0102 0.0103 0.0094 0.0083 0.0072 0.0062
PD −0.43% −0.10% −0.04% −0.02% −0.01% −0.01% 0.00% 0.00%

(c) unfilled Bi-CSC core sandwich beams

sy/d 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

kcb = 0.30
without truss assumption 0.0152 0.0273 0.0324 0.0322 0.0293 0.0257 0.0222 0.0190
with truss assumption 0.0152 0.0273 0.0324 0.0321 0.0293 0.0257 0.0222 0.0190
PD −0.34% −0.10% −0.05% −0.02% −0.01% −0.01% 0.00% 0.00%

kcb = 0.25
without truss assumption 0.0118 0.0222 0.0266 0.0265 0.0242 0.0213 0.0183 0.0157
with truss assumption 0.0118 0.0222 0.0266 0.0265 0.0242 0.0213 0.0183 0.0157
PD −0.36% −0.10% −0.05% −0.02% −0.01% −0.01% 0.00% 0.00%

kcb = 0.20
without truss assumption 0.0089 0.0175 0.0212 0.0211 0.0193 0.0169 0.0146 0.0125
with truss assumption 0.0089 0.0175 0.0212 0.0211 0.0193 0.0169 0.0146 0.0125
PD −0.39% −0.10% −0.04% −0.02% −0.01% −0.01% 0.00% 0.00%
a PD – Percentage Difference, compared with the model without truss assumption

Figure 6.2(b) shows the repetitive part of the BFM which illustrates some differences

from the PFM.

1 2 3 4

5 6 7 8

sc

d

x y

z

(a)

1 2 3 4

5 6 7 8

fc fc

sc

d

x y

z

truss element
with hinge
at both ends

(b)

Figure 6.2: The repetitive part of (a) an unfilled sandwich beam, and (b) the equiv-
alent two-dimensional braced frame model
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6.3 Flexural Load Transfer Mechanism

6.3.1 Equilibrium of Force of a Unit Cell

Considering the unit cell of the BFM subjected to pure bending moment, M , as shown

in Fig. 6.3(a), it can be expressed that the inclined chords should be extended if the

neutral axis of the sandwich beam with an unsymmetrical section about the y-axis is

located near the top face plate, i.e., zt < zb; as a result, the inclined chords are subjected

to tensile force. Therefore, the equilibrium of force in the z-direction of the free body

diagram (FBD) of the right part of the unit cell (Fig. 6.3(b)) yields that Fc1 = Fc2 = Fc.

Consequently, the equilibrium of moment about the x-axis is as follows:

1 2 3 4

5 6 7 8

N.A.

M M

gty

gby

sc

zt

zb

d

θ

x y

z
C1

C2

(a)

1 2 3 4

5 6 7 8

N.A.

M

Fty

Fby

Mt

Mb

Fc1

Fc2

gty

gby

sc

zt

zb

d

θ

C1

C2

(b)

Figure 6.3: (a) the unit cell of the braced frame model subjected to pure bending
moment, and (b) the free body diagram of the right part of the unit cell

M = Mt +Mb + Ftyzt + Fbyzb + Fc (zb − zt) cos θ + Fc (gby − gty) sin θ (6.1)

6.3.2 Displacement Compatibility of a Deformed Unit Cell

According to the small displacement assumption, the deformed shape of the unit cell

subjected to pure bending moment can be approximately represented using the straight

line shape, as shown in Fig. 6.4. Considering this deformed shape, the elongation length

at each layer of the face plate can be expressed in terms of δty, for example, δby = zb
zt
δty.
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1 2 3 4

5 6 7 8

N.A.

M M

δty

2

δby

2

sc

zt

zb

d

θ

x y

z
C1

Figure 6.4: Deformed shape of the unit cell of the equivalent two-dimension braced
frame model subjected to pure bending moment

The extended length of the inclined chords can be also expressed in terms of δty as

follows:

δc =

√
L2
z +

[
Ly −

1
2

(δty − δby)
]2

− Lc

=

√
L2
z +

[
Ly −

1
2

(
1− zb

zt

)
δty

]2

− Lc

= kbδty

(6.2)

where kb is elongation factor of the inclined chord expressed as follows1:

kb =


−sy
d

(
1− zb

zt

) ∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
s2
y

d2

)n−1

if sy ≤ d

−
(

1− zb
zt

) ∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
d2

s2
y

)n−1

if sy ≥ d
(6.3)

and Lc is the initial length of the inclined chord expressed as Lc =
√
L2
z + L2

y where

Lz = hc − tc and Ly = sc − 2fc.

It should be noted that the small length between nodes 1 and 2 is assumed to not

elongate. This means that the distance fc before deformation remains the same as after

deformation. This assumption is also applied to the small length between nodes 3 and

4, 5 and 6, and 7 and 8.

6.3.3 Governing Equation

Knowing the extended length of each member, the internal resultant force occurs in

the top face plate, Fty, the bottom face plate, Fby, and the inclined chords, Fc, can be

1 see the derivation of the elongation factor kb in Appendix A
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expressed as follows:

Fty =
EtAt
sc

δty (6.4a)

Fby =
EbAb
sc

δby (6.4b)

Fc =
EcAc
Lc

δc (6.4c)

Similarly, the internal bending moment at the top face plate, Mt, and at the bottom

face plate, Mb, – as a result of the internal forces Fty and Fby, respectively – can be

expressed as follows:

Mt =
1
12
EtAtt

2
t

sczt
δty (6.5a)

Mb =
1
12
EbAbt

2
b

sczb
δby (6.5b)

Substitute Eqs. 6.4 and 6.5 into Eq. 6.1, thus

M =
{

1
12
EtAtt

2
t

sczt
+
EtAtzt
sc

+
1
12
EbAbt

2
b

sczt
+
EbAbzb
sc

zb
zt

+

EcAc
Lc

kb [(zb − zt) cos θ + (gby − gty) sin θ]
}
δty

(6.6)

Equation 6.6 can be further expressed in terms of the bending curvature, d2z
dy2 , by intro-

ducing δty = −sczt d
2z
dy2 [135], thus

M = −
{

1
12
EtAtt

2
t + EtAtz

2
t +

1
12
EbAbt

2
b + EbAbz

2
b+

EcAc
Lc

kbsczt [(zb − zt) cos θ + (gby − gty) sin θ]
}
d2z

dy2

(6.7)

Therefore, the governing equation of the sandwich beam subjected to pure bending

moment is

d2z

dy2
= −M

Dy
(6.8)

where the flexural stiffness, Dy, is

Dy =
1
12
EtAtt

2
t + EtAtz

2
t +

1
12
EbAbt

2
b + EbAbz

2
b+

EcAc
Lc

kbsczt [(zb − zt) cos θ + (gby − gty) sin θ]

=
1
12
EtAtt

2
t + EtAtz

2
t +

1
12
EbAbt

2
b + EbAbz

2
b+

EcAc
L2
c

kbscztd

(
sc − 2fc
hc − tc

)[
(zb − zt) +

1
2

(tt − tb)
]

(6.9)



Chapter 6. Modelling ... using a Braced Frame Analogy 96

6.3.4 Summary of Calculation Procedure

Figure 6.5 illustrates the procedure to calculate the flexural stiffness, Dy, using the BFA.

Dy = Df
y + Dc

y

Df
y = Dt

y + Db
y

Dt
y = 1

12EtAtt
2
t + EtAtz

2
t Db

y = 1
12EbAbt

2
b + EbAbz

2
b

zt = hc
2 + tt

2 − z zb = hc
2 + tb

2 − z

z =
EtAt(hc2 +

tt
2 )−EbAb

(
hc
2

+
tb
2

)
EtAt+EbAb+2EcAci

Dc
y = EcAc

L2
c
kbscztd

(
sc−2fc
hc−tc

) [
(zb − zt) + 1

2 (tt − tb)
]

kb =


−sy
d

(
1− zb

zt

) ∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
s2
y

d2

)n−1

if sy ≤ d

−
(

1− zb
zt

) ∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
d2

s2
y

)n−1

if sy ≥ d

Lc =
√

(hc − tc)2 + (sc − 2fc)
2

sy = sc − (gty + gby) or sy = d
(
sc−2fc
hc−tc

)

gty > 0 and gby > 0

gty = fc − tt+tc
2 tan θ gby = fc − tb+tc

2 tan θd = tt
2 + hc + tb

2

Parameters

Top Face Plate
Et, b, tt

Bottom Face Plate
Eb, b, tb

CSC Core
Ec, bc or kcb, tc, sc, fc, hc

yes

no

Figure 6.5: The Calculation procedure of the flexural stiffness, Dy

6.4 Transverse Shear Load Transfer Mechanism

6.4.1 Equilibrium of Force of a Unit Cell

Considering the FBD of the right-hand part of a unit cell subjected to the transverse

shear force, Qy, as shown in Fig. 6.6(b), the expression of the equilibrium of force in

the y-direction yields that Fc1 = Fc2 = Fc. Therefore, the equilibrium of force in the

z-direction can be expressed as follows:

Ftz + Fbz + 2Fc sin θ = Qy (6.10)
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Figure 6.6: (a) the unit cell of the equivalent two-dimension braced frame model
subjected to transverse shear force, (b) the free body diagram of the right part of the
unit cell subjected to the transverse shear force, Qy, and (c) the free body diagram of

the top part of the unit cell subjected to a couple of horizontal force, H

6.4.2 Displacement Compatibility of a Deformed Unit Cell

In the BFA, the unit cell subjected to the transverse shear force, Qy, is assumed to

deform into two separate modes: (1) the deformation in the z-direction due to the

transverse shear force, Qy, itself (Fig. 6.7(a)), and (2) the deformation in the y-direction

due to a couple of horizontal force, H, (Fig. 6.7(b)). A couple of horizontal force, H, is

also applied to the unit cell to maintain the static equilibrium as earlier mentioned in

detail in Sec. 4.1, Page 40.
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Figure 6.7: Deformed shape of the unit cell of the equivalent two-dimension braced
frame model subjected to (a) transverse shear force, Qy, and (b) a couple of horizontal

force, H
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Considering the first deformed configuration as illustrated in Fig. 6.7(a), any displace-

ment in the z-direction of the top or bottom face plate may be found if the deformed

shape of the unit cell can be approximately assumed in advance. Here, the whole unit cell

subjected to only the transverse shear force, Qy, is assumed to deform like a fixed-end

beam. Thus, the face plate is considered to deform in a reverse curvature.

Because of the constant core depth assumption, the relative end displacement in the

z-direction of the top face plate, δtz, and the bottom face plate, δbz, are identical; thus

δtz = δbz = δsz. The elongation length of the inclined chords C1 and C2 can be also

expressed in terms of δsz, as δc1 and δc2 respectively, as follows:

δc1 =

√[
Lz −

Ly
sc
δsz

]2

+ L2
y − Lc (6.11a)

δc2 =

√[
Lz +

Ly
sc
δsz

]2

+ L2
y − Lc (6.11b)

Equation 6.11 can be further expressed in terms of the elongation factor ksz as follows2:

− δc1 = δc2 = δc = kszδsz (6.12)

where

ksz =


2
sc − 2fc
sc

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
s2
y

d2

)n−1

if sy ≤ d

2
hc − tc
sc

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
d2

s2
y

)n−1

if sy ≥ d
(6.13)

Here, the absolute value of the displacement lengths δc1 and δc2 are assumed to be equal

in accordance with the FE results (Chapter 4). According to the study of the unfilled

sandwich beam with the Bi-CSC of example configuration as presented in Table 6.3,

it is found that the difference between the displacements δc1 and δc2 of each repetitive

unit cell is less than 2.70%. Further derivation in Appendix A also shows that the

displacements δc1 and δc2 are equal in absolute value. Therefore, it may be reasonable

to introduce this assumption in the BFA to simplify the analytical method.

Because of the fixed-end beam behaviour assumption, the displacements δtz and δbz

may be expressed in terms of the applied force as Eqs. 6.14a and 6.14b. Meanwhile, the
2 see the derivation of the elongation factor ksz in Appendix A



Chapter 6. Modelling ... using a Braced Frame Analogy 99

Table 6.3: Displacement of the inclined parts of unfilled sandwich beams with bi-
directional corrugated-strip core obtained from the finite element method of three-point

loaded beam (FE-TPB)

Unit Cell no. 1 2 3 4 5
1L 1R 2L 2R 3L 3R 4L 4R 5L 5R

δc1 [×10−4] −6.4862 6.1946 −6.2054 6.2267 −6.1995 6.2299 −6.1904 6.2279 −6.2582 5.4402
δc2 [×10−4] 6.3154 −6.0356 6.0518 −6.0631 6.0385 −6.0738 6.0292 −6.0720 6.0836 −5.3200
PD a 2.70% 2.63% 2.54% 2.70% 2.67% 2.57% 2.67% 2.57% 2.87% 2.26%
a PD – Percentage Difference, compared in absolute value of δc1 and δc2

P

L/2 L/2

x y

z
1L

1
1R 2L

2
2R 3L

3
3R 4L

4
4R 5L

5
5R C1

C2

sy

d
= 1.00

displacement δc can be expressed as Eq. 6.14c.

δtz =
1
12

s3
c

EtIt
Ftz (6.14a)

δbz =
1
12

s3
c

EbIb
Fbz (6.14b)

δc =
Lc
EcAc

Fc (6.14c)

Substitute Eq. 6.14 into Eq. 6.10, thus

Qy =
(

12
EtIt
s3
c

+ 12
EbIb
s3
c

+ 2
EcAc
Lc

ksz sin θ
)
δsz (6.15)

Similarly, the relationship between a couple horizontal force, H, and the displacement

in the y-direction δsy of the second deformed configuration may be expressed as follows:

H =
(

24
EcItc

(hc − tc)3 + 2
EcAc
Lc

ksy cos θ
)
δsy (6.16)

where ksy is the elongation factor of the inclined chord expressed as follows3:

ksy =


2
sy
d

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
s2
y

d2

)n−1

if sy ≤ d

2
∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
d2

s2
y

)n−1

if sy ≥ d
(6.17)

3 see the derivation of the elongation factor ksy in Appendix A
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6.4.3 Formulation of Transverse Shear Stiffness

Having the deformed shape of a unit cell subjected to the transverse shear force, Qy,

as illustrated in Fig. 6.7, the transverse shear stiffness, DQy, of the unit cell may be

expressed as follows:

DQy =
Qy

δsy
d + δsz

sc

=
Qy

H
dDyQy

+ Qy
scDzQy

=
1

sc
d2DyQy

+ 1
scDzQy

(6.18)

where

Dz
Qy = 12

EtIt
s3
c

+ 12
EbIb
s3
c

+ 2
EcAc
Lc

ksz sin θ (6.19a)

Dy
Qy = 24

EcItc

(hc − tc)3 + 2
EcAc
Lc

ksy cos θ (6.19b)

6.4.4 Summary of Calculation Procedure

Figure 6.8 illustrates the procedure to calculate the transverse shear stiffness, DQy, using

the BFA.

6.5 Verification of the Stiffness Equations

6.5.1 Flexural Stiffness Equation

In general, the contribution of the core to the flexural stiffness may be expressed into

two possible cases as follows:

Unsymmetrical Section: If the top face plate is thicker and/or stronger than the

bottom face plate so that Ettt > Ebtb, the neutral axis of this cross section should be near

the top face plate. This means that zt < zb. Thus, zb/zt is greater than one and then the

term −1
2

(
1− zb

zt

)
of Eq. 6.2 is a positive value. As a result, the deformed inclined chords

are lengthened and provide internal axial tensile forces to resist the applied moment,

i.e., the core obviously provides some contribution to the flexural stiffness. Similar

behaviour can be found in the case of the top face plate being thinner and/or weaker
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DQy = 1
sc

d2D
y
Qy

+ 1
scD

z
Qy

Dz
Qy = 12EtIt

s3c
+ 12EbIb

s3c
+ 2EcAcLc

ksz sin θ Dy
Qy = 24 EcItc

(hc−tc)3 + 2EcAcLc
ksy cos θ

ksz =


2
sc − 2fc
sc

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
s2
y

d2

)n−1

if sy ≤ d

2
hc − tc
sc

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n
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s2
y

)n−1

if sy ≥ d
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if sy ≥ d

Lc =
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(hc − tc)2 + (sc − 2fc)
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sy = sc − (gty + gby) or sy = d
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Figure 6.8: The calculation procedure of the transverse shear stiffness, DQy

that the bottom face plate so that Ettt < Ebtb in which the inclined chords are shortened

and provide internal axial compressive forces.

Symmetrical Section: If the geometric cross section is symmetric, i.e., tt = tb, and

the material properties of the top and bottom face plates are the same, i.e., Et = Eb,

the neutral axis of this cross section will be at the mid height of the cross section, i.e.,

zt = zb. Consequently, the inclined chords should be not axially deformed. This means

that there are no internal axial forces occuring in these inclined chords. As a result, the

flexural stiffness contribution of the core disappears as the terms (zb − zt) and (tt − tb)
of Eq. 6.9 are null.

According to the two possible cases mentioned above, it may mean that the core will

contribute to the flexural stiffness only if the sandwich beam has an unsymmetrical cross

section.

In the case of symmetrical cross section, the flexural stiffness of sandwich beam with

bi-directional CSC is therefore approximately equal to only the contribution of the face

plates as found in the previous study of the FE sandwich beam model (see Sec. 4.4.1).

Similar behaviour has been noted by Allen [31] in which the equivalent flexural stiffness of

an unfilled truss core sandwich beam may be approximately equal to only the summation

of the stiffness of the top and bottom face plates.
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Having the assumption that the core is not presented, i.e., EcAc = 0, the flexural

stiffness, Dy, will be reduced to the flexural stiffness of the sandwich beam with a weak

core assumption [22] as follows:

Dy =
1
12
EtAtt

2
t + EtAtz

2
t +

1
12
EbAbt

2
b + EbAbz

2
b (6.20)

6.5.2 Transverse Shear Stiffness Equation

To evaluate the reliability of the presented BFA, the analytical solutions of the transverse

shear stiffness, DQy, of the unfilled Bi-CSC sandwich beam are verified by comparison

with the numerical solutions obtained from the FE solution of three-point loaded beam

presented in Chapter 4.

Figure 6.9 presents the comparison of the transverse shear stiffness, DQy, of the unfilled

sandwich beam with Bi-CSC topology obtained from the BFA and the FE-TPB. It can

be seen that the BFA does not correlate well with the FE-TPB. The BFA seems to give

less stiffness than the FE-TPB method. This phenomenon may arise from assuming

that the unit cell deforms like a fixed-end beam rather than a true deformation. Similar

phenomenon can also be found in a truss core sandwich beam, especially when sy/d is

greater than one, as demonstrated in Fig. 6.10.

The analysis shows that the BFA correlates well in the development of trends with

the FE method but the BFA results in differences in magnitude compared with the FE

solution. Therefore, it may be noted here that the presented BFA may be used as a quick

solving simplified analytical solution to study the stiffness response of the presented core

topology in the feasibility study stage before a more refined computationally expensive

analysis is later performed. However, although trends in response will be highlighted

with the BFA method, the magnitudes will be incorrect.

6.6 Evaluation of the Stiffness Contribution of the Pro-

posed Core Topology

In this section, the stiffness contribution of the presented Bi-CSC topology to overall

stiffness of the unfilled sandwich beam was evaluated using the BFA. The contribution

of the sandwich core may be extracted from the overall stiffness of the sandwich beam

due to the flexural and transverse shear stiffness equations, as expressed in Eqs. 6.9 and

6.18, consisting of the separate contribution of the face plates and the core.



Chapter 6. Modelling ... using a Braced Frame Analogy 103

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

1 0

B
i-

C
S

C
:
k
c
b

=
0
.3

0

s y
/
d

DQy/(Ebtb)[N/m]

M
S

M

B
F
A

F
E

-T
P

B

(a
)

k
c
b

=
0
.3

0

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

1 0

B
i-

C
S

C
:
k
c
b

=
0
.2

5

s y
/
d

DQy/(Ebtb)[N/m]

M
S

M

B
F
A

F
E

-T
P

B

(b
)

k
c
b

=
0
.2

5

0
0
.5

1
.0

1
.5

2
.0

2
.5

0
.0

5

0
.0

4

0
.0

3

0
.0

2

0
.0

1 0

B
i-

C
S

C
:
k
c
b

=
0
.2

0

s y
/
d

DQy/(Ebtb)[N/m]

M
S

M

B
F
A

F
E

-T
P

B

(c
)

k
c
b

=
0
.2

0

F
ig

u
r
e

6
.9

:
C

om
pa

ri
so

n
of

th
e

tr
an

sv
er

se
sh

ea
r

st
iff

ne
ss

,
D

Q
y
,

of
un

fil
le

d
bi

-d
ir

ec
ti

on
al

co
rr

ug
at

ed
-s

tr
ip

co
re

sa
nd

w
ic

h
be

am
s

ob
ta

in
ed

fr
om

th
e

pr
es

en
te

d
br

ac
ed

fr
am

e
an

al
og

y
m

et
ho

d
(B

FA
),

th
e

m
od

ifi
ed

st
iff

ne
ss

m
at

ri
x

m
et

ho
d

(M
SM

),
an

d
th

e
fin

it
e

el
em

en
t

m
et

ho
d

of
th

re
e-

po
in

t
lo

ad
ed

be
am

(F
E

-T
P

B
)



Chapter 6. Modelling ... using a Braced Frame Analogy 104

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.05

0.04

0.03

0.02

0.01

0

Truss Core

sy/d

D
Q
y
/
(E
b
t b

)
[N
/
m

]

MSM

BFA

FE-TPB

Figure 6.10: Comparison of the transverse shear stiffness, DQy, of unfilled truss core
sandwich beams obtained from the presented braced frame analogy method (BFA), the
modified stiffness matrix method (MSM), and the finite element method of three-point

loaded beam (FE-TPB)

The configuration of the unfilled sandwich beam was set in both symmetrical and un-

symmetrical configurations. All geometric parameters were kept constant except the

ratios tt/tb and sy/d. Table 6.4 summarise the values of the geometric parameters used

in this section.

Table 6.4: Configuration of the case studies

Parameter b tt tb kcb tc sc fc hc

Value 100, 200 3, 6, 12, 24 12 0.25 2 sc 20 120
Note tt

tb
= 1

4 ,
1
2 , 1, 2 vary in terms of sy/d

where 0 ≤ sy/d ≤ 5.0

6.6.1 Flexural Stiffness

As earlier mentioned in Sec. 6.5.1, the flexural stiffness contribution of the core occurs

only if the sandwich section is not symmetric. Therefore, the configuration of the unfilled

sandwich beam studied in this section is limited to unsymmetrical cross sections only.

Although the core may contribute to the overall flexural stiffness if the cross section

is unsymmetrical, it was found that the stiffness contribution of the presented Bi-CSC

topology to the overall flexural stiffness of the unfilled sandwich beam can be neglected.

This is because the contributions of all core configurations studied here are less than

3.20%, as can be seen from Fig. 6.11.

However, it should be noted that the corrugated-strip plate studied in this section is

quite thin. In another core configuration with quite a thick plate, the flexural stiffness

contribution of the core might be greater. Thus, it should be further studied in detail.
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Figure 6.11: Flexural stiffness contribution of the bi-directional corrugated-strip core
to the overall flexural stiffness of unfilled sandwich beams obtained from the presented

braced frame analogy method (BFA)

6.6.2 Transverse Shear Stiffness

Unlike the flexural stiffness contribution of the core, the overall transverse shear stiffness,

DQy, is significantly contributed to the core. As can be seen from Fig. 6.12, the transverse

shear stiffness contribution of the core rapidly increases at lower values of sy/d. In the

range of 0 ≤ sy/d ≤ 0.25, the stiffness contribution seems to be the same for all cores,

i.e., not dependent upon the value of tt/tb. At sy/d equals 0.25, the contribution of

the core is about 50% of overall stiffness. Then, the stiffness contribution of the core

depends upon the value of tt/tb. It gradually increases and reaches a maximum at sy/d

about 1.50. For unsymmetrical cores with tt/tb = 1/4 and tt/tb = 1/2, the maximum

stiffness contribution of the core is about 90%. The contribution of the core of about

70% is also found with the core having tt/tb = 2.
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Figure 6.12: Transverse shear stiffness contribution of the bi-directional corrugated-
strip core to the overall flexural stiffness of unfilled sandwich beams obtained from the

presented braced frame analogy method (BFA)
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Considering the transverse shear stiffness contributed by the core itself, it was found that

the stiffness varies with the ratio of sy/d. As can be seen from Fig. 6.13, the stiffness

sharply increases from sy/d = 0 to its peak at sy/d about 0.75. Then, the stiffness

gradually decreases. A similar trend of the stiffness can be found in all core configuration

studied here. According to this phenomenon, it may mean that the optimum core

configuration of the Bi-CSC is at sy/d about 0.75 (θ ≈ 53.0◦).
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Figure 6.13: Transverse shear stiffness contribution of the bi-directional corrugated-
strip core obtained from the presented braced frame analogy method (BFA)

6.7 Concluding Remark

The simplified analytical method named the braced frame analogy method (BFA) was

presented. The method was also based on the force and distortion relationship of repet-

itive part of an unfilled sandwich beam. The BFA was also proposed as a simplified

analytical method to overcome the high degree of indeterminacy of the presented bi-

directional corrugated-strip core (Bi-CSC) topology. The 3D configuration of the un-

filled sandwich beam with the presented core topology was also simplified as a 2D braced

frame structure. The model was further adapted from the two-dimensional (2D) plane-

frame model (PFM) presented in Chapter 5 in which only the inclined chords were

adapted and modelled as truss elements.

The formulation of the flexural stiffness, Dy, was presented. It was performed using the

flexural load mechanism of a repetitive part of a sandwich beam, i.e., the equilibrium of

force and the displacement compatibility, in which the elongation of the inclined chord

was in terms of an elongation factor kb.

The formulation of the transverse shear stiffness, DQy, was also presented. It was also

performed in a similar manner as the flexural stiffness in which the transverse shear
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load mechanism of a repetitive part of the sandwich beam was used. The displacement

compatibility of a repetitive part subjected to the transverse shear load was assumed

to deform into two separate modes: (1) the deformation in the z-direction due to the

transverse shear force, Qy, and (2) the deformation in the y-direction due to a couple

of horizontal force, H. The elongation of the inclined chord was also in terms of the

elongation factors ksz and ksy.

The flexural and transverse shear stiffness equations obtained from the presented BFA

were verified. It was found that the flexural stiffness reduces to the flexural stiffness

equation of a sandwich beam assumed to have a very weak core. It was found that the

transverse shear stiffness magnitude was not a good correlation with the FE solution

obtained from an unfilled sandwich beam model.

The presented BFA was then used to evaluate the stiffness contribution of the proposed

core topology. It was found that the flexural stiffness contribution of the core can be

neglected. However, the overall transverse shear stiffness was significantly contributed by

the core and can not be ignored. The maximum transverse shear stiffness contributed

by the core can be about 90% of the overall stiffness. The contribution of the core

varies with the cross section geometry. In addition, it was found that the optimum

configuration of the core itself may be at sy/d about 0.75 (θ ≈ 53.0◦).

The next chapter presents the last simplified analytical method referred to as the dis-

crete beam method (DBM). The DBM is the third simplified analytical method to obtain

the transverse shear stiffness of the unfilled sandwich beam with the Bi-CSC topology

presented in this research. The DBM is also proposed to overcome a high degree of in-

determinacy of the proposed Bi-CSC topology, and to separate the stiffness contribution

of the core from the overall stiffness of the unfilled sandwich beam. Rather than using

the force-distortion relationship concept, as the basis concept of the MSM and the BFA,

the transformation of stress and strain from the local coordinate system to the global

coordinate system is introduced for the DBM.





Chapter 7

Modelling the Transverse Shear

Stiffness of an Unfilled Sandwich

Beam using a Discrete Beam

Method

7.1 Background

In addition to deducing the transverse shear stiffness, DQ, from the simplified analytical

methods based on the force-distortion relationship technique as previously presented in

Chapters 5 and 6, another simplified method based on the estimation of sandwich cross

section properties into either a single- or multi-layer equivalent property may be used

[136, 137]. This approach may be achieved by transforming the stress and strain of each

part of the sandwich cross section from its own local coordinate system into the unique

global coordinate system. In practice, the average transformed stiffness is then carried

out and used as an equivalent stiffness property of the sandwich cross section.

A number of literature sources based on this approach have been found. In 2004, for ex-

ample, Aboura et al. [136] presented the analytical solutions for a sinusoidal-corrugated

cardboard sandwich panel. The elastic moduli of corrugation in the local system were

first transformed to the global system and the average in-plane stiffness was then ap-

proximated over the depth of the sandwich section and the unit cell. Talbi et al. [137]

also presented a similar work to obtain the equivalent stiffness of an unfilled corrugated

core sandwich beam using a transformation stress and strain technique in which some

methodologies to obtain equivalent stiffness properties were improved.

109
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In the author’s opinion, the estimation of stiffness properties using a transformation of

stress and strain technique may be a much more simplified technique than the force-

distortion technique because there is no need to perform complex constitutive and com-

patibility equations. It is arguable that therefore this technique may be presented as

an alternative simplified analytical approach to understand the stiffness response of a

sandwich cross section in preliminary stage. Since the flexural stiffness contribution

of the presented core topology and other similar core topologies previously studied in

Chapters 4, 5, and 6 can be neglected, only the transverse shear stiffness, DQ, of sand-

wich cross section is derived in this chapter using the transformation of stress and strain

technique and then compared with other previously presented methods.

7.2 Discrete Beam Method

7.2.1 Assumptions

In this chapter, all assumptions but the shear deformation shape assumed in the BFA

are also applied to the discrete beam method (DBM). The shear deformation shape,

however, is assumed to deform in a different shape as later detailed in Sec. 7.3.1.

7.2.2 Transformational Constitutive Law

In this chapter, a repetitive part of an unfilled sandwich beam is defined as shown in

Fig. 7.1. Here, the local and global coordinate systems are defined as the 123-axis and

xyz-axis systems, respectively.
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Figure 7.1: The repetitive part of an unfilled sandwich beam used in the discrete
beam method

Since the engineering properties of the corrugated-strip core (CSC) are defined in its

inclined plane, which is aligned in angle to the y-axis of the global coordinate system,

the stress and strain of the core need to be transformed from its local coordinate system
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to the global coordinate system of the sandwich beam. In general 2D stress at a point,

the transformed tensor stress and strain equations are [138]
σ2

σ3

τ23

 =


m2

2 n2
2 2m2n2

m2
3 n2

3 2m3n3

m2m3 n2n3 m2n3 +m3n2




σy

σz

τyz

 (7.1a)
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 (7.1b)

and the governing equation of engineering stress and strain relationship in the local

coordinate system is [138]
σ2

σ3

τ23

 =


Q22 Q23 0

Q23 Q33 0

0 0 2Q55
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ε2

ε3
1
2γ23

 (7.2)

Utilising Eqs. 7.1 and 7.2, the governing equation of engineering stress and strain rela-

tionship in the global coordinate system is
σy

σz

τyz

 =
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or

{σi} =
[
Q̄ij
]
{εj} (7.3b)

where i = 1, 2, 3 and j = 1, 2, 3.

The Q̄ij quantities are the transformed stiffness quantities obtained directly from [138]

as follows:
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(7.4)

where c and s are the direction cosine and the direction sine of the angle between the

2- and y-axis respectively.
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The Qij quantities are the stiffness quantities obtained from the local coordinate system,

modified to incorporate isotropic materials without Poisson’s effect in any direction of

the local coordinate system, defined as follows:
Q22 Q23 0

Q23 Q33 0

0 0 Q55

 =


E 0 0

0 E 0

0 0 G

 (7.5)

Constitutive Law of a Sandwich Face Plate: Since the local coordinates of the

top and bottom face plates are identical with the global coordinate, there is no need

to transform the stiffness quantities. Therefore, the simplified Eq. 7.6 can be applied

directly to the transformed stiffness quantities, Q̄ij , of the top face plate and the same

equation with subscript b indicates for the bottom face plate.

Q̄22

Q̄23

Q̄25

Q̄33

Q̄35

Q̄55


t

=



Q22

Q23

0

Q33

0

Q55


t

(7.6)

Constitutive Law of a Corrugated-Strip Core: Since the pattern of the cor-

rugation of the CSC is divided into three repetitive parts along the y-direction, the

constitutive law of the core needs to be divided into three parts. As can be seen in

Fig. 7.1, the first two parts are related to the flat parts of the CSC located in the ranges

of − sc
2 ≤ y ≤ −

(
sc
2 − fc

)
and of

(
sc
2 − fc

)
≤ y ≤ sc

2 . Since the local coordinates of these

parts are identical with the global coordinate, there is no need to transform the stiffness

quantities. Therefore, the same equation as Eq. 7.6 with new subscripts c1 and c2 can

be also applied to these parts. On the other hand, the local corrugation plane in the

range of −
(
sc
2 − fc

)
≤ y ≤

(
sc
2 − fc

)
is aligned at an angle to the y-axis. Therefore, it is

necessary to transform the local stress and strain to the global coordinate system. The

transformed stiffness quantities, Q̄ij , of the inclined part C1 can be expressed as Eq. 7.7
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and the same equation with subscript c2 indicates for the inclined part C2.
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(7.7)

7.3 Transverse Shear Load Transfer Mechanism

7.3.1 Shear Deformation Shape of a Unit Cell

Similar to the BFA, the unit cell is subjected to a transverse shear force, Qy, in the

DBM and is also assumed to deform into two separate modes: (1) the deformation in

the z-direction due to the transverse shear force, Qy, itself, and (2) the deformation in

the y-direction due to a couple of horizontal force, H, as illustrated in Fig. 7.2(a) and

7.2(b), respectively. Instead of assuming the shear panel deforms as a fixed-end beam,

the simple shear deformation shape of the shear panel as shown in Fig. 7.2 is assumed

for the DBM.
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Figure 7.2: Shear deformation shapes of the unit cell subjected to (a) transverse shear
force, Qy, and (b) a couple of horizontal force, H

7.3.2 Average Shear Stiffness of a Unit Cell

Considering the first deformed configuration as illustrated in Fig. 7.2(a) and assuming

that shear strain is constant through the depth of the sandwich cross section, the internal

transverse shear force, Qy, of the sandwich cross section at any cross section along the
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y-axis may be calculated as follows [137]:

Qy =
∫ zt+

tt
2

−zb−
tb
2

τyzbdz

=
∫ zt+

tt
2

−zb−
tb
2

[
Q̄3j

]
{εj} bdz

(7.8)

In the case of the sandwich beam subjected to only the transverse shear force, Qy,

Eq. 7.8 may be simplified as follows:

Qy =
∫ zt+

tt
2

−zb−
tb
2

Q̄55γyzbdz (7.9)

Thus, the shear stiffness of the sandwich cross section in the z-direction, Dz
Qy, at any

distance along the y-direction is as follows:

Dz
Qy =

∫ zt+
tt
2

−zb−
tb
2

Q̄55bdz

=
(
Dz
Qy,t +Dz

Qy,b

)
+
(
Dz
Qy,c1 +Dz

Qy,c2

) (7.10)

where Dz
Qy,t and Dz

Qy,b are the shear stiffness of the top and bottom face plates respec-

tively and Dz
Qy,c1 and Dz

Qy,c2 are the shear stiffness of CSCs C1 and C2 respectively.

Since the top and bottom face plates are aligned in the xy-plane of the global coordinate

system, the shear stiffness of these face plates can be expressed as follows:

Dz
Qy,t = bGttt (7.11a)

Dz
Qy,b = bGbtb (7.11b)

Since an inclined part of the CSC is aligned at an angle to the y-axis of the global

coordinate system, the shear stiffness of CSCs C1 and C2 at any distance along the

y-direction is function of y and can be expressed as follows:

Dz
Qy,c1 = kcbbQ̄55,c1tcz (7.12a)

Dz
Qy,c2 = kcbbQ̄55,c2tcz (7.12b)

where tcz is the cross section of the CSC defined in terms of y as follows:

tcz =


tc if − sc

2 ≤ y ≤ −
(
sc
2 − fc

)
tc

cos θ if −
(
sc
2 − fc

)
≤ y ≤

(
sc
2 − fc

)
tc if

(
sc
2 − fc

)
≤ y ≤ sc

2

(7.13)
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Since the transformed stiffness quantities Q̄55,c1 and Q̄55,c2 in this case are identical,

thus

Dz
Qy,c = Dz

Qy,c1 +Dz
Qy,c2

= 2kcbbQ̄55,ctcz
(7.14)

where Q̄55,c is the stiffness quantity modified to incorporate isotropic materials without

Poisson’s effect in any direction of the local coordinate system, defined in terms of y as

follows:

Q̄55,c =


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[
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Gc if −
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(
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Gc if

(
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)
≤ y ≤ sc

2

(7.15)

Since the shear stiffness Dz
Qy,c of the CSC varies along the y-direction, the shear stiffness

of the unit cell needs to average [137] as defined as follows:

D̄z
Qy =

1
sc

∫ sc
2

− sc
2

Dz
Qydy

= Dz
Qy,t +Dz

Qy,b + D̄z
Qy,c

(7.16)

In this case, only the stiffness of the corrugated-strip core needs to average as D̄z
Qy,c

expressed as follows:

D̄z
Qy,c =

1
sc

∫ sc
2

− sc
2

Dz
Qy,cdy

=
1
sc

∫ sc
2

− sc
2

2kcbbQ̄55,ctczdy

= 2
kcbb

sc
Gc (kzch + kzci)

(7.17)

where kzch and kzci are the contribution factors of the horizontal flat parts and the inclined

parts of the CSC, respectively, expressed as follows:

kzch = 2tcfc (7.18a)

kzci =
[
c4 + 2 (1 + 2νc) c2s2 + s4

] tc
cos θ

(sc − 2fc) (7.18b)

In the case of neglecting the small horizontal flat parts of the CSC and assuming the

inclined parts as a truss element, thus

kzch = 0 (7.19a)

kzci = 2 (1 + νc) c2s2 tc
cos θ

(sc − 2fc) (7.19b)
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It should be noted that there is no contribution of the transverse CSCs in this case.

Similarly, the relationship between a couple horizontal force, H, and the shear deforma-

tion in the y-direction of the second deformed configuration as illustrated in Fig. 7.2(b)

may be derived as follows:

H =
∫ sc

2

− sc
2

τzybdy

=
∫ sc

2

− sc
2

[
Q̄3j

]
{εj} bdy

=
∫ sc

2

− sc
2

Q̄55γzybdy

(7.20)

Thus, the shear stiffness of the sandwich cross section in the y-direction, Dy
Qy, at any

distance along the z-direction is as follows:

Dy
Qy =

∫ sc
2

− sc
2

Q̄55bdy

=
(
Dy
Qy,c1 +Dy

Qy,c2

)
+Dy

Qy,tc

(7.21)

where Dy
Qy,c1 and Dy

Qy,c2 are the shear stiffness of the longitudinal CSCs C1 and C2

respectively and Dy
Qy,tc is the shear stiffness of the transverse CSCs. In this case, there

is no contribution by the top and bottom face plates as well as of the small horizontal

flat parts of the CSC.

Since the inclined part of the CSC is aligned in angle to the y-axis of the global coordinate

system, the shear stiffness of CSCs C1 and C2 at any distance along the z-direction can

be expressed as follows:

Dy
Qy,c1 = kcbbQ̄55,c1tcy (7.22a)

Dy
Qy,c2 = kcbbQ̄55,c2tcy (7.22b)

where tcy is the cross section of the CSC defined as follows:

tcy =
tc

sin θ
(7.23)

Due to the transformed stiffness quantities Q̄55,c1 and Q̄55,c2 are identical, thus

Dy
Qy,c = Dy

Qy,c1 +Dy
Qy,c2

= 2kcbbQ̄55,ctcy

= 2kcbbQ̄55,c
tc

sin θ

(7.24)
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where Q̄55,c is the stiffness quantity modified to incorporate isotropic materials without

Poisson’s effect in any direction of local coordinate system, defined as follows

Q̄55,c =
[
c4 + 2 (1 + 2νc) c2s2 + s4

]
Gc (7.25)

In case of assuming the inclined parts of longitudinal CSC as truss element, the stiffness

quantity Q̄55,c of Eq. 7.25 is further simplified so that

Q̄55,c = 2 (1 + νc) c2s2Gc (7.26)

Here, Dy
Qy,tc is defined as follows

Dy
Qy,tc =

∫ sc
2

− sc
2

Q̄55,tc
tc

sin θtc
dy

= 2× 2× Q̄55,tc
tc

sin θtc
kcbb

2

= 2kcbbQ̄55,tc
tc

sin θtc

(7.27)

where Q̄55,tc is the stiffness quantity of transverse CSC modified to incorporate isotropic

materials without Poisson’s effect in any direction of local coordinate system, defined as

follows

Q̄55,tc = Gc (7.28)

In this case, there is no need to average the shear stiffness of the CSCs due to it does

not vary along the z-direction. Thus,

Dy
Qy = Dy

Qy,c +Dy
Qy,tc (7.29)

7.3.3 Formulation of a Transverse Shear Stiffness

Having the deformed shape of the unit cell subjected to transverse shear force, Qy,

as illustrated in Fig. 7.2, the transverse shear stiffness, DQy, of the unit cell may be

expressed as follows:

DQy =
Qy

γzy + γyz

=
Qy

H
DyQy

+ Qy
D̄zQy

=
1

sc
dDyQy

+ 1
D̄zQy

(7.30)
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where D̄z
Qy and Dy

Qy are previouly defined as Eqs. 7.16 and 7.29, respectively.

7.3.4 Shear Correction Factor

The shear stiffness D̄Qy needs to be multiplied by the shear correction factor, kG, to

overcome the error caused by assuming a constant shear strain through the depth of

the beam cross section [139]. For a solid rectangular cross section, the well-known

shear correction factor kG = (5 + 5ν) / (6 + 5ν) [140] or 5/6 when the Poisson’s ratio

approaches zero has been introduced. Throughout this chapter, the Poissons ratio is

assumed to be zero and therefore a shear correction factor of 5/6 is applied unless

otherwise stated.

7.3.5 Summary of Calculation Procedure

Figure 7.3 illustrates the procedure to calculate the transverse shear stiffness, DQy, using

the discrete beam method.

DQy = 1
sc

dD
y
Qy

+ 1
D̄z
Qy

D̄z
Qy = Dz

Qy,t + Dz
Qy,b + D̄z

Qy,c

Dz
Qy,t = bGttt Dz

Qy,b = bGbtb D̄z
Qy,c = 2kcbbsc Gc (kzch + kzci)

kzch = 0

kzch = 2tcfc kzci = 2 (1 + νc) c2s2 tc
cos θ (sc − 2fc)

Dz
Qy,c = 2kcbbQ̄55,ctcz

Dy
Qy = Dy

Qy,c + Dy
Qy,tc

Dy
Qy,c = 2kcbbQ̄55,c

tc
sin θ Dy

Qy,tc = 2kcbbQ̄55,tc
tc

sin θtc

Q̄55,c = 2 (1 + νc) c2s2Gc

Q̄55,c =
[
c4 + 2 (1 + 2νc) c2s2 + s4

]
Gc Q̄55,tc = Gc

kG Parameters

Top Face Plate
Et, Gt, νt, b, tt

Bottom Face Plate
Eb, Gb, νb, b, tb

CSC Core
Ec, Gc, νc, bc or kcb, tc, sc, fc, hc

neglect flat parts

average over unit cell

apply truss assumption

Figure 7.3: The calculation procedure of the transverse shear stiffness, DQy
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7.4 Verification of the Transverse Shear Stiffness Equation

To evaluate the reliability of the presented DBM, the analytical solutions of the trans-

verse shear stiffness, DQy, of the unfilled Bi-CSC topology are verified by comparison

with the numerical solutions obtained from the FE-TPB presented in Chapter 4.

The transverse shear stiffness, DQy, obtained from the DBM and the FE-TPB methods

are presented in Fig. 7.4. It can be seen that the DBM seems to provide a different

trend with the FE-TPB. Good correlation in trend can be found only if sy/d is greater

than 1.00. When sy/d is less than 1.00, the DBM solutions diverge from the FE-TPB

solutions. This phenomenon indicates that the DBM is unsuitable for obtaining the

transverse shear stiffness of an unfilled sandwich beam with Bi-CSC topology.

However, further investigation has been carried out to understand a possible cause of this

problem. According to the assumption that the unit cell panel subjected to a transverse

shear force, Qy, deforms either as a fixed-end beam in the BFA or as a simple shear block

in the DBM, it is therefore assumed that this assumption may cause the divergence of

the transverse shear stiffness, DQy. The different deformation shape of the face plates

between both methods are assured to be the major cause rather than the deformation

of the core, as seen later in comparison of assumptions in Table 7.1. Extracting the

contribution of the face plates from the transverse shear stiffness equations (Eq. 6.18 for

the BFA and Eq. 7.30 for the DBM), it can be seen from Fig. 7.5 that both the BFA

and the DBM yield a consistent trend of the transverse shear stiffness, DQy, with each

other.

Consequently, the comparison of the transverse shear stiffness obtained from the DBM

without the stiffness contribution of the face plates and from the FE-TPB was carried

out. It was found that the DBM yields good correlation solution trend with the FE-TPB

as presented in Fig. 7.6. However, there are still some differences in magnitude. This

phenomenon is similar to the behaviour of the BFA; therefore, the possibility of using

the DBM to obtain the transverse shear stiffness, DQy, of the unfilled sandwich beam

with Bi-CSC topology should be limited due to the assumptions assumed in this chapter

unless a further refined solution is obtained.

7.5 Comparison with the Braced Frame Analogy Method

In this section, the methodologies used in the BFA and the DBM are compared to

each other in analytical concept, approach, assumptions, and techniques, as presented

in tabular form as Table 7.1.
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Figure 7.5: Comparison of the transverse shear stiffness contribution of the bi-
directional corrugated-strip core obtained from the presented discrete beam method
(DBM) and the braced frame analogy method (BFA) (configuration of sandwich beam:

b = 100, kcb = 0.25)

In general, both the BFA and the DBM are simplified analytical approaches possibly

used to overcome the complexity of the topology in closed form analytical solutions,

if they existed. For unfilled sandwich beam, a simplified approach usually relies on

the estimation of sandwich properties into either a single- or multi-layer equivalent

properties; this is the fundamental assumption of both the BFA and the DBM.

Although both methods are similar in fundamental concept since the complex shape

of the structural core sandwich beam is modelled as an equivalent property, they are

different in some methodologies.

By comparison in analytical concept and approach, the BFA is based on the displacement

compatibility concept and the force-distortion relationship approach. This technique

assumes that the stiffness of a sandwich structure could be found if the deformation shape

of such a structure could be possibly known in advance. Consequently, the relationship

between an effort force and a corresponding displacement, i.e., the stiffness, would be

known. The DBM, on the other hand, is based on the transformation of the stress and

strain of each element of the sandwich structure from the local to the global coordinate

system. Then, an equivalent stiffness property may be achieved by averaging the elastic

property over a unit cell.

By comparison in analytical assumptions, both the BFA and the DBM mostly have the

same assumptions except the shear deformation shape of unit cell panel. While the unit

cell panel is assumed to deform like a fixed-end beam in the BFA, the unit cell panel

is assumed to deform as simple shear block in the DBM. This is the major difference

in assumptions between the BFA and the DBM which may lead to the difference in

analytical solutions and may need to be further investigated.
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Table 7.1: Comparison in methodology and result between the braced frame analogy
method (BFA) and the discrete beam method (DBM)

Method
Description Braced Frame Analogy Method Discrete Beam Method

Analytical Concept Displacement compatibility concept Average equivalent elastic property concept

Analytical Approach Force-distortion relationship approach Transformation of stress and strain approach

Assumptions
The stress-strain relationship of the steel material is limited to linear elastic. The compression behaviour is
the same as the tension behaviour.

The deformation of the sandwich beam and its unit cell is assumed small.

The corrugated-strip core is assumed to be sufficiently stiff in the z-direction so that the depth of sandwich
core after deformation remains the same as before deformation.

The corrugated-strip core is assumed to be equally displaced in the y-direction for each unit cell so that the
displacement in the y-direction may be represented by the point at mid-width of sandwich beam.

The shear panel is deformed into two separate shear deformation directions: (1) shear deformation in the
z-direction, and (2) shear deformation in the y-direction.

A unit cell panel is assumed to deform as a fixed-end
beam.

A unit cell panel is assumed to deform as a simple
shear block.

Qy Qy

δsz

δsz

Qy Qy

δsz

δsz

γyz

Analytical Techniques Model unfilled sandwich beam as a 2D braced frame model with rigid-link elements if applicable

Perform inclined part of corrugated-strip core as a
truss element with hinge ends

Apply only mechanical elastic properties of material in
the 1-direction of the local coordinate system to the
inclined part of the corrugated-strip core to perform
truss element

Perform equilibrium of forces and displacement com-
patibility equations of a repetitive unit cell with ap-
proximate elongation length of inclined elements

Transform stress and strain of each part of the unit cell
from the local to global coordinate system and then
perform the constitutive equation of unit cell

Perform the transverse shear stiffness, DQ, using the
unit cell approach

Average stiffness in each direction over unit cell and
then perform the transverse shear stiffness, DQ, using
the unit cell approach

Analytical Results Yield good correlation in trend with the finite element
solution (the FE-TPB) but difference in magnitude
(see Fig. 6.9)

Yield poor correlation in trend with the finite element
solution (the FE-TPB), the divergent trend can be
found if sy/d < 1.00 (see Fig. 7.4)

Yield good correlation with each other if extracting the stiffness contribution of face plates from the trans-
verse shear stiffness equation (see Fig. 7.5)
N/A Yield good correlation in trend with the finite element

solution (the FE-TPB) if extracting the stiffness con-
tribution of face plates but difference in magnitude
(see Fig. 7.6)

In analytical techniques, the 2D braced frame model is initially modelled in both the

BFA and the DBM. To apply the truss element assumption to the inclined parts of the

corrugated-strip core, however, the truss element with hinge ends is performed in the

BFA whereas only the mechanical elastic properties of material in the 1-direction of the

local coordinate system are applied.

The analytical procedures are then carried out in different techniques. In the BFA,

the equations of the equilibrium of forces and the displacement compatibility of the

deformed unit cell are performed along with the approximation of the elongation length

of the inclined elements. The transverse shear stiffness, DQy, is directly derived from the

displacements δsy and δsz. In the DBM, only the constitutive equations of the unit cell
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are performed along with the transformation of the stress and strain of each part of the

unit cell from the local to the global coordinate system. Before deriving the transverse

shear stiffness, DQy, from γzy and γyz, however, the average equivalent elastic property

over the unit cell is obtained.

Comparison of the analytical results shows that the BFA yields good correlation in trend

with the FE-TPB but difference in magnitude. The DBM yields a divergent trend from

the FE-TPB if sy/d < 1.00 and a difference in magnitude. Extracting the stiffness

contribution of the face plates from the transverse shear stiffness equation, it is found

that both methods are consistent in the transverse shear stiffness contributed by the

presented core topology. The transverse shear stiffness, DQy, obtained from the DBM

without the contribution of the face plates has a similar trend but a shear stiffness is

lower than that obtained from the FE-TPB. This is similar to the results found for the

BFA in Chapter 6. Both of these methods could be considered less appropriate than

the MSM presented in Chapter 5 where good correlation with the FE-TPB solution was

found.

7.6 Concluding Remark

The simplified analytical method named the discrete beam method was presented. Un-

like the BFA, this method was based on the transformation of the local stress and

strain of each part of the repetitive unit cell of the unfilled sandwich beam to the global

coordinate system. This method was proposed as an alternative simplified analytical

method to overcome the high degree of indeterminacy of the presented bi-directional

corrugated-strip core topology. The 3D configuration of an unfilled sandwich beam with

the presented core topology was also simplified as a 2D braced frame structure with

assumption that the inclined chords perform as truss elements.

The formulation of the transverse shear stiffness, DQy, was presented. The transfor-

mational constitutive law of stress and strain was first introduced and applied to the

face plates and the core of the unfilled sandwich beam. The deformation of a repetitive

part subjected to the transverse shear load was also assumed to deform in two separate

modes. The constitutive equation of each deformation mode was then performed to

deduce the average shear stiffness over the unit cell. Consequently, the transverse shear

stiffness, DQy, was derived using the unit cell approach.

The transverse shear stiffness equation obtained from the presented DBM was verified.

It was found that the transverse shear stiffness obtained from the DBM diverges from

the finite element method if sy/d < 1.00. This problem seems to be due to the assumed
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deformation shape of the unit cell panel, especially of the face plates. Extracting the

contribution of the face plates from the transverse shear stiffness equation, it can be seen

that the DBM yields a good correlation with the finite element method but a difference

in magnitude. Therefore, the use of the DBM to obtain the transverse shear stiffness of

the unfilled sandwich beam with the presented core topology should be limited according

to the assumptions presented in this chapter.

7.7 Concluding Remark of the Analysis of the Unfilled

Sandwich Beam

The analysis of unfilled Bi-CSC sandwich beams were carried out using the numerical

and analytical approaches. The numerical approach based on the 3D FE method was

first presented in Chapter 4. Then, three simplified analytical methods were presented

in Chapters 5, 6, and 7 referred to as the modified stiffness matrix method (MSM), the

braced frame analogy method (BFA), and the discrete beam method (DBM), respec-

tively. The MSM and the BFA are based on the force-distortion relationship technique

while the DBM is based on the transformation of the stress and strain technique.

The objective of the analysis of the unfilled sandwich beam with Bi-CSC topology is to

address the advantage of stiffness and strength of the proposed sandwich beam. The

main focus is on the effect of the configuration of the Bi-CSC topology.

According to the numerical and analytical solutions presented in Chapter 4 to 7, it

was found that the stiffness and strength of the unfilled sandwich beam significantly

improved and varied with the configuration of the proposed core. Of such these possible

advantages, the transverse shear stiffness, DQy, was the most interesting advantage.

In terms of the transverse shear stiffness, DQy, the optimum configuration of the Bi-

CSC topology can be found at sy/d about 1.0 (the angle of the inclined part of the

CSC is about 45◦). It was found that the proposed Bi-CSC topology yields a few more

advantages in transverse shear stiffness compared to the X-truss core topology.

In addition to the evaluation of the advantage of the proposed core topology, providing

a simplified analytical method to obtain the stiffness of the proposed sandwich beam is

also another aim in this unfilled beam section. It was found that the MSM provided

good correlation with the FE method. Rather than using the computational expensive

FE method, the MSM can be used to obtain the transverse shear stiffness, DQy, of

the unfilled sandwich beam with the proposed Bi-CSC and other similar core such as

the truss and the X-truss cores. It was also found that the MSM provided very good
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correlation with the Lok et al.’s method [19, 20] when it was applied to the unfilled truss

core sandwich beam.

The BFA and the DBM are the other two simplified analytical methods that can probably

be used to obtain the transverse shear stiffness, DQy, of the proposed core. However, it

was found that these two methods were less accurate than the MSM. They may provide a

good structural response in trend but not in magnitude. Therefore, these two proposed

methods should only be used in accordance with their assumptions presented in this

thesis.

Besides the analysis of the unfilled sandwich beam, the next chapter presents the nu-

merical study of the concrete-filled SCS sandwich beam with inclined shear connectors.

The objective of the next chapter is also to investigate the possible advantage of the

proposed SCS sandwich beam that may overcome the limitation of the current forms

of SCS sandwich beams. The transverse shear strength and the development of the

concrete crack are demonstrated using the 3D FE method.



Chapter 8

Numerical Study of the

Transverse Shear Strength of a

Concrete-Filled Sandwich Beam

8.1 Background

As previously mentioned in Chapter 2, the failure modes of a steel-concrete-steel (SCS)

sandwich beam subjected to static load were experimentally observed and reported by,

for example, [11, 12, 15]. These failure modes are technically referred to as described

in Fig. 8.1(a). Remarkably, the failure modes of an SCS sandwich beam are similar to

those of a reinforced concrete (RC) beam, as graphically compared between Fig. 8.1(a)

and Fig. 8.1(b).

The diagonal shear crack failure is a failure mode found in both the SCS and RC beams.

Technically, this failure may occur when the beam is subjected to a relatively high ratio

of shear to normal. In addition, the beam made of relatively low tensile strength material

may tend to crack easily. The latter may be the major cause of the diagonal shear crack

failure in the RC and SCS beams because the tensile strength of concrete is remarkably

low [87].

To demonstrate the diagonal shear crack in the SCS sandwich beam, a simplified ap-

proach based on the transformation of stress of a small element may be used. According

to the fundamental mechanics of solids [126], the principal tensile stress of a plane stress

element cut from a point of the concrete core subjected to stress in the local y- and

127
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Figure 8.1: Possible failure modes of (a) a steel-concrete-steel sandwich beam [mod-
ified from 11], and (b) a reinforced concrete beam [modified from 94]

z-directions can be expressed as follows:

σ1 =
σy + σz

2
+

√(
σy − σz

2

)2

+ τ2
yz (8.1)

Here, the normal stress, σz, in the concrete core is neglected and the normal stress, σy,

and the shear stress, τyz, are expressed as follows:

σy =
MyEcz

Dy
(8.2a)

τyz =
Vyz
Dy

{
Etttz̄ +

1
2
Ec

[(
z̄ − tt

2

)2

− z2

]}
(8.2b)

The location of the neutral axis, z̄, and the flexural stiffness, Dy, of the cross section

of the SCS sanwich beam may be calculated from the strain compatibility and the

equilibrium of forces of the cross section. In a particular linear elastic case, the strain

compatibility of the cross section is as shown in Fig. 8.2.

N.A.

Ct

Cc

Tb

εtεc

εb

tt

hc

tb

d

z̄

x y

z

Figure 8.2: Strain compatibility of the cross section of a steel-concrete-steel sandwich
beam
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Assuming that the tensile strength of the concrete is neglected, the equilibrium of forces

of the cross section is

Ct + Cc = Tb (8.3)

where the compression force in top face plate, Ct, the compression force in concrete core,

Cc, and the tension force in bottom face plate, Tb, are expressed in terms of the concrete

strain, εc, as follows:

Ct = bEttt
z̄(

z̄ − tt
2

)εc (8.4a)

Cc =
1
2
bEc

(
z̄ − tt

2

)
εc (8.4b)

Tb = bEbtb
(d− z̄)(
z̄ − tt

2

)εc (8.4c)

Thus, the location of the neutral axis, z̄, can be obtained from Eq. 8.3. Knowing the

location of the neutral axis, z̄, consequently, the flexural stiffness, Dy, of the cross section

can be calculated as follows:

Dy = Dt
y +Db

y +Dc
y (8.5)

where

Dt
y = bEt

(
1
12
t3t + z̄2tt

)
(8.6a)

Db
y = bEb

(
1
12
t3b + (d− z̄)2 tb

)
(8.6b)

Dc
y =

1
3
bEc

(
z̄ − tt

2

)3

(8.6c)

Knowing the principal tensile stress, the direction of the principal tensile stress of each

small concrete element can also be obtained [126]. Figure 8.3 demonstrates the directions

of the principal tensile stresses in the concrete core of an SCS sandwich beam. It may

be seen that most of the principal tensile stress directions in the concrete core align at

an angle to the neutral axis of the SCS sandwich beam. The concrete core, therefore,

tends to crack in a diagonal direction to the neutral axis of the SCS sandwich beam.

In addition to preventing the RC and SCS beams from failing in other failure modes,

the diagonal shear crack failure also needs to be prevented to ensure that the structure

is safe. Providing some kind of transverse shear reinforcements is a way to overcome

this failure in the RC beam. This concept is also found in the SCS sandwich beam in

which the shear connectors act as transverse shear reinforcements.
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P
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z
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Figure 8.3: Principal tensile stress directions in the concrete core of a steel-concrete-
steel sandwich beam

In the Bi-Steel sandwich beam – a particular case of the SCS sandwich beam, the total

transverse shear strength of the cross section is the summation of the strength resistance

of the concrete core and the bar connectors [50]. In addition to the resistance of the

concrete, which is relatively low, the transverse shear strength of the cross section can

be dramatically increased when the bar connectors are present, as may be seen in the

strength resistance of each part in Table 8.1. As recommended in the Bi-Steel: Design &

Construction Guide [50, Chapter 6, Page 14], the presence of an increasing number of bar

connectors is probably the most effective method of improving the transverse resistance

of the Bi-Steel sandwich compared to increasing the section depth or increasing the

strength of concrete.

Table 8.1: Transverse shear strength capacity of the cross section of a concrete-filled
Bi-Steel sandwich beam [50]

Strength Formula Remark

Vwd
a 0.9kT Aswsy

hcfyb
γMa

kT = 2.5 fy
fyb

(
t
d

)1.25 − γMa
fyb

(σtbc + σtbp + σtba)

Asw = bπd2

4sx
t
d ≤ 0.48
t = min(tt, tb)
fy ≤ 355 N/mm2

VRd1
b

[
0.0525
γMc

f
2/3
ck k (1.2 + 40ρ1) + 0.15σcp

]
bhc k = 1.6− hc

1000 and k ≥ 1.0

ρ1 = tb
hc

and ρ1 ≤ 0.2

VRd2
c 0.45v fckbDγMc

v = 0.7− fck
200 and v ≥ 0.5

D = tt + hc + tb
a the resistance of friction welded bar connectors (as reinforcement)
b the resistance of concrete (acting with reinforcement)
c the limiting resistance strength of section
see the definition of the symbols mentioned in this table in [50]

However, it is found that the spacing between the bar connectors are technically limited

to not less than 200 mm or 8×(tt + tb) [50] (see Fig. 8.4). This means that the number of

bar connectors per unit length is also limited. As a result, the transverse shear strength

resistance of the Bi-Steel cross section is limited unless the section depth and/or the

strength of concrete are increased.
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Figure 8.4: Limitation of the spacing of bar connectors of a Bi-Steel sandwich beam

To demonstrate the limitation of the transverse shear strength of the Bi-Steel cross

section due to the spacing between the bar connectors, sy, the Bi-Steel sandwich beams

as shown in Fig. 8.5(b) are investigated. The concrete core depth, hc, the thickness of

top face plate, tt, and the spacing between bar connectors, sy, are variable parameters.

Other parameters appearing in Table 8.1 are constant, as presented in Table 8.2.

Table 8.2: Value of the parameters used for evaluation of the transverse shear strength
of a concrete-filled Bi-Steel sandwich beam [50]

Parameter a Value Unit Remark

Steel Face Plates
γMa 1.1 fundamental case

Concrete Core
fck 35 N/mm2 selected value
σcp 0 N/mm2 for no axial load case
γMc 1.5 fundamental case

Bar Connectors
d 25 mm normal diameter of a bar connector
fy 355 N/mm2 selected value
fyb 355 N/mm2 normal yield strength of a friction welded bar connector
σtbc 0 N/mm2 for a flat panel
σtbp 0 N/mm2 for no internal pressure
σtba 0 N/mm2 for no attachment
a see definition in [50]

Figure 8.5(a) presents the relationship between the transverse shear strength, V F
BS , and

the spacing of the bar connectors, sy, of the Bi-Steel sandwich beam. The transverse

shear strength, V F
BS , is the strength value normalised by the strength value at sy =

200 mm, hc = 200 mm, and tt = 6 mm. The solid lines represent the transverse

shear strength in the range of practical numbers of sy and the dash lines represent the

strength in the range of impractical numbers of sy. The limitations of sy are marked by

the cross-marking points.

It can be seen from Fig. 8.5(a) that reducing the spacing sy from 500 mm to 100 mm

remarkably increases the transverse shear strength, V F
BS , if the limitation of sy is not

introduced. This tendency can be found in both hc = 200 and 600 mm and also in all

values of tt studied here. For the Bi-Steel cross section with hc = 200 mm, the strength
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Figure 8.5: (a) relationship between the factored transverse shear strength, V F
BS ,

and the spacing of bar connectors, sy, and (b) configuration of the Bi-Steel case study

V F
BS increases from 0.6 to 1.6 for tt = 6 mm and from 1.0 to 2.7 for tt ≥ 12 mm. For

hc = 600 mm, the strength V F
BS remarkably increases from 1.6 to 4.4 for tt = 6 mm and

from 2.6 to 7.0 for tt ≥ 12 mm. The strength V F
BS of all case studies increases about

270% when decreases the spacing sy from 500 mm to 100 mm.

Because of the limitation of the spacing sy, however, reducing sy slightly affects to the

strength V F
BS . For the Bi-Steel cross section with hc = 200 mm, the strength V F

BS

increases from 0.6 to 0.9 (about 150%) for tt = 6 mm and from 1.0 to 1.4 (about 140%)

for tt = 12 mm when sy reduces from 500 mm to their limitation values 240 mm and

288 mm, respectively. A small percentage increase of the strength V F
BS , about 110%,

was found for tt = 24 mm when sy reduces from 500 mm to 384 mm. The similar

behaviour can also be found for hc = 600 mm. It may imply, therefore, that reducing

the spacing sy between the bar connectors may not be the most effective method to

increase the transverse shear strength of the Bi-Steel sandwich beam as recommended

in the Bi-Steel: Design & Construction Guide [50].
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However, there is another method to overcome the diagonal shear crack failure, for exam-

ple, rearranging the position of supports, increasing the thickness of the beam, changing

the structural material, or providing some kind of transverse shear reinforcements. In

the author’s opinion, changing the physical geometry of the beam may not be a suitable

solution because it may affect architectural criteria and service requirements. Increasing

the thickness of the beam may also increase the weight of structure. Introducing new

structural materials such as high strength concrete may increase cost prohibitively. Pro-

viding transverse shear reinforcements is probably the best method since it should not

affect the architectural and construction criteria. This is because the transverse shear

reinforcements usually substitute concrete mass and perform their function inside the

structure.

Instead of aligning the transverse shear reinforcements in vertical direction, an inclined

alignment of transverse shear reinforcements can be introduced. This concept has been

discussed in great detail in Chapters 4 to 5 for unfilled sandwich beams. This concept has

also been found and technically proved of its advantage in the RC beam. The transverse

shear strength resistance provided by the inclined shear reinforcement is more than

the resistance provided by the vertical shear reinforcement, as previously mentioned in

Chapter 2.

To demonstrate the advantage of the inclined shear reinforcement, a simplified mecha-

nism of the RC beam with inclined shear reinforcements may be introduced. Considering

the beam with the inclined transverse shear reinforcements, as shown in Fig. 8.6, the

equilibrium of forces in the z-direction at the diagonal crack section can be expressed as

follows:

Avfv sin θ = σ1bl cosβ (8.7)

Here, Av is the cross section area of the transverse shear reinforcement, fv is the allowable

tensile stress of the transverse shear reinforcement, and σ1 is the average principal tensile

stress at the diagonal crack section. The transverse shear reinforcements are aligned at

an angle θ and the crack line is aligned at an angle β to the y-axis. b and l are the width

of beam and the length of diagonal crack line, respectively.

Assuming that the diagonal crack section crosses only one inclined transverse shear

reinforcement, the length of diagonal crack line, l, can be expressed in terms of the

horizontal spacing, sy, of the transverse shear reinforcement and the angles θ and β as

follows:

l = sy
sin θ

sin (180− θ − β)
(8.8)
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Figure 8.6: A concrete beam with inclined shear reinforcements and its equilibrium
of force condition

Therefore, Eq. 8.7 can be expressed in another form as follows:

Avfv = kvσ1bsy (8.9)

where

kv =
cosβ

sin (180− θ − β)
(8.10)

Here, kv is the strength index of the transverse shear reinforcement related to the angle

of the transverse shear reinforcement, θ, and the angle of diagonal crack line, β. Knowing

the angle β of the diagonal crack line, therefore, the strength index kv depends on the

angle θ only.

In the particular case where the angle β of the diagonal crack line equals 45◦ [107, 114],

the relationship between the strength index kv and the angle θ is as shown in Fig. 8.7.

It can seen that the minimum point of the strength index kv is at the angle θ equals 45◦.

This means that aligning the transverse shear reinforcements at 45◦ to the y-axis – in

other words, aligning the transverse shear reinforcement at a perpendicular angle to the

diagonal crack line – provides the minimum tensile stress in the reinforcement. Therefore,

the strength at the position of the diagonal crack can be considerably increased if the

transverse shear reinforcement is fully stressed to its maximum capacity.

As previously mentioned in Chapter 2, the advantage of aligning the transverse shear

reinforcement in the inclined pattern has been found in many applications of the RC

beam [87, 90–93]. However, it was found that there is no current application of the

SCS sandwich beam with inclined shear connectors. Although the applications of the

proposed Bi-CSC topology may be found in the unfilled corrugated core or truss-like core

sandwich structures, it was found that those applications had never been adapted for

the concrete-filled SCS sandwich structure. Therefore, the applications of the proposed

Bi-CSC, i.e., the inclined shear connectors, should be studied to investigate the possible

advantage of this alternative solution in the concrete-filled SCS sandwich beam.
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8.2 Finite Element Modelling Approach

As previously mentioned in Chapter 4, a finite element (FE) approach can be used

instead of an experimental approach to provide reliable results and behaviour of an

unfilled steel sandwich beam [37, 115]. In concrete-filled SCS sandwich beams, an FE

approach can also be used to obtain reliable results compared with an experimental

study [15, 71, 72].

Table 8.3 summaries the numerical studies of SCS sandwich structures and their com-

ponents using the FE method. Shanmugam et al. [71] used the FE software ABAQUS

to understand the ultimate load behaviour of double-skin composite (DSC) sandwich

slabs. Clubley et al. [72, 73] used the FE software ANSYS to investigate the shear

strength bar connectors of the Bi-Steel sandwich specimens subjected to push out load.

Xie and Chapman [74] also used ANSYS to study the static and fatigue strength of the

bar connectors of the Bi-Steel specimens subjected to tension load. In the Bi-Steel sand-

wich beams, Foundoukos and Chapman [15] also used ANSYS to understand the static

behaviour of the beam. Instead of using a 3D model as used in [71–74], Foundoukos and

Chapman [15] used a 2D model to reduce the complexity of the FE analysis, and it was

also found to be a reliable FE method.

The FE approach is used instead of an experimental approach to investigate the trans-

verse shear strength behaviour of the SCS sandwich beam with the proposed inclined

shear connector in this research. Appropriate assumptions and criteria are provided step

by step to ensure that the appropriate reliability of results can be achieved.



Chapter 8. Numerical Study of ... a Concrete-Filled Sandwich Beam 136

T
a
b
l
e

8
.3

:
Sum

m
ary

of
the

num
erical

study
of

steel-concrete-steel
sandw

ich
structures

and
their

com
ponents

using
a

finite
elem

ent
m

ethod

R
eference

SC
S

Softw
are

G
eom

etry
E

lem
ent

T
ype

C
om

posite
R

em
ark

T
ype

A
B

A
Q

U
S

A
N

SY
S

2D
3D

Steel
Shear

C
oncrete

Interaction
Face

C
onnector

C
ore

M
odel

Shanm
ugam

et
al.

[71]
D

SC
X

X
S4R

N
/A

C
3D

8R
Fully

and
partially
com

posite

-
N

on-linear
study

of
the

ultim
ate

load
behaviour

of
slabs,validated

w
ith

the
experim

ental
result

in
ultim

ate
loads

and
load-deflection

responses
-

T
he

presence
of

shear
studs

w
as

indirectly
m

odelled
by

treating
concrete

as
an

anisotropic
m

aterial
-

S4R
–

four-node
reduced

integration
shell

elem
ents

w
ith

five
inte-

gration
points

and
w

ith
a

large
strain

form
ulation

-
C

3D
8R

–
eight-node

solid
elem

ents
w

ith
reduced

integration
C

lubley
et

al.
[72,

73]
B

i-Steel
X

X
SO

L
ID

45
SO

L
ID

45
SO

L
ID

65
P

artially
com

posite
-

Study
of

the
shear

strength
of

friction-w
elded

bar
connectors

sub-
jected

to
push

out
load,

validated
w

ith
the

experim
ental

result
-

Steel-concrete
com

posite
interaction

w
as

m
odelled

using
discrete

and
sm

eared
contact

elem
ent

techniques
-

B
oth

m
aterial

and
geom

etric
non-linearity

w
ere

considered
X

ie
and

C
hapm

an
[74]

B
i-Steel

X
X

C
A

X
4R

C
A

X
4R

C
A

X
4R

P
artially

com
posite

-
Study

of
the

static
and

fatigue
strength

of
the

friction-w
elded

con-
nections

w
ith

the
bar

loaded
in

tension
-

B
oth

the
steel

and
concrete

m
aterial

properties
w

ere
linear

elastic
-

Steel
and

concrete
contact

interfaces
w

ere
m

odelled
using

the
con-

tact
pair

approach,
all

the
contact

surfaces
had

a
frictional

surface
interaction
-

C
A

X
4R

–
four-node

axisym
m

etric
solid

elem
ents

Foundoukos
and

C
hapm

an
[15]

B
i-Steel

X
X

C
P

S4R
C

P
S4R

C
P

S4R
P

artially
com

posite
-

Study
of

the
static

behaviour
of

beam
s,

validated
w

ith
the

exper-
im

ental
result,

param
etric

study
of

the
transverse

shear
strength

of
beam

s
-

C
oncrete

w
as

m
odelled

as
linear

stress-strain
curve

-
For

study
ofthe

transverse
shear

strength
ofbeam

s,the
friction

co-
effi

cient
betw

een
the

steeland
concrete

w
as

zero,the
tensile

strength
of

concrete
w

as
also

zero,
the

steel
w

as
m

odelled
as

linear
stress-

strain
curve

to
prevented

other
failure

m
odes

-
C

P
S4R

–
tw

o-dim
ensional,

plane
stress,

reduced
integration,

solid
elem

ents



Chapter 8. Numerical Study of ... a Concrete-Filled Sandwich Beam 137

8.2.1 General Criteria

The numerical study of the strength of concrete-filled sandwich beams was also carried

out using the FE software ANSYS Release 11.0 [123]. The ANSYS software was run

under the software and hardware conditions as presented in Sec. 4.2.1.

The concrete-filled sandwich beam was modelled in 3D using solid elements. The unfilled

sandwich beam model presented in Chapter 4 was adapted by filling the void with

elements with material properties equivalent to concrete. The topologies of the shear

connector varied from no shear connector to vertical shear connector to inclined shear

connector. The analytical method was in nonlinear static mode with the simplified

bi-linear stress-strain behaviour of the steel as already presented in Sec. 4.2.2 and the

simplified nonlinear stress-strain behaviour of the concrete. In this chapter, the typical

mesh size of FE model was approximately 2.0 cm.

8.2.2 Material Properties of Concrete

In addition to the steel material properties defined in Sec. 4.2.2, the material properties

of the concrete need to be defined in this chapter. Concrete is a quasi-brittle material.

Its compression behaviour is different from its tension behaviour [124]. Therefore, unlike

steel, the concrete’s compression and tension behaviour need to be considered separately.

Compressive Stress and Strain Behavior: Practically, the compressive strength of

concrete, fc, is usually obtained from short-time, moderate-speed, uni-axial compressive

loading test of 28-day-old, 6-in. by 12-in. concrete cylinder specimens [87].

The compressive stress-strain relationship curve is approximately linear from zero up to

about one-half the ultimate compressive strength, f ′c, [141]. Then, it begins to curve up

to the ultimate compressive strength. The curve in this range depends on the strength

of the concrete [142]1. While the peak of the curve for low-strength concrete is relatively

flat, the peak of the curve for high-strength concrete is relatively sharp [141]. The

strain at the ultimate compressive strength, f ′c, ranges approximately from 0.002 to

0.003 for normal density concrete [86]. Beyond the ultimate compressive strength, f ′c,

the curve begins to descend [86] and finally reaches the point of rupture at strain ranges

approximately from 0.003 to 0.004 [87].

Although there are several different modulus of elasticity, Ec, e.g. the initial modulus,

the tangent modulus, and the secant modulus, deduced from the compressive stress-

strain relationship curve [87], the ACI 318 Code states that the modulus of elasticity,
1 cited by Park and Paulay [141]
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Ec, expressed as Eq. 8.11 may be used for normal-weight concrete weighting from 1, 442

to 2, 483 kg/m3 (from 90 to 155 lb/ft3)2 and for the ultimate compressive strength, f ′c,

less than 41 N/mm2 (6, 000 psi)3 [87].

Ec = 0.043w1.5
c

√
f ′c (8.11)

Here, the weight of concrete, wc, is in kg/m3, the ultimate compressive strength, f ′c,

of 28-day-old cylinder specimen is in N/mm2, and the modulus of elasticity, Ec, is the

second modulus of line from the point of zero stress to the point of approximately 0.45f ′c
[87] and is in N/mm2.

Tensile Stress and Strain Behavior: Technically, the tensile strength behaviour of

the concrete may be obtained directly from the direct tensile loading test or from other

two indirect tests: the split-cylinder test and the bending test [86, 87, 141]. These tests

provide the approximate tensile strength in terms of the square root of the ultimate

compressive strength f ′c [86] as presented in Table 8.4.

Table 8.4: Tensile strength of concrete obtained by different tests [modified from 86]

Test Property Notation Value
N/mm2 psi

Direct Tensile Loading Test Direct Tensile Strength f ′t 0.249 to 0.415
√
f ′c 3 to 5

√
f ′c

Split-Cylinder Test Split-Cylinder Strength fct 0.498 to 0.664
√
f ′c 6 to 8

√
f ′c

Bending Test Modulus of Rupture fr 0.664 to 0.996
√
f ′c 8 to 12

√
f ′c

Practically, the modulus of rupture, fr, is used to present the tensile strength of the

concrete. In the ANSYS software [124], it is expressed as fr = k
√
f ′c where the value of

k equals 0.623 (7.5 in psi unit) [141]. This value of k is also recommended by the ACI

318 Code [87]. Therefore, the modulus of rupture, fr, as expressed in Eq. 8.12 was used

in this research.

fr = 0.623
√
f ′c (8.12)

The tensile stress-strain relationship curve is approximately linear from zero up to the

ultimate tensile strength at crack [141]. Then, the tensile stress gradually decreases to

zero [143]4.

It should be noted that, unlike the compressive strength, the tensile strength of the

concrete is sometimes ignored in structural strength analysis because of its low strength
2 1 lb/ft3 = 16.02 kg/m3

3 1 psi = 0.00689 N/mm2

4 cited by Kachlakev et al. [124]
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capacity. The tensile strength of the concrete is generally less than 20% of the compres-

sive strength.

Simplified Stress-Strain Relationship Curve: Instead of defining the stress-strain

relationship of the concrete as a perfectly non-linear curve as illustrated in Fig. 8.8(a),

the simplified stress-strain relationship curve may be used to model the properties of

the concrete both in compression and in tension [124, 125, 141]. The simplified curve

may be constructed from three connected curves in the compression zone [124, 125] and

from two connected curves in the tension zone [15, 125] as illustrated in Fig. 8.8(b).

ε

σ

εck

εc ε′c εcu

f ′c

fc

fr

Compression

Tension not to scale
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Figure 8.8: Stress-strain relationship curve of the concrete (a) the idealised stress-
strain relationship curve [modified from 124], and (b) the simplified stress-strain rela-

tionship curve

In the compression zone, the first line is assumed to be linear. It is used to present linear

elastic behaviour as expressed by Eq. 8.13a from zero up to the compressive stress, fc,

of about 0.4f ′c [103]5. The second line is assumed to be a non-linear parabolic curve. It

is used to present the compressive behaviour from the end of the first linear line (C-1)

up to the ultimate compressive strength, f ′c, (C-8) [141]. In this research, this parabolic

curve is expressed by Eq. 8.13b as recommended by Eurocode 2 [125]. The third line

is also assumed to be as linear as the first line. It is used to present the descending

behaviour from the ultimate compressive strength, f ′c, (C-8) down to the rupture point

at the compressive stress rf ′c (C-9) [125, 141] where r is the reduction factor. In this

research, Eq. 8.13c is used to express its linear behaviour.

fc = Ecεc (8.13a)

fc =
(

kn− n2

1 + (k − 2)n

)
f ′c (8.13b)

fc =
(
εc − ε′c
εcu − ε′c

)
(r − 1) f ′c + f ′c (8.13c)

5 cited by Nguyen and Kim [125]
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In Eq. 8.13b, the terms n and k are defined as follows: n = εc/ε
′
c and k = 1.1Ecε′c/f

′
c

where the strain at the ultimate compressive stress, ε′c, equals 0.0022 [125]. Approxi-

mately, the same value of ε′c, i.e., ε′c equals 0.002, was used in the FE analysis of the

DSC sandwich panels by Shanmugam et al. [71].

In Eq. 8.13c, the reduction factor r can vary from 1.0 to 0.5 for the concrete cube strength

from 30 to 100 MPa [125]. Within this range, the reduction factor r may be defined

as, for example, 1.0 [124] or 0.85 [125, 141]. In this research, the reduction factor r was

defined as a value of 0.95 which corresponds to the ultimate compressive cube strength

of 37 MPa used in this research (see Table 8.6). The strain of the concrete at failure,

εcu, associated with rf ′c was defined according to Eurocode 2 as 0.0035 [125]. The same

value of εcu was also used in Shanmugam et al. [71].

In the tension zone, the first line (O – T-1) is assumed to be linear. It is used to present

linear elastic behaviour as expressed by Eq. 8.14a from zero down to the modulus of

rupture, fr, – the tensile strength – (T-1) at the strain at concrete crack, εck, [125].

Although the second line may be also assumed to be linear as expressed by Eq. 8.14b

from the modulus of rupture, fr, (T-1) to zero tensile stress at failure strain εcku –

approximately of ten times as εck – [144]6, this may be not required to model in the

ANSYS software [124]. Therefore, in this research, the property of the concrete in tension

was modelled up to the modulus of rupture, fr, where fr is expressed as mentioned earlier

as Eq. 8.12.

fc = Ecεc (8.14a)

fc =
(
εcku − εc
εcku − εck

)
fr (8.14b)

Figure 8.8(b) shows the simplified stress-strain relationship of the concrete material both

in the compression and in the tension used in this chapter. The simplified curve was

constructed from Eq. 8.13 for the compression behaviour and Eq. 8.14a for the tension

behaviour. The curve was constructed from its key points connected by straight lines.

The key points and their numerical values are all presented in Table 8.5.

Poisson’s Ratio: Poisson’s ratio of concrete, νc, generally varies with the concrete

compressive strength [141]. It may vary from 0.11 to 0.21 for high-strength and for

low-strength concrete, respectively [87]. In this chapter, the Poisson’s ratio of concrete,

νc, was defined according to the Bi-Steel: Design & Construction Guide [50] as 0.20.

6 cited by Nguyen and Kim [125]
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Table 8.5: The key points and their numerical values used to simplify the stress-strain
relationship curve of the concrete

Point Value Equation Remark
fc εc

T-1 −3.41 −0.0001 8.12 fr
O 0 0 -
C-1 12.0 0.0004 8.13a fc = 0.4f ′c [125]
C-2 16.75 0.0007 8.13b
C-3 21.02 0.0009 8.13b
C-4 24.39 0.0012 8.13b
C-5 26.92 0.0014 8.13b
C-6 28.66 0.0017 8.13b
C-7 29.67 0.0019 8.13b
C-8 30 0.0022 - f ′c of concrete Class C30/37 [50]

ε′c as per [125]
C-9 28.5 0.0035 8.13c r = 0.95

εcu as per [125], also used in [71]

Shear Transfer Coefficient: The shear transfer coefficient, βt, of the concrete ma-

terial needs to be defined in ANSYS [123]. This value presents the conditions of the

concrete crack face. The shear transfer coefficient, βt, varies from 0.0 for a smooth crack

surface to 1.0 for a rough crack surface [123]. While the smooth crack condition cannot

transfer any shear force along a crack face, the rough crack condition can completely

transfer shear force from one to another crack face.

The value of βt used in many reinforced concrete numerical studies varies between 0.05

and 0.25 [143, 145, 146]7. In a numerical study of SCS sandwich beams by Clubley

et al. [73], the shear transfer coefficients, βt, for open and closed cracks were of 0.1 and

0.5, respectively. However, Kachlakev et al. [124] recommended βt for open cracks in

the ANSYS software as a constant of 0.2 to eliminate the divergence problem occurring

at low loading conditions where βt is less than 0.2. For closed cracks, Kachlakev et al.

[124] assumed βt as 1.0. The βt value of 1.0 may be the idealised assumption. In this

research, therefore, the shear transfer coefficient βt were as 0.2 [124] and 0.5 [73] for

open and closed cracks respectively.

Table 8.6 summaries the physical properties of the concrete material used in this research.

Table 8.6: Physical properties of the concrete

Property Notation Value Unit Remark

Density wc 2,400 kg/m3 Normal-weight concrete [50]
Cylinder Compressive Strength f ′c 30 N/mm2 Concrete Class C30/37 [50]
Modulus of Rupture fr 3.41 N/mm2 Eq. 8.12
Modulus of Elasticity Ec 27,691 N/mm2 Eq. 8.11
Poisson’s Ratio νc 0.20 - [50]
Shear Transfer Coefficient βt 0.20 - for an open crack [124]

0.50 - for a closed crack [73]

7 cited by Kachlakev et al. [124]
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To model the concrete in ANSYS, these material properties: modulus of elasticity, Ec,

Poisson’s ratio, νc, ultimate uni-axial compressive strength, f ′c, modulus of rupture, fr
and shear transfer coefficient, βt are required. In addition, the compressive uni-axial

stress-strain relationship of the concrete needs to be defined.

In ANSYS, the first two concrete properties, Ec and νc, are defined using the MP

command [123]. The next three properties, βt (for both open and closed cracks), fr
and f ′c, are defined after the TB command with the CONCR option using TBDATA

command [123]. In the TBDATA command, eight parameters are required to input for

concrete material. However, only the first four parameters were manually input. The last

four parameters were automatically calculated by ANSYS [123]. Table 8.7 summaries

these eight parameters and their value used in this research.

Table 8.7: Concrete material data for the TBDATA command

Parameter Description Notation Value Remark

1 Shear transfer coefficient for an open crack βt 0.20 [124]
2 Shear transfer coefficient for a closed crack βt 0.50 [73]
3 Ultimate uniaxial tensile strength fr 3.41 Eq. 8.12
4 Ultimate uniaxial compressive strength f ′c -1.00 [124]
5 Ultimate biaxial compressive strength f ′cb 1.2f ′c

a

6 Ambient hydrostatic stress state σah N/A a

7 Ultimate compressive strength for a state of biaxial
compression superimposed on hydrostatic stress state

f1 1.45f ′c
a

8 Ultimate compressive strength for a state of uniaxial
compression superimposed on hydrostatic stress state

f2 1.725f ′c
a

a defaulted by ANSYS [123]

In this research, f ′c value of −1.0 was set to suppress the crushing capability of the

concrete element. Kachlakev et al. [124] recommended turning off the crushing capabil-

ity of the concrete element to prevent the divergence of FE solution. This is because

the crushing of the concrete elements near the applied loads may develop and force a

reduction in local stiffness. Consequently, the model may show a large displacement.

When the crushing capability is suppressed with f ′c equals −1.0, the concrete element

will crack whenever a principal stress component exceeds its modulus of rupture, fr,

[123]. Therefore, in this research, the cracking of the concrete will control the failure of

the FE models.

The compressive uni-axial stress-strain relationship of the concrete is defined using the

TB with MISO option. The MISO option is used to specify the concrete material model

as multi-linear isotropic hardening. The concrete material behaviour is illustrated by a

multi-linear stress-strain curve starting at the origin with positive stress and strain val-

ues. The initial slope of the curve is taken as the modulus of elastic, Ec, of the concrete.

Beyond the stress fc, the curve continues along the other segment lines connected to the
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next key points [123]. Then, the stress-strain data at each key point is defined using the

TBPT command.

8.2.3 Element Types

In addition to defining the steel material of the unfilled sandwich beam with the SOLID45

element type, the SOLID65 is additionally used in this chapter to define the concrete

material in the concrete-filled sandwich beam. These element types were used by Clubley

et al. [72] in their numerical study of the shear strength behaviour of the Bi-Steel panels.

Figure 8.9 shows the geometry of the SOLID65 element.
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Figure 8.9: Geometry of the SOLID65 element [modified from 123]

The SOLID65 is a special purpose element for the 3D modelling of concrete structures

with or without reinforcing bars. It was used here, however, for the plain concrete core

– the concrete without reinforcing bar – only. Similar to the SOLID45, the geometry of

the element is an eight-node element having three degrees of freedom, i.e., translations in

the nodal x-, y-, and z-directions, at each node. The material property of the SOLID65

element is defined in the isotropic condition.

Being more advantageous than the SOLID45, the SOLID65 has special cracking in ten-

sion (in three orthogonal directions), crushing in compression, plastic deformation, and

creep capabilities. The other advantage is the treatment of nonlinear material properties.

The cracking and crushing capabilities provide a prediction of the failure mode of the

concrete material. The failure criterion of the concrete due to a multi-axial stress state

are presented in ANSYS [147]8. In summary, the concrete material will crack or crush

when the principal tensile stress in any direction or all principal compressive stress lie

outside the failure surface. A small amount of stiffness of approximately 1.0E-6 is added

to the concrete element when it is cracked or crushed to maintain numerical stability

[123].
8 cited by [123]
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8.2.4 Modelling a Concrete-Filled Sandwich Beam

8.2.4.1 Geometry

Similar to the unfilled sandwich beam presented in Chapter 4, a 3D model of the

concrete-filled SCS sandwich beam was created. A 3D FE model of a four-point loaded

beam, as shown in Fig. 8.10(a), was modelled and analysed to obtain the strength be-

haviour of the beam and the cracking pattern of the concrete core. The concrete-filled

SCS sandwich beam model consists of the steel face plates, the steel corrugated-strip-

core plates, and, in addition, the concrete core. The first two parts perform as the

unfilled SCS sandwich beam. The void of the unfilled sandwich beam is then filled with

the concrete elements to create the concrete-filled SCS sandwich beam.

In this chapter, the length of the concrete-filled SCS sandwich beam is set so that a/d = 3

where the shear span, a, is the distance between the support and the applied point load,

and d is the depth of the concrete core. In a study of reinforced concrete beams, Park

and Paulay [141] summarised that the shear failure mechanisms of four-point loaded

simply supported beams without shear reinforcement depend upon the shear span over

depth, a/d, ratios. The failure mechanisms may behave in two different ways: failure

of arch mechanisms when 2 < a/d < 3, and failure of the beam mechanisms when

3 < a/d < 7. For the arch mechanisms, the failure by crushing or splitting of the

concrete may occur. In addition, the inclined crack may develop in a direction greater

than 45◦ from the horizontal line; the crack may occasionally be in a vertical direction

[87]. This phenomenon is considered as deep beam action. For the beam mechanisms,

the failure of the beam occurs after the diagonal crack develops.

Due to the symmetry of the structure, only a quarter of the complete concrete-filled

sandwich beam model, as shown in Fig. 8.10(b), is required for analysis. This is a sub-

structure of a complete symmetrical concrete-filled sandwich beam subjected to sym-

metrical load, as shown in Fig. 8.10(a); it was used here to reduce computation time.

8.2.4.2 Boundary and Constraint Conditions

The conventional boundary conditions of a simply supported beam were set up at all

nodes along the line 1-1’. These nodes were not free to move in the x-, y-, and z-

directions, i.e., δx = δy = δz = 0, to simulate the simply support at the end of the

bottom face plate. To satisfy the reduced symmetrical structure condition [121, 122],

the nodes on the xz-plane were free to move in the z-direction only, i.e., δx = δy = 0.
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8.2.4.3 Loading Condition

To simulate a four-point loaded beam, a transverse force per unit width of the sandwich

beam, P/b, is imposed along the line 5-5’ on the top face plate. The distributed load

P/b is then proportionally distributed to element nodes on the line 5-5’.

In the non-linear analysis, the total load applied will be divided into a series of load

increments. To perform an accurate non-linear analysis, the load needs to be gradually

applied to the structural model. In this chapter, the total applied load was partitioned

into multiple load steps. Each load step was first randomly guessed until the reliability

of structural response which may depend upon the behaviour of structure [124] can

be achieved. Each load step was again divided into small load increments using the

NSUBST command [123]. The auto time stepping option controlled by the AUTOTS

command [123] was turned off to manually control the size of the load increment.

8.2.4.4 Steel-Concrete Composite Interaction Criterion

Ideally, the precise composite interaction between the steel and concrete faces should

be considered in FE modelling to provide the similar behaviour as occurred in the real

structure. However, the actual steel-concrete composite interaction may not be precisely

defined and modelled due to its complicated behaviour. The reliability of the numerical

study may vary and depend on the steel-concrete composite interaction assumption

[72] which may be assumed as one of the three possible conditions as follows: (1) no

composite, (2) partially composite and (3) full composite interactions.

For the no steel-concrete composite interaction condition, the steel and concrete finite

elements may be modelled as independent elements; their element nodes are not con-

nected to each other. Although this technique is quite simple and may provide good

accuracy when the steel and concrete are in separation mode, the great care should be

taken when the elements are in contact mode. The steel and concrete elements, in con-

tact mode, should not penetrate through each other [15]. In practice, the case without

composite interaction may be achieved when the steel face is greased to reduce fiction

[125] so that the friction coefficient between the steel and concrete faces can be ignored.

For the partial steel-concrete composite interaction condition, the interaction forces

may be partially transferred from one material area to another. In addition, the relative

displacement of the two areas may be different and produce significant slip displacement.

This phenomenon can occur in SCS sandwich beams wherever the physical and chemical

bond between the steel and concrete faces are not strong enough. An insufficient number

of shear connectors in the steel-concrete composite structure may also be the cause of
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this situation [71]. To provide the partial composite interaction condition in the FE

model, the possible modelling techniques are as follows: (1) the thin layer technique

[125], (2) the link-discrete element technique [72, 73], and (3) the smeared element

technique [72, 73] as demonstrated in Fig. 8.11.
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Figure 8.11: Techniques to model partial composite interaction between the steel and
concrete interface (a) the thin layer technique, (b) the link-discrete element technique

[72], and (c) the smeared element technique [72]

For the full steel-concrete composite interaction condition, the steel and concrete ele-

ments can be modelled independently. However, they need to share the same element

nodes wherever they are in contact with each other. As a result, the interaction forces

can be fully transferred from one to another and their displacements are the same.

Practically, the case of full composite interaction may be achieved when the steel face is

rough enough to provide a strong bond between steel and concrete faces as sometimes

seen in a reinforced concrete with rebar [124, 125] or a concrete with special reinforce-

ment sheet glued with high-strength adhesive agent [124]. The perfect bond between

steel plate and concrete was also assumed in the FE study of double-skin sandwich

beams by Shanmugam et al. [71].

Although the precise numerical model of steel-concrete composite interaction should be

presented, the simplified technique based on the full composite interaction was decided to

be used in this chapter. This simplified composite interaction model should be suitable

for the present study because the main objective of this study is to understand how the

shear connector topologies, especially the angle of proposed inclined shear connectors,

affects the transverse shear strength capacity and the diagonal shear crack behaviour.

Further investigation based on the partial composite interaction may be taken in the

future to present the local behaviour in more detail. It should be done along with an

experimental study of the beam so that the validation of the refined model can be carried

out.
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8.2.5 Analytical Method

8.2.5.1 Non-Linear Solution

Due to the material property model of the concrete being non-linear, the non-linear

analysis approach is required in this chapter. This is because the non-linear stress-

strain relationships of material will cause the stiffness of structure to change at different

load levels [123].

In the ANSYS software, the Newton-Raphson approach is used to solve non-linear prob-

lems. This approach divides the applied load into a series of load increments. The

Newton-Raphson procedure begins with evaluation of the out-of-balance load – the dif-

ference between the restoring force and the applied loads – at the beginning of each

iterative solution. Then, a linear solution is performed with these out-of-balance loads.

After checking the convergence criteria, the out-of-balance load vector is re-evaluated.

If the criteria are unsatisfied, then the stiffness matrix is updated and a new iterative

solution is obtained until the problem converges. The load increment may be reduced

again if the problem is still diverging [123]. Then, the same iterative procedures are

re-performed.

In ANSYS, the convergence criteria are based on forces, moments, displacements or rota-

tions criteria, or a combination of the previously mentioned criteria. Each criterion may

have its own convergence tolerance value [123]. In this chapter, the convergence criteria

are based on forces and displacements. The default non-linear solution is controlled by

the convergence criteria which is automatically defined by ANSYS. For typical non-linear

analysis cases, the automatic solution control in ANSYS uses L2-norm of force tolerance

equal to 0.5%. As optional, an L2-norm also checks on displacement with a tolerance

equal to 5%. The displacement criterion is used in addition to the force criterion as a

double-check on solution convergence [123].

However, Kachlakev et al. [124] recommended to increase the convergence tolerance

limits in ANSYS to a maximum of five times as the default tolerance limits in order

to prevent the divergence problem. Therefore, the convergence tolerance limits used in

this chapter were set at 2.5% for the force criterion and at 25% for the displacement

criterion. In ANSYS, this can be done using the CNVTOL command [123].
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8.2.5.2 Interpretation of Concrete Crack

Generally, the cracking of concrete occurs when its principal tensile stress is greater than

its own ultimate tensile strength. The crack can be usually observed from the exper-

imental test of concrete beams and other concrete structures. Therefore, it should be

predictable when using the FE method to study the behaviour of the concrete structure.

To demonstrate the cracking of the concrete, there are three possible techniques to be

used: (1) discrete-cracking technique [73], (2) tensile strain contour plotting technique

[15], and (3) smeared-cracking technique [73, 124].

The discrete-cracking technique is a direct approach in which the formation of cracks is

modelled using de-coupling element nodes [73]. Although this is the direct approach, it

seems to be difficult to model due to the unknown orientation of the first concrete crack.

In addition, the model needs to be changed when the load is increased; as a result, the

analysis may be remarkably slow [124]. The convergence problems due to poor geometry

and the poor results may be inevitable [73]. This technique is considered to be worse

than the smeared-cracking technique [148]9.

The tensile strain contour plotting technique is an indirect approach in which the for-

mation of cracks is demonstrated by plotting the maximum analysed principal tensile

strain contours of concrete elements [15]. The crack is assumed to occur when the ele-

ment reaches its limited capacity, and then the element is highlighted to present a virtual

crack.

The smeared-cracking technique is also an indirect approach in which the formation of

cracks is demonstrated by a virtual analogous distributed cracking indicator whenever an

analysed principal tensile stress of the concrete element exceeds its own ultimate tensile

strength [73, 124]. Having achieved this condition, the elastic modulus of the concrete

in the direction parallel to the principal tensile stress direction is assumed to be zero

[150]10. This technique is considered to be easy to perform because the pre-defined first

crack orientation is not required [73].

In this chapter, the smeared-cracking technique was chosen to demonstrate the concrete

crack because of the simplicity of the technique. It is also available in the ANSYS

software [123]. The cracking indicator in the ANSYS software appears as a circle on a

plane perpendicular to the direction of the principal stress at the integration points of

the solid elements.

To interpret the meaning of the cracking indicator in ANSYS, Kachlakev et al. [124]

illustrated three typical cases of cracking of concrete beams as shown in Fig. 8.12(b).
9 cited by Sigfusson [149]

10 cited by Kachlakev et al. [124]
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Region (a) shows the typical case of cracking in a flexural mode which normally appears

at the bottom of the beam at midspan. The flexural crack occurs when the principal

tensile stress in the y-direction of an element exceeds its ultimate tensile strength. In

ANSYS, as a result, many crack indicators develop and appear as vertical lines. The

typical case of cracking in a diagonal mode is shown in region (b). This crack also

occurs when the concrete elements subjected to high principal tensile stress. However,

the principal tensile stress of this case aligns in a diagonal direction due to the stress

transformation obtained from both normal and shear stresses. In any element of the

concrete beam, for example, subject to the normal stress in the y-direction and shear

stress in the yz-plane, the principal tensile stress direction will be inclined from the y-

direction. As a result, the crack appears as a diagonal line. Region (c) shows the typical

case of cracking in a compressive mode. This crack occurs when the concrete element

is subjected to high compressive stress. Due to the Poisson’s effect, consequently, the

tensile crack develops in the direction perpendicular to the plane of the compressive

stress [151, 152]11. In concrete beams subjected to load in the z-direction, the crack

may develop in the x-direction and appears as the circle indicator.
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Figure 8.12: Virtual techniques to demonstrate the cracks of a concrete beam (a)
the principal tensile strain contour plotting technique [modified from 15], and (b) the

smeared cracking technique [modified from 124]

11 cited by Kachlakev et al. [124]
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8.3 Evaluation of the Performance of the Proposed Shear

Connector

In this section, the performance of the SCS sandwich beam with variable patterns of

inclined shear connector was evaluated. The configuration of the core with and without

shear connector was as shown in Fig. 8.13. They were set to evaluate the contribution

of each pattern of the shear connector to the strength behaviour and the cracking de-

velopment of the concrete core of a concrete-filled SCS sandwich beam. All geometric

parameters were kept constant except the ratio of sy/d. This parameter indirectly rep-

resents the angle of the inclined part of the shear connector which can vary from 0◦

to 90◦. Here, sy/d varies from 0 to 1.0; therefore, the angle of shear connector varies

from 45◦ to 90◦. Table 8.8 summarises the values of geometric parameters used in this

section.

Table 8.8: Configuration of the case studies

Parameter Case Study Unit Note
SCS-NSC SCS-SYD000 SCS-SYD025 SCS-SYD050 SCS-SYD075 SCS-SYD100 SCS-SYD050-A
Fig. 8.13(a) Fig. 8.13(b) Fig. 8.13(c) Fig. 8.13(d)

sy/d N/A 0.00 0.25 0.50 0.75 1.00 −0.50
θ N/A 90.0◦ 76.0◦ 63.4◦ 53.1◦ 45.0◦ −63.4◦

b 200 200 200 200 mm
tt 12 12 12 12 mm tt/tb = 1
tb 12 12 12 12 mm
kcb N/A 0.50 0.50 0.50
tc N/A 12 12 12 mm tc/tb = 1
sc 600 600 600 600 mm
fc N/A 300 250 200 150 100 200 mm
hc 400 400 400 400 mm hc/b = 2

It should be noted that the proposed Bi-CSC is reduced to a simplified pattern of a

single-leg shear connector in the y-direction only. This model is used to understand the

effect of the pattern of the single-leg shear connector first. A more complicated behaviour

would occur in the situation of a concrete-filled SCS beam with all parts of the proposed

Bi-CSC. Further investigation to understand its behaviour should therefore be carried

out in the future. The reduced Bi-CSC topology with 90◦ single-leg shear connector

may represent an equivalent 90◦ Bi-Steel connector with two numbers of bar diameter

27.6 mm arranged in the x-direction and spaced at sx = 100 mm (see Fig. 8.5(b)). These

Bi-Steel connectors are also repeated in the y-direction at an interval of sy = 600 mm.

8.3.1 Load-Deflection Relationship

Figure 8.14 presents the relationship between the applied load, P , and the vertical

deflection at midspan of beam, ∆. The applied load P is normalised by the load Pc
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Figure 8.13: Configurations of concrete-filled steel-concrete-steel sandwich beam case
studies (a) without shear connector, (b) with vertical shear connectors, (c) with inclined

shear connectors, and (d) with inclined shear connectors (reverse direction)
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and the deflection ∆ is also normalised by the deflection ∆c. Here, the load Pc is the

possible maximum load which can be applied to the beam ID SCS-NSC before ANSYS

stops running due to non-convergence solution. The deflection ∆c is the response at the

applied load Pc.

It can be seen from Fig. 8.14 that the response of the SCS beams are the same in the

range of applied load 0 ≤ P/Pc ≤ 1.00 for all cases except for the beam ID SCS-SYD050-

A (a particular case of a beam with inclined shear connectors). Beyond this point,

the response of the beams is still similar with approximately the same load-deflection

relationship.

At the point of P/Pc = 1.00, the beam ID SCS-NSC (the beam without any shear

connector) reaches its maximum strength. In the beam ID SCS-SYD000 (the beam with

vertical shear connector), more applied load P/Pc can be obtained before reaching its

maximum strength at P/Pc = 1.03. A remarkable increasing load can be found beyond

this point for the remaining cases, i.e., the beam with inclined shear connector where

0.25 ≤ sy/d ≤ 1.00. The maximum load P/Pc applied to the beam ID SCS-SYD025

and SCS-SYD100 are 1.26 and 1.50, respectively. The maximum load P/Pc applied to

the remaining cases are between 1.26 and 1.50. For the beam ID SCS-SYD050-A, the

response of beam is different from those previously mentioned. The maximum load P/Pc
applied to the beam equal to 1.00 – the maximum load of the beam ID SCS-NSC – with

a bit more deflection ∆/∆c compared with the beam ID SCS-NSC.

The load-deflection response of the beam, as presented in Fig. 8.14, may imply that

the beam without shear connector and the beam with shear connector in any alignment

pattern perform in a similar manner up to the point that the beam with no shear

connector reaches its maximum strength. In this range, there is no contribution provided

by the shear connector regardless of orientation; the strength of the beam is dominated

by the concrete only. After the concrete fails, the strength of the beam with shear

connectors is further enhanced by the shear connector. The beam can then withstand

more applied load P/Pc. Considering the SCS beam with shear connectors, it is found

that the strength of the beam in terms of the applied load P/Pc varies according to the

alignment pattern of shear connector.

Figure 8.15 presents the relationship between the applied load P/Pv and the angle θ of

shear connector. In this figure, the applied load P is normalised by the load Pv where

the load Pv is the maximum applied load of the beam with vertical shear connectors

(the beam ID SCS-SYD000).

By comparison, it is found that the strength of the beam steadily increases from 0.00

to 1.38 when the angle θ reduces from 90◦ (sy/d = 0.00) to 63.4◦ (sy/d = 0.50). Then,
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the strength of beam gradually rises from 1.38 to 1.44 when the angle θ reduces from

63.4◦ (sy/d = 0.50) to 53.1◦ (sy/d = 0.75). Beyond this point, only the small amount

of increased strength of beam is obtained before reaching the maximum value of 1.45 at

the angle θ equals 45◦ (sy/d = 1.00).

As can be seen from Fig. 8.15, the maximum strength of the SCS beam with the shear

connector can be obtained if the angle θ equals 45◦ (sy/d = 1.00). At this point, the

strength of the SCS sandwich beam with 45◦ inclined shear connector is 145% stronger

than of the SCS sandwich beam with 90◦ vertical shear connector. This behaviour is

similar to the behaviour of the simple mechanism of concrete beam with inclined shear

reinforcements as previously demonstrated in Fig. 8.7 in which the maximum strength

at the diagonal crack section can be obtained if the angle θ of the transverse shear

reinforcement equals 45◦. At this point, the maximum strength of the beam with a 45◦

inclined shear reinforcement is 141% stronger than of the beam with a 90◦ vertical shear

reinforcement. It may imply, therefore, that the concept of inclined shear reinforcement

can also be introduced to the SCS sandwich beam.

As previously mentioned, the reduced Bi-CSC topology with 90◦ single-leg shear con-

nector referred to here as the beam ID SCS-SYD000 may represent an equivalent 90◦

Bi-Steel connector with a group of bars diameter 27.6 mm spaced at sx = 100 mm

and sy = 600 mm. This equivalent Bi-Steel topology provides the transverse shear

strength, VBS , obtained from the formula presented in Table 8.1 of 262 kN . Therefore,

the reduced Bi-CSC topology with 45◦ single-leg shear connector referred to here as the

beam ID SCS-SYD100 provides a transverse shear strength, VBS , 1.41 times that of the

Bi-Steel equivalent.
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8.3.2 Development of Concrete Cracks

Figures 8.16 to 8.21 present the cracking development of the concrete core for each SCS

sandwich beam recorded at each applied load step from the ANSYS software. Here, the

cracking signs of the concrete elements (SOLID65) obtained from the ANSYS outputs are

calculated at integration points of the elements and interpreted as previously mentioned

in Sec. 8.2.5.2.

In general, the cracking patterns of the concrete core for all beams are similar at the

initial period of applying load P/Pc from 0 to 1.0. The initial flexural cracks occur first

at the midspan of the beam at an applied load P/Pc = 0.50. Then, the initial diagonal

shear cracks occur near the support and below the point of the applied load. These

cracks initially begin from the interface between the concrete core and the bottom face

plate and move upward to the top face plate.

In cases of the SCS beam without shear connector (beam ID SCS-NSC) and with vertical

shear connector (beam ID SCS-SYD000), the diagonal shear crack can quickly develop

and then stop before passing the neutral axis of the SCS beam. At this stage, these two

SCS beams are assumed to have failed at an applied load P/Pc about 1.0.

In case of the SCS beam with inclined shear connectors (beam ID SCS-SYD025 to SCS-

SYD100), the diagonal shear cracks can further develop when a higher load P/Pc is

applied. As can be seen from Figs. 8.18 to 8.21, a few more diagonal crack lines can

occur and further develop above the neutral axis. In the extreme case of the beam with

45◦ angle shear connector (beam ID SCS-SYD100), the diagonal shear crack can develop

upward to the top face plate near the point of applied load.
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In addition to the flexural and diagonal shear cracks, numerous cracks can be found

on the left side of the first two shear connectors near the support of the beam when

an applied load P/Pc is higher than 1.0. This cracking pattern may demonstrate that

the concrete core is confined by the shear connector plates so that the concrete can

develop crushing failure in the y-direction instead of tensile cracking failure in the same

direction, as can be seen from numerous cracking indicators appearing in circular shape.

8.4 Concluding Remark

The diagonal shear crack of the concrete-core of the concrete-filled SCS sandwich beams

were reviewed and demonstrated using the fundamental concept of reinforced concrete

beam. The transverse shear strength of the cross section of a concrete-filled Bi-Steel

sandwich beam was also reviewed and demonstrated its limitations. The alternative

solution to overcome the limitations of state-of-the-art Bi-Steel sandwich beam was

proposed.

The numerical study of the concrete-filled SCS sandwich beams with various shear con-

nector patterns was carried out using 3D FE models. A four-point-loaded concrete-filled

SCS sandwich beam was modelled and analysed using the FE software ANSYS Release

11.0 [123]. The full composite of steel-concrete interaction was assumed. The analysis

was performed in non-linear mode with non-linear stress-strain relationships for steel

and concrete. The presented FE models were used to evaluate the performance of the

proposed shear connector pattern. The load-deflection relationship of the beam and the

crack development of the concrete core of beam were obtained from the FE model. The

smeared-cracking technique was used to demonstrate the development of cracks in the

concrete core.

It was found that the response of the load-deflection of the concrete-filled SCS sandwich

beam with various shear connector patterns was similar when the applied load P/Pc was

between 0 and 1.0. Beyond the point of P/Pc = 1.0, the response of the beam varied

according to the angle θ of shear connector. The ultimate applied load P/Pc increased

where the angle θ of shear connector decreased. It was found that the response of the

relationship between ultimate applied load P/Pc and the angle θ of shear connector was

similar to the fundamental concept of a reinforced concrete beam. The optimum applied

load P/Pc occurred at θ = 45◦, i.e., at 45◦ inclined shear connector pattern.

It was also found that the evolution of the crack in the concrete core with various shear

connector patterns was similar from the beginning of applied load until the initial flexural

crack occurring at an applied load P/Pc about 0.5. Beyond the initial flexural crack,
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however, the cracking pattern varied according to the pattern of the shear connector.

The diagonal shear crack of the concrete-filled SCS sandwich beam with inclined shear

connector was further developed than of the beam with vertical shear connector. The

extreme case where the diagonal shear crack can develop through the depth of concrete

core was found at 45◦ inclined shear connector pattern. Numerous cracks were also

found on the left-side of inclined shear connectors only.

By comparison, it was found that the responses of the concrete-filled and the unfilled

SCS sandwich beams, previously mentioned in Chapters 4 to 7, were similar. The

responses of both the unfilled and concrete-filled SCS sandwich beams varied with the

alignment pattern of the Bi-CSC – the shear connectors. The optimum advantage of the

transverse shear stiffness of the unfilled SCS sandwich beam was found when the inclined

parts of the proposed Bi-CSC align at an angle about 45◦. The optimum advantage of

the transverse shear strength of the concrete-filled SCS sandwich beam was also found

when the inclined shear connectors align at an angle 45◦. This may imply that creating

the Bi-CSC with a 45◦ pattern can provide a great advantage in transverse shear stiffness

and strength in both the unfilled and concrete-filled SCS sandwich beams.
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Chapter 9

Conclusion and Recommendation

for Further Work

9.1 Conclusion

The research was conducted to deliver a new type of steel-concrete-steel (SCS) sandwich

construction. The novel SCS sandwich structure with bi-directional corrugated-strip

core (Bi-CSC) was proposed. The aims of the research were to present the possibility

to implement this novel sandwich structure and to present the potential advantages in

terms of structural performance. The main objective of the research was to address the

advantages of the stiffness and strength of the proposed sandwich beam using numerical

and analytical methods. The focus was on the effect of the angle of the inclined part

of the corrugated-strip core (CSC) to the stiffness and strength of the unfilled SCS

sandwich beam and to the transverse shear strength of a concrete-filled SCS sandwich

beam.

The research was conducted in four stages: (1) the review of sandwich construction,

(2) the feasibility study to implement the proposed SCS sandwich structure, (3) the

numerical and analytical studies of the stiffness and strength of the unfilled SCS sandwich

beam with Bi-CSC, and (4) the numerical study of the transverse shear strength of the

concrete-filled SCS sandwich beam with corrugated-strip core. Therefore, the summary

of this research may be drawn in the four following sections.

9.1.1 Literature Review of Sandwich Construction

The literature, as presented in Chapter 2, demonstrated the variety of the design and

construction of the sandwich structures and presented the possibility to invent a new

181
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type of sandwich construction. In the SCS sandwich construction, it was found that

the major progression of development was to introduce a shear connector using a single-

ended friction-welded shear stud through a double-ended friction-welded shear stud and

an innovative J-hook connector. However, it was found that the existing forms of shear

connectors recently used in the SCS sandwich construction were all aligned perpendicular

to the steel face plates.

The literature showed that the concrete-filled SCS sandwich beams could suffer a diag-

onal shear crack of the concrete core. It was found that the existing shear connectors

might not provide the optimum strength capacity to overcome this diagonal shear crack.

In comparison with another similar construction such as a reinforced concrete (RC)

beam, the inclined shear connectors were found to be an alternative solution to provide

more transverse strength capacity. However, the literature in the SCS sandwich con-

struction demonstrated that there was no existing SCS sandwich beam with inclined

shear connectors. It was implied that the understanding of the structural behaviour

due to the inclined shear connector was missing from the current knowledge of the SCS

sandwich construction, both in the unfilled and concrete-filled types.

9.1.2 Implementation of Steel-Concrete-Steel Sandwich Structures with

Bi-Directional Corrugated-Strip Core

The conceptual design of the SCS sandwich structure with Bi-CSC was proposed and

presented in Chapter 3. The construction of the unfilled SCS sandwich structure with

Bi-CSC was the major construction stage needed to implement. The feasibility study

demonstrated that the production of this proposed SCS sandwich structure could be

possible. The existing construction techniques of corrugated-strip core sandwich plates

presented by Ray [16, 17] could be adapted to this proposed SCS sandwich structure.

Two possible methods to create Bi-CSC pattern, i.e., the top-down (TD) and the slide-

rotate (SR) methods, were originally presented in this research.

9.1.3 Numerical and Analytical Studies of the Stiffness and Strength

of Unfilled Sandwich Beams

The stiffness and strength of the unfilled SCS sandwich beam with Bi-CSC and other sim-

ilar truss-like cores were carried out using a numerical and three analytical approaches.

The numerical approach was a three-dimensional (3D) finite element method (FEM)

(presented in Chapter 4). The analytical approaches were the modified stiffness matrix

method (MSM) (presented in Chapter 5), the braced frame analogy method (BFA) (pre-

sented in Chapter 6), and the discrete beam method (DBM) (presented in Chapter 7).
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In the 3D FEM, as presented in Chapter 4, the unfilled SCS sandwich beam was modelled

and analysed using the FE software ANSYS Release 11.0 [123] along with the force-

distortion relationship of a three-point loaded beam. The repetitive unit cell of the

unfilled SCS sandwich beam was also modelled and analysed using the same software

along with the force-distortion relationship of the unit cell.

The FE models were validated with the existing FE solutions of the unfilled web core

sandwich beam provided by Romanoff and Varsta [37] and of the unfilled truss core

sandwich beam provided by Lok et al. [19, 20]. The validation demonstrated that the

presented FE models provided good correlation with these references. In addition, both

the unfilled sandwich beam and the unit cell approaches were also good correlation with

each other. It was found that the unit cell could be used to deduce the transverse

shear stiffness, DQy, of the unfilled SCS sandwich beam with Bi-CSC to reduce the

computation time required for the analysis of the unfilled SCS sandwich beam.

The FE models were used to evaluate the performance of the unfilled SCS sandwich

beam with Bi-CSC and two other similar cores, i.e., a truss core and an X-truss core. It

was found that the flexural stiffness, Dy, of the unfilled SCS sandwich beam with these

cores could be neglected. However, it was found that the transverse shear stiffness, DQy,

of the unfilled SCS sandwich beam with these cores was significantly dominated by the

configuration of the cores and could not be neglected. The transverse shear stiffness,

DQy, varied with the ratio of sy/d and reached the optimum point at sy/d about 1.0,

i.e., at the angle of the inclined part of the CSC about 45◦. It was found that the stress

at the face plates of the unfilled SCS sandwich beam with Bi-CSC was improved. In

comparison with two other truss-like cores, the normal stress at the face plates of the

unfilled SCS sandwich beam with Bi-CSC was more uniform. The peak stress at the

connection point of the web was also reduced.

In the analytical approaches, the MSM was the first analytical method presented in

Chapter 5. The method was based on the force-distortion relationship of the repetitive

unit cell of the unfilled SCS sandwich beam and the conventional stiffness matrix method.

The MSM was proposed in this research as a simplified analytical method to obtain the

transverse shear stiffness, DQy, and to overcome the high degree of indeterminacy of the

proposed Bi-CSC.

The unfilled SCS sandwich beam with Bi-CSC and other similar truss-like cores were

simplified as two-dimensional (2D) plane-frame model (PFM) with beam elements. The

connections between the sandwich face plates and the core were modelled using rigid-

link elements. The local stiffness matrix of each beam element was performed using the

model of the beam with linear rotational springs at both ends of the beam element.
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The MSM was validated against the existing analytical solution of the truss core sand-

wich beam provided by Lok et al. [19, 20] and also against the FE solutions based on

the 3D FE model of a three-point loaded beam presented in Chapter 4. It was found

that the MSM correlated well with the references and the FE approach.

The MSM was used to evaluate the performance of the proposed unfilled SCS sandwich

beam with Bi-CSC compared with the truss core and the X-truss core. It was found

that the transverse shear stiffness, DQy, of these cores varied significantly as a function

of sy/d, fc/sc. By comparison, the unfilled SCS sandwich beam with Bi-CSC was

less advantageous than the X-truss core. However, the proposed Bi-CSC was more

advantageous than the truss core if sy/d was less than 1.0 (the angle of the inclined part

of a corrugation was greater than 45◦) or if fc/sc was greater than 0.2.

The BFA, as presented in Chapter 6, was another analytical method based on the force-

distortion relationship of the repetitive unit cell of the unfilled SCS sandwich beam.

The BFA was also proposed in this research as another simplified analytical method

to obtain the transverse shear stiffness, DQy, and to overcome the high degree of in-

determinacy of the proposed Bi-CSC. In addition, the BFA was proposed as a method

to separate the stiffness contribution of the core from the overall stiffness so that the

stiffness contribution of the core could be studied.

The 2D PFM with beam elements previously used in the MSM was further adapted for

use in the BFA. Rather than modelling the inclined part of the CSC as beam elements,

the truss elements were used in the BFA. The truss element assumption was made in

accordance with the solution previously obtained from the MSM.

The BFA was used to formulate the flexural stiffness, Dy, and the transverse shear

stiffness, DQy, from the mechanism of a repetitive unit cell subjected to the flexural load

and transverse shear load, respectively. The formulation of the stiffness equations was

obtained from the equilibrium of forces and the displacement compatibility equations.

The elongation of the inclined chord was approximated in advance as a function of the

elongation factors kb and ks (as detailed in Appendix A). In the transverse shear load

mechanism, the repetitive unit cell subjected to the transverse shear load was assumed to

deform into two separate modes: (1) deformation in the z-direction due to the transverse

shear force, Qy, and (2) deformation in the y-direction due to a couple of horizontal force,

H, where H = Qysc/d.

The flexural and transverse shear stiffnesses obtained from the BFA were verified. It was

also found that the flexural stiffness, Dy, of the unfilled SCS sandwich beam with Bi-

CSC could exist if the unfilled SCS sandwich beam was unsymmetrical. In comparison

with the 3D FEM, it was found that the transverse shear stiffness, DQy, was not good
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correlation in magnitude with the FE solution obtained from the unfilled SCS sandwich

beam model.

Although the BFA was less accurate than the MSM, it was used in this research as

a method to evaluate the stiffness contribution of the proposed core. It was found

that the flexural stiffness contribution of the core could be neglected. However, the

transverse shear stiffness contribution of the core could not be neglected. The transverse

shear stiffness, DQy, was significantly dominated by the contribution of the core. The

maximum contribution of the core to the transverse shear stiffness, DQy, could be about

90% of the overall stiffness. The contribution of the core itself also varied as a function

of sy/d. The optimum point of transverse shear stiffness contributed by the core was at

sy/d about 0.75 (the angle of the inclined part of a corrugation being about 53◦).

The DBM, as presented in Chapter 7, was another simplified analytical method proposed

in this research. Unlike the MSM and BFAs, the DBM was based on the transformation

of the local stress and strain of each part of the repetitive unit cell of the unfilled SCS

sandwich beam to the global coordinate system. This method was also proposed as an

alternative simplified analytical method to overcome the high degree of indeterminacy of

the presented Bi-CSC. The derivation approaches to obtain the transverse shear stiffness,

DQy, of the DBM was similar to those of the BFA.

The transverse shear stiffness obtained from the DBM was verified. It was found that

the transverse shear stiffness, DQy, obtained from the DBM diverged from the FEM if

sy/d < 1.00. However, the convergence could be achieved if the stiffness contribution of

the face plates was extracted. It was also found that the DBM yielded poor correlation

with the FEM. Again, the trend of the results was similar but the magnitude was

different.

According to the study of the unfilled SCS sandwich beam with various cores using the

numerical and analytical methods, it can be concluded that only the transverse shear

stiffness, DQy, of the unfilled SCS sandwich beam was significantly dominated by the

configuration of the cores. The optimum configuration of the core was found at the ratio

of sy/d about 1.0, i.e., the angle of the inclined part of the corrugation was about 45◦.

In comparison with the solution obtained by the FEM, it was found that the MSM was

the most accurate analytical method to obtain the transverse shear stiffness, DQy. The

BFA and the DBM were less accurate.
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9.1.4 Numerical Study of the Transverse Shear Strength of Concrete-

Filled SCS Sandwich Beams

The presence of the diagonal shear crack in the concrete-core of a concrete-filled SCS

sandwich beam was first demonstrated using the concept of a reinforced concrete beam.

The limitations of the transverse shear strength of the Bi-Steel cross section was re-

viewed and an alternative concept to improve the limitations of Bi-Steel cross section

was proposed.

The numerical study of the concrete-filled SCS sandwich beam with various shear con-

nector patterns was carried out using 3D FE model of a four-point loaded concrete-filled

SCS sandwich beam. The 3D FE model was analysed in non-linear mode using the FE

software ANSYS Release 11.0 [123] with the applied assumptions.

The presented FE models were used to evaluate the performance of the various shear

connector patterns. The load-deflection relationship of the beam and the evolution of

the concrete crack of the beam were obtained. It was found that the load-deflection

relationship of the concrete-filled SCS sandwich beams with various shear connector

patterns were similar before the initial diagonal crack occurred in the concrete core

at the applied load P/Pc about 1.0. Beyond this point, the response of beam varied

according to the angle of shear connector. The ultimate applied load, in terms of P/Pc,

increased when the angle of the shear connector decreased. It was found that this

response was similar to the fundamental concept of the reinforced concrete beam. The

optimum applied load occurred when the shear connectors were aligned in angle about

45◦.

It was also found that the evolution of the crack of concrete core with various shear

connector patterns was similar from the beginning of applied load until the initial flexural

crack occurred. Beyond this point, the cracking pattern varied in accordance to the

pattern of shear connector. The diagonal shear crack of the concrete-filled SCS sandwich

beam with an inclined shear connector was more improved than of the beam with vertical

shear connector. The extreme case where the diagonal shear crack could develop through

the depth of concrete core was found when the shear connectors were aligned in angle

of 45◦.

9.2 Recommendation for Further Work

In summary, the work conducted in this research can be listed in tabular form as pre-

sented in Table 9.1.
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Table 9.1: Summary of the work done in this research and the gaps for further study

Mode of Study
Subject Feasibility Study Numerical Study Analytical Study Experimental Study

Fabrication and Construction
Techniques

To present the pos-
sibility to implement
the SCS sandwich beam
with Bi-CSC system us-
ing the available con-
struction techniques

– – Future Work

The main focus is on the
implementation of the
corrugated-strip plates
in bi-direction format

Study of Unfilled SCS Sandwich
Beam with Bi-CSC System

– To understand the
static behaviour of the
unfilled SCS sandwich
beam with Bi-CSC
using the 3D finite
element model

To present the sim-
plified analytical
techniques to deliver
stiffness and strength
of the unfilled SCS
sandwich beam with
Bi-CSC

To understand the
static behaviour of the
unfilled SCS sandwich
beam with Bi-CSC
using the presented
analytical techniques

Future Work

The main focus is on the transverse shear stiff-
ness of the unfilled SCS sandwich beam with Bi-
CSC affected by variable configurations of core

Study of Concrete-filled SCS
Sandwich Beam with Bi-CSC
System

– To understand the
static behaviour of
the concrete-filled SCS
sandwich beam with
Bi-CSC using the 3D
finite element model

Future Work Future Work

The main focus is
on the transverse
shear strength and
the diagonal shear
crack behaviour of the
concrete-filled SCS
sandwich beam with
various configurations
of the proposed core

In the author’s opinion, there are some areas of work that need to be carried out in

the future. The work should be broken down into three tasks: (1) the further study

of the production and construction techniques of the unfilled and concrete-filled SCS

sandwich beam with Bi-CSC, (2) the further study of the unfilled SCS sandwich beam

with Bi-CSC, and (3) the further study of the concrete-filled SCS sandwich beam with

Bi-CSC, as further detailed in the three following sections.
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9.2.1 Production and Construction Techniques

To ensure that the proposed SCS sandwich structure with Bi-CSC can be produced and

constructed in both the unfilled and concrete-filled stages, further details of production

and construction techniques need to be implemented and developed. In the current

research, only the conceptual design, especially in the unfilled stage, has been presented

(see Chapter 3). Therefore, the prototype of the proposed SCS sandwich structure

should be made. Besides making the prototype, the development of the production and

construction techniques should be conducted to deliver higher efficient and economical

methods.

9.2.2 Further Study of Unfilled Sandwich Beams

In the study of the unfilled SCS sandwich beam with Bi-CSC, it was found that the

analytical approaches seem to provide good correlation with the numerical approach

with some applied assumptions and limitations. However, it should be more appropriate

if an experimental study be carried out. This is to ensure that both the analytical and

numerical approaches in this research are properly validated with the real response of

the proposed unfilled SCS sandwich structure. The three- or four-point loaded beam

of the proposed unfilled SCS sandwich beam with various cores subject to static load

conditions should be tested to obtain the response of the beam as well as to obtain the

local and global failure mechanisms of the beam.

Besides the experimental testing, the development of the analytical approaches, espe-

cially the BFA and the DBM, should be further conducted to improve the approaches

so that a higher accuracy with minimal assumptions can be achieved. Each assumption

assumed in each analytical approach should be further studied in more detail to un-

derstand its response clearly. In addition, the analytical approaches should be further

developed so that both the stiffness and stress responses of the unfilled SCS sandwich

beam with Bi-CSC can be achieved. The theory of an unfilled web core sandwich beam

developed by Romanoff et al. [37, 115] may be adapted and used as the basis for the

unfilled SCS sandwich beam with Bi-CSC.

Other responses of the unfilled sandwich beam such as the buckling strength of the

corrugated-strip core, which is quite thin, may need to be investigated. The flexibility

of the connection between the face plate and the core may also be investigated to assess

any actual flexibility effect due to real connection, as may be seen in, for example, Fung

and Tan [131].
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9.2.3 Further Study of Concrete-Filled Sandwich Beams

In the study of the concrete-filled SCS sandwich beam with CSC, only the numerical

study of the load-deflection response and the development of concrete crack were pre-

sented in this research (see Chapter 8). Therefore, it should be more appropriate if the

experimental study will be conducted. A three- or four-point loaded beam should be

carried out to understand the real response and the failure mechanism of the beam. The

push-out shear test of a repetitive concrete-filled unit cell should be also conducted. A

series of the tests of concrete-filled Bi-Steel sandwich beam intensively presented in [12]

and concrete-filled SCS sandwich beam with J-hook connectors presented in [77] may

be used as the guidance for the experimental testing of the concrete-filled SCS sandwich

with CSC. Further experimental study of the concrete-filled SCS sandwich beam with

Bi-CSC should also be carried out.

In comparison with the experimental results, the numerical study of the concrete-filled

SCS sandwich beam with CSC should be further validated in more detail. The FE

model should be further developed to include the local response of the beam which may

be found in the experimental study, for example, the partial slip between the concrete

core and the face plates and/or the CSC. The parametric study should be further study

based on the new refined FE model.

In addition to the numerical and experimental studies, the analytical solution of the

concrete-filled SCS sandwich beam with CSC and with Bi-CSC should be developed.

The design equations should also be developed.

In summary, further development in any approach should be conducted to understand

the response of the proposed SCS sandwich beam in both unfilled and concrete-filled

types in detail. This should be done to ensure that the new proposed SCS sandwich

beam is safe for the public use.
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Figure A.1: Location of the neutral axis of the cross section of an unfilled sandwich
beam with bi-directional corrugated-strip core

Considering Fig. A.1, the location of the neutral axis of the cross section of an unfilled

sandwich beam with bi-directional corrugated-strip core (Bi-CSC) can be calculated as

191



Appendix A. Supplementary Note of the Braced Frame Analogy 192

follows:
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Consequently,
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A.2 Elongation Factor kb
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Figure A.2: Elongation length of the inclined member of the deformed unit cell
subjected to pure bending moment

Considering Fig. A.2, the initial length of the inclined member can be expressed as

follows:

Lc = Lz
√

1 + Yc (A.3)

where

Yc =
L2
y

L2
z

(A.4a)

Lz = hc − tc (A.4b)

Ly = sc − 2fc (A.4c)

Similarly, the axially deformed length of the inclined member can be expressed as follows:

Lcb = Lz
√

1 + Ycb (A.5)
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where

Ycb = Yc + δcb (A.6a)
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1
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z

(
−2Lyδa + δ2
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)
(A.6b)
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δty (A.6c)

Thus, the axial deformation of the inclined member, δc, can be expressed in terms of

Lcb and Lc in which it can be further expressed in terms of the Taylor series if |Ycb < 1|
and |Yc < 1|, as follows:

δc = Lcb − Lc
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Substitute Eq. A.6a into Eq. A.7 and neglect the higher-order terms of δcb, thus

δc = Lzδcb
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Substitute Eq. A.6b into Eq. A.8, thus
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Substitute Eq. A.6c into Eq. A.9 and neglect the higher-order terms of δty, thus
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It should be noted that the Taylor series could be converged only if |Ycb < 1| and |Yc < 1|,
i.e., Ly < Lz. In case of Ly > Lz, therefore, the axial deformation of the inclined

member, δc, is slightly changed as follows:
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In general, the elongation factor kb can be expressed as follows:

kb =
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A.3 Elongation Factors ksz and ksy
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Figure A.3: Elongation length of the inclined member of the deformed unit cell
subjected to (a) transverse shear force, Qy, and (b) a couple of horizontal force, H

To derive the elongation factors ksz and ksy, the similar procedure as of the elongation

factor kb is carried out. For ksz, considering Fig. A.3(a), the axially deformed length of
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the inclined member C1 can be expressed as follows:
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√
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where
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Thus, the axial deformation of the inclined member C1 can be expressed in terms of Lcsz1
and Lc in which it can be further expressed in terms of the Taylor series if |Ycsz1 < 1|
and |Yc < 1|, as follows:
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Similarly, the axially deformed length of the inclined member C2 can be expressed as

follows:

Lcsz2 = Lz
√

1 + Ycsz2 (A.19)

where

Ycsz2 = Yc + δcsz2 (A.20a)
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Thus, the axial deformation of the inclined member C2 can be expressed in terms of Lcsz2
and Lc in which it can be further expressed in terms of the Taylor series if |Ycsz2 < 1|
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and |Yc < 1|, as follows:
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where
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Considering Eqs. A.18 and A.22, it can be seen that the absolute values of ksz1 and of

ksz2 are identical. Therefore, it can be concluded that both the inclined members C1

and C2 are axially deformed in the same elongation length, thus

δc1 = −δc2 = δc = kszδsz (A.23)
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It should be noted that the Taylor series could be converged only if |Ycsz1 < 1|, |Ycsz2 < 1|
and |Yc < 1|, i.e., Ly < Lz. In case of Ly > Lz, therefore, the axial deformation of the

inclined member, δc, is slightly changed. As a result, the elongation factor ksz is as

follows:
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In general, the elongation factor ksz can be expressed as follows:

ksz =


2
sc − 2fc
sc

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
s2
y

d2

)n−1

if sy ≤ d

2
hc − tc
sc
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n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
d2

s2
y

)n−1

if sy ≥ d
(A.26)

For ksy, considering Fig. A.3(b), the axially deformed length of the inclined member C1

can be expressed as follows:

Lcsy1 = Lz
√

1 + Ycsy1 (A.27)

where

Ycsy1 = Yc + δcsy1 (A.28a)

δcsy1 =
1
L2
z

(
2Lyδsy + δ2

sy

)
(A.28b)

Thus, the axial deformation of the inclined member C1 can be expressed in terms of Lcsy1

and Lc in which it can be further expressed in terms of the Taylor series if |Ycsy1 < 1|
and |Yc < 1|, as follows:

δc1 = Lcsy1 − Lc

= Lzδcsy1

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

nY n−1
c

= 2
Ly
Lz
δsy
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n=0

(−1)n (2n)!
(1− 2n)n!24n

nY n−1
c

= 2
Ly
Lz
δsy
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n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
L2
y

L2
z

)n−1

= ksy1δsy

(A.29)

where

ksy1 = 2
Ly
Lz

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
L2
y

L2
z

)n−1

(A.30)

Similarly, the axially deformed length of the inclined member C2 can be expressed as

follows:

Lcsy2 = Lz
√

1 + Ycsy2 (A.31)
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where

Ycsy2 = Yc + δcsy2 (A.32a)

δcsy2 =
1
L2
z

(
−2Lyδsy + δ2

sy

)
(A.32b)

Thus, the axial deformation of the inclined member C2 can be expressed in terms of Lcsy2

and Lc in which it can be further expressed in terms of the Taylor series if |Ycsy2 < 1|
and |Yc < 1|, as follows:

δc2 = Lcsy2 − Lc

= Lzδcsy2

∞∑
n=0

(−1)n (2n)!
(1− 2n)n!24n
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= − 2
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(A.33)

where

ksy2 = −2
Ly
Lz
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n=0

(−1)n (2n)!
(1− 2n)n!24n

n

(
L2
y

L2
z
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(A.34)

Considering Eqs. A.30 and A.34, it can be seen that the absolute values of ksy1 and of

ksy2 are identical. Therefore, it can be concluded that both the inclined members C1

and C2 are axially deformed in the same elongation length, thus

δc1 = −δc2 = δc = ksyδsy (A.35)

where

ksy = 2
Ly
Lz

∞∑
n=0

(−1)n (2n)!
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n

(
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n

(
s2
y
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)n−1
(A.36)

It should be noted that the Taylor series could be converged only if |Ycsy1 < 1|, |Ycsy2 < 1|
and |Yc < 1|, i.e., Ly < Lz. In case of Ly > Lz, therefore, the axial deformation of the

inclined member, δc, is slightly changed. As a result, the elongation factor ksy is as
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follows:

ksy = 2
∞∑
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In general, the elongation factor ksy can be expressed as follows:

ksy =


2
sy
d
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n=0
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2
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(A.38)





Bibliography

[1] H. Bowerman, N. Coyle, and J. C. Chapman. An innovative steel-concrete con-

struction system. The Structural Engineer, 80(20):33–38, 2002.

[2] J. Y. R. Liew and T. Y. Wang. Novel sandwich composite structures. In Pacific

Structural Steel Conference 2007: Steel Structures in Natural Hazards, Wairakei,

New Zealand, 13–16 March 2007.

[3] J. Y. R. Liew, C. G. Koh, and K. M. A. Sohel. Development of composite sandwich

structures for impact resistance. In Pacific Structural Steel Conference 2007: Steel

Structures in Natural Hazards, Wairakei, New Zealand, 13–16 March 2007.

[4] J. Y. R. Liew and K. M. A. Sohel. Lightweight steel-concrete-steel sandwich system

with J-hook connectors. Engineering Structures, 31(5):1166–1178, 2009.

[5] J. Y. R. Liew, K. M. A. Sohel, and C. G. Koh. Impact tests on steel-concrete-steel

sandwich beams with lightweight concrete core. Engineering Structures, 31(9):

2045–2059, 2009.

[6] X. X. Dai and J. Y. R. Liew. Fatigue performance of lightweight steel-concrete-

steel sandwich systems. Journal of Constructional Steel Research, 66(2):256–276,

2010.

[7] H. Br̊athen and N. E. Rangøy. Perfect timing for concrete sandwich. DNV Forum,

2:24–25, 2005.

[8] Anonymous. Sandwich design concept may revolutionise shipbuilding. DNV Clas-

sification News, 4:5–7, 2005.

[9] X. X. Dai and J. Y. R. Liew. A novel concept to enhance fatigue performance of

steel-concrete-steel sandwich panel. In International Colloquium on Stability and

Ductility of Steel Structures, Lisbon, Portugal, 6–8 September 2006.

[10] X. X. Dai and J. Y. R. Liew. Steel-concrete-steel sandwich system for ship hull

construction. In International Colloquium on Stability and Ductility of Steel Struc-

tures, Lisbon, Portugal, 6–8 September 2006.

201



Bibliography 202

[11] T. O. S. Oduyemi and H. D. Wright. An experimental investigation into the be-

haviour of double-skin sandwich beams. Journal of Constructional Steel Research,

14(3):197–220, 1989.

[12] M. Xie, N. Foundoukos, and J. C. Chapman. Static tests on steel-concrete-steel

sandwich beams. Journal of Constructional Steel Research, 63(6):735–750, 2007.

[13] N. K. Subedi and N. R. Coyle. Improving the strength of fully composite steel-

concrete-steel beam elements by increased surface roughness–an experimental

study. Engineering Structures, 24(10):1349–1355, 2002.

[14] M. Xie and J. C. Chapman. Developments in sandwich construction. Journal of

Constructional Steel Research, 62(11):1123–1133, 2006.

[15] N. Foundoukos and J. C. Chapman. Finite element analysis of steel-concrete-steel

sandwich beams. Journal of Constructional Steel Research, 64(9):947–961, 2008.

[16] H. Ray. Bi-directionally corrugated sandwich construction. United States Patent,

Patent Number: 5,543,204, Date of Patent: 6 August, 1996.

[17] H. Ray. Panel having cross-corrugated sandwich construction. United States

Patent, Patent Number: 5,609,942, Date of Patent: 11 March, 1997.

[18] H. Ray. Investigation of advanced lightweight sandwich structural concept. Report

NAWCADWAR-93064-60, Naval Air Warfare Center, Aircraft Division, Warmin-

ster, PA, 1993.

[19] T. S. Lok, Q. Cheng, and L. Heng. Equivalent stiffness parameters of truss-core

sandwich panel. In Proceedings of the Ninth (1999) Internatioanl Offshore and

Polar Engineering Conference, volume IV, pages 292–298, Brest, France, 30 May

– 4 June 1999.

[20] T. S. Lok and Q. H. Cheng. Elastic stiffness properties and behavior of truss-core

sandwich panel. Journal of Structural Engineering, 126(5):552–559, 2000.

[21] H. G. Allen. Analysis and Design of Structural Sandwich Panels. Pergamon Press

Ltd., London, 1969.

[22] D. Zenkert. The Handbook of Sandwich Construction. Engineering Materials Ad-

visory Services Ltd., UK, 1997.

[23] C. Chen, A.-M. Harte, and N. A. Fleck. The plastic collapse of sandwich beams

with a metallic foam core. International Journal of Mechanical Sciences, 43(6):

1483–1506, 2001.



Bibliography 203

[24] A. M. Harte, N. A. Fleck, and M. F. Ashby. The fatigue strength of sandwich

beams with an aluminium alloy foam core. International Journal of Fatigue, 23

(6):499–507, 2001.

[25] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and

H. N. G. Wadley. Metal Foams: A Design Guide. Butterworth-Heinemann, Boston,

MA, 2000.

[26] D. J. Sypeck and H. N. G. Wadley. Multifunctional microtruss laminates: textile

synthesis and properties. Journal of Materials Research, 16(3):890–897, 2001.

[27] J. Y. R. Liew. Innovative SCS system for marine and offshore applications. The

Structural Engineer, 86(12):24–25, 2008.

[28] LightConcrete LLC. High-strength structural lightweight concrete. Retrieved: 15

March, 2010. URL http://www.lightconcrete.com/images/LightConcrete.

pdf.

[29] Moxie International. Concrete answers to moisture problem since 1975. Retrieved:

15 March, 2010. URL http://www.moxie-intl.com/glossary.htm.

[30] Foam Concrete Limited. Foam concrete basics. Retrieved: 15 March, 2010. URL

http://www.foamconcrete.co.uk.

[31] H. G. Allen. Sandwich construction. Prepared as Report CE/1/72 in January

1972, University of Southampton, 1971.

[32] EconCore N.V. Economic core and panel technologies. Retrieved: 03 Febuary,

2009. URL http://www.econcore.com.

[33] Cellular Materials International Inc. Cellular materials. Retrieved: 03 Febuary,

2009. URL http://www.cellularmaterials.com.

[34] H. Ray. Method of making an offset corrugated sandwich construction. United

States Patent, Patent Number: 5,348,601, Date of Patent: 20 September, 1994.

[35] H. Ray. Offset corrugated sandwich construction. United States Statutory Inven-

tion Registration, Reg. Number: H1481, Published: 5 September, 1995.

[36] C. C. Porter, P. J. Jacoy, and W. P. Schmitigal. Core design for use with precision

composite reflectors. United States Patent, Patent Number: 5,162,143, Date of

Patent: 10 November, 1992.

[37] J. Romanoff and P. Varsta. Bending response of web-core sandwich beams. Com-

posite Structures, 73(4):478–487, 2006.

http://www.lightconcrete.com/images/LightConcrete.pdf
http://www.lightconcrete.com/images/LightConcrete.pdf
http://www.moxie-intl.com/glossary.htm
http://www.foamconcrete.co.uk
http://www.econcore.com
http://www.cellularmaterials.com


Bibliography 204

[38] T. C. Fung, K. H. Tan, and T. S. Lok. Shear stiffness DQy for C-core sandwich

panels. Journal of Structural Engineering, 122(8):958–966, 1996.

[39] Meyer Werft GmbH. I-core. Retrieved: 03 Febuary, 2009. URL http://www.

i-core.com.

[40] H. J. Rathbun, Z. Wei, M. Y. He, F. W. Zok, A. G. Evans, D. J. Sypeck, and

H. N. G. Wadley. Measurement and simulation of the performance of a lightweight

metallic sandwich structure with a tetrahedral truss core. Journal of Applied

Mechanics, 71(3):368–374, 2004.

[41] H. N. G. Wadley, N. A. Fleck, and A. G. Evans. Fabrication and structural

performance of periodic cellular metal sandwich structures. Composites Science

and Technology, 63(16):2331–2343, 2003.

[42] F. Cote, V. S. Deshpande, N. A. Fleck, and A. G. Evans. The compressive and

shear responses of corrugated and diamond lattice materials. International Journal

of Solids and Structures, 43(20):6220–6242, 2006.

[43] G. W. Kooistra, V. Deshpande, and H. N. G. Wadley. Hierarchical corrugated core

sandwich panel concepts. Journal of Applied Mechanics, 74(2):259–268, 2007.

[44] T. Bhat, T. G. Wang, and L. J. Gibson. Micro-sandwich honeycomb. SAMPE

Journal, 25(3):43, 1989.

[45] R. Lakes. Materials with structural hierarchy. Nature, 361(6412):511–515, 1993.

[46] U. K. Vaidya, A. N. Palazotto, and L. N. B. Gummadi. Low velocity impact and

compression-after-impact response of Z-pin reinforced core sandwich composites.

Journal of Engineering Materials and Technology, 122(4):434–442, 2000.

[47] U. K. Vaidya, M. V. Kamath, M. V. Hosur, H. Mahfuz, and S. Jeelani. Low-

velocity impact response of cross-ply laminated sandwich composites with hollow

and foam-filled Z-pin reinforced core. Journal of Composites Technology & Re-

search, 21(2):84–97, 1999.

[48] H. Kolsters. Stiffness and strength of laser-welded sandwich panels. Master’s thesis,

Department of Aeronautics, Division of Lightweight Structures, Royal Institute of

Technology, Sweden, 2002.

[49] Nida-Core Corporation. Nida-core structural honeycomb core materials. Re-

trieved: 03 Febuary, 2009. URL http://www.nida-core.com.

[50] Bi-Steel: Design & Construction Guide. Corus UK Ltd., 2nd edition, 2003.

http://www.i-core.com
http://www.i-core.com
http://www.nida-core.com


Bibliography 205

[51] R. Dixon and H. G. Bowerman. Advantages of steel-concrete-steel sandwich con-

struction in highrise buildings. In CIB Report, Proceedings of the CIB-CTBUH

International Conference on Tall Buildings, number 290, pages 639–648, Malaysia,

20–23 October 2003.

[52] Corus Bi-Steel. Corus in construction. Retrieved: 17 March, 2010. URL http:

//www.corusconstruction.com/en/about_us/bi-steel.

[53] C. Schlaseman and J. Russell. Application of advanced construction technologies

to new nuclear power plants. Prepared Report for U.S. Department of Energy,

under contract for DE-AT01-02NE23476, Report MPR-2610, Revision 2, 2004.

[54] P. Kujala and P. Noury. Theory and Applications of Sandwich Structures, chapter

17 Design of Ship Structures from Metallic Sandwich Topology, pages 515–570.

University of Southampton, UK, 2005.

[55] H. D. Wright, T. O. S. Oduyemi, and H. R. Evans. The experimental behaviour

of double skin composite elements. Journal of Constructional Steel Research, 19

(2):97–110, 1991.

[56] H. D. Wright, T. O. S. Oduyemi, and H. R. Evans. The design of double skin com-

posite elements. Journal of Constructional Steel Research, 19(2):111–132, 1991.

[57] H. D. Wright and T. O. S. Oduyemi. Partial interaction analysis of double skin

composite beams. Journal of Constructional Steel Research, 19(4):253–283, 1991.

[58] T. M. Roberts, D. N. Edwards, and R. Narayanan. Testing and analysis of steel-

concrete-steel sandwich beams. Journal of Constructional Steel Research, 38(3):

257–279, 1996.

[59] T. M. Roberts and O. Dogan. Fatigue of welded stud shear connectors in steel-

concrete-steel sandwich beams. Journal of Constructional Steel Research, 45(3):

301–320, 1998.

[60] B. McKinley. Large Deformation Structural Performance of Double Skin Com-

posite Construction using British Steel’s Bi-Steel. PhD thesis, City University,

1999.

[61] S. K. Clubley. Computational Structural Analysis and Testing of Bi-Steel Plate.

PhD thesis, University of Southampton, 2001.

[62] N. R. Coyle. Development of Fully Composite Steel-Concrete-Steel Beam Elements.

PhD thesis, University of Dundee, 2001.

http://www.corusconstruction.com/en/about_us/bi-steel
http://www.corusconstruction.com/en/about_us/bi-steel


Bibliography 206

[63] N. Foundoukos. Behaviour and Design of Steel-Concrete-Steel Sandwich Construc-

tion. PhD thesis, Imperial College of Science, Technology and Medicine, University

of London, 2005.

[64] B. McKinley and L. F. Boswell. Behaviour of double skin composite construction.

Journal of Constructional Steel Research, 58(10):1347–1359, 2002.

[65] N. Foundoukos, M. Xie, and J. C. Chapman. Fatigue tests on steel-concrete-steel

sandwich components and beams. Journal of Constructional Steel Research, 63

(7):922–940, 2007.

[66] B. A. Burgan and F. J. Naji. Steel-concrete-steel sandwich construction. Journal

of Constructional Steel Research, 46(1-3):Paper No.125, 1998.

[67] G. C. Hoff. A major research program on steel-concrete-steel sandwich elements.

ACI Special Publications, 174:37–88, 1998.

[68] B. J. Sun and D. Johnson. Shear resistance of steel-concrete-steel beams. Journal

of Constructional Steel Research, 46(1-3):Paper No.311, 1998.

[69] M. Takeuchi, M. Narikawa, I. Matsuo, K. Hara, and S. Usami. Study on a concrete

filled structure for nuclear power plants. Nuclear Engineering and Design, 179(2):

209–223, 1998.

[70] H. Bowerman and J. C. Chapman. Bi-steel steel-concrete-steel sandwich construc-

tion. In J. F. Hajjar, M. Hosain, W. S. Easterling, and B. M. Shahrooz, editors,

Composite Construction in Steel and Concrete IV, Proceedings of the Conference,

May 28-June 2, 2000, Banff, Alberta, Canada, pages 656–667. 2002.

[71] N. E. Shanmugam, G. Kumar, and V. Thevendran. Finite element modelling

of double skin composite slabs. Finite Elements in Analysis and Design, 38(7):

579–599, 2002.

[72] S. K. Clubley, S. S. J. Moy, and R. Y. Xiao. Shear strength of steel-concrete-steel

composite panels. Part I–Testing and numerical modelling. Journal of Construc-

tional Steel Research, 59(6):781–794, 2003.

[73] S. K. Clubley, S. S. J. Moy, and R. Y. Xiao. Shear strength of steel-concrete-steel

composite panels. Part II–Detailed numerical modelling of performance. Journal

of Constructional Steel Research, 59(6):795–808, 2003.

[74] M. Xie and J. C. Chapman. Static and fatigue tensile strength of friction-welded

bar-plate connections embedded in concrete. Journal of Constructional Steel Re-

search, 61(5):651–673, 2005.



Bibliography 207

[75] M. Xie, N. Foundoukos, and J. C. Chapman. Experimental and numerical investi-

gation on the shear behaviour of friction-welded bar-plate connections embedded

in concrete. Journal of Constructional Steel Research, 61(5):625–649, 2005.

[76] K. M. A. Sohel. Impact Performance of Steel-Concrete-Steel Sandwich Structures.

PhD thesis, National University of Singapore, 2008.

[77] D. Xuexin. Fatigue Analysis and Design of Steel-Concrete-Steel Sandwich Com-

posite Structures. PhD thesis, National University of Singapore, 2009.

[78] D. Collings. Steel-Concrete Composite Bridges. Thomas Telford Publishing,

Thomas Telford Ltd., London, 2005.

[79] H. R. Evans and H. D. Wright. Steel-Concrete Composite Structures: Stability and

Strength, chapter 2 Steel-Concrete Composite Flooring Deck Structures, pages 21–

52. Elsevier Applied Science Publishers Ltd., England, 1988.

[80] G. Hanswille, M. Porsch, and C. Ustundag. Resistance of headed studs subjected

to fatigue loading: Part I: Experimental study. Journal of Constructional Steel

Research, 63(4):475–484, 2007.

[81] R. P. Johnson. Resistance of stud shear connectors to fatigue. Journal of Con-

structional Steel Research, 56(2):101–116, 2000.

[82] C.-S. Shim, P.-G. Lee, and T.-Y. Yoon. Static behavior of large stud shear con-

nectors. Engineering Structures, 26(12):1853–1860, 2004.

[83] P.-G. Lee, C.-S. Shim, and S.-P. Chang. Static and fatigue behavior of large stud

shear connectors for steel-concrete composite bridges. Journal of Constructional

Steel Research, 61(9):1270–1285, 2005.

[84] E. Steinberg, R. Selle, and T. Faust. Connectors for timber–lightweight concrete

composite structures. Journal of Structural Engineering, 129(11):1538–1545, 2003.

[85] I. Valente and P. J. S. Cruz. Experimental analysis of perfobond shear connection

between steel and lightweight concrete. Journal of Constructional Steel Research,

60(3-5):465–479, 2004.

[86] A. H. Nilson and G. Winter. Design of Concrete Structures. McGraw-Hill, Inc.,

Singapore, 11th edition, 1991.

[87] J. C. McCormac. Design of Reinforced Concrete. John Wiley & Sons, Inc., 5th

edition, 2001.



Bibliography 208

[88] B. B. Adhikary and H. Mutsuyoshi. Shear strengthening of reinforced concrete

beams using various techniques. Construction and Building Materials, 20(6):366–

373, 2006.

[89] B. Taljsten and L. Elfgren. Strengthening concrete beams for shear using CFRP-

materials: evaluation of different application methods. Composites Part B: Engi-

neering, 31(2):87–96, 2000.

[90] O. Chaallal, M.-J. Nollet, and D. Perraton. Shear strengthening of RC beams by

externally bonded side CFRP strips. Journal of Composites for Construction, 2

(2):111–113, 1998.

[91] C. Diagana, A. Li, B. Gedalia, and Y. Delmas. Shear strengthening effectiveness

with CFF strips. Engineering Structures, 25(4):507–516, 2003.

[92] Z. Zhang, C.-T. T. Hsu, and J. Moren. Shear strengthening of reinforced con-

crete deep beams using carbon fiber reinforced polymer laminates. Journal of

Composites for Construction, 8(5):403–414, 2004.

[93] Z. Zhang and C.-T. T. Hsu. Shear strengthening of reinforced concrete beams

using carbon-fiber-reinforced polymer laminates. Journal of Composites for Con-

struction, 9(2):158–169, 2005.

[94] B. Taljsten. Strengthening concrete beams for shear with CFRP sheets. Construc-

tion and Building Materials, 17(1):15–26, 2003.

[95] ACI 318-95: Building Code Requirements for Reinforced Concrete. American Con-

crete Institute, 1995.

[96] ACI Committee 440: Guide for the Design and Construction of Externally Bonded

FRP Systems for Strengthening Concrete Structures. American Concrete Institute,

Farmington Hills, MI, USA, 2002.

[97] A. L. L. Baker. Reinforced Concrete. Concrete Publications Limited, London,

1949.

[98] P. Bhatt, T. J. MacGinley, and B. S. Choo. Reinforced Concrete: Design Theory

and Examples. Taylor & Francis, 3rd edition, 2006.

[99] J. N. Cernica. Fundamentals of Reinforced Concrete. Addison-Wesley Publishing

Company, Inc., U.S.A., 1964.

[100] J. F. Chen and J. G. Teng. On the strength of RC beams shear strengthened with

prestressed FRP straps. In FRP Composites in Civil Engineering, Proceedings of

the International Conference, pages 695–704, 2001.



Bibliography 209

[101] Concrete Society Technical Report 55: Design Guidance for Strengthening Con-

crete Structures Using Fibre Composite Materials. Concrete Society, UK, 2000.

[102] C. W. Dunham. The Theory and Practice of Reinforced Concrete. McGraw-Hill

Book Company, Inc., 2nd edition, 1944.

[103] Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules

for Buildings. European Committee for Standardization (CEN), 1992.

[104] G. Gendron, A. Picard, and M. C. Guerin. A theoretical study on shear strength-

ening of reinforced concrete beams using composite plates. Composite Structures,

45(4):303–309, 1999.

[105] P. B. Hughes. Limit State Theory for Reinforced Concrete Design. Pitman Pub-

lishing Ltd., London, 2nd edition, 1976.

[106] W. H. Mosley, J. H. Bungey, and R. Hulse. Reinforced Concrete Design. Palgrave,

New York, 5th edition, 1999.

[107] C. Pellegrino and C. Modena. Fiber reinforced polymer shear strengthening of

reinforced concrete beams with transverse steel reinforcement. Journal of Com-

posites for Construction, 6(2):104–111, 2002.

[108] T. C. Triantafillou. Composites: a new possibility for the shear strengthening of

concrete, masonry and wood. Composites Science and Technology, 58(8):1285–

1295, 1998.

[109] Y. H. Kim, Y. S. Yoon, W. D. Cook, and D. Mitchell. Repeated loading tests

of concrete walls containing headed shear reinforcement. Journal of Structural

Engineering, 130(8):1233–1241, 2004.

[110] K. Pilakoutas and X. Li. Alternative shear reinforcement for reinforced concrete

flat slabs. Journal of Structural Engineering, 129(9):1164–1172, 2003.

[111] S. Y. Cao, J. F. Chen, J. G. Teng, Z. Hao, and J. Chen. Debonding in RC

beams shear strengthened with complete FRP wraps. Journal of Composites for

Construction, 9(5):417–428, 2005.

[112] S. Hay, K. Thiessen, D. Svecova, and B. Bakht. Effectiveness of GFRP sheets

for shear strengthening of timber. Journal of Composites for Construction, 10(6):

483–491, 2006.

[113] M. R. Islam, M. A. Mansur, and M. Maalej. Shear strengthening of RC deep

beams using externally bonded FRP systems. Cement and Concrete Composites,

27(3):413–420, 2005.



Bibliography 210

[114] J. G. Teng, L. Lam, and J. F. Chen. Shear strengthening of RC beams with FRP

composites. Progress in Structural Engineering and Materials, 6(3):173–184, 2004.

[115] J. Romanoff, P. Varsta, and A. Klanac. Stress analysis of homogenized web-core

sandwich beams. Composite Structures, 79(3):411–422, 2007.

[116] Q. H. Cheng, H. P. Lee, and C. Lu. A numerical analysis approach for evaluating

elastic constants of sandwich structures with various cores. Composite Structures,

74(2):226–236, 2006.

[117] D. Zangani, M. Robinson, and A. Gibson. Evaluation of stiffness terms for Z-cored

sandwich panels. Applied Composite Materials, 14(3):159–175, 2007.

[118] K. H. Tan, P. Montague, and C. Norris. Steel sandwich panels: Finite element,

closed solution, and experimental comparisons, on a 6m x 2.1m panel. The Struc-

tural Engineer, 67(9):159–166, 1989.

[119] T. M. Nordstrand and L. A. Carlsson. Evaluation of transverse shear stiffness of

structural core sandwich plates. Composite Structures, 37(2):145–153, 1997.

[120] C. Libove and R. E. Hubka. Elastic constants for corrugated-core sandwich plates.

Technical Note NACA-TN-2289, National Advisory Committee for Aeronautics,

Langley Aeronautical Laboratory, Langley Field, VA, 1951.

[121] P. G. Glockner. Symmetry in structural mechanics. Proceedings of the Ameri-

can Society of Civil Engineers, Journal of the Structural Division, 99(ST1):71–89,

1973.

[122] W. McGuire, R. H. Gallagher, and R. D. Ziemian. Matrix Structural Analysis.

John Wiley & Sons, Inc., New York, 2nd edition, 2000.

[123] ANSYS Release 11.0. Swanson Analysis Systems Inc., 2007.

[124] D. Kachlakev, T. Miller, S. Yim, K. Chansawat, and T. Potisuk. Finite element

modeling of reinforced concrete structures strengthened with FRP laminates. Final

Report SPR 316, Oregon Department of Transportation, 2001.

[125] H. T. Nguyen and S. E. Kim. Finite element modeling of push-out tests for large

stud shear connectors. Journal of Constructional Steel Research, 65(10-11):1909–

1920, 2009.

[126] S. P. Timoshenko and J. M. Gere. Mechanics of Materials. Van Nostrand Reinhold

Company, New York, 1972.



Bibliography 211

[127] W. L. Ko. Elastic constants for superplastically formed/diffusion-bonded corru-

gated sandwich core. Technical Paper NASA-TP-1562, National Aeronautics and

Space Administration, 1980.

[128] T. Nordstrand, L. A. Carlsson, and H. G. Allen. Transverse shear stiffness of

structural core sandwich. Composite Structures, 27(3):317–329, 1994.

[129] T. C. Fung, K. H. Tan, and T. S. Lok. Analysis of C-core sandwich plate decking.

In Proceedings of the Third (1993) International Offshore and Polar Engineering

Conference, volume IV, pages 244–249, Singapore, 6–11 June 1993.

[130] T. C. Fung, K. H. Tan, and T. S. Lok. Elastic constants for Z-core sandwich

panels. Journal of Structural Engineering, 120(10):3046–3055, 1994.

[131] T. C. Fung and K. H. Tan. Shear stiffness for Z-core sandwich panels. Journal of

Structural Engineering, 124(7):809–816, 1998.

[132] G. R. Monforton and T. S. Wu. Matrix analysis of semi-rigidly connected frames.

Proceedings of the American Society of Civil Engineers, Journal of the Structural

Division, 89(ST6):13–42, 1963.

[133] S. P. Timoshenko and J. M. Gere. Theory of Elastic Stability. McGraw-Hill Book

Co., Tokyo, International edition, 1981.

[134] C. K. Wang. Intermediate Structural Analysis. McGraw-Hill Book Co., Singapore,

International edition, 1983.

[135] R. T. Fenner. Mechanics of Solids. Blackwell Scientific, Oxford, 1989.

[136] Z. Aboura, N. Talbi, S. Allaoui, and M. L. Benzeggagh. Elastic behavior of corru-

gated cardboard: experiments and modeling. Composite Structures, 63(1):53–62,

2004.

[137] N. Talbi, A. Batti, R. Ayad, and Y. Q. Guo. An analytical homogenization model

for finite element modelling of corrugated cardboard. Composite Structures, 88(2):

280–289, 2009.

[138] M. W. Hyer. Stress Analysis of Fiber-Reinforced Composite Materials.

WCB/McGraw-Hill Co.,Ltd., Singapore, International edition, 1998.

[139] M. D. Hayes. Structural Analysis of a Pultruded Composite Beam: Shear Stiffness

Determination and Strength and Fatigue Life Predictions. PhD thesis, Faculty of

the Virginia Polytechnic Institute and State University, 2003.

[140] J. R. Hutchinson. Shear coefficients for Timoshenko beam theory. Journal of

Applied Mechanics, 68(1):87–92, 2001.



Bibliography 212

[141] R. Park and T. Paulay. Reinforced Concrete Structures. John Wiley & Sons, Inc.,

Singapore, 1975.
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