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Abstract

This paper examines irreversible investment in a project with uncertain returns,
when there is an advantage to being the first to invest and externalities to investing
when others also do so. We show that in a duopoly, greater uncertainty can actually
hasten rather than delay investment, contrary to the usual outcome, due its effect
on the equilibrium of the timing game between the players. In the presence of
positive externalities, greater uncertainty can raise the leader’s value more than the
follower’s; pre-emption then entails that the leader must act sooner. A switch in the
pattern of equilibrium investment as uncertainty increases is also possible, which
may hasten investment. These findings reinforce the importance of extending real
options analysis to include strategic interactions and externalities between players.
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1 Introduction

The literature on irreversible investment under uncertainty teaches three major lessons.
First, the net present value (NPV) rule for investment is generally incorrect, since it
considers only a now-or-never decision and fails to appreciate that investment can be
delayed. Secondly, an option value is created by the fact that the return is bounded below
by the payoff from not investing; the effect of this option value is to delay investment,
relative to the NPV rule. Finally, the greater the degree of uncertainty, the larger this
delay: an increase in uncertainty increases the upside potential from investment, and so
increases the value of the investment option.

The early literature on the ‘real options’ approach analyses investment decisions for a
single agent in isolation. In many real world cases, however, investment takes place in a
more competitive environment in which there are externalities and strategic interactions
between investing agents. The purpose of this paper is to demonstrate that such interac-
tions can have important consequences for irreversible, uncertain investments, with effects
that run counter to the standard results given above.

We analyse irreversible investment in a project with uncertain returns in a dynamic
two-player model, with a general specification. Two types of strategic interactions are
considered. The first is pre-emption: when there is some advantage to being the first to
undertake an investment, there will be competition to be the first. In this situation, any
benefit from delaying investment due to real option effects has to be balanced against the
loss from being pre-empted. The second interaction arises when the value of an investment
depends on the number of agents who have also invested. The interaction may affect value
negatively: e.g., if it arises through a competitive effect; or it may have a positive effect,
if there are complementarities between the agents’ actions such as network externalities
or demand expansion. In both cases, the timing of an agent’s investment is influenced by
the investment decisions of others.

The contribution of this paper is to show that, contrary to the standard result, the
effect of uncertainty on investment is ambiguous in a duopoly. When strategic interactions

determine the exercise of the option, greater uncertainty can hasten, rather than delay,



investment. We show that if the payoff externality when the follower invests is positive
and there is not too much uncertainty, then a small increase in uncertainty causes the
leader’s investment point to fall. If investment takes the form of entry into a product
market, for example, then this would require that e.g., the demand expansion effect of
an additional firm outweighs increased competition. Investment in the context of strong
network externalities would be similarly affected.

To understand this surprising comparative static, note that when two agents invest
sequentially, the first investment point is determined by rent equalization (see Fudenberg
and Tirole (1985)): at the point at which the first investor acts it is indifferent between
being the leader and the follower. At the leader’s investment point, the leader’s value
function crosses the follower’s from below (otherwise investment would have occurred
sooner). Hence an increase in uncertainty lowers the leader’s investment point if and only
if the value function from investing first increases by more than the value to investing
second.

With positive externalities between the agents, investment by the follower is valuable
to the leader—particularly since it does not require any additional cost for the leader.
But once the leader has acted, the leader is unable to affect the follower’s investment
decision, and must take the investment point of the follower as given. For the follower,
investment is costly; but it chooses its investment point optimally. The first factor tends
to make the follower’s option less valuable than the leader’s; the second factor makes it
more valuable. When uncertainty is relatively small, the first factor dominates and the
leader’s option! is more valuable. Given the form of the value functions, this also means
that the leader’s value function increases by more than the follower’s when uncertainty
rises. (Both functions increase, due to the convexity of payoffs.)

There is an additional way in which greater uncertainty may hasten investment: by
causing a switch in the pattern of equilibrium investment. Two equilibrium patterns of

investment are possible. Either the agents invest sequentially (i.e., the ‘leader’ invests

1Strictly speaking, the leader does not hold an option: it simply waits for the follower to act. It is
more accurate to refer to the option-like term of the leader. We use the more accurate terminology in
the rest of the paper.



early while the ‘follower’ invests late), or they invest simultaneously. We also show that
an increase in uncertainty can cause equilibrium to switch from sequential to simultaneous
investment, or vice versa, in such a way that the first investment occurs sooner. We argue
that these effects are present at plausible parameter values, and so can be empirically
important.

Overall, therefore, strategic interactions in the presence of positive externalities give
rise to significant qualitative effects that are omitted from the standard real options
analysis of investment, even those models incorporating game-theoretic interactions. The
relationship between uncertainty and investment, even for a single irreversible project
available to each firm, is more complex than given by the standard result. This finding is
relevant to cross-border investment in the face of exchange rate uncertainty, for example.
Its implications are important to firms planning their investments, and for policy-makers
wishing to understand and anticipate private sector investment behaviour.

Two general strands of literature are related to this paper. Real options models have
been used to explain delay and hysteresis arising in a wide range of contexts. McDonald
and Siegel (1986) and Pindyck (1988) consider irreversible investment opportunities avail-
able to a single agent. Dixit (1989) and Dixit (1991) analyse product market entry and
exit in monopolistic and perfectly competitive settings respectively. The second strand
of literature concerns timing games of entry or exit in a deterministic setting. There are
several types of paper within this strand. Papers analysing pre-emption games include
Fudenberg, Gilbert, Stiglitz, and Tirole (1983), Fudenberg and Tirole (1985), Katz and
Shapiro (1987) and Lippman and Mamer (1993). Wars of attrition have been modelled
by e.g., Fudenberg and Tirole (1986).

A number of real options models incorporating strategic interactions now exist. Smets
(1991) examines irreversible market entry in a duopoly facing stochastic demand. Simul-
taneous investment may arise only when the leadership role is exogenously pre-assigned.
Consequently, he does not consider fully the pre-emption externality. Weeds (2002)
presents a model in which two firms may invest in competing research projects with

uncertain returns. She does not impose an asymmetry between the firms, but allows the



leader to emerge endogenously. She does not, however, include more general externalities.
Other papers combining real options with game theory include Boyer, Lasserre, Mariotti,
and Moreaux (2004) Huisman and Kort (1999) and Lambrecht and Perraudin (2003);
these, however, do not generate the comparative static result we find. A survey of this
literature is provided by Boyer, Gravel, and Lasserre (2004). The general specification of
our model encompasses several of these contributions. Hoppe (2000) analyses a timing
game of new technology investment in an uncertain environment. She considers second,
rather than first, mover advantages and models uncertainty in a different way from our
paper.

In a two-period model, Kulatilaka and Perotti (1998) find that greater uncertainty
over market demand may increase cost-reducing investment undertaken in the first period.
Their model is quite different from ours: there is an exogenous asymmetry between the
firms—only firm 1 holds a strategic investment opportunity in the first period—and this
firm exercises a subsequent option (over production) in the second period. Although
their result has a superficial similarity to ours, it is driven by the strategic effect of
first period investment in reducing the competitor’s output in the second period (a la
Cournot), or deterring entry altogether (as in Dixit (1980)), combined with optionality
at the second stage. Since the first period investment is available to a single firm, there
is no competition in exercising the option. In this paper, by contrast, our result is due
to the effect of uncertainty on the equilibrium outcome of the timing game between the
players. Dixit and Pindyck (1994) describe situations in which uncertainty can speed up
investment, because investment itself reveals information about costs. We show that even
in the absence of this ‘shadow value’, investment may be speeded up by uncertainty.

Our paper is also related to the literature on technology investment with network
externalities, such as Farrell and Saloner (1986) and Katz and Shapiro (1986). In Farrell
and Saloner (1986), a model of technology investment with uncertainty about the tim-
ing of (rather than return from) investment, positive network effects, and irreversibility is
analysed (see section IT). Unlike Farrell and Saloner, we allow agents to invest at any time,

not just at random opportunities. If this assumption were used in the Farrell and Sa-



loner model, then many of the features would disappear (although the basic co-ordination
problem due to network effects would remain). Here, delay is endogenously determined
through the optimization decisions of the agents, rather than imposed exogenously. Choi
(1994) examines a model in which there are positive network effects, uncertainty and
the possibility of delay. In Choi’s model, users are exogenously asymmetric: user 1 is
able to choose which of two technologies (with random returns) to invest in either of two
periods, while user 2 is able to invest only in the second period. This paper departs from
Choi’s in several respects. Most importantly, it does not impose exogenously an asymme-
try between players, but instead allows the first mover to be determined endogenously.
In our model, the leader invests at the point at which it is indifferent between leading
and following; see section 3. The fact that investment by the leader is determined by
indifference, rather than optimally (for the leader), makes an important difference to in-
vestment behaviour. We also allow for a more general payoff structure, including allowing
for negative as well as positive externalities.

The rest of the paper is structured as follows. Section 2 describes the model. Section
3 analyses the non-co-operative equilibria of the model. Section 4 looks at the effect of
uncertainty on investment delay when pre-emption can occur. Section 5 concludes. The

appendix contains lengthier proofs.

2 The Model

This section develops a general model to capture the three effects that are the focus
of this paper: (i) uncertainty, irreversibility and the possibility of delay in investment;
(ii) investment externalities, where the return to investment depends on the number of
investors; and (iii) pre-emption, where early investors have an advantage.

Two risk neutral agents, labelled ¢ € {1,2} each can invest in a project. There is a
cost K > 0 to doing so, which is the same for both agents. Investment is irreversible (the
cost K is entirely sunk) and can be delayed indefinitely. Time is continuous and labelled

by t € [0,00). The timing of investment is the main concern of the analysis. Investment



by the two agents may occur sequentially—that is, the two agents invest at distinctly
different times—or simultaneously.

Consider first the outcome when the agents invest sequentially. Call the first investor
the ‘leader’ and the second investor the ‘follower’. The leader’s instantaneous payoff at

time t from investment, before the follower has invested, is

1
T = 0t7

where 6, is the stand-alone benefit from investment—the instantaneous payoff received
by an agent that is the sole investor. After the follower has invested, the leader’s instan-

taneous payoff becomes

o = (14 61)6,.

The follower’s instantaneous payoff at time ¢ from investment is

i = (1 4+ 0p)6,.

Now suppose that the agents invest simultaneously. The instantaneous payoff at time ¢

from investment is the same for both agents:

7 = (1 + 65)6,.

The model specification is a general one. We do not investigate all possible configurations
of the payoff parameters d;,d0r and dg. Instead, we restrict attention to cases described

in the following assumption:
Assumption 1 —1 < r <0; dr <dg; and o < .

This assumption ensures two things. First, there may be a first-mover advantage,
since 07, > dr. Secondly, there may be a second-mover disadvantage, in the sense that dp
is less than both dg and ;. The role of particular aspects of assumption 1 will be pointed

out as the analysis progresses.



Even with assumption 1, our model encompasses many related papers. For example, in
Fudenberg and Tirole (1985), when n firms have adopted the new technology, the payoff of
a firm that has not adopted is my(n), and of a firm that has adopted is 71 (n). They assume
that if n’ > n, then m(n’) < m(n). A specific version of their payoffs can be represented
in our model by supposing that mo(n) = 0 Vn, m1(1) = 6 and §;, = 0p = dg < 0. Real
options duopoly models such as Smets (1991), Weeds (2002) and Huisman and Kort (1999)
employ functional forms equivalent to negative é;, dr and dg parameters. Similarly, some
of the payoff structures used in Katz and Shapiro (1987) can be replicated within our
model. What they term the ‘stand-alone incentive’ is measured by d; in this model; their
‘pre-emption incentive’ is measured by d; — dp; the degree of imitation that is possible
can be captured by dp. Lippman and Mamer (1993) analyse a model in which the first
firm to innovate spoils the market for its rival; in this case, 6 = —1. Notice also that by
setting dg = (0. +0F)/2, we can allow for the possibility that, in the event of simultaneous
adoption, the roles of leader and follower are assigned randomly between the two agents.

0, is assumed to be exogenous and stochastic, evolving according to a geometric Brow-

nian motion (GBM) with drift:

d@t = ,uﬁtdt + O'etth (1)

where p € [0,7) is the drift parameter, measuring the expected growth rate of 6, r is the
continuous-time discount rate,? ¢ > 0 is the instantaneous standard deviation or volatility
parameter, and dW is the increment of a standard Wiener process, dW; ~ N(0,dt). The
parameters u,o and r are common knowledge and constant over time. The choice of
continuous time and this representation of uncertainty is motivated by the analytical
tractability of the value functions that result.

The strategies of the agents in the investment game are now defined. If agent ¢ has
not invested at any time 7 < ¢, its action set is A} = {invest, don’t invest}. If, on the

other hand, agent i has invested at some 7 < t, then A! is the null action ‘don’t move’.

2The restriction that u < r ensures that there is a positive opportunity cost to holding the ‘option’
to invest, and so that the option is not held indefinitely.



The agent therefore faces a control problem in which its only choice is when to choose
the action ‘invest’. After taking this action, the agent can make no further moves.

A strategy for agent ¢ is a mapping from the history of the game H; (the sample path
of the stochastic variable # and the actions of both agents up to time t) to the action
set Al Agents are assumed to use stationary Markovian strategies: actions depend on
only the current state and the strategy formulation itself does not vary with time. Since
f follows a Markov process, Markovian strategies incorporate all payoff-relevant factors
in this game. Furthermore, if one player uses a Markovian strategy, then its rival has
a best response that is Markovian as well. Hence, a Markovian equilibrium remains an
equilibrium when history-dependent strategies are also permitted, although other non-
Markovian equilibria may then also exist. (For further explanation see Maskin and Tirole
(1988) and Fudenberg and Tirole (1991).)

The formulation of the agents’ strategies is complicated by the use of a continuous-
time model. Fudenberg and Tirole (1985) point out that there is a loss of information
inherent in representing continuous-time equilibria as the limits of discrete time mixed
strategy equilibria. To correct for this, they extend the strategy space to specify not only
the cumulative probability that player ¢ has invested, but also the ‘intensity’ with which
each player invests at times ‘just after’ the probability has jumped to one.? Although
this formulation uses mixed strategies, the equilibrium outcomes are equivalent to those
in which agents employ pure strategies. (See section 3 of Fudenberg and Tirole (1985).)
Consequently, the analysis will proceed as if each agent uses a pure Markovian strategy,
i.e., a stopping rule specifying a critical value or ‘trigger point’ for the exogenous variable
6 at which the agent invests. Note, however, that this is for convenience only: underlying
the analysis is an extended space with mixed strategies.

Our analysis focuses on trigger points of the stochastic variable #. These could also

3In Fudenberg and Tirole (1985), an agent’s strategy is a collection of simple strategies satisfying an
intertemporal consistency condition. A simple strategy for agent 7 in a game starting at a positive level
0 of the state variable is a pair of real-valued functions (G;(6),€;(9)) : (0,00) x (0,00) — [0,1] x [0, 1]
satisfying certain conditions (see definition 1 in their paper) ensuring that G; is a cumulative distribution
function, and that when ¢; > 0, G; = 1 (so that if the intensity of atoms in the interval [0, 6 + df] is
positive, the agent is sure to invest by ). A collection of simple strategies for agent i, (G?(.),€%(.)), is
the set of simple strategies that satisfy intertemporal consistency conditions.



be expressed in terms of expected stopping times; we do not, however, include this step.
For our comparative static results it is sufficient to recall that, for a given time path of
the stochastic variable, a lower trigger point corresponds to earlier investment.

The possible states of each agent are denoted n; € {0,1} when the agent has not

invested and has invested, respectively. The following assumptions are made:
Assumption 2 [fn;(1) =1, then n;(t) =1 for allt > 7, 1 € {1,2}.
Assumption 3 max{1,1+ 6.} Eo [ [, exp (—rt)6,dt] — K < 0.

Assumption 2 formalizes the irreversibility of investment: if agent ¢ has invested by
date 7, it then remains active at all dates subsequent to 7. Assumption 3 states that the
initial value of the project is sufficiently low that the expected return from investment is
negative, thus ensuring that immediate investment is not worthwhile. (The operator E,

denotes expectations conditional on information available at time ¢ = 0.)

3 Equilibrium

3.1 Sequential Investment

Start by assuming that the agents invest at different points. The possibility of simultane-
ous investment is considered below. As usual in dynamic games, the stopping time game
is solved backwards; see e.g., Dixit (1989). Thus the first step is to consider the optimiza-
tion problem of the follower who invests strictly later than the leader. Given that the
leader has invested irreversibly, the follower’s payoff on investing has two components: the
flow payoff from the project, (1 + dr)6;; and the cost of investment, —K. The follower’s

value function F'(6;) at time ¢ given a level ; of the state variable is therefore

F(6,) = max E, {/OO exp (—r(t —t))(1 + 0p)0,dr — Kexp (—r(Tp — 1))

Tk T

where TF is the random investment time for the follower, and the operator E; denotes

expectations conditional on information available at time ¢.



The value function F' has two components, holding over different ranges of 6: one
relating to the value of investment before the follower has invested, the other to the
follower’s value after investment. We derive these value functions in section A in the

appendix. We show there that the follower’s value function is

bp0° 0 < Op,

F)y={ " ! 2)
Um0 f 9>
’I’—/l, -

O is the follower’s optimally-chosen investment point. (The value function in equation
(2) assumes that the leader invests at some level of 0 less than 6. We verify below that
this is the case in equilibrium.) By arbitrage, the critical value 8 must satisfy a value-
matching condition; optimality requires a second condition, known as ‘smooth-pasting’,
to be satisfied. (See Dixit and Pindyck (1994) for an explanation.) This condition requires
the two components of the follower’s value function to meet smoothly at 6 with equal

first derivatives, which together with the value matching condition implies that

- () ()

(1+6p)0,%7Y
Blr—p)

bp =

Equation (3) for the follower’s trigger point can be interpreted as the effective flow cost
of investment with an adjustment for uncertainty. The sunk investment cost is K, but this
yields a flow payoff of (1 + dr)0; hence the effective sunk cost is %. With an effective
interest rate of r — p (i.e., the actual interest rate r minus the expected proportional
growth in the flow payoff p), this gives an instantaneous cost of (%) (r—p). Ifa
Marshallian rule were used for the investment decision, the trigger point would be simply
this cost. But with uncertainty, irreversibility and the option to delay investment, the

Marshallian trigger point must be adjusted upwards by the factor % > 1. The follower’s

trigger can also be compared to the standard single-agent trigger,

%E(#%)KU—M
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see e.g., Dixit and Pindyck (1994).

In section A in the appendix, we show that the leader’s value function has the following

form:
bLoeﬂ 0 < 0137
L) = & +bnb’—K 0¢€[0p,0p), (4)
(A46r)0
r—p K 0 > 9F7

given the leader’s trigger point 6p and investment by the follower at the higher 6. Notice
that the first and third components of the leader’s value function mirror the follower’s
value function. The second component is new, and shows the leader’s value after it has
invested, but before the follower has invested.

The value of the unknown constant by, is found by considering the impact of the
follower’s investment on the payoff to the leader. When 0 is first reached, the follower
invests and the leader’s expected flow payoff is altered. Since value functions are forward-
looking, L anticipates the effect of the follower’s action and must therefore meet Lo at
0r. Hence, a value-matching condition holds at this point (for further explanation see
Harrison (1985)); however, there is no optimality on the part of the leader, and so no

corresponding smooth-pasting condition. This implies that

5,6-6BD
by = 2 (5)
r—p

The remaining coefficient, by is determined by value matching at 0p:

K

The next proposition describes the equilibrium in this case.

Proposition 1 Given assumptions 1-3, when equilibrium investment is sequential, the
leader invests at Op and the follower at O > 0p. Op € (0y,01) is the smallest solution to

the equation

0p K [1+p—piL 0p\"
T—M_K_ﬁ—l( 1+ or ><@) (7)
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The proof of the proposition is in section B in the appendix. The explanation of the
equilibrium is as follows. The leader cannot choose its investment point optimally, as the
follower can. Instead, the first agent to invest does so at the point at which it prefers
to lead rather than follow, not the point at which the benefits from leading are largest.
Clearly, it cannot be that the first agent invests when the value from following is greater
than the value from leading—if this were the case, the agent would do better by waiting.
Likewise, it cannot be that the first agent invests when the value from leading is strictly
greater than the value from following, since in this case without pre-assigned roles, the
other agent could pre-empt it and still gain. Hence the investment point is determined
by indifference between leading and following. The trigger point #p in the pre-emption
model is given by indifference: L(6p) = F(0p). This is in contrast to the trigger point of
the follower, which is determined by value matching and smooth pasting, i.e., is chosen
optimally.

The rent equalization condition L(6p) = F(fp) gives the non-linear equation (7) for
fp. A number of possibilities arise: there may be no, one or multiple solutions to this
equation. In the proof of the proposition, we show that there is at least one solution
which lies between 6y and 6. We have also assumed that the initial value of the project
is sufficiently low that immediate investment is not worthwhile (see assumption 3). Hence
in equilibrium, there is no investment before 6 hits 6p. In other words, the leader’s value
function hits the follower’s from below.

One possibility for a solution to equation (7) is illustrated in figure 1 (in which it is
assumed that 1 + dp — G, > 0). The left-hand side of equation (7) is the increasing,
linear function; the right-hand side is the increasing, convex function. There are two
intersection points of the two functions; the lower point is the relevant solution for the
leader’s equilibrium trigger point 0p. (6y = K(r — p) in the figure is the myopic Mar-
shallian trigger, i.e., the investment point of an agent who ignores both uncertainty and

any subsequent investment by other agents.)

12



Figure 1: The solution for 6p

3.2 Simultaneous Investment

Now consider the alternative case, in which investment is simultaneous at the trigger

point fg. The previous analysis indicates that the value function of each agent is then

b0 0 < b5,
5(0) = S S

A+3)0  j g > p.

r—u —

(This value function can be derived from the appropriate Bellman equation, following
the steps shown in the appendix.) There is a continuum of simultaneous solutions; it
is straightforward to show that they can be Pareto ranked, with higher trigger points
yielding higher value functions. In this case, it seems reasonable that the agents invest

at the Pareto optimal point, given by both value matching and smooth pasting. So

Proposition 2 The Pareto optimal trigger point for the simultaneous equilibrium is

= (500) (i) o
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The coeflicient in the value function is

(1465857
N Cn ®)

The next proposition describes when simultaneous investment is an equilibrium.

Proposition 3 Simultaneous investment occurs in equilibrium iff
Mg = (1485)" — (1+ 801+ 6p)" ") > 0. (9)

A sufficient condition is 6g > 0 > .

Proof. For equilibrium simultaneous investment, it must be that S(6) > L(0) for 6 €
[0p,0s]. Due to the convexity of the value functions, this requires that S(6) > L(0) for
6 € [0,0p], and so that bg > bry. Substituting the expressions for these two coefficients
gives the necessary and sufficient condition of equation (9). The sufficient condition

follows directly from equation (9). O

Whether simultaneous investment occurs in equilibrium is determined by whether the
leader wishes to invest before the follower, or at the same time (i.e., by the comparison
of L(#) and S(¢)). The proposition shows the reasonable condition that, in order for
simultaneous investment to occur in equilibrium, it must be the case that dg is sufficiently
large and/or d;, and 0 sufficiently small. (This is clearest in the sufficient condition.)
Note that the simultaneous investment equilibrium, when it exists, Pareto dominates the
sequential outcome; this is an immediate consequence of the condition for existence of

the simultaneous investment equilibrium: S(0) > L(#) for 6 € [0, 05].

4 Uncertainty and Delay with Pre-emption

Real options analysis for monopoly or perfectly competitive industries concludes that:

1. The net present value (NPV) rule for investment is incorrect since it ignores the

option value created by irreversibility and uncertainty.

14



2. The effect of this option value is to delay investment, relative to the NPV rule.

3. The greater the degree of uncertainty, the larger the option value and the greater

the extent of delay.

In this section, we show that the third conclusion need not hold when pre-emption is
possible; in particular, more uncertainty can hasten investment. Our results demonstrate
that the combination of uncertainty and pre-emption can result in complex interactions.

First note that the triggers 6 and g are increasing in o, for the familiar real options
reason. The intuition is that delay allows for the possibility that the random process (1)
will go up; if it goes down, then the agent need not invest. The greater the variance of
the process, the more valuable is the option created by this asymmetric situation, and so
the more delay occurs for both agents. Notice that this result relies on the fact that all
of these triggers are chosen optimally by the relevant agent(s).

There are two ways in which greater uncertainty can hasten investment. First, when
equilibrium investment is sequential, the trigger point p of the leader may decrease as o
increases. This possibility is examined in proposition 4. Secondly, a rise in ¢ can cause
the pattern of equilibrium investment to switch, with investment in the new equilibrium

pattern occurring earlier. This possibility is considered in proposition 5.

Proposition 4 Joint sufficient conditions for the leader’s investment trigger 0p to be

decreasing in the volatility parameter o are

(14 6p)In(1 + 0p)
1+ BIn(1+6p) —

1+ /In(l+6p) <0 and 0< .

The proof is in section C in the appendix.

The result therefore raises the striking possibility that greater uncertainty lowers the
leader’s trigger point. The possibility arises from the lack of optimality in the choice of
the pre-emption trigger point. An optimal trigger point is such that the marginal benefit

from delaying investment for a period equals the marginal cost. The marginal benefit is
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the interest saved on the investment cost plus the expected gain from the possibility that
the flow payoff increases. The marginal cost is the flow payoff foregone by not investing.
In this marginal calculation, the agent does not consider the effect of its delay on the
investment decision of the other agent, since in the models considered in this paper, each
agent’s trigger point (with the exception of p) does not depend on the other’s. Increased
uncertainty raises the expected gain from delay, causing the (optimally chosen) trigger
point to increase. This reasoning does not apply in the case of #p, however: it is not
chosen according to a marginal equality, but an absolute equality between the value from
leading and the value from following. The proposition shows that this difference in the
determination of the trigger point can lead to #p decreasing as uncertainty increases.

In order for this unusual comparative static to hold, it must be that in the region of
the intersection point, the leader’s value function increases by more than the follower’s
when uncertainty rises, holding constant the leader’s trigger point 6p. (This statement
follows directly from using the implicit function theorem on the non-linear equation (7)
defining #p.) There are, therefore, two necessary and sufficient conditions for 6p to be

decreasing in o:

1. The leader’s value function L, is increasing in o.

2. The increase in the leader’s value function is larger than the increase in the follower’s

value function Fj.

The leader’s value function depends on uncertainty due to the option-like term that
anticipates investment by the follower: by,0°, where by, = 6L6;(ﬁ -U /(r — u) and 0 €
(0p,0r). Hence this option-like term is positive if and only if §; > 0; this implies that
the follower’s investment benefits the leader, e.g. when demand expansion outweighs the
effect of competition, or in a setting with network externalities. When this is the case, the
option-like term increases in value with the degree of uncertainty (for the usual reasons),
and so condition 1 holds. The follower’s value function also depends on uncertainty, due
to the option value of its investment: bp0°, where bp = (1 + §F)9}(ﬁfl)/ﬁ(r — u) and

6 < . This option value increases with the degree of uncertainty.
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The sufficient conditions in the proposition ensure that 56, — (1 + ) > 0. So, when
the conditions are satisfied, the value of the leader’s option-like term is greater than the
option value of the follower. Both values are convex functions of #; the leader’s value
is more convex than the follower’s, since it lies above it. Therefore the same condition
ensures that the value of the leader’s option-like term, b;;6°, increases by more than the
option value of the follower, bp0°, for any increase in o and any value of § € (6p,0r).

The sufficient conditions require that §; is sufficiently large (certainly positive), dp
is sufficiently small (i.e., negative), and o is sufficiently small (so that 3 is large). The
result is illustrated in figure 2, which plots the triggers 0r and fp against the volatility
parameter o. As the figure shows, 0 is increasing in c—the standard comparative static.
But 0p is decreasing in o for low values of the parameter, but eventually increases in o

for values above around 1.75%.4
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Figure 2: Triggers against the volatility parameter o

4Numerical results and figures are generated using Ox version 3.30 (see Doornik (1999)).
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Hence this result relies on the existence of a positive externality from the follower’s
investment to the leader’s payoff. This factor is absent from earlier duopoly real options
models, which consider only competitive interactions between the players. By expanding
the framework to include positive, as well as negative, externalities, we have demonstrated
that contrary comparative statics can arise.

We now consider the second possibility for greater uncertainty to hasten investment:
as a result of a switch in the equilibrium pattern of investment as uncertainty increases.
There are two cases to consider. First, equilibrium investment switches from simultaneous
to sequential, and g > fp. In this case, the investment point of the first investor
decreases; but the follower adopts at a higher value of 6, since 0p > 0g. Secondly,
equilibrium investment switches from sequential to simultaneous, and s < 6p. In this
second case, the investment points of both agents unambiguously decrease. Two steps
are needed to obtain sufficient conditions for these results, set out in proposition 5. The
first step analyses whether the necessary and sufficient condition in proposition 3 for
equilibrium to be simultaneous is easier or more difficult to satisfy as ¢ increases (i.e.,
whether Ag is increasing or decreasing in o). The second analyses whether g is greater

or less than 6p.

Lemma 1 1. Joint sufficient conditions for Ag to be a decreasing function of o are:

ds > 0 and either (i) 67, > 0 and 6p < e ' —1 or (1) 65 <0 and 6p > e ' — 1.

2. Joint sufficient conditions for A\g to be an increasing function of o are: 6 < 0 and

either (i) 6 > 0 and 6p > e~ — 1 or (i) 65, <0 and ép < e ! — 1.

The proof is in section D in the appendix.

Recall that two terms in 6 appear in the two parts of the leader’s value function before
the follower’s investment: Lg contains a direct option value associated with the leader’s
own investment, while L; has an option-like term relating to the follower’s investment.®

Consider the effect of an increase in ¢ when d; < 0. The leader’s value increases due to

SRefer to equation (4). Notice that both terms are important for § < fp. This is explicit over the
range 0 € [0p,0r), and implicit for § < Op: for the latter, the two factors show up in the expression for
bro—see equation (6).
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the first, direct option term—this is the standard comparative static of an option value.
But the leader’s value decreases due to the second term: the magnitude of the option-like
value increases, but it is a negative value, since 6;, < 0. Hence there are two conflicting
effects when o increases, and consequently the comparative static with respect to o may
be (and in fact is) non-monotonic.

In the cases identified in the lemma, however, the comparative statics are unambigu-
ous. Consider part 1(i) of the lemma, in which dg > 0 and 6, > 0. The value from
simultaneous investment increases with o, in line with the standard option value com-
parative static. The marginal effect on the simultaneous investment value function of
an increase in o is therefore positive; but it is decreasing in dg. This is because as dg
increases, for any given level of ¢, simultaneous investment occurs sooner (6g decreases).
Hence an increase in dg acts in the opposite direction to an increase in o, which increases
Os.

The direct option term in the leader’s value function increases with ¢; and the marginal
effect of an increase in uncertainty is independent of 9, and dr. The second term increases
with uncertainty, since d;, > 0. In this case, the marginal effect of an increase in uncer-
tainty is decreasing in dp: as dp increases, for any given level of o, the follower invests
sooner (fr decreases). Hence an increase in 0z acts in the opposite direction to an increase
in o, which increases 6. This argument establishes that the value of the leader increases
with uncertainty by more than the value of a simultaneous investor if (i) dg is sufficiently
large; (ii) dr, is sufficiently large; and (iii) 6 is sufficiently small. Similar considerations
underlie the sufficient conditions in the other parts of the lemma.

The second step is to compare g and 6p (the proof of the following lemma comes

directly from substitution of A into equation (7)).

Lemma 2 0g is greater (less) than 0p iff
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The lemma gives the intuitive condition that fg is greater than #p if and only if dg is
sufficiently small (since dg/(1 + dg) is increasing in dg) and/or J;, sufficiently large and
0 sufficiently small.

Lemmas 1 and 2 can be combined to give sufficient conditions for the trigger point of
the first investor to decrease as o rises, as a result of a change in the equilibrium pattern

of investment.

Proposition 5 1. Suppose that the conditions in part 1 of lemma 1 hold, and that
ds/(146s) < 0r,/(1+dr). Then there exists a ¢” > o’ > 0 such that Ag(c’) > 0 >

)\E(O'”),' and 0g > Op.

2. Suppose that the conditions in part 2 of lemma 1 hold, and that §s/(1 + dg) >
0r/(1+dp). Then there exists a ¢” > o' > 0 such that Ag(c') < 0 < Ag(c”); and
fs < Op.

Both cases give sufficient conditions for an increase in uncertainty from o’ to o” to

cause the trigger point of the first investor to decrease. In the second case the trigger

points of both investors decrease.

(Proposition 5 follows directly from the two preceding lemmas, and so is stated without
proof.)

The proposition gives, then, a second reason why a model of investment under un-
certainty with strategic interaction can be very different from the single-agent case. The
reason now is that there are two types of equilibrium in the multi-agent case. An increase
in uncertainty can cause a switch from one type to another in such a way as to decrease
the trigger point of the first investor. Of course, this factor cannot arise in the single-agent
case.

The final issue to consider is: how empirically relevant is this unusual result? To
focus the discussion, we concentrate on proposition 4 (which gives sufficient conditions
for uncertainty to reduce the leader’s investment trigger, when investment is sequential).
Recall that the proposition requires that the first-mover advantage 6; must be large

(certainly positive), and dr and o small. The first part of this condition may seem
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unusual—it requires that investment by a second agent increase the flow payoff to the
first investor. If investment takes the form of entry into a product market, then this would
require, for example, that the demand expansion effect of an additional firm outweighs
increased competition.

Note, however, that 67, does not need to be very large at all. Figure 3 plots the critical
value of 07, as a function of §x, for three different values of o: 1%, 2% and 2.5%. d; must
be greater than this value for the sufficient conditions of proposition 4 to be satisfied.
The figure illustrates that when o is low, the sufficient conditions can be satisfied for
values of 07, and 6 close to 0. For example, when o = 1% and dr = —0.04, 67, must be
greater than about 0.01 for the sufficient conditions to be satisfied. In words: investment
by the second agent must increase the flow payoff of the first investor by 1% or more.
The ultimate test of the relevance of the proposition is how it matches data: the pattern
of investment and the level of profits observed in a particular market. Nevertheless, these

parametric conditions do not seem implausible.
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Figure 3: The critical value of dy,
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Furthermore, the result and its empirical relevance is not specific to our model. The
ratio of the leader’s and follower’s values anticipating the follower’s investment is key for
the result. In our model, the ratio is 5. /(1 + 0r); when d;, > 0, this ratio is positive
and tends to infinity as o tends to zero (so that § tends to infinity). More generally,
the result requires that, when the first-mover advantage is sufficiently large, the ratio
increases above 1 as uncertainty decreases. The follower’s option value at any level of the
state variable below its trigger point decreases as uncertainty is reduced. This fact is not
specific to the particular form of process (see equation (1)) that we use, or the particular
payoffs assumed.

With positive externalities between the agents, investment by the follower is valuable
to the leader—particularly since it does not require any additional cost for the leader. But
once the leader has acted, the leader is unable to affect the follower’s investment decision,
and must take the investment point of the follower as given. For the follower, investment
is costly; but it chooses its investment point optimally. The first factor tends to make the
follower’s option less valuable than the leader’s option-like term; the second factor makes
it more valuable. When uncertainty is relatively small, the first factor dominates, and
the leader’s option-like term is more valuable. Given the form of the value functions, this
also means that the leader’s value function increases by more than the follower’s when

uncertainty rises. This result is robust and extends beyond the assumptions used here.

5 Conclusions

This paper has analysed irreversible investment in a project with uncertain returns, when
there may be an advantage to being the first investor, and externalities to investing when
others also invest. It therefore extends standard ‘real options’ analysis to a setting where
there are general strategic interactions and externalities between investing agents. This
framework captures a variety of strategic situations and industry settings, and encom-
passes a number of earlier contributions.

We believe that this is an important area of research. The real options literature has
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taught us that an option value is created by irreversibility and uncertainty; this option
value typically leads to delayed investment, where the degree of delay increases with un-
certainty. Strategic interactions and externalities, omitted from the standard real options
analysis, can have important qualitative effects on investment behaviour. In particular,
we have shown that due to the interaction of pre-emption with positive externalities,
greater uncertainty can actually hasten, rather than delay, investment, contrary to the

usual presumption.

Appendix

A Value Functions

Let the follower’s value functions be denoted Fjy and Fj, before and after its investment respec-
tively.

Prior to investment, the follower holds an option to invest but receives no flow payoff. In this
‘continuation’ region, in any short time interval dt starting at time ¢ the follower experiences a
capital gain or loss dFy . The Bellman equation for the value of the investment opportunity is

therefore
Fy = exp (—rdt)E; [Fo + dFp] . (A.10)
It6’s lemma and the GBM equation (1) gives the ordinary differential equation (ODE)
%O‘QHZF(;/(@) + pbF}(0) — rFo(6) = 0. (A.11)

From equation (1), it can be seen that if § ever goes to zero, then it stays there forever. Therefore
the option to invest has no value when 6 = 0, and must satisfy the boundary condition Fy = 0.
Solution of the differential equation subject to this boundary condition gives Fy = bp6P, where
br is a positive constant and 3 > 1 is the positive root of the quadratic equation Q(z) =
%a%(z—l)—i—uz—r; i.e.,ﬁ:% 1—%—%\/( —(27—‘5)24-%

Now consider the value of the agent in the ‘stopping’ region, in which the value of 8 is such
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that it is optimal to invest at once. Since investment is irreversible, the value of the agent in
the stopping region is given by the expected value alone with no option value terms. When the

level at time t of the state variable is #;, this is
o
Fi(0;) = E [/ exp (—r(t —t))(1 + 0p)0,dr — K| .
t

0 is expected to grow at rate u, so that

Fi(0) = W _K. (A.12)

The boundary between the continuation region and the stopping region is given by a trigger
point O of the stochastic process such that continued delay is optimal for § < fp and immediate
investment is optimal for § > 6. The optimal stopping time T is then defined as the first time
that the stochastic process 6 hits the interval [, co) from below.

Putting together the two regions gives the follower’s value function:

bpeﬁ 0 < QF,

F() = (A.13)
UH0r)0 e 9> fp
T — ’

given that the leader invests at Op < Op.

There are three components to the leader’s value function holding over different ranges of
0. The first Ly describes the value of investment before the leader (and so the follower) has
invested; the second L after the leader has invested, but before the follower has done so; and
the third Lo, after the follower has invested. The first and third components are equivalent to
those of the follower, determined previously. The second component is new, and so is derived
in detail.

After the leader has invested, it has no further decision to take and its payoff is given by the
expected value of its investment. This payoff is affected, however, by the action of the follower

investing later at 6p. Taking account of subsequent investment by the follower, the leader’s
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post-investment payoff is given by

Tg o]
L1(6,) = By [/t exp (—r(r — £))0,d7 + /T exp (—r(r — 1) (14 61)0,dr — K| . (A.14)

The Bellman equation for the leader is
Ly = 0dt + exp (—rdt)E; [L1 + dLq]. (A.15)
Using It6’s lemma and equation (1) gives
Lo20207(0) + pbLY(6) — rL1(8) + 6 = 0. (A.16)
57 1 HoLy 1

As before, investment has no value when 8 = 0, and so L1 = % +b7,10%, where bz is a constant.
The first part of the value function Ly gives the expected value of investment before the follower
invests, while the second is an option-like term reflecting the value (due to externalities) to the

leader of future investment by the follower.

B  Proof of Proposition 1

The follower’s equilibrium investment point, 6, is given by equation (3). In this proof, we

derive the leader’s investment point and establish that it is given by rent equalization.

Define

f 0N\’ [1-86,+6r\ K

ie., L(0) — F(0), where L(#) is conditional on the leader having invested, and F(#) is con-
ditional on the leader having invested but not the follower. There are three possibilities:
that there are (i) no, (ii) one or (iii) multiple solutions to equation (B.17). We use the fol-
lowing facts: (i) A(f) is a continuously differentiable function of 4; (ii) A(0) = —K < 0;
(iii) A(0) = m ((%)ﬁﬁéL +(1— <g—§>ﬂ)(1 + 5F)>; (iv) since, from assumption 1,
61> 0p, ABL) > ooty ((3—;)%@ (1 (g—;)ﬁ)u + 5F)>; (v) for all 6p € [~1,0] (see

B B
assumption 1) and 8 > 1, (g—;) Bop + (1 — (%) )(1 4 dr) > 0. Hence, by the intermediate
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value theorem, there exists a value p < 61, such that A(fp) = 0, and A(6) is less (greater)
than 0 for § immediately less (greater) than 6p.

From assumption 3, immediate investment is not profitable for any agent. This implies that
L(#) < 0 V60 < 6. Hence L(0y) < F(6p), since F(6) > 0 V6. Therefore A(fy) < 0 and 6p > 6.
Hence in the sequential equilibrium, no agent invests when 6 € [0y, 6,,), where p is the smallest

solution to A(6p) = 0. At 6 = Op, the leader invests; at r > 0p, the follower invests.

C  Proof of Proposition 4

The difference between the values of the leader’s option-like term and the follower’s option

associated with the follower’s investment is

A@ﬂ)zwmszﬂ=<9@iiliéﬂ)Fw>

1+ 0F

where F(0) = bp0® > 0 for € (6p,0r). The objective of the proof is to establish that
OA(0p,B)/08 < 0, so that OA(Op,3)/0c > 0, which means that the leader’s value function
increases by more than the follower’s (evaluated at 6 = 0p) for a small increase in o. If this is

the case, then 6p must decrease in o.

We start by evaluating the derivative of A(6, 3) with respect to (:

OA0,8)  OLF(0) + (8oL — (1+0m) 250
B 1+0r :
But
OF(6) _ 0
o3 F(0)In <E>
Hence
OA(0,8)  F(0) 0
95 1+or <5L+(55L—(1+5F))1n <0F>> (C.18)

for 6 € [0p, 0.
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Now note that 6p < 1, (see the proof of proposition 1 in section B). Hence

In (g—P> <In(1+0p).

F

There are two cases to consider: (i) 36 —(1+dr) <0 and (ii) 8oL — (1 +0r) > 0. We now
show that the first case would violate assumption 1 if it lead to dA(Op, 3)/08 < 0. In order for

the latter inequality to hold in case (i), it must be that

Op

51 < (861 — (14 65))In (5> ; (C.19)

but the right-hand side of this inequality is less than or equal to —(80;, — (1+0Fr)) In(1+dp) <
—(Bér — (14 6p)) In(1 + dF), where the second part of the statement follows from assumption
1, that 6p < &z. Hence AA(0p, 5)/08 < 0 only if 6, < —(36p — (1 + 6r))In(1 + dF). But the
right-hand side of this inequality, —(8dr — (1 4+ dr))In(1 + dF), is less than or equal 0 when
B =1 In(l+0r) < dr Yor € [—1,0], with equality only if = 0. And the right-hand side
is decreasing in (3; hence the right-hand side is less than or equal to dp for all 6p € [—1,0] and
B > 1, with equality only if §p = 0. Therefore 0A(0p,3)/0F < 0 in case (i) only if §; < dop,
with equality only if 0 = 0. This is consistent with assumption 1 if and only if 67 = dp = 0;
but then, equation (C.18) shows that dA(6p,3)/08 > 0, which is a contradiction.

Hence 0A(0p,3)/08 < 0 can hold, if at all, only in case (ii), when 8oy, — (1 + dp) > 0.
The necessary and sufficient condition for 0A(0p, 3)/05 < 0 is again given by equation (C.19).
In this case, this means that 67 < —(80p — (1 + dp))In(1 + dF) is a sufficient condition for

0A(fp, 3)/00 < 0. Re-arranging this inequality yields
or(1+BIn(1+6p)) < (1+6p)In(1+0p). (C.20)

This inequality cannot be satisfied if 14 F1In(1+ ) > 0 and assumption 1 holds (in particular,
0, > o). To see why, notice that equation (C.20) would require in this case that 6, < dp,

where, as in the proposition,

5 :(1—1—517)111(14-(51?)
=7 1+ 8In(1+6p)
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and 6; < 0. Assumption 1 then requires that é;, > dp. But this in turn requires that (8 —
1)(1 4+ 6p)In(1 + 6r) — BfIn(l 4+ 6p) + 6 < 0. When S = 1, this inequality requires that
—In(1+dF) + dr < 0, which is violated for all 6p € [—1,0) and holds with equality only when
dp =0. Since (8 —1)(1+6p)In(1 +dr) — BIn(l + ) + dF is increasing in (3, this means that
(B-—1)(1+0p)In(l4+6p) — fIn(l 4 ) + dr > 0, with equality only when ér = 0.

Hence inequality (C.20) requires that 1 4+ 8In(1 + dr) < 0; and hence that d;, > 01, where
dr, > 0.

D Proof of Lemma 1

Differentiate A\p with respect to 3:

O

a—; = (1465)°In(1 4+ 65) — 6p,(1 4+ 0)° 11 + In(1 + 6p)). (D.21)
It is sufficient for Ag to be an increasing function of 8 that all terms in equation (D.21) be
positive. Hence joint sufficient conditions are: (i) ds > 0, so that In(1 + dg) > 0; (ii) —0r(1 +
In(1 4+ dr)) > 0, which in turn requires that either (a) 6, > 0 and 1+ In(1 + ér) < 0, ie.,

6 < e ! — 1, or (b) the converse. To complete the proof of the first part, note that 3 is

decreasing in o. The proof of the second part is very similar, and so is omitted.
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