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Abstract

This paper examines irreversible investment in a project with uncertain returns,

when there is an advantage to being the first to invest and externalities to investing

when others also do so. We show that in a duopoly, greater uncertainty can actually

hasten rather than delay investment, contrary to the usual outcome, due its effect

on the equilibrium of the timing game between the players. In the presence of

positive externalities, greater uncertainty can raise the leader’s value more than the

follower’s; pre-emption then entails that the leader must act sooner. A switch in the

pattern of equilibrium investment as uncertainty increases is also possible, which

may hasten investment. These findings reinforce the importance of extending real

options analysis to include strategic interactions and externalities between players.
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1 Introduction

The literature on irreversible investment under uncertainty teaches three major lessons.

First, the net present value (NPV) rule for investment is generally incorrect, since it

considers only a now-or-never decision and fails to appreciate that investment can be

delayed. Secondly, an option value is created by the fact that the return is bounded below

by the payoff from not investing; the effect of this option value is to delay investment,

relative to the NPV rule. Finally, the greater the degree of uncertainty, the larger this

delay: an increase in uncertainty increases the upside potential from investment, and so

increases the value of the investment option.

The early literature on the ‘real options’ approach analyses investment decisions for a

single agent in isolation. In many real world cases, however, investment takes place in a

more competitive environment in which there are externalities and strategic interactions

between investing agents. The purpose of this paper is to demonstrate that such interac-

tions can have important consequences for irreversible, uncertain investments, with effects

that run counter to the standard results given above.

We analyse irreversible investment in a project with uncertain returns in a dynamic

two-player model, with a general specification. Two types of strategic interactions are

considered. The first is pre-emption: when there is some advantage to being the first to

undertake an investment, there will be competition to be the first. In this situation, any

benefit from delaying investment due to real option effects has to be balanced against the

loss from being pre-empted. The second interaction arises when the value of an investment

depends on the number of agents who have also invested. The interaction may affect value

negatively: e.g., if it arises through a competitive effect; or it may have a positive effect,

if there are complementarities between the agents’ actions such as network externalities

or demand expansion. In both cases, the timing of an agent’s investment is influenced by

the investment decisions of others.

The contribution of this paper is to show that, contrary to the standard result, the

effect of uncertainty on investment is ambiguous in a duopoly. When strategic interactions

determine the exercise of the option, greater uncertainty can hasten, rather than delay,
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investment. We show that if the payoff externality when the follower invests is positive

and there is not too much uncertainty, then a small increase in uncertainty causes the

leader’s investment point to fall. If investment takes the form of entry into a product

market, for example, then this would require that e.g., the demand expansion effect of

an additional firm outweighs increased competition. Investment in the context of strong

network externalities would be similarly affected.

To understand this surprising comparative static, note that when two agents invest

sequentially, the first investment point is determined by rent equalization (see Fudenberg

and Tirole (1985)): at the point at which the first investor acts it is indifferent between

being the leader and the follower. At the leader’s investment point, the leader’s value

function crosses the follower’s from below (otherwise investment would have occurred

sooner). Hence an increase in uncertainty lowers the leader’s investment point if and only

if the value function from investing first increases by more than the value to investing

second.

With positive externalities between the agents, investment by the follower is valuable

to the leader—particularly since it does not require any additional cost for the leader.

But once the leader has acted, the leader is unable to affect the follower’s investment

decision, and must take the investment point of the follower as given. For the follower,

investment is costly; but it chooses its investment point optimally. The first factor tends

to make the follower’s option less valuable than the leader’s; the second factor makes it

more valuable. When uncertainty is relatively small, the first factor dominates and the

leader’s option1 is more valuable. Given the form of the value functions, this also means

that the leader’s value function increases by more than the follower’s when uncertainty

rises. (Both functions increase, due to the convexity of payoffs.)

There is an additional way in which greater uncertainty may hasten investment: by

causing a switch in the pattern of equilibrium investment. Two equilibrium patterns of

investment are possible. Either the agents invest sequentially (i.e., the ‘leader’ invests

1Strictly speaking, the leader does not hold an option: it simply waits for the follower to act. It is
more accurate to refer to the option-like term of the leader. We use the more accurate terminology in
the rest of the paper.

2



early while the ‘follower’ invests late), or they invest simultaneously. We also show that

an increase in uncertainty can cause equilibrium to switch from sequential to simultaneous

investment, or vice versa, in such a way that the first investment occurs sooner. We argue

that these effects are present at plausible parameter values, and so can be empirically

important.

Overall, therefore, strategic interactions in the presence of positive externalities give

rise to significant qualitative effects that are omitted from the standard real options

analysis of investment, even those models incorporating game-theoretic interactions. The

relationship between uncertainty and investment, even for a single irreversible project

available to each firm, is more complex than given by the standard result. This finding is

relevant to cross-border investment in the face of exchange rate uncertainty, for example.

Its implications are important to firms planning their investments, and for policy-makers

wishing to understand and anticipate private sector investment behaviour.

Two general strands of literature are related to this paper. Real options models have

been used to explain delay and hysteresis arising in a wide range of contexts. McDonald

and Siegel (1986) and Pindyck (1988) consider irreversible investment opportunities avail-

able to a single agent. Dixit (1989) and Dixit (1991) analyse product market entry and

exit in monopolistic and perfectly competitive settings respectively. The second strand

of literature concerns timing games of entry or exit in a deterministic setting. There are

several types of paper within this strand. Papers analysing pre-emption games include

Fudenberg, Gilbert, Stiglitz, and Tirole (1983), Fudenberg and Tirole (1985), Katz and

Shapiro (1987) and Lippman and Mamer (1993). Wars of attrition have been modelled

by e.g., Fudenberg and Tirole (1986).

A number of real options models incorporating strategic interactions now exist. Smets

(1991) examines irreversible market entry in a duopoly facing stochastic demand. Simul-

taneous investment may arise only when the leadership role is exogenously pre-assigned.

Consequently, he does not consider fully the pre-emption externality. Weeds (2002)

presents a model in which two firms may invest in competing research projects with

uncertain returns. She does not impose an asymmetry between the firms, but allows the
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leader to emerge endogenously. She does not, however, include more general externalities.

Other papers combining real options with game theory include Boyer, Lasserre, Mariotti,

and Moreaux (2004) Huisman and Kort (1999) and Lambrecht and Perraudin (2003);

these, however, do not generate the comparative static result we find. A survey of this

literature is provided by Boyer, Gravel, and Lasserre (2004). The general specification of

our model encompasses several of these contributions. Hoppe (2000) analyses a timing

game of new technology investment in an uncertain environment. She considers second,

rather than first, mover advantages and models uncertainty in a different way from our

paper.

In a two-period model, Kulatilaka and Perotti (1998) find that greater uncertainty

over market demand may increase cost-reducing investment undertaken in the first period.

Their model is quite different from ours: there is an exogenous asymmetry between the

firms—only firm 1 holds a strategic investment opportunity in the first period—and this

firm exercises a subsequent option (over production) in the second period. Although

their result has a superficial similarity to ours, it is driven by the strategic effect of

first period investment in reducing the competitor’s output in the second period (à la

Cournot), or deterring entry altogether (as in Dixit (1980)), combined with optionality

at the second stage. Since the first period investment is available to a single firm, there

is no competition in exercising the option. In this paper, by contrast, our result is due

to the effect of uncertainty on the equilibrium outcome of the timing game between the

players. Dixit and Pindyck (1994) describe situations in which uncertainty can speed up

investment, because investment itself reveals information about costs. We show that even

in the absence of this ‘shadow value’, investment may be speeded up by uncertainty.

Our paper is also related to the literature on technology investment with network

externalities, such as Farrell and Saloner (1986) and Katz and Shapiro (1986). In Farrell

and Saloner (1986), a model of technology investment with uncertainty about the tim-

ing of (rather than return from) investment, positive network effects, and irreversibility is

analysed (see section II). Unlike Farrell and Saloner, we allow agents to invest at any time,

not just at random opportunities. If this assumption were used in the Farrell and Sa-
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loner model, then many of the features would disappear (although the basic co-ordination

problem due to network effects would remain). Here, delay is endogenously determined

through the optimization decisions of the agents, rather than imposed exogenously. Choi

(1994) examines a model in which there are positive network effects, uncertainty and

the possibility of delay. In Choi’s model, users are exogenously asymmetric: user 1 is

able to choose which of two technologies (with random returns) to invest in either of two

periods, while user 2 is able to invest only in the second period. This paper departs from

Choi’s in several respects. Most importantly, it does not impose exogenously an asymme-

try between players, but instead allows the first mover to be determined endogenously.

In our model, the leader invests at the point at which it is indifferent between leading

and following; see section 3. The fact that investment by the leader is determined by

indifference, rather than optimally (for the leader), makes an important difference to in-

vestment behaviour. We also allow for a more general payoff structure, including allowing

for negative as well as positive externalities.

The rest of the paper is structured as follows. Section 2 describes the model. Section

3 analyses the non-co-operative equilibria of the model. Section 4 looks at the effect of

uncertainty on investment delay when pre-emption can occur. Section 5 concludes. The

appendix contains lengthier proofs.

2 The Model

This section develops a general model to capture the three effects that are the focus

of this paper: (i) uncertainty, irreversibility and the possibility of delay in investment;

(ii) investment externalities, where the return to investment depends on the number of

investors; and (iii) pre-emption, where early investors have an advantage.

Two risk neutral agents, labelled i ∈ {1, 2} each can invest in a project. There is a

cost K > 0 to doing so, which is the same for both agents. Investment is irreversible (the

cost K is entirely sunk) and can be delayed indefinitely. Time is continuous and labelled

by t ∈ [0,∞). The timing of investment is the main concern of the analysis. Investment
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by the two agents may occur sequentially—that is, the two agents invest at distinctly

different times—or simultaneously.

Consider first the outcome when the agents invest sequentially. Call the first investor

the ‘leader’ and the second investor the ‘follower’. The leader’s instantaneous payoff at

time t from investment, before the follower has invested, is

πI
L = θt,

where θt is the stand-alone benefit from investment—the instantaneous payoff received

by an agent that is the sole investor. After the follower has invested, the leader’s instan-

taneous payoff becomes

πII
L = (1 + δL)θt.

The follower’s instantaneous payoff at time t from investment is

πII
2 = (1 + δF )θt.

Now suppose that the agents invest simultaneously. The instantaneous payoff at time t

from investment is the same for both agents:

πIII = (1 + δS)θt.

The model specification is a general one. We do not investigate all possible configurations

of the payoff parameters δL, δF and δS. Instead, we restrict attention to cases described

in the following assumption:

Assumption 1 −1 ≤ δF ≤ 0; δF ≤ δS; and δF ≤ δL.

This assumption ensures two things. First, there may be a first-mover advantage,

since δL ≥ δF . Secondly, there may be a second-mover disadvantage, in the sense that δF

is less than both δS and δL. The role of particular aspects of assumption 1 will be pointed

out as the analysis progresses.
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Even with assumption 1, our model encompasses many related papers. For example, in

Fudenberg and Tirole (1985), when n firms have adopted the new technology, the payoff of

a firm that has not adopted is π0(n), and of a firm that has adopted is π1(n). They assume

that if n′ ≥ n, then π1(n
′) < π1(n). A specific version of their payoffs can be represented

in our model by supposing that π0(n) = 0 ∀n, π1(1) = θ and δL = δF = δS < 0. Real

options duopoly models such as Smets (1991), Weeds (2002) and Huisman and Kort (1999)

employ functional forms equivalent to negative δL, δF and δS parameters. Similarly, some

of the payoff structures used in Katz and Shapiro (1987) can be replicated within our

model. What they term the ‘stand-alone incentive’ is measured by δL in this model; their

‘pre-emption incentive’ is measured by δL − δF ; the degree of imitation that is possible

can be captured by δF . Lippman and Mamer (1993) analyse a model in which the first

firm to innovate spoils the market for its rival; in this case, δF = −1. Notice also that by

setting δS = (δL+δF )/2, we can allow for the possibility that, in the event of simultaneous

adoption, the roles of leader and follower are assigned randomly between the two agents.

θt is assumed to be exogenous and stochastic, evolving according to a geometric Brow-

nian motion (GBM) with drift:

dθt = µθtdt + σθtdWt (1)

where µ ∈ [0, r) is the drift parameter, measuring the expected growth rate of θ, r is the

continuous-time discount rate,2 σ > 0 is the instantaneous standard deviation or volatility

parameter, and dW is the increment of a standard Wiener process, dWt ∼ N(0, dt). The

parameters µ, σ and r are common knowledge and constant over time. The choice of

continuous time and this representation of uncertainty is motivated by the analytical

tractability of the value functions that result.

The strategies of the agents in the investment game are now defined. If agent i has

not invested at any time τ < t, its action set is Ai
t = {invest, don’t invest}. If, on the

other hand, agent i has invested at some τ < t, then Ai
t is the null action ‘don’t move’.

2The restriction that µ < r ensures that there is a positive opportunity cost to holding the ‘option’
to invest, and so that the option is not held indefinitely.
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The agent therefore faces a control problem in which its only choice is when to choose

the action ‘invest’. After taking this action, the agent can make no further moves.

A strategy for agent i is a mapping from the history of the game Ht (the sample path

of the stochastic variable θ and the actions of both agents up to time t) to the action

set Ai
t. Agents are assumed to use stationary Markovian strategies: actions depend on

only the current state and the strategy formulation itself does not vary with time. Since

θ follows a Markov process, Markovian strategies incorporate all payoff-relevant factors

in this game. Furthermore, if one player uses a Markovian strategy, then its rival has

a best response that is Markovian as well. Hence, a Markovian equilibrium remains an

equilibrium when history-dependent strategies are also permitted, although other non-

Markovian equilibria may then also exist. (For further explanation see Maskin and Tirole

(1988) and Fudenberg and Tirole (1991).)

The formulation of the agents’ strategies is complicated by the use of a continuous-

time model. Fudenberg and Tirole (1985) point out that there is a loss of information

inherent in representing continuous-time equilibria as the limits of discrete time mixed

strategy equilibria. To correct for this, they extend the strategy space to specify not only

the cumulative probability that player i has invested, but also the ‘intensity’ with which

each player invests at times ‘just after’ the probability has jumped to one.3 Although

this formulation uses mixed strategies, the equilibrium outcomes are equivalent to those

in which agents employ pure strategies. (See section 3 of Fudenberg and Tirole (1985).)

Consequently, the analysis will proceed as if each agent uses a pure Markovian strategy,

i.e., a stopping rule specifying a critical value or ‘trigger point’ for the exogenous variable

θ at which the agent invests. Note, however, that this is for convenience only: underlying

the analysis is an extended space with mixed strategies.

Our analysis focuses on trigger points of the stochastic variable θ. These could also

3In Fudenberg and Tirole (1985), an agent’s strategy is a collection of simple strategies satisfying an
intertemporal consistency condition. A simple strategy for agent i in a game starting at a positive level
θ of the state variable is a pair of real-valued functions (Gi(θ), εi(θ)) : (0,∞) × (0,∞) → [0, 1] × [0, 1]
satisfying certain conditions (see definition 1 in their paper) ensuring that Gi is a cumulative distribution
function, and that when εi > 0, Gi = 1 (so that if the intensity of atoms in the interval [θ, θ + dθ] is
positive, the agent is sure to invest by θ). A collection of simple strategies for agent i, (Gθ

i
(.), εθ

i
(.)), is

the set of simple strategies that satisfy intertemporal consistency conditions.
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be expressed in terms of expected stopping times; we do not, however, include this step.

For our comparative static results it is sufficient to recall that, for a given time path of

the stochastic variable, a lower trigger point corresponds to earlier investment.

The possible states of each agent are denoted ni ∈ {0, 1} when the agent has not

invested and has invested, respectively. The following assumptions are made:

Assumption 2 If ni(τ) = 1, then ni(t) = 1 for all t ≥ τ , i ∈ {1, 2}.

Assumption 3 max{1, 1 + δL}E0

[∫

∞

0
exp (−rt)θtdt

]

− K < 0.

Assumption 2 formalizes the irreversibility of investment: if agent i has invested by

date τ , it then remains active at all dates subsequent to τ . Assumption 3 states that the

initial value of the project is sufficiently low that the expected return from investment is

negative, thus ensuring that immediate investment is not worthwhile. (The operator E0

denotes expectations conditional on information available at time t = 0.)

3 Equilibrium

3.1 Sequential Investment

Start by assuming that the agents invest at different points. The possibility of simultane-

ous investment is considered below. As usual in dynamic games, the stopping time game

is solved backwards; see e.g., Dixit (1989). Thus the first step is to consider the optimiza-

tion problem of the follower who invests strictly later than the leader. Given that the

leader has invested irreversibly, the follower’s payoff on investing has two components: the

flow payoff from the project, (1 + δF )θt; and the cost of investment, −K. The follower’s

value function F (θt) at time t given a level θt of the state variable is therefore

F (θt) = max
TF

Et

[
∫

∞

TF

exp (−r(τ − t))(1 + δF )θτdτ − K exp (−r(TF − t))

]

where TF is the random investment time for the follower, and the operator Et denotes

expectations conditional on information available at time t.
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The value function F has two components, holding over different ranges of θ: one

relating to the value of investment before the follower has invested, the other to the

follower’s value after investment. We derive these value functions in section A in the

appendix. We show there that the follower’s value function is

F (θ) =







bF θβ θ < θF ,

(1+δF )θ
r−µ

− K θ ≥ θF .
(2)

θF is the follower’s optimally-chosen investment point. (The value function in equation

(2) assumes that the leader invests at some level of θ less than θF . We verify below that

this is the case in equilibrium.) By arbitrage, the critical value θF must satisfy a value-

matching condition; optimality requires a second condition, known as ‘smooth-pasting’,

to be satisfied. (See Dixit and Pindyck (1994) for an explanation.) This condition requires

the two components of the follower’s value function to meet smoothly at θF with equal

first derivatives, which together with the value matching condition implies that

θF =

(

β

β − 1

)(

K

1 + δF

)

(r − µ), (3)

bF =
(1 + δF )θ

−(β−1)
F

β(r − µ)
.

Equation (3) for the follower’s trigger point can be interpreted as the effective flow cost

of investment with an adjustment for uncertainty. The sunk investment cost is K, but this

yields a flow payoff of (1 + δF )θ; hence the effective sunk cost is K
1+δF

. With an effective

interest rate of r − µ (i.e., the actual interest rate r minus the expected proportional

growth in the flow payoff µ), this gives an instantaneous cost of
(

K
1+δF

)

(r − µ). If a

Marshallian rule were used for the investment decision, the trigger point would be simply

this cost. But with uncertainty, irreversibility and the option to delay investment, the

Marshallian trigger point must be adjusted upwards by the factor β

β−1
> 1. The follower’s

trigger can also be compared to the standard single-agent trigger,

θL ≡

(

β

β − 1

)

K(r − µ);
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see e.g., Dixit and Pindyck (1994).

In section A in the appendix, we show that the leader’s value function has the following

form:

L(θ) =



















bL0θ
β θ < θP ,

θ
r−µ

+ bL1θ
β − K θ ∈ [θP , θF ),

(1+δL)θ
r−µ

− K θ ≥ θF ,

(4)

given the leader’s trigger point θP and investment by the follower at the higher θF . Notice

that the first and third components of the leader’s value function mirror the follower’s

value function. The second component is new, and shows the leader’s value after it has

invested, but before the follower has invested.

The value of the unknown constant bL1 is found by considering the impact of the

follower’s investment on the payoff to the leader. When θF is first reached, the follower

invests and the leader’s expected flow payoff is altered. Since value functions are forward-

looking, L1 anticipates the effect of the follower’s action and must therefore meet L2 at

θF . Hence, a value-matching condition holds at this point (for further explanation see

Harrison (1985)); however, there is no optimality on the part of the leader, and so no

corresponding smooth-pasting condition. This implies that

bL1 =
δLθ

−(β−1)
F

r − µ
. (5)

The remaining coefficient, bL0 is determined by value matching at θP :

bL0 =
K

β − 1
θ−β

F . (6)

The next proposition describes the equilibrium in this case.

Proposition 1 Given assumptions 1–3, when equilibrium investment is sequential, the

leader invests at θP and the follower at θF > θP . θP ∈ (θ0, θL) is the smallest solution to

the equation

θP

r − µ
− K =

K

β − 1

(

1 + δF − βδL

1 + δF

)(

θP

θF

)β

. (7)
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The proof of the proposition is in section B in the appendix. The explanation of the

equilibrium is as follows. The leader cannot choose its investment point optimally, as the

follower can. Instead, the first agent to invest does so at the point at which it prefers

to lead rather than follow, not the point at which the benefits from leading are largest.

Clearly, it cannot be that the first agent invests when the value from following is greater

than the value from leading—if this were the case, the agent would do better by waiting.

Likewise, it cannot be that the first agent invests when the value from leading is strictly

greater than the value from following, since in this case without pre-assigned roles, the

other agent could pre-empt it and still gain. Hence the investment point is determined

by indifference between leading and following. The trigger point θP in the pre-emption

model is given by indifference: L(θP ) = F (θP ). This is in contrast to the trigger point of

the follower, which is determined by value matching and smooth pasting, i.e., is chosen

optimally.

The rent equalization condition L(θP ) = F (θP ) gives the non-linear equation (7) for

θP . A number of possibilities arise: there may be no, one or multiple solutions to this

equation. In the proof of the proposition, we show that there is at least one solution

which lies between θ0 and θL. We have also assumed that the initial value of the project

is sufficiently low that immediate investment is not worthwhile (see assumption 3). Hence

in equilibrium, there is no investment before θ hits θP . In other words, the leader’s value

function hits the follower’s from below.

One possibility for a solution to equation (7) is illustrated in figure 1 (in which it is

assumed that 1 + δF − βδL > 0). The left-hand side of equation (7) is the increasing,

linear function; the right-hand side is the increasing, convex function. There are two

intersection points of the two functions; the lower point is the relevant solution for the

leader’s equilibrium trigger point θP . (θM ≡ K(r − µ) in the figure is the myopic Mar-

shallian trigger, i.e., the investment point of an agent who ignores both uncertainty and

any subsequent investment by other agents.)
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θPθM θ

Figure 1: The solution for θP

3.2 Simultaneous Investment

Now consider the alternative case, in which investment is simultaneous at the trigger

point θS. The previous analysis indicates that the value function of each agent is then

S(θ) =







bSθβ θ < θS,

(1+δS)θ
r−µ

− K θ ≥ θS.

(This value function can be derived from the appropriate Bellman equation, following

the steps shown in the appendix.) There is a continuum of simultaneous solutions; it

is straightforward to show that they can be Pareto ranked, with higher trigger points

yielding higher value functions. In this case, it seems reasonable that the agents invest

at the Pareto optimal point, given by both value matching and smooth pasting. So

Proposition 2 The Pareto optimal trigger point for the simultaneous equilibrium is

θS =

(

β

β − 1

)(

K

1 + δS

)

(r − µ).
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The coefficient in the value function is

bS =
(1 + δS)θ

−(β−1)
S

β(r − µ)
. (8)

The next proposition describes when simultaneous investment is an equilibrium.

Proposition 3 Simultaneous investment occurs in equilibrium iff

λE ≡ (1 + δS)β −
(

1 + βδL(1 + δF )β−1
)

≥ 0. (9)

A sufficient condition is δS ≥ 0 ≥ δL.

Proof. For equilibrium simultaneous investment, it must be that S(θ) ≥ L(θ) for θ ∈

[θP , θS]. Due to the convexity of the value functions, this requires that S(θ) ≥ L(θ) for

θ ∈ [0, θP ], and so that bS ≥ bL0. Substituting the expressions for these two coefficients

gives the necessary and sufficient condition of equation (9). The sufficient condition

follows directly from equation (9). ¤

Whether simultaneous investment occurs in equilibrium is determined by whether the

leader wishes to invest before the follower, or at the same time (i.e., by the comparison

of L(θ) and S(θ)). The proposition shows the reasonable condition that, in order for

simultaneous investment to occur in equilibrium, it must be the case that δS is sufficiently

large and/or δL and δF sufficiently small. (This is clearest in the sufficient condition.)

Note that the simultaneous investment equilibrium, when it exists, Pareto dominates the

sequential outcome; this is an immediate consequence of the condition for existence of

the simultaneous investment equilibrium: S(θ) ≥ L(θ) for θ ∈ [0, θS].

4 Uncertainty and Delay with Pre-emption

Real options analysis for monopoly or perfectly competitive industries concludes that:

1. The net present value (NPV) rule for investment is incorrect since it ignores the

option value created by irreversibility and uncertainty.
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2. The effect of this option value is to delay investment, relative to the NPV rule.

3. The greater the degree of uncertainty, the larger the option value and the greater

the extent of delay.

In this section, we show that the third conclusion need not hold when pre-emption is

possible; in particular, more uncertainty can hasten investment. Our results demonstrate

that the combination of uncertainty and pre-emption can result in complex interactions.

First note that the triggers θF and θS are increasing in σ, for the familiar real options

reason. The intuition is that delay allows for the possibility that the random process (1)

will go up; if it goes down, then the agent need not invest. The greater the variance of

the process, the more valuable is the option created by this asymmetric situation, and so

the more delay occurs for both agents. Notice that this result relies on the fact that all

of these triggers are chosen optimally by the relevant agent(s).

There are two ways in which greater uncertainty can hasten investment. First, when

equilibrium investment is sequential, the trigger point θP of the leader may decrease as σ

increases. This possibility is examined in proposition 4. Secondly, a rise in σ can cause

the pattern of equilibrium investment to switch, with investment in the new equilibrium

pattern occurring earlier. This possibility is considered in proposition 5.

Proposition 4 Joint sufficient conditions for the leader’s investment trigger θP to be

decreasing in the volatility parameter σ are

1 + β ln(1 + δF ) < 0 and 0 ≤
(1 + δF ) ln(1 + δF )

1 + β ln(1 + δF )
≤ δL.

The proof is in section C in the appendix.

The result therefore raises the striking possibility that greater uncertainty lowers the

leader’s trigger point. The possibility arises from the lack of optimality in the choice of

the pre-emption trigger point. An optimal trigger point is such that the marginal benefit

from delaying investment for a period equals the marginal cost. The marginal benefit is
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the interest saved on the investment cost plus the expected gain from the possibility that

the flow payoff increases. The marginal cost is the flow payoff foregone by not investing.

In this marginal calculation, the agent does not consider the effect of its delay on the

investment decision of the other agent, since in the models considered in this paper, each

agent’s trigger point (with the exception of θP ) does not depend on the other’s. Increased

uncertainty raises the expected gain from delay, causing the (optimally chosen) trigger

point to increase. This reasoning does not apply in the case of θP , however: it is not

chosen according to a marginal equality, but an absolute equality between the value from

leading and the value from following. The proposition shows that this difference in the

determination of the trigger point can lead to θP decreasing as uncertainty increases.

In order for this unusual comparative static to hold, it must be that in the region of

the intersection point, the leader’s value function increases by more than the follower’s

when uncertainty rises, holding constant the leader’s trigger point θP . (This statement

follows directly from using the implicit function theorem on the non-linear equation (7)

defining θP .) There are, therefore, two necessary and sufficient conditions for θP to be

decreasing in σ:

1. The leader’s value function L1 is increasing in σ.

2. The increase in the leader’s value function is larger than the increase in the follower’s

value function F0.

The leader’s value function depends on uncertainty due to the option-like term that

anticipates investment by the follower: bL1θ
β, where bL1 ≡ δLθ

−(β−1)
F /(r − µ) and θ ∈

(θP , θF ). Hence this option-like term is positive if and only if δL > 0; this implies that

the follower’s investment benefits the leader, e.g. when demand expansion outweighs the

effect of competition, or in a setting with network externalities. When this is the case, the

option-like term increases in value with the degree of uncertainty (for the usual reasons),

and so condition 1 holds. The follower’s value function also depends on uncertainty, due

to the option value of its investment: bF θβ, where bF = (1 + δF )θ
−(β−1)
F /β(r − µ) and

θ < θF . This option value increases with the degree of uncertainty.
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The sufficient conditions in the proposition ensure that βδL − (1 + δF ) > 0. So, when

the conditions are satisfied, the value of the leader’s option-like term is greater than the

option value of the follower. Both values are convex functions of θ; the leader’s value

is more convex than the follower’s, since it lies above it. Therefore the same condition

ensures that the value of the leader’s option-like term, bL1θ
β, increases by more than the

option value of the follower, bF θβ, for any increase in σ and any value of θ ∈ (θP , θF ).

The sufficient conditions require that δL is sufficiently large (certainly positive), δF

is sufficiently small (i.e., negative), and σ is sufficiently small (so that β is large). The

result is illustrated in figure 2, which plots the triggers θF and θP against the volatility

parameter σ. As the figure shows, θF is increasing in σ—the standard comparative static.

But θP is decreasing in σ for low values of the parameter, but eventually increases in σ

for values above around 1.75%.4
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Figure 2: Triggers against the volatility parameter σ

4Numerical results and figures are generated using Ox version 3.30 (see Doornik (1999)).
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Hence this result relies on the existence of a positive externality from the follower’s

investment to the leader’s payoff. This factor is absent from earlier duopoly real options

models, which consider only competitive interactions between the players. By expanding

the framework to include positive, as well as negative, externalities, we have demonstrated

that contrary comparative statics can arise.

We now consider the second possibility for greater uncertainty to hasten investment:

as a result of a switch in the equilibrium pattern of investment as uncertainty increases.

There are two cases to consider. First, equilibrium investment switches from simultaneous

to sequential, and θS > θP . In this case, the investment point of the first investor

decreases; but the follower adopts at a higher value of θ, since θF > θS. Secondly,

equilibrium investment switches from sequential to simultaneous, and θS < θP . In this

second case, the investment points of both agents unambiguously decrease. Two steps

are needed to obtain sufficient conditions for these results, set out in proposition 5. The

first step analyses whether the necessary and sufficient condition in proposition 3 for

equilibrium to be simultaneous is easier or more difficult to satisfy as σ increases (i.e.,

whether λE is increasing or decreasing in σ). The second analyses whether θS is greater

or less than θP .

Lemma 1 1. Joint sufficient conditions for λE to be a decreasing function of σ are:

δS ≥ 0 and either (i) δL ≥ 0 and δF ≤ e−1 − 1 or (ii) δL ≤ 0 and δF ≥ e−1 − 1.

2. Joint sufficient conditions for λE to be an increasing function of σ are: δS < 0 and

either (i) δL ≥ 0 and δF ≥ e−1 − 1 or (ii) δL ≤ 0 and δF ≤ e−1 − 1.

The proof is in section D in the appendix.

Recall that two terms in θ appear in the two parts of the leader’s value function before

the follower’s investment: L0 contains a direct option value associated with the leader’s

own investment, while L1 has an option-like term relating to the follower’s investment.5

Consider the effect of an increase in σ when δL < 0. The leader’s value increases due to

5Refer to equation (4). Notice that both terms are important for θ ≤ θF . This is explicit over the
range θ ∈ [θP , θF ), and implicit for θ < θP : for the latter, the two factors show up in the expression for
bL0—see equation (6).
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the first, direct option term—this is the standard comparative static of an option value.

But the leader’s value decreases due to the second term: the magnitude of the option-like

value increases, but it is a negative value, since δL < 0. Hence there are two conflicting

effects when σ increases, and consequently the comparative static with respect to σ may

be (and in fact is) non-monotonic.

In the cases identified in the lemma, however, the comparative statics are unambigu-

ous. Consider part 1(i) of the lemma, in which δS ≥ 0 and δL ≥ 0. The value from

simultaneous investment increases with σ, in line with the standard option value com-

parative static. The marginal effect on the simultaneous investment value function of

an increase in σ is therefore positive; but it is decreasing in δS. This is because as δS

increases, for any given level of σ, simultaneous investment occurs sooner (θS decreases).

Hence an increase in δS acts in the opposite direction to an increase in σ, which increases

θS.

The direct option term in the leader’s value function increases with σ; and the marginal

effect of an increase in uncertainty is independent of δL and δF . The second term increases

with uncertainty, since δL ≥ 0. In this case, the marginal effect of an increase in uncer-

tainty is decreasing in δF : as δF increases, for any given level of σ, the follower invests

sooner (θF decreases). Hence an increase in δF acts in the opposite direction to an increase

in σ, which increases θF . This argument establishes that the value of the leader increases

with uncertainty by more than the value of a simultaneous investor if (i) δS is sufficiently

large; (ii) δL is sufficiently large; and (iii) δF is sufficiently small. Similar considerations

underlie the sufficient conditions in the other parts of the lemma.

The second step is to compare θS and θP (the proof of the following lemma comes

directly from substitution of θS into equation (7)).

Lemma 2 θS is greater (less) than θP iff

δS

1 + δS

< (>)
δL

1 + δF

.
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The lemma gives the intuitive condition that θS is greater than θP if and only if δS is

sufficiently small (since δS/(1 + δS) is increasing in δS) and/or δL sufficiently large and

δF sufficiently small.

Lemmas 1 and 2 can be combined to give sufficient conditions for the trigger point of

the first investor to decrease as σ rises, as a result of a change in the equilibrium pattern

of investment.

Proposition 5 1. Suppose that the conditions in part 1 of lemma 1 hold, and that

δS/(1 + δS) < δL/(1 + δF ). Then there exists a σ′′ > σ′ > 0 such that λE(σ′) > 0 >

λE(σ′′); and θS > θP .

2. Suppose that the conditions in part 2 of lemma 1 hold, and that δS/(1 + δS) >

δL/(1 + δF ). Then there exists a σ′′ > σ′ > 0 such that λE(σ′) < 0 < λE(σ′′); and

θS < θP .

Both cases give sufficient conditions for an increase in uncertainty from σ ′ to σ′′ to

cause the trigger point of the first investor to decrease. In the second case the trigger

points of both investors decrease.

(Proposition 5 follows directly from the two preceding lemmas, and so is stated without

proof.)

The proposition gives, then, a second reason why a model of investment under un-

certainty with strategic interaction can be very different from the single-agent case. The

reason now is that there are two types of equilibrium in the multi-agent case. An increase

in uncertainty can cause a switch from one type to another in such a way as to decrease

the trigger point of the first investor. Of course, this factor cannot arise in the single-agent

case.

The final issue to consider is: how empirically relevant is this unusual result? To

focus the discussion, we concentrate on proposition 4 (which gives sufficient conditions

for uncertainty to reduce the leader’s investment trigger, when investment is sequential).

Recall that the proposition requires that the first-mover advantage δL must be large

(certainly positive), and δF and σ small. The first part of this condition may seem
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unusual—it requires that investment by a second agent increase the flow payoff to the

first investor. If investment takes the form of entry into a product market, then this would

require, for example, that the demand expansion effect of an additional firm outweighs

increased competition.

Note, however, that δL does not need to be very large at all. Figure 3 plots the critical

value of δL as a function of δF , for three different values of σ: 1%, 2% and 2.5%. δL must

be greater than this value for the sufficient conditions of proposition 4 to be satisfied.

The figure illustrates that when σ is low, the sufficient conditions can be satisfied for

values of δL and δF close to 0. For example, when σ = 1% and δF = −0.04, δL must be

greater than about 0.01 for the sufficient conditions to be satisfied. In words: investment

by the second agent must increase the flow payoff of the first investor by 1% or more.

The ultimate test of the relevance of the proposition is how it matches data: the pattern

of investment and the level of profits observed in a particular market. Nevertheless, these

parametric conditions do not seem implausible.
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Figure 3: The critical value of δL

21



Furthermore, the result and its empirical relevance is not specific to our model. The

ratio of the leader’s and follower’s values anticipating the follower’s investment is key for

the result. In our model, the ratio is βδL/(1 + δF ); when δL > 0, this ratio is positive

and tends to infinity as σ tends to zero (so that β tends to infinity). More generally,

the result requires that, when the first-mover advantage is sufficiently large, the ratio

increases above 1 as uncertainty decreases. The follower’s option value at any level of the

state variable below its trigger point decreases as uncertainty is reduced. This fact is not

specific to the particular form of process (see equation (1)) that we use, or the particular

payoffs assumed.

With positive externalities between the agents, investment by the follower is valuable

to the leader—particularly since it does not require any additional cost for the leader. But

once the leader has acted, the leader is unable to affect the follower’s investment decision,

and must take the investment point of the follower as given. For the follower, investment

is costly; but it chooses its investment point optimally. The first factor tends to make the

follower’s option less valuable than the leader’s option-like term; the second factor makes

it more valuable. When uncertainty is relatively small, the first factor dominates, and

the leader’s option-like term is more valuable. Given the form of the value functions, this

also means that the leader’s value function increases by more than the follower’s when

uncertainty rises. This result is robust and extends beyond the assumptions used here.

5 Conclusions

This paper has analysed irreversible investment in a project with uncertain returns, when

there may be an advantage to being the first investor, and externalities to investing when

others also invest. It therefore extends standard ‘real options’ analysis to a setting where

there are general strategic interactions and externalities between investing agents. This

framework captures a variety of strategic situations and industry settings, and encom-

passes a number of earlier contributions.

We believe that this is an important area of research. The real options literature has
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taught us that an option value is created by irreversibility and uncertainty; this option

value typically leads to delayed investment, where the degree of delay increases with un-

certainty. Strategic interactions and externalities, omitted from the standard real options

analysis, can have important qualitative effects on investment behaviour. In particular,

we have shown that due to the interaction of pre-emption with positive externalities,

greater uncertainty can actually hasten, rather than delay, investment, contrary to the

usual presumption.

Appendix

A Value Functions

Let the follower’s value functions be denoted F0 and F1, before and after its investment respec-

tively.

Prior to investment, the follower holds an option to invest but receives no flow payoff. In this

‘continuation’ region, in any short time interval dt starting at time t the follower experiences a

capital gain or loss dF0 . The Bellman equation for the value of the investment opportunity is

therefore

F0 = exp (−rdt)Et [F0 + dF0] . (A.10)

Itô’s lemma and the GBM equation (1) gives the ordinary differential equation (ODE)

1

2
σ2θ2F ′′

0 (θ) + µθF ′

0(θ) − rF0(θ) = 0. (A.11)

From equation (1), it can be seen that if θ ever goes to zero, then it stays there forever. Therefore

the option to invest has no value when θ = 0, and must satisfy the boundary condition F0 = 0.

Solution of the differential equation subject to this boundary condition gives F0 = bF θβ , where

bF is a positive constant and β > 1 is the positive root of the quadratic equation Q(z) =

1
2σ2z(z − 1) + µz − r; i.e., β = 1

2

(

1 − 2µ
σ2 +

√

(

1 − 2µ
σ2

)2
+ 8r

σ2

)

.

Now consider the value of the agent in the ‘stopping’ region, in which the value of θ is such
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that it is optimal to invest at once. Since investment is irreversible, the value of the agent in

the stopping region is given by the expected value alone with no option value terms. When the

level at time t of the state variable is θt, this is

F1(θt) = Et

[
∫

∞

t

exp (−r(τ − t))(1 + δF )θτdτ − K

]

.

θ is expected to grow at rate µ, so that

F1(θ) =
(1 + δF )θ

r − µ
− K. (A.12)

The boundary between the continuation region and the stopping region is given by a trigger

point θF of the stochastic process such that continued delay is optimal for θ < θF and immediate

investment is optimal for θ ≥ θF . The optimal stopping time TF is then defined as the first time

that the stochastic process θ hits the interval [θF ,∞) from below.

Putting together the two regions gives the follower’s value function:

F (θ) =







bF θβ θ < θF ,

(1+δF )θ
r−µ

− K θ ≥ θF ,
(A.13)

given that the leader invests at θP < θF .

There are three components to the leader’s value function holding over different ranges of

θ. The first L0 describes the value of investment before the leader (and so the follower) has

invested; the second L1 after the leader has invested, but before the follower has done so; and

the third L2, after the follower has invested. The first and third components are equivalent to

those of the follower, determined previously. The second component is new, and so is derived

in detail.

After the leader has invested, it has no further decision to take and its payoff is given by the

expected value of its investment. This payoff is affected, however, by the action of the follower

investing later at θF . Taking account of subsequent investment by the follower, the leader’s
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post-investment payoff is given by

L1(θt) = Et

[
∫ TF

t

exp (−r(τ − t))θτdτ +

∫

∞

TF

exp (−r(τ − t))(1 + δL)θτdτ − K

]

. (A.14)

The Bellman equation for the leader is

L1 = θdt + exp (−rdt)Et [L1 + dL1] . (A.15)

Using Itô’s lemma and equation (1) gives

1

2
σ2θ2L′′

1(θ) + µθL′

1(θ) − rL1(θ) + θ = 0. (A.16)

As before, investment has no value when θ = 0, and so L1 = θ
r−µ

+bL1θ
β , where bL1 is a constant.

The first part of the value function L1 gives the expected value of investment before the follower

invests, while the second is an option-like term reflecting the value (due to externalities) to the

leader of future investment by the follower.

B Proof of Proposition 1

The follower’s equilibrium investment point, θF , is given by equation (3). In this proof, we

derive the leader’s investment point and establish that it is given by rent equalization.

Define

∆(θ) ≡
θ

r − µ
− K −

(

θ

θF

)β (1 − βδL + δF

1 + δF

)

K

β − 1
(B.17)

i.e., L(θ) − F (θ), where L(θ) is conditional on the leader having invested, and F (θ) is con-

ditional on the leader having invested but not the follower. There are three possibilities:

that there are (i) no, (ii) one or (iii) multiple solutions to equation (B.17). We use the fol-

lowing facts: (i) ∆(θ) is a continuously differentiable function of θ; (ii) ∆(0) = −K < 0;

(iii) ∆(θL) = K
(β−1)(1+δF )

(

(

θL

θF

)β

βδL + (1 −
(

θL

θF

)β

)(1 + δF )

)

; (iv) since, from assumption 1,

δL ≥ δF , ∆(θL) ≥ K
(β−1)(1+δF )

(

(

θL

θF

)β

βδF + (1 −
(

θL

θF

)β

)(1 + δF )

)

; (v) for all δF ∈ [−1, 0] (see

assumption 1) and β ≥ 1,
(

θL

θF

)β

βδF + (1 −
(

θL

θF

)β

)(1 + δF ) ≥ 0. Hence, by the intermediate
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value theorem, there exists a value θP < θL such that ∆(θP ) = 0, and ∆(θ) is less (greater)

than 0 for θ immediately less (greater) than θP .

From assumption 3, immediate investment is not profitable for any agent. This implies that

L(θ) < 0 ∀θ ≤ θ0. Hence L(θ0) < F (θ0), since F (θ) ≥ 0 ∀θ. Therefore ∆(θ0) < 0 and θP > θ0.

Hence in the sequential equilibrium, no agent invests when θ ∈ [θ0, θp), where θP is the smallest

solution to ∆(θP ) = 0. At θ = θP , the leader invests; at θF > θP , the follower invests.

C Proof of Proposition 4

The difference between the values of the leader’s option-like term and the follower’s option

associated with the follower’s investment is

∆(θ, β) ≡ (bL1 − bF )θβ =

(

βδL − (1 + δF )

1 + δF

)

F (θ)

where F (θ) ≡ bF θβ > 0 for θ ∈ (θP , θF ). The objective of the proof is to establish that

∂∆(θP , β)/∂β ≤ 0, so that ∂∆(θP , β)/∂σ ≥ 0, which means that the leader’s value function

increases by more than the follower’s (evaluated at θ = θP ) for a small increase in σ. If this is

the case, then θP must decrease in σ.

We start by evaluating the derivative of ∆(θ, β) with respect to β:

∂∆(θ, β)

∂β
=

δLF (θ) + (βδL − (1 + δF ))∂F (θ)
∂β

1 + δF
.

But

∂F (θ)

∂β
= F (θ) ln

(

θ

θF

)

.

Hence

∂∆(θ, β)

∂β
=

F (θ)

1 + δF

(

δL + (βδL − (1 + δF )) ln

(

θ

θF

))

(C.18)

for θ ∈ [θP , θF ].
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Now note that θP ≤ θL (see the proof of proposition 1 in section B). Hence

ln

(

θP

θF

)

≤ ln(1 + δF ).

There are two cases to consider: (i) βδL − (1 + δF ) ≤ 0 and (ii) βδL − (1 + δF ) > 0. We now

show that the first case would violate assumption 1 if it lead to ∂∆(θP , β)/∂β ≤ 0. In order for

the latter inequality to hold in case (i), it must be that

δL ≤ (βδL − (1 + δF )) ln

(

θP

θF

)

; (C.19)

but the right-hand side of this inequality is less than or equal to −(βδL − (1 + δF )) ln(1 + δF ) ≤

−(βδF − (1 + δF )) ln(1 + δF ), where the second part of the statement follows from assumption

1, that δF ≤ δL. Hence ∂∆(θP , β)/∂β ≤ 0 only if δL ≤ −(βδF − (1 + δF )) ln(1 + δF ). But the

right-hand side of this inequality, −(βδF − (1 + δF )) ln(1 + δF ), is less than or equal δF when

β = 1: ln(1 + δF ) ≤ δF ∀δF ∈ [−1, 0], with equality only if δF = 0. And the right-hand side

is decreasing in β; hence the right-hand side is less than or equal to δF for all δF ∈ [−1, 0] and

β ≥ 1, with equality only if δF = 0. Therefore ∂∆(θP , β)/∂β ≤ 0 in case (i) only if δL ≤ δF ,

with equality only if δF = 0. This is consistent with assumption 1 if and only if δL = δF = 0;

but then, equation (C.18) shows that ∂∆(θP , β)/∂β > 0, which is a contradiction.

Hence ∂∆(θP , β)/∂β ≤ 0 can hold, if at all, only in case (ii), when βδL − (1 + δF ) > 0.

The necessary and sufficient condition for ∂∆(θP , β)/∂β ≤ 0 is again given by equation (C.19).

In this case, this means that δL ≤ −(βδF − (1 + δF )) ln(1 + δF ) is a sufficient condition for

∂∆(θP , β)/∂β ≤ 0. Re-arranging this inequality yields

δL(1 + β ln(1 + δF )) ≤ (1 + δF ) ln(1 + δF ). (C.20)

This inequality cannot be satisfied if 1+β ln(1+ δF ) > 0 and assumption 1 holds (in particular,

δL ≥ δF ). To see why, notice that equation (C.20) would require in this case that δL ≤ δL,

where, as in the proposition,

δL ≡
(1 + δF ) ln(1 + δF )

1 + β ln(1 + δF )
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and δL ≤ 0. Assumption 1 then requires that δL ≥ δF . But this in turn requires that (β −

1)(1 + δF ) ln(1 + δF ) − β ln(1 + δF ) + δF ≤ 0. When β = 1, this inequality requires that

− ln(1 + δF ) + δF ≤ 0, which is violated for all δF ∈ [−1, 0) and holds with equality only when

δF = 0. Since (β − 1)(1 + δF ) ln(1 + δF ) − β ln(1 + δF ) + δF is increasing in β, this means that

(β − 1)(1 + δF ) ln(1 + δF ) − β ln(1 + δF ) + δF ≥ 0, with equality only when δF = 0.

Hence inequality (C.20) requires that 1 + β ln(1 + δF ) < 0; and hence that δL ≥ δL, where

δL ≥ 0.

D Proof of Lemma 1

Differentiate λE with respect to β:

∂λE

∂β
= (1 + δS)β ln(1 + δS) − δL(1 + δF )β−1(1 + ln(1 + δF )). (D.21)

It is sufficient for λE to be an increasing function of β that all terms in equation (D.21) be

positive. Hence joint sufficient conditions are: (i) δS ≥ 0, so that ln(1 + δS) ≥ 0; (ii) −δL(1 +

ln(1 + δF )) ≥ 0, which in turn requires that either (a) δL ≥ 0 and 1 + ln(1 + δF ) ≤ 0, i.e.,

δF ≤ e−1 − 1, or (b) the converse. To complete the proof of the first part, note that β is

decreasing in σ. The proof of the second part is very similar, and so is omitted.
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Boyer, M., É. Gravel, and P. Lasserre (2004): “Real options and strategic com-

petition: a survey,” Discussion paper, CIRANO, Montréal.
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