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Abstract— Errors-in-variables system identification can be the time series and window lengthl, is defined as
posed and solved as a Hankel structured low-rank approxi-
mation problem. In this paper different estimates based on w(l) w2) - wl-L+1)
suboptimal low-rank approximations are proposed. The esti w(2) w(3d) - w@T-L+2)
mates are shown to have almost the same efficiency and lead to M1 (w) = . . . .
the same minimum when supplied as an initial approximation . . . .
for local optimization in the structured low-rank approxim ation w(L) - e w(T)

problem. In this paper it is shown that increasing Hankel matix The Hankel structured | K imati bl .
window length improves initial approximation for autonomous € mankel structured low-ranx approximation problem Is

systems and does not improve it in general for systems with defined as follows.
inputs. Problem 1: Givenw, € (R?)T, L andr < qL

I. INTRODUCTION Hyn(ién§ge |0 — wall2 subject to rank 7 (w) < 7. (1)
we (R4

The problem of system identification for linear time- For a time seriesv the rank constraintzz, (w) < r is
invariant systems where both inputs and outputs are subjeggquivalent to
to measurements errors has recently received much attentio R, (w) =0, (2)

For a survey of methods see, for example [12]. whereR € RP*4" is a full row rank matrix angh := qL—r is

: On_e_ of_pos_5|ble approach_es to errors-in-variables SyStetWe rank reduction. We can rewrite (2) as a recurrent relatio
identification is to formulate it as a Hankel structured low-

rank approximation problem (SLRA, [13], [17]). SLRA so- Row(t) + Riw(t +1)+---+ Rew(t+¢) =0, (3)
lution can be |_nterpreted as a maximum Ilkellhood_estlmatov(lhereg —L-1,R=[Ry ... R/] Rie R and
of the true trajectory under assumption of Gaussian erors. .y

Moreover, SLRA provides a consistent estimator of the = — '

system under weaker assumptions of zero-mean errors wigh Linear-time-invariant systems

covariance structure known up to a scalar factor [10]. We use behavioural system-theoretic terminology (see [2]
SLRA is a nonconvex optimization problem and has ngy (11, ch. 7)) as it is more convenient for formulation of

unique solution. There are two main ways of solving SLRAerrors-in-variables identification problem, where inpatsd

problem: local optimization methods and heuristics, Wh'da)utputs are treated on an equal footing.

are based on relaxations of the problem. It was shown p discrete-time dynamical systemZ with ¢ variables

previously for scalar autonomous systems that the accuragy 5 sybset of(R?)N. A dynamical systemZ% is linear-

of suboptimal subspace methods can be improved if ORgne-invariant (LTI) if there exists a nontrivial sequence

takes bigger window length of the Hankel matrix [14]. In thisRO’ ..., R, € R"*4 (a kernel representationf the system)
paper compare different subspace-based methods as initigkh that# is characterised by (3), i.e.

approximations for SLRA local optimization.
In Section Il we formulate the Hankel structured low- w € % < (3) holdsvt € N.

rank approximation problem, establish links to the eriars- ap | 7| system can possess many kernel representations. The
variables identification. In Section Ill we propose diffiete |y inimal among kernel representationé®) = £, and
« ey . . . . L man
initial approximations based on suboptimal solutions @& th B) = pmin are called thdag and theoutput cardinality

- min
SLRA problem for the autonomous case and the case ef(the system respectively. The latter has the usual meaning
systems with inputs. In Section IV we perform numerical, |assical systems theory, i.e. there exists a partition

experiments for different initial approximations. . .
w(t) = M(u(t),y(¢),  y(t) € RPN y(t) e R™), (4)

. o wherem (%) := ¢—p(%) is theinput cardinality, such that
A. Problem formulation and kernel parametrisation the system admits an input/state/output representation
Letw = [w(1),...,w(T)] € (R?)T be a finite time series. _
A qL x (T — L + 1) block Hankel matrix, parametrised by z(t +1) = Az(t) + Bu(?), )

y(t) = Cx(t) + Du(t),
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called autonomous in(#) = ¢ (or all the variables are which is astructured total-least squar¢STLS) problem [11,

outputs). Theminimal state dimension(%4) does not depend Ch. 4].

on input/output partition and is boundgs{ %)¢(#). For Sincef(R) is a function of row subspace of the matik

more details see, for example, [11, Ch. 7]. [16], the problem (8) is a restriction of Problem 3 to the set

of matrices of formkR = S[X —1I,] (S is a nonsingular

p X p matrix), which is a generic subset of the set the matrices
Let .7, , denote the model class of LTI systems with R satisfying conditions of Proposition 1 ([11, Ch.11]). This

variables, at most: inputs and lag at most Let |1 1) C  restriction is also equivalent to existence of input/otitpu

(R?)T denote the set of finite trajectories &. The errors- partition with IT = 1.

in-variables system identification problem may be formedat  \ve yse restricted problem (8) its solution is a consistent

as an approximation problem or estimation problem [13]. estimator [10] ofw, Problem 2 under assumption of zero-
Problem 2: Given a finite trajectorywq € (R%)" gener- mean errors with covariance structure known up to a scalar

ated as N factor (and some additional technical assumptions). This

wq = wo +w,wo € gn%,ehl,T] (6) type of estimator is also related to Markov estimator for
semilinear models [6].

C. Errors-in-variables system identification

o (approximation problem)
find the best approximatiow € .,/ |1 1) of wa.
find an estimates € . ,|;; ) of the true trajectory
wg in the model (6) with additional assumptions on
distribution of w.
The next proposition is a corollary of [11, Theorem 11.4].
Proposition 1: Let (3) be a kernel representation &f €
£% 4, andrank R, = ¢ — m. Then for anyw € (R™)"

The base of all subspace methods considered in this
section is the following relaxation of the structured loank
approximation problem.

Problem 4: Givenwy, L andr < gL

__ minimize |H — 2, (wq)|F subject to rank H < r.
HeRqu(T—L+1)

weBlnry < [Ro ... Ri]H(w)=0. The solution of this problem is a truncated singular value
Proposition 1 establishes a link between Hankel low-ranfecomposition (SVD)

approximation and errors-in-variables system identiicat

Corollary 1: Problem 2 with 2-norm approximation crite- ~(LRA) - T
rion is equivalent to Problem 1 with = ¢+1, rank reduction H, 7 (wa) = Z okUVy ©)
equal to the number of outpuis= ¢ — m and additional k=1
constraints on the kernel of the Hankel matrix. where (o, Uy, Vi) aresingular tripletsof 47 (wg) [17].

Corollary 1 shows that structured low-rank approximation
provides a natural way of errors-in-variables system iidentA Default (TLS) initial approximation
fication in behavioural setting, without choosing a specific -

input/output partition. If one takesL = ¢+ 1 in (9), then one obtains the default
] o . initial approximation for SLRA local optimization.
D. Variable projection solution of the SLRA problem Algorithm 1 (LRA initial approximation for SLRA):
Application of the variable projection principle [16], [[L7 (L+1)q
to Problem 1 leads to the following optimization problem. 1) Compute the SVD#11(wq) = Y. oxUiV,!.
Problem 3: 2) Set k=1

minimize f(R), where ~ ~
Rixank F=p R, (wa) = R, (A1 (wa)) :=

f(R) = Hi%n | — wl||2 subject to RH#L(w)=0. (7) [Uéq+m+1 o U(z+1)q]T
Variable projection has the following features that make it Remark 1:Initial approximation for STLS problem is

(10)

attractive in context of errors-in-variables identificat computed as
« the inner minimisation problem (7) is a least-norm prob- )A((ﬁ) =Q P,
lem, and can be solved efficiently due to the structure
of the problem; where[P Q] := R.
« number of optimization parameters is small compared |t is known that in subspace methodsis often taken
to the original problem; to be larger than the system lag in order to achieve

« the optimization variable?, by Proposition 1, is related better signal/noise separation. For example, in [7] it s
to kernel representation, and the minimum gives afor scalar autonomous systems that increasingeads to
estimate of the kernel representation of the true systerpetter estimates of the parameters of the system. In what
We will consider even more restricted problem follows, we will consider different subspace-based meshod
L in view of initial approximation for Hankel structured low-
g?;?gg%&fﬁ)f —1p]) ) rank approximation.



B. Diagonal averaging and Cadzow iterations 2) Cadzow-based initial approximation#s it was noted

Suppose one aims to estimate the original signglin 1N _Section 11I-B, the Cadzow process leads to a solution
- S5 (LRA) : 5(Caed) isfyi 11 d theref belongi
the sum (6). The matrifi, ;™" (wq) obtained by low-rank %r L),L,oo(wd) satisfying (11), and therefore belonging to
approximation is not a block Hankel matrix, but one couldfm,ghl,:r]- Therefore we can take

enforce the block-Hankel structure by computing a diagonal

: o i dian (5 p(Cad) .— p0) (~(Cad)
averaged time serieg(%9) = @(%a9) ([]): Ry oo (wa) = Ry (W, 1 1, oo (wa))
ﬁq(l—l)ﬂ k as initial approximation. But we can also take approximate
(ﬁ}\(diag) (1), = I+k—1=t B kernels for time series on each Cadzow iteration
7 min{t, L,N —t + 1}’ ~(Cad ~(0)  (Cad
R (wa) = B (@), (wa).

Diagonal averaging is nothing more but orthogonal projec-
tion on the space of (block) Hankel matrices. The estimat®. Special initial approximations

@55514) — fp(diag) (ﬁT(LLRA)(%”L(wd))) Here we list some special subspace-based system identi-
’ ’ fication methods
o (~(SSA) 1) ESPRIT initial approximation for scalar autonomous
of wy [7]. Note that.z (w, ") is not of low rank, but gystems: The following approximation comes from signal
ﬁﬁfLSA) can serve as a pointwise estimate of values@f  processing ESPRIT method of estimation of a sum of
This procedure also corresponds to Cadzow iterations. damped cisoids [4], which is also connected with Kung’s

corresponds to Singular Spectrum Analysggonstruction

Proposition 2 ([3]): Define @ﬁcL“‘f) = @(,SLSA)(w) and method of system identification [1]. Let the characteristic
@CL&?H = @55 (@ 9Dy, Then thed'"? — @Y polynomial R(z) = Ry + Rz + ... + Ryz* of the true
ask — oo, and o ” o trajectoryw, have just simple complex roots.

_(Cad) Let U € RE*" be a matrix of an approximate basis of
rank (W, 1, o) <7 (1) 4 (w), andt U and T denotel with deleted last row and

Cadzow iteration process gives_ a suboptimal solution of theci ow respectively. Definei(“)(ﬁ) = (1 ﬁ)wﬁ be an
structured low-rank approximation problem. approximate (in least squares) solution of the shift equati
C. Proposed improved initial approximations for SLRA

In this section we propose several initial approximations _ - - _
for kernel in SLRA optimization that exploit only the fol- Then the eigenvalue§\,, ..., A,} can serve as approxima-
lowing rank property of the Hankel matrix. tions of the roots ofR(z). Define R(FS) = R(L]?f)(w) =

Lemma 1 ([11, Ch.7]):For an LTI system# and L >  R(ES) ([ (w,)) by
(%) we have ,

dim(#|1,1)) = m(B)L + n(%) < RE9)(z) =[]z = M),
< m(B)L + p(B)(B). i=1

In particular, for autonomous systetisn (%], 1)) = n(%). where U(wq) is defined in (12). For an orthogonal matrix

Under some conditions om € Z (persistency of excita- U t_he matr|xA(lS_>(U) can be computed efficiently without
tion [9]), dim (2|, 1)) = rank % (w) and2|(; 1) coincides taking a pseudoinverse [8]. .
with the column space o##, (w). Hence, in the context of  2) Subspace-based approximations for input-output sys-
system identification in the clas&? , we need to adjust the tems: The subspace identification methods for systems with

TUAY ~ | U. (14)

rank for L > ¢ as inputs input exploit input-output partition of the variabl
B The most well-known are N4SID and MOESP methods
r(L) =mL + (¢ —m)L. (see, for example, [11, Ch. 8]). For a trajectory with fixed
Based on this adjustment, we are able to compute initial afiPut/ioutput partitionw(t) = (u(t),y()), the subspace
proximations based on unstructured low-rank approxirmatiomethOOIS proceed with construction of a matrix
of s for L > ¢ + 1. A, ()
1) Eigenbasis initial approximationLet [%(y)} g
Uwa) = [o1Uy ... ovUy] (12)  which can be obtained by permuting rows 27 (w) and

be a matrix of an approximate basis of th&; , obtained consequent Iow—rar_1k approximatio_n. They utilise proatsi
from low-rank approximation (9). Therefore we can comput@n "ow spaces of different submatrices f, (u) and. 7z (y)

a default initial approximation from samples of trajectories. in order to approximatéree responsesf the system (re-
sponse of a system to zero input), which can be used to

Rera(wq) =Reiq(U) == (13) find a representation of the system (impulse response, lkerne
ﬁ&??@([%ﬂ(glyl) e 1 (0 U)]), representation or in_p_ut/gate/output representatiqm an
R 8]). We use a modification of the MOESP algorithm (see
whereRfS?é is defined in (10). Appendix).



IV. COMPARISON OF INITIAL APPROXIMATIONS

In this section we simulaté/ realisationswy of wy =
wo + w, wherew € N(0,0?), and compute estimateX,

the same solution. Therefore, we can use the computatjonall
simplest solution. For example, we can avoid ESPRIT-type
computation.

obtained by different methods: subspace methods and SLRA

optimization started from subspace initial approximagiof

natural measure of performance of an estimate is the root

mean square error

™M=

I1X (i) = X (wo) |

RMSE(X) =

M

A. Autonomous system identification

In this caseq =

order6, given by equation

2mt 27t 27Tt
wo(t + 1) = 2cos 3 + cos — + cos

We setM = 400 and L =

XO =
X, =
XEsp

Xgrg =

1 and m = 0. Consider a trajectory
(T'" = 400) of a marginally stable autonomous system of

200, and we denote
(R (wa)),

(REE (wa)),
(R (wa)),
X(REIG(wd))),
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Fig. 2. log,o(RMSE) for the initial approximation and for the SLRA
estimates started from improved initial approximation

where f(() is defined in Remark 1. We also denote by AS We see, even the first Cadzow iteration gives a good
Xsrra(X) the result of SLRA local optimization with initial approximation. Hence, we also compare dependence

initial approximationX.

In Fig. 1 we show that the estimat&, (default TLS
approximation) deteriorates very quickly, but the other; i
proved, estimates have almost the same RMSE.
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Fig. 1. log,o(RMSE) for the estimates depending on the noise variance

In Fig. 2 we see that the difference between improvetg. 3.

of the quality of approximationX;, := X(R(C“d)( 7)) on
the number of iteration and the window size In Fig. 3 we
see that for = 1 if L is relatively small< 10, then Cadzow
iterations do not converge to a good initial approximation.
If, however, the window length is relatively large > 20,
then one may need just one Cadzow iteration.
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Dependence dbg,;,(RMSE) on L for the SLRA started from

2 _
initial approximations is very small (even on a smaller efral Cadzow initial approximationsy~ = 1
The improved initial approximations lead almost always to



B. System identification with inputs

APPENDIX

We consider an example of &ISO(single-input-single- A. MOESP method

output ¢ = 2 andm = 1) systemw = (ug, yo) from [15]

lo=1 +0.5072

Yo(t)

where X (5\")) = (0.5,-0.7,1,1.5,0)T. The inputug is
taken to be a particular realization of the following ARMA
process(1 + 0.7071)e(t) = (1 — 0.50~Hug(t), wheree is

a white Gaussian noise. Note that information about input is
not used in SLRA estimation (compared to [15]).

We takeT" = 2000 and L = 300 for Cadzow iter-
ations, L = 40 for MOESP algorithm and number of
realizationsM = 500. In Fig. 4 we see that default TLS
initial approximation breaks at? as initial approximation.
Using Cadzow iterations does not improve the estimate. The3) Take(po,. .-

T 1150 1+0702"

O(t)v

For simulations purpose we use a slight modification of
the MOESP method defined in [5], for SISO systems=(
2,m=1)

1) We first compute the QR factorization

AT =[] | T ]

where@, and @, have L columns.
2) Compute the SVD of

(R2)" = [WUs]E[ViVa] ",

whereU; € RE*4, L
,pe—1,p0)" = Rps(Ais(Ur)).

MOESP algorithm, however, works for large noise variances 4) Compute impulse respongéo, ..., hr—1) from the
and for a small window length.
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V. CONCLUSIONS

We have proposed several initial approximations for SLRApproximation: Theory, algorithms, and applications”.
local optimization, which are based on unstructured low- We also would like to thank anonymous reviewers for their

rank approximation of Hankel matrix with > ¢. For scalar

equation
ho 0o ... 0
hi h : _
Uy _1 0 ~ Uy Ro1 (R,
: 0
hr—1 ho

in the TLS sense.

5) Compute vectofqo, ...,q.—1) from the equation

qe hg 0 ... O Do
qe—1 hi hy - De—1
: : .0 :
4o hy ho Po
in the TLS sense.
6) Set
S(MOESP
Rl(,L )(’U}) = (q07p07"'7qf—lapf—17qf7p€)T
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autonomous systems we showed that these approximations

are better than the default TLS initial approximation for
large noise variance. These different initial approxio@si
yield same SLRA solutions, which allows one to take the
computationally simplest initial approximation.

For a system with inputs the proposed initial approxima-
tions did not improve compared to TLS initial approximation
On the other hand, subspace methods that use information (S%‘]
input/output partition provide a good initial approxintati
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