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Abstract— Errors-in-variables system identification can be
posed and solved as a Hankel structured low-rank approxi-
mation problem. In this paper different estimates based on
suboptimal low-rank approximations are proposed. The esti-
mates are shown to have almost the same efficiency and lead to
the same minimum when supplied as an initial approximation
for local optimization in the structured low-rank approxim ation
problem. In this paper it is shown that increasing Hankel matrix
window length improves initial approximation for autonomous
systems and does not improve it in general for systems with
inputs.

I. INTRODUCTION

The problem of system identification for linear time-
invariant systems where both inputs and outputs are subject
to measurements errors has recently received much attention.
For a survey of methods see, for example [12].

One of possible approaches to errors-in-variables system
identification is to formulate it as a Hankel structured low-
rank approximation problem (SLRA, [13], [17]). SLRA so-
lution can be interpreted as a maximum likelihood estimator
of the true trajectory under assumption of Gaussian errors.
Moreover, SLRA provides a consistent estimator of the
system under weaker assumptions of zero-mean errors with
covariance structure known up to a scalar factor [10].

SLRA is a nonconvex optimization problem and has no
unique solution. There are two main ways of solving SLRA
problem: local optimization methods and heuristics, which
are based on relaxations of the problem. It was shown
previously for scalar autonomous systems that the accuracy
of suboptimal subspace methods can be improved if one
takes bigger window length of the Hankel matrix [14]. In this
paper compare different subspace-based methods as initial
approximations for SLRA local optimization.

In Section II we formulate the Hankel structured low-
rank approximation problem, establish links to the errors-in-
variables identification. In Section III we propose different
initial approximations based on suboptimal solutions of the
SLRA problem for the autonomous case and the case of
systems with inputs. In Section IV we perform numerical
experiments for different initial approximations.

II. H ANKEL STRUCTURED LOW-RANK APPROXIMATION

A. Problem formulation and kernel parametrisation

Let w = [w(1), . . . , w(T )] ∈ (Rq)T be a finite time series.
A qL × (T − L + 1) block Hankel matrix, parametrised by
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the time series and awindow lengthL, is defined as

HL(w) =




w(1) w(2) · · · w(T − L+ 1)
w(2) w(3) · · · w(T − L+ 2)

...
...

...
...

w(L) · · · · · · w(T )


 .

The Hankel structured low-rank approximation problem is
defined as follows.

Problem 1: Givenwd ∈ (Rq)T, L andr < qL

minimize
ŵ∈(Rq)T

‖ŵ − wd‖2 subject to rankHL(ŵ) ≤ r. (1)

For a time seriesw the rank constraintHL(w) ≤ r is
equivalent to

RHL(w) = 0, (2)

whereR ∈ R
p×qL is a full row rank matrix andp := qL−r is

the rank reduction. We can rewrite (2) as a recurrent relation

R0w(t) +R1w(t + 1) + · · ·+Rℓw(t + ℓ) = 0, (3)

where ℓ = L − 1, R =
[
R0 . . . Rℓ

]
, Rk ∈ R

p×q and
1 ≤ t ≤ T − ℓ.

B. Linear-time-invariant systems

We use behavioural system-theoretic terminology (see [2]
or [11, Ch. 7]) as it is more convenient for formulation of
errors-in-variables identification problem, where inputsand
outputs are treated on an equal footing.

A discrete-timedynamical systemB with q variables
is a subset of(Rq)N. A dynamical systemB is linear-
time-invariant (LTI) if there exists a nontrivial sequence
R0, . . . , Rl ∈ R

p×q (a kernel representationof the system)
such thatB is characterised by (3), i.e.

w ∈ B ⇐⇒ (3) holds∀t ∈ N.

An LTI system can possess many kernel representations. The
minimal among kernel representationsℓ(B) := ℓmin and
p(B) = pmin are called thelag and theoutput cardinality
of the system respectively. The latter has the usual meaning
in classical systems theory, i.e. there exists a partition

w(t) = Π(u(t), y(t)), y(t) ∈ R
p(B), y(t) ∈ R

m(B), (4)

wherem(B) := q−p(B) is the input cardinality, such that
the system admits an input/state/output representation

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(5)

wherex(t) ∈ (Rn)N is the state variableand A,B,C,D

are real matrices of appropriate dimensions. The system is



called autonomous ifm(B) = q (or all the variables are
outputs). Theminimal state dimensionn(B) does not depend
on input/output partition and is boundedp(B)ℓ(B). For
more details see, for example, [11, Ch. 7].

C. Errors-in-variables system identification

Let L
q
m,ℓ denote the model class of LTI systems withq

variables, at mostm inputs and lag at mostℓ. Let B|[1,T ] ⊂
(Rq)T denote the set of finite trajectories ofB. The errors-
in-variables system identification problem may be formulated
as an approximation problem or estimation problem [13].

Problem 2: Given a finite trajectorywd ∈ (Rq)T gener-
ated as

wd = w0 + w̃, w0 ∈ L
q
m,ℓ|[1,T ] (6)

• (approximation problem)
find the best approximation̂w ∈ L

q
m,ℓ|[1,T ] of wd.

• (estimation problem)
find an estimateŵ ∈ L

q
m,ℓ|[1,T ] of the true trajectory

w0 in the model (6) with additional assumptions on
distribution of w̃.

The next proposition is a corollary of [11, Theorem 11.4].
Proposition 1: Let (3) be a kernel representation ofB ∈

L
q
m,ℓ, andrankRℓ = q −m. Then for anyw ∈ (Rm)T

w ∈ B|[1,T ] ⇐⇒
[
R0 . . . Rl

]
Hl+1(w) = 0.

Proposition 1 establishes a link between Hankel low-rank
approximation and errors-in-variables system identification.

Corollary 1: Problem 2 with 2-norm approximation crite-
rion is equivalent to Problem 1 withL = ℓ+1, rank reduction
equal to the number of outputsp = q − m and additional
constraints on the kernel of the Hankel matrix.

Corollary 1 shows that structured low-rank approximation
provides a natural way of errors-in-variables system identi-
fication in behavioural setting, without choosing a specific
input/output partition.

D. Variable projection solution of the SLRA problem

Application of the variable projection principle [16], [17]
to Problem 1 leads to the following optimization problem.

Problem 3:

minimize
R: rankR=p

f(R), where

f(R) = min
ŵ

‖ŵ − w‖2 subject to RHL(ŵ) = 0. (7)

Variable projection has the following features that make it
attractive in context of errors-in-variables identification:

• the inner minimisation problem (7) is a least-norm prob-
lem, and can be solved efficiently due to the structure
of the problem;

• number of optimization parameters is small compared
to the original problem;

• the optimization variableR, by Proposition 1, is related
to kernel representation, and the minimum gives an
estimate of the kernel representation of the true system.

We will consider even more restricted problem

minimize
X:X∈Rp×Lq

f
([
X −Ip

])
, (8)

which is astructured total-least squares(STLS) problem [11,
Ch. 4].

Sincef(R) is a function of row subspace of the matrixR
[16], the problem (8) is a restriction of Problem 3 to the set
of matrices of formR = S

[
X −Ip

]
(S is a nonsingular

p×p matrix), which is a generic subset of the set the matrices
R satisfying conditions of Proposition 1 ([11, Ch.11]). This
restriction is also equivalent to existence of input/output
partition withΠ = I.

We use restricted problem (8) its solution is a consistent
estimator [10] ofw0 Problem 2 under assumption of zero-
mean errors with covariance structure known up to a scalar
factor (and some additional technical assumptions). This
type of estimator is also related to Markov estimator for
semilinear models [6].

III. SUBOPTIMAL SUBSPACE METHODS

The base of all subspace methods considered in this
section is the following relaxation of the structured low-rank
approximation problem.

Problem 4: Givenwd, L andr < qL

minimize
Ĥ∈RqL×(T−L+1)

‖Ĥ − HL(wd)‖F subject to rank Ĥ ≤ r.

The solution of this problem is a truncated singular value
decomposition (SVD)

Ĥ
(LRA)
r,L (wd) =

r∑

k=1

σkUkV
T
k , (9)

where(σk, Uk, Vk) aresingular tripletsof HL(wd) [17].

A. Default (TLS) initial approximation

If one takesL = ℓ+1 in (9), then one obtains the default
initial approximation for SLRA local optimization.

Algorithm 1 (LRA initial approximation for SLRA):

1) Compute the SVDHℓ+1(wd) =
(ℓ+1)q∑
k=1

σkUkV
T
k .

2) Set

R̂
(0)
m,ℓ(wd) = R̂

(0)
m,ℓ(Hℓ+1(wd)) :=

[
Uℓq+m+1 . . . U(ℓ+1)q

]T
.

(10)

Remark 1: Initial approximation for STLS problem is
computed as

X̂(R̂) := Q−1P,

where
[
P Q

]T
:= R̂.

It is known that in subspace methodsL is often taken
to be larger than the system lagℓ, in order to achieve
better signal/noise separation. For example, in [7] it is shown
for scalar autonomous systems that increasingL leads to
better estimates of the parameters of the system. In what
follows, we will consider different subspace-based methods
in view of initial approximation for Hankel structured low-
rank approximation.



B. Diagonal averaging and Cadzow iterations

Suppose one aims to estimate the original signalw0 in
the sum (6). The matrix̂H(LRA)

r,L (wd) obtained by low-rank
approximation is not a block Hankel matrix, but one could
enforce the block-Hankel structure by computing a diagonal
averaged time serieŝw(diag) = ŵ(diag)(Ĥ):

(ŵ(diag)(t))j :=

∑
l+k−1=t

Ĥq(l−1)+j,k

min{t, L,N − t+ 1}
.

Diagonal averaging is nothing more but orthogonal projec-
tion on the space of (block) Hankel matrices. The estimate

ŵ
(SSA)
r,L := ŵ(diag)(Ĥ

(LRA)
r,L (HL(wd)))

corresponds to Singular Spectrum Analysisreconstruction
of w0 [7]. Note thatHL(ŵ

(SSA)
r,L ) is not of low rank, but

ŵ
(SSA)
r,L can serve as a pointwise estimate of values ofw0.
This procedure also corresponds to Cadzow iterations.
Proposition 2 ([3]): Define ŵ

(Cad)
r,L,1 := ŵ

(SSA)
r,L (w) and

ŵ
(Cad)
r,L,k+1 := ŵ

(SSA)
r,L (ŵ

(Cad)
r,L,k ). Then theŵ(Cad)

r,L,k → ŵ
(Cad)
r,L,∞

ask → ∞, and

rankHL(ŵ
(Cad)
r,L,∞) ≤ r. (11)

Cadzow iteration process gives a suboptimal solution of the
structured low-rank approximation problem.

C. Proposed improved initial approximations for SLRA

In this section we propose several initial approximations
for kernel in SLRA optimization that exploit only the fol-
lowing rank property of the Hankel matrix.

Lemma 1 ([11, Ch.7]):For an LTI systemB and L ≥
ℓ(B) we have

dim(B|[1,L]) = m(B)L + n(B) ≤

≤ m(B)L+ p(B)ℓ(B).

In particular, for autonomous systemsdim(B|[1,L]) = n(B).
Under some conditions onw ∈ B (persistency of excita-

tion [9]), dim(B|[1,L]) = rankHL(w) andB|[1,L] coincides
with the column space ofHL(w). Hence, in the context of
system identification in the classL q

m,ℓ we need to adjust the
rank forL ≥ ℓ as

r(L) = mL+ (q −m)ℓ.

Based on this adjustment, we are able to compute initial ap-
proximations based on unstructured low-rank approximation
of HL for L ≥ ℓ + 1.

1) Eigenbasis initial approximation:Let

Û(wd) =
[
σ1U1 . . . σrUr

]
(12)

be a matrix of an approximate basis of theB|[1,L] obtained
from low-rank approximation (9). Therefore we can compute
a default initial approximation fromr samples of trajectories.

R̂EIG(wd) =R̂EIG(Û ) :=

R̂
(0)
m,ℓ([Hl+1(σ1U1) · · ·Hl+1(σrUr)]),

(13)

whereR̂(0)
m,ℓ is defined in (10).

2) Cadzow-based initial approximations:As it was noted
in Section III-B, the Cadzow process leads to a solution
ŵ

(Cad)
r(L),L,∞

(wd) satisfying (11), and therefore belonging to
L

q
m,ℓ|[1,T ]. Therefore we can take

R̂
(Cad)
L,∞ (wd) := R̂

(0)
m,ℓ(ŵ

(Cad)
r(L),L,∞

(wd))

as initial approximation. But we can also take approximate
kernels for time series on each Cadzow iteration

R̂
(Cad)
L,k (wd) := R̂

(0)
m,ℓ(ŵ

(Cad)
r(L),L,k

(wd)).

D. Special initial approximations

Here we list some special subspace-based system identi-
fication methods

1) ESPRIT initial approximation for scalar autonomous
systems:The following approximation comes from signal
processing ESPRIT method of estimation of a sum of
damped cisoids [4], which is also connected with Kung’s
method of system identification [1]. Let the characteristic
polynomial R(z) = R0 + R1z + . . . + Rℓz

ℓ of the true
trajectoryw0 have just simple complex roots.

Let Û ∈ R
L×r be a matrix of an approximate basis of

HL(w), and↑ Û and↓ Û denoteÛ with deleted last row and
first row respectively. DefinêA(ls)(Û) := (↑ Û)†↓ Û be an
approximate (in least squares) solution of the shift equation

↑UÂ(ls) ≈ ↓ Û . (14)

Then the eigenvalues{λ̂1, . . . , λ̂r} can serve as approxima-
tions of the roots ofR(z). Define R̂(ES) = R̂

(ES)
L,r (w) =

R̂(ES)(Û(wd)) by

R̂(ES)(z) :=
r∏

i=1

(z − λ̂i),

where Û(wd) is defined in (12). For an orthogonal matrix
Û the matrixÂ(ls)(Û) can be computed efficiently without
taking a pseudoinverse [8].

2) Subspace-based approximations for input-output sys-
tems: The subspace identification methods for systems with
inputs input exploit input-output partition of the variables.
The most well-known are N4SID and MOESP methods
(see, for example, [11, Ch. 8]). For a trajectory with fixed
input/output partitionw(t) = (u(t), y(t)), the subspace
methods proceed with construction of a matrix

[
HL(u)
HL(y)

]
,

which can be obtained by permuting rows ofHL(w) and
consequent low-rank approximation. They utilise projections
on row spaces of different submatrices ofHL(u) andHL(y)
in order to approximatefree responsesof the system (re-
sponse of a system to zero input), which can be used to
find a representation of the system (impulse response, kernel
representation or input/state/output representation [11, Ch.
8]). We use a modification of the MOESP algorithm (see
Appendix).



IV. COMPARISON OF INITIAL APPROXIMATIONS

In this section we simulateM realisationswk of wd =
w0 + w̃, where w̃ ∈ N(0, σ2), and compute estimateŝX,
obtained by different methods: subspace methods and SLRA
optimization started from subspace initial approximations. A
natural measure of performance of an estimate is the root
mean square error

RMSE(X̂) =

M∑
k=1

‖X̂(wk)−X(0)(w0)‖

M
.

A. Autonomous system identification

In this caseq = 1 and m = 0. Consider a trajectory
(T = 400) of a marginally stable autonomous system of
order6, given by equation

w0(t+ 1) = 2 cos

(
2πt

3

)
+ cos

(
2πt

7

)
+ cos

(
2πt

10

)

We setM = 400 andL = 200, and we denote

X0 := X̂(R̂
(0)
0,ℓ (wd)),

Xk := X̂(R̂
(Cad)
L,k (wd)),

XESP := X̂(R̂
(ES)
L,ℓ (wd)),

XEIG := X̂(R̂EIG(wd))),

where X̂(·) is defined in Remark 1. We also denote by
XSLRA(X) the result of SLRA local optimization with
initial approximationX .

In Fig. 1 we show that the estimateX0 (default TLS
approximation) deteriorates very quickly, but the other, im-
proved, estimates have almost the same RMSE.
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Fig. 1. log10(RMSE) for the estimates depending on the noise variance

In Fig. 2 we see that the difference between improved
initial approximations is very small (even on a smaller scale).
The improved initial approximations lead almost always to

the same solution. Therefore, we can use the computationally
simplest solution. For example, we can avoid ESPRIT-type
computation.
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Fig. 2. log10(RMSE) for the initial approximation and for the SLRA
estimates started from improved initial approximation

As we see, even the first Cadzow iteration gives a good
initial approximation. Hence, we also compare dependence
of the quality of approximationsXk := X̂(R̂

(Cad)
L,k (wd)) on

the number of iteration and the window sizeL. In Fig. 3 we
see that forσ = 1 if L is relatively small≤ 10, then Cadzow
iterations do not converge to a good initial approximation.
If, however, the window length is relatively largeL ≥ 20,
then one may need just one Cadzow iteration.
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B. System identification with inputs

We consider an example of aSISO(single-input-single-
output, q = 2 andm = 1) systemw = (u0, y0) from [15]

y0(t) =
1σ−1 + 0.5σ−2

1− 1.5σ−1 + 0.7σ−2
u0(t),

where X̂(ŵ0
(0)
1,ℓ) = (0.5,−0.7, 1, 1.5, 0)T. The inputu0 is

taken to be a particular realization of the following ARMA
process(1 + 0.7σ−1)ε(t) = (1 − 0.5σ−1)u0(t), whereε is
a white Gaussian noise. Note that information about input is
not used in SLRA estimation (compared to [15]).

We take T = 2000 and L = 300 for Cadzow iter-
ations, L = 40 for MOESP algorithm and number of
realizationsM = 500. In Fig. 4 we see that default TLS
initial approximation breaks atσ2 as initial approximation.
Using Cadzow iterations does not improve the estimate. The
MOESP algorithm, however, works for large noise variances
and for a small window length.
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V. CONCLUSIONS

We have proposed several initial approximations for SLRA
local optimization, which are based on unstructured low-
rank approximation of Hankel matrix withL > ℓ. For scalar
autonomous systems we showed that these approximations
are better than the default TLS initial approximation for
large noise variance. These different initial approximations
yield same SLRA solutions, which allows one to take the
computationally simplest initial approximation.

For a system with inputs the proposed initial approxima-
tions did not improve compared to TLS initial approximation.
On the other hand, subspace methods that use information on
input/output partition provide a good initial approximation.
An open question remains, whether one can construct a
good initial approximation that does not assume a particular
input/output partition.

APPENDIX

A. MOESP method

For simulations purpose we use a slight modification of
the MOESP method defined in [5], for SISO systems (q =
2,m = 1)

1) We first compute the QR factorization

[H T
L (u)H T

L (y) ] = [Q1Q2 ]

[
R11 R12

0 R22

]
,

whereQ1 andQ2 haveL columns.
2) Compute the SVD of

(R22)
T = [U1U2]Σ[V1V2]

T,

whereU1 ∈ R
L×ℓ.

3) Take(p0, . . . , pℓ−1, pℓ)
T = R̂ES(Âls(U1)).

4) Compute impulse response(h0, . . . , hL−1) from the
equation

UT
2




h0 0 . . . 0

h1 h0
. . .

...
...

. . . 0
hL−1 h0



≈ UT

2 R21(R
−1
11 )

T,

in the TLS sense.
5) Compute vector(q0, . . . , qL−1) from the equation




qℓ
qℓ−1

...
q0


 ≈




h0 0 . . . 0

h1 h0
. . .

...
...

. . . 0
hℓ h0







pℓ
pℓ−1

...
p0




in the TLS sense.
6) Set

R̂
(MOESP )
l,L (w) := (q0, p0, . . . , qℓ−1, pℓ−1, qℓ, pℓ)

T
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[15] T. Söderstrom, M. Mossberg Accuracy analysis of a covariance match-
ing approach for identifying errors-in-variables systemsAutomatica
47, 272–282, 2011.

[16] K. Usevich and I. Markovsky Structured Low-rank Approximation as
a Rational Function Minimization.Technical report 23000, School of
Electronics and Computer Science, University of Southampton, 2011.

[17] I. Markovsky Low Rank Approximation: Algorithms, Implementation,
Applications. Springer, 2012.


