The development of a mesh bioreactor for the anaerobic digestion of biodegradable municipal waste
The development of a mesh bioreactor for the anaerobic digestion of biodegradable municipal waste
A laboratory scale prototype mesh bioreactor (MeBR) for the two-stage anaerobic digestion (AD) of biodegradable municipal waste (BMW) was successfully designed and tested. The development involved a number of preliminary stages; creation and characterization of a synthetic BMW (SBMW), exploration of its single-stage AD characteristics under both methanogenic and hydrolytic conditions, and AD trials of a two-stage reactor system where SBMW was fed to a 1st stage hydraulic flush (HF)reactor and centrifuging was used as a method to produce liquid effluent which was fed to a 2nd stage anaerobic filter (AF) reactor. The single stage digestion of SBMW suffered from process instability at very low organic loading rates (OLR) of 2-2.5 gVSl-1d-1 whilst the two-stage HF/AF system was robust up to a maximum OLR of 7.5gVS/ld. The HF reactors became methanogenic due to the effect of effluent recycling. After this, two different prototypes designs of MeBR were built and tested in continuous two-stage AD trials (AF 2nd stage). The aim was to replace the centrifuging of the HF reactors with continuous mesh filtration whilst maintaining the stable and robust digestion process. The first design confirmed the ability to filter SBMW digestate through nylon meshes of pore size 30-140 >m at an OLR of 3.75 gVSl-1d-1. The mesh system operated similarly to the HF/AF system and efficient two-stage AD of the SBMW was shown. Problems with stirring thick digestate limited the OLR on both the mesh and HF systems. To address this limitation on OLR, a 2nd MeBR was designed which employed a rotating drum for low effort mixing and 100 >m nylon mesh sections on the drum surface for filtration. This reactor system operated stably at an OLR of up to 15 gVSl-1d-1 albeit with reduced specific methane production. Application of this type of system will be dependant on requirements for high plant throughput, system robustness and a compact process to make up for slightly lower methane production and waste stabilisation compared to single stage digestion.
anaerobic digestion, biodegradable municipal waste, membrane, mesh, hydraulic flush, two-stage.
Walker, Mark
62448ed1-2c1a-4be6-acd8-4f8053efd392
1 September 2008
Walker, Mark
62448ed1-2c1a-4be6-acd8-4f8053efd392
Banks, C.J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f
Heaven, S.
f25f74b6-97bd-4a18-b33b-a63084718571
Walker, Mark
(2008)
The development of a mesh bioreactor for the anaerobic digestion of biodegradable municipal waste.
University of Southampton, Faculty of Engineering and the Environment, Doctoral Thesis, 184pp.
Record type:
Thesis
(Doctoral)
Abstract
A laboratory scale prototype mesh bioreactor (MeBR) for the two-stage anaerobic digestion (AD) of biodegradable municipal waste (BMW) was successfully designed and tested. The development involved a number of preliminary stages; creation and characterization of a synthetic BMW (SBMW), exploration of its single-stage AD characteristics under both methanogenic and hydrolytic conditions, and AD trials of a two-stage reactor system where SBMW was fed to a 1st stage hydraulic flush (HF)reactor and centrifuging was used as a method to produce liquid effluent which was fed to a 2nd stage anaerobic filter (AF) reactor. The single stage digestion of SBMW suffered from process instability at very low organic loading rates (OLR) of 2-2.5 gVSl-1d-1 whilst the two-stage HF/AF system was robust up to a maximum OLR of 7.5gVS/ld. The HF reactors became methanogenic due to the effect of effluent recycling. After this, two different prototypes designs of MeBR were built and tested in continuous two-stage AD trials (AF 2nd stage). The aim was to replace the centrifuging of the HF reactors with continuous mesh filtration whilst maintaining the stable and robust digestion process. The first design confirmed the ability to filter SBMW digestate through nylon meshes of pore size 30-140 >m at an OLR of 3.75 gVSl-1d-1. The mesh system operated similarly to the HF/AF system and efficient two-stage AD of the SBMW was shown. Problems with stirring thick digestate limited the OLR on both the mesh and HF systems. To address this limitation on OLR, a 2nd MeBR was designed which employed a rotating drum for low effort mixing and 100 >m nylon mesh sections on the drum surface for filtration. This reactor system operated stably at an OLR of up to 15 gVSl-1d-1 albeit with reduced specific methane production. Application of this type of system will be dependant on requirements for high plant throughput, system robustness and a compact process to make up for slightly lower methane production and waste stabilisation compared to single stage digestion.
Text
Mark_Walker_thesis.pdf
- Other
More information
Published date: 1 September 2008
Keywords:
anaerobic digestion, biodegradable municipal waste, membrane, mesh, hydraulic flush, two-stage.
Organisations:
University of Southampton, Civil Maritime & Env. Eng & Sci Unit
Identifiers
Local EPrints ID: 334490
URI: http://eprints.soton.ac.uk/id/eprint/334490
PURE UUID: 6da5d7f6-57e7-45d8-aca3-dca013dddffb
Catalogue record
Date deposited: 28 Jun 2012 15:13
Last modified: 15 Mar 2024 02:52
Export record
Contributors
Author:
Mark Walker
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics