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Abstract
We present a novel fixed-point algorithm to solve reachability of multi-stack pushdown systems
restricted to runs where matching push and pop transitions happen within a bounded number of
context switches. The followed approach is compositional, in the sense that the runs of the system
are summarized by bounded-size interfaces. Moreover, it is suitable for a direct implementation
and can be exploited to prove two new results. We give a sequentialization for this class of
systems, i.e., for each such multi-stack pushdown system we construct an equivalent single-stack
pushdown system that faithfully simulates the behavior of each thread. We prove that the
behavior graphs (multiply nested words) for these systems have bounded tree-width, and thus a
number of decidability results can be derived from Courcelle’s theorem.

1998 ACM Subject Classification D.2.4 Software/Program Verification.
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1 Introduction

Multi-stack pushdown systems (Mpds) accurately capture the control-flow of concurrent
programs communicating via shared memory, and thus, are widely used as an abstract model
of such programs in several analysis problems, such as reachability and more in general
model-checking.

It is well known that Mpds with two stacks can simulate Turing machines. A recent line
of research has concerned with decidable syntactic restrictions that limit the behaviors of
the general model, such as bounding the number of context-switches [21] or the number of
phases [9, 10] in a run.

Last year in [15], a new restriction that limits the scope of matching push and pop
transitions in terms of number of context switches (scope-bounded restriction) has been
considered. With this limitation, the analysis is carried over only the system executions
where each symbol pushed onto a stack is either popped within a bounded number of context
switches or is never popped. As a matter of fact, the scope-bounded restriction is strictly more
permissive than bounded-context switching, in fact it allows us to account for computations
with unboundedly many contexts, and thus, with an unbounded number of interactions
between the threads (see [15]).

Also, in [15] the reachability of Mpds under the scope-bounded restriction is shown
to be Pspace-complete. For an n stack Mpds, the given decision algorithm characterizes

∗ This work was partially funded by the FARB grants 2010-2012 Università degli Studi di Salerno (Italy).

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Scope-bounded Multistack Pushdown Systems

the configurations which are k-scoped reachable by computing tuples which store: (1) the
reached control state, (2) the (top) portion of the stack contents of all the symbols that have
been pushed in the last k rounds, and (3) the control states at the context-switches in the
last round (computations are arranged in rounds of thread executions where each thread is
activated exactly once). The stack contents are summarized as finite automata of a fixed
form: each automaton has as states k copies of the control states along with an initial state,
and differ from each other only in the transitions.

In this paper, we adopt the same restriction on the Mpds computations and contribute
to this research in several ways.

As a first result, we develop a new algorithm to solve the scope-bounded reachability
problem for Mpds. The solution we propose is fixed-point and uses the concept of interface of
a thread computation introduced in [13]. A thread-interface simply summarizes the executions
of a thread in consecutive rounds of executions of a system computation, by storing the
control states of the starting and ending configurations in each round. An interesting feature
of thread-interfaces is that they can be used compositionally to summarize entire runs. A key
result that we prove here and exploit to design our fixed-point algorithm is that it is sufficient
to store n-tuples of fragments of thread-interfaces over at most k rounds, to reconstruct the
summaries of entire k-scoped runs of an Mpds with n stacks.

The proposed algorithm have a simpler formulation than that given in [15] and seems to be
more suitable for efficient implementation. Thread interfaces are a simpler artifact than finite
automata and can be easily encoded for efficient symbolic search. In fact, our fixed-point
algorithm has a direct implementation in the tool Getafix, a framework that supports the
writing in a fixed-point calculus of model-checkers for sequential and concurrent Boolean
programs (see [11]). Moreover, dealing with simpler tuples seems to avoid some redundancy.
In fact, if on the one side computing such automata is computationally equivalent to compute
thread interfaces, on the other side our algorithm searches over essentially Q2kn tuples while
the previous one over Qn2n(k2Q2+µ) tuples, where Q denotes the set of control states and µ
denotes subquadratic terms in k and Q.

The approach followed in our above fixed point algorithm can be used in two directions
to obtain interesting results which constitute the other contributions of this paper.

First, the fixed-point rules used to compose, accumulate and simplify the thread-interfaces
in our algorithm can be re-used to construct a single-stack pushdown system that simulates
the k-scoped runs of an n-stack Mpds. For computer programs, this corresponds to a
sequentialization, i.e., a transformation of a concurrent program into an equivalent sequential
one. Sequentializations have recently received great attention in the context of program
verification with the goal of performing the analysis of concurrent programs via tools designed
for sequential ones (e.g., see [18, 5]). Several tools have been developed on this paradigm
and have allowed to find bugs that could not be found with other approaches [8], or even
prove programs entirely correct [13].

Second, we show that multiply nested words, which allow us to represent runs of Mpds
with graphs, have a bounded tree-width when restricting to bounded scope. Again, the
executions of the fixed point algorithm are the key concept of this proof. Moreover, since
this class of multiply nested words can be captured in the MSO logic, we can inherit all the
decidability results of [20]. In particular, all properties that can be expressed in MSO can be
shown decidable using this result, including the decidability of linear temporal logic.

Related work. Besides the already cited research there are a few other works which
are related to ours. We start mentioning some recent results that have concerned Mpds
restricted to scope-bounded computations that have followed the results presented in this
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paper. In [7], the authors show that bounded-scoped multiply nested words have bounded
tree-width using the notion of split-width there introduced. In [1], the model-checking
of scope-bounded Mpds is shown to be Exptime-complete for linear-time temporal logic
(LTL). Independently, in [16], a logic for multiply nested words which extends LTL and
allows to capture the call-return relations within each tread (MultiCaRet) is introduced and,
among other results, the related model-checking and satisfiability problems are shown to be
Exptime-complete when restricting to scope-bounded computations.

The notion of bounded-context switching has been successfully used for: model-checking
tools for concurrent Boolean programs [11, 18, 22] and Boolean abstractions of parameterized
programs [13]; sequentializations of shared-memory concurrent programs [12, 18] and their use
with SMT solvers to find errors in concurrent programs [8];sequentialization of multiprocessor
programs communicating through asynchronous message passing [4]; sequentializations of
shared-memory parameterized programs [14]; translation of concurrent programs under total
store ordering memory model to concurrent programs under sequential consistency memory
model [2]; model-checking of programs with dynamic thread creation [3]; analysis of systems
with heaps [6], and weighted pushdown systems [19].

2 Multistack Pushdown Systems

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of integers k with
i ≤ k ≤ j, and with [j] the set [1, j].

A multi-stack pushdown system consists of a finite number of pushdown automata each of
which with its local stack, that communicate through the shared control states. Multi-stack
pushdown system is a faithful model to represent concurrent Boolean programs, where each
pushdown component models a single thread and the shared control states can be used to
allow shared communication among them.

I Definition 1. (Multi-stack PushDown Systems) Let n ∈ N. A n-stack pushdown
system (n-Mpds) is a tuple M = (Q, q0,Γ, {(δint

i , δpush
i , δpop

i )}i∈[n]) where Q is a finite set of
control states, q0 ∈ Q is the initial state, Γ is a finite stack alphabet, and for every i ∈ [n],
δint
i ⊆ (Q×Q) is a set of internal transitions and δpush

i , δpop
i ⊆ (Q× Γ×Q) are respectively

push and pop transitions involving the i’th stack. For every i ∈ [n], with Mi we denote the
i’th thread of M , i.e., the 1-Mpds (Q, q0,Γ, {(δint

i , δpush
i , δpop

i )}). J

An M configuration is a tuple C = 〈q, {wi}i∈[n]〉, where q ∈ Q and each wi ∈ Γ∗ is the
content of the i’th stack. Moreover, C is initial if q = q0 and wi = ε, for every i ∈ [n]. Let
Acti = {inti, pushi, popi} be the set of actions of thread Mi, and Act =

⋃
i∈[n] Acti be the

set of all actions of M . A transition between two configurations over an action σ ∈ Act is
defined as follows:
〈q, {wi}i∈[n]〉

σ−→M 〈q′, {w′i}i∈[n]〉 if one of the following holds for some i ∈ [n]

[Internal] σ = inti, (q, q′) ∈ δint
i , and w′h = wh for every h ∈ [n].

[Push] σ = pushi, (q, γ, q′) ∈ δipush, w′i = γ.wi, and w′h = wh for h ∈ ([n] \ {i}).
[Pop] σ = popi, (q, γ, q′) ∈ δipop, wi = γ.w′i, and w′h = wh for h ∈ ([n] \ {i}).

A run ρ of M from C0 to Cm, with m ≥ 0, denoted C0 ;M Cm, is a possibly empty
sequence of transitions Cj−1

σj−→M Cj , for every j ∈ [m]. Furthermore, ρ is a computation of
M if C0 is initial.
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Scope-bounded Runs. Let ρ = C0
σ1−→ C1

σ2−→ . . . Cm−1
σm−−→M Cm be a run of an n-Mpds

M . We associate to each transition in ρ a round number. The map roundρ : [m] → N is
inductively defined as follows:

roundρ(r) =


1 if r = 1;
roundρ(r − 1) + 1 if (r > 1) & (σr−1 ∈ Acti)

& (σr ∈ Acti′) & (i > i′);
roundρ(r − 1) otherwise.

For any M run ρ and i ∈ [n], µρi (s, t) is the predicate that holds true whenever the t’th
transition of ρ pops the symbol pushed on stack i at the s’th transition. Formally, µρi is the
unique predicate over the set [m]2 such that: if µρi (s, t) holds true then s < t, σs = pushi,
σt = popi, and

for every t′ ∈ [m] with s < t′ < t, if σt′ = popi then there is an index s′ ∈ [m] with
s < s′ < t′ such that σs′ = pushi and µ

ρ
i (s′, t′) holds true;

for every s′ ∈ [m] with s < s′ < t, if σs′ = pushi then there is an index t′ ∈ [m] with
s′ < t′ < t such that σt′ = popi and µ

ρ
i (s′, t′) holds true.

Furthermore, if σt = popi then there is an s such that µρi (s, t) holds true.
For k ∈ N, ρ is k-scoped iff for every i ∈ [n] and two indices s, t ∈ [m] if µρi (s, t) holds true

then (roundρ(t)− roundρ(s)) < k. In other words, in any k-scoped run any pop operation
retrieves from the stack a symbol that has been pushed within the last k rounds.

Thread 1 Thread 2

q0

a1

−→ q1

b1

−→ q2

int1

−−→ q3

a2

−→ q4

int2

−−→ q5

q5

c1

−→ q6

c̄1

−→ q7

b̄1

−→ q8

d1

−→ q9

int1

−−→ q10

ā2

−→ q11

b2

−→ q12

int2

−−→ q13

q13

d̄1

−→ q14

int1

−−→ q15

c2

−→ q16

int2

−−→ q17

Figure 1 A sample 3-round run of a 2-Mpds.

To illustrate the
above concepts con-
sider the run of
a 2-Mpds in Fig-
ure 1. To simplify
the representation,
we have omitted the
stack contents and
reported only the control state of the configurations. Also, we have repeated the control
location ending a row at the beginning of the following one such that each row corresponds
to a whole round. The states where the control switches from the first to the second thread
in each round have been aligned under a column. To emphasize the matching of push and
pop we use a different alphabet letter for denoting each push and the same letter with a bar
for the matching pop. We use subscripts to distinguish among the different threads.

The run of Figure 1 is k-scoped for any k ≥ 2 since matching push/pop spans over at
most 2 rounds, and it is not 1-scoped, in fact for example the push denoted b1 in round 1 is
matched in round 2.

3 Interfaces
In this section, we introduce the concept of thread-interface which is central for the paper.
Informally, a thread-interface summarizes for a single thread the computation within con-
secutive rounds, and under some conditions, can be composed with the thread-interfaces of
the other threads to summarize entire runs of an Mpds. We show that when restricting to
k-scoped runs, the whole computation of a single thread across unboundedly many rounds
can be indeed captured by composing thread-interfaces over at most k rounds. This will be
exploited in the next section to give a fixed-point algorithm to solve the reachability problem
restricted to k-scoped runs of an Mpds.
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I Definition 2. (Thread-interface) Let M = (Q, q0,Γ, {(δint
i , δpush

i , δpop
i )}i∈[n]) be an

n-Mpds. For each i ∈ [n], an i-thread-interface of M is a possibly empty tuple I =
〈inj , outj〉j∈[r], for some r ∈ N (the dimension of I, also denoted dim(I)), such that if r > 0
there exist r runs π1, π2, . . . , πr of Mi in which

for every j ∈ [r], πj = 〈inj , wj〉;Mi 〈outj , w′j〉 is a run of Mi;
w1 = ε, and for every j ∈ [r − 1], wj+1 = w′j . J

Fix for the rest of the section a 2-Mpds P with a run as in Figure 1. From the above
definition the tuple T1 = (〈q0, q3〉, 〈q5, q10〉, 〈q13, q15〉) is a 1-thread-interface of P of dimension
3 and T2 = (〈q3, q5〉, 〈q10, q13〉, 〈q15, q17〉) is a 2-thread-interface of P of dimension 3. Note
that since a run has possibly zero transitions, also T3 = (〈q0, q3〉, 〈q5, q5〉, 〈q5, q10〉, 〈q13, q15〉)
and T4 = (〈q3, q5〉, 〈q10, q13〉, 〈q15, q15〉) are thread-interfaces.

For h = 1, 2, let Ih = 〈inhj , outhj 〉j∈[rh] be an i-thread-interface of M , for some i ∈ [n]. We
define two internal operations over thread-interfaces of a given thread. With I1 11 I2 we
denote the tuple obtained by appending I2 to I1. Formally, I1 11 I2 = 〈inj , outj〉j∈[r1+r2]
where inj = in1

j and outj = out1
j for j ∈ [r1], and inr1+j = in2

j and outr1+j = out2
j for

j ∈ [r2]. The other operation is a variation of 11 where the last pair of I1 is composed with
the first pair of I2. It is defined when I1 and I2 are both not empty. Formally, if r1, r2 > 0 and
out1

r1
= in2

1, then we denote with I1 12 I2 the tuple 〈inj , outj〉j∈[r1+r2−1] where inj = in1
j

and outj = out1
j for j ∈ [r1 − 1], inr1 = in1

r1
, outr1 = out2

1, and inr1+j = in2
j+1 and

outr1+j = out2
j+1 for j ∈ [r2 − 1].

Directly from the definition of thread-interface we get that both compositions define
thread interfaces.
I Lemma 3. Let Ih = 〈inhj , outhj 〉j∈[rh] be a i-thread-interface of M , for some i ∈ [n] and
h = 1, 2.

I1 11 I2 is a i-thread-interface of dimension r1 + r2.
If out1

r1
= in2

1, then I1 12 I2 is a i-thread-interface of dimension r1 + r2 − 1.

The two compositions 11 and 12 are sufficient to fully characterize, by thread-interfaces of
bounded dimension all the thread-interfaces “canonically” defined by scope-bounded runs of
an Mpds. Given an m-round run ρ of an n-Mpds M , a i-thread-interface I = 〈inj , outj〉j∈[m]
is canonical for ρ if along ρ for each round j the computation of thread Mi starts at inj and
ends at outj . The idea is thus to capture with each i-thread-interface a portion ρ′ of the run,
where all the occurrences of pushes over the i’th stack are either matched within ρ′ or are
never matched in the whole run. Due to the k-scoped restriction, for all matched pushes
the matching pop transition must occur within k rounds, and since the matching pairs of
push/pops define a nested relation, each such portion ρ′ can be taken such that it spans over
at most k rounds.

As an example, consider again the 2-scoped run from Figure 1. Note that T1 and T2
are canonical thread-interfaces for it, and T1 = (〈q0, q3〉, 〈q5, q8〉) 12 (〈q8, q10〉, 〈q13, q15〉) and
T2 = (〈q3, q5〉, 〈q10, q13〉) 11 (〈q15, q17〉) (the interfaces used in the compositions are all of
dimension at most 2).

The above result is formally stated in the following lemma.

I Lemma 4. Let k ∈ N, M be an n-Mpds, ρ be a k-scoped run of M , and I be a canonical
i-thread-interface for ρ, i ∈ [n].

There exist i-thread-interfaces I0, . . . , Is of dimension at most k such that I = I0 1j1

I1 . . . 1js
Is with j1, . . . js ∈ [2].
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For i=1,2, let Ii = 〈inij , outij〉j∈[ri] be a thread-interface of M . We say that I1 stitches to
I2 up to index r (shortly, r-stitches) if r ≤ min{r1, r2}, and out1

j = in2
j for every j ∈ [r]. Also,

I2 wraps with I1 up to index r (shortly, r-wraps) if r ≤ min{r2, r1 − 1} and out2
j = in1

j+1 for
every j ∈ [r]. Note that, in particular, if either I1 or I2 is empty (i.e., dimension is 0), I1
does not r-stitch to I2 and I1 does not r-wrap with I2 for any r > 0.

In our running example, T1 3-stitches to T2 and T2 2-wraps with T1, and the two interfaces
correspond to the run in Figure 1, and similarly the pair T1, T4 corresponds to the run portion
from q0 through q15.

In general, we can show that runs of Mpds can be fully characterized by tuples of
thread-interfaces. In fact, by definition, each m-round run of an n-Mpds M exactly defines
a canonical thread-interface Ii where i ∈ [n] such Ii m-stitches to Ii+1, for every i ∈ [n− 1],
and In (m− 1)-wraps with I1. Vice-versa given the i-thread-interfaces Ii with dim(Ii) = m,
i ∈ [n], such that Ii m-stitches to Ii+1, for every i ∈ [n−1], and In (r−1)-wraps with I1, from
the definition of thread-interface we can construct an m-rounds run of M by concatenating
the runs corresponding to each interface. Also, observe that I1, . . . , In are the canonical
thread-interfaces of the constructed run, and for j ∈ [m], their j’th pairs contain the states
at which the constructed run context-switches in round j. Thus, we get the following lemma.

I Lemma 5. Let M be an n-Mpds, and q be an M control state. Then, there is a run
of M reaching q iff there are n thread-interfaces I1, I2, . . . , In all of dimension r, where
Ii = 〈inij , outij〉j∈[r] is a i-thread-interface of M , such that

Ii r-stitches to Ii+1, for every i ∈ [n− 1];
In (r − 1)-wraps with I1;
in1

1, the first input state of I1, is the initial state of M and
outnr , the last output state of In, is q.

4 Fixed-Point Algorithm for Scope-Bounded Reachability

In this section, we describe a new algorithm to solve the scope-bounded reachability problem
for Mpds. We recall that this problem has been recently shown to be decidable in [15].
Besides the differences in the approach, the solution we present here is fixed-point and has
several advantages. First, our algorithm has a direct implementation in the tool Getafix
[11]. Moreover, from our fixed-point characterization, we can easily derive a straightforward
sequentialization algorithm, as well as prove that multiply nested words of scope-bounded runs
have bounded tree-width, and therefore, a number of properties (including scope-bounded
reachability) can be shown to be decidable by Courcelle’s theorem (see Section 5). We start
defining the scope-bounded reachability problem.

I Definition 6 (Scope-bounded Reachability Problem). Fix k ∈ N. For an n-Mpds M
and an M control state q, the k-scoped reachability problem asks whether there is a k-scoped
run of M from an initial configuration to any configuration of the form 〈q, {wi}i∈[n]〉. J

The algorithm. One way to solve the scope-bounded reachability problem is to first non-
deterministically compute n thread-interfaces of the same dimension, one for each thread,
and then by Lemma 5 check whether they form an M computation reaching state q. The
drawback of this approach is that it gives a semi-algorithm as we do not know, a priori, the
number of rounds that would be needed to conclude that q is not reachable. In contrast,
the solution we propose, as a fixed-point algorithm, would implement the same approach
as outlined above with the difference that we do not generate thread interfaces one after
another, but rather in parallel, as the components of a tuple.
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At each step, we append via the operators 11 and 12 a thread-interface to the component
of the tuple that has the least dimension (thread-interface progression rule). In doing so, we
also check that the appended thread-interface is compatible with the rest of the tuple (i.e.,
it appropriately stitches to its neighbours in the tuple and for the first/last component it
wraps with the opposite end-tuple).

By computing the canonical thread-interfaces this way, as soon as the pairs of states of
index j have been added to all components of the tuple, all of them can be safely removed
(provided that if the first component does not have the pair of index j + 1, we store the
out-state removed from the last component). This corresponds to advancing the starting
round of the tuple to the next round in a run matching the tuple of canonical thread-interfaces
(round deletion rule).

To minimise the size of the components in the stored tuples, we apply the round deletion
rule with higher priority than the thread-interface progression rule. This way, we can keep the
dimension of each tuple component not larger than k, and this ensures also the convergence
of the algorithm.

Our algorithm maintains tuples of the form ν = [I1, . . . , In] where each Ii is a fragment
of an i-thread-interface: if ν is computed by our algorithm, then there exist n canonical
thread-interfaces I ′1, . . . , I ′n, where I ′i is an i-thread interface, which satisfy the conditions of
Lemma 5, and furthermore, I ′i 11 Ii is an i-thread-interface. Note that each Ii may not be a
thread-interface.

We implement the above mentioned priority by firing the thread-interface progression rule
only on tuples containing a basic fragment of thread interface. For a tuple ν = [I1, . . . , In], Ij
is basic if it is empty, or has dimension 1 and does not match completely the corresponding
execution context in ρ (in particular, it matches the state when context-switching into such
context but does not match the state when context-switching out of it). Formally, we say
that Ij , j ∈ [n], is basic for [I1, . . . , In] if either one of the following conditions holds:

(i) Ij = ∅, or
(ii) j < n, dim(Ij) = 1, Ij+1 6= ∅, and Ij does not 1-stitch to Ij+1, or
(iii) j = n, dim(In) = 1, dim(I1) > 1, and In does not 1-wrap with I1.
A thread-interface I = 〈inj , outj〉j∈[r] is initial if r > 0 and in1 = q0. Denoting with

∅ the empty thread-interface, the set of tuples computed by the algorithm, denoted I, is
initialized to all n-tuples [I, ∅, . . . , ∅] where I is an initial 1-thread-interface.

The detailed rules of the algorithm are given in Figure 2. There, we have denoted with
1 the extension of 12 such that I 1 J is J , if I = ∅, and I 12 J , otherwise. Note that
1 is defined as 11 when the first argument is ∅, and thus captures the composition of
thread-interfaces via 11 in the thread-interface progression rule. Also, in the thread-interface
progression rule we do not force the matching on the last index value for J . This is to
capture the cases when the composition of the canonical thread-interface requires the use of
the 12 operator. Finally, observe that for tuples where the 1-thread-interface has dimension
1, with the round deletion rule we do not simply delete this thread-interface but we replace
it with the 1-thread-interface (〈out1, out1〉) where out1 is the out-state of the first pair of
the last fragment in the tuple. The reason we handle the first thread differently from the
others resides in the fact that the matching of state out1 with the corresponding in-state
of the 1-thread-interface (wrapping condition) cannot be checked at this time since this
thread-interface has dimension 1. Therefore, it is necessary to store it for future matching.

The thread-interfaces of dimension at most k can be computed in a standard way, see for
example [11], and thus we omit it. The algorithm halts when no more tuples can be added
to the set I.
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Initialization.
I = {[I, ∅, . . . , ∅] | I is an initial 1-thread-interface of M with dim(I) ≤ k}

Thread-interface progression—append thread-interface to basic thread-interface fragment.
Let [I1, . . . , In] ∈ I and for some j ∈ [n], Ij be basic for [I1, . . . , In].
Add to I any tuple obtained from [I1, . . . , In] by replacing Ij with J = Ij 1 J ′ such that:

1. J ′ is a j-thread-interface of M of dimension s ≤ k,
2. (For every h ∈ [n], let rh be the dimension of Ih)

- if j = 1 then In r-wraps with J for r = min{s, rn − 1}
- if j > 1 then Ij−1 r-stitches to J for r = min{s, rj−1 − 1}
- if j < n then J r-stitches to Ij+1 for r = min{s− 1, rj+1}
- if j = n then J r-wraps with I1 for r = min{s− 1, r1}

Round deletion—remove completed rounds from tuples.
Let [I1, . . . , In] ∈ I be s. t. Ij 1-stitches to Ij+1 for j ∈ [n− 1]

and either: (a). In 1-wraps with I1 or (b). dim(I1) = 1.
Add [I ′′1 , . . . , I ′′n ] to I such that:

1. for j ∈ [2, n], Ij = I ′j 11 I ′′j and dim(I ′j) = 1
2. if (a) holds then also I1 = I ′1 11 I ′′1 and dim(I ′1) = 1

else (i.e., (b) holds) I ′′1 = (〈out1, out1〉), where In = 〈inj , outj〉j∈[dim(In)].

Figure 2 Rules of the fixed-point algorithm solving the k-scoped reachability problem.

As an example, consider again the run of Figure 1. Our fixed-point algorithm computes
the canonical thread-interface of the first thread as (〈q0, q3〉, 〈q5, q8〉) 12 (〈q8, q10〉, 〈q13, q15〉)
and that of the second thread as (〈q3, q5〉, 〈q10, q13〉) 11 (〈q15, q17〉) (see Appendix A). Thus,
only fragments of dimension at most 2 are stored (3 is the dimension of the canonical
thread-interfaces).
Transition system. The computation of the fixed-point algorithm described above on an
n-Mpds M naturally defines a finite-state nondeterministic transition system. The states of
the system are the tuples of fragments of thread-interfaces of dimension at most k, and the
initial states and the transitions are given by the rules in Figure 2.

Formally, we define the transition system AkM = (I0, I, δ) where I0 = {[I, ∅, . . . , ∅] | I
is an initial 1-thread-interface of M and dim(I) ≤ k} is the set of initial states, I is the
set of states, and δ ⊆ I × {1, 2} × I is the transition relation and contains all tuples
(ν, i, ν′) such that ν′ is obtained from ν by applying the thread-interface progression rule,
if i = 1, and the round deletion rule, otherwise (i.e., i = 2). A run of AkM is any sequence
π = ν0

m17−→ ν1
m27−→ . . .

mt7−→ νt such that ν0 is initial, (νj−1,mj , νj) ∈ δ for every j ∈ [t], and
νt is of the form [(〈q, q〉), ∅, . . . , ∅] for some M state q.
Correctness. Fix a n-Mpds M = (Q, q0,Γ, {(δint

i , δpush
i , δpop

i )}i∈[n]) and k ∈ N. Given
a run π of AkM , let J1, . . . , Jm be the sequence of thread-interfaces that are used in the
application of the thread-interface progression rule along π (transitions labeled with 1) in the
ordering they appear in π. Furthermore, we assume that Ji is appended to the ji component
of the state. With Tuple(π) we denote the tuple [I1, . . . , In] that is obtained starting from
ν0 (the first state of π) by iteratively appending for i = 1, . . . , n, Ji to the ji’th component
via 11 if Ji replaces the ∅ by the effect of the corresponding transition, and 12, otherwise.

By Lemma 4, we can show the following:

I Lemma 7. [I1, . . . , In] is the n-tuple of canonical thread-interfaces of a k-scoped computa-
tion of M iff there is a run π of AkM such that Tuple(π) = [I1, . . . , In].
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Let [I1, . . . , In] be the tuple of canonical thread-interfaces of a k-scoped run of M . By
following the decomposition of each Ij given by Lemma 4 and then deleting rounds via
transitions labeled with 2, it is possible to show that there is a run π of AkM such that
Tuple(π) = [I1, . . . , In], which ends in a state [(〈out, out〉), ∅, . . . , ∅], where out is the last
out-state of In.

Therefore, since the set I computed by the fixed-point algorithm given earlier in this
section is also the set of states of AkM , by Lemmas 5 and 7 we get:

I Theorem 8. Let M be an n-Mpds, q be an M control state, and k ∈ N. Then, q is
reachable in a k-scoped computation of M iff [(〈q, q〉), ∅, . . . , ∅] ∈ I.

Sequentialization. It is possible to construct a pushdown system (1-Mpds) P kM such that
the scope-bounded reachability problem on a given n-Mpds M can be reduced to standard
reachability on P kM . The pushdown system P kM is essentially obtained by composing the
transition system AkM with the threadsMi such that each transition (ν, 1, ν′) of AkM involving
an i-thread-interface is replaced by a computation ofMi that computes this i-thread-interface
followed by a thread-switch. The formal construction of P kM is given in Appendix B.

By Theorem 8, we can show the following (see also Appendix B):

I Theorem 9. Let M be an n-Mpds and k ∈ N. Then, the k-scoped reachability for M can
be reduced to reachability for the pushdown system P kM .

5 Tree-width of bounded scoped multiply nested words

In this section, we show that the set of multiply nested words corresponding to k-scoped
runs of any n-Mpds has tree-width bounded by 2kn.

To each k-scoped computation ρ of an n-Mpds M we associate a labelled graph nwρ,
called the multiply nested word of ρ, as follows. Let ρ = C0

σ1−→ C1
σ2−→ . . .

σm−−→ Cm.
Then, nwρ = (V,EL, {Eh}h∈[n]) where V = {vi | i ∈ [0,m]} is the set of vertices of nwρ,
EL = {(vi−1, vi) | i ∈ [m]} is the set of all linear edges, and Eh is the set of all edges (vi, vj)
such that µρh(i, j) holds true. Figure 3 shows the multi-nested word of the run of Figure 1.

I Definition 10 (Tree-Width). A tree-decomposition of a graph (V,E1, . . . , Em) is (T, bag),
where T is a binary tree with set of nodes N , and bag : N → 2V s.t.

For every v ∈ V , there is a node n ∈ N such that v ∈ bag(n),
For every (u, v) ∈

⋃
i∈[m] Ei, there is a node n ∈ N such that u, v ∈ bag(n),

If u ∈ bag(n) and u ∈ bag(n′), for nodes n, n′ ∈ N , then for every n′′ that lies on the
unique path connecting n and n′, u ∈ bag(n′′).

The width of a tree decomposition (T, bag) is the size of the largest bag in it, minus one; i.e.
maxn∈N{|bag(n)|} − 1. The tree-width of a graph is the smallest of the widths of any of its
tree decompositions. J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

1
1

2

Figure 3 The 2-nested word of the run of Fig. 1.

The tree-width of bounded-
scoped multiply nested words.
We show that, for any k-scoped com-
putation ρ of an n-Mpds M , the tree-
width of the corresponding multiply
nested words nwρ is bounded by 2nk.
For each nwρ, we describe a tree de-
composition that uses as basic blocks
the tree decompositions of the subgraphs corresponding to thread-interfaces and arrange
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them into a tree decomposition for the entire graph according to the corresponding run of
the transition system AkM (defined in Section 4).

For the rest of the section, fix an n-Mpds M , a k-scoped run ρ of M and a run
π = ν1

m17−→ ν2
m27−→ . . .

mt−17−→ νt of AkM such that Tuple(π) is the tuple of canonical thread-
interfaces of ρ. Also, denote nwρ = (V,EL, {Eh}h∈[n]).

Let J1 be the 1-thread-interface of ν1, and for j ∈ [2,m], νij−1
17−→ νij be all the 1-

transitions of π (i.e., those related to the application of the thread-interface progression rule)
and Jj be the thread-interface there used. For i ∈ [m], let ρi1, . . . , ρiri

be the portions of ρ
that correspond to Ji. Note that, except for the starting and the ending configurations each
ρij is disjoint from each other, and ρ can be constructed by stitching the ρij , one to another,
on the starting and ending configurations in some order.

We define Gi = (V i, EiL, {Eih}h∈[n]) as the subgraph of nwρ over the vertices V i ⊆ V

that correspond to the configurations visited in the runs ρi1, . . . , ρiri
. Note that, EiL contains

all the edges of EL that connect two vertices of V i, Eih is empty for h 6= i, h ∈ [n], and Eii
contains all the edges of Ei that connect two vertices of V i. We denote with Bi the subset of
V i containing all the vertices that correspond to the starting and the ending configurations
of each ρij , j ∈ [ri].

We observe that all the edges of nwρ except for those in Gi, i ∈ [m], do not connect
vertices in V i \Bi, and thus Bi contains all the vertices that connect Gi with the rest of the
graph nwρ.

Given two graphs G′ = (V ′, E′L, {E′h}h∈[n]) and G′′ = (V ′′, E′′L, {E′′h}h∈[n]) the union of
G′ and G′′, denoted G′ ∪G′′, is the graph (V ′ ∪ V ′′, E′L ∪ E′′L, {E′h ∪ E′′h}h∈[n]).

For all the above, clearly nwρ can be seen as the union of Gi for i ∈ [m].
We recall that any subgraph G of a multi-nested word which corresponds to a thread-

interface I of dimension k has a tree-decomposition of width at most 2k + 1 [20]. In this
decomposition, the bag of the root contains exactly the vertices corresponding to the starting
and ending configurations of the runs corresponding to I, therefore its size is at most 2k.

For each Gi, i ∈ [m], denote with TDi = (Ti, bagi) the tree-decomposition of Gi as in
[20]. Observe that the bag of the root of each Ti is exactly Bi.

Now, define the sequence B1, . . . ,Bt as follows. The element B1 is the set of vertices B1.
For each i ∈ [2, t] such that νi = νij , i.e., in π the transition from νi−1 to νi is an application
of the thread-interface progression rule, we set Bi = Bi−1 ∪Bj . Otherwise, i.e., the transition
from νi−1 to νi is an application of the round-deletion rule, we set Bi = Bi−1 \Di, where
with Di we denote the vertices of Bi−1 which correspond to the elements that are deleted
from the fragments of thread-interface moving from νi−1 to νi in π. Note that for i ∈ [m],
|Bi| ≤ n(k + 2).

u1

B1

TD1u2

Bi2

TD2uj

Bij

TDjum

Bim

TDm

Figure 4 Tree-decomposition TD.

A tree-decomposition TD = (T, bag) for nwρ is
thus as follows (see Figure 4). The leftmost path
of T corresponds to the sequence ν1νi2 . . . νim . Pre-
cisely, denoting with u1 . . . um the leftmost path of T ,
bag(u1) = B1, and for j ∈ [2,m], bag(uj) = Bij .

By the definition of AkM , if a vertex v is in the bag
of two nodes ui and uj , i ≤ j, then v is also in all the
bags of the nodes of the path uiui+1 . . . uj .

The rest of TD is given by adding TDj as right
child of the nodes uj , j ∈ [m].

Recall that the edges outside of Gi cannot have
as an end-point a vertex of Gi which is not in Bi.
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Moreover, we have that if a vertex v is in the bags
of two nodes on the leftmost path, then it is also in bags of all the nodes in the between.
Therefore, since each subtree TDi is a tree-decomposition and the bag of the root of each Ti
is exactly Bi, we can conclude that TD is a tree decomposition for nwρ. Moreover, since TDi

has tree-width at most 2k and |bag(ui)| ≤ n(k+ 2), for i ∈ [m], we get that the tree-width of
nwρ is at most 2kn.

I Lemma 11. For any k, n ∈ N, the class of all k-scoped n-nested word graphs has tree-width
bounded by 2nk.

Multiply nested word graphs are Monadic Second Order (MSO) definable (see [20]).
Furthermore, the bounded scope restriction is easily expressible in MSO on multiply nested
words. Thus, following the approach of [20] we have.

I Theorem 12. The satisfiability problem of any MSO sentence on the class of all k-scoped
n-nested word graphs is decidable.

6 Conclusions and Future Work

We have presented a new algorithm for solving the reachability problem on scope-bounded
Mpds. Our solution is fixed-point and allows a new sequentialization algorithm, which is
useful for the analysis of concurrent programs by means of sequential verification tools. We
have also shown that the class of multiply nested words for scope-bounded executions has
bounded tree-width. Below we describe possible implications and further explorations that
we believe it is worth to pursue.

Our fixed-point formulation for the reachability problem of scope-bounded Mpds has
direct encoding in Getafix [11], an efficient verification tool for sequential and concurrent
Boolean programs. It would be interesting to empirically evaluate our solution in Getafix on
several abstractions of device drivers.

The sequentialization we propose can be extended to real programming languages and
can be realised as a code-to-code translation from concurrent to sequential programs. We
plan to implement this sequentialization for the C language by using the frama-C framework,
and employ several sequential verification tools for the analysis, such as Corral [17] which
has been optimized for sequentializations of concurrent programs.

Recently, Madhusudan and Parlato have shown that the reachability problem of several
restrictions of Mpds is decidable by providing a uniform decidability schema [20]. In this
paper we show that also the scope-bounded restriction fits in this framework. Furthermore,
in [20], it is shown the decidability smoothly extends to any MSO property as well as to
infinite runs. This allows us to get a series of new decidability results for scope-bounded
Mpds, such as the decidability of Linear Temporal Logic and the concurrent temporal logic
introduced in [16].
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Appendix.

A Description of our fixed-point algorithm on sample run

Here, we describe how the fixed-point algorithm works with respect to the run of Figure 1.
In the beginning, for each initial 1-thread interface I = 〈inj , outj〉j∈[r] with r ∈ [2], i.e.,

such that in1 = q0, a pair [I, ∅] is added to the set I (initialization). In particular, among
the others, the 1-thread-interfaces I1 = (〈q0, q3〉, 〈q5, q8〉) and I2 = (〈q0, q3〉, 〈q5, q10〉) get
computed, and [I1, ∅] and [I2, ∅] are added to I.

Then, the thread-interface progression rule is applied to pairs of the form [I, ∅] ∈ I, and
tuples [I1, I3], [I1, I4], [I2, I3] and [I2, I4] are added to I, where I3 = (〈q3, q5〉, 〈q10, q13〉) and
I4 = (〈q3, q5〉, 〈q10, q12〉). Note that I2 also 2-stitches to I3 and I4 but the same does not
hold for I1.

Then, the round deletion rule can be applied to these tuples, and thus [(〈q5, q8〉), (〈q10, q13〉)],
[(〈q5, q8〉), (〈q10, q12〉)], [(〈q5, q10〉), (〈q10, q13〉)] and [(〈q5, q10〉), (〈q10, q12〉)] are added to I.

Since (〈q5, q8〉) is basic for [(〈q5, q8〉), (〈q10, q13〉)] (in fact, q8 6= q10), by applying the
thread-interface progression rule, [I5, (〈q10, q13〉)] is added to I, where I5 = (〈q5, q8〉) 12
(〈q8, q10〉, 〈q13, q15〉).

Also, since (〈q10, q12〉) is basic for [(〈q5, q10〉), (〈q10, q12〉)], again by this rule, the tuple
[(〈q5, q10〉), I6] is added to I, where I6 = (〈q10, q12〉) 12 (〈q12, q13〉, 〈q15, q17〉).

To complete our example, we apply the round deletion rule to [I5, (〈q10, q13〉)], then
[(〈q13, q15〉), ∅] is added to I, and again by the thread-interface progression rule, [(〈q13, q15〉), (〈q15, q17〉)]
is added to I. This last tuple witnesses that indeed q17 is reachable.

In this simulation, we have shown how the algorithm would reconstruct the pair of
canonical thread-interfaces (of dimension 3) of the run of Figure 1 by storing only pairs of
fragments of interfaces of dimension at most 2. In particular, we have seen that the canonical
thread-interface of the first thread is computed as I1 12 (〈q8, q10〉, 〈q13, q15〉) and that of the
second thread as I3 11 (〈q15, q17〉).

B Sequentialization

The pushdown system P kM is essentially obtained by composing the transition system AkM
with the threads Mi such that each transition (ν, 1, ν′) of AkM involving an i-thread-interface
is replaced by a computation of Mi that computes this i-thread-interface followed by a
thread-switch.

Formally, P kM is the 1-Mpds (S, s0,Γ, {δint , δpush, δpop}) where S = [n]× I is the set of
states, s0 = [1, (〈(q0, q0)〉), ∅, . . . , ∅] is the initial state, and the transition relations are defined
as follows (we denote Ii = 〈inih, outih〉h∈[ri] for i ∈ [n]):

[Relation δint]. ([i, I1, . . . , In], [j, I ′1, . . . , I ′n]) ∈ δint iff either one of the following cases holds:
i = j and ([I1, . . . , In], 2, [I ′1, . . . , I ′n]) is a transition of AkM ;
Ih = I ′h for h 6= i and either one of the following holds:
[thread-switch]: i 6= j and Ii = I ′i
[Mi’s internal move]: i = j, I ′i = Ii 12 (〈outiri

, q′〉) and (outiri
, q′) ∈ δint

i

[round-switch]: i = j and I ′i = Ii 11 (〈q, q〉) such that:
1. if i = 1 and (r1 > r2 or out1

r1
= in2

r1
) then q = outnr1

, if rn > r1,
and q ∈ Q, otherwise;

2. if 1 < i < n and (ri > ri+1 or outiri
= ini+1

r1
), then q = outi−1

ri+1,
if ri−1 > ri + 1, and q ∈ Q, otherwise;
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3. if i = n and (rn ≥ r1 or outnrn
= in1

rn+1), then q = outn−1
rn+1,

if rn−1 > rn + 1, and q ∈ Q, otherwise.
[Relation δpush]. ([i, I1, . . . , In], γ, [i, I ′1, . . . , I ′n]) ∈ δpush iff Ih = I ′h for h 6= i,

I ′i = Ii 11 (〈outiri
, q′〉) and (outiri

, γ, q′) ∈ δpush
i (push transition of Mi).

[Relation δpop]. ([i, I1, . . . , In], γ, [i, I ′1, . . . , I ′n]) ∈ δpop iff Ih = I ′h for h 6= i,
I ′i = Ii 11 (〈outiri

, q′〉) and (outiri
, γ, q′) ∈ δpop

i (pop transition of Mi).

By induction on the length of runs and using Theorem 8, we can show the following result
which directly implies Theorem 9.

I Theorem 13. Let M be an n-Mpds, q be an M control state, and k ∈ N. Then, q is
reachable in a k-scoped run of M iff there is a control state [i, (〈q, q〉), ∅, . . . , ∅] which is
reachable in P kM .
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