Commercial Software Tools for Intelligent
Autonomous Systems

S M Veres, N K Lincoln* J P Adolfsson, L. Molnar **

* University of Southampton, Engineering, Highfield, SO17 1BJ, UK,
email: s.m.veres@soton.ac.uk
** SysBrain Ltd, No 10, SO19 9TE, UK
** University of Liverpool, Computer Science, Liverpool, L69 7ZF, UK

Date: 20.02.2012

Abstract: This article identifies some of the commercial software that can potentially
be examined, or relied upon for their techniques, within a new 4 year EPSRC project
“Reconfigurable Autonomy” to be undertaken between Liverpool, Southampton and Surrey
Universities. Although such projects strive to produce new techniques of various kinds, the
software reviewed here could also influence/shape, or help to integrate the algorithmic outcome
of, all 8 projects awarded wihtin the EPSRC Autonomous and Intelligent Systems programme.
To avoid mis-representation of technololgies provided by the software producer companies listed,
most of this review is based on using quotes from original product descriptions.

Keywords: Autonomous systems, intelligent systems, physical agents, adaptive control, hybrid
system abstractions, rational agents, agent programming languages, decision and control.

1. PROJECT BACKGROUND

The EPSRC projects EP/J011770, EP/J011843, and
EP/J011916, running between 30.3.2012 and 29.3.2016,
at the universities of Liverpool, Southampton and Surrey
have a shared summary:

“As computational and engineering applications be-
come more sophisticated, the need for autonomous
systems that can act intelligently without direct hu-
man intervention increases. Yet the autonomous con-
trol at the heart of many such systems is often ad-
hoc and opaque. Since the cost of failure in critical
systems is high, a more reliable, understandable and
consistent approach is needed. Thus, in this project
we aim to provide a rational agent architecture that
controls autonomous decision-making, is re-usable
and generic, and can be configured for many differ-
ent autonomous platforms. In partnership with the
industrial collaborators we aim to show how such
reconfigurable autonomy can be achieved in relevant
applications.”

Given this summary, the project is expected to provide
agent shells for applications that can be easily configured
(and reconfigured) for various applications, and as such
it aims to reduce development costs to companies while
delivering higher performance and integrity systems.

2. COMMERCIAL SOFTWARE REVIEWS

This section reviews some of the relevant commercial
software from the past that may not be new, but which

* The authors are grateful to Michael Fisher and Yang Gao for their
comments to improve the paper. Sponsored by SysBrain Ltd, Reg.
England and Wales 04583971, Email:j.p.adolfsson@sysbrain.com

provides as comprehensive view as was possible given
resources available to the authors at the time of writing.

2.1 SRI’s Procedural Reasoning Systems (PRS)

According to their own description (Myers, 1993) SRI’s
procedural reasoning system (PRS-CL):

PRS software was developed “for representing and us-
ing an expert’s procedural knowledge for accomplish-
ing goals and tasks. Procedural knowledge amounts
to descriptions of collections of structured actions
for use in specific situations. PRS-CL supports the
definition of real-time, continuously-active, intelligent
systems that make use of procedural knowledge, such
as diagnostic programs and system controllers. PRS-
CL’s architecture consists of (1) a database contain-
ing current facts and beliefs, (2) a set of goals to be
achieved, (3) a set of plans or procedures describing
how certain sequences of conditional tests and actions
may be performed to achieve certain goals or to re-
act to certain situations, and (4) an interpreter that
manipulates these components to select and execute
appropriate plans for achieving the system’s goals.”

A theoretical background to PRS has been laid down
by (Georgeff and Lansky, 1987).

2.2 SciSys Ltd, UK
SciSys Ltd advertises three software system capabilities:

MMOPS; SARA; and OwverSeer.

e MMOPS - According to their own description,
(SciSys-Web, Feb 2012), their Mars Mission On Board
Planning System (MMOPS) “was developed to serve

the needs of remote planetary landers and mobile
rovers. These platforms are typically commanded
with a plan of tasks or actions prepared by operators
on the ground. However these plans are prepared
without a clear real-time picture of the actual state of
the remote platform. Furthermore, operators have no
opportunity to change the plans in real-time to meet
mission goals. MMOPS uses stripped down, state of
the art planning technology to ensure that uploaded
plans can be managed in order to meet the original
goals as state changes. It can change plans provided
by human operators safely using models of how the
platform will evolve given its current condition. Cru-
cially, it provides an automated look-ahead capability
to determine which course of action will achieve the
mission goals with minimum use of resources. This
ensures optimal platform utilisation. As new and po-
tentially unforeseen opportunities arise, MMOPS can
work out how to safely inject additional actions into
the original plan in order to take advantage of the
evolving operational situation.”
SARA is a “configurable computer vision based appli-
cation which detects targets of interest in the scene
and suggests additional actions in order to increase
the relevance of the data required with respect to
mission goals. SARA was initially developed to serve
the needs of planetary rovers which require some
degree of intelligence in order to determine when to
take high-resolution images of science targets without
human intervention. It can identify regions of interest
in both wide angle and narrow angle images and
provide an assessment of the basic visual and struc-
tural characteristics of objects in a scene. Although
initially developed for space science applications it
has also been adapted for terrestrial surveillance. It
is fully compatible with the MMOPS mission man-
agement application and will provide requests to this
application for re-planning in order to take advantage
of opportunistic events detected by the Science As-
sessment element of SARA. The application is built
from a number of discrete, automated blocks and can
be configured or evolved based on the operational
demands of any particular domain and application.”
(SciSys-Web, Feb 2012)
OverSeer is, by their own description (SciSys-Web,
Feb 2012), a “complete platform for accessing and
controlling any type of robot. It provides many of
the components needed to build interfaces and to
integrate with wider operational systems. It is built
using a number of components that can be adjusted,
added to or combined to develop, test and imple-
ment robotics applications OverSeer is made up of
software components that communicate using the
CORBA standard. They are made up of two main
types: Servers that interface to the hardware ele-
ments, for example to drive the wheels, retrieve in-
formation from the GPS or move the camera pan-tilt
mechanism. Clients that provide an interface to these
servers, drawing from a library of interface types,
these give the user control of the platform and access
to the data being collected.

These clients can provide direct manual control or
interface to autonomy applications run remotely or on

board the platform. The interfaces presented by these
clients can be combined or ‘docked’ into the OverSeer
application or run as discrete windows within the
operating system. Clients can be combined with other
software elements to make seamless mission control
systems tailored to particular operational needs or
more intelligent autonomy applications. SciSys has
successfully integrated OverSeer components into a
range of environments, from complex control applica-
tions to smartphones such as the iPhone.”

2.8 Agent Oriented Software Pty, AUS

Agent Oriented Software (AOS) has five products that
they describe as follows (AOS-Web, Feb 2012).

e C-BDIimplements “the BDI (Belief/Desire/Intention)
model in the C programming language. C-BDI is a
complementary product to JACK. In utilising the C
language, it has the potential to be included as part
of a certificated onboard system, including a sense
& avoid capability. It comprises (1) a BDI agent
platform written in C, (2) a focus on autonomous
and semi-autonomous, mission-critical aerospace &
defence systems, (3) is designed for use in real-time
domains, and (4) is packaged as a set of libraries in
ANSI/ISO C (C90).”

e The Intelligent Prognostic Health Manager (iPHM),
developed by AOS, is “an autonomous system that
takes prognostics to the next level of capability. It
combines existing fault diagnosis techniques with Es-
timated Time to Failure under various conditions
and provides recommended courses of action - for
example to a military pilot, ship’s engineer or an on-
board Mission Management System. Utilising iPHM,
autonomous systems can intelligently react and ac-
commodate failures, allowing them to maximise their
remaining capability.”

e ISR Broker - supports “the changing task profiles
within a mission, future military fighter, strike and
surveillance aircraft will need to continuously ob-
tain updated external sensor data from the Global
Information Grid (GIG) network. To meet this re-
quirement AOS is undertaking the development of a
Reactive ISR Information Broker (ISR Broker) for the
on-board interfacing to aircraft mission systems. AOS
is utilising its Intelligent Agent autonomous software
technology to form the core of the system. ISR Broker
can also be utilised for other NCW platforms such as
UAVs, Command & Control Centres, Naval Platforms
and Land Vehicles.”

e IMAPS — Progress in network-enabled warfare ca-
pability has reasulted in improvement in near real-
time situational awareness that requires frequent re-
tasking of both manned aircraft and UAVs. In this
context re-planning the mission tactics in detail can
be the bottleneck in the overall re-planning cycle.
As AOS describes “the current generation of flight
planning systems are designed to generate a single
flight plan in full detail, but not to rapidly gener-
ate 'what if’ alternative tactical mission scenarios.
IMAPS is being developed by Agent Oriented Soft-
ware to meet this new military requirement, providing
mission planning staff with a comprehensive decision

support aid thereby allowing them rapidly to asses
new mission taskings, taking into account:

- military/political constraints, such as Rules of

Engagement;

- aircraft capabilities, weapons load and fuel trade-

offs;

- equipment status, search radar / counter mea-

sures availability;

- nature of the battlefield environment, location of
enemy defences and friendly support aircraft.
IMAPS is based upon the JACK Intelligent Agent
Toolset, including the JACKSim graphical simulation

environment.”

Intelligent Virtual Forces (IVF). Human trainees in-

teract with “virtual forces play the roles of other

pilots and ground controllers. For example, in our

cockpit simulator environment, the human pilot talks

on the radio and Virtual Forces, playing roles of pilots

and controllers, responds with speech. JACK Intelli-

gent Agents and JACK Teams, linked with speech

recognition provide:

(1) ability to converse with simulated entities

(2) high-level graphical representation of human be-
haviour (goals, plans, beliefs)

(3) flexible representation of teams and command,
control and communications (C3) structures

JBenefits is unique to Intelligent Virtual Forces:

(JACK intelligent agents provide realistic, complex
human behaviours and tactics:

- reduced personnel requirements, lower staffing
costs (human/agent substitution)

- consistency of training experience, without false
training caused by predictable scripted entities

- pilots can practice in large scenarios - more
realistic training experience

- supports deployable trainer, where human opera-
tors are not available

- easy to incorporate new doctrine and tactics - en-
sures training environment representative of current
operational environment

- graphical behaviour representation - supports
V&V by operational personnel

- JACK agents can exhibit human variability.”
JACK Autonomous Environment in a Box (JAE-Box)
“provides a decision-making capability on board un-
manned vehicles (eg, UAVs), flexible manufacturing
systems, and on-board PHM applications. Based on
Agent Oriented Software’s well-proven JACK Intelli-
gent Agents software, JAE-Box is suited to the time-
critical operational environments. Early customers for
this approach include DSTO Australia, QinetiQ Lim-
ited UK, and Monterey Technologies (under contract
to the US Army).

JAE-Box is a ruggedised single-board computer for
installation in vehicles or systems, designed for the
rigours of operational use, and is connected by a serial
link to the vehicle or system control system (eg, UAV
autopilot).

Benefits include:

(1) autonomous operations in rapidly changing en-
vironments where the vehicle must adapt its be-
haviour to achieve its mission;

(2) easy high-level programming of intelligent be-
haviours;

(3) ability to monitor vehicle’s intentions during op-
eration, keeping human operator in the loop; and

(4) straightforward integration with control systems.”

2.4 SysBrain Ltd, UK

The above listed product descriptions speak about opti-
mised planning/replanning and PRS/BDI agent architec-
tures that can be deployed in some valuable applications.
They do not consider how complex intelligence will be
efficiently created in any convincing way, apart from saying
that a “user friendly programming environment” that is
easy to program will be used. Also they do not mention,
or appear to offer, any systematic development for:

(1) how high complexity “machine knowledge” will be
represented in a form that it can be shared with
human being operating these machines;

(2) how new autonomous system development will reach
efficiencies of magnitudes of greater orders by devel-
oping technical publications for machines instead of
programming; and

(3) how meta-level agent knowledge will be gradually
improved.

SysBrain Ltd’s recent developments offer answers to these
questions while in fact adopting some of the programming
paradigms of AOS, PRS, etc, and are capable of incorpo-
rating the advanced planning techniques of SciSys.

o sEnglish Publisher (sEP) (SysBrain-Web, Feb 2012b,F),
by the company’s own description “... is a tool to
create documentation in PDF or HTML formats that
can include ‘executable’ sEnglish sections. Each ex-
ecutable sEnglish section is a sequence of English
sentences that describes a procedure or method. The
author can set the detail in which a procedure is de-
scribed. Best practice is to describe in English every-
thing that makes the new contribution by the author
comprehensively described. Standard or previously
published algorithms can be referred to and placed
into a zip file that the ‘Reader Tool’ of sEP automat-
ically extracts into a project. Automatic extraction
of sEnglish sections from published PDF and HTML
papers into an sEnglish project that is, by design,
identical to the project of the author is part of sEP.
The sEnglish sections in a PDF or HTML publication
can also be read by suitably programmed rational
agents called sysbrains also offered by SysBrain Ltd
under the CAT package. As opposed to alternative
solutions to executable papers, there are no annota-
tions used in sEnglish sections — what you see in
printout or in the PDF file on screen is the whole
relevant information that the machine will also inter-
pret. sEP is the world’s first publication system for
both humans and machines simultaneously. sEnglish
Publisher is implemented on Eclipse as a perspective
alongside LaTeX and uses MATLAB MCR to execute
MATLAB code compiled from sEnglish texts. LaTeX
can be used on the same Eclipse installation alongside
editing an sEnglish project to make preparing or run
the demos of an executable conveniently.”

e Cognitive Agents Toolbox (CAT) (SysBrain-Web,
Feb 2012b) is, by the company’s own description “... a
toolbox that includes Rational Agent Editing under
Jason+sEnglish, Jason+, and the MCMAS (Model
Checker for Multiagent Systems) as an extension of
sEnglish Publisher. CAT is a toolbox that includes
components as extensions of sEnglish Publisher:

(1) The Jason+sEnglish to Jason+ compiler and
the Jason+sEnglish to ISPL compiler for formal
modelling and verification of agent operations
under MCMAS. The MCMAS formal verification
system can be run on the same Eclipse alongside
an sEnglish project defining the concept, mod-
elling structures, relationships and reasoning of
an agent. Reasoning of an agent includes English
sentences based expressions of (1) Initial beliefs
(2) Initial Goals (3) Declaration of perception
processes (4) Generic behaviour rules at high
abstraction levels (5) Plans to execute intentions
(6) Plans to achieve goals.

(2) The Agent Executive Toolbox (AET) for MAT-
LAB. This is a library of M-files and Simulink
blocks with examples of their use to complement
the Jason+ system with external calls for signal
processing and control. There is socket based
based communication between Jason+sEnglish
based reasoning and processes for sensing and
control under MATLAB. The high level code can
be compiled into executables of reasoning, sens-
ing and action taking for embedded applications.

(3) All the prototype Jason+sEnglish and AET pro-
cesses can be compiled in CAT into a multi-
threaded C++ application for RTOS platforms
that enables their implementation on small de-
vices as welll as on large very complex systems.”

3. CONCLUSIONS

This review has presented sample software platforms avail-
able commercially that can be used to host system ca-
pabilities in terms of sensing, control action, learning of
skills, Bayesian learning of situational awareness, etc. The
following table is a summary of features.

S/W Replanning Rational Knowledge-based
MOPS + -/+ -
SARA + -/+ -
C-BDI + + -
iPMH + + -
IVF + + -
MOPS + + -
JAE-Box + + -
- sEP + + +
CAT + + +

Table 1. Comparison table of commercial soft-
ware for autonomy

Table 1 is based on what information was available from
product descriptions. The selected comparisons have been
based on three important features for developers of au-
tonomous system:

(F1) RT Replanning. Goal achieving capability by real-
time planning and replanning. It appears that SciSys

products are the strongest in this feature. It is worth
noting, however, that planning and replanning is
integral part of the two BDI agents by AOS and
SysBrain.

Rational agency is something that is not explicit in
SciSys products but planning sequences are avail-
able for plans prepared and their execution. BDI
agents of AOS and SysBrain make behaviour rules
and logic for problem solving part of their solution.
SysBrain’s sEnglish based representation of plans and
rules means that explanations of why an agent made
a particular decision can be directly generated and
communicated to human operators.

Knowledge Centric. The most striking difference is
that relative to AOS and SciSys, SysBrain makes
explicit usage of human concepts part of the core
of agent reasoning. In the other two packages there
can be only an indirect, natural-language-interface-
based solution to sharing of concepts between human
operators. For SciSys and AOS this is not a central
issue but possibly obtainable by extensions of their
software.

(F3)

One may argue that there is no need to be “knowledge
centric” in agent programming as human knowledged can
be represented in abstract traditional Agent Oriented
Programming (AOP). The variables used in AOP do need
however to be remembered and understood by a large team
of engineers. Misunderstandings often lead to bugs.

For easy sharing of functional knowledge between en-
gineers in a team, the advantages of using of natural
language programming in sEnglish also appears in that
sections in technical papers can be published in sEnglish
in so called “executable papers”. These type of executable
papers can be read by suitable agents produced under
CAT. Hence learning by reading publicaitons becomes
important for artificial autonomous systems. Old hardware
can be used for as long as the agent can autonomously
renew its knowledge and skills.

Finally, while we have examined some of the commercal
software relevant to autonomy, it is important to note that
there are many academic activities in this direction, often
providing agent programming tools and environments in
either open source or GPL form. Notable examples include
Jason Bordini et al. (2007); JADE F.Bellifemine et al.
(2007); and 3APL Dastani et al. (2010):

e As an agent orinted programming language the cur-
rent version of Jason has the following features by
their authors Bordini& Hiibner: “(1) Strong negation:
as is well known in the ALP community, close-world
assumption is not ideal for open systems where un-
certainty cannot be avoided; it helps the modelling
of such applications if we are able to refer to things
agents believe to be true, believe to be false, or are
ignorant about.

(2) Handling of plan failures: because of the dy-
namic nature of typical multi-agent environments,
plans can fail to achieve the goals they were written
to achieve; one important aspect of reactive planning
systems is that the particular choice of the specific
plan to achieve a goal is left for as late as possible so
as to consider the latest information the agent might

have, but of course plans can still fail. Jason has a
particular form of plan failure handling mechanism
consisting of plans that are triggered by such failure,
giving the programmer the chance to act so as to
undo the effects of any action already done before
the plan failed, if necessary, and then adopting the
goal (that was not achieved) again, if the conditions
are appropriate.

(3) Speech-act based communication: the philo-
sophical foundation for all the work on inter-agent
communication is speech-act theory; because mental
attitudes which are classically used to give seman-
tics for speech-act based communication are formally
defined for AgentSpeak we can give precise seman-
tics for how agents interpret the basic illocutionary
forces, and this has been implemented in Jason. An
interesting extension (Note that annotations as used
here do not increase the expressive power of the
language but are an elegant notation, making the
belief base much more readable) of the language is
that beliefs can have “annotations” which can be
useful for application-specific tasks, but there is one
standard annotations that is done automatically by
Jason, which is on the source of each particular belief.
There are essentially three different types of sources
of information: percepts (i.e., information obtained by
sensing the environment), inter-agent communication
(i.e., information obtained from other agents), and
“mental notes” (i.e., beliefs added by the agent itself
which can facilitate various programming tasks).

(4) Plan annotations: in the same way that beliefs

can have annotations, programmers can add annota-
tions to plan labels, which can be used by elaborate
(e.g., using decision-theoretic techniques) selection
functions. Selection functions are user-defined func-
tions which are used by the interpreter, including
which plan should be given preference in case various
different plans happen to be considered applicable for
a particular event. “
The Jade agent programming language, again by
the author’s F.Bellifemine et al. (2007) specficiation:
“The goal of JADE is to simplify the development of
multi-agent systems while ensuring standard compli-
ance through a comprehensive set of system services
and agents in compliance with the FIPA specifica-
tions: naming service and yellow-page service, mes-
sage transport and parsing service, and a library of
FIPA interaction protocols ready to be used. The
JADE Agent Platform complies with FIPA specifi-
cations and includes all those mandatory components
that manage the platform, that is the ACC, the AMS,
and the DF. All agent communication is performed
through message passing, where FIPA ACL is the
language to represent messages. The agent platform
can be distributed on several hosts. Only one Java
application, and therefore only one Java Virtual Ma-
chine (JVM), is executed on each host. Each JVM
is basically a container of agents that provides a
complete run time environment for agent execution
and allows several agents to concurrently execute on
the same host.

The communication architecture offers flexible and
efficient messaging, where JADE creates and man-

ages a queue of incoming ACL messages, private
to each agent; agents can access their queue via
a combination of several modes: blocking, polling,
timeout and pattern matching based. The full FIPA
communication model has been implemented and its
components have been clearly distincted and fully
integrated: interaction protocols, envelope, ACL, con-
tent languages, encoding schemes, ontologies and,
finally, transport protocols. The transport mecha-
nism, in particular, is like a chameleon because it
adapts to each situation, by transparently choos-
ing the best available protocol. Java RMI, event-
notification, HT'TP, and IIOP are currently used, but
more protocols can be easily added via the MTP
and IMTP JADE interfaces. Most of the interaction
protocols defined by FIPA are already available and
can be instantiated after defining the application-
dependent behaviour of each state of the protocol.
SL and agent management ontology have been im-
plemented already, as well as the support for user-
defined content languages and ontologies that can be
implemented, registered with agents, and automati-
cally used by the framework.

Basically, agents are implemented as one thread
per agent, but agents often need to execute parallel
tasks. Further to the multi-thread solution, offered
directly by the JAVA language, JADE supports also
scheduling of cooperative behaviours, where JADE
schedules these tasks in a light and effective way. The
run-time includes also some ready to use behaviours
for the most common tasks in agent programming,
such as FIPA interaction protocols, waking under
a certain condition, and structuring complex tasks
as aggregations of simpler ones. Among the others,
JADE offers also a so-called JessBehaviour that al-
lows full integration with JESS, where JADE provides
the shell of the agent and guarantees (where possible)
the FIPA compliance, while JESS is the engine of the
agent that performs all the necessary reasoning. One
of the examples shows integration between JADE,
JESS and Protege.

The agent platform provides a Graphical User In-
terface (GUI) for the remote management, monitor-
ing and controlling of the status of agents, allowing,
for example, to stop and restart agents. The GUI al-
lows also to create and start the execution of an agent
on a remote host, provided that an agent container is
already running. The GUI allows also to control other
remote FIPA-compliant agent platforms.”
3APL is a programming language for implementing
cognitive agents Dastani et al. (2010). The 3APL
project is “carried out at Utrecht University (In-
stitute of Information and Computing Sciences, In-
telligent Systems Group) and is partially supported
by the Dutch Research Council NWO. The work is
closely related to other ongoing research projects such
as epistemic and dynamic logics within our group, and
AgentSpeak(L) and Golog/Congolog projects outside
our group. Although the aim of the AgentSpeak(L)
project, carried out at the Australian Artificial Intel-
ligence Institute, was similar to that of 3APL, only a
limited set of cognitive concepts can be implemented
by their proposed programming language. The aim

of Golog/Congolog, under way at Toronto University
and Aachen University of Technology Dastani et al.
(2012), is to develop a programming language to
implement the high level control of cognitive robots
in dynamic and unpredictable environments. While
3APL provides programming constructs to implement
a large set of cognitive concepts, Golog/Congolog con-
centrates on programming constructs, such as sensing
and planning, which are essential for dynamic and
unpredictable environments.

The 3APL project 3APL-Web (2012) has developed
a programming language for implementing cognitive
agents with beliefs, observations, actions, goals, com-
munication, and reasoning rules. In particular, agents’
observations and beliefs can be implemented in 3APL
by a subset of first-order predicate language (prolog-
like facts and rules). The actions are implemented as
triples consisting of action name together with pre-
and post-conditions. The pre- and post-conditions of
actions are belief formulae indicating the condition
under which the action can be performed and the
effect of the action after it is performed, respectively.
The goals that can be implemented in 3APL are
procedural or to-do goals, which can be implemented
by expressions of an imperative language. These ex-
pressions are formed by applying constructs such as
sequence, test, conditional choice, and recursion to
actions and belief formulae. Communication can be
implemented by the pre-defined send-message action.
Finally, reasoning rules can be used to implement the
generation of goals, the revision of actions that are
blocked, the revision of goals that are not achievable,
the ptimization of goals, etc. “

REFERENCES

3APL-Web (2012). Official 3APL Website: An Abstract
Agent Programming Language. www.cs.uu.nl/3apl/.

AOS-Web (Feb 2012). Autonomous Systems Development
Software. http://www.agent-software.com.

Bordini, R.H., Hiibner, J.F., and Wooldridge, M. (2007).
Programming Multi-agent Systems in AgentSpeak Using
Jason. Wiley.

Dastani, M., F.Dignum, and Meyer, J. (2012). Official
3APL Website: An Abstract Agent Programming Lan-
guage. www.ercim.eu/publication/Ercim_News/enw53/
dastani.html.

Dastani, M., van Riemsdijk, M.B., and Meyer, J. (2010).
Programming multi-agent systems in 3APL. In Multi-
Agent Programming: Languages, Platforms and Appli-
cations, chapter 2, 39-67. Springer.

F.Bellifemine, G.Caire, and D.Greenwood (2007). Devel-
oping multi-agent systems with JADE. John Wiley and
Sons, LTD.

Georgeff, M.P. and Lansky, A.L. (1987). Reactive reason-
ing and planning. In K. Forbus and H. Shrobe (eds.), 6th
National Conference on Artificial Intelligence (AAAI-
87), volume 2, 677-682. AAAT Press, Seattle, WA, USA.
Www.aaai.org/Papers/AAAI/1987/AAAI87-121.pdf.

Myers, K.L. (1993). User’s Guide for the Procedural Rea-
soning System. SRI International Artificial Intelligence
Center, Menlo Park, CA.

SciSys-Web (Feb 2012). Software for Autonomous
Systems Development. www.scisys.co.uk /what-we-

do/autonomy-robotis.aspx.
SysBrain-Web (Feb 2012a).

Cognitive Agent Toolbox.

http://cognitive-agent-toolbox.com.

SysBrain-Web (Feb 2012b).
http://www.senglish.org.

sEnglish Publisher.

