
Formal Modelling for Ada Implementations:
Tasking Event-B

A. Edmunds1, A. Rezazadeh and M.J. Butler

1ae2@ecs.soton.ac.uk

Department of Electronics and Computer Science
University of Southampton

Abstract. This paper describes a formal modelling approach, where
Ada code is automatically generated from the modelling artefacts. We in-
troduce an implementation-level specification, Tasking Event-B, which is
an extension to Event-B. Event-B is a formal method, that can be used to
model safety-, and business-critical systems. The work may be of interest
to a section of the Ada community who are interested in applying formal
modelling techniques in their development process, and automatically
generating Ada code from the model. We describe a streamlined pro-
cess, where the abstract modelling artefacts map easily to Ada language
constructs. Initial modelling takes place at a high level of abstraction.
We then use refinement, decomposition, and finally implementation-level
annotations, to generate Ada code. We provide a brief introduction to
Event-B, before illustrating the new approach using small examples taken
from a larger case study.

1 Introduction

Event-B [1] is a formal method that can be used in the rigorous development of
software systems. It may be used in by industry for business-, and safety-critical
systems; to increase confidence in the correctness of the system [2,3]. In this
paper we focus on the domain of multi-tasking, embedded control systems. Our
interest is the application of techniques, and provision of tools, for modelling
the systems, and generating code from the models. We illustrate the approach
using examples from a case study of an embedded Heater Controller, and we
use Ada 1995 [4] as the target language. To be able to link Event-B artefacts to
programming constructs we have devised an extension to Event-B called Tasking
Event-B. Tasking Event-B concepts are directly influenced by Ada constructs.
For instance, Ada tasks are modelled by AutoTask machines, and protected
objects are modelled by shared machines, in Tasking Event-B.

We continue with section 1.1 in which we discuss our motivation. Section 2
provides a brief introduction to the Event-B approach. Section 3 provides an
overview of the Tasking Event-B extension. In Section 4 we present more details
of Tasking features and the translation to Ada. Section 5 describes how we can
read/write directly to memory. Section 6 provides an overview of tooling issues,
and Section 7 provides a summary and discussion.



1.1 Motivation

The Event-B method, and supporting tools [5], have been developed during
the the EU DEPLOY [6] project. A number of the industrial partners, as-
sociated with the project, have been interested in the formal development of
multi-tasking, embedded control systems. However, automatic generation from
Event-B models, for these type of systems, was absent from the approach. We
chose Ada as a basis for our approach, not only because of it’s suitability for
the application domain, but it also serves as a useful reference for our code
generation constructs. Ada constructs match well with Event-B modelling ele-
ments, and this serves to simplify the translation to code. We do not, however,
formally model all aspects of the implementation, e.g. time. We model the be-
haviour that relates to the control flow specified in the task bodies; for which
we provide Event-B semantics. We developed a case study [7] of a Heating Con-
troller to validate the code generation approach. The case study is an analogue
of many embedded systems, where inputs from the environment are received and
processed, and may have some effect in the environment caused by its outputs.

2 An Overview of Event-B

The Event-B method [1] was developed by J.R. Abrial, and uses set-theory,
predicate logic and refinement to model discrete systems. The basic structural
elements of Event-B models are contexts and machines. Contexts are used to
describe the static aspects of a system, using sets and constants; the relation-
ships between them are specified in the axioms clause. Machines are able to
see Contexts; the content of a Context is visible and accessible to a machine.
Machines are used to describe the dynamic aspects of a system, in the form of
state variables, and guarded events, which update state. Safety properties are
specified using the invariants clause. The invariants give rise to proof obligations,
which are generated automatically by the tool; a large number of the proof obli-
gations may be discharged without user intervention by auto-provers. Where
auto-provers fail to discharge proof obligations, the user guides the interactive
prover. They proceed by suggesting strategies, and sub-goals in the form of hy-
potheses, in the endeavour to complete the proof. Refinement is used to show
that concrete models satisfy the safety properties of their abstract counterparts.

A fragment of an Event-B specification is shown in Fig. 1. The specification
has variables, which are typed in the invariant. Invariants also describe desired
safety properties. The event declares two parameters tm1 and tm2. These are
typed in the guard clause, following the where keyword. The third guard de-
scribes an enabling condition for the event. When the value of avt < cttm2 the
event is enabled, and the updates described in the actions may take place. Ac-
tions may contain deterministic or non-deterministic assignments, or do-nothing
(skip); but non-deterministic modelling constructs are removed by the time we
reach the implementation level specification. In Fig. 1 the action assigns TRUE
to the variable hsc.



machine HCtrl M0
sees HC CONTEXT
variables avt stm1 hsc cttm2. . .
invariants

avt ∈ Z
stm1 ∈ Z

. . .

event TurnON Heat Source
any tm1 tm2
where

tm1 ∈ Z
tm2 ∈ Z
avt < cttm2

then
hsc := TRUE

end

Fig. 1. Example of Textual Event-B

3 An Overview of Tasking Event-B

Tasking Event-B is an extension to Event-B, but includes some restrictions to
ensure the code is implementable. An Event-B operational semantics underpins
the extension. As a means of verifying consistency between tasking Event-B and
higher-level abstractions, the Tasking Event-B can be translated to a standard
Event-B representation. Then using the Rodin tool we can show that this gen-
erated model refines the abstract development.

During the development, before the tasking Event-B stage, we use model de-
composition to tackle complexity. The Rodin tool supports different approaches
to decomposition; here we use shared event decomposition [8,9]. In section 4.1
we provide a more detailed picture of how an abstract model is decomposed
into its sub-models. This decomposition approach results in a partitioning of
the system whereby variables are distributed over decomposed machines. A ma-
chine has access to variables of another machine using pairs of synchronized
events. Synchronized events allow machines to communicate using parameters;
they model atomic access to variables residing in another machine. This syn-
chronization approach is described in more detail in [10]. In order to keep track
of the synchronizations, the Rodin tool produces a composition component [11]
during the decomposition process.

In our approach controllers can be comprised of a number of tasks and, rather
than allowing direct communication between controller tasks, we use a shared
machine to encapsulate the shared data. This means that synchronizations are
taking place between tasking machines and the shared machine. This structure is
illustrated in Fig. 2, which describes the relationships between the components
of an Event-B development, tasking Event-B and the generated Ada code. In
the Tasking Event-B layer, machines are identified as AutoTask, Environ, or
Shared. AutoTask Machines model controller tasks in the implementation level,
and are implemented using Ada tasks. Shared Machines model encapsulated
shared objects, and are implemented by protected objects. Environ Machines
model the environment, and are implemented using Ada tasks.

An example of an AutoTask Machine, from our case study [7,12], is shown in
Fig. 3. It is a descendant of the fragment shown in Fig. 1, following a number of
refinement and decomposition steps. The machine of Fig. 3 is an implementation



Fig. 2. Heating Controller Artefacts

level refinement, as indicated by the autotask annotation. As a convention, we
prefix event names of the environ machine with EN, the shared machine with
SO, and temperature controller with TC. We specify some tasking features such
as the task type (e.g. periodic, triggered, one-shot, and repeating); the priority,
and the task body. A main feature of the tasking level specification is the task
body; this is used to specify flow control aspects of the task, with respect to the
events that already reside in the machine. The task body may contain clauses,
such as sequence, loop, and branch; and uses a programming-style syntax, e.g. ;,
do, if and event names. Notice that there is no explicit use of a synchronization
construct in the task body, we only refer to events that are local to the tasking
machine. The code generator tool uses the composition component, mentioned
previously, to find any synchronizations (if they exist) and then generates the
implementations. Synchronizations between AutoTasks and the Shared machine
are implemented using protected procedures. Synchronizations between Auto-
Task and Environ machines are implemented as rendezvous, or direct memory
access as required. A machine’s events can model local (wrt the machine) state
updates, subprograms, or branching and looping constructs. As indicated ear-
lier, protected procedure calls are modelled using synchronized events in the
task body; this is used when two machines communicate. If an event just up-
dates local state, then updates are mapped to assignment clauses in the target,
rather than incurring the overhead of a subprogram call. An Output construct
is provided to allow text output to a console during simulation.

In the final, deployable system, inter-task communication can be prohibited.
The main driver for this restriction is that we wish to generate safe multi-tasking
code which is compliant with the Ravenscar subset of Ada [13]. We may relax
this restriction, for environment tasks, to simulate the environment.



machine Temp Ctrl TaskImpl
is autoTask
refines Temp Ctrl Task
variables avt, cttm2, hsc, . . .

tasktype periodic(250)
priority 5
taskbody is

. . .
TCGet Target Temperature2;
- - ‖e SOGet Target Temperature2

if TCTurnON Heat Source
else TCTurnOFF Heat Source;
. . .

event TCTurnOn Heat Source
refines TurnOn Heat Source
when

avt < cttm2
then

hsc := TRUE
end

event TCGet Target Temperature2
refines Get Target Temperature2
any tm
where tm ∈ Z
then cttm2 := tm
end

Fig. 3. An Fragment of an AutoTask Machine

event SOGet Target Temperature2
refines Get Target Temperature2
any tm
where tm ∈ Z

tm = cttm
then skip
end

Fig. 4. A Synchronizing Event in the Shared Object

4 Case Study

This section makes use of model and code fragments from a case study [7] to
illustrate the translation from Tasking Event-B to Ada. We begin with some
background to the case study, introducing the variables of the model. We will
look at just one controller task, the temperature controller, which polls two
temperature sensor values ts1 and ts2, in the environment. Their average value
avt is calculated and displayed. If the average temperature is lower than the
target temperature cttm2, the controller will turn on the heater source using
Heat Source Switch hsc := TRUE, otherwise this switch will be turned off by
the controller, hsc := FALSE. The status of the heater itself is monitored, and
has an over-temperature ota alarm.

The development process starts with an abstract specification, followed by
two successive refinements. We then decompose the model into two parts, one
representing the environment, and the other representing the remainder of the
system. The refinement process continues after the first decomposition in order
to arrive at a concrete level suitable for implementation.



4.1 Event-B Development

At the top we show the most abstract model of the system where we specify
the system’s main functionality, such as modelling the increase/decrease of the
target temperature, polling of the temperature sensors, calculation of the average
temperature, and activation of the heat source and alarms. In the first refinement
we introduce sensing and actuation. Sensing events model polling of the state of
the increase/decrease buttons, the temperature sensors, and the heater sensor.
Actuating events model the updates of target, and current temperature displays.
We also model actuation occurring as a result of controller decisions, such as
turning the heat on/off, and activating the various alarms. We decompose our
model in two stages; we first separate the controller subsystem, the part of the
system that should be implemented, from its surrounding environment. In the
second stage we decompose the controller subsystem; we identify three controller
tasks, and a protected object. The structure of the decomposition is visible in
the diagram in Fig. 5. Following decomposition we add an additional refinement,
the Tasking Event-B Layer. This refinement layer is used for our implementation
level specification. It is necessary to use refinement here, since the automatically
generated files (from the decomposition tool) cannot be modified.

Fig. 5. The Development Approach

4.2 Guiding Code Generation with Tasking Event-B

In the previous step we decomposed into five machines; one modelling the en-
vironment, one modelling each of the three controller tasks, and one modelling
the protected object. We should now add the Tasking Event-B annotations to
guide code generation. The first step is to use annotations to identify the ma-
chines as being an AutoTask, Environ or Shared machine. With Environ, or



AutoTask machines, we also add a task body specification. The task body is
used to constrain the Event-B model, in such a way that it can be implemented
using programming constructs, such as sequence, branch and subprogram calls.
The generated code is viewed as an implementation of a schedule of events.

In the discussion that follows, we use the temperature control task event
Temp Ctrl TaskImpl from Fig. 3, as an example. We describe how we use Tasking
Event-B to specify implementation details, that is, how the controller interacts
with the environment. The full task body of the Temp Ctrl TaskImpl AutoTask
is shown in Fig. 6, it includes a brief description of the activities performed.
In (1) the temperature controller uses the TCSense Temperatures event; in (2)
the average temperature is calculated, and so on. The comment identifies the
synchronizing event, which is presented here for clarity. The task body gives rise
to the Ada code show in Fig. 7. We will look at the translated code in more
detail, later in the section.

TCSense Temperatures; - -(1)(‖e ENSense Temperatures)
TCCalculate Average Temperature; - -(2)
TCDisplay Current Temperature; - -(3)(‖e ENDisplay Current Temperature)
TCGet Target Temperature2; - -(4)(‖e SOGet Target Temperature2)
if TCTurnON Heat Source end - -(5)

else TCTurnOFF Heat Source end;
TCSet Heat Source State; - -(6)(‖e SOSet Heat Source State)
TCActuate Heat Source; - -(7)(‖e ENActuate Heat Source)
if TCSwitchOn OverHeat Alarm end - -(8)

else TCSwitchOff OverHeat Alarm end;
TCActuate OverHeat Alarm; - -(9)(‖e ENActuate OverHeat Alarm)

- -(1) poll the ts1 and ts2 temperature sensors.
- -(2) calculate the average temperature.
- -(3) update ctd, the displayed temperature.
- -(4) get the target temperature from the protected object.
- -(5) branching choice: set the heater on or off flag in the task.
- -(6) set the heat source active flag in the protected object.
- -(7) update ahsa, the activate heat source flag.
- -(8) a branching choice: set activate overheat alarm flag in the task.
- -(9) update aota, the activate overheat alarm flag.

Fig. 6. The Temp Ctrl TaskImpl Task Body

The development proceeds by adding annotations to events. In Fig. 8 we see
the sensing annotation being used to indicate that an event is used in a sensing
role. The sensing keyword is used with both the TCSense Temperatures and
ENSense Temperatures events. This indicates that the events model polling
of the environment; the actuating keyword is similar, except that it indicates
that events update values is the environment. Now, returning to the translated



task body Temp Ctrl TaskImpl is
. . .
procedure TCCalculate Average Temperature is
begin

avt := ((stm1 + stm2) / 2);
end;
begin
. . .
Envir1Impl.ENSense Temperatures(stm1, stm2); −− (1)
TCCalculate Average Temperature; −− (2)
Envir1Impl.ENDisplay Current Temperature(avt); −− (3)
shared object1implInst.SOGet Target Temperature2(cttm2); −− (4)
if(avt < cttm2) then −− (5)

hsc := TRUE;
else

hsc := FALSE;
end if;
shared object1implInst.SOSet Heat Source State(hsc); −− (6)
Envir1Impl.ENActuate Heat Source(hsc); −− (7)
if(avt > Max) then −− (8)

ota := TRUE;
else

ota := FALSE;
end if;
Envir1Impl.ENActuate OverHeat Alarm(ota); −− (9)
. . .

end Temp Ctrl TaskImpl;

Fig. 7. Implementation of Temp Ctrl TaskImpl Task Body

event TCSense Temperatures is sensing
refines TCSense Temperatures
any t1 t2
when

t1 ∈ Z
t2 ∈ Z

then
stm1 := t1
stm2 := t2

end

event ENSense Temperatures is sensing
refines ENSense Temperatures
any t1 t2
when

t1 ∈ Z
t2 ∈ Z
t1 = ts1
t2 = ts2

then
skip

end

Fig. 8. Synchronization of a Sensing Event



code, arising from clause (1) of Fig. 6. It results in the following Ada program
statement:

Envir1Impl.ENSense Temperatures(stm1, stm2);

Envir1Impl is the name of the environment task, and ENSense Temperatures
is the name of the task entry. The entry call implements a pair of synchronized
events. In the most abstract model (not shown in this paper) stm1 keeps track
of the sensed temperature, ts1, using an assignment stm1 := ts1. In the decom-
position, the two temperature sensing events synchronize to achieve the same
result; this is implemented as an entry call. We now describe the relationship
between the implementation and the model. The variable stm1, appears in the
action of the TCSense Temperatures event, see Fig: 8. In the translation, the
event parameter, t1 is replaced by the variable, stm1, and passed as an actual
parameter in the entry call. The entry is implemented as an Ada accept state-
ment in the Envir1Impl task, see Fig. 9. The monitored variable ts1 appears
in the guard of the ENSense Temperatures event, of Fig: 8, and translates to
an out parameter in the entry signature. Note that in this case the event guard
is translated to an assignment in the implementation. When returning from the
entry call, the value held by the out parameter is assigned to the actual param-
eter; that is, stm1 := t1, in our example. Since t1 = ts1 we have stm1 := ts1,
as required.

accept ENSense Temperatures(t1: out Integer; t2: out Integer) do
t1 := ts1;
t2 := ts2;

end ENSense Temperatures;

Fig. 9. Implementation of ENSense Temperatures

The translation of events of shared machines is similar, except that we im-
plement the machines as protected objects with procedures. The translation of
synchronized events is otherwise the same, with respect to the mapping of event
parameters to subroutine parameters.

5 Writing Directly to Memory Locations

So far we have described an approach which facilitates interation with the en-
vironment using rendezvous. However, we also provide an alternative approach,
where the developer specifies some memory locations to read from, and write to.
We provide a feature which allows developers to annotate event parameters with
address information; using the addr keyword. Use of the addr address keyword
is shown in Fig. 10. We specify a memory location, and its number base. In the
example, t1 is given the address ef14 in base 16. We can see, on the right of the



figure, the generated Ada code. The parameter t1 has been mapped to the inte-
ger variable declaration t1: Integer. The address of the variable has been set using
the following statement, the pragma Atomic(t1) statement is used to indicate
that any access to t1 must occur atomically. In the TCSense Temperatures
procedure implementation of Fig. 10, the variable t1 appears on the right-hand
side of the assignment. When the statement is executed, the value is read from
the memory location accessed by t1, and assigned to stm1. This approach does
differ from the entry approach described in the previous section. Entry calls are
atomic, whereas we are using non-atomic statements. For this reason the environ-
ment must be responsible for ensuring that the implementation of sensing events
with multiple read actions, and actuating events with multiple write actions, are
performed atomically (we do not envisage mixing sensing and actuating in a
single event).

event TCSense Temperatures
is sensing
refines TCSense Temperatures
any

addr(16,ef14) t1
addr(16,ef18) t2

when
t1 ∈ Z
t2 ∈ Z

then
stm1 := t1
stm2 := t2

end

task body Temp Ctrl TaskImpl is
stm1 : Integer := 0;
stm2 : Integer := 0;
. . .
procedure TCSense Temperatures is

t1 : Integer;
for t1’Address

use System’To Address(16#ef14#);
pragma Atomic(t1);
t2 : Integer;
for t2’Address

use System’To Address(16#ef18#);
pragma Atomic(t2);

begin
stm1 := t1;
stm2 := t2;

end;
. . .

begin
loop

delay until nextTime;
TCSense Temperatures;
. . .

end loop;
end Temp Ctrl TaskImpl;

Fig. 10. Addressed Variables: Specification and Implementation

Using a combination of the approaches described in this paper, we can simu-
late interaction with the environment in the early stages of development, using
entry calls.. Later in the development we can choose to read from, and write to,
memory directly. To do this we simply add the address information to the rel-



evant variables. We also have the option of the environment simulation reading
from, and writing to memory.

6 Tooling

The Rodin tool [5], based on the Eclipse Platform [14], is a complete development
environment for Event-B. We have extended the methodology and tools to add
implementation level specification, using Tasking Event-B. Tasking Event-B and
the code generators are fully integrated into the Rodin toolset, see Fig 11 .
When a development is ready for translation to code we have a simple pop-up

Fig. 11. Code Generation Tools

menu with translation options. The code generators use the Tasking Event-B
model, and a two-step process, see Fig. 12. The first step generates a Common



Fig. 12. Two-Step Code Generation

Language Model (CLM); the CLM is an abstraction of commonly used software
constructs. The abstract tasks and shared objects of the CLM are then used in
the translation to Ada. The Ada translator generates the main procedure file,
and specification and body files, in a directory ready for compilation. We have
been successfully compiling and executing the generated code, using the GPS
tool from AdaCore [15]. The only additional effort has been the creation of the
project file; this may also be automated in the future.

7 Conclusions

In this paper we have described our methodology and tools for linking Event-
B, through the use of the Tasking Event-B extension, to Ada code. We relate
the Event-B modelling artefacts to their Ada counterparts; and, using the case
study, we explain the relationship between the modelling abstraction and imple-
mentation in more detail. We have explained how Event-B is augmented with
Tasking Event-B annotations, these are used to guide the code generator to pro-
duce code. For example, annotations identify the role of the machines in the
implementation; a machine may be an AutoTask machine, Environ machine or
Shared machine. AutoTask and Environ machines have a task body in which we
are able to specify flow of control. This is done through the use of the sequence,
branch and loop constructs. We make use of the tool-driven decomposition ap-
proach, to structure the development. This allows us to partition the system
in a modular fashion, reflecting Ada implementation constructs. Decomposition
is also the mechanism for breaking up complex systems to make modelling and
proof more tractable. As part of the specification we indicate which of the events
take part in sensing and actuating roles; we describe the relationship between
event parameters, and their role in the implementation of sensing and actuating
events. We extend the sensing and actuating features to allow specification of
direct reads from, and writes to memory.

In a wider context, the work we have undertaken is to improve the approach
for modelling of, and providing implementations for, multi-tasking embedded



control systems. In this sense the case study can be seen as representative of the
style of interactions, using sensing and actuation, in a domain where controllers
are continuously monitoring and reacting to the environment. This work provides
a basis for future developments in our sphere of interest, and will continue in the
Advance project [16], and others. The Tasking Event-B control flow language
has been given Event-B semantics, although we do not formalize every aspect of
Tasking Event-B, such as modelling timing, or priority. With regard to modelling
time, several projects are under way, investigating timing related issues [17].
We can use the Tasking Event-B model to generate an Event-B model of the
implementation, using the Event-B semantics. We can show that this model
refines the abstract development, thus showing that the properties of the abstract
development are satisfied.

7.1 Related Work

The closest comparable work is that of Classical-B’s code generation approach [18]
using B0 [19]. B0 consists of concrete programming constructs, these map to pro-
gramming constructs in target programming languages. B0 can be translated to
Ada, but there is no support for concurrency. Code generation of B to embedded
systems was carried out in [20], where the implementation results in sequential
code. Some consideration is given, in [21], to the use of an Event-B-like syntax
for analysis of multi-tasking programs. By comparison, we use the task body for
scheduling, rather than taking a purely interrupt driven approach; we have yet
to incorporate modelling of interrupts in Tasking Event-B.

VDM++ [22] may be used to generate code, it is an object-oriented extension
to VDM-SL formal specification language. It has been used to model real-time
systems, see [23]. The paper describes a controller and environment model similar
to our own. They define an abstract operational semantics to describe additional
modelling features, whereas we use Event-B semantics. They model time, and
asynchronous communication, whereas we do not address these issues in the work
presented here. However, the specification of timing properties is of great interest
to us; and work has been done to address the issue in Event-B such as [24],
or more recently [17]. Scade [25] is an industrial tool for formally modelling
embedded systems. It provides a graphical approach to specification, and has a
certified code generator. It has a similar control flow approach to that of UML-B
statemachines [26].

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Russo, A.: Formal Methods in Industry: The State of Practice of Formal Methods
in South America and Far East (2009)

3. Metayer, C., Clabaut, M.: Dir 41 case study. [27] 357
4. Taft, T., Tucker, R., Brukardt, R., Ploedereder, E., eds.: Consolidated Ada ref-

erence manual: language and standard libraries. Springer-Verlag New York, Inc.,
New York, NY, USA (2002)



5. RODIN Project. (at http://rodin.cs.ncl.ac.uk)
6. The DEPLOY Project Team: Project Website. (at http://www.deploy-

project.eu/)
7. Edmunds, A., Rezazedah, A.: Event-B Wiki: Develop-

ment of a Heating Controller System. (at http://wiki.event-
b.org/index.php/Development of a Heating Controller System)

8. Butler, M.: Decomposition Structures for Event-B. In: Integrated Formal Methods
iFM2009, Springer, LNCS 5423. Volume LNCS., Springer (2009)

9. Silva, R., Pascal, C., Hoang, T., Butler, M.: Decomposition Tool for Event-B.
Software: Practice and Experience (2010)

10. Edmunds, A., Butler, M.: Tasking Event-B: An Extension to Event-B for Gener-
ating Concurrent Code. In: PLACES 2011. (2011)

11. Silva, R.: Towards the Composition of Specifications in Event-B. In: B 2011. (2011)
12. Edmunds, A., Rezazedah, A.: Event-B Project Archives: Tasking Event-B Tutorial.

University of Southampton. (at http://deploy-eprints.ecs.soton.ac.uk/304/)
13. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar

Profile in high integrity systems. Ada Lett. XXIV (2004) 1–74
14. The Eclipse Project: Eclipse - an Open Development Platform. (Available at

http://www.eclipse.org/)
15. AdaCore: GNAT Programming Studio. (Available at

http://www.adacore.com/home/)
16. The Advance Project Team: The Advance Project. (Available at

http://www.advance-ict.eu)
17. Sarshogh, M., Butler, M.: Specification and Refinement of Discrete Timing Prop-

erties in Event-B. In: AVoCS 2011. (2011)
18. Abrial, J.: The B Book - Assigning Programs to Meanings. Cambridge University

Press (1996)
19. ClearSy System Engineering: The B Language Reference Manual. (Version 4.6

edn.)
20. Bert, D., Boulmé, S., Potet, M., Requet, A., Voisin, L.: Adaptable Translator of

B Specifications to Embedded C Programs. In Araki, K., Gnesi, S., Mandrioli, D.,
eds.: FME. Volume 2805 of Lecture Notes in Computer Science., Springer (2003)
94–113

21. Stoddart, W., Cansell, D., Zeyda, F.: Modelling and Proof Analysis of Interrupt
Driven Scheduling. In Julliand, J., Kouchnarenko, O., eds.: B. Volume 4355 of
Lecture Notes in Computer Science., Springer (2007) 155–170

22. CSK Systems Corporation: (The VDM++ Language Manual)
23. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Em-

bedded Real-Time Systems with VDM++. In Misra, J., Nipkow, T., Sekerinski,
E., eds.: FM. Volume 4085 of Lecture Notes in Computer Science., Springer (2006)
147–162

24. Degerlund, F., Grnblom, R., Sere, K.: Code Generation and Scheduling of Event-B
Models (2011)

25. Berry, G.: Synchronous Design and Verification of Critical Embedded Systems
Using SCADE and Esterel. In Leue, S., Merino, P., eds.: FMICS. Volume 4916 of
Lecture Notes in Computer Science., Springer (2007) 2

26. Snook, C., Butler, M.: UML-B: A Plug-in for the Event-B Tool Set. [27] 344
27. Börger, E., Butler, M.J., Bowen, J.P., Boca, P., eds.: Abstract State Machines, B

and Z, First International Conference, ABZ 2008, London, UK, September 16-18,
2008. Proceedings. In Börger, E., Butler, M.J., Bowen, J.P., Boca, P., eds.: ABZ.
Volume 5238 of Lecture Notes in Computer Science., Springer (2008)

http://rodin.cs.ncl.ac.uk
http://www.deploy-project.eu/
http://www.deploy-project.eu/
http://wiki.event-b.org/index.php/Development_of_a_Heating_Controller_System
http://wiki.event-b.org/index.php/Development_of_a_Heating_Controller_System
http://deploy-eprints.ecs.soton.ac.uk/304/
http://www.eclipse.org/
http://www.adacore.com/home/
http://www.advance-ict.eu

	Formal Modelling for Ada Implementations: Tasking Event-B
	A. Edmunds, A. Rezazadeh and M.J. Butler
	Introduction
	Motivation

	An Overview of Event-B
	An Overview of Tasking Event-B
	Case Study
	Event-B Development
	Guiding Code Generation with Tasking Event-B

	Writing Directly to Memory Locations
	Tooling
	Conclusions
	Related Work




