Semiconductor fibre devices for nonlinear photonics

Mehta, P., Healy, N., Day, T.D., Sparks, J.R., Sazio, P.J.A., Badding, J.V. and Peacock, A.C. (2012) Semiconductor fibre devices for nonlinear photonics At SET for Britain, United Kingdom. 12 Mar 2012.


[img] PDF 5373.pdf - Other
Download (185kB)


A number of technologies are starting to emerge which bring new functionality to optical fibres. In particular, fibres that offer improved nonlinear performance are currently receiving much attention for use in all-optical signal processing. The underlying principles of this field allow for the manipulation of signals carried by light at speeds and capacities far beyond the abilities of electronic systems. Although conventional silica optical fibres have already been demonstrated for applications such as regeneration, switching, and encoding/decoding of information carried in light form, long fibre lengths and high power levels are typically required. New fibre materials that exhibit enhanced nonlinear properties would not only allow for reduced device lengths and lower energy consumption, but they could also be chosen to extend the transmission window beyond that of silica for a wider range of applications. To this end, a new class of fibre that incorporates semiconductor materials into the core was proposed and demonstrated in 2006. Importantly, the ability to intricately control both the optical and electronic properties of semiconductor materials has led to semiconductor photonics becoming one of the largest growing areas of research in recent years. In this poster I will describe my research on the characterization of these semiconductor core fibres with the aim to developing all-optical nonlinear photonic devices.

Item Type: Conference or Workshop Item (Poster)
Venue - Dates: SET for Britain, United Kingdom, 2012-03-12 - 2012-03-12
Related URLs:
Organisations: Astronomy Group, Optoelectronics Research Centre
ePrint ID: 335708
Date :
Date Event
12 March 2012e-pub ahead of print
Date Deposited: 13 Mar 2012 14:27
Last Modified: 17 Apr 2017 17:25
Further Information:Google Scholar

Actions (login required)

View Item View Item