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Abstract — We present a novel noise reduction strategy that is
inspired by the physiology of the auditory brainstem. Following
the hypothesis that neurons code sound based on fractional
derivatives, we develop a model in which sound is transformed
into a ‘neural space’. In this space sound is represented by
various fractional derivatives of the envelopes in a 22 channel
filter bank. We demonstrate that noise reduction schemes can
work in the neural space and that the sound can be resynthesized.
A supervised sparse coding strategy reduces noise while keeping
the sound quality intact. This was confirmed in preliminary
subjective listening tests. We conclude that new signal processing
schemes, inspired by neuronal processing, offer exciting
opportunities to implement novel noise reduction and speech
enhancement algorithms.
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I. INTRODUCTION

Speech enhancement and noise reduction strategies have

been developed on the basis of various mathematical principles.

Common strategies that are used today in acoustical signal
processing are spectral subtraction, Wiener filtering and
subspace algorithms [1-6]. These methods, although based on
fundamentally different strategies share commonalities: first,
they are based on the signal amplitude and are therefore
sensitive to the signal energy, and second, although they can
improve the speech quality, they generally do not improve the
speech intelligibility. A system to improve speech
intelligibility in noisy situation, possibly one that performs as
good as a human listener, has become the holy grail of the
speech processing community. Among the many applications
that such a system would have are hearing aids, mobile phones,
and automatic speech recognition and telecommunication
systems. Despite the demand for better solutions recent
improvements in research have been incremental. It is
generally assumed that the required breakthrough in
development requires novel ideas that consider information of
a higher statistical order and contextual information.

Here we suggest a novel noise reduction strategy which is
inspired by a modern interpretation of the physiology of the
auditory brainstem. We try to emulate the workings of the
mammalian brainstem by distilling a mathematical concept of
neuronal speech processing. Specifically, we present a method
that is inspired by our knowledge of how neurons in the ventral

cochlea nucleus (VCN) code sound. Recordings in our lab
allow the hypothesis that neurons code sound based on
fractional derivatives of the sound envelope and from this basis
we develop a noise reduction algorithm. We utilize a modified
well-known algorithm for noise reduction: sparse code
shrinkage. However, instead of selecting basis vector
components only on the basis of amplitude, we also take the
temporal derivative into account. On top of the traditional well
known first derivative, we also introduce here the concept of
fractional derivatives of order 0<k<1. We expect that by
doing this, more powerful basis functions can be found and
that the signal can be better reconstructed than in traditional
methods.

The structure of the paper is as follows: Section II presents
the study of physiology of sound coding in the ventral cochlear
nucleus. Section III describes the principle of sparse coding
and implementation of a sparse coding method. Section IV
describes the implementation framework of sparse coding
based on fractional derivatives of spectral envelopes. Section V
presents preliminary experimental evaluation results.

II. PHYSIOLOGICAL MOTIVATION

A. Sound coding in the ventral cochlear nucleus

The cochlear nucleus (CN) is the first processing station of
sound in the mammalian auditory brainstem. It provides the
first opportunity in the ascending auditory pathway to recode
the input from the cochlea. It is a mandatory processing station
for all auditory nerve fibres. Anatomically it has been
described as containing more than fifty discrete cell types [7]
in two sub-divisions; the Dorsal Cochlear Nucleus (not
considered here) and Ventral Cochlear Nucleus (VCN). Sound
is coded neurally by short electrical bursts (pulses) which are
termed ‘action potentials’ (or spikes). Traditionally it is
thought that the rate by which a neuron fires per time is a good
measure of the information that it is coding, but today it is
clear that information is coded by rate and higher order
statistics in single neurons as well as in the temporal
correlation of population of neurons.

We have investigated in recent years, how neurons’
response and interval statistics are correlated with the sound
stimulus. An important visual tool to investigate neuronal rate
responses over time are ‘post stimulus time histograms’.
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Figure 1. Rresponse probability of 3 different neurons in the ventral cochlea
nucleus to a short sound burst of 50 ms. The green line indicates best fits with
a power function t* . The fitted k-values are shown in the top right corners.

Post stimulus time histograms (PSTHs) represent the averaged
neurons’ response to repetitions of the same sound. Properly
normalized these represent the probability density function of
the neurons in response to a specific stimulus.

In contrast to its input from the auditory nerve, the temporal
discharge characteristics of VCN neurons in response to sound
are heterogeneous. Using the shape of the PSTH in response to
tone bursts at the unit’s best-frequency (the frequency at which
the neuron responds at lowest threshold), single unit responses
from the VCN have traditionally been classified as belonging
to one of several main types [8]. Three examples of PSTHs in
response to pure tones of 50 ms at 20 dB above the neurons
threshold are shown in Figure 1. The responses vary in a
number of aspects. Important here is the ‘adaptation’, the
gradual decline of response after the onset. In the three
examples, adaptation increases from top to bottom, and we

observe that a power function, ¢
models this behaviour well.

The observed variability in temporal adaptation leads to a
particularly simple interpretation of the neuron’s role in a
coding scheme. Neurons with less adaptation (low k-value) are
better suited for measuring energy (Blackburn, Sachs, 1990):
they respond continuously during a stimulus; the response of
an ideal neuron with £=0 would be proportional to the stimulus
itself (Fig. 2A, top panel). Neurons with high k-value adapt
strongly and have no sustained rate and responds only to
changes in the stimulus (Rhode, 1994; Winter, Palmer, 1995);
an ideal neuron with &=/ would make the response
proportional to the temporal derivative of the stimulus with
respect to time (Fig. 2A bottom panel). Neurons between these
extremes perform a mixture of these two processes, their
response shows some adaptation and some sustained response.

Accordingly, the mathematical differentiation operator is
defined for non-integers orders, this branch of mathematics is
known as fractional calculus. Differentiation generalizes to

d* / dt* where k is not restricted to integer values [9].
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Figure 2. Neurons as fractional differentiators

A) Sketch of differentiation of orders 0, 0.5 and 1 (top to bottom) of a
rectangular envelope. Arrows in the bottom sketch indicate Dirac delta
functions. The behaviour at £ = 0 corresponds to that of “sustained chopper”
neurons that respond almost constantly during the whole stimulus. The
behaviour at k£ = / corresponds to that of “Onsets” that respond best to the
stimulus onset. “Primary-likes” (and essentially all other neurons) are
somewhere between these extremes. The resulting adaptation pattern follows a
power function.

B) Response of a neuron with a k-value of 0.47 to an amplitude modulated
sinusoids. The top panel shows that modulation gain as function of modulation

frequency is well described by @ ; the bottom panel shows that the phase is
almost constant at £ x90° . The red lines in B are not fitted to the data, they
show instead the prediction of the fractional model. To calculate the phase

response a constant delay was subtracted from each period (indicated by the
arrow in both panels as a cut-off modulation frequency).

The result of applying such an operation to a step input is a
power-law decay ¢ as observed in the PSTHs. The middle
panel of Fig. 2A shows the effect of this operation on a step
input for k=0.5. For non-integer k the behaviour is non-local so
that the output depends on the history of the input as well as its
current value. It therefore appears that all neurons are
differentiators, each neuron having a particular (non-integer)
order. This kind of fractional behaviour, characterised by
power function decay, has been observed and modelled in
various sensory systems [10-12] e.g. tactile [13], baro [14],
joint [14], atrial stretch [14] visual [15], electric [16, 17] and
vestibulo-ocular reflex [18, 19].

To test the hypothesis that fractional differentiation is
occurring in VCN neurons we tested the following hypothesis
in a limited preliminary study with 11 units: fractional calculus
predicts that the modulation transfer function will be

proportional to " sin(a)t +kﬂ/2) [9] i.e. a gain of (27rf)k
and a phase lead of k£ x90°. Neurons were stimulated by a
sinusoidally modulated input sin(ew¢) and their k-value was
identified from the PSTH. The results from one neuron are
shown in Fig. 2B. Out of the 11 neurons, 9 could be described

well by the given equation. However, the sample size in this
study was too small to allow a conclusive answer if this model



is ultimately correct and more work is needed to underpin the
physiological basis.

The observation that projecting neurons produce PSTHs
that are well-modelled by power laws raises two immediate
questions: how does their physiology cause them to do this,
and why have they evolved so as to do it? For the ‘how’
Anastasio [18] has suggested that power law behaviour may
result from parallel activation of many dendritic segments with
differing time constants. For the ‘why’ one possibility is that
sensory systems evolved as control systems and it has been
shown that fractional differentiation is an efficient element in a
control system for biological processes [10]. The impulse
response of a fractional calculus systems can be approximated
by many exponential decay times, thus having many time
constants or in other words a decaying “memory strength”. It is
not possible to predict the system response at any time from
one measurement without knowledge about the stimulus. With
numerous exponential decays the memory of a signal gets
forgotten the longer the signal is gone. Therefore fractional
order controllers memorize the latest inputs more strongly and
also forget the old inputs more completely than conventional
integer order controllers. Drew and Abbot [10] describe power-
law adaptation as temporal “generalist”, an intermediate case
between perfect adaptation (integration in which the signal
history is never forgotten) and exponential adaptation (in

which the signal history is forgotten after a few time constants).

This behaviour seems to be advantageous for an organism that
has to deal with stimuli that vary on multiple time scales. This
behaviour is not strange or even rare, it is apparent in most
natural systems [20], but not widely discussed probably
because of the apparent complexity of the theory of fractional
derivatives.

We use these experimental results as a template to develop a
hypothesis how a description of the observed neuronal
response could be used to develop the basis of a novel noise
reduction method. In our model we assume that the neurons
indeed perform a fractional derivation of the envelope
waveform. Encapsulating this behaviour in a mathematical
formulation, we are going to utilize fractional derivatives as the
pool of potential functions for the basis transformation in a
traditional noise reduction scheme.

B.  The ‘neural space’

We aim to develop a novel signal processing algorithms that
comprise a physiological motivated model for noise reduction
and speech enhancement applications. In each stage the model
will attempt to simulate the physiological function. We are not
trying to build or mimic neuronal networks, but to emulate
their function on the basis of abstract mathematical principles.
The first stages of the model are similar to the popular
‘auditory image mode’ (AIM) [21]. The frequency selectivity
of the hearing process is modelled by a gammatone filter bank
with 22 channels, the approximate number of human critical
bands. In their temporal response, neurons cannot follow
frequencies higher than 1-2 kHz, and therefore we apply a low
pass filter of 1200 Hz to the envelope of the signal in each
channel. The amplitude of this signal represents the probability

that auditory nerve fibres fires; in AIM this stage is therefore
called the ‘neuronal activity pattern’. Instead of statistical
analysis that follows in AIM, we take a different approach, and
simulate the hypothetical fractional response of neurons in the
brain stem. Real neurons would form a continuum of -
numbers between 0 and 1 with millions of neurons in each
frequency channel. To simplify the processing, we assume here
only three different k-values (0, 0.5 and 1) in each of the 22
frequency channels and only aim to demonstrate the principle.

At this stage in the model the amplitude of the signal in
each channel is a representation of the sound in a new space:
the k=0 channels represent signal energy, the k=1 channels its
entropy [22], and the k=0.5 channel are a mixture and contain
a memory. We call this representation the ‘neural space’ of the
signal and we argue that advanced and novel signal processing
that is inspired by physiology can take place in this space.
After signal processing in the neural space, the signal is
resynthesized back to the time domain, allowing applications
where the user needs to hear a cleaned-up signal.

Although the focus in this paper is on the novel
representation, we show that a simple noise reduction scheme —
supervised sparse coding — can work in the neural space.

III. SPARSE CODING METHOD

A. Principle of Sparse Coding

Sparse coding (SC) strategies offer a promising method to
identify the most essential information in a speech sound.
Recently, there has been significant development in SC
algorithms, exploring sparse representations in the context of
denoising and classification [23-27]. Sparse applications
exploit the fact that most signals of interest are sparsely
represented in an appropriate dictionary or base. However,
most previous research utilize ‘off-the-shelf” wavelet- and
cosine-transform  dictionaries but recent research has
demonstrated the significant advantages of dictionary learning
matched to the signals of interest [28].

We consider a signal x e R” and a dictionary consisting of

L basis vectors, D=[d,---d,, ]e R”* ,"d(,)"2 =1,/=1-L.

A sparse coding ¢eR* of signal x in dictionary D defines a
sparse linear combination of K <L atoms, such that the
approximation error ||x - Dc"2 is sufficiently small.

B. Dictionary Learning

Dictionary learning adapts an initial dictionary to a specific
signal class (e.g. speech spectral envelopes). The signal in this
specific class is represented by a linear combination of
dictionary atoms. Learning the dictionary is critical in noise
reduction, where signal of a specific class must have a sparse
representation in its dictionary, while noise could not.
Constructive dictionaries that are not signal class specific don
not satisfy this criterion.

Dictionary learning is decomposition of a data matrix

_ DxN
X =[xy xyleR

codingC =[¢

into a dictionary D and a

LxN :
W Can € RV, given by
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subject to a sparsity constraint on C. The unit norm constraint
on || . || - denotes the Frobenius norm. A<SVD (k-means singular

value decomposition) algorithm of [23] implemented in
Matlab by kSVD-Box' is used to realize dictionary learning.
This method iteratively solves locally optimal solutions, by
alternating between optimizing the coding and the dictionary.
Coding update: For a given dictionary, an orthogonal
matching pursuit (OMP) regression was used to compute C by
approximating the solution of

argmin"c(n) , 2)
s.t. "x(n) -Dc,, , <o 3)
Dictionary update: For each column d, , /=I,...L, the

contribution of basis vector d, to the residual norm was

separated and the residual norm was minimized using SVD.
Specific details are described in [23].

C. Noise Reduction

We assume the observed noisy signal is the linear additive
mixture of clean signal and noise. Given the dictionary and
noise variance, the clean signal could be estimated by
orthogonal matching pursuit (OMP) regression algorithm.

The signals here are fractional derivative representations of
spectral envelopes from speech materials. BKB (Bamford-
Kowal-Bench) sentences were chosen as both training and test
speech materials [29]. BKB sentence lists are standard British
speech materials containing 21 lists, each containing 50
keywords in 16 sentences. Six lists of BKB sentences were
randomly chosen as training data and the other lists were used
as test data. The training sentences were concatenated to derive
spectral envelopes to get dictionary.

IV. SUPERVISED SPARSE CODING STRATEGY ON FRACTIONAL
DERIVATIVES OF SPECTRAL ENVELOPES

A.  Implementation of Sparse Coding Strategy in Speech
Enhancement

Figure 3 shows the implementation of the supervised SCS
strategy for the spectral envelopes. As most of the information
is contained in the envelopes of each filter, processing in
spectral envelopes is expected to extract the most critical
information. In our strategy, the input signals are split into 22
channels by a gammatone filter bank, from which envelopes
are extracted in each channel by Hilbert transform. In each
frequency channel fractional derivatives are calculated for
three k-domains: £=0 (only coding Energy), k=1 (only coding
amplitude change or entropy) and £=0.5. In future application,
we expect that these k-values fill the continuum between 0 and
1. In traditional noise reduction schemes, only k=0 is taken
into consideration.

! http://www.cs.technion.ac.il/~ronrubin/software/html
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Figure 3. Flowchart of the spectra envelope sparse coding strategy.
Supervised SCS is applied to the spectral envelopes of the fractional
derivatives in each frequency channel.

Supervised SCS is implemented on the matrices of spectral
envelopes where each column represents a short temporal
frame and each row represents the envelopes in one channel.
The training speech is processed in the same way and basis
learning is applied in the spectral envelopes from the training
data. The training data is about 10 seconds long. After
supervised SCS, the basis vectors with highest Eigenvalues in
each k-domain are selected for further processing and the de-
noised signal is calculated by resynthesis on the basis of the
selected basis vectors. The resynthesis works by averaging the
three individual reconstructions according to k=0, .5 and I
with identical weight.

B.  Implementation of Fractional Derivation and Integration

Fractional derivation and integration are implemented by using
a matrix approach that enables convenient discretization of
partial differential equations with derivatives of arbitrary real
order [30]. We used software from the MATLAB file
exchange > to realize fractional derivation and integration.
Examples of fractional derivatives of spectral envelopes of a
short segment word from high, middle and low frequency
bands are presented in Figure 4. Columns show the fractional
derivatives of the spectral envelopes from the same frequency
band (centre frequencies: 3191, 1416, 212 Hz respectively)
rows shows the fractional derivatives of the spectral envelops
from different frequency bands with the same & value (0, 0.5,
1). The spectral envelopes are derived by Hilbert transform.
The figures illustrate that, as expected, the fractional derivative
fluctuates more at larger & and at higher frequency channels.

? http://www.mathworks.com/matlabcentral/fileexchange/2207 1
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Figure 4. Fractional derivatives of the spectral envelopes of the word “pears”.
Different columns show: (left) High Frequency band (middle) middle
frequency band (right) low frequency band. Different rows show different k-
values. Cf indicates the centre frequency in a gamm tone filter bank.

The fractional derivatives emphasize the different temporal
characters of the spectral envelopes. For example, for the zero-
derivatives the sparse coding algorithm will emphasize the low
frequency components which have higher energy; for the first
derivatives the algorithm will pick out more high frequency
components which show a higher rate of change. The fractional
derivatives are in between these extremes (Figure 4 and Figure
5). The method is described in detail in [30].

V. EXPERIMENTAL RESULTS

Figure 5 shows spectrograms of the example sound “pears”
clean (figure (a)) and in babble noise (0 dB SNR) (figure (b)).
Also shown for comparison are the spectrograms of the
resynthesized outputs after the sparse coding noise reduction
strategies on different fractional derivatives (Figure 5 (c-e)). It
can be seen that sparse coding on entropy (Figure 5 (e), k=1)
emphasizes the high frequency bands and the noise, in the
middle frequency bands is reduced; sparse coding on original
envelopes (Figure 5 (c), k=0) keeps the energy in low
frequency bands while losing some information in the higher
frequency bands.

Results of noise reduction in the neural space were also
evaluated by informal subjective listening tests. Three
experienced listeners (first, second and last author),
independently judged the resynthesized speech sounds. While
the background noise was reduced slightly, the sound quality
was as good as the original sounds. These preliminary results
are encouraging.

This experiment shows that processing on fractional
derivatives is practical to realize noise reduction and keep
intelligibility. Standard subjective speech intelligibility tests
with BKB sentences [31] will be used to test the performance
of sparse coding in different fractional derivative of envelopes.
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Figure 5. Spectrograms of outputs from sparse coding strategies on different
fractional derivatives of spectral envelopes of word “pears” in babble noise (0
dB SNR). (a) clean speech; (b) noisy speech; (c) sparse coding on fractional
derivatives of spectral envelopes (k=0); (d) sparse coding on fractional
derivatives of spectral envelopes (k=0.5); (e) sparse coding on fractional
derivatives of spectral envelopes (k=1).

Future work will choose appropriate k value to implement
sparse coding so that noise is more efficiently reduced.
Combination of strategies with different k-values is also
practical as it will combine different advantages of different
neural space (different k values) to enhance speech perception.

VI. CONCLUSIONS

This research presents several novel ideas for speech
enhancement and noise reduction algorithms by mimicking
mechanism of signal processing in auditory neurons. Novel
aspects of our model are the physiologically motivated
separation into frequency bands, the concentration on
envelopes and finally the fractional derivatives of the envelope.
We hypothesize that auditory neurons utilize fractional
derivatives to code incoming sound in an optimal space in
order to preserve information efficiently and reduce noise. This
hypothesis needs further experimental exploration, but we
think that this should not stop us from investigating the
exciting mathematical possibilities that fractional derivatives
offer for noise reduction algorithms.

Most state of art noise reduction strategies can reduce noise
and increase speech quality, but they cannot improve speech
intelligibility. Processing in the neural space aims to improve
intelligibility while reducing noise and keeping the quality
intact. Crucially have shown here that fractional derivatives
allow transformation into the neural space and sounds can be
resynthesized without loss of quality.

Sparse coding strategies form a family of different algorithms,
of which the one used is a promising, but probably not the
ultimate candidate. We hope that the demonstrated novel sound
representations in the neural space can help to inspire
improved sparse coding strategies that utilize the additional



information that is provided by the fractional derivatives.
Although we have not yet collected enough data to quantify the
advantage conclusively, we have demonstrated the potential of
this new representation. This also could further explore
potential of sparse coding strategies in spectral envelopes for
cochlear implant users [28, 32-34]. Furthermore, the
transformation into the neural space allows further noise
reduction schemes in future that are also inspired by
physiology like lateral and forward inhibition, as well as more
complex strategies e.g. feed-back inhibition and excitation. In
future work we will investigate the effects of the supervised
sparse coding strategy under different noise types. We will also
develop and evaluate the performance of unsupervised sparse
coding strategy for hearing aid users. We will implement
methods that have been developed for the auditory image
model to further reduce noise. This can be done by
implementing local waveform averaging schemes as well as
predictive or adaptive filtering both based on the signals’ FO or
repetition rate.

In an interdisciplinary field like this with multi-disciplinary
approaches to highly complex problems, it takes a group of
researchers with different backgrounds to further investigate
and develop physiologically inspired ideas towards the
ultimate goal, a speech enhancer which is as good as a normal
hearing human. We expect that this work will impact the
speech perception, physiology and machine learning
community in future.
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