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Abstract – We present a novel noise reduction strategy that is 

inspired by the physiology of the auditory brainstem. Following 
the hypothesis that neurons code sound based on fractional 
derivatives, we develop a model in which sound is transformed 
into a ‘neural space’. In this space sound is represented by 
various fractional derivatives of the envelopes in a 22 channel 
filter bank. We demonstrate that noise reduction schemes can 
work in the neural space and that the sound can be resynthesized. 
A supervised sparse coding strategy reduces noise while keeping 
the sound quality intact. This was confirmed in preliminary 
subjective listening tests. We conclude that new signal processing 
schemes, inspired by neuronal processing, offer exciting 
opportunities to implement novel noise reduction and speech 
enhancement algorithms.  

Keywords-neural coding; sparse coding; fractional derivation; 
bio-inspired 

I. INTRODUCTION 

Speech enhancement and noise reduction strategies have 
been developed on the basis of various mathematical principles. 
Common strategies that are used today in acoustical signal 
processing are spectral subtraction, Wiener filtering and 
subspace algorithms [1-6]. These methods, although based on 
fundamentally different strategies share commonalities: first, 
they are based on the signal amplitude and are therefore 
sensitive to the signal energy, and second, although they can 
improve the speech quality, they generally do not improve the 
speech intelligibility. A system to improve speech 
intelligibility in noisy situation, possibly one that performs as 
good as a human listener, has become the holy grail of the 
speech processing community. Among the many applications 
that such a system would have are hearing aids, mobile phones, 
and automatic speech recognition and telecommunication 
systems. Despite the demand for better solutions recent 
improvements in research have been incremental. It is 
generally assumed that the required breakthrough in 
development requires novel ideas that consider information of 
a higher statistical order and contextual information.  

Here we suggest a novel noise reduction strategy which is 
inspired by a modern interpretation of the physiology of the 
auditory brainstem. We try to emulate the workings of the 
mammalian brainstem by distilling a mathematical concept of 
neuronal speech processing. Specifically, we present a method 
that is inspired by our knowledge of how neurons in the ventral 

cochlea nucleus (VCN) code sound. Recordings in our lab 
allow the hypothesis that neurons code sound based on 
fractional derivatives of the sound envelope and from this basis 
we develop a noise reduction algorithm. We utilize a modified 
well-known algorithm for noise reduction: sparse code 
shrinkage. However, instead of selecting basis vector 
components only on the basis of amplitude, we also take the 
temporal derivative into account. On top of the traditional well 
known first derivative, we also introduce here the concept of 
fractional derivatives of order 0 1k  . We expect that by 
doing this, more powerful basis functions can be found and 
that the signal can be better reconstructed than in traditional 
methods.  

The structure of the paper is as follows: Section II presents 
the study of physiology of sound coding in the ventral cochlear 
nucleus. Section III describes the principle of sparse coding 
and implementation of a sparse coding method. Section IV 
describes the implementation framework of sparse coding 
based on fractional derivatives of spectral envelopes. Section V 
presents preliminary experimental evaluation results. 

II. PHYSIOLOGICAL MOTIVATION  

A. Sound coding in the ventral cochlear nucleus 
The cochlear nucleus (CN) is the first processing station of 

sound in the mammalian auditory brainstem. It provides the 
first opportunity in the ascending auditory pathway to recode 
the input from the cochlea. It is a mandatory processing station 
for all auditory nerve fibres. Anatomically it has been 
described as containing more than fifty discrete cell types [7] 
in two sub-divisions; the Dorsal Cochlear Nucleus (not 
considered here) and Ventral Cochlear Nucleus (VCN).  Sound 
is coded neurally by short electrical bursts (pulses) which are 
termed ‘action potentials’ (or spikes). Traditionally it is 
thought that the rate by which a neuron fires per time is a good 
measure of the information that it is coding, but today it is 
clear that information is coded by rate and higher order 
statistics in single neurons as well as in the temporal 
correlation of population of neurons.  

We have investigated in recent years, how neurons’ 
response and interval statistics are correlated with the sound 
stimulus. An important visual tool to investigate neuronal rate 
responses over time are ‘post stimulus time histograms’.  



 
Figure 1. Rresponse probability of 3 different neurons in the ventral cochlea 
nucleus to a short sound burst of 50 ms. The green line indicates best fits with 
a power function t-k . The fitted k-values are shown in the top right corners. 
 
Post stimulus time histograms (PSTHs) represent the averaged 
neurons’ response to repetitions of the same sound. Properly 
normalized these represent the probability density function of 
the neurons in response to a specific stimulus.  
In contrast to its input from the auditory nerve, the temporal 
discharge characteristics of VCN neurons in response to sound 
are heterogeneous. Using the shape of the PSTH in response to 
tone bursts at the unit’s best-frequency (the frequency at which 
the neuron responds at lowest threshold), single unit responses 
from the VCN have traditionally been classified as belonging 
to one of several main types [8]. Three examples of PSTHs in 
response to pure tones of 50 ms at 20 dB above the neurons 
threshold are shown in Figure 1. The responses vary in a 
number of aspects. Important here is the ‘adaptation’, the 
gradual decline of response after the onset. In the three 
examples, adaptation increases from top to bottom, and we 
observe that a power function, kt  with increasing power 
models this behaviour well.  

The observed variability in temporal adaptation leads to a 
particularly simple interpretation of the neuron’s role in a 
coding scheme. Neurons with less adaptation (low k-value) are 
better suited for measuring energy (Blackburn, Sachs, 1990): 
they respond continuously during a stimulus; the response of 
an ideal neuron with k=0 would be proportional to the stimulus 
itself (Fig. 2A, top panel). Neurons with high k-value adapt 
strongly and have no sustained rate and responds only to 
changes in the stimulus (Rhode, 1994; Winter, Palmer, 1995); 
an ideal neuron with k=1 would make the response 
proportional to the temporal derivative of the stimulus with 
respect to time (Fig. 2A bottom panel). Neurons between these 
extremes perform a mixture of these two processes, their 
response shows some adaptation and some sustained response.  

Accordingly, the mathematical differentiation operator is 
defined for non-integers orders, this branch of mathematics is 
known as fractional calculus. Differentiation generalizes to 

k kd dt where k is not restricted to integer values [9].  
 

 
 

Figure 2. Neurons as fractional differentiators 
A) Sketch of differentiation of orders 0, 0.5 and 1 (top to bottom) of a 

rectangular envelope. Arrows in the bottom sketch indicate Dirac delta 
functions.  The behaviour at k = 0 corresponds to that of “sustained chopper” 
neurons that respond almost constantly during the whole stimulus. The 
behaviour at k = 1 corresponds to that of “Onsets” that respond best to the 
stimulus onset. “Primary-likes” (and essentially all other neurons) are 
somewhere between these extremes. The resulting adaptation pattern follows a 
power function. 

B) Response of a neuron with a k-value of 0.47 to an amplitude modulated 
sinusoids. The top panel shows that modulation gain as function of modulation 
frequency is well described by k ; the bottom panel shows that the phase is 
almost constant at 90k   . The red lines in B are not fitted to the data, they 
show instead the prediction of the fractional model. To calculate the phase 
response a constant delay was subtracted from each period (indicated by the 
arrow in both panels as a cut-off modulation frequency). 
 

The result of applying such an operation to a step input is a 
power-law decay kt as observed in the PSTHs. The middle 
panel of Fig. 2A shows the effect of this operation on a step 
input for k=0.5. For non-integer k the behaviour is non-local so 
that the output depends on the history of the input as well as its 
current value. It therefore appears that all neurons are 
differentiators, each neuron having a particular (non-integer) 
order. This kind of fractional behaviour, characterised by 
power function decay, has been observed and modelled in 
various sensory systems [10-12] e.g. tactile [13], baro [14], 
joint [14], atrial stretch [14] visual [15], electric [16, 17] and 
vestibulo-ocular reflex [18, 19]. 

To test the hypothesis that fractional differentiation is 
occurring in VCN neurons we tested the following hypothesis 
in a limited preliminary study with 11 units: fractional calculus 
predicts that the modulation transfer function will be 

proportional to  sin 2k t k   [9] i.e. a gain of  2 kf  
and a phase lead of 90k   . Neurons were stimulated by a 
sinusoidally modulated input sin( )t  and their k-value was 
identified from the PSTH. The results from one neuron are 
shown in Fig. 2B. Out of the 11 neurons, 9 could be described 
well by the given equation. However, the sample size in this 
study was too small to allow a conclusive answer if this model 



is ultimately correct and more work is needed to underpin the 
physiological basis.  

The observation that projecting neurons produce PSTHs 
that are well-modelled by power laws raises two immediate 
questions: how does their physiology cause them to do this, 
and why have they evolved so as to do it? For the ‘how’ 
Anastasio [18] has suggested that power law behaviour may 
result from parallel activation of many dendritic segments with 
differing time constants. For the ‘why’ one possibility is that 
sensory systems evolved as control systems and it has been 
shown that fractional differentiation is an efficient element in a 
control system for biological processes [10]. The impulse 
response of a fractional calculus systems can be approximated 
by many exponential decay times, thus having many time 
constants or in other words a decaying “memory strength”. It is 
not possible to predict the system response at any time from 
one measurement without knowledge about the stimulus. With 
numerous exponential decays the memory of a signal gets 
forgotten the longer the signal is gone. Therefore fractional 
order controllers memorize the latest inputs more strongly and 
also forget the old inputs more completely than conventional 
integer order controllers. Drew and Abbot [10] describe power-
law adaptation as temporal “generalist”, an intermediate case 
between perfect adaptation (integration in which the signal 
history is never forgotten) and exponential adaptation (in 
which the signal history is forgotten after a few time constants). 
This behaviour seems to be advantageous for an organism that 
has to deal with stimuli that vary on multiple time scales. This 
behaviour is not strange or even rare, it is apparent in most 
natural systems [20], but not widely discussed probably 
because of the apparent complexity of the theory of fractional 
derivatives. 

We use these experimental results as a template to develop a 
hypothesis how a description of the observed neuronal 
response could be used to develop the basis of a novel noise 
reduction method. In our model we assume that the neurons 
indeed perform a fractional derivation of the envelope 
waveform. Encapsulating this behaviour in a mathematical 
formulation, we are going to utilize fractional derivatives as the 
pool of potential functions for the basis transformation in a 
traditional noise reduction scheme.   

B. The ‘neural space’ 

We aim to develop a novel signal processing algorithms that 
comprise a physiological motivated model for noise reduction 
and speech enhancement applications.  In each stage the model 
will attempt to simulate the physiological function. We are not 
trying to build or mimic neuronal networks, but to emulate 
their function on the basis of abstract mathematical principles. 
The first stages of the model are similar to the popular 
‘auditory image mode’ (AIM) [21]. The frequency selectivity 
of the hearing process is modelled by a gammatone filter bank 
with 22 channels, the approximate number of human critical 
bands. In their temporal response, neurons cannot follow 
frequencies higher than 1-2 kHz, and therefore we apply a low 
pass filter of 1200 Hz to the envelope of the signal in each 
channel. The amplitude of this signal represents the probability 

that auditory nerve fibres fires; in AIM this stage is therefore 
called the ‘neuronal activity pattern’. Instead of statistical 
analysis that follows in AIM, we take a different approach, and 
simulate the hypothetical fractional response of neurons in the 
brain stem. Real neurons would form a continuum of k-
numbers between 0 and 1 with millions of neurons in each 
frequency channel. To simplify the processing, we assume here 
only three different k-values (0, 0.5 and 1) in each of the 22 
frequency channels and only aim to demonstrate the principle.  

At this stage in the model the amplitude of the signal in 
each channel is a representation of the sound in a new space: 
the k=0 channels represent signal energy, the k=1 channels its 
entropy [22], and the k=0.5 channel are a mixture and contain 
a memory. We call this representation the ‘neural space’ of the 
signal and we argue that advanced and novel signal processing 
that is inspired by physiology can take place in this space. 
After signal processing in the neural space, the signal is 
resynthesized back to the time domain, allowing applications 
where the user needs to hear a cleaned-up signal.   

Although the focus in this paper is on the novel 
representation, we show that a simple noise reduction scheme – 
supervised sparse coding – can work in the neural space.  

III. SPARSE CODING METHOD 

A. Principle of Sparse Coding 
Sparse coding (SC) strategies offer a promising method to 

identify the most essential information in a speech sound. 
Recently, there has been significant development in SC 
algorithms, exploring sparse representations in the context of 
denoising and classification [23-27]. Sparse applications 
exploit the fact that most signals of interest are sparsely 
represented in an appropriate dictionary or base. However, 
most previous research utilize ‘off-the-shelf’ wavelet- and 
cosine-transform dictionaries but recent research has 
demonstrated the significant advantages of dictionary learning 
matched to the signals of interest [28]. 

We consider a signal Dx  and a dictionary consisting of 
L basis vectors, (1) ( )[ ] D L

L
  D d d   , ( ) 2

1, 1, ,l l L  d . 

A sparse coding Lc    of signal x in dictionary D defines a 
sparse linear combination of K L atoms, such that the 
approximation error

2
x Dc is sufficiently small. 

B. Dictionary Learning 
Dictionary learning adapts an initial dictionary to a specific 

signal class (e.g. speech spectral envelopes). The signal in this 
specific class is represented by a linear combination of 
dictionary atoms. Learning the dictionary is critical in noise 
reduction, where signal of a specific class must have a sparse 
representation in its dictionary, while noise could not. 
Constructive dictionaries that are not signal class specific don 
not satisfy this criterion. 

Dictionary learning is decomposition of a data matrix 
(1) ( )[ ] D N

N
  X x x   into a dictionary D and a 

coding (1) ( )[ ] L N
N

  C c c  , given by 



 2

,
arg min F 

D C
X D C  (1) 

subject to a sparsity constraint on C. The unit norm constraint 
on F denotes the Frobenius norm. kSVD (k-means singular 
value decomposition)  algorithm of [23] implemented in 
Matlab by kSVD-Box1 is used to realize dictionary learning. 
This method iteratively solves locally optimal solutions, by 
alternating between optimizing the coding and the dictionary. 
Coding update: For a given dictionary, an orthogonal 
matching pursuit (OMP) regression was used to compute C by 
approximating the solution of  

 ( ) 0
arg min nc  (2) 

 ( ) ( ) 2
. . n ns t   x Dc  (3) 

Dictionary update: For each column ( )ld , l=1,…L, the 
contribution of basis vector ( )ld  to the residual norm was 
separated and the residual norm was minimized using SVD. 
Specific details are described in [23]. 
 

C. Noise Reduction 
We assume the observed noisy signal is the linear additive 

mixture of clean signal and noise. Given the dictionary and 
noise variance, the clean signal could be estimated by 
orthogonal matching pursuit (OMP) regression algorithm.  

The signals here are fractional derivative representations of 
spectral envelopes from speech materials. BKB (Bamford-
Kowal-Bench) sentences were chosen as both training and test 
speech materials [29]. BKB sentence lists are standard British 
speech materials containing 21 lists, each containing 50 
keywords in 16 sentences. Six lists of BKB sentences were 
randomly chosen as training data and the other lists were used 
as test data. The training sentences were concatenated to derive 
spectral envelopes to get dictionary.  

IV. SUPERVISED SPARSE CODING STRATEGY ON FRACTIONAL 
DERIVATIVES OF SPECTRAL ENVELOPES   

A. Implementation of Sparse Coding Strategy in Speech 
Enhancement 
Figure 3 shows the implementation of the supervised SCS 

strategy for the spectral envelopes. As most of the information 
is contained in the envelopes of each filter, processing in 
spectral envelopes is expected to extract the most critical 
information. In our strategy, the input signals are split into 22 
channels by a gammatone filter bank, from which envelopes 
are extracted in each channel by Hilbert transform. In each 
frequency channel fractional derivatives are calculated for 
three k-domains: k=0 (only coding Energy), k=1 (only coding 
amplitude change or entropy) and k=0.5. In future application, 
we expect that these k-values fill the continuum between 0 and 
1. In traditional noise reduction schemes, only k=0 is taken 
into consideration.  
                                                        
1 http://www.cs.technion.ac.il/~ronrubin/software/html 

 
 

Figure 3. Flowchart of the spectra envelope sparse coding strategy. 
Supervised SCS is applied to the spectral envelopes of the fractional 
derivatives in each frequency channel.  

 
Supervised SCS is implemented on the matrices of spectral 

envelopes where each column represents a short temporal 
frame and each row represents the envelopes in one channel. 
The training speech is processed in the same way and basis 
learning is applied in the spectral envelopes from the training 
data. The training data is about 10 seconds long. After 
supervised SCS, the basis vectors with highest Eigenvalues in 
each k-domain are selected for further processing and the de-
noised signal is calculated by resynthesis on the basis of the 
selected basis vectors. The resynthesis works by averaging the 
three individual reconstructions according to k=0, .5 and 1 
with identical weight.  

B. Implementation of Fractional Derivation and Integration 
Fractional derivation and integration are implemented by using 
a matrix approach that enables convenient discretization of 
partial differential equations with derivatives of arbitrary real 
order [30]. We used software from the MATLAB file 
exchange 2  to realize fractional derivation and integration. 
Examples of fractional derivatives of spectral envelopes of a 
short segment word from high, middle and low frequency 
bands are presented in Figure 4. Columns show the fractional 
derivatives of the spectral envelopes from the same frequency 
band (centre frequencies: 3191, 1416, 212 Hz respectively) 
rows shows the fractional derivatives of the spectral envelops 
from different frequency bands with the same k value (0, 0.5, 
1). The spectral envelopes are derived by Hilbert transform. 
The figures illustrate that, as expected, the fractional derivative 
fluctuates more at larger k and at higher frequency channels.  

                                                        
2 http://www.mathworks.com/matlabcentral/fileexchange/22071 
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Figure 4. Fractional derivatives of the spectral envelopes of the word “pears”. 
Different columns show: (left) High Frequency band (middle) middle 
frequency band (right) low frequency band. Different rows show different k-
values. Cf  indicates the centre frequency in a gamm tone filter bank. 
 
The fractional derivatives emphasize the different temporal 
characters of the spectral envelopes. For example, for the zero-
derivatives the sparse coding algorithm will emphasize the low 
frequency components which have higher energy; for the first 
derivatives the algorithm will pick out more high frequency 
components which show a higher rate of change. The fractional 
derivatives are in between these extremes (Figure 4 and Figure 
5). The method is described in detail in [30]. 
 

V. EXPERIMENTAL RESULTS 

Figure 5 shows spectrograms of the example sound “pears” 
clean (figure (a)) and in babble noise (0 dB SNR) (figure (b)). 
Also shown for comparison are the spectrograms of the 
resynthesized outputs after the sparse coding noise reduction 
strategies on different fractional derivatives (Figure 5 (c-e)).  It 
can be seen that sparse coding on entropy (Figure 5 (e), k=1) 
emphasizes the high frequency bands and the noise, in the 
middle frequency bands is reduced; sparse coding on original 
envelopes (Figure 5 (c), k=0) keeps the energy in low 
frequency bands while losing some information in the higher 
frequency bands.  
Results of noise reduction in the neural space were also 
evaluated by informal subjective listening tests. Three 
experienced listeners (first, second and last author), 
independently judged the resynthesized speech sounds. While 
the background noise was reduced slightly, the sound quality 
was as good as the original sounds. These preliminary results 
are encouraging.  
This experiment shows that processing on fractional 
derivatives is practical to realize noise reduction and keep 
intelligibility.  Standard subjective speech intelligibility tests 
with BKB sentences [31] will be used to test the performance 
of sparse coding in different fractional derivative of envelopes. 
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Figure 5. Spectrograms of outputs from sparse coding strategies on different 
fractional derivatives of spectral envelopes of word “pears” in babble noise (0 
dB SNR). (a) clean speech; (b) noisy speech; (c) sparse coding on fractional 
derivatives of spectral envelopes (k=0); (d) sparse coding on fractional 
derivatives of spectral envelopes (k=0.5); (e) sparse coding on fractional 
derivatives of spectral envelopes (k=1). 
 
Future work will choose appropriate k value to implement 
sparse coding so that noise is more efficiently reduced. 
Combination of strategies with different k-values is also 
practical as it will combine different advantages of different 
neural space (different k values) to enhance speech perception.    
 
 

VI. CONCLUSIONS 

This research presents several novel ideas for speech 
enhancement and noise reduction algorithms by mimicking 
mechanism of signal processing in auditory neurons. Novel 
aspects of our model are the physiologically motivated 
separation into frequency bands, the concentration on 
envelopes and finally the fractional derivatives of the envelope. 
We hypothesize that auditory neurons utilize fractional 
derivatives to code incoming sound in an optimal space in 
order to preserve information efficiently and reduce noise. This 
hypothesis needs further experimental exploration, but we 
think that this should not stop us from investigating the 
exciting mathematical possibilities that fractional derivatives 
offer for noise reduction algorithms.  
Most state of art noise reduction strategies can reduce noise 
and increase speech quality, but they cannot improve speech 
intelligibility. Processing in the neural space aims to improve 
intelligibility while reducing noise and keeping the quality 
intact. Crucially have shown here that fractional derivatives 
allow transformation into the neural space and sounds can be 
resynthesized without loss of quality. 
Sparse coding strategies form a family of different algorithms, 
of which the one used is a promising, but probably not the 
ultimate candidate. We hope that the demonstrated novel sound 
representations in the neural space can help to inspire 
improved sparse coding strategies that utilize the additional 



information that is provided by the fractional derivatives. 
Although we have not yet collected enough data to quantify the 
advantage conclusively, we have demonstrated the potential of 
this new representation. This also could further explore 
potential of sparse coding strategies in spectral envelopes for 
cochlear implant users [28, 32-34]. Furthermore, the 
transformation into the neural space allows further noise 
reduction schemes in future that are also inspired by 
physiology like lateral and forward inhibition, as well as more 
complex strategies e.g. feed-back inhibition and excitation. In 
future work we will investigate the effects of the supervised 
sparse coding strategy under different noise types. We will also 
develop and evaluate the performance of unsupervised sparse 
coding strategy for hearing aid users. We will implement 
methods that have been developed for the auditory image 
model to further reduce noise. This can be done by 
implementing local waveform averaging schemes as well as 
predictive or adaptive filtering both based on the signals’ F0 or 
repetition rate. 

In an interdisciplinary field like this with multi-disciplinary 
approaches to highly complex problems, it takes a group of 
researchers with different backgrounds to further investigate 
and develop physiologically inspired ideas towards the 
ultimate goal, a speech enhancer which is as good as a normal 
hearing human. We expect that this work will impact the 
speech perception, physiology and machine learning 
community in future. 
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