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Abstract. Automatic speech recognition (ASR) often fails in acoustically noisy envi-
ronments. Aimed to improve speech recognition scores of an ASR in a real-life like
acoustical environment, a speech pre-processing system is proposed in this paper,
which consists of several stages: First, a convolutive blind source separation (BSS) is
applied to the spectrogram of the signals that are pre-processed by binaural Wiener
filtering (BWF). Secondly, the target speech is detected by an ASR system recogni-
tion rate based on a Hidden Markov Model (HMM). To evaluate the performance of
the proposed algorithm, the signal-to-interference ratio (SIR), the improvement sig-
nal-to-noise ratio (ISNR) and the speech recognition rates of the output signals were
calculated using the signal corpus of the CHiME database. The results show an im-
provement in SIR and ISNR, but no obvious improvement of speech recognition
scores. Improvements for future research are suggested.
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1 Introduction

In real life scenarios, speech must often be recognized in noisy environments, where
the target speech is contaminated by both noise and interference speech. This scenario
is often referred to as “cocktail party effect” [1]. Applications that require speech rec-
ognition (teleconferencing, automatic speech recognition (ASR), hearing aids, etc) do
not work well in such environments. Traditional speech enhancement algorithms of-
ten work only in narrowly specified conditions or with specific noise statistics. Algo-
rithms exist and work well, when the background noise is stationary and non-speech
[2-5], however, these algorithms often fail when competing speakers are present. A
possible solution to this problem is to use source separation algorithm like beamform-



ing [6, 7]. Beamforming algorithms make use of a microphone array to form a beam
towards the target signal. However, beamforming algorithms require a-priory knowl-
edge about the acoustic environment and the sources involved, or a large number of
sensors are required for good performance. Another algorithm for source separation is
blind source separation (BSS) [8, 9]. In BSS source signals are estimated only based
on the information of signals observed at each input channel. BSS thus requires no a-
priory knowledge and furthermore, requires only a small number of microphones.

In this paper, we describe a system that was developed to deal with a given real-life
like acoustical environment that was defined in the PASCAL 'CHiME' challenge [10].
The task of this challenge is to automatically recognize spoken commands in an
acoustically clustered environment that was recorded via KEMAR in a living room
and a kitchen and is contained in the CHiME domestic audio corpus. Various real-life
noise sources include for example competing speakers, a television set, a washing
machine, closing doors, a child hitting sticks and many more. In this paper, a novel
source separation speech enhancement system is proposed that combines binaural
Wiener filtering (BWF) pre-processing and corrected rate based target speech selec-
tion. We aimed to develop a flexible approach that combines the strengths of BSS
techniques with noise reduction algorithms.

2 Methodologies

Fig. 1 shows the overall framework of the proposed system. It consists of three parts:
BWF, BSS and target speech selection.
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Fig. 1. Binaural Wiener filter preprocessed BSS noise reduction framework

First, noise reduction, based on BWF is performed. After applying single channel
noise power spectral density (PSD) estimation to the mixture in each channel indi-
vidually, BWF is used to remove some types of noise signals which are neither speech
like nor too non-stationary. Secondly, the pre-processed binaural signals are trans-
ferred into the time-frequency domain and complex-valued independent component
analysis (ICA) is applied to each frequency bin. In the end, we will have two sepa-
rated signals. One of them is the target source and the other interference. Hence, in
our model, both of the separated signals are fed into an ASR system provided by the
CHIME challenge. Finally, the signal with highest recognition rate is selected as the
target speech for the CHIME challenge.



2.1 Binaural Noise Reduction

As a first step of the BSS, two channel Wiener filtering is performed in order to sup-
press the interfering noise signals as effectively as possible while keeping the binaural
cues of target speech intact. Fig.2 shows the workflow of this binaural noise reduction
algorithm. The algorithm mainly consists of two parts: single channel noise power es-
timation and a two channels Wiener filter.
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Fig.2. Binaural noise reduction scheme

2.1.1 Noise Power estimation

Binaural noise power estimators usually assume certain conditions, for instance
knowledge about the direction of the target source. In our situation, this information is
unknown, therefore we chose to use a single channel noise power estimator and apply
it to the left and the right channels individually. In a second step, a noise PSD estima-
tion algorithm based on the minimum mean square error (MMSE) by Hendriks et al.
[11] was used to estimate the noise PSD of noisy speech in each channel individually.
This specific noise estimator has been shown to estimate noise power robustly, and it
can track non-stationary noises with reasonably low mean estimation error and low
estimation error variance [2].

2.1.2 Two channel Wiener filter

Beamforming [6, 7], post-filtering [4, 5] and multi-channel Wiener filtering [3] are of-
ten used in multi-channel noise reduction. However, beamforming [6, 7] requires a
robust estimation of the direction of the target speech. In the given sound material that
was recorded in highly reverberated environment (e.g., 300 ms reverberation), this
was difficult to estimate correctly and therefore we decided against using beamform-
ing. Post-filtering [4, 5] on the other hand, assumes that background noises in each
channel are only weakly correlated and not directional. In the given sound material
noise sources were often directional, and therefore post-filtering was not applied. As a
promising alternative, BWF was chosen as pre-processing in order to keep some bin-
aural cues in the two channels for the following BSS processing.

In binaural processing, the observed signals, Y, (k,/) and Y,(k,/), in the K fre-

quency bin and the /™ frame in the left and right channels can be written as



Y, (k)= X, (k,))+ N, (k,I) (1)
Yo (k,1) = X (k1) + N (k,1)

where k and [, denote the frequency bin index and the frame index respectively;
X,(k,) and N,(k,)), (i =L, R), are the short-time Fourier transform (STFT) of the
speech and noise signals. The speech signals represent the mixture of both the target
and the interfering speech. The noise signals represent background interfering noise
signals (e.g. washing machine, door closing, child hitting sticks, etc). The single chan-
nel noise estimation [11] is robust at estimating PSD of the background noise signals.
Two channel Wiener filtering based on a-priori SNR estimation is implemented [12]
for its capability of reducing “musical noise” [3]. Its gain function is

s(kD) 2
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where £(k,l)is the a priori SNR as defined in [13]. The a-priori SNR &(k,7) is up-
dated in a decision-directed scheme by
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where a (0<a <l1) is a “forgetting’ factor and y(k,/) is the a posterior SNR as defined
in [13].

2.2 Blind source separation

Supposing N sources and M (M >N) microphones, given the source vector
s(n)=[s1(n),...,sN(n)]T, and the observed vector X(n)=[x1(n),...,xM(n)]T, the mixing

channels can be modeled by finite impulse response (FIR) filters of length P. The
convolutive mixing process is formulated as

P-1 4
x(n) =h(n)#s(n) = ¥ h(p)s(n - p) “)

where h(n) is a sequence of M x N matrices containing the impulse response of mix-
ing channels. For separation, we use FIR unmixing filters of length L and obtain es-

timated source signal vector §(n) = [sAl(n),...,sAN(n)]T by

s(n)=w(n)*x(n)= Liiw(l)x(n -1 )



Here, w(n) is obtained by a frequency-domain BSS approach.

2.2.1 Frequency-domain BSS

After transforming the signals to the time—frequency domain using blockwise L—point
STFT, the convolution becomes a multiplication

X(m, ) =H(f)S(m, f) (6)
S(m, £)=W(f)X(m, f)

where m is a decimated version of the time index n, X(m, f), S(m, f), H(f) and
W(f) are the STFTs of x(n), $(n), h(n) and w(n), respectively, and fe[fo,...,fy] is
2

the frequency.

In the frequency domain, it is possible to separate each frequency bin independ-
ently using complex-valued instantaneous BSS algorithms such as FastICA [14, 15].
However, there are scaling and permutation ambiguities in each frequency bin. This is
expressed as

S(m, £)=W()X(m, £) = A(f)D(f)S(m, ) (7

where D(f) is a permutation matrix and A(f) a scaling matrix at frequency f. It is
necessary to correct the scaling and permutation ambiguities before transforming the
signals back to the time domain.

The scaling ambiguity can be resolved by using the minimal distortion principle [8]
as

W,(f) = diag(W;' (/) W,(/) 8)

where W,(f) is W(f) after permutation correction, W (/) is the one after scaling
correction, (1) denotes inversion of a square matrix or pseudo inversion of a rectan-
gular matrix: diag(-) retains only the main diagonal components of the matrix.

Finally, the unmixing network w(n) is obtained by inverse Fourier transforming
W.(f), and the estimated source §(rn) is obtained by filtering x(n) through w(n). The
workflow of the frequency-domain BSS is shown in Fig.3.
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Fig.3. The workflow of frequency-domain BSS.

2.2.2 Permutation alignment

The inter-frequency dependence of speech sources can be exploited in order to align
the permutations across all frequency bins. The correlation between separated signal
envelopes is commonly used as a measure of inter-frequency dependence. However,
this dependence is only clearly exhibited among a small set of frequencies. Another
inter-frequency dependence measure is the correlation between power ratios of sepa-
rated signals which exhibits a clearer inter-frequency dependence among all frequen-
cies [9].

The M x N mixing network at frequency f can be estimated from the separation
network by

AN =W (N =[a()-.ay(N)] 9

where a,(f) is the i™ column vector of A(f). The observed signal can be decom-
posed to

v ) 10
X(m, /)= a,()S,(m.f) (10)

where S‘l(m,f) is the ith component of S(m, f) i.e., S(m,f)=[S’l(m,f),...,ASA’N(m,f)JT.
A power ratio measure is calculated to represent the dominance of the /™ separated
signal in the observations at frequency f. It is defined as

gf(m): A/”al(f)yl(m’f)uz (11)

Slla (Yo, )}

where the denominator is the total power of the observed signal X(m, f), and the nu-
merator is the power of the i™ separated signal. Being in the range [0, 1], equation
(11) is close to 1 when the /" separated signal is dominant, and close to 0 when others
are dominant. The power ratio measure exhibits the signal activity due to the sparse-
ness of the speech signals. The correlation coefficient of signal power ratios can be



used for measuring inter-frequency dependence and solving the permutation problem.
The normalized bin-wise correlation coefficient between two power ratio sequences

¢(m) and ¢/ (m) is defined as

rzj(fl’fz)_ﬂi(fl)ﬂj(fz) (12)
o,(fDo;(f2)

p(¢h.¢l)=

where i and ; are indices of two separated channels, f, and f, are two frequencies,

() =E{GI.¢l ) w(H=E{S}, o(f)= /E{(g“,f)z}—yf(f) are, the correlation,

mean, and standard deviation at time m. respectively. E{.} denotes the expectation

value. Being in the range of [-1, 1], equation (12) equals equation (11) when the two
sequences are identical. In general, equation (12) tends to be high if output channels i
and j originate from the same source and low if they represent different sources.
This property will be used for aligning the permutation.

We employed a procedure first to perform a rough global optimization followed by
a fine local optimization [16]. In the global optimization, the centroid for each source
is calculated as the average of the power ratio sequences with the current permuta-
tions by using a k-means clustering algorithm. Then the current permutations are op-
timized to maximize the correlation coefficients between power ratio sequences and
the current centroids. This procedure is repeated until it converges. A local optimiza-
tion is performed in order to achieve a better permutation alignment and to maximize
the score values over a set of selected frequencies. In our system, adjacent and har-
monic frequencies are thus considered. The fine local optimization is performed for
one selected frequency f at a time, and repeated until no improvement is found for

any frequency f.

2.3 Summary of the proposed algorithm

In summary, our system is described by the following steps:

Step 1: single channel noise power estimation is applied to each channel to esti-
mate the PSD of noise.

Step 2: the estimated noise PSD of each channel is used in decision directed ap-
proach to derive a priori SNR.

Step 3: binaural Wiener filter is applied to the magnitude spectrum of noisy speech
in both channels and two enhanced speech signals are derived.

Step 4: enhanced signals are transformed to the frequency domain by STFT.

Step 5: a complex-valued ICA is applied on each frequency bin.

Step 6: the permutation alignment is solved along frequency bins.

Step 7: the separated signals are transformed into time-domain by using ISTFT.

Step 8: selecting the target speech from the two separated sources by choosing the
output with the higher recognition rate based on the provided ASR.



3 Results

The algorithm was evaluated on the test database provided by the CHiME challenge
[17]. In the test set the target sound has been convolved with binaural room impulse
responses (BRIR) and mixed with binaural recordings from the CHiME domestic au-
dio corpus. The BRIR was measured at a position 2 meters in front of a KEMAR
dummy. The temporal placement of the Grid utterances within the 20 hours of
CHIME data has been controlled in a manner which produces mixtures at 6 different
SNRS (-6, -3, 0, 3, 6, 9 dB) giving 3,600 test utterances in total, sampled at 16 kHz.

3.2 Evaluations and results
The performance of the proposed algorithm was evaluated by three measures: the sig-

nal-to-interference ratio (SIR), the improvement signal-to-noise ratio (ISNR) and fi-
nally the speech recognition rates. The SIR for the source i was calculated by

z'juzlzt[s;”(t) +es;’)(l)]2 (13)
XX e o]

where es!’(r) and ei’(r) represent filtering distortion, and interference, respectively.

SIR; =10log

10

These two distinct errors are obtained by decomposing the estimated source i to the
j" channel, 5”(z), into:

§9(0) =5 (0) + es(0) + i (1) (14)

Roughly, es|’(r) stands for the distance between the estimated source 5;”(s) and
the filtered version of the source, ei’() is the quantity of other sources present in the

estimated source [18]. The SNR is calculated in the same way as [19], and ISNR is
the difference between the SNR of the enhanced speech, SNR and that of the

noisy speech , SNR, ., as

enhanced °

ISNR = SNR,

enhanced

SNRrwisy ( 1 5)

Fig.4 shows results measured in SIR and ASNR. There are modest improvements
in ISNR and SIR when the algorithm is evaluated using the CHIME test database. To
further evaluate the proposed algorithm, a “standard” Hidden Markov Model (HMM)-
based speech recognizer and a scoring tool in the PASCAL CHIiME Challenge [10]
was used to get the speech recognition rate. Table 1 shows the recognition rates of the
enhanced speech.
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Fig.4. The SIR and ISNR for the whole CHiME test database.

Although there are some improvement in SNR and ISNR, Table 1 shows no obvi-
ous improvement for the ASR correct rates for all the conditions. The reason for this
might be that the features for ASR training are extracted from clean speech in CHIME
challenge, so one promising way to improve the recognition performance for this
challenge might be to extract more robust features from the noisy speech and the en-
hanced speech in the future for this real-life like environments.

Table 1. Speech recognition rates in %

SNR -6dB -3dB 0dB 3dB 6dB 9dB

Speech
Baseline 303 354 49.5 62.9 75 82.4
Enhanced 31 36.2 50.9 63.3 753 82.5

4 Conclusions

A novel system was proposed to improve the ASR performance in real-life like acous-
tical environments using both noise reduction and source separation. First input sig-
nals are pre-processed by noise reduction based on noise estimation and BWF. Then a
time-frequency domain independent component analysis (ICA) is applied on the spec-
trogram to implement blind source separation (BSS). To choose the target speech
candidate with highest speech recognition rate, both of the separated signals are fed
into an ASR system. The signal with higher recognition rate is finally selected as the
target speech. The SIR the ISNR and the speech recognition rates were calculated to
evaluate the algorithm. The proposed algorithm showed a positive effect on SIR and
SNR, but no obvious improvement was found for the speech recognition corrected
rates for the enhanced speech when using the CHiME database. The reason for the
non-improvement in speech recognition rates might be that the ASR used in the
CHIME challenge is trained with clean speech, in the future, one of our work can be
focus on the extraction of the robust features in noisy environments, another promis-
ing way is that noise environment classification could be applied and specific noise
reduction strategies could be chosen for different noise scenarios.
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