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Abstract: The question in the title is answered empirically by solvingtances of three classical
problems: fitting a straight line to data, fitting a real exponto data, and system identification in
the errors-in-variables setting. The results show thatnigear norm heuristic performs worse than
alternative problem dependant methods—ordinary andlesat squares, Kung's method, and subspace
identification. In the line fitting and exponential fittingglmlems, the globally optimal solution is known
analytically, so that the suboptimality of the heuristicthwls is quantified.
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1. INTRODUCTION retical justification and easy implementation in practfoemu-
lating the problem as a semidefinite program has the addition
With a few exceptions model reduction and system identificadvantage of flexibility. For example, adding regulariaatind
tion lead to non-convex optimization problems, for whicarén  affine inequality constraints in the data modeling probléith s
are no efficient global solution methods. The methods for Heads to semidefinite optimization problems that can beesblv
model reduction and maximum likelihood system identifimati by the same algorithms and software as the original problem.
can be classified as local optimization methods and convex
relaxations. Local optimization methods require an ihitip-
proximation and are in general computationally more expens
than the relaxation methods, however, the local optinozati
methods explicitly optimize the desired criterion, whictsares
that they produce at least as good result as a relaxatioroaheth
provided the solution of the relaxation method is used as
initial approximation for the local optimization method.

disadvantage of using the nuclear norm heuristic is the fac
that the number of optimization variables in the semidedinit
optimization problem depends quadratically on the numlber o
data points in the data modeling problem. This makes methods
based on the nuclear norm heuristic impractical for proklem
with more than a few hundreds of data points. Such problems
Ale considered “small size” data modeling problem.

A subclass of convex relaxation methods for system ideatific Outline of the paper

tion are the subspace methods, see Van Overschee and De Moor

[1996]. Subspace identification emerged as a generalizafio The objective of this paper is to test the effectiveness ef th
realization theory and proved to be a very effective apgiolic nuclear norm heuristic as a tool for system identificatiod an
also leads to computationally robust and efficient algorgh model reduction. Although, there are recent theoreticallts,
Currently there are many variations of the original subspagee,e.g, Candés and Recht [2009], on exact solution of matrix
methods (N4SID, MOESP, and CVA). Although the details otompletion problems by the nuclear norm heuristic, to thet be
the subspace methods may differ, their common feature is thsf the author's knowledge there are no similar results atieut
the approximation is done in two stages, the first of which ieffectiveness of the heuristic in system identificationgtems.

unstructured low-rank approximation of a matrix that is -con L L .
structed from the given input/output trajectory. The nuclear norm heuristic is compared empirically witheoth

heuristic methods on benchmark problems. The selected prob
Related to the subspace methods are Kung's method and tbms are simple: small complexity model and small num-
balanced model reduction method, which are the most effectiber of data points. The experiments in the paper are repro-
heuristics for model reduction of linear time-invarians@®ms. ducible Buckheit and Donoho [1995]. Moreover thexMAB
A recently proposed convex relaxation method is the onegus,irﬁ:ode that generates the results is included n the papehzaso t
f],e reader can repeat the examples by copying the code chunks

the nuclear norm as a surrogate for the rank. The nucle A the paper and pasting them in theaMAB command
norm relaxation for solving rank minimization problems wa pap pasting
drompt, or by downloading the code from

proposed in Fazel et al. [2001] and was shown to be the tight
relaxation of the rank. It is a generalization of thenorm http://eprints. soton. ac. uk/ 336088/
heuristic from sparse vector approximation problems tkra
minimization problems.

The nuclear norm heuristic leads to a semidefinite optimiza(1) lin€ fitting by geometric distance minimization (ortieeg
tion problem, which can be solved by existing algorithmswit nal regression),

provable convergence properties and readily availablvaog ~ (2) fitting areal exponential function to data, and
packages. (We use CVX, see Grantand Boyd.) Apart from thed3) system identification in the errors-in-variables seti

nThe selected benchmark problems are:



Problem 1 is the static equivalent of problem 3 and can befinel ra 2a=

solved exactly by unstructured rank-1 approximation of the function dh =1ra(d, r)

matrix of the point coordinates. Problem 2 can be viewed asl[u. s. vl = svd(d):

a first order autonomous system identification problem. This @0 = u(:. 1:1) = s(L:r, 1:r) = v(:, Lir)";

problem also admits an exact analytic solution. Therefore i R

the first two cases, we are able to quantify the sub-optignafit Let D* be an optimal solution of (LRA) and le#* be the
the nuclear norm heuristic (as well as any other method ishi optimal fitting model

not possible in the third benchmark problem, where thereare - image{ﬁ*)

methods that can efficiently compute a globally optimal poin o ) .
The rank constraintin the matrix approximation problem )R

2. TEST EXAMPLES corresponds to the constraint in the line fitting problem)(LF
that the modelZ is a line passing through the origin (subspace
2.1 Line fitting of dimension one)

In this section, we consider the problem of fitting a ligg dim(2") = rank D").

passing through the origin, to a set of points in the plain We use the dimension of the model is a measure for its com-
9= {d d} plexity and define the map
The fitting criterion is the geometric distance fraznto % D - D,

N implemented by the functiolnr a.
dist(7, %) = i;d'sg(di"%))’ (dist Let ||D||« denotes the nuclear norm B¥, i.e., the sum of the

where singular values oD. Applying the nuclear norm heuristic to

dist(ch, ) := min ||} — &”2 (LRA), we obtain the foIIowing convex reIanation
dies minimize overD ¢ RN |DJ. (NNA)
The line fitting problem in the geometric distance sense subjectto |[D—D|r<e
minimiZ(_e diS(.@,%i) (LF) (deffinenng 2by= )
over all linesZ passing through 0 unction dh = nna(d, e)

, , - , begi n, iet(t ;
is equivalent to the problem of finding the nearest in the Cvcgrfg;)resc‘éﬁ(—gflzg(é);ue)

Frobenius nornj| - || sense rank-1 matri® to the matrix of mi ni mi ze nor m nuc( dh)
the point coordinates subject to

D=Id --- d norm(d - dh, 'fro') <= e
. [ N cvx_end
ie.,

minimize oveD € RN D -Dl|r
subject to ran(ﬁ) <r,
whereq=2 andr = 1.
Note 1.(Generalization and links to other methods). Forgen
r < g< N, (LRA) corresponds to fitting an-dimensional sub- D M. §
space toN points in ag-dimensional space. This problem is ) e
closely related to the principal component analysis anal totimplemented by the functiomnae.
least squares problem Markovsky and Van Huffel [2007].

(LRA) The parametee in (NNA) is a user supplied upper bounds on
the approximation errdfD — D||.

Let D be the solution of (NNA). Problem (NNA) defines the
p

The approximatiomnae(D) may have rank more than

The following th h that all optimal solutions oR| . . . . . . =
¢ following theorem shows thatall optimal solutions oRi) in which case (NNA) fails to identify a valid mode.

are available analytically in term of the singular value @lae
position ofD.
Theorem 1(Eckart—Young—Mirsky). Let Note, however, thainae(D) — 0 ase — o, so that for “suffi-
D—uUsvT ciently large” values ok, nnae(D) is rank deficient (and the
) . . rank can be reduced to 0). In data modeling, the aim is to
be the singular value decomposition bf and partitionU, jqentify a model in a desired model class of bounded complex-

2 =:diag(0y,...,0q), andV as follows: ity (dimension of the model). Therefore, we are interested t
rq-r characterize the set of values for the parametar(NNA), for
U LrJqEJr s_.[2 0] 4V ' q;/’ \ Which the rank constraint amae(D) holds:
=1 U] g, =1 So| g-r 20 =M VN, e:={e| rank(nnag(D)) <r}. e
Then the rank- matrix, obtained from the truncated singulanVe hypothesise thatis an interval
value decomposition e=|[e,,,). (H)
D" =UiZ V', The smallest value of the approximation erfér— nnae(D)||,
is such that for which ranKnnag(D)) < (i.e. for which a valid model ex-
Bl — ; —Dlle=./02 . +...4 02 ists) characterizes the effectiveness of the nuclear neumisy
[D-Dle= min ID=Dle=y/0fst 0% 4o e define

P . . . [ >k . H
The minimizerD* is unique if and only ifo; 1 # oy. nna; 1= nnag,,, Wheree,, :=min{e|ecej}.



A bisection algorithm for computing the limit of perfor- of solving an overdetermined linear system of equationkén t
mancee; . of the nuclear norm heuristic is given in Ap- least squares sense.

pendix A. (Test line fitting3b)+=

Another way to quantify the effectiveness of the nuclearmor ghl—lsil Li’”ﬂdézi d?] fsclj(l,’f'ry)* di, )

heuristic is to compute the distance of the approximation 4" | - [d(1, :) / E(z,y:); 1« d(2, o)

nnae(D) to the manifold of rank-matrices e ls2 norm(d - dh_Is2, 'fro’)

e(e) =dist (nnae(D))
;= min||nnae(D) — D[ subjectto rankd) <r. The results are
b 6., = 0.4546 and &, = 0.4531

(definedi st 38 = which are both slightly better than the nuclear norm heiarist
dist = @d, r) nornm(d - lra(d, r), '"fro');

2.2 Exponential fitting
The functione — ¢ presents a complexity vs accuracy trade-
off in using the nuclear norm heuristic. The optimal rankThe problem considered in this section is fitting a time serie
r approximation corresponds in the,e) space to the point ya = (Ya(1),...,ya(T))
(0,€},,), where b : )
_ y an exponential function
€}, := dist (D) = ||D — Lray (D)||r.

= (cZ,...,cZ
The best modehna;(D) identifiable by the nuclear norm . c.expz (cz,-...ez))
heuristic corresponds to the poittt & ). in the 2-norm sensege,,
minimize overce Randze R |yq—cexp|2. (EF)
The loss of optimality incurred by the heuristic is quarjti- The constraint that the sequence
fied by the differencée,n. = €, — €},.. y=(Y(1),....9(T))
is an exponential function is equivalent to the constrdiat the
The following code defines a simulation example and plots thdankel matrix

e ¢ function over the intervak; ., 1.75€ ] (V1 Yo V3 - Yr_ie1]
(Test line fitting3b) = o o B “
randn(’seed’, 0); q = 2; N=10; r = 1; Y2 y3 - YT-L+2
do =[1; 1] * [1:N]; d =d0 + 0.1 * randn(g, N); HA(Y) = 9 . . :
(definedi st 38, e_Ira = dist(d, r) :
N = 20; Ea = linspace(e_lra, 1.75 = e_lra, N); g o O
for i = 1:N YL Y yro|
Er(i) = dist(nna(d, Ea(i)), r); where 1< L < T —1 hasrank less than or equal to 1. Therefore,
end the exponential fitting problem (EF) is equivalent to the k&ln
figure, plot(Ea, Er, 'o', 'markersize’, 8) structured rank-1 approximation problem

minimize oveyeR" |yg—9Yl2

HLRA
subjectto ranks4 (y)) < 1. ( )

The result is shown in Figure 1. In the example,

e .=0.4603 and €., =0.3209
Problem (HLRA) has analytic solution, see [De Moor, 1994,

Sec. IV.C].
Lemma 1.The optimal solution of (HLRA) is
0.08f 1 Y =c'exp,;
o wherez* is a root of the polynomial equation
o | S a2 A 3y 3 12
O ° tya(t)z~ -Ywt)z Ytz =0 (@)
“0.04 ° ] t; t; t; t;
o and - ;
L« ° v < * . —1Yd(t)Z" *
0.02 e . G o= 22130077 %y ( ; : (c)
. / =12
0 035 04 045 05 055 The proof of the lemma and an implementation of a procedure
e fit_exp for global solution of (HLRA), suggested by the

Fig. 1. Distance ohnag(D) to a linear model of complexity 1 lemma, are given in Appendix B,

as a function of the approximation errar Applying the nuclear norm heuristic to problem (HLRA), we

] ) obtain the following convex relaxation
Next, we compare the loss of optimality of the nuclear norm L ~ -
minimize oveyeR | J4(Y)|«

heuristic with those of two other heuristics: line fitting foyni- )
mization of the sum of squared vertical and horizontal disés subjectto [y—yl2<e
from the data points to the fitting linee., the classical method



(definenna_exp 4a= for L = Lrange

function yh = nna_exp(y, L, e) Er (L) = dist_exp(nna_exp(y, L, es_nna));
cvx_begin, cvx_quiet(true); end

vari abl es yh(size(y)) figure,

m ni mi ze norm nuc(hankel (yh(1:L), yh(L:end))) plot(Lrange, Er(Lrange), 'o, 'markersize' , 8)

subject to
normly - yh) <= e

cvx_end
0.05

As in the line fitting problem, the selection of the parameter
can be done by a bisection algorithm. As in Section 2.2, we 0.04
show the complexity vs accuracy trade-off curve and qugantif .
the loss of optimality by the differencle,, = €, — €ina < 003
between the optimal approximation ergjy,., computed using ®
the result of Lemma 1, 0.02
(definedi st _exp 4b)= 0.01 ° °

dist_exp = @y) nornm(y - fit_exp(y));

) o

and the minimal erroe’_,, for which the heuristic identifies a 2 4 L 6 8 10

valid model.

. . . . Fig. 3. Distance off = to an exponential model as a
The following code defines a simulation example and plots theg function of theyparl;r?g%)r P

trade-off curvee over the intervalgj;,,, 1.25€}; 4.

(Test exponential fittingc)= As in the line fitting problem, we compare the loss of optirtyal
randn(’ seed’, 0); z0 = 0.4; c0 = 1; T = 10; of the nuclear norm heuristic with an alternative heuristic
t =(1:T)’; y =c0=x (z0.7t) +0.1* randn(T, 1); method—Kung's method, see Kung [1978]. Kung's method is
(definedi st _exp 4b), e_hlra = dist_exp(y) based on results from realization theory and balanced model

reduction. Its core computational step is the singular evalu

N =20; EBa =linspace(e_hira, 1.25~ e_hira, N); decomposition of the Hankel matris¢{ (yq), i.e., unstructured
L = round(T / 2); | . . b
for i = 1:N ow-rankapproxmatlo_n.The heurlst_lc comes from the fhatt_

Er(i) = dist_exp(nna_exp(y, L, Ea(i))): the Hankel structure is not taken into account. For detailed
end about Kung’s algorithm, we refer the reader to [Markovsky,
ind = find(Er < le-6); es_nna = nin(Ea(ind)) 2012, Sect 3.1]. For completeness, an implement&tiomg
figure, plot(Ea, Er, '0o, 'markersize', 8) of Kung’s method is given in Appendix C.

(Test exponential fittingc)+=
The result is shown in Figure 2. In the example, e_kung = norn(y - kung(y, 1, L))

e.=03130 and e,=0.2734 _ _ .
The obtained results ig,,, = 0.2742, which is much better

than the result obtained by the nuclear norm heuristic.

2.3 Errors-in-variables system identification

003 - The considered errors-in-variables identification probis a

generalization of the line fitting problem (LF) to dynamic
models. The fitting criterion is the geometric distancetjdiad
the model# is a single-input single-output linear time invariant
« ° system of orden. Let

0.01 | Wq := (Wg(1),...,wq(T)), wherewg(t) € R?,
&, e be the given trajectory of the system. The identificatiorbfgm
/ ra ° / na is defined as follows: givewy andn,

@ 0.02 °

0.28 0.3 0.32 0.34 minimize  distwg, %)
subjectto wis traj. of LTI system of orden. (SYSID)

Fig. 2. Distance of = nnae: _ (y) to an exponential model as a

function of the approximation errer— [ly— . The problem is equivalent to the following block-Hankelstr

tured low-rank approximation problem

The performance of the nuclear norm heuristic depends on theMmize - ovew Iwa _jvi\;'(zA )

parametet. In the simulation example, we have fixed the value subiect to ranl{[ LWy D <L+n. (BHLRA

L = [T/2]. Empirical results (see the following chunk of code : A (Wo)| ) =  ( )

and the corresponding plot in Figure 3) suggest that thisés tforn < L < [T/2].

best choice. (definebl k_hank 4f)=

(Test exponential fittingc)+= bl k_hank = @w, L) [hankel (w1, 1:L), w1, L:end))
Lrange = 2: (T - 1) hankel (wv(2, 1:L), W2, L:end))];



This is a honconvex optimization problem, for which there ar
no efficient solution methods. Using the nuclear norm héaris
we obtain the following convex relaxation
S (W)
HL(W2) ||,
subjectto |wg—W|2 <e
(definenna_sysi d 5a)=
function wh nna_sysid(w, L,
(definebl k_hank 4f)
cvx_begin, cvx_quiet(true);
vari abl es wh(size(w))
m ni m ze norm nuc(bl k_hank(wh,
subject to
normw - wh,
cvx_end

minimize overw

e)

L)

"fro') <= e

A lower bound to the distance fromto a trajectory of a linear
time-invariant system of orde, is given by the unstructured
low rank approximation of the block Hankel matrix.
(definedi st _sysi d 5=

(definebl k_hank 4f), (definedi st 3a)

dist_sysid = @w, L, n) dist(blk_hank(w, L), +n);

The following code defines a test example.

(Test system identificatidsc) =
randn(’ seed’, 0); rand(’'seed’, 0); T = 20; n
sysO = ss(0.5, 1, 1, 1, -1); u0O =rand(T, 1);
y I simsysO, u0) + 0.1 * randn(T, 1);
w=[(u0 + 0.1 * randn(T, 1))'; y'1;

(definedi st _sysi d 5b)
N = 20; Ea = linspace(0.3, 1,
for i = 1:N

Er (i) = dist_sysid(nna_sysid(w, L,
end
ind = find(Er < le-6);
figure, plot(Ea, Er, "0,

L

N); 4;

Ea(i)), n);

es_nna = mn(Ea(ind))
"mar kersi ze', 8)

The obtained trade-off curve is shown in Figure 4. The optima

0.2
(o]
(o]
0.15
o
o
w 01 °
(o]
0.05} _, ° )
en4sid o etlma
0 o
0.4 0.6 0.8 1
e

Fig. 4. Distance ofv = nnae(w) to a model of order 1 as a
function of the approximation err@r= ||w— Wj|.

model computed by the nuclear norm heuristic has correspond

ing approximation errog;, , = 0.7789. We have manually se-
lected the valué = 4 as giving the best results.

(Test system identificatiosc) +=
Lrange = (n + 1):floor (T / 2);
for L = Lrange
Er (L) = dist_sysid(nna_sysid(w, L, es_nna),

L, n);

end
figure,

pl ot (Lrange, Er(Lrange), 'o', 'markersize', 8)

0.1

0.08

___0.06

0.04

0.02

10

Fig. 5. Distance of¥ = nnae(w) to a model of order 1 as a
function of the parameteér.

Next, we apply the N4SID method, implemented in function
n4dsi d of the Identification Toolbox.
(Test system identificatidbc) +=
sysh ss(n4sid(iddata(w2,:)’
n, 'nk’, 0));

, W1,
sysh

), .
sysh(1,

”1);

The distance from the datay (w) to the obtained modets
(sysh) is computed by the functiomi sfit, see AppendixD.

(Test system identificatiobc) +=
[e_n4sid, wh_n4sid]

m sfit(w, sysh); e _n4dsid

The approximation error achieved by thdsi d alternative
heuristic method i®n4sig = 0.3019. In this example, the sub-
space method produces a significantly better model than the
nuclear norm heuristic.

3. CONCLUSIONS

The examples considered in the paper—line fitting in the
geometric distance sense, optimal exponential fitting, and
system identification—suggest that alternative heusstic
ordinary least squares, Kung’s, and N4SID methods—are more
effective in solving the original nonconvex optimizatiorop-
lems than the nuclear norm heuristic. Further study wilufoc

in understanding the cause of the inferior performance ef th
nuclear norm heuristic and finding ways for improving it.
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Appendix A. BISECTION ALGORITHM FOR end
COMPUTING THE LIMIT OF PERFORMANCE ORNA [f_min, ind] = min(f);

zh = z(ind); ch = c(ind); yh = Yh(:, ind);
Assuming thageis an interval (H) and observing that
D —1ras (D)||F < €na < [ID]|F,

we propose a bisection algorithm en(see Algorithm 1) for
computinge;, ..

Appendix C. IMPLEMENTATION OF KUNG’S METHOD

(Kung methodsc)=
function yh = kung(y, n, L)
[U S, V] = svd(hankel (y(1:L), y(L:end)));
O=95(1l:n, :n) » W:, 1:n); C=V(:, 1:n)’;

Algorithm 1 Bisection algorithm for computing;, . c=Q1, :); b=0:, 1):
Input: D, r, and convergence tolerangg a=Q1lend - 1, :) \ O2:end, :);
g :=||D—1ra/(D)||r ande,:=||D||¢ for t = 1:1ength(y)
repeat yh(t) =c * (a ™ (t - 1)) = b;
e:=(q+e)/2 end
if rank(nnae(D)) > r then,
g :=¢ Appendix D. DISTANCE COMPUTATION IN THE
else DYNAMIC CASE
e =e
end if The problem of computing the distance, also called misfit,
until rank(nnae(D)) #r Ore,— & > &e from a time series to a linear time-invariant model is a con-
return e vex quadratic optimization problem. The solution is theref
available in closed form. The linear time-invariant struretof
(bisection6a) = the system, however, allows efficie®{T) computationg.g,
function e = opt_e(d, r) the Kalman smoother computes the misfiQgT ) flops, using
el =norn(d - Ira(d, r), "fro); on a state space representation of the system.
izi fen;r mid. riren)s In [Markovsky, 2012, Section 3.2], a method based on, what is
e = nean([el eu]): called an image representation of the system is presenited. T
re = rank(nna(d, e), le-5); %numerical rank following implementation does not exploit the structurehie
if re>r, el =e; else, eu =¢e; end problem and the algorithm has computational cSE3).
if (re==r) & (eu - el < le-3), break, end (defineni sfit 6d)=
end function [M wh] = misfit(w, sys)

(transfer function to image representatiés)
size(w, 2); TP = blktoep(P, T);
reshape(TP » (TP \ wW(:)), 2, T);
normlw - wh, 'fro');

Appendix B. PROOF OF LEMMA 1 AND FUNCTIONFOR T
GLOBAL SOLUTION OF (HLRA) y

The fact thaty* is an exponential functior* exp,. follows . .
from the equivalence of (HLRA) and (EF). Setting the partia]l'hefunctlorbl kt oep (not shown) constructs a block Toeplitz

derivatives of the cost function matrix and the conversion from transfer function to image
T representation is done as follows:
f(c,z) = Z (y(t) — ci)z (transfer function to image representatiée) =
t= [a, p] = tfdata(tf(sys), 'v');
of (EF) w.r.t.c andz to zero, we have the following first order © = Z?rof(lev | f”gt h(p)):
optimality conditions P(1, =) =fliplr(p);

P(2, :) =fliplr([qg zeros(length(p) - length(q))]);



