
How effective is the nuclear norm heuristic
in solving data approximation problems?

Ivan Markovsky ∗

∗School of Electronics and Computer Science, University of Southampton
SO17 1BJ, United Kingdom, Email:im@ecs.soton.ac.uk

Abstract: The question in the title is answered empirically by solvinginstances of three classical
problems: fitting a straight line to data, fitting a real exponent to data, and system identification in
the errors-in-variables setting. The results show that thenuclear norm heuristic performs worse than
alternative problem dependant methods—ordinary and totalleast squares, Kung’s method, and subspace
identification. In the line fitting and exponential fitting problems, the globally optimal solution is known
analytically, so that the suboptimality of the heuristic methods is quantified.
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1. INTRODUCTION

With a few exceptions model reduction and system identifica-
tion lead to non-convex optimization problems, for which there
are no efficient global solution methods. The methods for H2
model reduction and maximum likelihood system identification
can be classified as local optimization methods and convex
relaxations. Local optimization methods require an initial ap-
proximation and are in general computationally more expensive
than the relaxation methods, however, the local optimization
methods explicitly optimize the desired criterion, which ensures
that they produce at least as good result as a relaxation method,
provided the solution of the relaxation method is used as an
initial approximation for the local optimization method.

A subclass of convex relaxation methods for system identifica-
tion are the subspace methods, see Van Overschee and De Moor
[1996]. Subspace identification emerged as a generalization of
realization theory and proved to be a very effective approach. It
also leads to computationally robust and efficient algorithms.
Currently there are many variations of the original subspace
methods (N4SID, MOESP, and CVA). Although the details of
the subspace methods may differ, their common feature is that
the approximation is done in two stages, the first of which is
unstructured low-rank approximation of a matrix that is con-
structed from the given input/output trajectory.

Related to the subspace methods are Kung’s method and the
balanced model reduction method, which are the most effective
heuristics for model reduction of linear time-invariant systems.

A recently proposed convex relaxation method is the one using
the nuclear norm as a surrogate for the rank. The nuclear
norm relaxation for solving rank minimization problems was
proposed in Fazel et al. [2001] and was shown to be the tightest
relaxation of the rank. It is a generalization of theℓ1-norm
heuristic from sparse vector approximation problems to rank
minimization problems.

The nuclear norm heuristic leads to a semidefinite optimiza-
tion problem, which can be solved by existing algorithms with
provable convergence properties and readily available software
packages. (We use CVX, see Grant and Boyd.) Apart from theo-

retical justification and easy implementation in practice,formu-
lating the problem as a semidefinite program has the additional
advantage of flexibility. For example, adding regularization and
affine inequality constraints in the data modeling problem still
leads to semidefinite optimization problems that can be solved
by the same algorithms and software as the original problem.

A disadvantage of using the nuclear norm heuristic is the fact
that the number of optimization variables in the semidefinite
optimization problem depends quadratically on the number of
data points in the data modeling problem. This makes methods
based on the nuclear norm heuristic impractical for problems
with more than a few hundreds of data points. Such problems
are considered “small size” data modeling problem.

Outline of the paper

The objective of this paper is to test the effectiveness of the
nuclear norm heuristic as a tool for system identification and
model reduction. Although, there are recent theoretical results,
see,e.g., Candés and Recht [2009], on exact solution of matrix
completion problems by the nuclear norm heuristic, to the best
of the author’s knowledge there are no similar results aboutthe
effectiveness of the heuristic in system identification problems.

The nuclear norm heuristic is compared empirically with other
heuristic methods on benchmark problems. The selected prob-
lems are simple: small complexity model and small num-
ber of data points. The experiments in the paper are repro-
ducible Buckheit and Donoho [1995]. Moreover the MATLAB
code that generates the results is included in the paper, so that
the reader can repeat the examples by copying the code chunks
from the paper and pasting them in the MATLAB command
prompt, or by downloading the code from

http://eprints.soton.ac.uk/336088/

The selected benchmark problems are:

(1) line fitting by geometric distance minimization (orthogo-
nal regression),

(2) fitting a real exponential function to data, and
(3) system identification in the errors-in-variables setting.



Problem 1 is the static equivalent of problem 3 and can be
solved exactly by unstructured rank-1 approximation of the
matrix of the point coordinates. Problem 2 can be viewed as
a first order autonomous system identification problem. This
problem also admits an exact analytic solution. Therefore in
the first two cases, we are able to quantify the sub-optimality of
the nuclear norm heuristic (as well as any other method). This is
not possible in the third benchmark problem, where there areno
methods that can efficiently compute a globally optimal point.

2. TEST EXAMPLES

2.1 Line fitting

In this section, we consider the problem of fitting a lineB,
passing through the origin, to a set of points in the plain

D = {d1, . . . ,dN }.

The fitting criterion is the geometric distance fromD to B

dist(D ,B) =

√
N

∑
i=1

dist2(di,B), (dist)

where
dist(di ,B) := min

d̂i∈B

‖di − d̂i‖2.

The line fitting problem in the geometric distance sense
minimize dist(D ,B)

over all linesB passing through 0
(LF)

is equivalent to the problem of finding the nearest in the
Frobenius norm‖ · ‖F sense rank-1 matrix̂D to the matrix of
the point coordinates

D = [d1 · · · dN] ,

i.e.,

minimize overD̂ ∈R
q×N ‖D− D̂‖F

subject to rank(D̂)≤ r,
(LRA)

whereq= 2 andr = 1.
Note 1.(Generalization and links to other methods). For general
r < q< N, (LRA) corresponds to fitting anr-dimensional sub-
space toN points in aq-dimensional space. This problem is
closely related to the principal component analysis and total
least squares problem Markovsky and Van Huffel [2007].

The following theorem shows that all optimal solutions of (LRA)
are available analytically in term of the singular value decom-
position ofD.
Theorem 1.(Eckart–Young–Mirsky). Let

D =UΣV⊤

be the singular value decomposition ofD and partitionU ,
Σ =: diag(σ1, . . . ,σq), andV as follows:

U =:
r q− r

[U1 U2] q , Σ =:

r q− r[
Σ1 0
0 Σ2

]
r

q− r
and V =:

r q− r

[V1 V2] N ,

Then the rank-r matrix, obtained from the truncated singular
value decomposition

D̂∗ =U1Σ1V
⊤
1 ,

is such that

‖D− D̂∗‖F = min
rank(D̂)≤r

‖D− D̂‖F =
√

σ2
r+1+ · · ·+σ2

q .

The minimizerD̂∗ is unique if and only ifσr+1 6= σr .

〈definelra 2a〉≡
function dh = lra(d, r)
[u, s, v] = svd(d);
dh = u(:, 1:r) * s(1:r, 1:r) * v(:, 1:r)’;

Let D̂∗ be an optimal solution of (LRA) and let̂B∗ be the
optimal fitting model

B̂
∗ = image(D̂∗).

The rank constraint in the matrix approximation problem (LRA)
corresponds to the constraint in the line fitting problem (LF)
that the modelB̂ is a line passing through the origin (subspace
of dimension one)

dim(B̂∗) = rank(D̂∗).

We use the dimension of the model is a measure for its com-
plexity and define the map

D
lrar−−−→ D̂∗,

implemented by the functionlra.

Let ‖D‖∗ denotes the nuclear norm ofD, i.e., the sum of the
singular values ofD. Applying the nuclear norm heuristic to
(LRA), we obtain the following convex relaxation

minimize overD̂ ∈ R
q×N ‖D̂‖∗

subject to ‖D− D̂‖F ≤ e.
(NNA)

〈definenna 2b〉≡
function dh = nna(d, e)
cvx_begin, cvx_quiet(true);

variables dh(size(d))
minimize norm_nuc(dh)
subject to
norm(d - dh, ’fro’) <= e

cvx_end

The parametere in (NNA) is a user supplied upper bounds on
the approximation error‖D− D̂‖F.

Let D̂ be the solution of (NNA). Problem (NNA) defines the
map

D
nnae−−−→ D̂,

implemented by the functionnnae.

The approximationnnae(D) may have rank more thanr,
in which case (NNA) fails to identify a valid model̂B.

Note, however, thatnnae(D)→ 0 ase→ ∞, so that for “suffi-
ciently large” values ofe, nnae(D) is rank deficient (and the
rank can be reduced to 0). In data modeling, the aim is to
identify a model in a desired model class of bounded complex-
ity (dimension of the model). Therefore, we are interested to
characterize the set of values for the parametere in (NNA), for
which the rank constraint onnnae(D) holds:

e := {e | rank
(
nnae(D)

)
≤ r }. (e)

We hypothesise thate is an interval

e = [e∗
nna

,∞). (H)

The smallest value of the approximation error‖D−nnae(D)‖F,
for which rank(nnae(D))≤ r (i.e., for which a valid model ex-
ists) characterizes the effectiveness of the nuclear norm heuris-
tic. We define

nnar := nnae∗
nna

, wheree∗
nna

:= min
e

{e | e∈ e}.



A bisection algorithm for computing the limit of perfor-
mancee∗

nna
of the nuclear norm heuristic is given in Ap-

pendix A.

Another way to quantify the effectiveness of the nuclear norm
heuristic is to compute the distance of the approximation
nnae(D) to the manifold of rank-r matrices

ε(e) = distr
(
nnae(D)

)

:= min
̂̂D

‖nnae(D)−
̂̂D‖F subject to rank(̂̂D)≤ r.

〈definedist 3a〉≡
dist = @(d, r) norm(d - lra(d, r), ’fro’);

The functione 7→ ε presents a complexity vs accuracy trade-
off in using the nuclear norm heuristic. The optimal rank-
r approximation corresponds in the(ε,e) space to the point
(0,e∗

lra
), where

e∗
lra

:= distr(D) = ‖D−lrar(D)‖F.

The best modelnnar(D) identifiable by the nuclear norm
heuristic corresponds to the point(0,e∗

nna
).

The loss of optimality incurred by the heuristic is quanti-
fied by the difference∆enna = e∗

nna
−e∗

lra
.

The following code defines a simulation example and plots the
e 7→ ε function over the interval[e∗

lra
,1.75e∗

lra
].

〈Test line fitting3b〉≡
randn(’seed’, 0); q = 2; N = 10; r = 1;
d0 = [1; 1] * [1:N]; d = d0 + 0.1 * randn(q, N);

〈definedist 3a〉, e_lra = dist(d, r)
N = 20; Ea = linspace(e_lra, 1.75 * e_lra, N);
for i = 1:N

Er(i) = dist(nna(d, Ea(i)), r);
end
figure, plot(Ea, Er, ’o’, ’markersize’, 8)

The result is shown in Figure 1. In the example,

e∗
nna

= 0.4603 and e∗
lra

= 0.3209.
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Fig. 1. Distance ofnnae(D) to a linear model of complexity 1
as a function of the approximation errore.

Next, we compare the loss of optimality of the nuclear norm
heuristic with those of two other heuristics: line fitting bymini-
mization of the sum of squared vertical and horizontal distances
from the data points to the fitting line,i.e., the classical method

of solving an overdetermined linear system of equations in the
least squares sense.
〈Test line fitting3b〉+≡

dh_ls1 = [1; d(2, :) / d(1, :)] * d(1, :);
e_ls1 = norm(d - dh_ls1, ’fro’)
dh_ls2 = [d(1, :) / d(2, :); 1] * d(2, :);
e_ls2 = norm(d - dh_ls2, ’fro’)

The results are

e∗ls1 = 0.4546 and e∗ls2 = 0.4531

which are both slightly better than the nuclear norm heuristic.

2.2 Exponential fitting

The problem considered in this section is fitting a time series

yd :=
(
yd(1), . . . ,yd(T)

)

by an exponential function

cexpz :=
(
cz1, . . . ,czT)

in the 2-norm sense,i.e.,

minimize overc∈ R andz∈ R ‖yd− cexpz‖2. (EF)

The constraint that the sequence

ŷ=
(
ŷ(1), . . . , ŷ(T)

)

is an exponential function is equivalent to the constraint that the
Hankel matrix

HL(ŷ) :=




ŷ1 ŷ2 ŷ3 · · · ŷT−L+1

ŷ2 ŷ3 . .
.

ŷT−L+2

ŷ3 . .
. ...

...
ŷL ŷL+1 · · · ŷT




,

where 1< L< T−1 has rank less than or equal to 1. Therefore,
the exponential fitting problem (EF) is equivalent to the Hankel
structured rank-1 approximation problem

minimize over̂y∈ R
T ‖yd− ŷ‖2

subject to rank
(
HL(ŷ)

)
≤ 1.

(HLRA)

Problem (HLRA) has analytic solution, see [De Moor, 1994,
Sec. IV.C].

Lemma 1.The optimal solution of (HLRA) is

ŷ∗ = c∗expz∗

wherez∗ is a root of the polynomial equation
T

∑
t=1

tyd(t)z
t−1

T

∑
t=1

z2t −
T

∑
t=1

yd(t)z
t

T

∑
t=1

tz2t−1 = 0 (z∗)

and

c∗ :=
∑T

t=1yd(t)z∗t

∑T
t=1z∗2t

. (c∗)

The proof of the lemma and an implementation of a procedure
fit_exp for global solution of (HLRA), suggested by the
lemma, are given in Appendix B.

Applying the nuclear norm heuristic to problem (HLRA), we
obtain the following convex relaxation

minimize over̂y∈ R ‖HL(ŷ)‖∗
subject to ‖y− ŷ‖2 ≤ e.



〈definenna_exp 4a〉≡
function yh = nna_exp(y, L, e)
cvx_begin, cvx_quiet(true);

variables yh(size(y))
minimize norm_nuc(hankel(yh(1:L), yh(L:end)))
subject to
norm(y - yh) <= e

cvx_end

As in the line fitting problem, the selection of the parametere
can be done by a bisection algorithm. As in Section 2.2, we
show the complexity vs accuracy trade-off curve and quantify
the loss of optimality by the difference∆enna = e∗hlra − e∗

nna

between the optimal approximation errore∗hlra, computed using
the result of Lemma 1,
〈definedist_exp 4b〉≡

dist_exp = @(y) norm(y - fit_exp(y));

and the minimal errore∗
nna

, for which the heuristic identifies a
valid model.

The following code defines a simulation example and plots the
trade-off curveε over the interval[e∗hlra,1.25e∗hlra].
〈Test exponential fitting4c〉≡

randn(’seed’, 0); z0 = 0.4; c0 = 1; T = 10;
t = (1:T)’; y = c0 * (z0 .^ t) + 0.1 * randn(T, 1);
〈definedist_exp 4b〉, e_hlra = dist_exp(y)

N = 20; Ea = linspace(e_hlra, 1.25 * e_hlra, N);
L = round(T / 2);
for i = 1:N

Er(i) = dist_exp(nna_exp(y, L, Ea(i)));
end
ind = find(Er < 1e-6); es_nna = min(Ea(ind))
figure, plot(Ea, Er, ’o’, ’markersize’, 8)

The result is shown in Figure 2. In the example,
e∗
nna

= 0.3130, and e∗hlra = 0.2734.
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Fig. 2. Distance of̂y= nnae∗
nna

(y) to an exponential model as a
function of the approximation errore= ‖y− ŷ‖.

The performance of the nuclear norm heuristic depends on the
parameterL. In the simulation example, we have fixed the value
L = ⌈T/2⌉. Empirical results (see the following chunk of code
and the corresponding plot in Figure 3) suggest that this is the
best choice.
〈Test exponential fitting4c〉+≡

Lrange = 2:(T - 1)

for L = Lrange
Er(L) = dist_exp(nna_exp(y, L, es_nna));

end
figure,
plot(Lrange, Er(Lrange), ’o’, ’markersize’, 8)
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Fig. 3. Distance of̂y = nnae(y) to an exponential model as a
function of the parameterL.

As in the line fitting problem, we compare the loss of optimality
of the nuclear norm heuristic with an alternative heuristic
method—Kung’s method, see Kung [1978]. Kung’s method is
based on results from realization theory and balanced model
reduction. Its core computational step is the singular value
decomposition of the Hankel matrixHL(yd), i.e., unstructured
low-rank approximation. The heuristic comes from the fact that
the Hankel structure is not taken into account. For detailed
about Kung’s algorithm, we refer the reader to [Markovsky,
2012, Sect 3.1]. For completeness, an implementationkung
of Kung’s method is given in Appendix C.
〈Test exponential fitting4c〉+≡

e_kung = norm(y - kung(y, 1, L)’)

The obtained results ise∗kung = 0.2742, which is much better
than the result obtained by the nuclear norm heuristic.

2.3 Errors-in-variables system identification

The considered errors-in-variables identification problem is a
generalization of the line fitting problem (LF) to dynamic
models. The fitting criterion is the geometric distance (dist) and
the modelB is a single-input single-output linear time invariant
system of ordern. Let

wd :=
(
wd(1), . . . ,wd(T)

)
, wherewd(t) ∈ R

2,

be the given trajectory of the system. The identification problem
is defined as follows: givenwd andn,

minimize dist(wd,B̂)

subject to ŵ is traj. of LTI system of ordern. (SYSID)

The problem is equivalent to the following block-Hankel struc-
tured low-rank approximation problem

minimize overŵ ‖wd− ŵ‖2

subject to rank

([
HL(ŵ1)
HL(ŵ2)

])
≤ L+n, (BHLRA)

for n< L < ⌈T/2⌉.
〈defineblk_hank 4f〉≡

blk_hank = @(w, L) [hankel(w(1, 1:L), w(1, L:end))
hankel(w(2, 1:L), w(2, L:end))];



This is a nonconvex optimization problem, for which there are
no efficient solution methods. Using the nuclear norm heuristic,
we obtain the following convex relaxation

minimize overŵ

∥∥∥∥
[
HL(ŵ1)
HL(ŵ2)

]∥∥∥∥
∗

subject to ‖wd− ŵ‖2 < e.
〈definenna_sysid 5a〉≡

function wh = nna_sysid(w, L, e)
〈defineblk_hank 4f〉
cvx_begin, cvx_quiet(true);

variables wh(size(w))
minimize norm_nuc(blk_hank(wh, L))
subject to
norm(w - wh, ’fro’) <= e

cvx_end

A lower bound to the distance fromw to a trajectory of a linear
time-invariant system of ordern, is given by the unstructured
low rank approximation of the block Hankel matrix.
〈definedist_sysid 5b〉≡

〈defineblk_hank 4f〉, 〈definedist 3a〉
dist_sysid = @(w, L, n) dist(blk_hank(w, L), L + n);

The following code defines a test example.
〈Test system identification5c〉≡

randn(’seed’, 0); rand(’seed’, 0); T = 20; n = 1;
sys0 = ss(0.5, 1, 1, 1, -1); u0 = rand(T, 1);
y = lsim(sys0, u0) + 0.1 * randn(T, 1);
w = [(u0 + 0.1 * randn(T, 1))’; y’];

〈definedist_sysid 5b〉
N = 20; Ea = linspace(0.3, 1, N); L = 4;
for i = 1:N

Er(i) = dist_sysid(nna_sysid(w, L, Ea(i)), L, n);
end
ind = find(Er < 1e-6); es_nna = min(Ea(ind))
figure, plot(Ea, Er, ’o’, ’markersize’, 8)

The obtained trade-off curve is shown in Figure 4. The optimal
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Fig. 4. Distance of̂w = nnae(w) to a model of order 1 as a
function of the approximation errore= ‖w− ŵ‖.

model computed by the nuclear norm heuristic has correspond-
ing approximation errore∗

nna
= 0.7789. We have manually se-

lected the valueL = 4 as giving the best results.
〈Test system identification5c〉+≡

Lrange = (n + 1):floor(T / 2);
for L = Lrange

Er(L) = dist_sysid(nna_sysid(w, L, es_nna), L, n);

end
figure,
plot(Lrange, Er(Lrange), ’o’, ’markersize’, 8)
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Fig. 5. Distance of̂w = nnae(w) to a model of order 1 as a
function of the parameterL.

Next, we apply the N4SID method, implemented in function
n4sid of the Identification Toolbox.
〈Test system identification5c〉+≡

sysh = ss(n4sid(iddata(w(2,:)’, w(1, :)’), ...
n, ’nk’, 0)); sysh = sysh(1, 1);

The distance from the datawd (w) to the obtained model̂B
(sysh) is computed by the functionmisfit, see Appendix D.
〈Test system identification5c〉+≡

[e_n4sid, wh_n4sid] = misfit(w, sysh); e_n4sid

The approximation error achieved by then4sid alternative
heuristic method isen4sid= 0.3019. In this example, the sub-
space method produces a significantly better model than the
nuclear norm heuristic.

3. CONCLUSIONS

The examples considered in the paper—line fitting in the
geometric distance sense, optimal exponential fitting, and
system identification—suggest that alternative heuristics—
ordinary least squares, Kung’s, and N4SID methods—are more
effective in solving the original nonconvex optimization prob-
lems than the nuclear norm heuristic. Further study will focus
in understanding the cause of the inferior performance of the
nuclear norm heuristic and finding ways for improving it.
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Appendix A. BISECTION ALGORITHM FOR
COMPUTING THE LIMIT OF PERFORMANCE OFNNA

Assuming thate is an interval (H) and observing that

‖D−lrar(D)‖F ≤ e∗
nna

≤ ‖D‖F,

we propose a bisection algorithm one (see Algorithm 1) for
computinge∗

nna
.

Algorithm 1 Bisection algorithm for computinge∗
nna

Input: D, r, and convergence toleranceε∆e
el := ‖D−lrar(D)‖F andeu := ‖D‖F
repeat

e := (el +eu)/2
if rank(nnae(D))> r then,

el := e,
else

eu := e.
end if

until rank
(
nnae(D)

)
6= r or eu−el > ε∆e

return e

〈bisection6a〉≡
function e = opt_e(d, r)
el = norm(d - lra(d, r), ’fro’);
eu = norm(d, ’fro’);
while 1,

e = mean([el eu]);
re = rank(nna(d, e), 1e-5); % numerical rank
if re > r, el = e; else, eu = e; end
if (re == r) && (eu - el < 1e-3), break, end

end

Appendix B. PROOF OF LEMMA 1 AND FUNCTION FOR
GLOBAL SOLUTION OF (HLRA)

The fact thatŷ∗ is an exponential functionc∗expz∗ follows
from the equivalence of (HLRA) and (EF). Setting the partial
derivatives of the cost function

f (c,z) :=
T

∑
t=1

(
y(t)− czt

)2

of (EF) w.r.t.c andz to zero, we have the following first order
optimality conditions

∂ f
∂c

= 0 =⇒
T

∑
t=1

(
yd(t)− czt

)
zt = 0,

∂ f
∂z

= 0 =⇒
T

∑
t=1

(
yd(t)− czt

)
tzt = 0.

Solving the first equation forc gives (c∗). The right-hand-side
of the second equation is a polynomial of degree 2T, and the
resulting polynomial equation is (z∗).
〈Analytic solution of the exponential fitting problem6b〉≡

function [yh, ch, zh] = fit_exp(y)
t = (1:length(y))’;
p1(t) = t .* y(t); p2(2 * t + 1) = 1;
p3(t + 1) = y(t); p4(2 * t) = t;
r = roots(conv(p1, p2) - conv(p3, p4));
r(r == 0) = []; z = 1 ./ r(imag(r) == 0);
for i = 1:length(z)

c(i) = (z(i) .^ t) \ y;
Yh(:, i) = c(i) * (z(i) .^ t);
f(i) = norm(y - Yh(:, i)) ^ 2;

end
[f_min, ind] = min(f);
zh = z(ind); ch = c(ind); yh = Yh(:, ind);

Appendix C. IMPLEMENTATION OF KUNG’S METHOD

〈Kung method6c〉≡
function yh = kung(y, n, L)
[U, S, V] = svd(hankel(y(1:L), y(L:end)));
O = S(1:n, 1:n) * U(:, 1:n); C = V(:, 1:n)’;
c = O(1, :); b = C(:, 1);
a = O(1:end - 1, :) \ O(2:end, :);
for t = 1:length(y)

yh(t) = c * (a ^ (t - 1)) * b;
end

Appendix D. DISTANCE COMPUTATION IN THE
DYNAMIC CASE

The problem of computing the distance, also called misfit,
from a time series to a linear time-invariant model is a con-
vex quadratic optimization problem. The solution is therefore
available in closed form. The linear time-invariant structure of
the system, however, allows efficientO(T) computation,e.g.,
the Kalman smoother computes the misfit inO(T) flops, using
on a state space representation of the system.

In [Markovsky, 2012, Section 3.2], a method based on, what is
called an image representation of the system is presented. The
following implementation does not exploit the structure inthe
problem and the algorithm has computational costO(T3).
〈definemisfit 6d〉≡

function [M, wh] = misfit(w, sys)
〈transfer function to image representation6e〉
T = size(w, 2); TP = blktoep(P, T);
wh = reshape(TP * (TP \ w(:)), 2, T);
M = norm(w - wh, ’fro’);

The functionblktoep (not shown) constructs a block Toeplitz
matrix and the conversion from transfer function to image
representation is done as follows:
〈transfer function to image representation6e〉≡

[q, p] = tfdata(tf(sys), ’v’);
P = zeros(2, length(p));
P(1, :) = fliplr(p);
P(2, :) = fliplr([q zeros(length(p) - length(q))]);


