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Abstract

This paper discusses the benefits of different infill sampling criteria used in surrogate-model-based con-
strained global optimization. Here surrogate models are used to approximate both the objective and
constraint functions with the assumption that these are computationally expensive to compute. The
construction of these surrogates (also known as meta models or response surface models) involves the
selection of a limited number of designs, evaluated using the original expensive functions. Conventionally
this involves two stages. First the swrrogate is built using an initial sampling plan; the second stage uses
infill sampling criteria to select further designs that offer model improvement. This paper provides a
comparison of three different infill criteria previously used in consirained global optimization problems.
Particular attention is paid to the need to balance the needs of wide ranging exploration and focussed
exploitation during global optimization if good results are to be achieved.
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1. Introduction

FEngineering optimization problems that incur high computational cost should consider the use of surro-
gate models. The surrogate (meta or response surface) model is used as a replacement to the original
function which can be usged for further inexpensive function evaluations, potentially accelerating the op-
timization process. Surrogate models also provide a capability for dealing with noise and missing data,
whilst aiding problem visualisation [4].

A wide choice of surrogate models is available to the designer, an overview is provided by Jones [12]
and more recently by Forrester and Keane [8]. Kriging is one method frequently covered in the literature,
often because of its great flexibility combined with the ability to make estimates of model uncertainly,
a characteristic useful in choosing model update points. Only Kriging models have been considered in
this paper, however the different infill criteria described are transferable to other strategies that provide
mode! uncertainty estimation, such as Gaussian Radial Basis Functions as used by Sébester et al [20]
and Regis and Shoemaker [15].
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Figure 1: The two stage approach

Surrogate modelling can be approached by one stage and two stage methods [12]. This study is
restricted to the more popular two stage approach, see Figure 1. In this, the first stage occurs prior to
having any knowledge of the design space and makes use of an initial sample based on some Design of
Experiments (DoE) technique [13]. A surrogate model is built based on true simulations of this initial
sample. The second stage extracts knowledge from this surrogate to find areas for model refinement
referred to as updating. These update points are selected via an infill sampling criteria {ISC) with
the intention of choosing update points that offer quick convergence to a good sclution but also model
the exact problem over the full range of inputs. Such an ISC aims to strike a balance between model



exploitation and exploration. This second stage is repeated until & time limit, evaluation budget or a
model accuracy is reached.

This study presented here deals with constrained problems where both the objective and constraint
functions are assumed expensive to evaluate, and are therefore replaced with surrogate models. In cases
where either the objective or the constraint function is cheap to evaluate, the reader is directed to Sasena
and Papalambros [18].

In the presence of constraints, the infill criteria are reqired to seek model update points that i lmprove
both the objective and constraint approximations. The infill criteria should therefore aim to strike a
balance between exploitation and exploration of the objective and all the constraint approximations.

This paper first presents three different infill sampling criteria useful for surrogate-model-based con-
strained global optimization. Next, the presented infili criteria are reviewed on three different test prob-
lems, including a real engineering design problem considering the design of a transonic wing with 11
design variables and four constraints.

2. Overview of Kriging
This paper only provides a brief overview of Kriging, based on the 1ntr0duct10n prcmded by Jones [12].
Other publications useful to the interested reader include Forrester et al {10, 9] and Sacks et al [16].

To begin let the function prediction, f(x), be used as a surrogate to the expensive function f (x). This
surrogate is built using a sef of inputs x) % .. x™ and known outputs y = {y®), 4@, ... T
Before demonstrating how this prediction is achieved using Kriging it is necessary to view our known
outputs, ¥, as results from a stochastic process, denoted Y = vy y@ L yENRT, This introduces
the idea of uncertainty to the known outputs which here represents the fact that we do not know the true
output for most sets of inputs. This uncertainty is modelled by saying that the value of the function at x
is like the realization of a random variable Y{x} that is normally distributed with mean p and variance

a2, In other words, at x this function has a typical value x4 with a standard dewatlon o. Clearly we
expect ¢ to fall the nearer a prediction is to an already calculated result y(@.

Assuming the function is smooth and continuous, two points x* and x are close if [|x® — x| is

small. This is saying Y(x¥} and ¥ (x\9)) are highly correlated

. a . ) )
Corr [Y(x(i)), Y(x(j)):l = exp (Z B;]X}i) - xl(j) F") . : (1)
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The parameters §; and p; are known as the hyperparameters. The covariance matrix is equal to

Cov(Y,Y) = o®% | (2)

where Y is the vector of observed stochastic responses which has a mean of 1y and ¥ is the correlation
matrix for all the observed data.

The distiibution of ¥ is dependent on the parameters p, o and the hyperparameters 8 = {61,63,...,04}%
and p = {p1,p2,...,p4a} . These parameters are chosen to maximize the [ikelihood of the observed data.
Maximizing the likelihood identifies parameters which model the function’s behaviour consistently with
the data seen. This requires direct numerical global optimization.

In order to make a prediction § at some new point x, it is also necessary to maximize the likelihood
of this prediction. Using the optimurn parameter values obtained, the best value for this estimate is the
value of § that maximizes the augmented likelihood function [10]. The Kriging predictor can be expressed
as

9(x) = a+ Ty — 14). (3)
This predictor is for an interpolating mlodel where 1 is the vector of correlation between the observed
data and the prediction and j is given as
1Tw-!
= T {4)
1te—13

In the presence of noise this procedure can be fltered by including a regression constant A. The regressing
Kriging prediction is given by

G (%) = fir + 97 (T + A1)~ (v - 14n), (5)



where

17(@ + AL~y
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A suitable regression constant X is found in the same manner as the other model parameters, using max-
imum likelihood estimation.

3. Infill Sampling Criteria for Constrained Optimization

3.1. Function Prediction with a One Pass Penalty Function :
The most straightforward infill criteria considers the addition of an update point at the current optimum
predicted by the surrogate model. This is pure exploitation of the model prediction and with further
updates can quickly converge upon an optimal solution. Due to the lack of exploration, this method is
not guarantesd to converge to the global optimum.
This method is modified to deal with constraints by transforming the constrained problem into an
_unconstrained one. This is achieved by the addition of a one pass penalty function to the mode! prediction

V(x)p = V(x) + P.

This penalty is included if any one of the constraint models predicts a violation. This creates a land-
scape with a steep cliff marking the edge of the feasible design space. On simple problems this method
will perform well, however, with no element of exploration, details of the design space can be missed.
The abrupt cliff landscape also makes this method vulnerable to deceptive or poorly modelled constraint
functions. ' :

3.2. Expected Tmprovement with a One Pass Penalty Function

Using Kriging, or an alternative Gaussian process based model, permits the estimation of model uncer-
tainty. This feature is useful for the selection of update points where the infill criteria can account for
those areas of the model requiring improverent, thus adding an element of exploration. This is achieved
through estimating the regions with a high probability of émprovement. The probability of improvement
is given as

1 0 - 2 ~2
PlI{x)l = f e U9/ @50 qy : 7
b= 7= [ Q
. where I is a measure of improvement I = #minfeas — ¥ (X) and &2(x) is the predicted variance in the
prediction of the Gaussian process based model, given as g

1TE-171 (8

This concept will guarantee global convergence since an under-sampled region will always indicate
some probability of improvement*. The probability of improvement does not indicate how big the im-
provement may be, it only suggests areas where some improvement may be made. The magnitude of
improvement is exposed in the concept know as expected improvement

5(x) = o {1 = 1T@—1¢]

(9)
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where ® and ¢ are the probability distribution and probability density functions, respectively. ¥minfess

* is the minimum feasible point sampied so far. For a poor initial sample or if the feasible region is small,
a feasible point may not have been sampled. In such cases, the point that is closest to being feasible
should be used. ' ' -

Using expected improvement is advantageous since it is likely to be larger at under sampled areas
near to the global optimum and offers elements of both exploitation and exploration of the surrogate
model. Maximising the expected Improvement is one of the more popular approaches used in selecting
update points. In some studies the expected improvement has been meodified to give different weightings
of exploration and exploitation. Although this study only considers the standard expected improvement

* A proof is presented by Schenlau {19].



measure, previous work has highlighted potential for using modified versions such as the generalised
expected improvement [19, 17] and the weighted ezpected improvement function [20].

In order to deal with constraints, the search for maximum expected improvement can again be modified
into an unconstrained problem via a one pass penalty function

EI(®)p = BlI(x)] - P

In this case we subtract the penalty from the expected improvement since we want to search for the
maximum feasible expected improvement. Utilizing expected improvement will increase the potential for
objective and constraint boundaries to be better modelled. One concern with this approach is that the
edges of the feasible regions are again defined by a sheer cliff, being deceptive when the constraints are
poorly modelled.

3.3. Expected Improvement with Probability of Feasibility

Using a one pass penalty function will imit updates to objective improvement only in the places pre-
dicted to be strictly feasible. Although this is sensible for refinement of the objective approximation this
may curb progression of the constraint approximations, especially in cases where they have been poorly
modelled. As already noted, an inaccurate constraint model can cause the penalty function to be missed
or wrongly applied. One way to better handle the constraints is suggested by Schonlau [19]. In this
approach the infill criteria uses a product of the expected improvement of the objective function and the
probability of feastbility calculated from the constraint functions,

E[I(x) N F(x)] = EI)]PIF(x) > gmin).

The probability of feasibility is calculated in the same manner as probability of improvement, however
this identifies regions of feasibility, i.e. the probability the prediction will be greater or less than a
constraint limit. The probability of feasibility for a single constraint is given as

P[F(x)] = ~ (G gmen) = 3G/ (28 g 7. (10)

ﬂ
where g is the constraint function, gms is the constraint Hmit and , G{X) — gm i5 the measure of
feasibility.

This method will gradually drive the infill criteria towards zero in the transition between feasible
and infeasible regions, smoothing the sheer cliff landscape produced by a one pass penalty function.
In cases where more than one constraint is applied, the total probability of feasibility is a product of
all individual constraint probabilities of feasibility. Forrester et al refer to this method as constrained
expected improvement [10].

For simple constraints this method is expected to offer little improvement over the one pass penalty
function. For more complicated constraints or deceptive constraint functions this infill eriterion will ju-
diciously balance exploration and exploitation without the use of arbitrary penalty functions.

4. Model Fitting and Search Algorithims

4.1. Hyperparameter Tuning

Building a Krig model requires sufficient hyperparameter tuning. Different tuning strategies have been
examined by Toal et al [21], concluding that a light fune strategy is adequate up to 12 variables, provided
enough true simulations are performed. The light tune consists of a hybrid search using a 1000 evaluation
genetic algorithm (GA) and a 1000 evaluation dynamic hill climmb (DHC) to maximize the concentrated
likelihood function [11, 5]. The light tune strategy has been adopted for hyperparameter tuning for all
objective surrogates and all constraint surrogates used in this study. The hyperparameters are tuned
after the initial DoE and retuned after every update.

4.2. Infill Sampling Criteria Search

All the infill sampling criteria considered here require a search to identify the next update point. Both the
penalty methods and the probability method transform the constrained probiem into an unconstrained,
single objective problem. Searching for the optimum update can, in itself, be a tough optimization prob-
lem. To ensure the best location for the next update is consistently found, a heavy hybrid search is
used consisting of a 5000 evaluation GA and a 5000 evaluation DHC. This search minimizes ¥{x)p or



maximizes E{I(x}]p and E[I(x) N F(x)] to find the next update point.

5. Comparison Metrics
The performance of the infill criteria can be assessed in a number of ways. Here this performance is

measured using the true sample data, the known cutputs y = {y(l), ', ., y@1T and the chosen set
of inputs x,x® .. x¥, where d includes both the initial DoE and all update samples. If the true
optimum is keown, an intuitive method of comparison is to find the absolute error between the true
optimum, y* at x*, and the best feasible point sampled so far, y*** at x>***. The absolute error in the

objective space is then
R EERVACAE L (11)

An error metric may also be defined in the design vector space

: n .
|X* o Xbestl — Z (m-: _ mgest)2 . (12)
=1 .

where n is the number of design variables. This is the Euclidean distance between x* and x"*t,

Given a limited evaluation budget the designer will also be concerned about the accuracy and reliabil-
ity of each method. By repeating the search on a number of different initial samples the performance of
each approach can be represented in terms of a probability. This probability characterizes the consistency
of each method in achieving an error value within a specified tolerance. By decreasing the tolerance this
metric will demonstrate both the accuracy and reliability of each method in finding the region of the global
optimum. Increasing the tolerance will demonstrate the accuracy and reliability of each method in finding
the exact global optimum. This is calculated after each update so the most efficient ISC can be identified.

6. Artificial Problems

For the purpose of this study two artificial test problems have been selected. In both cases a modified
version of the Branin function[10] is minimized, see Figure 2. This modification adapts the original
Branin function to include one global optimum, rather than three optima of equal value. The function
has also been normalized to [0, 1]. The modified Branin function is given by

- 515 &N iwffi- L 1] s 13
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where z1 € [—5, 10] and zz € [0,15].
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Figure 2: The modified Branin function

The first test problem is concerned with minimizing the Branin function subject to a simple inequality
product constraint,

g =123 (14)



where z1, 72 € [0,1]. For the constraint to be satisfied, g > 0.2.
Tn the second problem the complexity of the constraint in increased. The constraint function is a
version of the Gomez#3 function [17] with an additional sinewave to increase modality,

1
g= (4 — 2.1z + gm‘f) 22t zize + (4 +42d) o5 + 3sin[6 (1 z1)] + 3sin[6 (1 —z2)]  (13)

where 1,22 € [0, 1]. For the constraint to be satisfied, g > 6.
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Figure 3: Artificial constraint functions (a) Product constraint. (b) Gomez#3 constraint.

Figures 3(a) and 3{(b) represent these two constraints used for the ariificial test problems. In both
cases the optimization strategy follows Figure 1. The process begins with the generation of an initial
sample, produced using a random Latin Hypercube DoE. Based on this initial sample, the next step
is to fit the Kriging models, tuning the hyperparematers for the objective function and the constraint
function. The choser infill criterion is then applied to find the first update point. The selected point is
identified and the models are retuned after the evaluation and addition of the update point. In practice
this process is repeated for a number of updates until the total number of evaluations reaches a specified
budget. The size-of this initial sample and the total number of updates has been catered individually for
each problem.

The bounded feasible space and the location of the global optimum for both of these problems is
presented in Figure 4. )
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Figure 4: Bounded feasible space. (a) Product constraint + — global optimum. (b) Gomez#3 constraint
+ — global optimum. ‘



7. Results and Discussion

The performance of each ISC will depend on the placement of points in the initial sample. In some cases,
by pure luck, this DoE will include a point close to the global optimum, accelerating the search. To avoid
this bias each method is run using the same initia! sample. To achieve an accurate representation of the
different ISC abilities, and to iron out any initial sample dependence, the search is repeated over 100
different initial samples.

Figures 5 and 6 demonstrate the results obtained from the two test problems. The simple product
constraint problem uses an initial sample of 8 points and has a further 20 updates. The second preblem
uses an initial sample of 10 and has a further 30 updates. As discussed previously, the average probability
of finding a solution within a specified tolerance is presented to represent both the reliability and accuracy
of each method. Bootstrapping, a statistical resampling method, has been applied to the 100 different
gets of results to produce an accurate representation of the average probability and the 95% confidence
intervals [2]. :

Figure 5 shows the results obtained when the different ISC are applied to the Branin function subject
to the simple Product constraint. It is clear that E[I(x)]p and E[I{x) N F(x)] perform well whilst
}A’(x) p performs poorly. The pure exploitation in ff(x) p does not explore globally, accounting for its
poor performance. The other two methods include an element of exploration and share a very similar
performance. After 20 updates both E[I(x)]p and E[I(x) N F(x)] reliably identify the global optimum.
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Figure 5: Branin function subject to the Product constraint. (a) Mean probability and 95% confidence
intervals of the best feasible point being within 0.1% of the true optimum value. (b) Mean probability
and 95% confidence intervals of the best feasible point being within a FEuclidean distance of 0.01v/2 of
the true optimum location.

Once the complexity of the constraint is increased, ¥'(x)p and E[I(x)]p struggle to consistently iden-
tify the global optimum. This is clearly demonstrated in Figure 6. In this problem, the benefits of
using E[F{x) N F(x)] become clear. The probabilistic approach to constraint handling effectively relaxes
constraint boundaries, permitting progression of both the objective and constraint approximations. This
works well for this problem since in the early stages of the search the feasible regions are poorly modelled.
The poor performance of E{7(x)]p clearly suggests the one pass penalty function is a poor method when
dealing with complex constraints.

8. Aircraft Wing Design Problem
Finally, we turn to a real design problem that is dominated by constraints. Wing design for transonic
civil aircraft is a very complex task. It is common for such tasks to incorporate aspects of strength,
fuel capacity, operating costs and so on. This process is dominated by complicated simuiations using
expensive design tools. In concept design it is common for engineers to use less sophisticated tools in
favour of cost and time. In such cases empirical codes are used which make no attempt at solving the
flow conditions over the wing or detailed structure analysis but give rapid estimates of likely drag and
strength values.

" In this study the aircraft performance is computed using a light release of a former Airbus conceptual
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Figure 6: Branin funetion subject to the modified Gomez#3 constraint. (a) Mean probability and 95%
confidence intervals of the best feasible point being within 0.1% of the true optimum value. (b) Mean
probability and 95% confidence intervals of the best feasible point being within a Fuclidean distance of
0.01v/2 of the true optimum location.

design toolt. The optimization problem is simplified to a single low wing drag objective. To retain some
of the design complexity; limits are placed on key geometry and constraints exist on the wing weight, fuel
tank volume, pitch-up margin and undercarriage bay length. Overall aircraft weight is adjusted to allow
for wing strength by a wing weight and sizing analysis. Table 1 shows typical values, and limits, for a
transonic civil transport wing with 11 design variables. The table also mciudes the low drag objective
and constraint function values calculated using the wing design tool.

Table 1: Initial design parameters, constraint values, and objective value.

Lower limit  Value Upper Emit. . Quantity
100 168 250  Wing area, m”

6 9.07 12 Aspect ratio

02 0.313 0.45 Kink position

25 27.1 45 Sweep angle, deg

04 0.598 0.7 Inboard taper ratio
0.2 0.506 0.6 Outboard taper ratio
0.1 0.150 0.18 Root t/e

0.06 0.122 0.14 Kink t/e

0.06 0.122 0.14 Tip t/c

4.0 4.5 5.0 Tip washout, deg

0.65 0.75 0.84 Kink washout fraction
— 127984 135000 Wing weight, N

40,0 41.73 — Wing volume, m?

—_— 4.179 54 - Pitch-up margin

2.5 2.693 — Undercarriage bay length, m
— 3.145 —_ D/g, m?

Full runs using the design tool are used for the construction of five surrogate models, one for the low
drag objective and one for each constraint. The Initial sample consists of 110 points spanning the 11
design variables, generated by optimizing a random Latin hypercube using the Morris-Mitchell criterion
[14]. A total of 60 further points are selected via an infill sampling criterion. As before the performance
of each strategy is compared using data collected over a number of different initial samples.

TThis version of the Tadpole concent design tool[3] was developed by Airbus for research at the University of Southamp-
ton.



This is a real engineering problem and the exact location of the true optimum is unknown. This
makes comparison of the best found location and the true optimum location an unreasonable metric for
comparison. The absolute error in the objective space can still act as a good comparison metric, however
the true optimum y*, is replaced with the best known feasible solution. The best feasible solution known
to the authors is D/q = 2.758 m?, at a point where all four constraints are active.

Figure 7 demonstrates the reliability of each method when applied to this aircraft wing design problem.
Figure 7{a) identifies which methods are capable of identifying a feasible D/q value within the range
2.7584:0.05. In this problem, all the constraints are relatively simple to approximate and so using the one
pass penalty approach is expected to converge towards the globa!l optimum. This is demonstrated by the
results, however it is clear that ElI(x) M F(x)] performs the most consistently and is far more efficient.
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Figure 7: Results from wing design tool simulations. (a) Mean probability and 95% confidence intervals
of the minimum feasible D/q being within 0.05 of the best known solution. (b) Mean probability and
95% confidence intervals of the minimum feasible D/q being within 0.01 of the best known solutiomn.

The one pass penalty methods fail to identify any feasible values of D/q within the range 2.758+0.01,
Figure 7(b). These poor results clearly show that accurately finding a solution close to the best known
optimum is very difficult to identify. This may be due to the fact that in many constrained optimization
problems the global solution often lies close to, or on one or more constraint boundaries. In regions of
multiple active constraints, locating a feasible point can be very difficult to achieve. In the case of the
one pass penalty function, such regions are easily discarded if any one of the constraints is deceptive or
poorly modelled. Using ElI(x) N F(x)] clearly copes much better since the constraint boundaries have
been relaxed and the impact of a poorly modelled constraint is not as severe.

9. Conclusions

Many engineering design problems require a large number of time consuming, high fidelity computer
simulations. In aid of reducing the total number of expensive evaluations this study compares.the
performance of three efficient surrogate based methods for constrained global optimization.

On two artificial test problems, selecting surrogate update points based on pure exploitation of the
Kriging prediction performed poorly, while probabilistic approaches show promise over one pass penalty
functions for handling coraplex constraints.

In the presence of multiple constraints, the probabilistic approach outperforms the other two methods.
Although E[I(x) N F(x)] appears superior, the authors believe further improvements can be made since
this method may still discarded solutions if a single constraint gives a probability of feasibility close or
equal to zero*. In certain problems it may be better to search directly for solutions which lay on constraint
boundaries. To achieve this the concept of goal seeking {12] could be extended to constraint satisfaction.

All these methods discussed involve transforming the constrained problem intc an unconstrained
one. This is achieved either by the addition of a penalty or combining expected improvement with
the probability of feasibility. In both cases the manipulation of the constrained problem: may result in
some misrepresentation of the problem, a concern expressed by Audet et al [1]. One way to avoid this

£ The total probability of feasibility is a product of all individual probabilities of feasibility.



distortion is to treat the two properties separately and explicitly consider trade-oifs between themn using
the formation of Pareto sets [7]. For example, by treating the expected improvement and probability
of feasibility separately, multiobjective methods such as NSGA-II [6], can be used to construct a Pareto
set of solutions that maximize both expected improvement and probability of feasibility. This approach
gives the designer a flexible choice of update points offering different levels of model improvement and
Teasibility, Utilizing this approach is a topic for further research.
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