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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF PHYSICAL AND APPLIED SCIENCES 

Electronics and Computer Science 

Doctor of Philosophy 

QUANTIFIED EVALUATION OF THE SIGNIFICANCE OF HIGHER ORDER EFFECTIVE 

MOMENTS AND DIELECTROPHORETIC FORCES 

by Hossein Nili 

In analysis of electric field interactions with dielectrics, higher order moments and 

dielectrophoretic force terms are commonly ignored in what has become known as the 

dipole approximation. The very few multipolar studies in the literature have either 

confined analysis to spherical particles or modelled non-spherical particles as spheres of 

similar dimensions. A major obstacle in analysing the significance of higher order 

moments has been the limitedness of multipole moment determination techniques. 

Analytic derivations for higher order moments are only available for spherical particles. 

This work addresses this roadblock and presents a hybrid numerical-analytical method for 

determination of the first three effective moments of particles of any shape subjected to 

electric fields of arbitrary geometry. Results of applying this method for determining 

higher order dielectrophoretic force terms have been verified by comparison against total 

force calculations using the Maxwell stress tensor method, known for its mathematical 

rigorousness in accounting for all interaction between an applied electric field and subject 

dielectric(s). It is shown that the dipole approximation is particularly unreliable for non-

spherical particles, importantly comprising the vast majority of bioparticles. It is shown 

that higher order terms can constitute up to half the dielectrophoretic force on dielectric 

particles in suspension. With the current trend toward micro- and nano-electrode 

geometries used for single particle analysis, and a consequent increase in the number of 

instances where invoking the dipole approximation can be highly inaccurate, this work 

offers a computationally inexpensive and verifiably accurate means for determining 

higher order moments and dielectrophoretic forces.    
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Chapter One 

Aims and Objectives 
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1.1. Research question 

As the title of the thesis reflects, this body of work is aimed at quantifying the significance of 

higher-order effective moments and dielectrophoretic force terms. Dielectrics form a large 

portion of physical materials and dielectric particles, importantly including biological 

particles such as cells, viruses and bacteria, are the subject of increased attention. 

Applications involving dielectric particles in suspension require a force to be exerted on the 

particles so that the particles can be made to move for the purpose of characterisation and/or 

manipulation. 

 Conventional theory for the electrical force exerted on dielectrics ignores the effect of higher-

order moments. The assumption that higher-order moments are negligible is referred to as 

the dipole approximation. In dielectric characterisation, the dipole approximation assumes 

that the electrical energy stored in dielectrics is sufficiently represented by the first-order 

effective moment, i.e. that higher-order terms in the electric potential due to a dielectric 

subjected to an electric field are negligible.  

In dielectrophoresis (DEP), the phenomenon that describes the motion of dielectrics when 

subjected to a non-uniform electric field, the dipole approximation assumes that higher-order 

force terms, arising from the interaction of electric field gradients with higher-order 

moments, contribute negligibly to the electrical force experienced by the dielectric. In both 

versions of the dipole approximation, it is the interaction of electric field gradients with 

charges due to polarisation of the dielectric(s) that is being ignored due to deemed 

negligence. 

It is commonly stated, as a qualitative measure, that the dipole approximation will be reliable 

for dielectric characterisation or determination of the dielectrophoretic force as long as 

particle dimensions are notably smaller than a characteristic scale of electric field non-

uniformity. While it appears obvious, from the definition of the dipole approximation, that 

higher-order moments and DEP force terms will be insignificant if the electric field varies 

negligibly across particle dimensions, the criterion fails to provide any quantitative measure 

of the condition or the subject: it is not clear how insignificant field variations across particle 

dimensions need to be for the higher-order moments/forces to be negligible. As moments 

and force terms of ascending order arise from field gradients of ascending order, one would 

expect field magnitude variations across particle dimensions to be insufficient measure, even 

as qualitative as it stands, for the significance of multipolar effects. As regards the subject of 

the criterion, it is not clear how insignificant higher-order moments/forces will be once the 

requirements, however qualitative, are met. 
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The research question for this body of work is: how could we determine the significance of 

higher-order interactions between electric fields and dielectrics, and how significant can the 

higher-order moments and dielectrophoretic forces be, compared to the baseline first-order 

moment/force as predicted by the dipole approximation. Although the results of this work 

are applicable to dielectrics of arbitrary size, attention is focussed towards micro-metre 

dielectric particles in suspensions, which comprise the majority of biological particles 

involved in lab-on-a-chip applications where multiple (bio)chemical processes are integrated 

onto a single chip, bringing about several advantages over alternative conduction of the 

processes on actual laboratory scale. 

1.2. Problem solving approach 

Higher-order moments of and corresponding terms of the DEP force on dielectric particles in 

suspension result from interactions of electric field gradients and polarisation charges at the 

particle/electrolyte interface. To examine the circumstances under which higher-order 

effects find significance, electric fields with varying degrees of non-uniformity, with the 

definition of non-uniformity extended not only to include the first-order but also higher-

order field gradients, need to be studied. Due to the shape-dependent nature of the 

polarisation mechanism, particles of different shapes need to be examined. The latter 

examination will allow investigation into the validity of common particle shape 

approximations. As effective moments of arbitrary order have only been derived analytically 

for spherical particles, it has been common practice to approximate ellipsoidal, cylindrical 

and more highly non-spherical particles such as erythrocytes as spheres of similar 

dimensions. Comparison of first- and higher-order moments of spherical and common non-

spherical particles could provide the errors incurred upon typical approximations. 

The approach taken in this work to find the solution to the research question posed in the 

previous section includes two major steps. In the first step, particle and electric field 

geometries that lend themselves to axial symmetry are examined. The assumption of axial 

symmetry serves as a good starting point since: (a) calculations, numerical and analytical, of 

the electric field gradients, effective moments of particles, and dielectrophoretic forces are 

greatly simplified; (b) the method for determining the effective moments up to any order of 

particles of arbitrary shape in axisymmetric geometries has already been developed. Two 

different electrode configurations, three different particle shapes (each with different 

dimensions) and different particle positions along the axis of electric field symmetry will be 

examined to encompass a wide range of circumstances regarding particle and electric field 

geometry. The novelty in the first batch of results lies in calculations of higher-order 
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dielectrophoretic force terms, comparison of the force term results with Maxwell stress 

tensor calculations of the total DEP force in each case, and hence deriving multipolar 

contributions to the dielectrophoretic force for electric fields and particles of different 

geometry. 

The second step of the approach lifts the axisymmetric assumption and as such is novel in 

methodology and results. A method devised for calculation of first-, second- and third-order 

effective moments of particles of arbitrary shape subjected to electric fields of arbitrary 

geometry will be used in conjunction with the effective moment method to determine the 

significance of higher-order moments and DEP forces for particles of different shapes 

subjected to electric fields of varying degrees of curvature. The technique for determining 

higher-order contributions to the DEP force is similar to that used in axisymmetric 

circumstances: calculations of the total force using the Maxwell stress tensor method are 

compared with force term calculations using a completely different method: the effective 

moment method. In axial symmetry and otherwise, excellent agreement is observed between 

the two sets of results, importantly providing – as well as contributions from individual terms 

to the DEP force – verification for the numerical calculations. 

1.3. Statement of intent: generality of analysis 

In analysing the significance of higher order effective moments and dielectrophoretic forces, 

attention will be focussed on particle and electric field geometry as determining factors. 

Effects of other field/particle parameters, importantly including electric field frequency and 

particle orientation should be examined in a broader investigation but will not be considered 

in this work. It will also be assumed in this work that the dielectric particles in suspension 

and their suspending media re ideal dielectrics. As will be explained in Chapter Two, real 

dielectrics conduct electricity. Accordingly, they are characterised with a permittivity which 

is a complex quantity defined in terms of a real part, which is the real permittivity or the 

dielectric constant, and an imaginary part determined by electric field frequency and the 

dielectric’s finite conductivity. In line with focussing attention on the effects of particle and 

electric field geometry on the significance of higher order effective moments and 

dielectrophoretic forces, this work shall assume that all dielectrics involved are non-

conducting. 

In analysis of higher order effective moments and dielectrophoretic forces, a stopping point 

needed to be decided upon as in theory, there are an infinite number of terms in the electric 

potential due to a dielectric particle subjected to an electric field and, accordingly, effective 

moments and dielectrophoretic forces up to any order can be considered. In three-
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dimensional space and with general multipoles representing particle polarisation (case of 

Chapter Six), only the first three multipoles can be realised. In the special case of axial 

symmetry (case of Chapters Four and Five), where the multipoles are linear (constituent 

poles and displacement vectors aligned with the axis of field symmetry), there is no limit on 

the order of effective multipoles that can be considered. To be consistent with the case of 

non-axisymmetric settings, only the first three effective moments and, correspondingly, only 

the first three dielectrophoretic force terms will be examined in this work.  

The method that shall be presented in Chapter Six for determination of higher order effective 

moments is applicable to any particle and electric field geometry. It importantly relies on an 

integration of the electric potential – as can be obtained by finite element method (FEM) 

solution of the Poisson equation – to determine each of the first three effective moments and 

as such does not involve (the highly error-prone) FEM differentiation. 

To make effective moment method calculations of the DEP force terms, electric field 

derivatives need to be determined. This work studies electrode structures within which (or 

along the symmetry axes of which) the electric field has been derived analytically. All 

calculations of electric field gradients in this work are hence analytical. If the DEP force terms 

are to be determined in an electrode configuration for which analytic derivations of the 

electric field are not available, careful mesh strategies need to be incorporated for the 

successive numerical differentiation required for obtaining electric field gradients.  

1.4. Motivation: the big picture and why higher-order effects matter 

Dielectric particles in suspension are encountered in a variety of application areas. An 

important example is the rapidly emerging area of science and technology known as lab-on-a-

chip where multiple bio/chemical processes are integrated onto a single chip of only 

millimetres (and smaller) in size, with the prospect of faster and more readily-available 

analysis. A typical lab-on-a-chip device consists of a network of micro- and nano-channels 

through which flow narrow streams of fluid suspending biological and/or synthetic particles. 

Most suspending fluids and suspended particles, including water and blood (as fluids) and 

cells, viruses and bacteria (as particles) exhibit dielectric properties. 

The reactions that take place on a lab-on-a-chip device require motion of the suspensions. 

The motion will have two facets, most obviously not independent of one another: that of the 

suspending fluid, and that of the suspended particle. The motion of fluids in small (down to 

pico-litre) volumes through narrow channels, and how it differs from conventional fluid 

dynamics, is the subject of on-going research and falls beyond the scope of this work, and the 
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knowledge of the author. It is the motion of dielectric particles, not accounting for effects 

from motion of the suspending fluid, which will be tended to in this work. 

There are a number of mechanisms with which dielectric particles in suspension can be made 

to move through the exertion of a force. An important set of techniques, used favourably in a 

wide range of lab-on-a-chip (among other) applications, utilises electric fields for imparting 

force on, and moving dielectric particles. In lab-on-a-chip, the techniques are collectively 

referred to as AC electrokinetics, the most widely used of which is dielectrophoresis. As 

mentioned previously, DEP is the phenomenon through which a non-uniform electric field 

interacts with charges due to polarisation of dielectrics, resulting in the exertion of a net 

electrical force. Since its advent, DEP has found widespread applications in lab-on-a-chip 

design for characterisation of biological particles, separation of particles based on 

morphological and internal properties, e.g. healthy from infected cells, and manipulation of 

particles in suspension for a controlled reaction to take place.  

In almost all DEP-based design, the so-called dipole approximation, which ignores higher-

order interaction between the electric field and polarisation charges, is invoked for 

determination of the electrical force. The conventional theory for dielectric spectroscopy 

measurements, where properties of dielectric particles in suspension are determined from 

their effective moments – representatives of the electrical energy stored in the dielectrics – 

accounts only for the first-order moment. Non-spherical particles, comprising the majority of 

biological particles, are commonly modelled as spheres for which the moments have been 

derived analytically.  

While the first-order approximation serves well to model a variety of circumstances to the 

required accuracy – particularly in DEP separation applications where mostly the direction, 

rather than the magnitude, of the force is of importance – there is an increasing number of 

circumstances where modelling based on the dipole approximation can result in substantial 

error, and where accuracy in determination of the dielectric properties or the DEP force is of 

crucial importance. In such circumstances, accurate determination of the moments/force 

requires accounting for higher-order effects. 

As effective moments up to an arbitrary order have only been derived analytically for 

particles of spherical shape, the effort required to calculate higher-order moments and 

incorporate them in DEP or dielectric spectroscopy studies of biological and synthetic 

particles, the vast majority of which are non-spherical, is assumed not worthy of their 

possible significance. However, with the current trend toward micro- and nano-electrode 

geometries fabricated for the analysis of single micron and sub-micron particles, giving rise 
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to large field curvatures across subject dielectrics, even the qualitative and far from definitive 

criterion commonly stated in the literature for the reliability of the dipole approximation – 

that particle dimensions are notably smaller than the scale of field non-uniformity – predicts 

higher-order moments and forces of increased significance.  

What forms the major obstacle in not accounting for higher-order effects, i.e. the absence of 

analytic techniques for derivation of higher-order moments, has been addressed in this work 

by using numerical techniques. A method has been developed that enables calculation of the 

first three moments of particles of arbitrary shape subjected to electric fields of arbitrary 

geometry. Effective moment results are combined with analytic calculations of electric field 

gradients to derive first- and higher-order force terms. To ensure accuracy of the numerical 

calculations, force term derivations are compared against total force calculations using an 

alternative method, also implemented numerically. 

The method developed in this work has been applied to specific particle-field geometries, but 

can be used to derive effective moments and dielectrophoretic forces in any situation. 

Comparison of force term results against total force calculations can be used for validation of 

the results, and accuracy in determining particle properties or electrical forces on particles in 

lab-on-a-chip and indeed any other application involving dielectric polarisation can be 

substantially improved as a result.  

1.5. Thesis outline 

This chapter is followed by an introduction to dielectric polarisation, the representative 

effective moments, the net electrical force resulting from the interaction of an applied electric 

field and the effective moments, i.e. dielectrophoresis, and its applications (Chapter Two). 

Chapter Three presents the two methods used in this work for calculation of the 

dielectrophoretic force: the effective moment method for derivation of DEP force terms, and 

the Maxwell stress tensor method for calculating the total DEP force and for validating force 

term results. 

Chapters Four, Five and Six present and discuss the results obtained for the effective 

moments of, and dielectrophoretic forces on particles of different shapes subjected to electric 

fields of different geometry. Results obtained with the assumption of axial symmetry, and 

hence linear effective moments, are presented and discussed in Chapters Four and Five. 

Chapter Four presents the results of applying an available method for the determination of 

linear effective moments to spherical, ellipsoidal and cylindrical particles subjected to the 

axisymmetric fields of point-plane and disc-plane electrode configurations. Calculations of 
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the first three effective moments of the particles, as well as derivations of the significance of 

higher-order moments are presented and discussed. Errors incurred in values of first- and 

higher-order moments upon typical particle shape approximations – in axial symmetry – are 

evaluated. Chapter Four will also present calculations of the first three DEP force terms and 

discuss their dependency on particle and electric field parameters. 

Chapter Five, the shortest of the results chapters, presents the application of the Maxwell 

stress tensor (MST) method for derivation of the total dielectrophoretic force on spherical 

and non-spherical particles in axial symmetry. The chapter also importantly evaluates the 

significance of multipolar contributions to the DEP force in different circumstances regarding 

particle and electric field geometry by comparing force term results obtained from the 

effective moment method against total force calculations using the MST method. The 

comparison also serves as validation for the numerical calculations. 

In Chapter Six, the assumption of axial symmetry is lifted and a novel method is presented for 

derivation of the general effective moments of particles of arbitrary shape subjected to 

electric fields of arbitrary geometry. The method is applied to spherical, ellipsoidal and brick-

shaped particles at different positions within an interdigitated electrode configuration to 

derive the first two effective moments and corresponding DEP force terms. As in the case of 

axial symmetry, total force calculations using the alternative Maxwell stress tensor method 

will be compared against force term results for validation of numerical calculations and 

analysis of the significance of multipolar contributions. The thesis will close with a summary 

of what has been presented, a list of key conclusions and suggestions for further work 

(Chapter Seven). 
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Chapter Two 

Dielectrophoresis: An Introduction to the Phenomenon 
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2.1. Electrostatics 

2.1.1. Electric fields 

Electric charge is a fundamental, conserved property of matter that causes it to experience 

electrical force when near other electrically charged matter. The SI unit of electric charge is 

the coulomb (C). It has been demonstrated through experiments that electric charge is 

quantised, i.e. comes in multiples of individual units called the elementary charge e, equal to 

          .  

The electrical force is normally depicted through the notion of an electric field. The electric 

field is a vector field with SI units of Newtons per coulomb (N/C) or, equivalently, volts per 

metre (V/m). The electric field   is a vector field, with its magnitude at a given point defined 

as the force that would be exerted on a positive test charge of 1 coulomb placed at that point. 

The direction of the field is given by the direction of that force. The electrical force 

experienced by electric charge   subjected to an electric field   is given by: 

                                    (2.1) 

Figure 2.1 shows the electric field vectors around a negative point charge [1]. Also shown in 

the figure are the so-called equipotential surfaces, which represent contours of constant 

electric potential. The electric potential   is defined to be the scalar function related to the 

electric field through the gradient operator  : 

                                         (2.2) 

The branch of physics that concerns the behaviour of stationary or slowly-moving electric 

charge is referred to as electrostatics. The fundamental equation of electrostatics is 

Coulomb’s law, which gives the electrical force between two point charges    and   : 

  
    

       ̂                                                   (2.3) 

In equation (2.3),   is the distance between the two charges,  ̂   is the unit vector pointing 

from    to   , and    is the permittivity of free space, a constant equal to            . 

The distribution of electric charge is related to the resulting electric field by what is known as 

Gauss’s law: 

                                                  (2.4) 
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Figure 2.1. Electrostatic field and potential – The equipotential surfaces (dashed), electric field lines 
(dotted) and electric field vectors (arrows) around a negative point charge. Figure copied from [1]. 

 

where     is the divergence of the electric field and   denotes the volume charge density. 

Gauss’s law is one of the four Maxwell equations which form the basis of classical 

electrodynamics. The law can be used to derive Coulomb’s law (equation 2.3) and vice versa. 

Substituting for the electric potential, equation (2.4) gives: 

                                        (2.5) 

The partial differential equation above is referred to as Poisson’s equation, and is solved – 

analytically, if possible, and numerically, otherwise – to obtain the electrostatic potential or 

electric field in a physical system. In most cases, the charge density   is zero, and Poisson’s 

equation reduces to what is known as Laplace’s equation: 

                                    (2.6) 

2.1.2. The electric dipole and multipoles 

The electric dipole is a measure of the separation of positive and negative electric charges in a 

system of charges, and hence the overall polarity of the charge system. The equipotential 

surfaces and electric field lines and vectors arising from an electric dipole are shown in figure 

2.2. As shown in the figure, a dipole simply consists of equal and oppositely-signed charges 

separated by a finite displacement vector  . An electric dipole is characterised by its moment, 

given by: 

                                             (2.7) 
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Figure 2.2. The electric dipole – The equipotential surfaces (dashed), electric field lines (dotted) and 
electric field vectors (black arrows) around a dipole formed from positive and negative point charges 
displaced by a vector   that shows the direction of the dipole moment. Figure copied from [1]. 

 

The superscript (1) denotes the order of the charge distribution, a reference that higher-

order multipoles can be constructed in the same manner that a dipole is formed from 

displacement of equal and oppositely-charged monopoles, i.e. point charges (that can be 

regarded as multipoles of order 0). 

Figure 2.3 shows how multipoles of second- and third-orders, known as the quadrupole and 

the octupole, respectively, can be constructed from those of the preceding order, equal but 

opposite in polarity, displaced by a finite vector    [2]. The multipole construction scheme is 

attributed to Stratton, who was among the first scientists to note the significance of higher-

order multipoles in dielectric polarisation [3]. 

The moment of an    -order multipole is a dyadic tensor of rank  . For the monopole, dipole, 

quadrupole and octupole in figure 2.3, the moments are defined as [2]: 

                                   (2.8a) 

                                    (2.8b) 

                                                  (2.8c) 

                                                                  (2.8d) 

where      denotes the dyadic product of vectors    and   .  
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Figure 2.3. Electric multipoles – Structure of electric multipoles of first three orders generated, starting 
from a point charge, from two multipoles of the preceding order, equal in charge but opposite in polarity, 
displaced by a finite vector: the electric monopole (n=0), the electric dipole (n=1), the electric quadrupole 
(n=2), and the electric octupole (n=3). Figure copied from [2].  

 

The electrostatic potentials due to the multipoles can be represented through shorthand 

formulae using the above definitions for their respective moments [2]: 

     
    

    
                                             (2.9a) 

      
          

    
                                               (2.9b) 

     
           

    
                                         (2.9c) 

      
            

     
                                   (2.9d) 

where    is the permittivity of the medium in which the multipoles sit,         ,   is the 

gradient operator, and     and     denote generalised second- and third-order dot products, 

respectively. A general multipole of order   gives rise to an electrostatic potential given by 

[2]: 

                            

      
                                         (2.10) 



   

 
17 

where        denotes the    -order generalised dot product,      is the gradient operator 

applied   consecutive times, and     , the moment of the    -order multipole is defined as 

[3]: 

      ∑                                  (2.11) 

where the summation   is taken over all permutations of        with      , 

     , …,      . 

+q
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+q
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+q
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d3

d3
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Figure 2.4. Linear multipoles – Structure of first three linear multipoles showing constituent charges and 
displacement vectors: (a) the linear dipole (n=1), (b) the linear quadrupole (n=2), and (c) the linear 
octupole (n=3).  

 

An important special case is when the constituent vectors    of the    -order multipole are 

aligned with a single axis. The multipoles are then referred to as linear, and the moments take 

a much simpler form. Figure 2.4 shows the structure of the first three linear multipoles. As all 

point charges lie on the same axis, the moments of linear multipoles reduce to scalar, rather 

than tensor, quantities. For the    -order linear multipole, the moment is given by: 

          
                                   (2.12) 

where    denotes the magnitude of the (equal) displacement vectors constituting the    -

order linear multipole. Linear multipoles are important in that it has been shown that the 

potential due to any axisymmetric distribution of charge can be represented with those due 

to linear multipoles of ascending order [4]. 
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2.1.3. Dielectrics and polarisation 

The interaction of electric fields with charged matter can be described through Coulomb’s 

law. The force exerted by an applied electric field on a charged particle is simply expressed by 

equation (2.1). However, not all materials normally bear electric charge. An important group 

of materials known as dielectrics undergo a process known as polarisation when subjected to 

an electric field. The process involves slow motion of electric charges, originally bound within 

the dielectric material, from their equilibrium positions. 

Polarisation of dielectrics is represented through polarisation density vector  , which is 

related to the bound volume charge density    through the following equation: 

                                    (2.13) 

Accounting for free and bound charge densities    and   , respectively, Gauss’s law (equation 

2.4) can be written as: 

                                         (2.14) 

Using equation (2.13) for the bound charge density, this can be rewritten as: 

                                       (2.15) 

The vector        , whose divergence is equal to the volume charge density, is known as 

the electric flux density. For an ideal dielectric, i.e. one with zero conductivity,   is also 

written as: 

                                    (2.16) 

where    is a dimensionless parameter, known as relative permittivity, which characterises 

the dielectric material. The permittivity of the dielectric        is the constant of 

proportionality between the electric flux density   and electric field vector  . 

Real dielectrics, however, have a finite conductivity  , as a result of which their permittivity 

takes a more complicated form. The example of a dielectric-filled parallel plate capacitor and 

its equivalent circuit serves to illustrate this complication in a straightforward manner. The 

equivalent circuit for a capacitor with plates of area   separated by a real dielectric of 

thickness   consists of the parallel combination of a capacitor   filled with an ideal dielectric 

and a resistor   of resistance     . The impedance of the parallel combination can be 

written as that of a capacitor of capacitance  ̃   ̃   , where  ̃, a complex variable 

representing the permittivity of the real dielectric, is given by: 
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Figure 2.5. Non-ideal dielectrics – The example of (a) a parallel plate capacitor filled with a non-ideal 
dielectric of permittivity   and conductivity   with (b) its equivalent circuit consisting of the parallel 
combination of a capacitor C filled with an ideal dielectric and a resistor R modelling the conductivity of 
the non-ideal dielectric. The example is used to illustrate the notion of complex permittivity for real 
dielectrics. Figure courtesy of Dr Nicolas G. Green. 

 

 ̃                                                                            (2.17) 

where   √  . Equation (2.17) gives the relationship between the complex permittivity of a 

non-ideal, conducting dielectric to its conductivity and (real) permittivity. The important 

consequence of equation (2.17) is that the polarisation of dielectrics is a frequency-

dependent phenomenon. The frequency of the electric field can be adjusted for the 

conductivity or permittivity of a dielectric material to dominate its polarisation behaviour.    
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2.2. Dielectrophoresis 

2.2.1. Polarisation of dielectric particles in suspension: the induced dipole 

When a dielectric particle suspended in a dielectric medium is subjected to an electric field, 

both dielectrics polarise. As a result of polarisation, electric charge builds up at the interface 

between the two dielectrics. Since the dielectric properties       of the two dielectrics would 

be different, there will be imbalance of, and hence net charge at the particle/medium 

interface. The process is referred to as interfacial or Maxwell-Wagner polarisation and forms 

the basis of a wide variety of applications involving electromechanics of particles. 

 

 

Figure 2.6. The induced dipole and dielectrophoretic movement – Application of a non-uniform electric 
field to a dielectric particle (green sphere) of polarisability    suspended in a dielectric medium of 

polarisability    will lead to build-up of net charge at the particle/medium interface, hence the 
formation of an induced dipole, the two poles of which experience unequal forces. The imbalance of 
force gives rise to particle motion through the dielectrophoretic force that tends to drive the particle (a) 
towards regions of high electric field intensity if       , or (b) away from regions of high electric field 

intensity if      . The two effects are referred to as positive and negative dielectrophoresis, 

respectively. Figure courtesy of Dr Nicolas G. Green. 

  

The simplest, yet most illustrative, picture that can be presented for the polarisation of a 

dielectric particle in suspension is that involving the formation of an induced dipole, shown in 

figure 2.3. The figure shows two cases: one where the particle is more polarisable than its 

suspending medium and one where the medium is more polarisable than the particle. 

Polarisability of dielectrics, often denoted as   or complex  ̃, accounting for the complex 

nature of dielectric permittivity, is a measure of the amount of charge that is dislocated as a 

result of the application of an electric field. Unlike permittivity and conductivity, which are 

shape-independent properties of the dielectric material, polarisability accounts for the 

geometry of the body of dielectric and therefore reflects on the shape-dependent nature of 
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dielectric polarisation. It is indeed this dependency on morphology that complicates the 

picture of particle polarisation beyond that of a simple dipole. 

Figure 2.3 shows that when particle polarisability is larger or smaller than that of the 

suspending medium, net charge will build up on either side of the particle, hence the 

formation of an induced dipole. The induced dipole will be aligned with or against the applied 

electric field depending on whether particle polarisability    is greater or smaller, 

respectively, than medium polarisability   . If the dielectric particle in suspension is 

subjected to an electric field which is non-uniform, and only then, the induced dipole, and 

hence the particle, will experience a net force that tends to drive the particle towards areas of 

higher or lower electric field intensity depending again on whether particle polarisability is 

greater or smaller than that of the medium, respectively. The force exerted by a non-uniform 

electric field on a suspended dielectric particle is known as the dielectrophoretic force and 

the phenomenon referred to as dielectrophoresis (DEP). Positive and negative DEP are the 

names given to dielectric particle movement towards high and low field intensity regions, 

respectively. The dependency of interfacial polarisation on electric field frequency, among 

other factors including particle and medium dielectric properties, has enabled the realisation 

of a wide variety of applications for dielectrophoresis. 

Although first observations of the phenomenon date back to the late 19th century as an effect 

arising in the behaviour of soil samples, the term dielectrophoresis was coined by Herbert 

Pohl in 1951 to describe the motion of biological particles under the influence of non-uniform 

electric fields [5]. Pohl went on to study the effect in detail and published a seminal book on 

the subject in 1978 [6].  

2.2.2. The dielectrophoretic force 

The dielectrophoretic force on a dielectric particle can be calculated from the force exerted by 

the applied electric field on the induced dipole. Figure 2.7 shows the electric field vectors at 

the two poles of a dipole subjected to a non-uniform electric field  . The net force on the 

dipole, from equation (2.1), is: 

                                         (2.18) 

If    , and only the first-order term in   is retained: 

                                              (2.19) 

where      is the dipole moment.  
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Figure 2.7. Electrical force on a dipole – The unequal electric field vectors experienced by the two poles of 
a dipole subjected to a non-uniform electric field, resulting in the exertion of a net dielectrophoretic 
force. Figure copied from [1]. 

 

Higher-order forces will include terms corresponding to multipoles of higher orders. The 

approximation in equation (2.19) that ignores multipolar terms is referred to as the dipole 

approximation and is used widely for determination of the dielectrophoretic force in different 

circumstances regarding particle and electric field geometry. The criterion stated in the 

literature for the dipole approximation to be reliable in predicting the dielectrophoretic force 

on a dielectric particle is that the induced dipole be small compared to the scale of non-

uniformities of the imposed electric field, or rather the electric field vary negligibly across 

particle dimensions [2]. It is the principal goal of this work to present a quantitative measure 

of the significance of higher-order moments and corresponding DEP forces. 

2.2.3. Applications of dielectrophoresis 

The critical feature of dielectrophoresis is that it requires field non-uniformities in order to 

create movement. The rapid development of dielectrophoresis as a method was made 

capable by the production of micro-electrodes using semiconductor fabrication methods. 

Techniques borrowed from the electronics industry, as well as novel techniques and 

materials have allowed the realisation of a wide range of electrode geometry for exerting 

dielectrophoretic force on suspended particles.  

The interdigitated (also called castellated) electrode structure accommodates well-defined 

regions of electric field maxima and minima and has hence found widespread use, 

particularly for DEP separation applications [7-11]. In an important example, depicted in 

figure 2.8 [10] the balance of DEP against gravitational force at different heights above an 

interdigitated array of electrodes has been exploited to separate breast cancer cells from 

normal blood cells [10, 11]. Cancerous and healthy cells have been seen to levitate at different 
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heights above the electrode array and therefore subject to different flow velocities, given the 

parabolic flow profile within the channel above the electrodes. The difference in elution times 

of the two groups of cells has enabled separation in what has been termed a DEP/G-FFF 

(gravitational field flow fractionation) device. 

 

 

Figure 2.8. Interdigitated electrode structure used for dielectrophoretic separation based on the field flow 
fractionation principle – A fluid flow is established in a thin chamber whose bottom plane supports an interdigitated 
microelectrode array. Two particles of different dielectric properties equilibrate at different heights under the 
balance of DEP levitation, hydrodynamic lift, and sedimentation forces. Particle 2, being levitated further away from 
the chamber bottom wall, exhibits a larger velocity under the influence of fluid drag than particle 1. Figure copied 
from [10]. 

 

Another widely used electrode configuration is the polynomial or parabolic arrangement. 

When the electrodes are energised by applying voltages, particles of greater polarisability 

than their suspending media can be made to move towards electrode edges where the 

electric field is maximum, while particles with polarisabilities smaller than that of the 

suspending fluid at the applied field frequency can be trapped at the field null at the centre of 

the electrode arrangement. The electrode structure has been extensively for separation [12-

14] and trapping [15] purposes. Figure 2.9 shows an example where two different types of 

bacteria have been separated by applying a sinusoidal voltage to the polynomial electrode 

configuration [14]. 
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Figure 2.9. Dielectrophoretic separation using the polynomial electrode configuration – DEP separation of E. coli (of 
polarisability smaller than the suspending medium) and M. lysodeikticus (of polarisability greater than the 
suspending medium) in a polynomial electrode system after application of a 4V peak-to-peak sinusoidal 100kHz 
signal. The suspending medium is 280 mM mannitol. Figure copied from [14] 

 

As most biological particles are dielectrics, dielectrophoresis is particularly fitted to lab-on-a-

chip applications where multiple processes involving characterisation, manipulation and 

separation of bioparticles are integrated onto a single chip. Dielectrophoresis is advantageous 

over other means of inducing particle motion in its non-invasive nature and easy integration 

onto micro-devices, not relying on any moving parts. Early biomedical applications of 

dielectrophoresis were limited to studying the response of cells to electric fields for 

characterization purposes. Nowadays, the technique has found widespread use for a variety 

of biotechnological and diagnostic applications [16]. Examples include separation of human 

breast cancer cells from blood [17], trapping [18] and manipulation of DNA [19, 20] – of 

importance to the development of point-of-care devices for detection and identification of 

pathogenic micro-organisms, aggregation of hemispherical cells as a first step toward the 

creation of artificial stem cell microniches in vitro, and creating engineered skin with artificial 

placodes of different sizes and shapes in different spatial patterns [21].  

Dielectrophoresis has established its status as a versatile technique for separation of 

dielectric – biological and otherwise – particles in suspension. Through the frequency-

dependent characteristics of dielectric particles, DEP has access to a wide range of particle 

properties, and can be modified by the choice of suspending medium. Factors relating to fluid 
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behaviour can complicate DEP separation of dielectric particles [22]. Yet it has been shown 

that once these phenomena are correctly identified and incorporated in the design process, 

they can take their part in the toolbox of electrokinetic techniques for separation applications 

[23]. 

Advances in fabrication technology have broadened the applicability of dielectrophoresis 

through realization of micro- and nano-electrode geometries that are capable of generating 

electric fields strong enough to move nanoparticles [12, 24] such as viruses [25, 26] and 

chromosomes [27]. At the nano-scale, effects such as thermal and hydrodynamic forces find 

increased significance. Yet it has been shown that the ‘nuisances’ are controllable and not 

significant enough to hinder nanoparticle motion due to dielectrophoresis [28]. 

Applications of dielectrophoresis are not limited to the realm of diagnostics involving 

biological particles. As early as 1924, Hatfield achieved separation of minerals using DEP 

[29]; interestingly, the work has been pursued by other research groups up until very 

recently [30]. Other examples where dielectrophoresis has been used for industrial 

applications include construction of a current-limiting fuse using DEP collection of conductive 

particles between two electrodes [31], depositing a patterned coating of a nano-structured 

material onto a substrate using positive DEP [32], and the fabrication of nano-scale devices, 

composed of movable components brought together in a fluid medium by exertion of the 

dielectrophoretic force – among other interactions [33]. 

With further developments in the design of suitable electrode geometry and in the modelling 

of phenomena that occur alongside dielectrophoretic motion of particles, DEP applications 

are expected to advance further, enabling manipulation and characterization of a yet wider 

range of particles. 
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2.3. AC electrokinetics: variants of dielectrophoresis 

2.3.1. AC electrokinetic force as dielectrophoresis 

AC electrokinetics is the name given to a group of techniques that utilise alternating (AC) 

electric fields to move dielectric particles in suspension. The most widely used of AC 

electrokinetic techniques is dielectrophoresis. While DC electric fields can be used to exert 

electrical force on charged or dielectric particles, the use of AC electric fields for moving 

particles is specific to dielectrics. Reversing the direction of an applied electric field will 

reverse the direction of motion of a charged particle (based on equation 2.1), whereas in 

dielectrophoresis, the direction of motion is independent of that of the applied electric field. 

For a spherical particle of radius  , the time-averaged DEP force by an electric field   is given 

by the following expression, in which higher-order moments have been neglected: 

〈    〉         [ ̃   ] | |                                        (2.20) 

where    is (the real part of) the permittivity of the suspending medium, and  ̃   , termed 

the Clausius-Mossotti factor, represents the dependency of the dielectrophoretic force on 

electric field angular frequency  , and is given by: 

 ̃    (  ̃    ̃) (  ̃     ̃)                            (2.21) 

where   ̃ and   ̃ are the (in general) complex permittivities of the particle and its suspending 

medium, respectively. 

It is evident from equation (2.20) that the DEP force is independent of the direction of the 

applied electric field. The feasibility of using AC electric fields for exerting force on dielectrics 

brings an important advantage to applications involving dielectric particles as the electric 

field frequency can be used as a control parameter for the dielectrophoretic force. 

2.3.2. AC electrokinetic torque: electro-rotation 

While an electric field of non-uniform magnitude exerts force on a dielectric particle in 

suspension, a field of non-uniform phase will exert torque, and hence result in the rotation of 

a subject dielectric. The phenomenon is referred to as electro-rotation (ROT) and is another 

important AC electrokinetic technique, used for dielectric characterisation studies [34]. 
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Figure 2.10. Torque by a uniform electric field on a dipole – In a uniform field   (indicated by the vector 
and dotted field lines), the two point charges constituting a dipole experience equal and opposite forces 
resulting in a torque about the centre point of the dipole. Figure copied from [1]. 

 

 

Figure 2.11. AC electrokinetic torque (electro-rotation) - (a) A schematic diagram of an electro-rotation 
setup. Four signals, successively 90

o
 out of phase are applied to four electrodes encircling the particle. (b) 

Schematic diagram showing how the induced dipole moment of a particle lags behind a rotating applied 
electric field. Figure copied from [1]. 

 

As shown in figure 2.8, a dipole sitting in a uniform electric field   will be subject to a torque 

that tends to align the dipole with the applied electric field. Assuming that the dipole in the 

figure represents polarisation charges at the interface of a dielectric particle and its 

suspending medium, the particle will be subject to no net force but will experience a torque 

given by: 

                                        (2.22) 

Alignment of the dipole with the electric field vector will not be immediate as it takes a finite 

amount of time for polarisation charges to move towards the particle/electrolyte interface 

and form a dipole. 

(a) (b) 
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In a field of non-uniform phase, i.e. a rotating electric field, where the field vector changes 

direction, this time delay gives rise to a net electro-rotational torque, as shown in figure 2.9. 

The figure also shows an example electro-rotation setup, where voltages of 90o phase 

difference re applied to successive electrodes encircling the particle to generate a rotating 

electric field. 

The first-order electro-rotational torque on a spherical particle of radius   is given by [35]: 

              [ ̃   ]| |                          (2.23) 

Differences with the expression for the dielectrophoretic force on the same particle (given by 

equation 2.20) can be readily observed: Firstly, the ROT torque is proportional to the square 

of the electric field magnitude while the DEP force is a function of the gradient of the square 

of the field magnitude – and is therefore zero in uniform electric fields. Secondly, the electro-

rotational torque depends on the imaginary rather than the real part of the Clausius-Mossotti 

factor. As a result, particles may experience both dielectrophoresis and electro-rotation with 

the relationship between the two determined by the dielectric properties of the particles and 

their suspending media. 

2.3.3. AC electrokinetic force as traveling-wave dielectrophoresis 

 

 

Figure 2.12. Traveling-wave dielectrophoresis – Schematic diagram of a linear traveling wave 
dielectrophoresis array and the consecutive phase-shifted signals required to generate the traveling 
electric field. Also shown are the approximate field lines for time t=0, the electric field and the dipole 
moment induced in the particle together with the force on the particle. Figure copied from [1]. 

 

Traveling-wave DEP can be considered as the linear analog of electro-rotation where voltages 

of 90o phase difference are applied to successive electrodes that are laid out as tracks, rather 
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than being arranged in a circle. This generates an electric field wave which travels along the 

electrodes. The dipole induced in the particle moves with the electric field but lags behind the 

field, as in electro-rotation. As shown in figure 6, the result is the induction of a force, rather 

than a torque, given – for a spherical particle of radius   – by [36]: 

        
              | | 

 
                                  (2.24) 

where   is the wavelength of the traveling wave.  

The negative sign in equation (5) indicates that, as shown in figure 2.10, the twDEP force 

propels particles in the opposite direction to the moving field vector. For a finite twDEP force 

to be exerted on a particle, two criteria need to be met: (a) the particle must experience a DEP 

force that levitates it above the electrode array, and (b) some loss mechanism needs to be 

present for the imaginary part of the Clausius-Mossotti factor to be non-zero. Since its advent, 

twDEP has been used for characterising and separating cells and micro-organisms [37, 38]. 

2.4. Summary  

An introduction has been presented to the underlying principle of dielectrophoresis: motion 

of dielectric particles in suspension as a result of electric field interactions with polarisation 

charges at the particle/electrolyte interface. The established status of DEP together with 

examples of its wide-ranging applications, particularly in the realm of biochemical analysis 

has been touched upon, and variants of the technique that use electric field non-uniformities 

for exerting force or torque on dielectrics have been briefly described. 

It has been shown that in the simplest of field-particle geometries, polarisation charge at a 

particle/electrolyte interface can be represented as an induced dipole. It was also mentioned 

that, in principle, the dielectrophoretic force may be calculated from the electrical force 

experienced by the induced dipole. The next chapter will embark on more realistic 

geometries where higher order multipoles, also introduced in this chapter, are of importance, 

and will present the notion of effective multipoles that serve to circumvent ambiguity 

regarding the constitution of induced multipoles from an unknown mixture of bound and free 

charge.  
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Chapter Three 

Calculation of the Dielectrophoretic Force: Background and Theory 
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3.1. Determining DEP force terms: the effective moment method 

3.1.1. The effective moments: definition 

As mentioned in Chapter Two, polarisation of dielectric particles in suspension gives rise to, 

in the simplest case regarding particle and electric field geometry, the induction of a dipole. 

In more sophisticated circumstances, the arrangement of charge at the particle/electrolyte 

interface may not be sufficiently represented by a dipole alone. Higher-order multipoles may 

be required to represent particle polarisation. Yet even in the simplistic case of an induced 

dipole sufficiently representing polarisation, quantified definition of the dipole and 

calculation of the dielectrophoretic force as the force exerted by the applied electric field on 

the dipole is subject to ambiguity as polarisation charge consists of an unknown mixture of 

bound and free charge, very difficult (due to the rather complicated mechanism of 

polarisation), if not impossible, to calculate. 

The effective moment method cleverly circumvents this ambiguity through the definition of 

effective (as compared to actual, induced) multipoles as those free-charge multipoles 

(constructed using the scheme presented in figure 2.3) that when positioned at the particle 

location within the electric field and the suspending medium, would give rise to the same 

electrostatic potential as that arising from the particle in suspension itself. Terms of 

ascending order in the expression for the potential due to a dielectric particle are attributed 

to effective multipoles of ascending order and the moments of the effective multipoles are 

determined by equalling the    -order term of the potential due to the particle with the 

potential due to the    -order multipole [1]. 

The effective moments of a dielectric particle can be regarded as representatives of the 

energy stored by the applied electric field in the particle. The effective moment of order   

represents the    -order term of the electrical energy stored in the particle, or rather the 

energy stored by the        -order field gradient in the particle. In three dimensions, only 

the first three multipoles (as shown in figure 2.3) can be realised, with the effective dipole, 

quadrupole and octupole moments representing the energy stored by the electric field 

magnitude and its first- and second-order gradients, respectively, in the dielectric particle. It 

is on the fact that effective moments represent electrical energy stored in dielectric particles 

that dielectric spectroscopy measurements are based. The studies are aimed at determining 

dielectric properties of particles, singly or en masse in a suspension, based on measurements 

of their effective moments. 
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In axial symmetry, polarisation of dielectric particles in suspension can be represented by 

linear multipoles [2]. As the name implies, and as depicted in figure 2.4, the poles and 

displacement vectors constituting the linear multipoles are aligned with the axis of charge 

symmetry and the limitation to only the first three multipoles is lifted. Linear effective 

moments up to any order can be considered and could contribute to the potential due to 

particle-field geometries that are axially symmetric. 

Determining the effective moments of dielectric particles is a complicated task, due to the 

heavy mathematics involved. Testimony to the difficulty in deriving the effective moments of 

particles in a general case is the fact that only for spherical particles have the moments of an 

arbitrary order   been analytically calculated [3]. Among non-spherical shapes, only the 

effective dipole moment of an ellipsoidal particle has been derived analytically [4]. In the 

absence of analytical methods for determining the higher-order moments of non-spherical 

particles, modelling is often made with a sphere of similar dimensions. The literature is 

abundant with examples of highly non-spherical particles such as carbon nanotubes [5], 

erythrocytes [6-9], viruses [10, 11] and protein [12, 13] approximated as spheres, or at best 

spheroids, for simplicity of modelling. One goal of this work is to assess the validity of 

common particle shape approximations by comparing first- and higher-order moments of 

spherical and non-spherical particles in axial symmetry and otherwise. 

3.1.2. The effective moment method: formulation 

The notion of effective moments not only facilitates unambiguous moment-based 

characterisation of dielectric properties, but also enables calculation of the individual terms 

of the dielectrophoretic force on particles. The    -order term of the DEP force on a dielectric 

particle in suspension possessing effective moments      when subjected to an electric field   

is given by [3]: 

     
 

  
                                                                          (3.1) 

where       denotes the    -order gradient of the applied electric field. The    -order term 

of the DEP force by an electric field on a dielectric particle in suspension represents the 

interaction between the        -order field gradient and the representative for the 

electrical energy it stores in the particle, i.e. the    -order effective moment. It is important to 

note that as a result of the shape-dependent nature of polarisation,     , and therefore     , 

would encompass the effect of particle as well as electric field geometry. 
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3.1.3. The dipole approximation: statement and criterion for reliability 

The dipole approximation ignores the effect of higher-order moments in polarisation of 

dielectric particles. In dielectric spectroscopic measurements, the dipole approximation 

posits negligible contribution from higher-order effective moments to the electrical energy 

stored in dielectrics. In calculation of the dielectrophoretic force, multipolar force terms given 

by equation (3.1) are assumed by the dipole approximation to contribute negligibly to the 

electrical force experienced by a dielectric particle subjected to a non-uniform electric field. 

The dipole approximation greatly simplifies calculations of the DEP force and dielectric 

characterisation of particles. It has therefore been used extensively for both purposes in a 

wide variety of circumstances regarding particle and electric field specifications. The general 

criterion for higher-order moments to have insignificant effect has been stated to be particle 

dimensions being notably smaller than a characteristic length scale of electric field non-

uniformity, i.e. the electric field varying negligibly across particle dimensions. In older 

dielectric spectroscopic measurements and dielectrophoretic applications, which often 

involved suspensions of a large number of micro-metre and sub-micron particles subjected to 

the electric fields generated by electrodes of considerably larger dimensions than those of the 

particles, the stated criterion was easily satisfied, and higher-order moments were not found 

worthy of consideration. With the current trend toward micro- and nano-electrode 

geometries used for analysis of single particles comparable in size to the electrodes, the 

stated criterion for the reliability of the dipole approximation is far from satisfied. 

An example work where single particles have been manipulated and characterized within 

electrode gaps comparable in size to particle dimensions is the ‘opposite field’ 

dielectrophoresis structure used by Holzel [14] to generate two AC electric fields exhibiting 

antiparallel field gradients to shift micro-particles back and forth. It can be expected that the 

discrepancy observed between experimental results and the first-order theoretical model are 

due to the significance of higher order effective moments, particularly near electrode edges. 

The quadrupole trap designed by Rosenthal and Voldman for patterning arrays of single cells 

is another example where large field gradients at particle positions can be expected to give 

rise to added significance for higher order effective moments and dielectrophoretic forces 

and may be responsible for the difference between experimental observations and the dipole 

approximation-based model. An example of the discrepancy and a schematic of the design are 

shown in figure 3.1, from which the effect of particle size on the discrepancy can be clearly 

noticed [15]. 
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Figure 3.1. Discrepancy between experimental results and theoretical model based on the dipole approximation in a 
quadrupole trap – Dielectrophoretic trap design for patterning arrays of single cells (right). The trap strength has 
been validated by measuring the maximum flow rate that polystyrene beads could withstand while remaining 
trapped. Plot shows dependency of maximum flow rate on bead diameter. Discrepancy between the experimental 
results (solid line) and the model (circle) may be due to the significance of higher order effective moments in the 
large field gradient within the DEP trap. Figure copied from [16]. 

 

Another example where micro-metre particles are subjected to high-gradient electric fields 

generated by microelectrode geometry is the impedance analysis chip of Morgan and co-

workers, shown in figure 3.2. The accuracy required for accomplishing particle focussing may 

be satisfied by a first-order prediction of the DEP force, but it can be expected that particle 

characterisation should involve accounting for higher order moments at certain positions 

within the electrode structure [16]. 

In the aforementioned and other examples, the circumstances regarding particle and electric 

field geometry are such that it can only be expected that higher order moments and/or forces 

will be of significance. It is very important to note, as it is an intended aim of this work that no 

conclusive judgement regarding the reliability of the dipole approximation can be made 

before calculations are made of the higher order moments/forces.  

3.1.4. Effective moment method calculations of the DEP force in the literature 

It was the observation by Jones and co-workers of the DEP levitation of particles against 

gravity at a field null [17] – where the first-order force is identical to zero – that brought the 

significance of higher-order moments to attention. The condition for the reliability of the 

dipole approximation was accordingly extended to include positions of field null. Thomas 

Jones and Masao Washizu have developed the theory of higher-order moments and 

multipolar dielectrophoretic forces using tensor notation. Few other research groups have 

also paid attention to the possible significance of higher-order interactions between electric 

fields and subject dielectrics. Most notably, Clague and co-workers have observed second-
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order contributions up to 10% to the total DEP force on spherical particles positioned within 

an interdigitated electrode configuration [18]. 

 

             

 

Figure 3.2. Significance of the second-order dielectrophoretic force on a spherical particle – (a) Plot of the 
quadrupolar contribution to the total DEP force as a function of the latex bead radius. The bead is fixed in 
position within an interdigitated electrode configuration; (b) DEP forces acting on the 6µm latex bead at 
different heights above the interdigitated electrode array.    represents the sum of first- and second-
order force terms calculated using the effective moment method, while    represents the DEP force, as 
predicted by the dipole approximation. Figure copied from [18]. 

 

The authors have made note of the rise in significance of the higher-order contribution upon 

increasing particle size, as shown in figure 3.1. They have also observed the increase in 

second-order contribution to the total force as the particle nears the interdigitated electrode 

array, where electric field curvature is largest. This is shown through the growing difference 

between the total force    (calculated by summing first- and second-order terms) and the 

force predicted by the dipole approximation    as particle height above the electrode array is 

reduced (figure 3.1b). The work by the Clague group is significant in its use of an analytical 

technique for derivation of the second-order force term. However, analysis is inevitably 

(a) 

(b) 
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confined to spherical particles for which the multipole moments can be determined 

analytically.  

The increase in significance of higher-order moments as particle size is increased has also 

been noted by Zhu et al [19] in their analysis of light-induced dielectrophoresis of spherical 

and ellipsoidal particles. As shown in figure 3.2, they have observed an increase in the gap 

between the DEP force predicted by the dipole approximation, and that determined by 

accounting for the second-order term as particle radius is increased. The authors have used 

numerical calculations of the electric field and its gradients to obtain the first- and second-

order term of the DEP force on spherical particles from analytic expressions. They have 

extended analysis to include ellipsoidal particles, but analysis has been confined to the first-

order term, for which the effective moment of corresponding order can be derived 

analytically. 

 

 

Figure 3.3. Increase in significance of higher-order dielectrophoresis with increasing particle size – DEP 
forces acting on a spherical cell subjected to a light-induced nonuniform electric field for different cell 
radii R. (Pohl) represents the dielectrophoretic force as originally derived, i.e. the dipole approximation, 
and (EM) represents the force as calculated from the effective moment method by summing first- and 
second-order terms. Figure copied from [19]. 

 

Confinement of analysis to the first-order term of the DEP force on non-spherical particles is 

also seen in the work by Rosales and Lim [20] on the significance of multipolar forces in an 

octupole trap comprising of eight planar electrodes (figure 3.3). The authors have calculated 

first-, second- and third-order terms of the DEP force on a spherical particle using the 

effective moment method, but have stopped at the first-order term for the case of an 
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ellipsoidal particle as “unfortunately, only a dipolar approximation is available for ellipsoids 

in the literature”. To ‘compensate’, the authors have derived the total electrical force 

experienced by the ellipsoid using the mathematically rigorous Maxwell stress tensor method 

(to be introduced in the next section) to yield higher-order contribution to the DEP force.   

 

 

 

Figure 3.4. Significance of higher-order terms in the DEP force on an ellipsoidal particle – (a) DEP force on 
an ellipsoid with semi-major axes of dimensions 10µm, 10µm and 2.5µm as a function of distance from 
the centre of an octupole trap with eight planar electrodes, a frontal view of which is shown in (b). MST 
denotes the total DEP force on the particle as calculated from the Maxwell stress tensor method, and n=1 
denotes the DEP force predicted by the dipole approximation, i.e. the first-order DEP force term. Figure 
copied from [20]. 

 

Another work on the significance of higher-order DEP force terms in that by Kim et al, where 

analytic expressions for the effective moments of a dielectric sphere have been used in 

conjunction with analytic derivations of the electric field and its gradients in a ‘moving 

dielectrophoresis’ electrode structure (figure 3.4a) to obtain the first three terms of the DEP 

force on spherical particles of different radii [21]. The authors state that numerical methods 

“are not suitable for the calculation of the higher-order dielectrophoretic forces” as “their 

accuracy is typically limited to first-order dielectrophoretic force”. The results of the 

analytical calculations by the group suggest that second- and third-order forces, individually 

and combined, contribute negligibly to the DEP force on spherical particles. As shown in 

(a) 

(b) 
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figure 3.4, there is almost an order-of-magnitude difference between the magnitudes of first- 

and higher-order DEP forces on a 5µm sphere. It can be expected that higher-order forces 

would become comparable to the first-order term is the radius of the spherical particle 

attains values closer to electrode dimensions. It may also be the case that the electric field 

curvatures in the electrode structure are insignificant along the direction of particle motion: 

the   axis in figure 3.4. 

 

 

 

Figure 3.5. Significance of second- and third-order terms of the DEP force on a spherical particle – (a) 
Structure of the ‘moving dielectrophoresis’ electrode geometry used by Kua et al for analytical derivation 
of higher-order contributions to DEP forces on spherical particles, (b) Variations with positions within the 
electrode geometry of first- (F

(1)
), second- (F

(2)
) and third-order (F

(3)
) terms of the DEP force on a spherical 

particle of radius 5µm. Figure copied from [21]. 

 

The work presented through figures 3.1 to 3.4 is about all that has been done towards 

investigating the significance of higher-order DEP forces. Although the formulation of the 

effective moment method has been fully developed, no attempt has been made to determine 

multipolar DEP forces on non-spherical particles. The biggest roadblock appears to be the 

lack of analytic derivations for the higher-order moments of non-spherical particles. This 

(a) 

(b) 
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work will demonstrate how numerical methods can be used as an alternative to determine 

the effective moments of particles of arbitrary shape. The credibility of numerical calculations 

of DEP force terms will be verified by comparison of results against total force calculations 

using the Maxwell stress tensor method. 

3.1.5. Determination of the effective moments 

Although the effective moment method presents a straightforward formulation for multipolar 

dielectrophoretic forces that identifies closely with the conventional formulae for calculation 

of the DEP force, it still requires the effective moments to be calculated for derivation of 

dielectrophoretic force terms. Calculation of the effective moments is also the essential 

requirement for dielectric spectroscopic measurements of particle properties.  

As mentioned previously, only for spherical particles have the effective moments of arbitrary 

order been analytically derived and the only equivalent analytic expression for non-spherical 

particles is that for the effective dipole moment of an ellipsoid. In the absence of analytical 

techniques, resort can made to numerical means of determining the higher-order moments of 

non-spherical particles.  

An important advance in the field has been made by Green and Jones who have devised a 

hybrid numerical-analytical method for determining the effective moments, up to any order, 

of particles of arbitrary shape subjected to axially symmetric electric fields [22]. The 

assumption of axial symmetry, rendering the effective multipoles linear, has greatly 

simplified the process of deriving the effective moments. The method, which shall be 

presented in Chapter Four, uses the analytic expression for the potential due to a particle 

subjected to an axisymmetric electric field to derive the linear effective moments by 

numerical weighted integration of the potential over a spherical Gaussian surface that 

encloses the particle. By basing derivations on an integration of the electric potential, the 

error-prone process of differentiation in numerical solvers is circumvented. 

This work will present results of applying the aforementioned method to spherical, 

ellipsoidal and cylindrical particles of different dimensions subjected to the axisymmetric 

electric fields of two different electrode geometries. The effective moments are calculated 

using the method, and the results combined with analytical derivations of the electric field 

magnitude and its gradients to obtain the first three terms of the DEP force experienced by 

the particles.  

In non-axisymmetric geometries, the electrostatic potential due to a dielectric particle, 

represented through the sum of potentials due to general, rather than linear, effective 
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multipoles, takes a more complicated form. This work will present a novel method with 

which the first three effective moments of particles of arbitrary shape subjected to electric 

fields of arbitrary geometry can be determined. The method will be applied to determine the 

effective moments of spherical, ellipsoidal and brick-shaped particles at different positions 

within an interdigitated electrode configuration – widely used in dielectrophoretic 

applications, particularly for separation of particles based on dielectric properties. As in the 

axisymmetric case, effective moment calculations will be combined with analytic derivations 

of the electric field magnitude and its gradients to derive the first three terms of the DEP 

force on particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 
45 

3.2. Determining the total DEP force: the Maxwell stress tensor method 

3.2.1. Maxwell stress tensor: definition 

Stress, a measure of force per unit area, is normally represented through a tensor. When an 

excitation is applied to a body sitting in a medium resulting in exertion of force on the body, 

the stress tensor at each surface area element of the body can be regarded as an operator that 

takes the vector normal to the area element and yields the force acting on that area element 

through the following expression: 

   ∑      
    

                                                    (3.2) 

where    and    are elements of the force and normal vectors, respectively, with   and   

indexing the axes in a chosen coordinate system.    
   

 are the elements of the rank-2 stress 

tensor     . Based on equation (3.2), integration of the stress tensor over any enclosing 

surface   yields the force exerted by the excitation on the subjected body: 

  ∮                                                                  (3.3) 

where   is the unit vector normal to  .  

Where the excitation is an electric field, the stress tensor is called the Maxwell stress tensor 

and integration over a surface enclosing a body of dielectric subjected to an electric field 

gives the total electrical force experienced by the dielectric, encompassing all interaction 

between the electric field and the dielectric. The components of the Maxwell stress tensor 

due to an electric field   are given by: 

           
 

 
                                                        (3.4) 

where    is the (real part of the) permittivity of the medium in which the dielectric body sits, 

   denotes the dyadic product of the electric field vector with itself,   is the electric field 

magnitude, and      is the unit tensor of rank 2.  

There are other elements in the expression for Maxwell stress tensor components that 

include the magnetic field vector. In most DEP applications, the frequency of the applied 

electric field falls below 100 MHz. This corresponds to a wavelength of a few metres which is 

several orders of magnitude larger than the dimensions of a typical DEP device. As a result, 

the requirements of the so-called near-field approximation are satisfied and the effects due to 

magnetic fields can be neglected. 
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3.2.2. Maxwell stress tensor calculation of the dielectrophoretic force 

Gascoyne and co-workers have derived the expression for the total DEP force on a dielectric 

particle suspended in a dielectric medium, from integration of the Maxwell stress tensor over 

an enclosing surface   [23]: 

    
    

 

 
  ∮         

                                     (3.5) 

where    denotes the electric field vector inside the suspending medium,      being the 

dyadic product of the vector with itself, and    the vector magnitude.  

Equation (3.5) presents the formulation for Maxwell stress tensor derivation of the 

dielectrophoretic force. The method is known for its mathematical rigorousness in that it 

accounts for all interaction between an applied electric field and a dielectric particle in 

suspension that result in electrical force on the particle. The DEP force calculated from the 

Maxwell stress tensor (MST) method is therefore referred to as the ‘total’ dielectrophoretic 

force. MST-method calculation of the dielectrophoretic force will encompass the effects of 

first- and higher-order moments, and therefore comparison with effective moment method 

calculation of the DEP force terms can yield contributions from dipolar and multipolar terms 

to the total dielectrophoretic force.  

In this work, the Maxwell stress tensor method will be incorporated to calculate the total DEP 

force on spherical and non-spherical particles in axial symmetry, and otherwise. The Maxwell 

stress tensor will be numerically integrated over multiple enclosing surfaces – to ensure 

minimal error is imparted by the numerical solver on the results obtained. MST calculation of 

the total DEP force not only helps derive first- and higher-order contributions to the 

dielectrophoretic force, but also importantly serves as verification for numerical force term 

calculations. 
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3.3. Summary 

Two methods for calculation of the dielectrophoretic force on dielectric particles in 

suspension have been introduced: the effective moment method relies on the determination 

of effective moments and field gradients to yield DEP force terms of ascending order, and the 

Maxwell stress tensor method relies on integration of the Maxwell stress tensor over a 

surface enclosing the particle to yield the total DEP force. The two methods can be regarded 

as complimentary: the Maxwell stress tensor method is known for its mathematical 

rigorousness in encompassing all interactions between an applied electric field and subject 

dielectrics, but does not distinguish between first- and higher-order contributions to the DEP 

force. The effective moment method fills this void by providing formulae for calculating 

individual DEP force terms.  

The next three chapters will present calculations, based on the effective moment method, of 

the first three terms of the dielectrophoretic force on particles of different shapes subjected 

to electric fields of different geometry. The multipole moments are calculated using an 

available numerical method for axisymmetric geometries and a novel method applicable to 

particles and fields of arbitrary geometry in a non-axisymmetric setting. To determine the 

significance of higher-order contributions to the DEP force and for verification of the 

numerical results, effective moment method calculations of the dielectrophoretic force terms 

will be compared against total force calculations using the Maxwell stress tensor method.  
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Chapter Four 

Effective Moments and Dielectrophoretic Force Terms in Axial 

Symmetry: Results and Discussion 
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Abstract 

Calculations are presented for the first three effective moments of, and first three terms of the 

dielectrophoretic (DEP) force on spherical, ellipsoidal and cylindrical particles subjected to 

axisymmetric electric fields generated by point-plane and disc-plane electrode geometries. 

The effective moments are calculated using a hybrid numerical-analytical method that 

involves numerical integration of the potential due to the particles represented, through an 

analytic expression, by linear multipoles of ascending order in axial symmetry. Analytic 

calculations are also presented for the electric field magnitude and its first three derivatives 

along the symmetry axes of the two electrode geometries. The effective moment method is 

then invoked to derive the first three terms of the DEP force on the particles from 

calculations of the effective moments and field derivatives of corresponding order. The 

effects of particle and field geometry on the linear moments and dielectrophoretic force 

terms are discussed. The assumption of axial symmetry serves as a good starting point 

towards the goal of quantifying the significance of higher-order moments and DEP force 

terms, in that the effective moments representing particle polarisation become linear and 

calculations are greatly simplified as a result. 

 

Overview 

Section 4.1 presents the methods used for calculating the effective moments and 

dielectrophoretic force terms in axial symmetry and illustrates the physical problem to which 

the methods will be applied. Section 4.2 presents analytical calculations of the electric field 

magnitude and its first three derivatives along the symmetry axes of the two axisymmetric 

electrode configurations. Section 4.3 presents and discusses calculations of the first three 

effective moments of spherical, ellipsoidal and cylindrical particles positioned on the 

symmetry axes of point-plane and disc-plane electrode geometries. Effects of particle and 

field geometry on the significance of higher-order effective moments and particle 

characterisation errors incurred upon approximating non-spherical shapes with spheres of 

similar dimensions are also discussed. Section 4.4 presents and discusses DEP force term 

results obtained using the effective moment method. Discussions on the significance of 

higher-order DEP forces are reserved for Chapter Five where total force calculations using 

the Maxwell stress tensor method will be compared against force term results to derive 

higher-order contributions to the dielectrophoretic force in different circumstances 

regarding particle and field geometry. 



   

 
53 

4.1. Background and theory 

4.1.1. Method for determination of linear effective moments 

It has been shown that any axisymmetric distribution of charge can be represented by linear 

multipoles of ascending order [1]. Accordingly, the electrostatic potential due to a dielectric 

particle in suspension subjected to an axially symmetric electric field can be expressed as [2]: 

          ∑
    

        
 
                         (4.1) 

where the term being summed is the potential due to an nth-order linear multipole. The 

multipoles representing particle polarisation are known as effective multipoles and their 

moments p(n) referred to as effective moments. Originally tensors of rank n, the effective 

moments are reduced to scalar quantities in axial symmetry. In equation (4.1),    is 

permittivity of the suspending medium, r is radial distance from centre of effective 

multipoles, i.e. centre of particle, and          are the Legendre polynomials,   being the 

azimuthal angle in spherical coordinates. As the Legendre polynomials are mutually 

orthogonal, the linear effective moments can be derived from the potential due to the particle 

they represent [3]: 

             
       

 
∫                 

 

 
                                        (4.2) 

The integral in equation (4.2) can be performed over any spherical surface of radius      that 

fully encloses the particle and as such, the method is applicable to particles of arbitrary 

shape. 

4.1.2. Physical problem specifications  

Figure 4.1 shows the structures of the two electrode geometries studied in this chapter for 

the generation of axially symmetric electric fields, namely the point-plane and the disc-plane 

configurations. ±1V is applied to point/disc and plane electrodes to generate axially 

symmetric electric fields. The examination of two different electrode arrangements and 

different radii for the point/disc electrodes is for investigating the effect of electrode (and 

hence electric field) geometry on the linear moments and dielectrophoretic force terms. The 

plane electrode has been taken to be excessively large for the Neumann boundary condition 

imposed by vertical simulation domain walls to have minimal effect on the electric fields 

along the axes of symmetry.  
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d  = 10 µm

rplane  = 50 µm rplane  = 50 µm

rp  = {0.1, 0.5, 1} µm
rd  = {0.5, 1, 2} µm

h  = {1, 2,  , 9} µm

V  = 2 Vdc V  = 2 Vdc

(a) (b)

 

Figure 4.1. The axisymmetric electrode geometries – Specifications of the (a) point-plane and (b) disc-
plane electrode arrangements studied in this chapter for the analysis of effective moments and 
dielectrophoretic force terms in axial symmetry. ±1V is applied to point/disc and plane electrodes to 
generate axially symmetric electric fields. The use of two different electrode configurations and different 
radii for the point/disc electrodes is for investigating the effect of electrode geometry on the linear 
effective moments and DEP force terms. The range of particle positions h along the symmetry axes of the 
two electrode geometries, which translates into a corresponding range of electric field magnitude and 
curvature strengths, is also shown in the figure.     

 

r = {1,2}µm a = 1µm 

b = {0.25,0.5}µm 

a = 1µm 

r = {0.25,0.5}µm 

 

Figure 4.2. The axisymmetric particles – Shapes and dimensions of the dielectric particles subjected to 
axisymmetric electric fields by being positioned on the symmetry axes of point-plane and disc-plane 
electrode configurations (of specifications given in figure 4.1). The third (out-of-plane) dimension of the 
ellipsoidal particle is assumed to equal  . The use of different particle shapes and dimensions is for 
investigating the effect of particle geometry on the linear effective moments and dielectrophoretic force 
terms. It is assumed that the particles and their suspending media are ideal dielectrics with relative 
permittivities of 3 and 80 (pertaining to SU-8 and water), respectively. 
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As mentioned in Chapter One (Section 1.3) this work examines electrode structures within 

which (or, in the axisymmetric considered in this chapter, along the symmetry axes of which) 

an analytic derivation for the electric field is available, so that the successive differentiation 

required to obtain electric field gradients can be done analytically, without resorting to error-

prone numerical differentiation. For the disc-plane electrode geometry, the electric field 

along the axis of field symmetry has been derived by Sloggett and co-workers using the 

Schwarz-Christoffel mapping method [5]. The derivation is presented in Appendix B. For the 

point-plane electrode geometry, the analytic derivation by Coelho and Debeau – based on a 

hyperbolic approximation for the point electrode – has been used for the electric field along 

the axis of field symmetry [6]. The derivation is presented in Appendix C.  

The effect of particle geometry is investigated by considering three different particle shapes, 

as shown in figure 4.2. It is important to note that, due to axial symmetry, the ellipsoidal 

particles are in fact spheroids with their third (out-of-plane) half-dimension equal to b. Two 

sets of dimensions for each of the three particle shapes are analysed in this chapter. For the 

spherical particle, two different radii are considered to observe the effect of particle size on 

the moments and DEP force terms. For ellipsoidal and cylindrical particles, two different 

aspect ratios   (defined as a/b and a/r for ellipsoidal and cylindrical particles, respectively) 

are examined to observe the effect of ‘thinning’ particles on the linear moments and 

dielectrophoretic force terms.  

Different particle positions along the symmetry axes of either of the two electrode geometries 

correspond to electric field magnitude and curvatures of different strengths. It is assumed 

throughout this chapter that the particles and their suspending media are ideal dielectrics 

with relative permittivities of 3 and 80 (pertaining to SU-8 and water), respectively. As such, 

the particles are less polarisable than their suspending media and therefore subject to 

negative DEP, tending to move the particles away from the point/disc electrodes where the 

electric field is strongest. In accordance, the positive direction is taken to be that towards the 

plane electrode in both electrode configurations.    

4.1.3. Field derivative and effective moment calculation techniques 

The electric field magnitude and its first three derivatives along the symmetry axis of the 

point-plane electrode geometry are calculated using an analytic method based on a 

hyperbolic approximation of the point electrode [6] (derivation presented in Appendix C). 

For the disc-plane geometry, electric field magnitude and curvatures are calculated using a 

Schwarz-Christoffel mapping (SCM)-based analytical method [5] (derivation presented in 

Appendix B). Analytical calculation of electric field magnitude and derivatives is 
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advantageous over numerical means as the finite element method is highly unreliable in 

successive differentiation of functions, due to its discretisation of data. 

The linear effective moments of the particles are calculated by numerically performing the 

integral in equation (4.2) over three different spherical surfaces: those of radii equal to, 

0.5µm larger than, and 0.9µm larger than the longest half-dimension of the particle. The 

largest of integration surface radii has been chosen such that a marginal distance of at least 

0.1µm is kept between the integration surface and the electrodes. The use of three different 

integration surfaces is to assure minimal error is imparted by the numerical solver to 

effective moment calculations. The standard numerical solver used to obtain the results of 

this work has been FlexPDE. However, due to issues with numerical implementation of the 

Maxwell stress tensor method in FlexPDE (to be reported on in Chapter Five), effective 

moment calculations of this chapter were cross-checked against those obtained with an 

alternative software – FEniCS. Results obtained with three different integration surfaces in 

FlexPDE agreed with each other and with those obtained in FEniCS to within an error margin 

of no more than 0.5%. 

 

(a)(a) (b)

 

Figure 4.3. The axisymmetric simulation domains – Portions of simulation domains in FlexPDE for 
calculation of the effective moments of (a) an ellipsoidal (a=1µm, b=0.5µm) particle positioned at h=8µm 
on the symmetry axis of the point-plane electrode geometry with point electrode radius rp=0.5µm, and 
(b) a cylindrical (a=1µm, r=0.5µm) particle positioned at h=8µm on the symmetry axis of the disc-plane 
electrode geometry with disc electrode radius rd=0.5µm. The effect of particle polarisation is observed 
through distortions to background equipotential surfaces. 

 

As can be seen from equation (4.2), calculation of the linear effective moments requires 

derivation of the potential due to the particle they represent. In this work the potential 
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          due to each given particle positioned on the symmetry axis of the point-/disc-plane 

electrode geometry has been calculated from: 

                                                         (4.3) 

In equation (4.3), the ‘background’ potential             is the electric potential distribution 

within the electrode geometry in the absence of the particle. The                potential is the 

electric potential distribution in the presence of the particle at its given position along the 

symmetry axis of the electrode geometry. The subtraction of the background potential from 

the potential in the presence of the particle yields the perturbation caused by the particle to 

the potential distribution within the electrode structure, i.e. the potential due to the particle. 

Figure 4.3 shows a zoom-in of the simulation domain in FlexPDE for determination of the 

electric potential due to ellipsoidal and cylindrical particles positioned at       on the 

symmetry axes of point-plane and disc-plane electrode structures, respectively with 

point/disc electrode radii of 0.5µm. Due to axial symmetry, only half the original domain, as 

portrayed in figure 4.1, needs to be simulated. Figure 4.3 shows the simulation domain for 

     , so that the perturbation caused by the placement of the particles can be more 

clearly visualised. The particles are seen to give rise to distortions to ‘background’ 

equipotential surfaces. It is the difference between the background potential and that with 

the particles inserted on the symmetry axes that yields          , as given in equation (4.3).     

4.1.4. Dielectrophoretic force term calculation method 

The first three terms of the dielectrophoretic force on particles are calculated using the 

effective moment method. The nth-order term of the DEP force exerted by an electric field E 

on a particle of effective moments      is given by [2]:  

     
 

  
                              (4.4) 

where        denotes the generalised dot product and       is the    -order gradient of the 

electric field. In axial symmetry, the effective moments are linear and only the component of 

electric field magnitude and gradients that are aligned with the axis of symmetry contribute 

to the DEP force exerted on the particles. As a result, equation (4.4) reduces to: 

     
 

  
       

                   (4.5) 

where, with no loss of generality, the axis of symmetry has been assumed to be aligned with 

the  -axis in the cylindrical coordinate system. As expressed through equation (4.5), axial 
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symmetry reduces dielectrophoretic force terms to scalar quantities representing their 

magnitude. 

4.1.5. Summary 

The method for determination of the effective moments of particles in axial symmetry has 

been introduced. Specifications of the physical problem to which the method will be applied 

have also been presented. Spherical, ellipsoidal and cylindrical particles of different 

dimensions subjected to the axisymmetric electric fields of point-plane and disc-plane 

electrode geometries will be analysed to investigate the effects of electrode and particle 

geometry on the linear effective moments and DEP force terms. Simulation techniques for 

obtaining the effective moments of the dielectric particles, the bases of the analytical methods 

for determining the electric field magnitude and its derivatives, and the formulation of the 

effective moment method for obtaining the DEP force terms have also been presented. 
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4.2. Electric field magnitude and derivatives 

This section presents and discusses analytical calculations of the electric field magnitude and 

its first three derivatives along the symmetry axes of point-plane and disc-plane electrode 

geometries. Electric field curvatures determine the energy stored in dielectric particles in the 

form of effective moments. Field magnitude and derivative results are also important in that 

they are required for the calculation of dielectrophoretic force terms from the effective 

moment method. In the results to be presented, units for electric field magnitude and first-, 

second- and third-order derivatives are V.(µm)-1, V.(µm)-2, V.(µm)-3 and V.(µm)-4, respectively. 

4.2.1. The disc-plane electrode geometry 

The electric field magnitude at a point of height h above the plane electrode on the symmetry 

axis of the disc-plane geometry has been calculated analytically using the Schwarz-Christoffel 

mapping method [5] (see Appendix B): 

     
 

 
   

 

 
   (

  

 
)                  (4.6) 

where   is the separation between the disc and plane electrodes and V is the voltage applied 

across the electrodes, 2V in this work. It can be noticed that the radius    of the disc electrode 

does not appear in the expression for the electric field magnitude along the symmetry axis of 

the disc-plane geometry. This is because it has been found that, as a rule of thumb, the disc 

electrode needs to be at least 20 times smaller than the separation between disc and plane 

electrodes for    to affect the electric field along the axis of symmetry [5]. In fact, it is only 

when the disc electrode converges in shape towards a point electrode that field magnitude 

along the axis of symmetry shows dependency on disc electrode radius. As the smallest of 

disc electrode radii examined in this work,         , is large enough not to disturb the 

electric field magnitude along the symmetry axis, equation (4.6) can be safely applied to the 

intents and purposes of this chapter.       

Figure 4.4 shows the results obtained for the electric field magnitude and its first three 

derivatives along the symmetry axis of the disc-plane geometry (of specifications given in 

figure 4.1). The field derivatives have been calculated by analytical differentiation of equation 

(4.6) in MATLAB. The results show that the electric field strengthens towards the disc 

electrode whereas electric field derivatives bear (odd or even) symmetry around the 

midpoint h = 5µm. It can be noticed that values of the electric field magnitude and first three 

derivatives do not undergo significant change along the symmetry axis of the disc-plane 
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geometry; all values are seen to remain within the same order of magnitude as height h above 

the plane electrode is increased from 0 to 10µm. 

 

 

Figure 4.4. Electric field magnitude and derivatives along symmetry axis of disc-plane geometry – 
Variations with height h above the plane electrode of the (a) electric field magnitude, and its (b) first-, (c) 
second-, and (d) third-order derivatives along the symmetry axis of the disc-plane electrode geometry (of 
specifications given in figure 4.1). Identical results are obtained with disc electrode radii in the range 
{0.5,1,2}µm. The electric field magnitude has been calculated analytically using equation 4.6 (derivation 
presented in Appendix B) and the field gradients are obtained by analytic differentiation of equation 4.6 
in MATLAB.  

 

The first derivative of the electric field is seen to attain positive values at all positions along 

the symmetry axis of the electrode geometry while second- and third-order derivatives are 

seen to be negative-valued for h > 5µm and at all h, respectively. As the field magnitude and 

its first- and second-order derivatives determine the energy stored in particles in the form of 

effective dipole, quadrupole and octupole moments, respectively, negative values for the 

second-order field derivative imply that at h > 5µm, the effective octupole moment should 

attain negative values, acting to reduce the energy stored in the particles in the form of 

effective dipole and quadrupole moments. Values of the third-order field derivative have no 

implications regarding the first three effective moments, but influence the third-order DEP 

force term in accordance with equation (4.5). 

(a) (b) 

(c) (d) 
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4.2.2. The point-plane electrode geometry 

The electric field magnitude at a point of height h above the plane electrode on the symmetry 

axis of the point-plane electrode geometry has been derived analytically using the Schwarz-

Christoffel mapping method [6]: 

     
  

                       
                                 (4.7) 

where    is the radius of the point electrode,    is the separation between the two electrodes, 

i.e. the length of the axis of symmetry,        and   is given by: 

  
 

     (
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                                         (4.8) 

where   is the voltage across the electrodes, 2V in this work. It can be seen that unlike the 

case of the disc-plane geometry, the radius of the point electrode affects the electric field 

magnitude along the symmetry axis of the point-plane geometry. 

Results obtained for the electric field magnitude and its first three derivatives along the 

symmetry axis of the point-plane geometry with rp=0.5µm are shown in figure 4.5. The 

electric field derivatives have been calculated by analytical differentiation of equation (4.7) in 

MATLAB. Notable contrasts between the plots in figure 4.5 for the point-plane geometry with 

those of figure 4.4 for the disc-plane geometry can be easily identified. Firstly, the radius of 

the point electrode is seen to affect values of the electric field magnitude and its first three 

derivatives along the symmetry axis of the point-plane geometry. At all but the closest of 

positions to the point electrode, larger point electrodes are seen to give rise to stronger 

electric field magnitudes and curvatures. It is only at positions very close to the point 

electrode that an opposite effect is observed; near smaller point electrodes, which more 

closely resemble an electric field singularity, electric field magnitudes and curvatures attain 

increased strength. Trends with which the electric field magnitude and its derivatives vary 

with position along the axis of symmetry are seen not to vary with changing point electrode 

radius.  

Another important difference with the case of the disc-plane geometry is in variation patterns 

with h of the electric field magnitude and its derivatives. In both axisymmetric electrode 

geometries, the electric field magnitude increases away from the plane electrode. However, 

the rate of increase is notably sharper in the case of the point-plane geometry. The electric 

field magnitude was shown to remain within the same order of magnitude along the 

symmetry axis of the disc-plane geometry, while the field at the point electrode is seen to be 
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stronger than that at the plane electrode of the point-plane geometry by two orders of 

magnitude. Electric field derivatives at point and plane electrodes are also seen to differ by 

multiple orders of magnitude while field derivatives along the symmetry axis of the disc-

plane geometry were seen to attain values within the same order of magnitude and 

symmetrical around the midpoint. The resemblance of an electric field singularity by the 

point electrode gives rise to a high concentration of electric field magnitude and curvature 

strength around the point electrode and, consequently, very sharp decreases in electric field 

magnitude and curvature towards the plane electrode. 

 

 

Figure 4.5. Electric field magnitude and derivatives along symmetry axis of point-plane geometry – 
Variations with height h above the plane electrode of (a) the electric field magnitude, and its (b) first-, (c) 
second-, and (d) third-order derivatives along the symmetry axis of the point-plane electrode geometry 
(of specifications given in figure 4.1) with point electrode radius rp=0.5µm. The electric field magnitude 
has been calculated analytically using equation 4.7 (derivation presented in Appendix C) and the field 
gradients have been obtained by analytic differentiation of equation 4.7 in MATLAB.  

 

Another difference between the two axisymmetric electrode geometries lies in the signs of 

the electric field derivatives. Values of the second-order field derivative along the symmetry 

axis of the disc-plane geometry were seen to be negative for      , and the third-order 
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field derivative was seen to be negative-valued for all h. In the point-plane geometry, all of the 

first three electric field derivatives are seen to be positive-valued at all positions along the 

axis of symmetry. Positive-valued field derivatives act to add to the energy stored in particles 

in the form of the effective dipole moment, through positive-valued higher-order moments. 

The significant difference between the field magnitude and gradient profiles of the two 

different electrode geometries can be regarded as an important design consideration when it 

comes to choice of electrode geometry for dielectrophoretic applications. It is important to 

note that the field magnitude and gradient profiles for a disc-plane electrode geometry of disc 

electrode radius          is vastly different from those of a point-plane electrode 

geometry of         . The trends with which the field magnitude and gradients vary with 

position along the symmetry axes of the two electrode structures as well as the signs and 

magnitudes of the field gradients are notably different, with direct implications regarding the 

effective moments and dielectrophoretic forces – as will be seen in future sections. 
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4.3. The linear effective moments 

This section presents and discusses calculations of the first three effective moments of 

spherical, ellipsoidal and cylindrical particles at different positions along the symmetry axes 

of point-plane and disc-plane electrode configurations. The effective moments, linear in axial 

symmetry, are calculated using the hybrid numerical-analytical method presented in Section 

4.1. The effective moments are representative of the energy stored by the electric field in 

dielectric particles and are used extensively as bases for dielectric characterisation studies 

[7]. In most analyses, higher-order moments are ignored due to their deemed negligence. 

This section is aimed at quantifying the significance of higher-order moments in different 

circumstances regarding particle and electric field geometry to provide assessment of the 

commonly-invoked dipole approximation. In the results to be presented, units for the dipole, 

quadrupole and octupole moments are C.m, C.m2 and C.m3, respectively. 

4.3.1. Results 

4.3.1.1. The disc-plane electrode geometry 

Results obtained for the first three effective moments of spherical (r=1µm), ellipsoidal 

(a=1µm, b=0.5µm) and cylindrical (a=1µm, r=0.5µm) particles positioned on the symmetry 

axis of the disc-plane electrode geometry are shown in figure 4.6. 

 

Figure 4.6. Linear effective moments in disc-plane electrode geometry – Variations with particle centre 
height h above the plane electrode of the effective dipole (n=1), quadrupole (n=2) and octupole (n=3) 
moments of (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm), and (c) cylindrical (a=1µm, r=0.5µm) 
particles positioned on the symmetry axis of the disc-plane electrode geometry (of specifications given in 
figure 4.1). Identical results are obtained with disc electrode radii rd={0.5,1,2}µm. 

 

As expected from electric field curvatures of nth order determining the energy stored in 

particles in the form of        -order effective moments, the trends with which the 

effective moments vary with position along the axis of symmetry are seen to be identical to 
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those of field curvatures of preceding order and independent of particle shape. As with the 

electric field magnitude, the effective dipole moment is seen to increase with height above the 

plane electrode. As with the first derivative of the electric field along the axis of symmetry, 

the effective quadrupole moment attains values symmetrical around a maximum at midpoint 

     . As with the second-order field derivative, values of the effective octupole moment 

are seen to bear odd symmetry around a null at the midpoint, becoming negative for   

   . 

As expected from field curvature results, changing disc electrode radius within the range {0.5, 

1, 2}µm does not affect values of the linear moments. The effect of particle geometry on the 

effective moments and, importantly, the significance of higher-order moments will be 

discussed in Section 4.3.2. 

4.3.1.2. The point-plane electrode geometry 

Figure 4.7 shows variations with particle centre height above the plane electrode of the first 

three effective moments of spherical (r=1µm), ellipsoidal (a=1µm, b=0.5µm) and cylindrical 

(a=1µm, r=0.5µm) particles positioned on the symmetry axis of the point-plane electrode 

geometry with point electrode radius rp=0.5µm.  

 

 

Figure 4.7. Linear effective moments in point-plane electrode geometry – Variations with particle centre 
height h above the plane electrode of the effective dipole (n=1), quadrupole (n=2) and octupole (n=3) 
moments of (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm), and (c) cylindrical (a=1µm, r=0.5µm) 
particles positioned on the symmetry axis of the point-plane electrode geometry (of specifications given 
in figure 4.1) with rp=0.5µm. 

  

As with the disc-plane geometry, variations patterns with h of the effective moments are 

identical to those of field curvatures of preceding order. All of the first three effective 

moments are seen to sharply increase with particle height above the plane electrode. For all 
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three particle shapes, higher-order moments are seen to be negligible, compared to the 

dipole moment, at all but the nearest of positions to the point electrode.  

4.3.2. Discussion 

4.3.2.1. Effect of electrode geometry 

It may be understood from a comparison of the plots in figures 4.6 and 4.7 that electrode 

shape can significantly impact the effective moments of particles subjected to axisymmetric 

electric fields. Variation patterns with position along the axis of symmetry as well as the 

values of the effective moments of spherical and non-spherical particles were seen to differ 

notably among the two electrode geometries. In consistency with electric field curvature 

results presented in the previous section, the effective moments of particles positioned on the 

symmetry axis of the disc-plane geometry were seen to attain values within the same order of 

magnitude, whereas in the point-plane geometry, values sharply decreased towards the plane 

electrode, spanning multiple orders of magnitude. In the point-plane geometry, higher-order 

moments were seen to be comparable to the effective dipole moment only at positions closest 

to the point electrode. With the disc-plane geometry, higher-order moments were seen to be 

of much added significance: For all three particle shapes, the effective octupole moment was 

seen to attain values larger than lower-order moments, regardless of position along the axis 

of symmetry. For non-spherical particles near the midpoint      , values attained by the 

effective quadrupole moment were seen to exceed those of the dipole moment. 

While varying disc electrode radius within the range {0.5,1,2}µm was seen to have no impact 

on the effective moments, increasing point electrode radius gives rise to larger effective 

dipole, quadrupole and octupole moments for spherical, ellipsoidal and cylindrical particles – 

as shown in figure 4.8. The effect observed in the previous section of increased field 

magnitude and curvature strength near smaller point electrodes is not reflected in effective 

moment results due to the naturally-imposed constraint on particle centre proximity with the 

point electrode: at      , the particle edge would reach the point electrode and higher 

positions could not be examined.  
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Figure 4.8. Effect of point electrode radius on linear effective moments in point-plane geometry – 
Variations with particle centre height h above the plane electrode of the first three effective moments of 
(a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm), and (c) cylindrical (a=1µm, r=0.5µm) particles 
positioned on the symmetry axis of the point-plane electrode geometry (of specifications given in figure 
4.1) with rp={0.1,0.5,1}µm. 

 

4.3.2.2. Effect of particle shape 

It was shown in the previous section that particle geometry does not impact the trends with 

which the effective moments vary with particle position. However, values of the effective 

moments were seen to differ among different particle geometries. Figure 4.9 compares the 

first three effective moments of spherical, ellipsoidal and cylindrical particles positioned on 

the symmetry axes of point-plane and disc-plane electrode configurations. To broaden the 

investigation, two different aspect ratios, λ, have been considered for the non-spherical 

shapes.  
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Figure 4.9. Effect of particle shape on linear effective moments – Variations with particle centre height h 
above the plane electrode of the first three effective moments of spherical (r=1µm), ellipsoidal 
(a=1µm,b={0.5,0.25}µm) and cylindrical (a=1µm,r={0.5,0.25}µm) particles positioned on the symmetry 
axes of (a) disc-plane and (b) point-plane electrode geometries (of specifications given in figure 4.1) when 
the point electrode radius is 0.5µm. Identical results are obtained with disc electrode radii in the range 
{0.5,1,2}µm. λ denotes the aspect ratio of non-spherical particles, defined as a/b for ellipsoidal and a/r 
for cylindrical particles. 

 

It can be seen that with thinner ellipsoidal and cylindrical particles included, the effective 

moments are larger for particles of larger volume. The only exception posed to the pattern is 

the cylindrical (λ=2) particle possessing larger effective octupole moments (at all positions 

along the symmetry axis of either of the two electrode geometries) than the (larger in 

volume) spherical particle. It is inferred from the data in figure 4.9 that the effective dipole 

moment, and not higher-order moments, is directly proportional to particle volume. As a 

result, if dielectric particles subjected to axisymmetric fields were to be characterised based 

on their effective dipole moment only, approximation with a sphere of equal volume will 

incur no error. Whether or not the dipole moment would suffice for representation of the 
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energy stored by an applied electric field in dielectric particles would depend on the 

significance of higher-order moments. 

 

      

Figure 4.10. Significance of higher-order effective moments in axial symmetry – Variations with particle 
centre height h above the plane electrode of the ratio over the effective dipole moment of the sum of 
effective quadrupole and octupole moments of spherical (r=1µm), ellipsoidal (a=1µm,b={0.5,0.25}µm) 
and cylindrical (a=1µm,r={0.5,0.25}µm) particles positioned on the symmetry axes of (a) disc-plane and 
(b) point-plane electrode geometries (of specifications given in figure 4.1). λ denotes the aspect ratio of 
non-spherical particles, defined as a/b for ellipsoidal and a/r for cylindrical particles. The radius of the 
point electrode is taken to be 0.5µm. Similar results are obtained with point electrode radii 0.1µm and 
1µm, and identical results are obtained for disc electrode radii in the range {0.5,1,2}µm. 

 

The significance of higher-order moments can be defined as the ratio of the sum of effective 

quadrupole and octupole moments over the effective dipole moment, [         ]     . With 

this definition, the significance of higher-order moments of spherical, ellipsoidal and 

cylindrical particles at different positions along the symmetry axes of point-plane and disc-

plane electrode geometries is plotted in figure 4.10. It can be seen that higher-order moments 

are considerably more significant in the point-plane geometry: Effective quadrupole and 

octupole moments of spherical and non-spherical particles are seen to sum up to values 

larger than that of the effective dipole moment by up to two orders of magnitude. In the disc-

plane geometry, the ratio of higher-order moments over the effective dipole moment is seen 

to attain values between 0.5 (for all particle shapes at midpoint      ) and 16.5 (for the 

thinner cylindrical particle at      ). In general, higher-order moments are found to be of 

increased significance for non-spherical particles. It may be concluded from the data 

presented in figure 4.10 that using the dipole approximation for characterisation of particles 

subjected to axisymmetric fields will be subject to significant error, regardless of particle 

shape and position along the axis of symmetry. The error incurred will be 50% minimum, and 

– depending on electrode geometry, particle shape and position – may go well beyond 100%. 

(a) (b) 
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Table 4.1. Errors incurred in values of first three effective moments of non-spherical particles upon 
approximation with simpler shapes of similar dimensions – List of ratios of the first three effective 
moments of model particles (spheres or ellipsoids) over those of original particles (ellipsoids or cylinders) 
positioned on the symmetry axes of disc-plane (dsc-pln) and point-plane (pnt-pln) electrode geometries 
(of specifications given in figure 4.1). Different ratios are obtained at different positions along the 
symmetry axes of either of the two electrode geometries. Values in the table represent averages of ratios 
at different particle heights above the plane electrode in the two axisymmetric electrode configurations. 
The radius of the point electrode is taken to be 0.5µm. Similar results are obtained with point electrode 
radii 0.1µm and 1µm, and identical results are obtained for disc electrode radii in the range {0.5,1,2}µm. 

Original 

particle 

Model particle p(1) ratio p(2) ratio p(3) ratio 

dsc-

pln 

pnt-

pln 

dsc-

pln 

pnt-

pln 

dsc-

pln 

pnt-

pln 

Ellipsoid 

(a=1µm,b=0.5µm) 

Sphere (r=1µm) 
4.0 4.0 2.6 3.0 1.6 1.5 

Ellipsoid 

(a=1µm,b=0.25µm) 

Sphere (r=1µm) 
16.7 16.7 12.5 14.3 5.0 5.0 

Cylinder 

(a=1µm,r=0.5µm) 

Sphere (r=1µm) 
2.7 2.7 1.3 1.5 0.94 1.03 

Cylinder 

(a=1µm,b=0.25µm) 

Sphere (r=1µm) 
11.1 11.1 6.3 8.3 2.7 2.7 

Cylinder 

(a=1µm,r=0.5µm) 

Ellipsoid 

(a=1µm,b=0.5µm) 
0.7 0.7 0.5 0.5 0.6 0.7 

Cylinder 

(a=1µm,b=0.25µm) 

Ellipsoid 

(a=1µm,b=0.25µm) 
0.7 0.7 0.5 0.6 0.5 0.5 

 

Often in the literature on dielectric characterisation, non-spherical particles (comprising the 

vast majority of biological particles) are approximated as spheres, for which the effective 

moments have been derived analytically. On a number of other occasions, highly non-

spherical particles such as erythrocytes have been approximated as ellipsoids, for which the 

effective dipole moment has been calculated analytically. As the effective dipole moment 

shows direct proportionality with particle volume, approximating particles of arbitrary shape 

with spheres of equal volume would incur no error in values of the effective dipole moment. 

No direct proportionality between higher-order moments and particle volume is observed. As 

a result, modelling non-spherical particles with simpler-to-model shapes, albeit of equal 

volume, will be subject to inevitable error in values of higher-order moments, shown to be 

comparable, and in most circumstances larger than, the effective dipole moment in axial 

symmetry (figure 4.10).  

For quantitative assessment of the errors incurred in the values of linear effective moments 

upon approximating non-spherical particles with simpler shapes, a summary is presented in 
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Table 4.1. The table shows ratios of the effective dipole, quadrupole and octupole moments of 

model particles (spheres/ellipsoids) over those of original particles (ellipsoids/cylinders) in 

point-plane and disc-plane electrode configurations. The ratios differ depending on particle 

position along the axes of symmetry; values in the table represent the average of ratios at 

different particle positions along the symmetry axes of either of the two electrode 

geometries. It can be seen that in all cases, there is significant difference between the effective 

moments of original and model particles.  

 

Table 4.2. Errors incurred in values of higher order effective moments of non-spherical particles upon 
approximation with simpler shapes of equal volume – List of ratios of the second- and third-order 
effective moments of model particles (spheres or ellipsoids) over those of original particles (ellipsoids or 
cylinders) positioned on the symmetry axes of disc-plane (dsc-pln) and point-plane (pnt-pln) electrode 
geometries (of specifications given in figure 4.1), when dimensions of the model particle are adjusted for 
volumes to equate. Different ratios are obtained at different positions along the symmetry axes of either 
of the two electrode geometries. Values in the table represent averages of ratios at different particle 
heights above the plane electrode in the two axisymmetric electrode configurations. The radius of the 
point electrode is taken to be 0.5µm. Similar results are obtained with point electrode radii 0.1µm and 
1µm, and identical results are obtained for disc electrode radii in the range {0.5,1,2}µm. 

Original 

particle 

Model particle p(2) ratio p(3) ratio 

dsc-pln pnt-pln dsc-pln pnt-pln 

Ellipsoid 

(a=1µm,b=0.5µm) 

Sphere 

(equal volume) 
1.4 1.9 1.4 1.4 

Ellipsoid 

(a=1µm,b=0.25µm) 

Sphere 

(equal volume) 
10.5 12.8 3.2 3.3 

Cylinder 

(a=1µm,r=0.5µm) 

Sphere 

(equal volume) 
1.9 2.2 1.2 1.7 

Cylinder 

(a=1µm,b=0.25µm) 

Sphere 

(equal volume) 
8.5 9.0 3.4 3.4 

Cylinder 

(a=1µm,r=0.5µm) 

Ellipsoid  

(equal volume) 
0.9 0.9 0.9 0.9 

Cylinder 

(a=1µm,b=0.25µm) 

Ellipsoid  

(equal volume) 
0.9 0.8 0.9 0.8 

 

For the effective dipole moment, ratios of the effective moments of model and original 

particles are representative of the volume ratio of the two particles. If the dimensions of the 

model particle are adjusted for volumes to equate, the error is reduced to zero. With higher-

order moments, the ratios appear to include factors other than particle volume and as a 

result, error is not reduced to negligible values when volumes of model and original particles 

are equal. In fact, as shown in Table 4.2, effective moment ratios of model and original 



   

 
72 

particles are at times increased, implying larger approximation errors, when volumes are 

equated by adjusting model particle dimensions. It may be concluded that, given the 

increased significance of higher-order moments for non-spherical particles (figure 4.10), 

approximation with simpler shapes – albeit of equal volume – will incur considerable error in 

characterisation of particle dielectric properties based on values of the effective moments.  

4.3.2.3. Effect of particle size 

Particle size, and how it compares to a characteristic length scale of electric field non-

uniformity, is often cited as an important factor in the reliability of the dipole approximation. 

This section analyses the effect of particle size on linear effective moments and, importantly, 

the significance of higher-order moments by comparing the effective dipole, quadrupole and 

octupole moments of spherical particles of two different radii, 1µm and 2µm, positioned 

along the symmetry axes of point-plane and disc-plane electrode geometries. As shown in 

figure 4.11, all of the first three effective moments increase by about an order of magnitude as 

the radius of the spherical particle is doubled. As expected from earlier results, the effective 

dipole moment (and not higher-order moments) increases by a factor equal to the volume 

ratio. Trends with which the effective moments vary with position along the axes of 

symmetry are seen to be retained upon doubling particle dimensions.  

As shown in figure 4.12, the significance of higher-order moments also increases notably 

upon doubling particle dimensions. Effective quadrupole and octupole moments of the larger 

spherical particle are seen to add up to values up to 12 and 50 times larger than that of the 

effective dipole moment in disc-plane and point-plane geometries, respectively. Maximum 

higher-order to effective dipole moment ratios for the smaller sphere are 4 and 20 in disc-

plane and point-plane geometries, respectively. The increased significance of higher-order 

moments for the larger sphere can be attributed to larger electric field magnitude and 

curvature variations across particles of longer dimensions along the axis of electric field 

symmetry.  

It is important to note that particle positions at which the increase in significance of higher-

order moments is more pronounced are not necessarily those at which the particle 

experiences the largest variation in electric field magnitude across its dimensions. It is the 

combined effect of electric field magnitude and curvature variations, as well as particle 

geometry (including size and shape), that determines the reliability of the dipole 

approximation. In the point-plane geometry, electric field magnitude and curvature profiles 

are similar; thereby the higher-order moments are most significant near the point electrode.  
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Figure 4.11. Effect of particle size on linear effective moments – Variations with particle centre height h 
above the plane electrode of the first three effective moments of spherical particles of radii 1µm (r=1) 
and 2µm (r=2) positioned on the symmetry axes of (a) disc-plane and (b) point-plane electrode 
configurations (of specifications given in figure 4.1). The point electrode radius is rp=0.5µm and identical 
results are obtained with disc electrode radii in the range rd={0.5,1,2}µm. Legend in part (a) applies to 
both figure parts. 

 

                     

Figure 4.12. Effect of particle size on significance of higher-order moments in axial symmetry – Variations 
with particle centre height h above the plane electrode of the ratio over the effective dipole moment of 
the sum of effective quadrupole and octupole moments of spherical particles of two different radii 
(r={1,2}µm) positioned on the symmetry axes of (a) disc-plane, and (b) point-plane electrode geometries 
(of specifications given in figure 4.1). The radius of the point electrode is taken to be 0.5µm. Similar 
results are obtained with point electrode radii 0.1µm and 1µm, and identical results are obtained for disc 
electrode radii in the range {0.5,1,2}µm. Legend in part (a) applies to both figure parts. 

 

(a) (b) 
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In the disc-plane geometry, there is notable difference between field magnitude and 

curvature profiles. The resultant effect is higher-order moments that are most significant 

near either of the two electrodes where, incidentally, field magnitude variations across 

particle dimensions are not maximal. 

4.3.3. Summary and conclusions 

Results have been presented of applying a numerical-analytical method presented in Section 

4.1 for determination of the effective dipole, quadrupole and octupole moments of spherical, 

ellipsoidal and cylindrical particles of different dimensions subjected to axisymmetric electric 

fields generated by point-plane and disc-plane electrode geometries. It has been shown that 

the trends with which first- and higher-order moments vary with particle position along the 

axis of electric field symmetry are determined solely by electric field gradients of preceding 

order. The effect of particle geometry – shape and size – is reflected in the values of the 

effective moments. The effective dipole moment has been shown to be directly proportional 

to particle volume. As a result, non-spherical particles can be approximated as spheres of 

equal volume if particle characterisation is to be made based on the dipole approximation. 

Whether or not the effective dipole moment suffices for representation of the energy stored 

by the electric field in dielectric particles has been determined by analysing the significance 

of higher-order moments. It has been shown that effective quadrupole and octupole moments 

add up to values comparable to, and in most cases larger than that of the effective dipole 

moment. As a result, particle characterisation based on the effective dipole moment alone will 

be subject to significant error even where the electric field is almost uniform. Higher-order 

moments have been shown to be of added significance for non-spherical particles. In 

agreement with qualitative predictions, it has been shown that particles of longer dimensions 

along the axis of electric field symmetry possess more significant higher-order moments. 

However, it has been observed that ‘by inspection’ judgements on the reliability of the dipole 

approximation, based on electric field magnitude variations across particle dimensions or 

extent of electric field non-uniformity can be erroneous. As an example, higher-order 

moments of spherical and non-spherical particles positioned on the symmetry axis of the 

disc-plane electrode geometry have been shown to be least significant when the electric field 

is most highly non-uniform, with non-uniformity defined conventionally as the magnitude of 

the first-order electric field derivative. The reliability of the dipole approximation, or the 

significance of higher-order moments, has been shown to be determined from the combined 

effect of electric field magnitude and curvature variations as well as particle geometry 

(including shape and size). 
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4.4. Dielectrophoretic force terms in axial symmetry 

This section presents calculations of the first three terms of the dielectrophoretic force on 

spherical, ellipsoidal and cylindrical particles of different dimensions subjected to 

axisymmetric electric fields generated by point-plane and disc-plane electrode geometries. 

The DEP force terms are calculated based on the effective moment method, by combining the 

field gradient and effective moment results of the previous two sections. Effects of variations 

in particle and field parameters on the DEP force terms will be discussed. The significance of 

higher-order forces shall be analysed in Chapter 5 where force term calculations using the 

effective moment method will be compared against total force calculations using the Maxwell 

stress tensor method to derive higher-order contributions to the DEP force on spherical and 

non-spherical particles. In the results to be presented, units for dielectrophoretic force terms 

will be pico-Newtons (pN). 

4.4.1. Results and discussion 

Results obtained for the first three terms of the DEP force on spherical, ellipsoidal and 

cylindrical particles positioned on the symmetry axis of the disc-plane electrode geometry 

are shown in figure 4.13, where two different aspect ratios are considered for the non-

spherical shapes. The DEP force terms are calculated by weighted multiplication of effective 

moments and field gradients of corresponding order. Symmetrical variation patterns for 

electric field derivatives along the symmetry axis of the disc-plane geometry (figure 4.4) have 

resulted in higher-order force terms bearing odd symmetry around a null at the midpoint 

     . Values of the dipolar DEP force are seen to be almost symmetrical around a 

maximum near the midpoint. 

As expected from field gradient and effective moment results, the DEP force terms are not 

affected by variations in the disc electrode radius within the examined range of {0.5,1,2}µm. 

As with the effective moments, the DEP force terms are seen to be stronger on particles of 

larger volume – with the only exception posed by the cylindrical (a=1µm, r=0.5µm) particle 

being subject to stronger octupolar forces than the (larger in volume) spherical particle. The 

dipolar force (and not higher-order forces) is seen to be directly proportional to particle 

volume. Consequently, if higher-order DEP forces are to be ignored in accordance with the 

dipole approximation, the dielectrophoretic force on a particle of arbitrary shape can be 

calculated from that on a sphere of equal volume. The significance of higher-order DEP force 

terms in different circumstances regarding particle and field geometry will be discussed in 

Chapter 5. 



   

 
76 

 

Figure 4.13. Dielectrophoretic force terms in disc-plane geometry – Variations with particle centre height 
h above the plane electrode of the (a) first-, (b) second-, and (c) third-order terms of the dielectrophoretic 
force on spherical (r=1µm), ellipsoidal (a=1µm,b={0.5,0.25}µm) and cylindrical (a=1µm,r={0.5,0.25}µm) 
particles positioned on the symmetry axis of the disc-plane electrode geometry (of specifications given in 
figure 4.1). Identical results are obtained with disc electrode radii in the range {0.5,1,2}µm. The unit for 
DEP force terms is pico-Newtons (pN). 

 

 

Figure 4.14. Dielectrophoretic force terms in point-plane geometry – Variations with particle centre 
height h above the plane electrode of the (a) first-, (b) second-, and (c) third-order terms of the 
dielectrophoretic force on spherical (r=1µm), ellipsoidal (a=1µm,b={0.5,0.25}µm) and cylindrical 
(a=1µm,r={0.5,0.25}µm) particles positioned on the symmetry axis of the point-plane electrode geometry 
(of specifications given in figure 4.1) of point electrode radius rp=0.5µm. The unit for DEP force terms in 
pico-Newtons (pN). 

 

Figure 4.14 shows the results obtained for the first three terms of the DEP force on spherical, 

ellipsoidal and cylindrical particles positioned on the symmetry axis of the point-plane 

electrode geometry with a 0.5µm-radius point electrode. It can be seen that as with electric 

field curvature and effective moment profiles, the trend for first- and higher-order forces on 

particles positioned on the symmetry axis of the point-plane geometry is that of sharply 

increasing strength towards the point electrode. As with the effective moments, DEP force 

(a) (b) (c) 
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terms are seen to be stronger on particles of larger volume with the dipolar force (only) 

showing direct proportionality with particle volume. 

The effect of point electrode radius on terms of the DEP force along the symmetry axis of the 

point-plane geometry is shown in figure 4.14 through plots of dipolar, quadrupolar and 

octupolar DEP forces on a spherical (r=1µm) particle positioned on the symmetry axes of 

point-plane electrode geometries with three different point electrode radii; {0.1,0.5,1}µm. It 

can be seen that all of the first three DEP force terms are stronger with larger point 

electrodes. The increase in strength is seen to be more pronounced on particles positioned 

further away from the point electrode. 

 

 

Figure 4.15. Effect of point electrode radius on dielectrophoretic force terms in point-plane geometry – 
Variations with particle centre height h above the plane electrode of the (a) first-, (b) second-, and (c) 
third-order terms of the dielectrophoretic force on a spherical (r=1µm) particle positioned on the 
symmetry axis of the point-plane electrode geometry (of specifications given in figure 4.1) with point 
electrode radii rp={0.1,0.5,1}µm. The unit for DEP force terms in pico-Newtons (pN). 

 

The effect of particle size on terms of the dielectrophoretic force in axial symmetry is shown 

in figure 4.16 through comparison of the first three terms of the DEP force on spherical 

particles of two different radii (1µm and 2µm) positioned on the symmetry axes of disc-plane 

and point-plane electrode geometries. It can be seen that, as expected from effective moment 

results (figure 4.11), doubling particle radius gives rise to a strengthening of all of the first 

three DEP force terms by about an order of magnitude. In both electrode geometries, particle 

size is seen not to affect the trends with which DEP force terms vary with particle position 

along the axis of electric field symmetry. 
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Figure 4.16. Effect of particle size on dielectrophoretic force terms in axial symmetry – Variations with 
particle centre height h above the plane electrode of the first three terms of the DEP force on spherical 
particles of radii 1µm (r=1) and 2µm (r=2) positioned on the symmetry axes of (a) disc-plane and (b) 
point-plane electrode geometries (of specifications given in figure 4.1). Identical results are obtained with 
disc electrode radii in the range {0.5,1,2}µm, and the radius of the point electrode is taken to be 0.5µm. 
Legend in part (a) applies to both figure parts. The unit for DEP force terms in pico-Newtons (pN). 

 

4.4.2. Summary and conclusions 

Results have been presented for the first three terms of the dielectrophoretic force on 

spherical, ellipsoidal and cylindrical particles subjected to axisymmetric electric fields 

generated by point-plane and disc-plane electrode geometries. The DEP force terms have 

been calculated using the effective moment method which involves weighted multiplication 

of effective moments and field derivatives of corresponding order. As such, trends with which 

the DEP force terms of a given order vary with particle position along the axis of electric field 

symmetry have been found not to depend on particle geometry and to be determined solely 

by those of electric field derivatives of the same and preceding order. Electrode geometry has 

been shown to have a significant effect on the DEP force terms as results obtained with point-

plane and disc-plane geometries using the same dielectric particles have been found to be 

vastly different. It has been shown that the dipolar DEP force (and not multipolar terms) is 

directly proportional to particle volume. Therefore if the dipole approximation is to be 

invoked for calculation of the DEP force on particles of arbitrary shape, error-free 

approximation can be made with spheres of equal volume. The reliability of the dipole 

(a) (b) 
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approximation in predicting the dielectrophoretic force on spherical and non-spherical 

particles subjected to electric fields of varying magnitude and curvature strengths will be 

discussed in the next chapter. 
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Conclusions 

 Trends with which the linear effective moments of dielectric particles subjected to 

axisymmetric electric fields vary with position along the axis of electric field symmetry 

are identical to those of electric field gradients of preceding order and independent of 

particle geometry. 

 Particle geometry has notable effect on the values of the linear effective moments. First- 

and higher-order effective moments are generally larger for particles of larger volume. 

However, only the effective dipole moment is directly proportional to particle volume. As 

a result, approximating non-spherical particles with simpler shapes of equal volume will 

incur zero error only if higher-order moments are ignored in accordance with the dipole 

approximation.  

 Effective quadrupole and octupole moments of spherical and non-spherical particles add 

up to values comparable to, and in many circumstances larger than, that of the effective 

dipole moment. For non-spherical particles, higher-order moments are of added 

significance, making the dipole approximation highly unreliable for dielectric 

characterisation purposes. 

 Increasing particle size gives rise to more significant higher-order moments. However, 

electric field magnitude variation across particle dimensions does not set a general 

criterion for the reliability of the dipole approximation. 

 As with effective moments, particle geometry impacts the values of dielectrophoretic 

force terms, but not the trends with which they vary with particle position along the axis 

of electric field symmetry. The trend with particle position of the DEP force term of a 

given order is determined by those of field greadients of the same and preceding order. 
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Chapter Five 

Maxwell Stress Tensor Calculation of the Total Dielectrophoretic Force in 

Axial Symmetry: Results and Discussion 
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Abstract 

Calculations are presented of the total dielectrophoretic force on spherical, ellipsoidal and 

cylindrical particles subjected to axisymmetric electric fields generated by point-plane and 

disc-plane electrode configurations. Particle and electric field geometries are those for which 

the first three effective moments and DEP force terms were calculated in the previous 

chapter. In this chapter, the total DEP force is calculated using the mathematically rigorous 

Maxwell stress tensor method to (a) provide verification for the results presented previously 

for the DEP force terms, and (b) to determine contributions from higher-order terms to the 

dielectrophoretic force in different circumstances regarding particle and electric field 

geometry. By analysis of second- and third-order contributions to DEP forces in axial 

symmetry, the reliability of the dipole approximation is assessed. The assumption of axial 

symmetry serves as a good starting point as the problem domain becomes essentially two-

dimensional, and calculations are greatly simplified as a result. The axisymmetric assumption 

will be dropped in the next chapter, where force term calculations based on general, rather 

than linear, effective moments will be compared against Maxwell stress tensor calculations of 

the total force in 3D to examine the significance of higher-order force terms in a broader 

context. 

 

Overview 

Section 5.1 presents the formulation of the Maxwell stress tensor (MST) method, used for 

total DEP force calculations in this chapter. The section also recaps the specifications of the 

physical problem to which the method will be applied and demonstrates issues with regard 

to numerical implementation of the MST method. Section 5.2 presents and discusses 

calculations of the total dielectrophoretic force on spherical and non-spherical particles in 

axial symmetry. Analysis is offered on the effects of particle and electrode geometry on the 

DEP force experienced by the particles. Section 5.3 compares DEP force term results of the 

previous chapter to total force calculations using the MST method to derive second- and 

third-order contributions to DEP forces in axial symmetry. The reliability of the dipole 

approximation in different circumstances regarding particle and electric field geometry is 

thoroughly investigated. 
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5.1. Background and theory 

5.1.1. The Maxwell stress tensor method in axial symmetry 

The total dielectrophoretic force exerted by a non-uniform electric field on a dielectric 

particle suspended in a dielectric medium can be obtained by integration of the Maxwell 

stress tensor over a surface enclosing the particle [1]: 

     
 

 
∮         

                      (5.1) 

where    is the electric field vector inside the suspending medium, with    its magnitude 

and      denoting the dyadic product of the field vector with itself,   is the unit tensor of 

rank 2, and   is the unit vector normal to integration surface  . A brief introduction to tensor 

notation, including the definition of the unit tensor and the dyadic product of two (or more) 

vectors is presented in Appendix A. 

The term ‘total’ corresponds to the method used for calculation of the dielectrophoretic force. 

The mathematically rigorous Maxwell stress tensor (MST) method encompasses all 

interaction between electric fields and subject dielectric particles (and media) that result in 

exertion of electrical force. It also marks distinction with the results presented in the 

previous chapter of individual ‘terms’ of the DEP force. In axial symmetry, equation (5.1) can 

be expressed in a much simpler form [2]: 

     
 

 
       ∮    

     
 (

  

  
)                    (5.2) 

In equation (5.2),     and     are the tangential and normal components, respectively, of the 

electric field vector inside the suspending medium and    and    are the dielectric constants 

of the particle and its suspending medium, respectively. 

5.1.2. Physical problem specifications 

In this chapter, equation (5.2) will be used to derive the total dielectrophoretic force on 

spherical, ellipsoidal and cylindrical particles subjected to the axisymmetric electric fields 

generated by point-plane and disc-plane electrode geometries. Particle dimensions and 

specifications of the two electrode geometries are those used in the previous chapter for 

analysis of linear effective moments and dielectrophoretic force terms. Considering different 

particle and electrode geometries allows for examination of the circumstances under which 

higher-order DEP forces are significant and cannot be neglected in accordance with the 

dipole approximation. As in Chapter Four, it is assumed that the particles and their 
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suspending media are lossless dielectrics with relative permittivities of 3 and 80 (pertaining 

to SU-8 and water), respectively. 

5.1.3. Numerical implementation of the Maxwell stress tensor method 

According to Gauss’ Law, integration of the Maxwell stress tensor over any surface enclosing 

a particle must yield the dielectrophoretic force on the particle. The integration surfaces used 

for deriving the total DEP force in this chapter are taken to be those used in the previous 

chapter for derivation of the effective moments, i.e. spherical surfaces of radii equal to, 0.5µm 

larger than, and 0.9µm larger than the longest half-dimension of the particles. The 

integrations were performed in the standard solver initially used to obtain the results 

reported on in this work, namely FlexPDE. The software, although not as user-friendly as 

other well-established packages such as COMSOL and ANSYS, allows easy control over all 

mesh parameters – crucial to obtaining reproducibly accurate results, particularly near the 

singularity-resembling point electrode. 

 

                 

Figure 5.1. FlexPDE deficiency in numerical implementation of the Maxwell stress tensor method – 
Variations with particle centre height h above the plane electrode of the difference (in percentage) 
between largest and smallest values of the total dielectrophoretic force on (a) spherical (r=1µm), (b) 
ellipsoidal (a=1µm,b=0.5µm) and (c) cylindrical (a=1µm,r=0.5µm) particles positioned on the symmetry 
axis of the point-plane electrode configuration (of specifications given in figure 4.1) with three different 
point electrode radii: rp={0.1,0.5,1}µm, obtained by numerical integration – in FlexPDE – of the Maxwell 
stress tensor over three different surfaces of integration: spheres of radii equal to, 0.5µm larger than, and 
0.9µm larger than the longest half-dimension of particles.  

 

Results obtained using the three different integration surfaces were found to be in excellent 

agreement (with error margins not exceeding 0.05%) for particles positioned on the 

symmetry axis of the disc-plane geometry. In the point-plane geometry, results only agreed 

favourably for particles closer to the plane electrode. Figure 5.1 shows the difference (in 

percentage) between largest and smallest values obtained for the DEP force on spherical, 

(a) (b) (c) 
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ellipsoidal and cylindrical particles positioned on the symmetry axis of the point-plane 

electrode geometry. It can be seen that FlexPDE integration of the Maxwell stress tensor over 

different surfaces of integration yields values that are different by as much as nearly 30%. 

Refining the mesh grid around the point electrode did not prove effective in reducing the 

differences to insignificant values. Integration over particle surface was seen to generate a 

fourth set of values for the dielectrophoretic force which agreed to within an accuracy of 

more than 99% with the sum of dipolar, quadrupolar and octupolar force terms derived in 

the previous chapter. Performing integration of the Maxwell stress tensor in two alternative 

packages, FEniCS and COMSOL, produced results that were in excellent agreement with 

FlexPDE results obtained using integration over particle surface. This initiated a redo of 

effective moment calculations in FEniCS, in which case excellent agreement was observed – 

even at the nearest of positions to the point electrode – with FlexPDE results. The reason for 

the discrepancy between FlexPDE calculations of the dielectrophoretic force upon integration 

of the Maxwell stress tensor over different integration surfaces could not be verified, but it is 

understood that MST integration over particle surface only produces reliable results in 

FlexPDE. 
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5.2. Total dielectrophoretic force in axial symmetry 

This section presents and discusses calculations of the total dielectrophoretic force on 

spherical, ellipsoidal and cylindrical particles of different dimensions subjected to the 

axisymmetric electric fields of point-plane and disc-plane electrode geometries. The DEP 

forces on the particles have been calculated by numerical integration of the Maxwell stress 

tensor over four different enclosing surfaces, that of the particle itself, and spheres of radii 

equal to, 0.5µm larger than, and 0.9µm larger than the longest half-dimension of the particles. 

The use of different integration surfaces is to ensure minimal error is imparted by the 

numerical solver on DEP force results. In all cases, the results agreed to within an error 

margin of no more than 1%. In the results to be presented, units for the dielectrophoretic 

force will be pico-Newtons (pN). 

5.2.1. Results and discussion 

Results obtained for the total dielectrophoretic force on spherical, ellipsoidal and cylindrical 

particles positioned on the symmetry axes of disc-plane and point-plane electrode 

configurations are shown in figure 5.2, where two different aspect ratios have been 

considered for the non-spherical shapes. For the point-plane geometry, the radius of the 

point electrode is taken to be 0.5µm. For the disc-plane configuration, changing disc electrode 

radius within the examined range of {0.5,1,2}µm is seen not to affect the DEP force 

experienced by particles positioned on the symmetry axis of the disc-plane geometry. This is 

in agreement with earlier observations of changing disc electrode radius within the same 

range not affecting field curvatures, effective moments and DEP force terms along the 

symmetry axis of the disc-plane geometry. 

It appears from figure 5.2 that there are variation patterns with particle position along the 

axis of electric field symmetry specific to each electrode configuration and unaffected by 

particle geometry. In the disc-plane geometry, the DEP force is seen to attain values that are 

almost symmetrical around a maximum near the midpoint      . As a given particle 

moves along the symmetry axis of the disc-plane geometry, the DEP force it experiences is 

seen to remain within the same order of magnitude. This is in clear contrast with the case of 

the point-plane geometry, where the DEP force on a particle spans multiple orders of 

magnitude as the particle is moved from the vicinity of the plane electrode towards the point 

electrode. 
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Figure 5.2. Total dielectrophoretic force in axial symmetry – Variations with particle centre height h 
above the plane electrode of the total DEP force on spherical (r=1µm), ellipsoidal 
(a=1µm,b={0.5,0.25}µm), and cylindrical (a=1µm,r={0.5,0.25}µm) particles positioned on the symmetry 
axes of (a) disc-plane and (b) point-plane electrode configurations (of specifications given in figure 4.1). 
The radius of the point electrode is taken to be 0.5µm, and identical results are obtained with disc 
electrode radii in the range {0.5,1,2}µm. Units for DEP force are pico-Newtons (pN). 

 

      

Figure 5.3. Effect of point electrode size on total dielectrophoretic force in point-plane geometry – 
Variations with particle centre height h above the plane electrode of the total DEP force on (a) spherical 
(r=1µm), (b) ellipsoidal (a=1µm,b=0.5µm) and (c) cylindrical (a=1µm,r=0.5µm) particles positioned on the 
symmetry axes of point-plane electrode configurations (of specifications given in figure 4.1) with three 
different point electrode radii: 0.1µm, 0.5 µm and 1 µm. Units for dielectrophoretic force are pico-
Newtons (pN).    

 

Particle geometry, of no effect on the trend with which the DEP force varies with position 

along the axis of electric field symmetry, is seen to have significant effect on the strength of 

the dielectrophoretic force at a given h. Particles of larger volume are seen to be subject to 

stronger DEP forces at all positions along the symmetry axes of either of the two electrode 

geometries, although no direct proportionality with particle volume (as with the dipolar force 

term) is observed. Among the five particles analysed, the spherical particle has largest 

(a) (b) 

(a) (b) (c) 
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volume and is seen to be subject to DEP forces that are stronger than those on the ellipsoidal 

particles by about an order of magnitude. 

The effect of point electrode radius on the DEP force experienced by particles positioned on 

the symmetry axis of the point-plane geometry is shown in figure 5.3, where DEP forces on 

spherical, ellipsoidal and cylindrical particle subjected to the axisymmetric electric fields of 

point-plane electrode geometries of point electrode radii {0.1,0.5,1}µm are compared. It can 

be seen that larger point electrodes give rise to stronger dielectrophoretic forces at all 

positions along the symmetry axis of the point-plane geometry, although the effect is found to 

be more pronounced at positions closer to the plane electrode. DEP forces are seen to remain 

within the same order of magnitude upon a tenfold increase in point electrode radius. 

Figure 5.4 shows the effect of particle size on the total dielectrophoretic force in axial 

symmetry by comparing the DEP forces on spherical particles of radii 1µm and 2µm 

positioned on the symmetry axes of disc-plane and point-plane electrode configurations. In 

both electrode geometries, the DEP force is seen to increase by about an order of magnitude 

upon doubling particle radius, while trends with which the DEP forces vary with particle 

position along the axis of electric field symmetry are seen to be retained. 

  

        

Figure 5.4. Effect of particle size on total dielectrophoretic force in axial symmetry – Variations with 
particle centre height h above the plane electrode of the total DEP force on spherical particles of radii 
1µm (r=1) and 2µm (r=2) positioned on the symmetry axes of (a) disc-plane and (b) point-plane electrode 
geometries (of specifications given in figure 4.1). The radius of the point electrode is taken to be 0.5µm, 
and identical results are obtained with disc electrode radii in the range {0.5,1,2}µm. Units for DEP force 
are pico-Newtons (pN). 

 

5.2.2. Summary and conclusions 

Results have been presented for the total dielectrophoretic force on spherical, ellipsoidal and 

cylindrical particles of different dimensions subjected to the axisymmetric electric fields of 

(a) (b) 



   

 
91 

point-plane and disc-plane electrode geometries. The DEP forces have been calculated by 

numerical implementation of the Maxwell stress tensor (MST) method, known for its 

mathematical rigorousness for determining electrical force.  

It has been shown that the trends with which DEP forces in axial symmetry vary with particle 

position can vary notably between different electrode arrangements, but are independent of 

particle geometry (including shape and size). The effect of particle geometry is reflected in 

the strength of exerted dielectrophoretic force. Although no direct proportionality with 

particle volume has been observed, it has been shown that particles of larger volume are 

subject to stronger DEP forces, regardless of electric field geometry or particle shape. 
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5.3. Multipolar dielectrophoretic forces in axial symmetry 

This section analyses the significance of higher-order dielectrophoretic force terms in 

different circumstances regarding particle and electric field geometry in axial symmetry. 

Total DEP force calculations using the Maxwell stress tensor method are compared against 

calculations of first three DEP force terms based on the effective moment method to derive 

quadrupolar and octupolar contributions to the DEP force on spherical, ellipsoidal and 

cylindrical particles subjected to the axisymmetric electric fields of point-plane and disc-

plane electrode geometries. At all positions along the symmetry axes of both electrode 

geometries and for all examined particle shapes and dimensions, the first three terms of the 

DEP force have been observed to add up to a value that differs from that of the total DEP 

force, as calculated from the MST method, by no more than 0.5%. The observation can be 

regarded as verification for DEP force term results, given the total force has been calculated 

using a completely different method – one known for its mathematical rigorousness for 

determining electrical force. 

5.3.1. Results and discussion 

5.3.1.1. The disc-plane electrode geometry 

Figure 5.5 shows contributions (in percentage) from second- and third-order terms to the 

DEP force on spherical, ellipsoidal and cylindrical particles positioned on the symmetry axis 

of the disc-plane electrode geometry. The figure also shows the overall higher-order 

contribution to DEP forces on particles, obtained by summing second- and third-order 

contributions.  

It can be seen that like higher-order effective moments, higher-order DEP forces are more 

significant for non-spherical particles. For all particle shapes, largest contribution from 

higher-order terms is for when particles are positioned near either of the two (disc or plane) 

electrodes. As particles move towards the midpoint      , the DEP force they experience 

becomes increasingly dipolar. In fact, it is only at positions very close to the midpoint that 

higher-order DEP forces on spherical and non-spherical particles constitute less than 10% of 

the total force. Near disc and plane electrodes, higher-order terms are seen to contribute to 

~40% and ~30%, respectively, of the DEP force on cylindrical particles. 
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Figure 5.5. Higher-order contributions to the dielectrophoretic force in disc-plane electrode geometry – 
Variations with particle centre height h above the plane electrode of contributions (in percentage) from 
(a) second-order, (b) third-order, and (c) sum of second- and third-order terms to the total 
dielectrophoretic force on spherical (r=1µm), ellipsoidal (a=1µm,b={0.5,0.25}µm), and cylindrical 
(a=1µm,r={0.5,0.25}µm) particles positioned on the symmetry axis of the disc-plane electrode geometry 
(of specifications given in figure 4.1). Identical results obtained are for disc electrode radii in the range 
{0.5,1,2}µm. 

 

An important observation made from the plots in figure 5.5 is that of particles of similar 

shapes, albeit of different aspect ratios, being subject to higher-order forces of equal 

significance. It is inferred from the data in figure 5.5 that although individual contributions 

from second- and third-order terms to the DEP force are different for ellipsoidal or cylindrical 

particles of different aspect ratios, but they add up to values that are equal, at a given position 

along the axis of electric field symmetry, for a given particle shape. Shape-dependent 

polarisation appears to give rise to ‘set’ values for higher-order contributions to the DEP 

force on a given particle shape. The values are clearly different for particles of different 

shapes, but for a given shape, changing aspect ratio (keeping the dimension along the axis of 

electric field symmetry intact) is seen to alter individual multipolar contributions to the total 

force, but not the overall contribution. For ellipsoidal and cylindrical particles, increasing 

aspect ratio is seen to give rise to more significant octupolar and less significant octupolar 

contributions to the dielectrophoretic force. 

5.3.1.2. The point-plane electrode geometry 

Results obtained for higher-order contributions to DEP forces on spherical, ellipsoidal and 

cylindrical particles positioned on the symmetry axis of the point-plane electrode geometry 

(of point electrode radius 0.5µm) are shown in figure 5.6.  

 

(a) (b) (c) 
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Figure 5.6. Higher-order contributions to the dielectrophoretic force in point-plane geometry – Variations 
with particle centre height h above the plane electrode of contributions (in percentage) from (a) second-
order, (b) third-order, and (c) sum of second- and third-order terms to the total dielectrophoretic force on 
spherical (r=1µm), ellipsoidal (a=1µm,b={0.5,0.25}µm), and cylindrical (a=1µm,r={0.5,0.25}µm) particles 
positioned on the symmetry axis of the point-plane electrode geometry (of specifications given in figure 
4.1) with point electrode radius 0.5µm. 

 

It can be seen that in clear contrast with the disc-plane geometry, higher-order forces 

contribute negligibly to the DEP force on spherical and non-spherical particles, unless the 

particles are positioned near the point electrode. At      , multipolar forces are seen to 

constitute ~35%, ~30% and ~20% of the DEP force on cylindrical, ellipsoidal and spherical 

particles, respectively. At      , the DEP force on spherical, ellipsoidal and cylindrical 

particles is seen to be predominantly (>95%) dipolar. In similarity with the disc-plane 

geometry, higher-order forces are found to be more significant for non-spherical particles. 

It can be seen from the plots in figure 5.6 that, as with the disc-plane geometry, non-spherical 

particles of the same shape but different aspect ratio are subject to higher-order DEP forces 

of equal significance. Individual contributions from each of the higher-order force terms are 

seen to be affected by changes in particle aspect ratio in a manner similar to that observed 

with the disc-plane geometry: increasing particle aspect ratio gives rise to smaller 

quadrupolar and larger octupolar contributions to the DEP force.  

The effect of point electrode size on individual and overall contributions from higher-order 

terms to DEP forces on spherical, ellipsoidal and cylindrical particles positioned on the 

symmetry axis of the point-plane electrode geometry is shown in figure 5.7. It can be seen 

that reducing point electrode radius gives rise to increased contributions from second- and 

third-order terms to the DEP force on spherical and non-spherical particles. It was shown 

previously that first- and higher-order DEP force terms are weaker with smaller point 

electrodes. It is understood from the data in figure 5.7 that the rates of change of first- and 

(a) (b) (c) 
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higher-order DEP force terms upon variations in point electrode radius are different, such 

that as the point electrode converges toward a field singularity, higher-order force terms find 

added significance.  

 

 

Figure 5.7. Effect of point electrode radius on higher-order contributions to the dielectrophoretic force in 
point-plane geometry – Variations with particle centre height h above the plane electrode of second-
order (top row), third-order (middle row), and sum of second- and third-order (bottom row) 
contributions to the DEP force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm,b=0.5µm) and (c) 
cylindrical (a=1µm,r=0.5µm) particles positioned on the symmetry axes of point-plane electrode 
configurations (of specifications given in figure 4.1) with three different point electrode radii: 0.1µm, 0.5 
µm and 1 µm.   

 

(a) (b) (c) 
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The effect of point electrode radius on higher-order contributions to the DEP force is found to 

be modest compared to that of particle geometry. Reducing point electrode radius from 1µm 

to 0.1µm is seen to give rise to a ~5% increase in multipolar contributions to the DEP force 

on spherical and non-spherical particles. For a given point electrode radius, higher-order 

contributions to DEP forces on spherical and cylindrical particles are seen to differ by ~15%. 

It is important to note that regardless of particle geometry and electrode dimensions, higher-

order DEP forces in the point-plane geometry can be considered negligible (<5% contribution 

to the total force) at all but the nearest of positions to the point electrode. 

5.3.1.3. Effect of particle size 

The effect of particle size on the significance of higher-order DEP force terms has been 

analysed by comparing contributions from second- and third-order terms to the 

dielectrophoretic forces experienced by spherical particles of two different radii, 1µm and 

2µm, positioned on the symmetry axes of disc-plane and point-plane electrode geometries. As 

shown in figure 5.8, quadrupolar and octupolar contributions increase notably upon doubling 

particle radius. In the disc-plane geometry, maximum second- and third-order contributions 

to the DEP force are increased from ~15% and ~5%, respectively, for the 1µm-radius sphere 

to ~35% and ~15%, respectively, for the 2µm-radius particle. In the point-plane geometry, 

higher-order force terms are seen to constitute a maximum ~40% of the DEP force on the 

larger spherical particle, up from ~20% maximum for the 1µm-radius sphere. 

Particle size is often cited as a criterion for the reliability of the dipole approximation. It has 

been said that higher-order DEP forces should find significance when particle dimensions 

become comparable to a characteristic length scale of electric field non-uniformity, i.e. when 

the electric field magnitude varies notably across particle dimensions. It can be concluded 

from the data in figure 5.8 that the criterion is by no means general. Although the increased 

significance of higher-order force terms for larger particles complies with the statement, it 

may be noticed that particle positions along the axes of electric field symmetry where higher-

order forces are most significant are not necessarily those at which electric field magnitude 

variations across particle dimensions are maximal. As an example, higher-order forces on 

particles positioned on the symmetry axis of the disc-plane geometry are found to be least 

significant at the midpoint      , where electric field variations across particle 

dimensions are largest.  
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Figure 5.8. Effect of particle size on higher-order contributions to the dielectrophoretic force in axial 
symmetry – Variations with particle centre height h above the plane electrode of second-order (top row), 
third-order (middle row) and sum of second- and third-order contributions to the DEP force on spherical 
particles of radii 1µm (r=1) and 2µm (r=2) positioned on the symmetry axes of (a) disc-plane and (b) 
point-plane electrode geometries (of specifications given in figure 4.1). The radius of the point electrode 
is taken to be 0.5µm and identical results are obtained with disc electrode radii {0.5,1,2}µm. 

 

5.3.2. Summary and conclusions 

Results have been presented for individual and overall contributions from second- and third-

order terms to the dielectrophoretic force on spherical, ellipsoidal and cylindrical particles of 

different dimensions subjected to the axisymmetric electric fields of point-plane and disc-

plane electrode geometries. It has been shown that depending on particle and electrode 

(a) (b) 
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geometry and position along the axis of electric field symmetry, contributions from higher-

order terms to the DEP force can range from negligible (<5%) to very significant (>50%). 

The significance of higher-order DEP force terms has been shown to differ notably between 

the two axisymmetric electrode configurations. In the point-plane geometry, the DEP force 

has been found to be predominantly (>90%) dipolar at all but the nearest of positions to the 

point electrode. Using the dipole approximation for predicting the DEP force on spherical and 

non-spherical particles positioned on the symmetry axis of the point-plane geometry is 

therefore subject to insignificant (<10%) error, unless the particles are very close to the point 

electrode. It is important to distinguish between this and an earlier observation regarding the 

reliability of the dipole approximation. As illustrated previously, using the dipole 

approximation for particle characterisation based on the effective moments will be subject to 

significant error at all positions along the symmetry axis of the point-plane geometry. In fact, 

while higher-order moments add up to a value comparable to that of the dipole moment for 

particles positioned along the symmetry axis of the point-plane electrode geometry, higher-

order forces are notably smaller than the dipolar DEP force on the particles.  

In the disc-plane geometry, higher-order force terms have been shown to be most significant 

on particles positioned near either of the two (disc or plane) electrodes. Higher-order 

contributions to the DEP force are seen to be larger than those in the point-plane geometry. 

Smaller point electrodes, more closely resembling an electric field singularity, have been 

shown to give rise to greater contribution from higher-order DEP force terms along the 

symmetry axis of the point-plane geometry. 

Particle geometry has been shown to have a notable effect on the significance of higher-order 

DEP force terms. As with the effective moments, higher-order force terms have been found to 

be more significant for non-spherical particles. The observations make the dipole 

approximation highly unreliable for particle characterisation based on the effective moments 

or the dielectrophoretic force, or indeed any DEP-based design involving non-spherical 

particles. Particles of a certain shape with equally long dimensions along the axis of electric 

field symmetry have been shown to be subject to higher-order forces of equal overall 

significance. Individual contributions from second- and third-order force terms have been 

shown to vary, for a given particle shape, depending on aspect ratio. Increasing the aspect 

ratio of, i.e. ‘thinning’ ellipsoidal or cylindrical particles has been shown to give rise to larger 

octupolar and smaller quadrupolar contributions to the DEP force, in a manner that the sum 

of second- and third-order contributions remains unchanged. In both axisymmetric electrode 
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geometries, higher-order forces have been shown to most significant for cylindrical, then 

ellipsoidal, then spherical particles. 

Increasing the length of particle dimensions along the axis of electric field symmetry has been 

shown to notably increase the significance of higher-order DEP forces. Doubling the radius of 

a spherical particle has been shown to increase maximum higher-order contributions to the 

DEP force from ~20% to more than 50% in the disc-plane, and from ~20% to ~40% in the 

point-plane electrode geometry. 
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Conclusions 

 Maxwell stress tensor calculations of the dielectrophoretic force on spherical, ellipsoidal 

and cylindrical particles of different dimensions subjected to the axisymmetric electric 

fields of point-plane and disc-plane electrode geometries are in excellent agreement with 

the sum of first three DEP force terms calculated using the effective moment method. 

 Dielectrophoretic forces on the same particles at same positions along the axis of electric 

field symmetry can differ notably between different electrode configurations. Along the 

symmetry axis of a given electrode arrangement, trends with which dielectrophoretic 

forces vary with particle position are independent of particle geometry. 

 Particles of larger volume experience stronger dielectrophoretic forces, but no direct 

proportionality with particle volume (as was observed with the DEP force predicted by 

the dipole approximation) is observed. 

 Higher-order contributions to the DEP force can differ notably, in variation patterns with 

particle position along the axis of electric field symmetry and in value, between different 

electrode configurations. Higher-order forces are of little significance along the symmetry 

axis of the point-plane geometry, except for particles positioned very close to the point 

electrode. Second- and third-order contributions to the DEP force are considerably 

greater in the disc-plane geometry, comprising up to half the total force, depending on 

particle geometry and position along the axis of symmetry. 

 Significant higher-order moments do not automatically result in significant higher-order 

DEP force terms. At most positions along the symmetry axis of the point-plane geometry, 

the dipole approximation – ignoring higher-order force terms – can be safely applied for 

prediction of the DEP force on spherical and non-spherical particles, but will be subject to 

significant error if invoked for particle characterisation based on the effective moments.  

 Higher-order contributions to the DEP force are considerably larger for non-spherical 

particle shapes. The observation, alongside a similar one made previously with regard to 

higher-order moments, makes the dipole approximation highly unreliable in DEP force 

predictions or effective moment-based characterisation applications involving non-

spherical particles. 

 Overall contributions from second- and third-order terms to the DEP force are equal for 

particles of a given shape, albeit of different aspect ratio. Increasing the aspect ratio of 

ellipsoidal or cylindrical particles gives rise to larger octupolar and smaller quadrupolar 

contributions to the DEP force on the particles, in a manner that the sum of second- and 

third-order contributions remains independent of particle thinness and dependent only 

on particle shape and dimension along the axis of electric field symmetry. 



   

 
101 

 Increasing particle dimension along the axis of electric field symmetry notably increases 

quadrupolar and octupolar contributions to the DEP force exerted on the particle. 

However, electric field magnitude variation across particle dimensions has been found 

insufficient criterion for the reliability of the dipole approximation, as a counter-example 

has been demonstrated. 
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Chapter Six 

Effective Moments and Dielectrophoretic Forces in Non-axisymmetric 

Geometry: Results and Discussion 
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Abstract 

A novel method is presented with which the general effective moments of dielectric particles 

in suspension subjected to electric fields of arbitrary geometry can be determined. The 

method is novel in that it does not make any assumptions regarding particle or electric field 

geometry. The method is applied to a physical problem involving spherical, ellipsoidal and 

brick-shaped particles at different positions within an interdigitated electrode configuration. 

By analysis of first- and higher-order moments of the differently-shaped particles subjected 

to electric fields of varying magnitude and curvature, the reliability of the dipole 

approximation in predicting the electrical energy stored in particles is assessed. Also, errors 

associated with approximating non-spherical particles with spheres of similar dimensions – 

for simplicity of modelling – are evaluated. 

Effective moment calculations are combined with derivations of the electric field and its 

gradients to obtain the dielectrophoretic force terms. DEP force term calculations using the 

effective moment method are compared against Maxwell stress tensor calculations of the 

total DEP force to determine the significance of higher-order forces in different 

circumstances regarding particle and field geometry.  

Overview 

The chapter opens with a section on the theory of the method devised for the determination 

of general effective moments, the specifications of the physical problem to which the method 

will be applied, and the formulation of the effective moment method for determining 

dielectrophoretic force terms. This is followed by Section 6.2 where analytical calculations of 

the electric field and its gradients in different regions within the interdigitated electrode 

geometry are presented. Section 6.3 presents calculations of the effective moments of 

spherical and non-spherical particles at different positions within the interdigitated geometry 

and discusses the significance of the quadrupole moment in different conditions regarding 

particle and electric field geometry. The section also provides analysis on the errors incurred 

upon common particle shape approximations. In Section 6.4, field curvature and effective 

moment results are combined to derive first- and higher-order terms of the dielectrophoretic 

force on the particles. In Section 6.5, the significance of the quadrupolar force is evaluated by 

comparing DEP force term results against total force calculations using the mathematically 

rigorous Maxwell stress tensor method. 
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6.1. Background and theory 

6.1.1. Method for determination of general effective moments 

This section presents a novel method for determining the general effective moments of 

dielectric particles in suspension subjected to electric fields of arbitrary geometry. The 

assumption of axial symmetry, which greatly simplifies calculations and was the basis of the 

results obtained in previous chapters, is lifted so that no constraints are imposed on particle 

or electric field geometry. 

As mentioned previously, the electric potential due to a dielectric particle subjected to an 

electric field can be expressed as the sum of those due to effective moments of ascending 

order. In three-dimensional space, analysis has to be confined to the first three effective 

moments. The scheme for construction of general multipoles was illustrated in Chapter Two. 

For derivation of the general effective moments, it is assumed that the displacement vectors 

constituting the first three general multipoles are aligned with the  -,  - and  -axes of the 

Cartesian coordinate system as shown in figure 6.1. 
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Figure 6.1. The general effective multipoles – Systematic generation of the first three general multipoles, 
according to Stratton’s scheme [1]: (a) the dipole      , (b) the quadrupole      , and (c) the 
octupole      . As shown in the figure, is assumed that   ,    and    – constituent vectors of the 
effective dipole, quadrupole and octupole moments, respectively – are aligned with the   ,    and    
axes of the Cartesian coordinate system, respectively. 

 

6.1.1.1. Formulation of the method 

Based on this assumption and using the equations in Chapter Two for the potential due to 

general multipoles (equations 2.9), the first three terms of the electrostatic potential due to a 



   

 
106 

dielectric particle in suspension subjected to an electric field, can be written in spherical 

coordinates         as: 

     
    

                                    (6.1a) 

     
  

 
 

    

                                                    (6.1b) 

     
 

 
 

    

                                                                 (6.1c) 

where     ,      and      are the effective dipole, quadrupole and octupole moments, 

respectively, representing polarisation at the particle/electrolyte interface, and the functions 

        are defined as: 

                                            (6.2a) 

                                               (6.2b) 

                                               (6.2c) 

The functions         are found to be mutually orthogonal by the following definition: 

∫ ∫               
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                      (6.3d) 

Using the orthogonality defined by equations (6.3), the effective moments can be derived 

from the potential           due to the particle they represent, from the following equations: 
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6.1.1.2. Implementation of the method 

Equations (6.4) form the foundation of the hybrid numerical-analytical method used in this 

chapter for the derivation of first-, second- and third-order effective moments of particles of 

arbitrary shape subjected to electric fields of arbitrary geometry. The general effective 

moments can be obtained from weighted integration of the potentials due to the particles 

they represent over an enclosing sphere. The potential due to a given particle at a given 

position within an electrode structure can be obtained, as in Chapter Four, from           

                          , where             is the ‘background’ potential distribution 

within the electrode geometry in the absence of the particle, and                is the potential 

distribution with the particle inserted within the electrode geometry. Subtraction of the 

background potential from the ‘with particle’ potential gives the perturbation caused by the 

particle to the field lines/equipotential surfaces of the electrode geometry, i.e. the potential 

due to the particle.  

The potentials                and             can be obtained numerically using finite element 

method-based packages. A subtraction yields the potential due to the particle of interest, and 

numerical integration of the functions given in equation (6.4) over a spherical surface that 

fully encloses the particle yields the effective moment of desired order. An important feature 

of the method used in this work is that it relies on integration of the potential – which is the 

original variable obtained from FEM simulation – for obtaining the effective moments, and 

thus no (error-prone) numerical differentiation is involved. 

The electrode structure studied in this work is the interdigitated configuration, the particles 

are spherical, ellipsoidal or brick-shaped, and the standard FEM solver used for numerical 

implementation of the method defined through equations (6.4) is FlexPDE. Due to issues with 

regard to numerical implementation of the Maxwell stress tensor method in FlexPDE 

(discussed in Chapter Five), results have been checked against those obtained with an 

alternative package FEniCS with excellent agreement observed between the two sets of 

results (differences in no case exceeding 1%). 

6.1.2.3. Magnitudes of the effective moments  

As it has been assumed that the constituent vectors of the effective moments are aligned with 

the axes of the Cartesian coordinate system, only certain elements of the tensors     ,      

and      are non-zero. The parameters     ,      and      in equations (6.4) are 

representatives of the magnitudes of the tensors, defined in each case as the magnitude of the 

vector sum of non-zero elements. 
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The magnitude      of the effective dipole moment is obtained as: 

     |   |                                            (6.5a) 

as          , due to    being aligned with the   axis of the Cartesian coordinate 

system. 

The magnitude      of the effective quadrupole moment can be written as: 

     |            |                                              (6.5b) 

since          , due to    being aligned with the   axis in the Cartesian coordinate 

system. 

The magnitude      of the effective octupole moment is obtained as: 

     |                                            | 

                                                                                                          (6.5c) 

since          , due to    being aligned with the   axis. 

6.1.1.4. Formulation for obtaining dielectrophoretic force terms 

Once the effective moments representing particle/medium polarisation have been derived, 

the effective moment method can be invoked to derive dielectrophoretic force terms. The 

first three terms of the DEP force by a non-uniform electric field   on a dielectric particle of 

effective moments     ,      and      are given by: 

                                                         (6.6a) 

     
 

 
                              (6.6b)     

     
 

 
                                (6.6c) 

where   ,    , and      are first-, second- and third-order gradients of the electric field, 

respectively. A definition of vector gradients, within the context of tensor notation is 

presented in Appendix A. 
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6.1.2. Physical problem specifications 

This section outlines the physical problem that will be used to illustrate the method 

presented in the previous section for determining the general effective moments and 

dielectrophoretic forces. 

 

Figure 6.2. The interdigitated electrode geometry – Configuration and structural parameters of the 
interdigitated electrode geometry used for analysis of general effective moments and dielectrophoretic 
forces on spherical and non-spherical particles in suspension flowing through the channel above the 
interdigitated array of electrodes. The non-uniform electric field that exerts dielectrophoretic force on 
the particles is generated by applying voltages of equal magnitude (1V) and opposing polarity to 
successive electrodes. Drawing of the electrode structure layout courtesy of Dr Tao Sun.  

 

The electrode geometry used for analysis of the effective moments and DEP forces is the 

interdigitated electrode configuration shown in figure 6.2. The structural parameters are 

chosen to be consistent with experimental conditions. The interdigitated array of electrodes 

lies on a glass substrate. Above the electrodes is a channel, capped by an insulating lid, 

through which the dielectric particles in suspension flow. The non-uniform electric field 

required for exertion of a dielectrophoretic force on the particles is generated by applying 

voltages of equal magnitude (1V) and alternating polarity to successive electrodes. To 

observe the effect of electrode geometry on the moments and DEP forces, three different 

combinations are considered for electrode width w and inter-electrode spacing g: 

                                                      

     . 

An important reason for choosing the interdigitated electrode geometry for analysis of 

general effective moments and corresponding DEP force terms, alongside its widespread use 

in dielectrophoretic applications (a review of related literature presented in Chapter Two), is 

that an analytic derivation is available for the electric field vector within the interdigitated 
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electrode geometry. Sun et al [2] have derived an expression, using the Schwarz-Christoffel 

mapping method, for the electric field vector at any given position within an interdigitated 

electrode configuration. The derivation is presented in Appendix D. Using this analytic 

expression, the field magnitude and its gradients – required for obtaining the DEP force terms 

in accordance with the effective moment method (equation 6.6) have all been derived 

analytically without resorting to highly error-prone numerical means of successive 

differentiation. 

The particle geometries studied for the analysis of general effective moments and DEP forces 

are shown in figure 6.3. The third (out-of-plane) dimension of the non-spherical particles is 

assumed to equal  . Spherical, ellipsoidal and brick-shaped particles of similar dimensions 

are studied, to observe the effect of particle geometry on the moments and DEP forces. 

Comparing the effective moments of the differently-shaped particles allows for an assessment 

of the errors incurred in effective moment-based particle characterisation when non-

spherical particles are approximated as spheres for simplicity of modelling. It will be 

assumed that the particles and their suspending media are lossless dielectrics with relative 

permittivities of 3 and 80 (pertaining to SU-8 and water), respectively. 

 

 

Figure 6.3. Particle geometries for analysis of general effective moments and dielectrophoretic forces – 
Shapes and dimensions of the dielectric particles in suspension studied for the analysis of general 
effective moments and DEP forces for when the particles are positioned within an interdigitated 
electrode configuration (of specifications given in figure 6.2). The third (out-of-plane) dimension of the 
non-spherical particles is assumed to equal  . Particles of different shapes but similar dimensions are 
studied to investigate the effect of particle geometry on the moments and DEP forces. It will be assumed 
that the particles and their suspending media are lossless dielectrics with relative permittivities of 3 and 
80 (pertaining to SU-8 and water), respectively.  

 

The effective moments and dielectrophoretic forces on the particles in figure 6.3 are 

calculated for when the particles are at three different heights within the insulator-capped 

channel above the interdigitated array of electrodes. Ignoring the effect of channel walls, and 

according to the axis labelling in figure 6.2, the electric field does not vary along the   axis. 

As a result, it suffices to analyse the effective moments and dielectrophoretic forces in the 

    plane, ignoring the   coordinates. It was assumed in the method for determination of 
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the general effective moments that the constituent vector    of the effective octupole is 

aligned with the   axis of the Cartesian coordinate system. Based on this assumption, the 

electric field not varying along the   axis gives rise to effective octupole moments identical 

to zero. Accordingly, the first two, rather than three, effective moments of the particles in 

figure 6.3 will be calculated in this chapter. 

        

 

Figure 6.4. Simulation domain in interdigitated electrode geometry – A sample simulation domain in the 
interdigitated electrode geometry (of specifications given in figure 6.2), showing distribution of the 
electric field magnitude within the     plane. Ignoring the effect of channel walls, the electric field 
magnitude does not vary along the   axis of the Cartesian coordinate system, and analysis can 
therefore be confined to the     plane. The domain shows the three regions, corresponding to 
different heights above the electrode surface, at which the general effective moments and 
dielectrophoretic forces will be calculated. 

 

Figure 6.4 shows a sample simulation domain (along the     plane) with the distribution of 

the electric field magnitude. The domain shows the three regions in which the effective 

moments and DEP forces will be calculated. As shown in the figure, the three regions 

correspond to different particle heights h above the array of interdigitated electrodes. Near-, 

near-field 

mid-field 

far-field 

𝑥 

𝑦 
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mid- and far-field regions correspond to particle centre heights 10µm, 30µm and 50µm above 

the electrode surface, within the 60µm-high channel, capped by an insulating lid. Results in 

the near-field region are expected to be most significantly affected by the large curvature due 

to the electric field maximum at the electrode tip. It is also important to note that results in 

the far-field region will be affected by the Neumann boundary condition imposed by the 

nearby insulating lid. The effect of the insulating lid is evident in the field magnitude 

distribution shown in figure 6.4 through the electric field minimum at the top-left corner of 

the simulation domain.   

6.1.3. Dielectrophoretic force terms with general effective moments 

As the effective octupole moment is identical to zero in the interdigitated electrode geometry 

of figure 6.2 (having ignored the effect of channel walls), the octupolar term of the DEP force 

on the particles will also be equal to zero, according to equation (6.6). Therefore the first two, 

rather than three, dielectrophoretic force terms will be calculated in this chapter. As the 

particles move within the     plane, the dipolar and quadrupolar forces they experience 

bear    and   components which may be calculated from equations (6.6) by applying 

tensor properties. In the results that will be presented later in the chapter, the magnitudes of 

dielectrophoretic force terms will be plotted, and their dependency on particle and field 

parameters discussed. 

The    and   components of the dipolar force      can be expressed as: 

  
   

   
   

            

  
                      (6.7a) 

  
   

   
   

            

  
                                                                                       (6.7b) 

The magnitude of the dipolar force is therefore given by: 

           

  
                                           (6.8) 

where       is defined as: 
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For the quadrupolar force     , the    and   components can be written as: 
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The magnitude of the quadrupolar force is therefore given by: 

     
 

 
       

    
                                (6.11) 

with          defined as: 
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                                        (6.12) 

This chapter will present analytical calculations of the electric field magnitude and its first- 

and second-order gradients (as defined by equations (6.9) and (6.12)). The field gradient 

calculations will be combined with calculations of the effective dipole and quadrupole 

moments of the particles in figure 6.3 to derive the first two terms of the DEP force on the 

particles from equations (6.8) and (6.11). Force term calculations will then be compared 

against total force calculations using the Maxwell stress tensor method to determine the 

significance of higher-order contributions in different circumstances regarding particle and 

electric field geometry. 
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6.2. Electric field magnitude and gradients 

This section presents analytical calculations of the electric field magnitude and gradients at 

different positions within an interdigitated electrode configuration. Specifications of the 

electrode geometry, and the three regions at which the effective moments and 

dielectrophoretic forces are to be analysed were given in the previous section. The electric 

field magnitude and its first- and second-order gradients are calculated at near-, mid- and far-

field regions of the interdigitated geometry, consisting of a channel, capped by an insulating 

lid, above an interdigitated array of electrodes. The field curvature results are important in 

that (a) they determine the energy stored in particles in the form of effective moments of 

succeeding order (with the electric field magnitude regarded as the field curvature of order 

   ), and (b) they are required for derivation of dielectrophoretic force terms from the 

effective moment method. 

The electric field magnitude and gradients are calculated for three different combinations of 

electrode width w and inter-electrode spacing g:                       

                                     . The calculations are based on a 

conformal mapping method-based derivation of the electric field vector at different positions 

within an interdigitated electrode configuration [2]. In the results to be presented, units for 

the electric field magnitude and its first- and second-order gradients will be V/m, V/m2, and 

V/m3, respectively. 

6.2.1. Results and discussion 

Electric field magnitude and gradient results will be presented in three sections, one for each 

of the three regions within the interdigitated electrode geometry (as specified in figure 6.4). 

6.2.1.1. The near-field region 

Variations with position along the   axis of the electric field magnitude and its first- and 

second-order gradients in the near-field region of the interdigitated electrode geometry are 

shown in figure 6.5. It can be seen that, as expected from proximity with the electrode array, 

electric field curvatures are notably affected by variations in electrode width and spacing. 

When    , the electrode tip, and hence the field maximum, lies at the midpoint       . 

In attribution, the field curvature profiles are seen to be symmetrical around a maximum at 

the midpoint. With electrode width larger than inter-electrode spacing      , the position 

of the electric field maximum is shifted towards larger  , and the field curvatures are seen to 

generally become stronger with increasing  . The opposite situation occurs for    , with 

the field maximum shifted towards smaller  , and field magnitude and gradients decreasing 
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with increasing  . Values of the electric field magnitude and its gradients are seen to remain 

within the same order of magnitude as   is varied within the range         .  

 

 

Figure 6.5. Electric field curvatures in the near-field region of the interdigitated electrode geometry – 
Variations with position   along the horizontal axis of (a) the electric field magnitude, and its (b) first- and 
(c) second-order gradients in the near-field          region of the interdigitated electrode geometry 
(of specifications given in figure 6.2). The results have been obtained with three different combinations of 
electrode width w and inter-electrode spacing g:                            
                                . 

 

6.2.1.2. The mid-field region 

Results obtained for the electric field magnitude and gradients in the mid-field region of the 

interdigitated electrode geometry are shown in figure 6.6. It can be seen that the electric field 

varies only negligibly as position   along the horizontal axis is varied within the range 

        . The effect of increasing the width/spacing ratio of the interdigitated electrodes is 

seen to be a strengthening of the electric field, at all positions within the mid-field region. 

First- and second-order field gradients are also seen not to change in large proportions as   is 

increased from 0 to 10µm. Among the field curvatures, the second-order gradient is seen to 

be more considerably affected by variations in position within the mid-field region. 

Depending on whether the width of the interdigitated electrodes is larger than, smaller than 

or equal to inter-electrode spacing, the second-order field gradient is seen to increase, 

decrease or remain almost constant with increasing  , respectively. Electric field curvatures 

are all seen to be stronger with wider electrodes. 

The electric field magnitude remaining almost constant upon variations in position within the 

mid-field region, regardless of the position of the electric field maximum at the electrode tip, 

indicates that the mid-field region is distant enough from the electrode array for variations in 

(a) (b) (c) 
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electrode width and spacing not to considerably affect the trend with which the field 

magnitude varies with  . This, as expected, is in clear contrast with the results presented 

previously for the near-field region of the interdigitated geometry where proximity with the 

electrode array was shown to result in notable dependency of field magnitude profiles on 

electrode geometry. The mid-field region appears to be also distant enough from the 

insulating lid for the field curvature imposed by the Neumann boundary condition not to 

affect electric field magnitude profiles. 

    

 

Figure 6.6. Electric field curvatures in the mid-field region of the interdigitated electrode geometry – 
Variations with position   along the horizontal axis of (a) the electric field magnitude, and its (b) first- and 
(c) second-order gradients in the mid-field          region of the interdigitated electrode geometry 
(of specifications given in figure 6.2). The results have been obtained with three different combinations of 
electrode width w and inter-electrode spacing g:                            
                                . 

 

6.2.1.3. The far-field region 

Results obtained for the electric field magnitude and its first- and second-order gradients in 

the far-field region of the interdigitated electrode geometry, near the insulating lid, are 

shown in figure 6.7. It can be seen that the field curvature due to the Neumann boundary 

condition imposed by the glass lid results in field magnitude profiles that are not constant 

with  , as was shown to be the case in the mid-field region of the electrode geometry. For all 

three combinations of electrode width and spacing, the electric field is seen to strengthen 

with increasing  . At a given position within the far-field region, stronger electric fields are 

seen to result from wider electrodes (and smaller inter-electrode spacing). First- and second-

order gradients of the electric field are also seen to be larger with wider electrodes, although 

they are seen to follow opposing trends with position   along the horizontal axis: the first-

order field gradient is seen to decrease, and the second-order gradient increase with 

(a) (b) (c) 
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increasing  . Electrode geometry (through width and spacing) is seen to affect values, but not 

variation patterns with  , of electric field curvatures in the far-field region of the 

interdigitated electrode geometry. 

 

 

Figure 6.7. Electric field curvatures in the far-field region of the interdigitated electrode geometry – 
Variations with position   along the horizontal axis of (a) the electric field magnitude, and its (b) first- and 
(c) second-order gradients in the far-field          region of the interdigitated electrode geometry 
(of specifications given in figure 6.2). The results have been obtained with three different combinations of 
electrode width w and inter-electrode spacing g:                            
                                . 

 

6.2.2. Summary and conclusions 

Analytical calculations have been presented for the electric field magnitude and its first- and 

second-order gradients in near-, mid- and far-field regions of the interdigitated electrode 

geometry. It has been shown that field curvatures differ notably, in value and variation 

patterns with position along the horizontal axis, depending on height above the electrode 

array.  

In the near-field region, closest to the electrode surface, changing electrode width (and inter-

electrode spacing) has been seen to have a notable effect on the field magnitude and 

gradients; the position of the electric field maximum has been shown to be determined by 

electrode width, and field curvature profiles have been seen to differ depending on how the 

width and spacing of the interdigitated electrodes relate to one another. In the mid-field 

region of the electrode geometry, halfway between the electrode array and the insulating lid, 

little effect has been observed from field curvatures at either end of the channel on field 

magnitude and gradient profiles: as position   within the mid-field region spans the whole 

(a) (b) (c) 
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         range, the electric field magnitude and its gradients have been shown to remain 

almost unchanged.  

The effect of the Neumann boundary condition imposed by the insulating lid capping the 

channel above the interdigitated array of electrodes has been seen to be electric field 

curvature profiles that do vary with position within the far-field region, in contrast to the 

observation made in the mid-field region of the electrode geometry. Electrode width and 

spacing has been shown to give rise to stronger field magnitudes and gradients in the far-field 

region, while variation patterns with position along the horizontal axis have been shown to 

remain almost independent of electrode dimensions. Field magnitude and gradients in the 

far-field region have been shown to be of the same order of magnitude of those of 

corresponding order in the mid-field region of the interdigitated geometry, and smaller than 

those in the near-field region by about an order of magnitude. 

The electric field magnitude and its first- and second-order gradients determine the electrical 

energy stored in dielectric particles in the form of effective dipole, quadrupole and octupole 

moments, respectively – calculations of which will be presented in the next section. Effective 

moment calculations will be combined with field curvature results to determine the terms of 

the dielectrophoretic force on particles. 
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6.3. The general effective moments  

This section presents and discusses calculations of the effective dipole and quadrupole 

moments of spherical, ellipsoidal and brick-shaped particles at different positions within an 

interdigitated electrode configuration. The effective moments are determined using the novel 

hybrid numerical-analytical method presented in Section 6.1. By comparing the results 

obtained for different particle shapes, the errors incurred in effective moment-based particle 

characterisation upon approximating non-spherical particles with spheres of similar 

dimensions will be assessed. Also, the significance of the effective quadrupole moment, and 

hence the reliability of the dipole approximation, in different circumstances regarding 

particle and electric field geometry will be examined.   

6.3.1. Results 

Effective moment calculations are presented in three different sections, one for each of the 

three regions within the interdigitated electrode geometry, as specified in figure 6.4. The 

moments are calculated by numerically performing the integrals in equations (6.3) over three 

different enclosing surfaces – to ensure minimal error is imparted by the numerical solver on 

the results obtained. The integration surfaces for deriving the effective moments of a particle 

are spheres, centred at the particle centre, of radii 1µm, 1.5µm and 1.9µm. The integration 

surfaces are chosen to be consistent with those used previously for the determination of 

linear effective moments in axial symmetry. The smallest enclosing surface is that most 

closely fitting the particle, and the radius of the largest integration surface is chosen such that 

a marginal distance of 0.1µm minimum is kept from domain walls.  

Results have been originally obtained in the standard solver used in this work, namely 

FlexPDE. Due to issues reported on in Chapter Five regarding numerical implementation of 

the Maxwell stress tensor method in FlexPDE, all effective moment calculations in FlexPDE 

have been checked against those obtained in an alternative solver: FEniCS. In all cases, results 

obtained with the three different integration surfaces in FlexPDE agreed with each other and 

with those obtained in FEniCS to within an error margin of no more than 1%. In the results to 

be presented, units for the effective dipole and quadrupole moments will be C.m and C.m2, 

respectively. 

6.3.1.1. The near-field region 

Results obtained for the first two effective moments of spherical, ellipsoidal and brick-shaped 

particles positioned in the near-field region of the interdigitated electrode geometry are 

shown in figure 6.8 for three different combinations of electrode width and spacing: 
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     .  

 

Figure 6.8. General effective moments in the near-field region of the interdigitated electrode geometry – 
Variations with particle position   along the horizontal axis of the effective dipole (p

(1)
) and quadrupole 

(p
(2)

) moments of (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) brick-shaped (a=1µm, 
b=0.5µm) particles positioned in the near-field          region of the interdigitated electrode 
geometry (of specifications given in figure 6.2) with three different combinations of electrode width w 
and spacing g:                                                
            . Legend and vertical axis labels in part (a) apply to all figure parts. 

 

It is clearly observed that particle geometry does not have any effect on the trends with 

which the moments vary with position   along the horizontal axis. Variation patterns with   

of the effective dipole and quadrupole moments are found to be similar to those of the 

electric field magnitude and first-order gradient, respectively. As with field curvatures, the 

effective moments are seen to be notably affected by variations in electrode dimensions. 

Changing electrode width by 50% is seen to give rise to order-of-magnitude changes in the 

effective quadrupole moments of spherical and non-spherical particles. Values of the effective 

dipole and quadrupole moments of a given particle shape at a given position within the near-

field region are seen to be of about the same order of magnitude. 
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6.3.1.2. The mid-field region 

Results obtained for the effective dipole and quadrupole moments of spherical, ellipsoidal 

and brick-shaper particles positioned in the mid-field region of the interdigitated electrode 

geometry are shown in figure 6.9. It can be seen that as in the near-field region, particle 

geometry is of no effect on the trends with which the moments vary with position   along the 

horizontal axis. Instead, variation patterns with   of first- and second-order effective 

moments are seen to be similar to those of the electric field magnitude and first-order 

gradient, respectively.  

 

Figure 6.9. General effective moments in the mid-field region of the interdigitated electrode geometry – 
Variations with particle position   along the horizontal axis of the effective dipole (p

(1)
) and quadrupole 

(p
(2)

) moments of (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) brick-shaped (a=1µm, 
b=0.5µm) particles positioned in the mid-field          region of the interdigitated electrode 
geometry (of specifications given in figure 6.2) with three different combinations of electrode width w 
and spacing g:                                                
            . Legend and vertical axis labels in part (a) apply to all figure parts. 

 

As with the electric field magnitude, the effective dipole moment is seen to be almost constant 

– for a given set of electrode dimensions w and g – throughout the mid-field region. 

Increasing the width/spacing ratio of the interdigitated electrodes is seen to give rise to 

larger effective dipole moments for a given particle shape. The effective quadrupole moment 
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is also seen to be larger with wider electrodes. It may be noticed that although variation 

patterns with   of the second-order moment are similar to those of the first-order field 

gradient, changes in the former are much more pronounced than those of the latter as   is 

varied from 2µm to 18µm. The effective quadrupole moment is seen to increase, decrease or 

remain almost constant upon increases in  , depending on whether the width w of the 

interdigitated electrodes is larger than, smaller than or equal to inter-electrode spacing, 

respectively. 

6.3.1.3. The far-field region 

Results obtained for the first two effective moments of spherical, ellipsoidal and brick-shaped 

particles positioned in the far-field region of the interdigitated electrode geometry, near the 

insulating lid, are shown in figure 6.10.  

 

 

Figure 6.10. General effective moments in the far-field region of the interdigitated electrode geometry – 
Variations with particle position   along the horizontal axis of the effective dipole (p

(1)
) and quadrupole 

(p
(2)

) moments of (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) brick-shaped (a=1µm, 
b=0.5µm) particles positioned in the far-field          region of the interdigitated electrode 
geometry (of specifications given in figure 6.2) with three different combinations of electrode width w 
and spacing g:                                                
            . Legend and vertical axis labels in part (a) apply to all figure parts. 

 

It can be seen that as in near- and mid-field regions, variation patterns with   of the effective 

dipole and quadrupole moments are similar to those of the field magnitude and first-order 



   

 
123 

gradient, respectively, and independent of particle shape. The effect of the field curvature 

caused by the nearby insulating lid is seen to be first-order moments that increase and 

second-order moments that decrease with increasing  , for all three particle shapes. As in the 

mid-field region, increasing the width/spacing ratio of the interdigitated electrodes is seen to 

give rise to larger effective dipole and quadrupole moments for spherical and non-spherical 

particles. 

6.3.2. Discussion 

This section discusses the results presented in the previous section on the general effective 

moments of spherical and non-spherical particles at different positions within an 

interdigitated electrode configuration by analysing the effects of electric field and particle 

geometry on first- and higher-order moments. 

6.3.2.1. Effect of electric field geometry 

The effect of electric field geometry on first- and second-order moments can be analysed by 

observing the effects of two sets of parameters: particle position within the electrode 

geometry (horizontal and vertical), and electrode dimensions (width and spacing). The 

effects of electrode dimensions and particle position along the horizontal axis were shown 

through the plots in the previous section. This section is aimed at investigating the effect of 

particle distance from electrode surface, i.e. vertical particle position, on the general effective 

moments and, importantly, on the significance of the quadrupole moment. 

Figure 6.11 compares the effective dipole moments of an ellipsoidal particle (as an example 

particle shape) positioned at three different distances above the interdigitated electrode 

array, within the insulator-capped channel. It can be seen that for all three combinations of 

electrode width and spacing, the effective dipole moment increases by about an order of 

magnitude as the particle is brought from the far-field to the mid-field or from the mid-field 

to the near-field region of the interdigitated electrode geometry. The figure also 

demonstrates that as observed earlier, and as expected from proximity with the electrode 

array, the effect of electrode dimensions on the effective dipole moments is most significant 

in the near-field region of the electrode geometry, where the trend with which the dipole 

moment varies with position along the horizontal axis is seen to be determined by the 

width/spacing ratio of the interdigitated electrodes.  
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Figure 6.11. Effect of distance from electrode surface on general effective dipole moments in the 
interdigitated electrode geometry – Variations with position   along the horizontal axis of the effective 
dipole moment (p

(1)
) of an ellipsoidal (a=1µm, b=0.5µm) particle positioned in three different regions 

within the interdigitated electrode geometry (of specifications given in figure 6.2), corresponding to three 
different heights above the electrode array; near-field (nf), mid-field (mf) and far-field regions correspond 
to particle centre heights of 10µm, 30µm and 50µm, respectively, above the electrode surface. The 
results are obtained with three different combinations of electrode width w and spacing g: (a) 
                   , (b)                    , and (c)               
     . 

 

 

Figure 6.12. Effect of distance from electrode surface on general effective quadrupole moments in the 
interdigitated electrode geometry – Variations with position   along the horizontal axis of the effective 
quadrupole moment (p

(2)
) of an ellipsoidal (a=1µm, b=0.5µm) particle positioned in three different 

regions within the interdigitated electrode geometry (of specifications given in figure 6.2), corresponding 
to three different particle centre heights above the electrode array; near-field (nf), mid-field (mf) and far-
field regions correspond to particle centre heights of 10µm, 30µm and 50µm, respectively, above the 
electrode surface. The results are obtained with three different combinations of electrode width w and 
spacing g: (a)                    , (b)                    , and (c)        
            . Legend and vertical axis label in part (a) apply to all figure parts. 

 

The effective quadrupole moments of the same ellipsoidal particle are compared in figure 

6.12 for when the particle is positioned at three different heights above the interdigitated 
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electrode array. It can be seen that for all three combinations of electrode width and spacing, 

and at almost all positions   along the horizontal axis, the effective quadrupole moment is 

largest in the near-field region of the interdigitated geometry. The extent by which the 

quadrupole moments in the three regions of the electrode geometry differ is seen to depend 

on the width/spacing ratio of the interdigitated electrodes and also on position along the 

horizontal axis. Quadrupole moments in mid- and far-field regions of the interdigitated 

geometry are seen to be on about the same order of magnitude.  

 

 

Figure 6.13. Effect of distance from electrode surface on the significance of the general effective 
quadrupole moment in the interdigitated electrode geometry – Variations with position   along the 
horizontal axis of the ratio of second- over first-order moments of an ellipsoidal (a=1µm, b=0.5µm) 
particle positioned in three different regions within the interdigitated electrode geometry (of 
specifications given in figure 6.2), corresponding to three different heights above the electrode array; 
near-field (nf), mid-field (mf) and far-field regions correspond to particle centre heights of 10µm, 30µm 
and 50µm, respectively, above the electrode surface. The results are obtained with three different 
combinations of electrode width w and spacing g: (a)                    , (b)   
                 , and (c)                    . Legend and vertical axis label in 
part (a) apply to all figure parts. 

 

The significance of the effective quadrupole moment at different distances from the 

interdigitated electrode array is shown in figure 6.13, where the ratio of second- over first-

order moments of an ellipsoidal particle at three different regions within the interdigitated 

geometry are compared, for three different combinations of electrode width and spacing. It 

can be seen that in most instances the effective quadrupole moment is comparable to, and in 

many cases larger than, the effective dipole moment.  

The relationship between effective moment ratios at different distances from the electrode 

array is seen to heavily depend on the width/spacing ratio of the interdigitated electrodes. 

When electrode width is smaller than inter-electrode spacing, the effective quadrupole 

moment is seen to be most significant in the near-field region of the interdigitated geometry. 
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When    , the effective moment ratio is seen to be largest in the far-field region, near the 

insulating lid. Even in the mid-field region, away from the field curvatures due to the 

electrode array or the glass lid, the quadrupole moment is found to be comparable to the 

first-order moment. The observations imply that invoking the dipole approximation for 

particle characterisation will be subject to considerable error at all but very few positions 

within the interdigitated electrode geometry.  

6.3.2.2. Effect of particle geometry 

The effect of electric field geometry on general effective moments in the interdigitated 

electrode geometry was discussed in the previous section by analysing an ellipsoid as an 

example particle shape. This section is aimed at investigating the effect of particle geometry 

on first- and higher-order moments by comparing the results obtained with spherical, 

ellipsoidal and brick-shaped particles of similar dimensions at different positions within an 

interdigitated electrode configuration. 

 

 

Figure 6.14. Effect of particle shape on general effective dipole moments in the interdigitated electrode 
geometry – Variations with position   along the horizontal axis of the effective dipole moments of 
spherical (sph) (r=1µm), (b) ellipsoidal (elp) (a=1µm, b=0.5µm) and (c) brick-shaped (brk) (a=1µm, 
b=0.5µm) particles positioned in (a) near-field         , (b) mid-field         , and (c) far-field 
         regions of the interdigitated electrode geometry (of specifications given in figure 6.2) with 
equal electrode width and spacing:         . 

 

Figure 6.14 compares the effective dipole moments of spherical, ellipsoidal and brick-shaped 

particles positioned in each of the three regions within the interdigitated electrode geometry 

(as specified in figure 6.4) with a sample combination of electrode width and spacing 

          . It is understood from the data in the plots that the effective dipole moment 

is directly proportional to particle volume, being largest for the spherical and smallest for the 

ellipsoidal particle. The same observation is made with other electrode width/spacing ratios. 
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The results imply that if particle characterisation is to be made based on the dipole 

approximation, i.e. ignoring higher-order moments, non-spherical particles of arbitrary shape 

can be modelled as spheres of equal volume, with zero error incurred. 

 

 

Figure 6.15. Effect of particle shape on general effective quadrupole moments in the interdigitated 
electrode geometry – Variations with position   along the horizontal axis of the effective quadrupole 
moments of spherical (sph) (r=1µm), (b) ellipsoidal (elp) (a=1µm, b=0.5µm) and (c) brick-shaped (brk) 
(a=1µm, b=0.5µm) particles positioned in (a) near-field         , (b) mid-field         , and (c) 
far-field          regions of the interdigitated electrode geometry (of specifications given in figure 
6.2) with equal electrode width and spacing:         . Legend in part (a) applies to all figure 
parts. 

 

The effective quadrupole moments of the same particles positioned in near-, mid- and far-

field regions of the interdigitated electrode geometry are compared in figure 6.15. The 

second-order moment is clearly not proportional to particle volume. In all of the three 

regions within the interdigitated electrode geometry, the effective quadrupole moment is 

seen to be largest for the brick-shaped and smallest for the ellipsoidal particle. Due to the 

quadrupole moment not being proportional to particle volume, approximation of non-

spherical particles with spheres, albeit of equal volume, will be subject to considerable error. 

Figure 6.16 shows the significance of the effective quadrupole moment for particles of 

different shapes through plots of variations with particle position along the horizontal axis of 

the ratio of second- over first-order moments of spherical, ellipsoidal and brick-shaped 

particles in near-, mid- and far-field regions of the interdigitated electrode geometry. 

It can be seen that non-spherical particles possess notably more significant higher-order 

moments than a spherical particle of similar dimension. The second- over first-order effective 

moment ratio is seen to range from values no smaller than ~0.5 to as larger as ~50 

depending on particle position within the interdigitated geometry. It can be noticed that the 

effective quadrupole moment of the spherical particle, although less significant than that of 
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non-spherical particles, can reach values notably (~10 times) larger than its effective dipole 

moment. It may therefore be concluded that invoking the dipole approximation for 

characterisation of particles (spherical or non-spherical) incurs significant error. The error is 

notably larger if the particle being characterised is non-spherical in shape, in which case 

approximation with a sphere will not reduce the error to negligible values. 

 

 

Figure 6.16. Effect of particle shape on the significance of the general effective quadrupole moment in the 
interdigitated electrode geometry – Variations with position   along the horizontal axis of the ratio of 
second- over first-order moments of an ellipsoidal (a=1µm, b=0.5µm) particle positioned in three 
different regions within the interdigitated electrode geometry (of specifications given in figure 6.2), 
corresponding to three different heights above the electrode array; near-field (nf), mid-field (mf) and far-
field regions correspond to particle centre heights of 10µm, 30µm and 50µm, respectively, above the 
electrode surface. The results are obtained with three different combinations of electrode width w and 
spacing g: (a)                    , (b)                    , and (c)        
            . Legend and vertical axis label in part (a) apply to all figure parts. 

 

Table 6.1. Errors incurred in values of effective dipole and quadrupole moments of non-spherical particles 
upon approximation with simpler shapes of similar dimensions – List of ratios of the effective dipole and 
quadrupole moments of model particles (spheres or ellipsoids) over those of original particles (ellipsoids 
or brick-shaped particles) positioned in near- (nf), mid- (mf) and far-field (ff) regions of the interdigitated 
electrode geometry (of specifications given in figures 6.2 and 6.4) with         . Different ratios 
are obtained at different positions within each of the three regions in the electrode geometry. Values in 
the table represent averages of ratios at different particle positions in each region. 

Original 

particle 

Model particle p(1) ratio p(2) ratio 

nf mf ff nf mf ff 

Ellipsoid 

(a=1µm,b=0.5µm) 

Sphere (r=1µm) 
4.0 4.0 4.0 1.3 1.3 2.0 

Brick-shaped 

(a=1µm,b=0.5µm) 

Sphere (r=1µm) 
2.1 2.1 2.1 0.6 0.6 0.9 

Brick-shaped 

(a=1µm,b=0.5µm) 

Ellipsoid 

(a=1µm,b=0.5µm) 
0.5 0.5 0.5 0.5 0.5 0.8 
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Errors incurred in the values of the effective dipole and quadrupole moments of ellipsoidal 

and brick-shaped particles when they are modelled with simpler shapes (spheres/ellipsoids) 

of similar dimensions is listed in Table 6.1 for when the particles are positioned in near-, mid- 

and far-field regions of the interdigitated electrode geometry with         . For the 

first-order effective moment, the ratios represent the volume ratio of original and model 

particles – as expected from the direct proportionality of the effective dipole moment with 

particle volume. When dimensions of the model particle are adjusted for volumes to equate, 

the effective dipole moments are also seen to equate, bringing the approximation error down 

to 0. The observation confirms that, as in axial symmetry, if the dipole approximation is to be 

invoked for effective moment-based particle characterisation, particles of any shape can be 

modelled as spheres of equal volume with no error incurred in the value of the effective 

dipole moment. 

The effective quadrupole moment is not proportional to particle volume and, as a result, the 

ratios of the second-order effective moments of model and original particles are seen not to 

reduce to negligible values even when dimensions of the model particle are adjusted for 

equal volumes. It can be concluded, given the increased significance of higher order moments 

for non-spherical particles (evident from figure 6.16), that effective moment-based 

characterisation of non-spherical particles can be erroneous if the dipole approximation is 

invoked and/or if the particle is modelled with a simpler shape, albeit of equal volume.     

6.3.3. Summary and conclusions 

A novel method for the determination of general effective moments has been exploited to 

derive the effective dipole and quadrupole moments of spherical, ellipsoidal and brick-

shaped particles at different positions within an interdigitated electrode configuration. It has 

been shown that the trends with which the first- and second-order moments vary with 

horizontal particle position at a given height above the electrode array are determined solely 

by those of the electric field magnitude and first-order gradient, and are hence independent 

of particle geometry. As with the field curvature, electrode geometry – through width and 

spacing of the interdigitated electrodes – is seen to have a significant effect on variation 

patterns with particle position of first- and higher-order moments. 

Effective dipole and quadrupole moments of spherical and non-spherical particles have been 

seen to decrease in magnitude as particles distance from the electrode array. The significance 

of the effective quadrupole moment, defined as its ratio over the first-order moment, has 

been observed to bear a more complicated dependency on particle distance from the 

electrode surface. It has been shown that, depending on the width/spacing ratio of the 
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interdigitated electrodes, the effective quadrupole moment can be most significant near the 

insulating lid that caps the channel above the electrode array. 

It has been shown that the effective dipole moment is directly proportional to particle 

volume. Consequently, if particle characterisation is to be made using the dipole 

approximation, non-spherical particles can be modelled as spheres of equal volume with zero 

error incurred. However, it has been shown that the effective quadrupole moment is 

comparable to, and in most instances larger than, the effective dipole moment for spherical 

and non-spherical particles – with non-spherical particles possessing notably more 

significant higher-order moments. As a result, any characterisation of spherical or non-

spherical particles (albeit modelled as spheres of equal volume) will be subject to significant 

error if the effective quadrupole moment is not accounted for.  
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6.4. The dielectrophoretic force terms  

This section presents and discusses calculations, using the effective moment method, of first- 

and second-order terms of the dielectrophoretic force on spherical, ellipsoidal and brick-

shaped particles at different positions within an interdigitated electrode configuration. The 

results will be presented in three different sections, one for each of the three regions in the 

interdigitated electrode geometry (as specified in figure 6.4). Units for the DEP force terms 

will be pico-Newtons (pN).   

6.4.1. Results and discussion 

6.4.1.1. The near-field region 

 

Figure 6.17. Dielectrophoretic force terms in the near-field region of the interdigitated electrode 
geometry – Variations with particle position   along the horizontal axis of first- (F

(1)
) and second-order 

(F
(2)

) terms of the dielectrophoretic force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and 
(c) brick-shaped (a=1µm, b=0.5µm) particles positioned in the near-field          region of the 
interdigitated electrode geometry (of specifications given in figure 6.2) with three different combinations 
of electrode width w and spacing g:                                   
                         . Legend and vertical axis labels in part (a) apply to all figure 
parts. 
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Figure 6.17 shows the results obtained for dipolar and quadrupolar DEP forces on spherical, 

ellipsoidal and brick-shaped particles positioned in the near-field region of the interdigitated 

electrode geometry with three different combinations of electrode width w and spacing g: 

                                                      

     . It can be seen that as with field curvatures and effective moments, variation patterns 

with   of the DEP force terms are independent of particle geometry. On the contrary, 

electrode geometry – through width and spacing of the interdigitated electrodes – is seen to 

have a significant effect on the DEP force terms: magnitudes of the force terms and the trends 

with which they vary with particle position within the near-field region are seen to be 

significantly affected by changes in the width/spacing ratio of the interdigitated electrodes. 

Particle geometry, of no effect on the trends with which DEP force terms vary with positions 

within the near-field region, is seen to affect the strength of dipolar and quadrupolar forces. 

The first-order DEP force term is found to be directly proportional to particle volume, as 

expected from a similar observation made for the effective dipole moment. The spherical 

particle therefore experiences the strongest dipolar force among the three particle shapes. 

The quadrupolar DEP forces experienced by spherical and ellipsoidal particles are seen to be 

almost equal throughout the near-field region, while the brick-shaped particle is found to 

experience a notably stronger (more than twice in magnitude) quadrupolar force. 

6.4.1.2. The mid-field region 

Results obtained for first- and second-order terms of the dielectrophoretic force experienced 

by spherical, ellipsoidal and brick-shaped particles positioned within the mid-field region of 

the interdigitated electrode geometry are shown in figure 6.18 for three different 

combinations of electrode width and spacing. Variation patterns with   of dipolar and 

quadrupolar forces are seen to be similar to those of first- and second-order moments, 

respectively, as expected from the field gradients – which are multiplied by the moments to 

yield the DEP force terms – being almost independent of   throughout the mid-field region. It 

can be found, from a comparison of the plots in figures 6.17 and 6.18, that dipolar and 

quadrupolar forces on a particle in the mid-field region are smaller than those in the near-

field region by one to two orders of magnitude.  

The dipolar DEP force is seen to be almost constant, for a given width/spacing ratio of the 

interdigitated electrodes, and directly proportional to particle volume – as in the near-field 

region. The quadrupolar DEP force is seen to increase, decrease, or remain constant with 

increasing  , depending on whether electrode width w is larger than, smaller than, or equal to 

inter-electrode spacing g, respectively. Unlike the dipolar force, the quadrupolar term does 
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not show proportionality with particle volume and is found to be largest for the brick-shaped 

and smallest for the ellipsoidal particle – in agreement with, and indeed due to, similar 

observations for the effective quadrupole moment (figure 6.15). 

 

 

Figure 6.18. Dielectrophoretic force terms in the near-field region of the interdigitated electrode 
geometry – Variations with particle position   along the horizontal axis of first- (F

(1)
) and second-order 

(F
(2)

) terms of the dielectrophoretic force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and 
(c) brick-shaped (a=1µm, b=0.5µm) particles positioned in the mid-field          region of the 
interdigitated electrode geometry (of specifications given in figure 6.2) with three different combinations 
of electrode width w and spacing g:                                   
                         . Legend and vertical axis labels in part (a) apply to all figure 
parts. 

 

6.4.1.3. The far-field region 

Variations with position   along the horizontal axis of the first- and second-order terms of the 

dielectrophoretic force on spherical, ellipsoidal and brick-shaped particles positioned in the 

far-field region of the interdigitated electrode geometry are shown in figure 6.19 for three 

different combinations of electrode width and spacing. It can be seen that as in near- and 

mid-field regions, the trends with which the DEP force terms vary with position along the 

horizontal axis are independent of particle geometry and determined by those of electric field 
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curvatures. Dipolar and quadrupolar forces are seen to attain values symmetrical around a 

maximum at the midpoint       .  

 

 

Figure 6.19. Dielectrophoretic force terms in the far-field region of the interdigitated electrode geometry 
– Variations with particle position   along the horizontal axis of first- (F

(1)
) and second-order (F

(2)
) terms of 

the dielectrophoretic force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) brick-
shaped (a=1µm, b=0.5µm) particles positioned in the far-field          region of the interdigitated 
electrode geometry (of specifications given in figure 6.2) with three different combinations of electrode 
width w and spacing g:                                                
            . Legend and vertical axis labels in part (a) apply to all figure parts. 

 

Particle and electrode geometry, of no effect on the trends with which the force terms vary 

with position within the far-field region, are seen to notably affect the magnitudes of dipolar 

and quadrupolar forces. Greater width/spacing ratio for the interdigitated electrodes is seen 

to give rise to stronger first- and second-order DEP forces on spherical and non-spherical 

particles. At a given position within the far-field region, the quadrupolar force is seen to be 

strongest on the brick-shaped particle. As in near- and mid-field regions, the dipolar force is 

found to be directly proportional to particle volume. Dipolar and quadrupolar forces in the 

far-field region are seen to be weaker than those in the mid-field region of the interdigitated 

electrode geometry by about an order of magnitude. 
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6.4.2. Summary and conclusions 

Results have been presented for first- and second-order terms of the dielectrophoretic force 

on spherical, ellipsoidal and brick-shaped particles at different positions within an 

interdigitated electrode configuration, corresponding to electric fields with varying 

curvature. The DEP force terms have been calculated from the effective moment method, by 

combining previously presented results for electric field gradients and effective moments. It 

is essentially the weighted, by a constant factor, multiplication of effective moments and field 

gradients that yields the DEP force terms. As a result, and as confirmed by the results just 

presented, the trends with which DEP force terms vary with position within the electrode 

geometry can be predicted from those of the electric field magnitude and its gradients.  

Particle geometry has been shown to have no effect on variation patterns with position along 

the horizontal axis of the DEP force terms. However, particle shape has been shown to have a 

strong effect on the magnitudes of dipolar and quadrupolar forces at a given position within 

the electrode geometry. Due to the formulation of the effective moment method, discussions 

regarding the effects of particle and electrode geometry on effective dipole and quadrupole 

moments are identically valid for dipolar and quadrupolar DEP forces. The dipolar force has 

been confirmed to be directly proportional to particle volume. Discussions regarding the 

significance of the second-order DEP force term will be presented in the next section where 

Maxwell stress tensor calculations of the dielectrophoretic force are compared against DEP 

force term results obtained using the effective moment method to derive quadrupolar 

contributions to the total force.  
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6.5. The total dielectrophoretic force  

This section presents and discusses calculations of the total dielectrophoretic force on 

spherical, ellipsoidal and brick-shaped particles at different positions within an interdigitated 

electrode configuration. The total DEP force is calculated using the Maxwell stress tensor 

(MST) method, which is known for its mathematical rigorousness in accounting for all 

elements of electrical force on a dielectric. MST calculations of the dielectrophoretic force will 

be compared against DEP force term results presented in the previous section to derive the 

quadrupolar contribution in different circumstances regarding particle and electric field 

geometry. In the results that will be presented, units for the DEP force will be pico-Newtons 

(pN). 

6.5.1. Maxwell stress tensor calculations of the dielectrophoretic force 

6.5.1.1. Results and discussion 

Results obtained for the total dielectrophoretic force on spherical, ellipsoidal and brick-

shaped particles positioned in the near-field region of the interdigitated electrode geometry, 

with three different combinations of electrode width and spacing, are shown in figure 6.20. 

Trends with which the DEP forces vary with position within the near-field region are seen not 

to be identical for particles of different shapes, as was shown to be the case for DEP force 

terms. The observation reflects on quadrupolar forces of differing significance for particles of 

different shapes.  

 

Figure 6.20. Total dielectrophoretic force in the near-field region of the interdigitated electrode geometry 
– Variations with particle position   along the horizontal axis of the total DEP force, calculated using the 
Maxwell stress tensor (MST) method, on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) 
brick-shaped (a=1µm, b=0.5µm) particles positioned in the near-field          region of the 
interdigitated electrode geometry (of specifications given in figure 6.2) with three different combinations 
of electrode width w and spacing g:                                   
                         . Legend and vertical axis labels in part (a) apply to all figure 
parts. 
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As with DEP force terms, the total dielectrophoretic force in the near-field region is seen to be 

affected, in trends and magnitude, by variations in electrode width and spacing. Depending 

on particle position within the near-field region, increasing the width/spacing ratio of the 

interdigitated electrodes can give rise to an increase or decrease in the DEP force exerted on 

particles. At all positions within the near-field region, the DEP force is seen to be stronger on 

particles of larger volume although, due to the quadrupolar contribution, no direct 

proportionality with particle volume is observed. 

Figure 6.21 shows variations with position within the mid-field region of the total 

dielectrophoretic force on spherical, ellipsoidal and brick-shaped particles. Due to the dipolar 

force being almost independent of particle position within the mid-field region (figure 6.18), 

the DEP force is seen to vary less notably in the mid-field region than in the near-field region 

of the interdigitated geometry. 

 

Figure 6.21. Total dielectrophoretic force in the mid-field region of the interdigitated electrode geometry 
– Variations with particle position   along the horizontal axis of the total DEP force, calculated using the 
Maxwell stress tensor (MST) method, on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) 
brick-shaped (a=1µm, b=0.5µm) particles positioned in the mid-field          region of the 
interdigitated electrode geometry (of specifications given in figure 6.2) with three different combinations 
of electrode width w and spacing g:                                   
                         . Legend and vertical axis labels in part (a) apply to all figure 
parts. 

 

For spherical and non-spherical particles, the DEP force is seen to increase, decrease or 

remain almost constant with increasing  , depending on whether electrode width is larger 

than, smaller than or equal to inter-electrode spacing, respectively. At any given position 

within the mid-field region, wider electrodes are found to give rise to stronger DEP forces on 

all particle shapes. As in the near-field region, the DEP force is seen to be stronger on 

particles of larger volume. As a particle moves vertically from the near-field to the mid-field 
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region of the interdigitated geometry, the DEP force it experiences is found to decrease by 

about an order of magnitude. 

Results obtained for the total dielectrophoretic force on spherical, ellipsoidal and brick-

shaped particles in the far-field region of the interdigitated electrode geometry, near the 

insulating lid, are shown in figure 6.22 for three different combinations of electrode width 

and spacing. As with first- and second-order force terms, the total DEP force on any of the 

three particle shapes is seen to attain values symmetrical around a maximum at the midpoint 

      . Particle and electrode geometry are seen to affect the magnitude, and not 

variation patterns with position, of the dielectrophoretic force. As in near- and mid-field 

regions, the DEP force is found to be stronger on particles of larger volume. Increasing the 

width/spacing ratio of the interdigitated electrodes is seen to give rise to stronger DEP forces 

on spherical and non-spherical particles. 

 

 

Figure 6.22. Total dielectrophoretic force in the far-field region of the interdigitated electrode geometry – 
Variations with particle position   along the horizontal axis of the total DEP force, calculated using the 
Maxwell stress tensor (MST) method, on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, b=0.5µm) and (c) 
brick-shaped (a=1µm, b=0.5µm) particles positioned in the far-field          region of the 
interdigitated electrode geometry (of specifications given in figure 6.2) with three different combinations 
of electrode width w and spacing g:                                   
                         . Legend and vertical axis labels in part (a) apply to all figure 
parts. 

 

6.5.1.2. Summary and conclusions 

Calculations, using the Maxwell stress tensor method, of the total dielectrophoretic force on 

spherical, ellipsoidal and brick-shaped particles at different positions within an interdigitated 

electrode configuration have been presented. It has been shown that as with first- and 

second-order force terms, the total dielectrophoretic force is stronger on particles of larger 

volume. In what can be attributed to the significance of the quadrupolar term, the direct 
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proportionality with particle volume – observed previously for the dipolar force – has been 

found not to hold valid for the total DEP force. Electrode geometry, through the 

width/spacing ratio of the interdigitated electrodes, has been shown to have a significant 

effect on the magnitude of the DEP force on spherical and non-spherical particles. Near the 

electrode surface, variation patterns with position of the DEP force have also been seen to be 

affected notably by variations in electrode dimensions. 

6.5.2. The significance of higher-order dielectrophoretic forces 

This section is aimed at what forms the principal goal of this chapter and indeed the whole 

body of work: quantified evaluation of the significance of higher-order DEP forces in different 

circumstances regarding particle and electric field geometry. Results will be presented for 

quadrupolar contributions to the DEP force on spherical, ellipsoidal and brick-shaped 

particles at different positions within an interdigitated electrode configuration. Total force 

and force term results, calculated using completely different methods (Maxwell stress tensor 

and effective moment method, respectively), have been compared against each other to yield 

the second-order contribution to the DEP force:          . In all of the wide-ranging 

positions within the interdigitated electrode geometry (as specified in figure 6.4) and for all 

three particle shapes, the sum of first- and second-order forces has been seen to equal the 

total DEP force (as obtained using the MST method) to within an error margin of no more 

than 1%. The observation importantly serves as verification for the results and allows for 

accurate determination of the quadrupolar contribution to the dielectrophoretic force. 

6.5.2.1. Results and discussion 

Quadrupolar contributions to the dielectrophoretic force on spherical, ellipsoidal and brick-

shaped particles positioned in the near-field region of the interdigitated electrode geometry 

are shown in figure 6.23 for three different combinations of electrode width and spacing: 

                                                      

     . It can be seen that, as expected from total force and force term results, the trends 

with which the second-order contributions, presented as percentage values, vary with 

position   along the horizontal axis are independent of particle geometry. Particle shape is, 

however, seen to have a notable effect on the actual magnitude of quadrupolar contributions: 

non-spherical particles are found to be subject to considerably more significant second-order 

forces compared to the spherical particle of similar dimensions. Maximum contribution from 

the quadrupolar term is seen to be ~14% for the spherical particle, whereas for ellipsoidal 

and brick-shaped particles, second-order contributions as high as ~40% and ~45% are 
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observed. The results show that near the electrode surface, the dipole approximation is 

particularly unreliable in predicting the DEP force on non-spherical particles. 

 

 

Figure 6.23. The significance of the second-order contribution to the dielectrophoretic force in the near-
field region of the interdigitated electrode geometry – Variations with position   along the horizontal axis 
of the second-order contributions to the total DEP force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, 
b=0.5µm) and (c) brick-shaped (a=1µm, b=0.5µm) particles positioned in the near-field          
region of the interdigitated electrode geometry (of specifications given in figure 6.2) with three different 
combinations of electrode width w and spacing g:                            
                                . Legend and vertical axis labels in part (a) apply to 
all figure parts. 

 

As with field curvature and, accordingly, effective moment, force term and total force results, 

electric field geometry is seen to have a significant effect on the significance of the 

quadrupolar DEP force on spherical and non-spherical particles positioned in the near-field 

region of the interdigitated geometry. The effect of electric field geometry is reflected through 

two parameters: the width/spacing ratio of the interdigitated electrodes and position   along 

the horizontal axis. The quadrupolar contribution profile is seen to be monotonically 

decreasing, monotonically increasing, or symmetrical around a maximum at the midpoint, 

depending on whether the width of the interdigitated electrodes is smaller than, equal to, or 

larger than inter-electrode spacing, respectively. At a given position within the near-field 

region, changing the width of interdigitated electrodes by 50% is seen to give rise to a notable 

change – from negligible to very significant, or vice versa – in the quadrupolar contribution to 

the DEP force on particles. For a given set of electrode dimensions, a given particle 

experiences a quadrupolar force of varying significance as it moves within the near-field 

region. As an example, for an ellipsoidal particle subjected to the electric field generated by 

evenly-spaced electrodes      , the quadrupolar contribution is seen to increase from 

~3% to ~40% as the particle moves from one end of the near-field region         to 

another         . 
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Figure 6.24. The significance of the second-order contribution to the dielectrophoretic force in the mid-
field region of the interdigitated electrode geometry – Variations with position   along the horizontal axis 
of the second-order contributions to the total DEP force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, 
b=0.5µm) and (c) brick-shaped (a=1µm, b=0.5µm) particles positioned in the mid-field          
region of the interdigitated electrode geometry (of specifications given in figure 6.2) with three different 
combinations of electrode width w and spacing g:                            
                                . Legend and vertical axis labels in part (a) apply to 
all figure parts. 

 

Results obtained for second-order contributions to the DEP force on spherical, ellipsoidal and 

brick-shaped particles positioned in the mid-field region of the interdigitated electrode 

configuration are shown in figure 6.24. As in the near-field region, electrode geometry is seen 

to be a determining factor in the significance of the quadrupolar force term. The second-order 

contribution to the total force is seen to increase, decrease, or remain almost constant with 

increasing  , depending on whether electrode width w is larger than, smaller than, or equal to 

inter-electrode spacing, respectively.  

Variation patterns with   of the quadrupolar contribution are seen not to be affected by 

particle geometry. Particle shape is, however, seen to notably affect the magnitudes of 

percentage contributions from the quadrupolar term. As in the near-field region, non-

spherical particles are found to be subject to considerably more significant second-order 

forces, with the brick-shaped particle experiencing a (slightly) less predominantly dipolar 

force than the ellipsoidal particle. In general, quadrupolar contributions are seen to be 

considerably smaller than those in the near-field region of the interdigitated geometry. 

Maximum second-order contributions for spherical, ellipsoidal and brick-shaped particles are 

seen to be ~7%, ~20% and ~21%, respectively, compared to ~14%, ~40% and ~45%, 

respectively, in the near-field region of the electrode geometry. The difference in significance 

of quadrupolar contributions in near- and mid-field regions of the interdigitated geometry 

can be attributed to the electric field bearing notably larger curvature near the electrode 

array (figures 6.5 and 6.6). From an initial inspection, the observation can be regarded as 

evidence for the commonly-stated qualitative criterion for the reliability of the dipole 



   

 
142 

approximation: that the field varies inconsiderably across particle dimensions. However, 

closer examination of the field gradient profile in near- and mid-field regions of the 

interdigitated geometry suggests that the criterion is by no means general. When    , for 

example, the electric field gradient in the near-field region was seen to be maximum at the 

midpoint       , whereas the quadrupolar contribution is found to be largest at 

      . The observation underlines the importance of quantified assessment of the 

reliability of the dipole approximation and of the significance of higher-order 

forces/moments. 

Second-order contributions to the DEP force on spherical, ellipsoidal and brick-shaped 

particles positioned in the far-field region of the interdigitated electrode geometry, near the 

insulating lid, are plotted in figure 6.25. It can be seen that regardless of particle and 

electrode geometry, percentage contributions from the quadrupolar term bear symmetry 

around a maximum at the midpoint       . The far-field region appears distant enough 

from the electrode surface for changes in electrode dimensions to only slightly alter 

quadrupolar contributions to the DEP force.  

 

 

Figure 6.25. The significance of the second-order contribution to the dielectrophoretic force in the far-
field region of the interdigitated electrode geometry – Variations with position   along the horizontal axis 
of the second-order contributions to the total DEP force on (a) spherical (r=1µm), (b) ellipsoidal (a=1µm, 
b=0.5µm) and (c) brick-shaped (a=1µm, b=0.5µm) particles positioned in the far-field          region 
of the interdigitated electrode geometry (of specifications given in figure 6.2) with three different 
combinations of electrode width w and spacing g:                            
                                . Legend and vertical axis labels in part (a) apply to 
all figure parts. 

 

As in near- and mid-field regions, non-spherical particles are found to be subject to 

considerably more significant quadrupolar forces. Second-order contributions to the total 

force are seen to be comparable to those in the near-field region of the electrode geometry, 

with percentage values reaching maxima of ~12%, ~48% and ~35% for spherical, ellipsoidal 

and brick-shaped particles, respectively. Unlike near- and mid-field regions, the ellipsoidal 
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particle is seen to be subject to less predominantly dipolar forces than the brick-shaped 

particle. The increased significance of higher-order forces in the far-field region can be 

attributed to the large field curvatures caused by the presence of the nearby insulating lid 

(figure 6.7), although it is important to note that positions within the far-field region where 

higher-order forces are more significant are not necessarily those where the field gradient is 

maximum. 

6.5.2.2. Summary and conclusions 

Results have been presented for second-order contributions to the total dielectrophoretic 

force on spherical, ellipsoidal and brick-shaped particles at different positions within an 

interdigitated electrode configuration. The quadrupolar contributions have been calculated 

by comparing Maxwell stress tensor (MST) calculations of the total DEP force and DEP force 

term calculations using the effective moment method. In all instances regarding particle and 

electric field geometry, the sum of first- and second-order force terms has been seen to equal 

the DEP force calculated from the MST method to within an error margin of <1%, hence the 

validation of numerical calculations. 

It has been shown that in near- and mid-field regions of the interdigitated geometry, and 

particularly in the former, electrode dimensions have a significant effect on quadrupolar 

contributions to the dielectrophoretic force on spherical and non-spherical particles. A 50% 

change in electrode width (and inter-electrode spacing) has been shown to change the 

quadrupolar contribution from negligible to very significant. Electric field geometry has also 

been seen to affect the quadrupolar contribution through particle position along the 

horizontal axis. As a particle moves within any of the designated regions in the interdigitated 

geometry, the quadrupolar force it experiences has been seen to vary considerably in 

significance. 

Non-spherical particles have been shown to be subject to considerably more significant 

higher-order forces as compared to a sphere of similar dimensions. At any given position 

within the interdigitated electrode geometry, quadrupolar contributions to the DEP force on 

ellipsoidal and brick-shaped particles have been seen to be almost three times as large those 

on a most closely fitting sphere. The observations indicate the important effect of shape-

dependent polarisation on the reliability of the dipole approximation. At positions within the 

interdigitated geometry, one-third, and at other positions nearly a half of the DEP force on 

ellipsoidal and brick-shaped particles has been shown to be constituted by the quadrupolar 

term. For accurate determination of the DEP force, the second-order term of the force on the 

spherical particle cannot be underestimated. It has been shown that at most positions within 
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the interdigitated electrode geometry, the quadrupolar contribution to the DEP force on the 

spherical particle is more than 5%, and at certain positions above 10%. It must be noted that 

the examined particles are very modest in size, compared to electrode dimensions. 

Higher-order forces have been shown to be most significant in near- and far-field regions of 

the interdigitated geometry. The increased significance of the quadrupolar contribution can 

be attributed to the large field curvatures due to the presence of nearby electrodes/insulating 

lid. However, it has been seen from a comparison of field curvature and quadrupolar 

contribution results that although the two are closely correlated, “the extent of field non-

uniformity compared to particle dimensions” cannot be regarded as a general criterion for 

the reliability of the dipole approximation. Calculations of the second-order contribution have 

shown that the dipole approximation can be more reliable where the field varies more 

notably across particle dimensions. The observations emphasise the importance of making 

quantitative assessment of the significance of higher-order forces, accounting for effects such 

as shape-dependent polarisation. 
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Conclusions 

 A novel method has been presented with which the first three general effective moments 

of any particle shape subjected to an electric field of arbitrary geometry can be 

determined. 

 The method has been used to determine the effective moments of spherical, ellipsoidal 

and brick-shaped particles at different positions within an interdigitated electrode 

configuration. It has been shown that at any given height above the electrode array, the 

trends with which the effective moments vary with particle position are similar to those 

of field gradients of preceding order and independent of particle geometry. Same 

observations were reported on previously in axially symmetric geometries. 

 Shape-dependent polarisation has been shown to result in particles of different shapes 

possessing first- and second-order moments that differ largely in magnitude. 

 The effective dipole moment has been shown to be directly proportional with particle 

volume. Therefore, if the dipole approximation is to be invoked for non-spherical particle 

characterisation, the particles can be modelled as spheres of equal volume for which the 

effective dipole moment can be calculated analytically. 

 No proportionality has been observed between the second-order effective moment and 

particle volume. Also, non-spherical particles have been shown to possess notably more 

significant higher-order moments. As a result, non-spherical particle characterisation 

based on the dipole approximation will be subject to significant error. The dipole 

approximation has been shown to be more reliable in characterisation of spherical 

particles, but significant error can be incurred depending on electric field geometry. 

 Electric field geometry, through electrode dimensions and particle position within the 

electrode geometry, has been shown to be a determining factor in the significance of 

higher-order moments, even at positions distant from the electrode surface. 

 First- and second-order terms of the dielectrophoretic force on spherical, ellipsoidal and 

brick-shaped particles at different positions within the interdigitated electrode geometry 

have been calculated using the effective moment method. The results have been 

compared against total force calculations using the Maxwell stress tensor method. It has 

been shown that in all instances regarding particle and electric field geometry, the sum of 

dipolar and quadrupolar forces equals the total force to within an error margin of no 

more than 1%, hence the validation of the numerical results. 

 It has been shown that the quadrupolar DEP force is considerably more significant on 

non-spherical particles, with contributions to the total force reaching values as high as 

~45% for ~50% for brick-shaped and ellipsoidal particles, respectively. For the spherical 
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particle, contributions as large as ~15% from the second-order term have been observed. 

It has been shown that the DEP force is most significantly constituted by the higher-order 

term in near- and far-field regions of the interdigitated electrode geometry, where 

electric field curvatures are largest.    

 It has been shown that contrary to the commonly stated criterion for the reliability of the 

dipole approximation, higher-order moments/forces are not necessarily more significant 

where the electric field magnitude varies more notably across particle dimensions. 
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Chapter Seven 

Summary, Conclusions and Further Work 
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7.1. Summary 

Higher order moments and dielectrophoretic forces are commonly ignored. In analysis 

of electric field interactions with dielectrics, higher order effects are commonly ignored. 

Based on the dipole approximation, the potential due to polarised dielectrics is represented 

through the effective dipole moment alone. When invoked for determination of the 

dielectrophoretic force on dielectric particles in suspension, the dipole approximation 

ignores contribution from multipolar force terms. The principal goal of this work was to 

assess the reliability of the dipole approximation in its two ‘versions’. 

This work analysed the significance of multipolar effects by focussing attention on field 

and particle geometry as determining factors. As higher-order effective moments are 

representatives of the electrical energy stored in subject dielectric(s) and higher-order DEP 

forces result from interactions of field gradients with effective moments of succeeding order, 

it was a simple matter to expect electric field geometry to be a determining factor in the 

significance of higher-order moments/forces. The shape-dependent nature of dielectric 

polarisation suggests particle geometry can affect the significance of higher-order 

moments/forces. The focus of analysis in this work was therefore directed towards the 

effects of field and particle geometry as control parameters for the reliability of the dipole 

approximation. As a result, basic assumptions were made on other particle/field 

specifications: the electric field was assumed to be DC, not AC as it conveniently is in most 

dielectrophoresis applications, and the particles and their suspending media were assumed 

to be ideal dielectrics with zero conductivity. 

In axial symmetry: multipole moments were derived using an available method, and 

results on multipolar forces on non-spherical particles were presented for the first 

time. The starting point for analysis was particle and electrode geometries that lend 

themselves to axial symmetry. Primary reason for the choice was the simplicity of analysis: 

effective moments become scalar, rather than tensor, quantities and even then a method was 

readily available in the literature for determination of effective moments up to any order for 

particles of arbitrary shape, given axial symmetry holds. Despite the availability of this 

method, no analysis has been done to date towards higher-order electrical forces in axial 

symmetry (and, needless to say, otherwise). The major obstacles in not doing so appear to 

have been the unavailability of analytic derivations for higher-order moments of non-

spherical particles, the reluctance to use numerical methods due to successive differentiation 

(of the electric potential, required for calculation of DEP force terms) being highly susceptible 
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to error in finite element method (FEM)-based solvers, and finally the deemed negligence of 

multipolar contributions to the dielectrophoretic force.   

A wide range of particle geometries and field curvature strengths were examined. This 

work applied the readily available method for determination of linear effective moments to 

spherical, ellipsoidal and cylindrical particles positioned on the symmetry axes of two 

electrode geometries, point-plane and disc-plane, to calculate the first three effective 

moments of the particles. The effect of electric field geometry was analysed by studying the 

two different electrode geometries, which give rise to vastly different field curvature profiles 

along their axes of symmetry, different electrode dimensions within each geometry, and 

different positions along the symmetry axis of either geometry. The effect of particle 

geometry was analysed by comparing the results obtained for different particle shapes and 

sizes: two different radii for the spherical and two different aspect ratios for each of the non-

spherical particles were examined. 

First three terms of the dielectrophoretic force were derived without involving 

numerical differentiation. The effective moment method was invoked to determine the first 

three terms of the dielectrophoretic force experienced by the particles by combining 

numerical calculations of the effective moments and analytic derivations of the field 

gradients. The susceptibility to error of numerical differentiation was avoided by studying 

electrode structures along the symmetry axis of which the electric field has been derived 

analytically; FEM calculation of the effective moments required integration of the electric 

potential due to particles, thus no numerical differentiation was involved. The significance of 

higher-order moments was analysed by determining their ratio over the first-order moment 

in different circumstances regarding particle and field geometry. 

A novel method was presented for determination of the first three general effective 

moments with no restrictions on particle or electric field geometry. For non-

axisymmetric cases, which comprise the vast majority of instances in DEP applications, a 

novel method was developed for determining the first three (as many as can be realised in 

three-dimensional space) general effective moments of particles of arbitrary shape subjected 

to electric fields of arbitrary geometry. The method was applied to spherical, ellipsoidal and 

brick-shaped particles in a widely-used electrode structure for dielectrophoretic 

applications: an interdigitated electrode configuration, consisting of an insulator-capped 

channel, within which particles flow, above the array of electrodes. The first two effective 

moments of the particles were determined numerically from a weighted integration of the 
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electric potential, thereby avoiding numerical differentiation. The third-order effective 

moment was shown to equal zero based on axis attributions.  

The method was applied to calculate the effective moments of particles of different 

geometry subjected to electric fields of varying curvature in the interdigitated 

electrode structure. As in axial symmetry, the significance of the higher-order moment was 

analysed by examining its ratio over the effective dipole moment for different field and 

particle geometries. The effect of electric field geometry was studied by considering different 

electrode width/spacing ratios. The change in width and spacing of the interdigitated 

electrodes moves the position of the field maximum at the electrode tip and resulting field 

curvatures. Different particle positions within the interdigitated geometry, corresponding to 

field magnitudes and gradients of varying strength were examined to broaden analysis 

regarding the effect of electric field geometry. Results obtained with three different particle 

shapes were compared to observe the effect of particle geometry. 

Higher order moments and forces were analysed in a non-axisymmetric setting for the 

first time. First- and second-order terms of the DEP force on spherical and non-spherical 

particles positioned within the interdigitated electrode geometry were calculated by 

incorporating the effective moment method. Numerical calculations of the effective moments, 

which (as in axial symmetry) do not involve any differentiation, were combined with analytic 

calculations of electric field gradients, based on a readily-available derivation for the electric 

field vector inside the interdigitated geometry, to obtain the first two terms of the 

dielectrophoretic force experienced by the particles. 

Force term calculations using the effective moment method were verified by 

comparison against total force calculations using the Maxwell stress tensor method. In 

axial symmetry and otherwise, the total DEP force was calculated using the mathematically 

rigorous Maxwell stress tensor method for verification of numerical results and for obtaining 

multipolar contributions to the dielectrophoretic force for different field/particle geometries, 

hence assessing the reliability of the dipole approximation in its second version, i.e. in 

predicting the DEP force on dielectrics.  
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7.2. Conclusions 

As explained in the Summary section, this work presented quantified evaluation of higher-

order interaction between electric fields and subject dielectric(s) by addressing two versions 

of the dipole approximation: one used for dielectric characterisation, ignoring higher-order 

effective moments, and another used for prediction of the dielectrophoretic force, ignoring 

higher-order terms of the DEP force. The significance of higher-order moments was studied 

through their ratio over the effective dipole moment, and the significance of higher-order 

force terms was studied through their contribution to the total DEP force – as determined by 

the Maxwell stress tensor method. The conclusions will accordingly be presented in two 

separate subsections. 

7.2.1. Higher-order moments 

Particle geometry has a significant effect on the values of first- and higher-order 

moments. In axial symmetry and otherwise, it was shown that particle geometry has 

significant effect on the values of first- and higher-order moments. However, trends with 

which effective moments of any given order vary with particle position within a given 

electrode structure were found to be determined by that of the field gradient of preceding 

order, and independent of particle geometry. The observation is compatible with the 

definition of effective moments as representatives of the electrical energy stored in subject 

dielectric(s) by the field gradient of preceding order. 

Only the first-order of effective moments is proportional to particle volume. In axially 

symmetric and non-axisymmetric settings, the effective dipole moment was shown to be 

directly proportional to particle volume. Higher-order linear moments were also shown to be 

larger for particles of larger volume, although no direct proportionality with particle volume 

was observed. In the interdigitated geometry, where axial symmetry does not hold, the 

second-order effective moment of the brick-shaped particle was seen to be considerably 

larger than that of the smaller-in-volume spherical particle at all positions within the 

electrode structure. 

Modelling non-spherical particles with simpler shapes, albeit of equal volume, can 

incur significant error in effective moment-based dielectric characterisation. 

Assessment was made on effective moment-based characterisation of non-spherical 

dielectrics approximated as simpler shapes of similar dimensions or equal volume. Errors 

incurred upon approximation of ellipsoidal and cylindrical particles as spheres, and ellipsoids 

in the case of the cylindrical particle, were assessed by comparing first- and higher-order 
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moments of modelled and model particles. It was shown that in the case of the dipole 

moment, the difference reflects the volume ratio of the two particles and can be reduced to 

zero if particles are of equal volume – as expected from the direct proportionality of the first-

order moment with particle volume. Errors incurred in values of higher-order moments were 

found to be significant: as an example, the second- and third-order moments of a 1µm sphere 

have been found to be larger than those of a (1µm, 0.5µm, 0.5µm) ellipsoid by factors of ~3 

and ~1.5, respectively. Due to higher-order moments not being proportional to particle 

volume, errors were seen not to reduce to insignificant values when dimensions of the model 

particles were adjusted for equal volumes.  

Higher-order moments are notably more significant for non-spherical particles. Yet, 

spherical particles of modest dimensions compared to the electrodes were also seen to 

possess multipole moments comparable to, and in many instances larger than, their 

effective dipole moment. It has been shown that higher-order moments of spherical and 

non-spherical particles are comparable to the first-order moment at all positions along the 

symmetry axis of either of the two axisymmetric electrode structures examined in this work, 

i.e. the point-plane and the disc-plane. Higher-order moments of non-spherical particles have 

been shown to be of increased significance. Second- and third-order moments of ellipsoidal 

and cylindrical particles subjected to the axisymmetric fields of point-plane and disc-plane 

geometries have been shown to sum up to values more than 10 times larger than their 

effective dipole moment when the particles are positioned on the symmetry axis of either of 

the two electrode geometries. Choice of electrode structure has been seen to have a 

considerable effect on the reliability of the dipole approximation, as it has been shown 

that multipole moments are notably more significant in the point-plane (as compared to the 

disc-plane) geometry. 

At all examined positions within the interdigitated electrode geometry, where axial symmetry 

does not hold, the second-order moment has been shown to attain values comparable to that 

of the effective dipole moment – for spherical and non-spherical particles. Ellipsoidal and 

brick-shaped particles have been seen to possess notably more significant higher-order 

moments than the spherical particle of similar dimensions. 

In axial symmetry and otherwise, the higher-order moments of spherical and non-spherical 

particles have been found to be more significant nearer the electrodes. The observation has 

been attributed to increased field curvature, which may not necessarily arise from proximity 

with electrodes. In the interdigitated electrode geometry, particles near the insulating lid 
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have been shown to possess more significant higher-order moments compared to when they 

are positioned in the mid-field region, nearer the electrode array. 

The commonly stated criterion for the reliability of the dipole approximation cannot 

be used as a measure for the significance of higher order moments. A general criterion 

stated in the literature for the reliability of the dipole approximation posits that higher-order 

moments find significance when particle dimensions become comparable to the scale of 

electric field non-uniformity, i.e. when the field varies notably across particle dimensions. It 

was shown in this work that the criterion may by no means be used as a measure for the 

significance of higher-order moments. As a counter-example, higher-order moments of 

spherical and non-spherical particles positioned on the symmetry axis of the disc-plane 

electrode geometry were found to be least significant at a point where electric field non-

uniformity, defined conventionally as its first-order gradient, is strongest. 

Larger particles are subject to higher order moments of increased significance. In 

agreement with observations by other research groups, particle size was found to be a 

determining factor in the significance of higher-order moments. Doubling the radius of a 1µm 

sphere positioned on the symmetry axis of the disc-plane electrode geometry, for example, 

was seen to result in a tripling of the ratio over the effective dipole moment of the sum of 

second- and third-order moments.   

7.2.2. Higher-order dielectrophoretic forces 

As the dielectrophoretic force terms were derived, using the effective moment method 

formulation, from weighted multiplication of effective moments and field gradients of 

corresponding order, statements regarding the effects of particle and electric field geometry 

on first- and higher-order moments are identically valid for first- and higher-order DEP force 

terms. However, based on the measures used in this work for the significance of higher-order 

moments and forces, statements regarding the former may not be equally valid for the latter. 

Multipolar contributions to the dielectrophoretic force are notably larger for non-

spherical particles. The significance of higher-order DEP forces was assessed by deriving 

their contribution to the total dielectrophoretic experienced by particles, as obtained using 

the Maxwell stress tensor method. In axial symmetry and otherwise, it was shown that non-

spherical particles are subject to multipolar forces of notably increased significance 

compared to spheres of similar dimensions. Higher-order contributions up to ~50% were 

observed with non-spherical particles of modest dimensions – compared to those of 

surrounding electrodes. 
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In axial symmetry, second- and third-order terms have been shown to constitute up to ~40% 

and ~50% of the DEP force on ellipsoidal and cylindrical particles positioned on the 

symmetry axis of the disc-plane electrode geometry. Maximum multipolar contribution to the 

DEP force on a spherical particle of similar dimensions has been shown to be lower, but still a 

significant ~20%. At most positions along the symmetry axis of the disc-plane geometry, 

multipolar contributions to the DEP force on spherical and non-spherical particles have been 

shown to be larger than 10%. In contrast, and signifying the importance of the choice of 

electrode structure on the reliability of the dipole approximation, higher-order forces have 

been found to contribute negligibly to the total force on spherical and non-spherical particles 

positioned on the symmetry axis of the point-plane at all but the nearest of positions to the 

point electrode.  

The dipole approximation may be reliable in one version but not another: multipolar 

contributions to the DEP force by an applied electric field on a particle may be 

negligible, while higher order moments of the particle are comparable in value to the 

effective dipole moment. The case of the point-plane geometry is a good example in that it 

reflects on the distinction between the two versions of the dipole approximation: while 

higher-order moments attain significant values, compared to that of the dipole moment, 

corresponding DEP forces are of negligible contribution to the DEP force at almost all 

positions along the symmetry axis of the point-plane configuration, regardless of particle 

geometry. The dipole approximation may be safely applied for calculation of the DEP force, 

while effective moment-based dielectric characterisation based on the dipole approximation 

will be erroneous. 

In axial symmetry: for a given particle shape, it is the dimension along the axis of 

electric field symmetry that determines the significance of higher order contributions 

to the dielectrophoretic force. Changing the aspect ratio of a given non-spherical 

particle alters individual contributions from higher order terms, but the overall 

contribution from multipolar terms remains constant. An interesting observation in the 

axisymmetric case pertains to multipolar forces of equal overall significance for particles of a 

given shape with different aspect ratios. It has been shown that ‘thinning’ ellipsoidal and 

cylindrical particles of a fixed dimension along the axis of electric field symmetry gives rise to 

larger octupolar and smaller quadrupolar contributions to the DEP force in a manner that the 

sum of second- and third-order contributions remains independent of particle aspect ratio 

and specific to the given particle shape. 
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Increased field curvature, not necessarily arising from nearby electrodes, gives rise to 

higher order forces of increased significance. Yet, how particle dimensions compare to 

the scale of field non-uniformity cannot be used as a measure for the significance of 

multipolar forces. In the non-axisymmetric case of the interdigitated electrode geometry, 

higher-order contributions to the DEP force have been found to be largest near the electrode 

array and the insulating lid. Multipolar contributions of ~14%, ~40% and ~45% in the near-

field and ~12%, ~48% and ~35% in the far-field region have been observed for spherical, 

ellipsoidal and brick-shaped particles, respectively. The notable significance of higher-order 

contributions to the DEP force on non-spherical particles is such that even in the mid-field 

region, distant from the field curvatures due to the electrode array and the insulating lid, the 

second-order term constitutes ~20% of the DEP force on ellipsoidal and brick-shaped 

particles.  

Particle size has very significant effect on multipolar contributions to the 

dielectrophoretic force. Doubling the radius of a spherical particle has been shown to give 

rise to notable increase in higher-order contributions to the DEP force. Maximum 

quadrupolar and octupolar contributions of ~35% and ~15%, respectively, have been 

observed to the DEP force on a 2µm sphere up from ~15% and ~5% for a sphere of half the 

radius. 

7.2.3. Relevance of key conclusions 

It has been shown that depending on electric field and particle geometry, the error incurred 

upon invoking the dipole approximation, either for dielectric characterisation or prediction of 

the dielectrophoretic force, can range from very negligible to very significant. The results 

presented in this work are specific to the circumstances of particle and field geometry. In 

other electrode structures and for particles of other geometry, the dipole approximation may 

be found to be more or less reliable. Changing non-geometrical parameters of the electric 

field and subject dielectric(s) may also affect the significance of higher-order 

moments/forces. The importance of this work is that is has provided, for the first times, the 

tools and techniques for accurate determination of higher-order moments and 

dielectrophoretic forces for arbitrary particle and field geometry. The results may be 

regarded as bearing secondary importance as they only present examples, designed to cover 

as broad a range of situation as possible but inevitably specific to the circumstances, of how 

significant higher-order interactions between electric fields and dielectric particles can be 

and how erroneous the commonly invoked dipole approximation can get. 
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Based on the method presented in this work, the significance of higher-order moments can be 

determined using a numerical method that requires weighted integration of the electric 

potential due to the particles for yielding results. In relying on the variable originally given by 

the FEM package from its solution of Poisson’s equation, and not involving error-prone 

numerical differentiation, the method presented in this work is not computationally 

expensive. Extra computational effort will be required to yield the DEP force terms from the 

effective moment method if analytic derivation of the field within an electrode structure is 

not available. Maxwell stress tensor calculation of the total electric field can always be used 

for checking the validity of force term calculations. With the current trend toward micro- and 

nano-electrode structures used for analysis of single particles, large field curvatures at the 

position of particles are expected to become predominant, in which case the method 

presented in this work can be applied for determination of higher-order moments/forces. An 

important conclusion of this work is that ‘by inspection’ judgements regarding the 

significance of higher-order moments – based on how the field varies across particle 

dimensions, for example – can be erroneous. An important motive for conducting the 

research summarised in this work, reflected in the title of the thesis, has been for quantitative 

evaluation to replace qualitative judgements regarding the reliability of the dipole 

approximation. 

Referring to the results, it has been shown that the dipole approximation is particularly 

unreliable for effective moment-based dielectric characterisation of, or predicting the 

dielectrophoretic force on non-spherical particles. Higher-order force terms have been 

shown to constitute up to more than half the total DEP force on ellipsoidal, cylindrical and 

brick-shaped particles, some of them of modest dimensions compared to those of the 

electrodes. The effect of shape-dependent polarisation is even more notably reflected 

through the substantial effect of particle size on the significance of higher-order moments 

and DEP force terms. In axial symmetry, it has been shown that particle dimension along the 

axis of electric field symmetry that determines the reliability of the dipole approximation for 

a given particle shape; changing aspect ratio has been shown to alter individual, but not 

overall contributions to the DEP force on a non-spherical particle of given shape. 

Approximating non-spherical particles with spheres of similar dimensions has been seen to 

incur significant error on values of first- and higher-order moments. If dimensions of the 

model particle are adjusted to equate volumes, the dipole moments have been shown to also 

equate, while higher-order moments have been seen to remain vastly different. Consequently, 

if multipolar analysis of non-spherical particles is performed by approximation with a sphere 

– as has been done in almost all studies of the type to date – significant error may result from 
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the assumption of equal multipole moments for particles of different shapes. The method 

presented in this work poses no restriction on particle geometry and thereby removes the 

need for approximation with simpler shapes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 
161 

7.3. Further work 

In the analysis presented in this work on the significance of higher-order moments and 

dielectrophoretic forces, attention has been focussed on the effects of electric field and 

particle geometry as control parameters or determining factors for the significance of 

multipolar effects. The results have shown that the factors are indeed of notable effect on the 

reliability of the first-order approximation. However, fuller analysis of higher-order 

interactions between electric fields and dielectrics should consider the effects of other field 

and particle characteristics.  

The assumptions made in this work regarding the non-geometric specifications of electric 

fields and particles do not comply with at least a large variety of experimental conditions, and 

at times are unrealistic. Most dielectrophoretic applications involve the use of AC, rather than 

DC, electric fields as the frequency can be used as an easily-accessible control parameter for 

dielectric particle manipulation, particularly for separation purposes. The usefulness of AC 

dielectrophoresis arises from the frequency-dependent nature of dielectric polarisation. As 

mentioned in Chapter Two, the permittivity of real dielectrics is a complex quantity, 

determined by its real permittivity, finite conductivity and frequency. This work has assumed 

DC fields and ideal dielectrics throughout the analysis. Early results using real dielectrics with 

AC fields suggests that frequency does not independently affect the significance of higher-

order moments, but does so through the effect it has on field curvatures at a given particle 

position. One room for further work is to develop such observations and present analysis on 

the significance of higher-order moments for an experimental setting involving AC electric 

fields and conducting dielectrics. 

An important particle characteristic not addressed in this work, and of possible significance 

in the analysis of higher-order moments, is particle orientation within the electric field. The 

assumption of axial symmetry sets a limit on particle orientation, but the method presented 

in Chapter Six does not and can be applied for the various orientations a non-spherical 

particle can exhibit as it moves within an electrode structure. This work assumed ‘upright’ 

positioning of all non-spherical particles, but it would be an enlightening task to observe how 

higher-order moments/forces (possibly) change in significance as a particle changes 

orientation within the electric field.  

The summarised desire of the author for ‘further work’, following from the motivation behind 

undertaking this task, is for the methods presented in the work to be applied in current and 

future settings where discrepancy is observed between experimental results and theoretical 

models based on the first-order approximation.  
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An important, application-oriented extension of this work would be to determine higher-

order torques on non-spherical particles subjected to uniform or non-uniform electric fields. 

The formulation for calculating higher-order torque terms has been developed, which 

requires the determination of higher-order moments of corresponding order – derivable 

from the method presented in this work. The author observed huge discrepancy between 

electro-rotational behaviour of brick-shaped particles with theoretical predictions based on 

the effective dipole moment of an ellipsoid of similar dimensions. The results presented in 

this work provide an indication of why the two sets of results may vastly differ, but correct 

analysis of the particle response would require the calculation of higher-order electric torque 

terms. The status of electro-rotation as a means of dielectric characterisation adds to the 

necessity of accurate analysis accounting for higher-order torque terms.  
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Appendix A 

Tensor Notation 

 

Definition and representation 

The notion of tensors is central to the formulation for higher order interaction between an 

applied electric field and subject dielectric(s). The effective moments representing 

polarisation at dielectric discontinuities are conveniently represented as tensors of ranks 

equal to the order of the effective moment. The 0-th order moment, the charge of a monopole, 

is represented as a tensor of rank 0, i.e. a scalar. The 1-st order effective moment, also called 

the effective dipole moment, is a vector, or a tensor of rank 1.  

Tensors of ranks higher than 1 can be thought of as generalisations of vectors, or vectors 

along multiple dimensions. In the same way that a vector is represented through its 

components along   ,    and   axes (in a Cartesian coordinate system, as an example), a 

rank-n tensor is represented through its components along n-element permutations of axes. 

This work uses superscripts in brackets to denote the ranks of tensors. A tensor      (of rank 

2) can be represented through its components (in a Cartesian coordinate system) as: 

         ̂ ̂      ̂ ̂      ̂ ̂        ̂ ̂                   (A.1) 

As can be understood from equation (A.1), the elements of a rank-2 tensor can be arranged in 

a     matrix: 

      [

         

         

         

]                                     (A.2) 

A unit tensor of rank 2, denoted as     , is one whose representative     matrix is an 

identity matrix with diagonal elements equal to 1 and off-diagonal elements equal to 0. 

The Maxwell stress tensor, which represents the force by an electric field   per unit area of a 

subject dielectric, is a tensor of rank 2 given by: 

           
 

 
                            (A.3) 

where    is the (real part of the) permittivity of the medium in which the subject dielectric 

body sits,      is the unit tensor of rank 2, and    denotes the so-called dyadic product of the 
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electric field vector with itself. The dyadic product, alongside other forms of tensor 

multiplication will be discussed in the next section. 

Tensor products 

Dyadic product of tensors 

One way that a tensor may be produced is through the so-called dyadic product of two or 

more vectors. The notation    with   and   both vectors denotes the dyadic product of two 

vectors. The dyadic product of   vectors produces a tensor of rank  . The components of the 

tensor      resulting from the dyadic product of   vectors   ,   ,… and    are defined as: 

        

   
 ∑ ∑   

    ∑       

 
    

 
          

       
                     (A.4) 

where         

   
 denotes the             component of     ,       

 represents the (  )
  

 

component of vector    and values 1, 2, 3 for   ,   , …,    correspond, in a Cartesian 

coordinate system, to the   ,    and   axes, respectively. 

Multipole moments, including the effective moments which represent polarisation at the 

interface with an electrolyte of a dielectric particle subjected to an electric field, are 

conveniently represented as dyadic products of the displacement vectors that constitute the 

multipoles – as described in Chapter Two (equation 2.11). Tensors produced through the 

dyadic product of two or more vectors, like the effective moments, are called dyadic tensors. It 

is important to note that not all tensors are dyadic. One important example of a non-dyadic 

‘stand-alone’ tensor is the Maxwell stress tensor – defined through equation (A.3).   

Dot product of tensors 

The definition of the dot product has been generalised to allow for the n-th order dot product 

       of two tensors of rank  , resulting in a scalar: 

  
           

   
 ∑ ∑   

    ∑ (  
   

)
       

(  
   

)
         

 
    

 
                         (A.5) 

In equation (A.5), the indices 1, 2 and 3 for   ,   , …,    correspond, in a Cartesian coordinate 

system, to the   ,    and   axes, respectively. 

The n-th order dot product may also be applied to tensors of unequal ranks: the n-th order 

dot product of a tensor of rank   and one of rank       generates – regardless of   – a 

vector whose elements are given by: 
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   ∑ ∑   
    ∑ (  

   
)
       

(  
   

)
       

 
    

 
                         (A.6) 

where indices 1, 2 and 3 for   ,   , …,    or   correspond, in a Cartesian coordinate system, 

to the   ,    and   axes, respectively. 

Through the formulation of the effective moment method, the terms of the dielectrophoretic 

force exerted by a non-uniform electric field on a dielectric particle in suspension are defined 

as the dot product of the effective moment and field gradient of corresponding order: 

    
   

 
 

  
                                   (A.7) 

in which the dot product is operated on     , a dyadic tensor of rank   resulting from the 

dyadic product of   vectors, and      , the n-th order gradient of the electric field, which is a 

tensor of rank      , resulting in a vector that is the n-th order term of the 

dielectrophoretic force. The next section explains how the del     operator can be 

generalised to not only act on scalars to produce a vector, but also operate on tensors of an 

arbitrary rank   to generate a tensor of rank      . 

Gradient of tensors 

The vector   resulting from applying the del operator to a scalar variable  , referred to as the 

gradient of   has elements given by: 

   
 

  
                                           (A.8) 

where values 1,2,3 for m correspond, in a Cartesian coordinate system, to the   ,    and 

  axes, respectively. 

As well as scalars, the del operator can be applied to vectors, and in general to tensors of all 

ranks. Just as the gradient of a scalar (tensor of rank 0) produces a vector (a tensor of rank 1), 

the gradient of a tensor of rank n produces a tensor of rank      . 

The elements of the tensor   
     

 that results from applying the generalised del operator      

on a tensor   
   

 are given by: 

(  
   

)
         

    
(  

   
)
         

                        (A.9) 

where indices 1, 2 and 3 for   ,   , …,   ,      correspond, in a Cartesian coordinate system, 

to the   ,    and   axes, respectively, and the symbol    is an operator defined as: 
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                        (A.10) 
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Appendix B 

Electric field along the symmetry axis of the disc-plane electrode 

geometry 

 

In Chapter Four, the disc-plane electrode geometry shown in figure B.1 is one of the two 

axisymmetric electrode structures studied for examining the significance of higher order 

effective moments and dielectrophoretic forces. An important reason why this electrode 

structure was studied has been the availability of an analytic derivation for the electric field 

along the symmetry axis of the disc-plane electrode geometry, so that the successive 

differentiation required for obtaining the field gradients of first, second and third orders can 

be done analytically without resorting to error-prone numerical differentiation. 

 

Figure B.1. Structure of the disc-plane electrode geometry studied in this work for investigating the significance of 
higher order effective moments and dielectrophoretic forces in axial symmetry. Figure shows structural parameters 
and the voltage applied across the disc and plane electrodes for generation of a non-uniform axially symmetric 
electric field. 

 

The analytic derivation used in this work is that of Sloggett and co-workers using the 

Schwarz-Christoffel mapping method [1, 2]. Figure B.2 shows the structure of the disc-plane 

electrode geometry, as viewed by Sloggett et al, in a cylindrical coordinate system. The disc 

electrode is represented with A, the plane electrode with B, and the image of the disc 

electrode with C. The separation between the two electrodes is d, and a voltage V is applied to 

the disc electrode while the plane electrode is grounded.  
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Figure B.2. Geometry of the disc-plane electrode configuration in a cylindrical coordinate system, as viewed by 
Sloggett et al [1]. The disc electrode is represented with A (   ), the plane electrode with B (   ), and the 
image of the disc electrode with C (    ). Figure copied from [1].  

 

The axisymmetric electric potential must satisfy Laplace’s equation in cylindrical coordinates: 

   

    
 

 

  

  
 

   

                                                      

(B.1) 

The equation has been solved for     and     with the boundary conditions: 

                                                                       (B.2a) 

                                           (B.2b) 

and 

  

  
                                        (B.2c) 

with the last condition resulting from axial symmetry. 

Laplace’s equation has been solved by mapping the electrode arrangement in the     plane 

(also called the   plane), using the conformal mapping method – also known as Schwarz-

Christoffel mapping (SCM), to the     plane (also called the   plane) as shown in figure 

B.3. 
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Figure B.3. Schwarz-Christoffel mapping method applied to the disc-plane electrode geometry for easier solution of 
Laplace’s equation: (a) the   plane,       , and (b) the   plane,       . Figure copied from [1]. 

 

The mapping of the upper half of the complex   plane          to the upper half of the 

complex   plane          is defined by: 

                                                (B.3) 

where      . The electrode system ABCDE in the   plane maps to the points A’B’C’D’E’ on 

the real axis of the   plane (figure B.3(b)). In the   plane, the upper half-plane problem is 

to solve Laplace’s equation subject to boundary conditions: 

                                                                 (B.4a) 

                                                     (B.4b) 

and, by standard arguments [3], the solution is: 
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                       (B.5) 

or: 

       
 

 
      

 
 

 

 
                                                         (B.6) 
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Now the electric field components are given by evaluating       and       as follows. By 

defining           , we have: 
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)                       (B.7b) 

Since              , we have: 
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)                   (B.8b) 

In the case of points on the electrodes we have    , from which it follows that    vanishes, 

as expected, and: 

   
 

      
                         (B.9) 

The results can now be interpreted in terms of the original       coordinate system. For 

points on the underside of the upper electrode and near to its edge B, we may write: 

                                 (B.10) 

and: 

                          (B.11) 

where   and   are real and positive and   measures distance from the edge of the electrode. 

Substituting in equation (B.3) and expanding the    term, we find that, for small   and  ,  

                             (B.12) 

And, from equation (B.9): 

   
 

 
                                      (B.13) 

This equation describes the singular behaviour of    near the edge of a disc of large radius. 

Points which are between the electrodes and remote from the edge correspond to   near 0 in 

figure B.3(b). For | | sufficiently small, equation (B.3) gives: 
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)                  (B.14) 
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and equations (B.8a) and (B.8b) therefore give: 
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                                    (B.15a)            
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)             (B.15b) 

The approximations are valid for when the disc electrode radius is not smaller than, as a rule 

of thumb, 5% of the plane electrode radius. The equations are applicable to the cases studied 

in this work as the smallest of examined disc electrode radii is 0.5µm, which is 10% the 

radius of the plane electrode (50µm). To obtain the electric field magnitude along the 

symmetry axis of the disc plane electrode geometry at a point of height   above the plane 

electrode,   must be set to 0 in equation (B.15b): 
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)                    (B.16) 

Substituting       in equation (B.16) gives: 
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)                    (B.17) 

Which is the equation used for obtaining the field magnitude along the symmetry axis of the 

disc-plane geometry in Chapter Four (equation 4.6) and for obtaining the field gradients by 

analytical differentiation of the equation in MATLAB. 
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Appendix C 

Electric field along the symmetry axis of the point-plane electrode 

geometry 

 

The point-plane electrode geometry in figure C.1 is one of the two electrode structures 

studied in this work (Chapters Four and Five) for the analysis of higher order effective 

moments and dielectrophoretic forces in axial symmetry. An important reason for choosing 

this electrode geometry has been the availability of an analytic derivation for the electric field 

along the symmetry axis of the point-plane configuration, so that resort need not be made to 

numerical means of differentiation which are highly susceptible to error, particularly given 

the requirement for successive differentiation to obtain higher order dielectrophoretic force 

terms. 

 

 

Figure C.1. The structure of the point-plane electrode geometry studied in this work for the analysis of higher order 
effective moments and dielectrophoretic forces in axial symmetry. Figure shows the structural parameters and the 
voltage applied across the point and plane electrodes for generation of a non-uniform electric field along the axis of 
field symmetry. 

 

The analytic derivation used in this work is based on a hyperbolic approximation to the point 

electrode [1]. Other geometric approximations have also been incorporated for obtaining the 

electric field within a point-plane electrode configuration; these include a parabolic 

approximation [2] which has the issue of actual points not fitting the shape of a paraboloid, 

unless the radius of the point electrode is rather large, and the approximation of the point 



   

 
173 

electrode with a half sphere on a truncated cone [3]. The latter approximation is likely to fit 

actual point electrode shapes better, since two independent parameters, namely the point 

electrode radius and the shaft angle, are involved. However, it does not provide a 

straightforward formulation for the electric field within the electrode geometry. The 

advantage of the hyperbolic approximation is that it is simple and has been validated using 

experimental results [1].  

Figure B.2 shows a representation of the point-plane electrode configuration, alongside the 

parameters involved for a hyperbolic approximation to the point electrode. Using this 

approximation, the point electrode is generated by hyperbola of equations: 

                               (C.1a) 

                              (C.1b) 

rotating around the   axis.  

 

 

Figure C.2. Representation of the point-plane electrode configuration when a hyperbolic approximation is used for 
the shape of the point electrode. Figure copied from [1]. 

 

Equations (C.1) define two orthogonal confocal sets of ellipses and hyperbolas. Since we 

consider the hyperbolas only,   must be regarded as the parameter defining the hyperbola. 

Particular values of   are: 
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  is the parameter defining a particular point on the hyperbola defined by  .  

It has been shown [4] that if two of the hyperbolas are equipotential surfaces, all of the 

hyperbolas of the set are also equipotentials and, furthermore, that if the origin of the 

potential is taken at the plane          , the potential      of the hyperbola of parameter 

  is: 

                                          (C.2) 

where   is a constant depending on the applied voltage. The flux lines of the field generate a 

family of ellipsoids of revolution orthogonal to the hyperboloids, and the values of the electric 

field at point       is: 

       
 

                                                (C.3) 

The constant   is calculated as follows: under the assumption that the point electrode is 

sharp, the corresponding value of   is close to    . If   is the potential of the point electrode, 

we have            with    , so that, using (C.2): 
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or: 
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                            (C.4b) 

Using equation (C.4), equation (C.2) becomes: 

      
              

       
                                       (C.5) 

To obtain the field at any point   along the symmetry axis of the point-plane electrode 

geometry, we let   be zero in equation (C.3), which now reads: 

       
 

      
                         (C.6) 

and, since         if    , 

     
  

                                          (C.7) 
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We now consider figure C.2. The abscissa of the point electrode apex   is: 

                 (  
  

 
)                     (C.8) 

And the distance   between point   and the point electrode apex is: 

        (  
  

 
)                                    (C.9) 

Therefore: 

     
  

                     
                        (C.10) 

Expanding the denominator to the second power in  ,      reduces to: 

     
  

                                                 (C.11) 

Now it can be seen, by expanding the equations of the hyperbola and that of a circle of radius 

  around the common apex            and identifying both expansions, that the radius 

of curvature of the hyperbola is: 
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  )                                 (C.12) 

On the other hand, some algebraic manipulation shows that: 
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    )}                       (C.13) 

where    is the radius of the point electrode and   is a numerical coefficient much smaller 

than unity. Therefore, to a very good approximation, even if the point electrode is not very 

sharp: 

     
  

               
                  (C.14) 

with: 
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                            (C.15) 

As from figure C.2,     
  

 
  , equation (C.14) can be re-written to give the electric field 

magnitude at a point of height   above the plane electrode along the symmetry axis of the 

point-plane electrode geometry as: 



   

 
176 

     
  

                       
                (C.16) 

where   is the separation between point and plane electrodes. Equation (C.16) is the analytic 

expression used in this work (equation 4.7) for derivation of the electric field along the 

symmetry axis of the point-plane electrode geometry. Electric field gradients of first, second 

and third orders have been derived by analytic differentiation of equation (C.16) in MATLAB. 
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Appendix D 

Electric field within the interdigitated electrode geometry 

 

In Chapter Six, the interdigitated electrode geometry has been studied for analysing the 

significance of higher order effective moments and dielectrophoretic forces. An important 

reason for the choice of electrode geometry, alongside its widespread use in DEP applications 

– particularly for particle separation, is the availability of an analytical derivation for the 

electric field vector within the electrode structure, so that resort need not be made to error-

prone numerical means of differentiation for obtaining the electric field and its gradient to 

derive DEP force terms. This appendix presents the analytical derivation used in this work for 

the electric field vector inside the interdigitated electrode geometry. Electric field gradients 

have been calculated by analytic differentiation in MATLAB of the expression that shall be 

presented in this appendix. 

The Schwarz-Christoffel mapping method 

The analytic derivation of the electric field within an interdigitated electrode configuration, 

consisting – as shown in Chapter Six – of an interdigitated array of electrodes beneath a 

channel capped by an insulating lid – is based on the Schwarz-Christoffel (SCM; also known as 

conformal) mapping method. The SCM method maps the upper half of a complex plane (T-

plane) into the interior of a given polygon in another complex plane (Z-plane). The Z-plane 

represents the real system in our case. Complex numbers in this plane represent vectors in 

the real system, with the real component representing the horizontal direction (x-axis) and 

the imaginary component the vertical direction (y-axis). Detailed mathematical description of 

the SCM method can be found in [1]. 

For the electric field analysis, a non-uniform two-dimensional electric field polygonal region 

is transformed into an equivalent rectangular region (a parallel plate capacitor), where the 

electric field distribution is uniform, as follows. 

(a) Select a basic cell for the physical two-dimensional geometry using symmetrical axes 

in the physical plane (Z-plane). Determine the boundary conditions (i.e., Neumann or 

Dirichlet condition) along each boundary of the cell. 

(b) Apply SCM method to map the basic cell from the Z-plane to the upper half of an 

auxiliary plane (T-plane). 
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(c) Apply a second SCM method to transform the upper half of the T-plane into a closed 

parallel plate capacitor region in the model plane (W-plane). 

The original non-uniform field problem in the Z-plane can then be easily solved in the W-

plane. The details of the transformation procedure along with the analysis of the electric 

field are described in the following sections 

Boundary conditions for DEP electrode arrays 

(a) Before performing the electric field analysis, the boundary conditions in the 

corresponding system must be determined. 

(b) Since the electrodes transform the upper half of the T-plane into a closed parallel 

plate capacitor region in the model plane (W-plane). 

(c) The electrodes are much thinner than the electrode width and the gap, so that the 

electrodes can be represented by a thin section of the bottom boundary at a fixed 

potential. Since the normal component of the total current passing through the 

electrolyte-lid and electrolyte-substrate interfaces must be continuous and the lid and 

the substrate are made from glass, which has a much smaller permittivity and 

conductivity than the electrolyte _water_ in the channel, the normal component of the 

electric field in the electrolyte at the interface is negligible compared to that of the 

glass [2]. Therefore, we assume that Neumann boundary condition (insulating) holds 

for the potential at the electrolyte-lid and electrolyte-substrate interfaces, 
  ̃

  
  , 

where n is the normal to the boundary). The maximum error due to the assumption of 

Neumann boundary condition at the water-glass interface is found to be less than 1% 

of the applied voltage which occurs at the top lid. 

The SCM method allows analysis of systems with or without an insulating lid. Therefore 

in order to demonstrate the effect of the lid on the electric field distribution in the DEP 

array, we first solve the electric field distribution with complete boundary conditions 

including an insulating lid. Secondly, the same system is solved without the lid, extending 

the upper surface to infinity. The resulting analytical solutions of the electric field are 

compared with numerical simulations. The effect of the lid is discussed for the near and 

far field regions, equivalent to a shallow and deep channel. The dielectrophoretic force is 

then calculated from the field solutions and compared with Fourier series analytical 

solutions. 
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Figure D.1. Schematic of a 2D section of the DEP electrode showing the potentials. The vertical lines mark the period 
over which the system repeats. The rectangle ABCDE is the basic cell for analysis. Also shown is the potential  , the 
potential phasor  ̃, and the value of the real part of the potential phasor    on each electrode. The imaginary part 
of the potential phasor    is zero everywhere. (b) Diagram showing three complex planes used for Schwarz-
Christoffel mapping (SCM) taking into account the lid. (c) Diagram showing the three complex planes used for the 
Schwarz-Christoffel mapping (SCM) procedure for array without the lid. Figure copied from [3]. 

 

The values for the real and imaginary parts of the potential phasor at each electrode, together 

with the boundary conditions are shown in figure D.2(a). Since the two signals of phases 0° 

and 180° are alternately connected to the electrodes, the boundary conditions are equivalent 

to two in-phase signals with opposite sign and the imaginary part of the potential phasor is 

zero (    ) and only the real part    needs to be solved. From symmetry, the basic cell 

(ABCDE) is chosen for the electric field analysis. For a detailed description of the boundary 

conditions in the DEP array, see [2]. Figure D.2(b) shows the three complex planes used for 
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the mapping procedure. The selected cell ABCDE is rotated 90° and set in the Z-plane with the 

boundary conditions for    as shown: 
   

  
  , along the insulating walls AE and CD and the 

boundary for the axis of even symmetry (BC). Dirichlet boundary conditions define the fixed 

potential      along the electrode (AB) and the boundary for the axis of odd symmetry, 

     (DE). The complex coordinates for each point in the physical plane (according to the 

geometrical parameters of the system) are        ,            ,             

 ,     , and     . 

The SCM procedure 

The interior of the polygon ABCDE in the Z-plane is mapped into the upper half of the T-plane 

using the SCM method. The polygon ABCDE is opened at point F and the boundaries of the 

polygon mapped to the real axis of the T-plane. The coordinates of the corresponding points 

   to    in the T-plane are    to   , respectively. The point   is mapped to positive and 

negative infinity. The four interior angles of polygon ABCDE at points E, B, C, D are all    . 

The SCM integral from T-plane to Z-plane is given by: 

    ∫                                                             (D.1) 

where          refers to the complex coordinate of any point in the interior of polygon 

ABCDE in the Z-plane.          refers to the complex coordinate of any point in the upper 

half of the T-plane. 

Since the SCM method allows up to three points to be arbitrarily chosen along the real axis of 

the T-plane, we fix the coordinates of     ,      and        as shown in figure D.2(b). 

For              , the solution of equation (D.1) is an elliptic integral [3]: 

     ( ̃  
    

)       ∫
    

(     
 )(     

    
 )

   
 

                       (D.2) 

where  ( ̃  
    

) is the elliptic integral of the first kind and    
 is the modulus of the elliptic 

function.  

Equation (D.2) links the T-plane to the Z-plane. The values of the coefficients    and    can be 

solved by a mapping relationship between the coordinates of the corresponding points in the 

two planes [3]: 

           
 

      
 

   

  (   
 )

                     (D.3) 
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where      
  is the complete elliptic integral of the first kind and    

  √(     

 ). The 

expression for    also provides the relationship between the complete elliptic integral and 

the geometrical parameters of the system: 

      

 (   
 )

 
  

   
                       (D.4) 

The value of the modulus    
 can be calculated by inputting arbitrary geometrical parameters 

using Hilberg’s approximation [4]. 

The inverse function of equation (D.2) enables us to express T in terms of Z: 

  
       (

 

  
    )

        (
 

  
    )

                        (D.5) 

where sn and cn are the Jacobian elliptic functions. 

The second SCM is used to transform the upper half of the T-plane into a rectangle in the 

model plane (W-plane). The electric field is uniformly distributed in the interior of the 

rectangle, due to the restriction from the transformed boundaries in the W-plane. The 

corresponding points are        
,       

     
,       

, and     , where    
 

and    
 are the size of the rectangle along the real and imaginary axis, respectively. Similarly, 

the transformation from the T-plane to the W-plane is given by: 

    ∫                                                           (D.6) 

It should be noted that, compared to equation (D.1), in this transformation point A replaces C 

to become an angle of the rectangle.    

Analytical electric field solution in the interdigitated electrode geometry 

Since Laplace’s equation remains invariant under conformal mapping, the potential gradients 

in the physical plane,    , and the model plane,    , are related by: 

            ̅̅ ̅̅ ̅̅ ̅     
  ̅̅ ̅̅ ̅

  
                          (D.7) 

where      ̅̅ ̅̅ ̅̅ ̅ is the conjugate of the derivative of     , which is the linking transformation 

equation between the Z- and W-planes. Using this relationship and combining equation (D.1) 

and (D.7), the non-uniform electric field distribution in the Z-plane,    
, can be derived as: 
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                    (D.8) 

Where    
 and    

 are the potentials in the Z- and W-planes, respectively, and V is the 

potential difference between the electrode AB and the axis of odd symmetry, DE. 

Equation (D.8) is the analytical solution for the electric field in the basic cell for the 

interdigitated DEP array. The features of the electric field distribution that are governed by 

the geometry of the device are clearly identified. The electric field magnitude approaches 

zero at point C and infinity at point A, the edge of the electrode. Substituting equation (D.5) 

into (D.8), we obtain the electric field expression as a function of position in the interior of 

polygon ABCDE in the Z-plane: 
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                (D.9) 

Equation (D.9) has been used as the basis for obtaining the electric field magnitude and 

gradients at near-, mid- and far-field regions of the interdigitated electrode geometry in 

Chapter Six.  
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