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WHEN IS A STOKES LINE NOT A STOKES LINE? 

by Philip John Langman 

During the course of a Stokes phenomenon, an asymptotic expansion can 
change its form as a further series, prefactored by an exponentially small 
term and a Stokes multiplier, appears in the representation. The initially 
exponentially small contribution may nevertheless grow to dominate the be­
haviour for other values of the asymptotic or associated parameters. 

We introduce the concept of a higer order Stokes phenomenon, at which 
a Stokes multiplier itself can change value. We show that the higher order 
Stokes phenomenon can be used to explain the apparent sudden birth of 
Stokes lines at regular points, why some Stokes lines are irrelevant to a given 
problem and why it is indespensible to the proper derivation of expansions 
that involve three or more possible asymptotic contributions. We provide 
an example of how the higher order Stokes phenomenon can have important 
effects on the large time behaviour of linear partial differential equations. 

Subsequently we apply these techniques to Burgers equation, a non-linear 
partial differential equation developed to model turbulent fluId flow. We find 
that the higher order Stokes phenomenon plays a major, yet very subtle role 
in the smoothed shock wave formation of this equation. 
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Chapter 1 

Introduction 

The question posed by the title of this thesis, "When is a Stokes line not a Stokes 

line?", requires a mixture of accepted asymptotic techniques and subtle new ex­

tensions of these ideas in order to be answered. In doing so, this thesis intends 

to highlight the importance of the seemingly insignificant: the small exponential 

term. 

Poincare's initial definition of an asymptotic series is well known to have ne­

glected terms of this nature. This was not necessarily a bad thing; an approxima­

tion with an exponentially small error term is not always necessary. We only really 

see how exponentially small terms being forgotten in an asymptotic approximation 

can be a mistake when we consider how a Poincare asymptotic approximation can­

not account for what is known as the Stokes phenomenon. This is characterised 

by the sudden introduction or removal of asymptotic terms in an expansion pref­

actored by a small exponential as the asymptotic parameter is varied. 

Once it was acknowledged that these 'subdominant' exponentials existed, al­

ternative approaches to asymptotics were introduced, where small exponentials 

were explicitly included in an approximation. The most recent and most accu­

rate method for handling these small exponentials (and the Stokes phenomenon) 

is called hyperasymptotics, developed by Berry and Howls. Not only does hy-
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perasymptotics give exponential accuracy over a Poincare approximation, it also 

culminates in an exact remainder term. 

It is the hyperasymptotic techniques developed by, in particular, Berry & Howls 

and Olde Daalhuis that leads to the main result of this thesis, which we have called 

the Higher Order Stokes Phenomenon. This occurs across a Higher Order Stokes 

curve, and changes the potential for a regular Stokes phenomenon to occur. This 

is a subtle effect, and we show that as a result, initially sub-subdominant terms 

(those which might normally be neglected in an asymptotic approximation) can 

grow to dominate the behaviour of some asymptotic expansions, the neglect of 

which would lead to incorrect assumptions about the long-term behaviour. This 

is a general result which is not only confined to the examples we have chosen. 

The layout of the thesis is as follows. 

Chapter 2 will give a brief historical summary of asymptotic analysis. We 

will begin by looking at infinite series. We will summarise Dingle's philosophy 

regarding divergent series, and via a theorem due to Darboux we will see that in 

general, the late terms of a divergent series have a general form of a factorial over a 

power. Knowledge of the form of the late terms leads to the development of optimal 

truncation, which allows the truncation point of an asymptotic series to vary. This 

provides an advantage over Poincare's asymptotic series which has strictly fixed 

truncation points. By allowing the truncation point to vary, exponential accuracy 

can be achieved over a Poincare asymptotic series truncation. We define the Stokes 

phenomenon and explore its relevance through the Airy function Ai(z). We show 

how the explicit inclusion of exponential terms in an asymptotic approximation 

("exponential asymptotics") can make calculations simpler, and we compare this 

approach with matching techniques. We show how a "ladder" of exponentials is 

necessary to improve the accuracy of an approximate solution to boundary layer 

ODEs, which often leave one boundary condition only approximately satisfied. 

We review hyperasymptotics, and introduce the notion of the Borel plane; a vital 

technique used throughout the rest of the thesis. 
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Chapter 3 explains the higher order Stokes phenomenon, both in a general case 

and via a PDE example. This chapter contains new results. 

Chapter 4 extends the work of the previous chapter to a nonlinear PDE, and 

we find that the higher order Stokes phenomenon contributes to some very subtle 

behaviour. We show how it has a real effect on the behaviour of a nonlinear PDE. 

Chapter 5 offers some suggestions for future work, and reviews the results of 

the thesis. 
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Chapter 2 

Asymptotics and Small 

Exponentials 

This thesis is primarily interested in exploring the role of exponentially small terms 

in asymptotic analysis, particularly when applied to differential equations (both 

linear and non-linear). This chapter is intended to introduce the necessary topics 

within the broad field of asymptotic analysis to the reader. We shall also dis­

cuss briefly the historical development of the tools which we will be implementing 

throughout the work within this thesis. 

Some new ideas to improve the accuracy of solutions of boundary layer ODEs 

are also included in this chapter. 

2.1 Infinite Series 

The history of divergent series has been fraught with antagonism amongst mathe­

maticians. Hardy [1] wrote an account of the "fall and rise" of divergent series in 

analysis. He says that there was a disinclination amongst mathematicians to give 

formal definitions, combined with an inadequate theory of complex variables and 

analytic continuation at the time. Perhaps the most famous quote on this subject 
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is attributed to Abel (1828): "The divergent series are the intention of the devil, 

and it is a shame to base on them any demonstration whatsoever". Of course, 

Abel's view has since been shown to have been somewhat blinkered, as divergent 

series now have many applications in analysis. 

Let an be an infinite sequence aI, a2, a3, ... ,an, . ... Then 
00 

Sn = Lan 
n=l 

(2.1) 

is called an infinite series. The task of computing the sum of such a series presents 

many problems. We cannot add up all the infinitely many terms, so instead we 

sum an ever increasing number of terms; a new sequence called the partial sum of 

the original series. The expression 

N 

lim Sn = ""' an, N = 1,2,3, ... n~oo L..-t (2.2) 
n=l 

is the Nth partial sum of the series (2.1) [2]. 

If lim Sn exists and is finite, the series an is said to converge to this limit (an 

is a convergent series). If limSn is infinite, or does not exist, then the series an is 

said to diverge (an is a divergent series). 

Historically, it seems mathematicians disliked divergent series due to the prob­

lems in assigning meaningful values to them. The sum of a convergent series can 

be computed to arbitrarily high accuracy (subject to the necessary effort and suffi­

cient computing power), but the approximation of a divergent series is restricted to 

only a finite number of terms in the series, before the series tends to its divergent 

limit. 

In 1849, G.G. Stokes [3] wrote a paper in which he implied that infinite series 

that do not converge are useful as "symbolic" representations of functions (an 

idea later embraced by Dingle [4]). He suggested that a divergent series could be 

employed as an abbreviated way of expressing the limit of a convergent series. The 

problem lay in how to correctly interpret divergent series expansions of functions. 

In 1886, Poincare [5] was the first to wrote down his definition for an asymptotic 

series: 
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Let f (z) be a function oj the real or complex variable z 7 and I: asz-s be a 

Jormal power series (convergent or divergent). Then, iJ 

00 

J(z) rv L asz- s (2.3) 
s=O 

Jor Izl --'> 00, then Jor every fixed integer n 2: 0 the remainder term 

n-l 

Rn(z) = J(z) - L asz-s (2.4) 
s=o 

is O(z-n) as Izl --'> 00 in some sector S. 

The series I:asz-s is said to be a Poincare asymptotic expansion of J(z). If 

the series I: asz-s converges, then it is an asymptotic expansion of its sum [6]. 

Poincare's definition allows basic formal manipulations. Addition, subtraction, 

multiplication and division of Poincare expansions of functions can be carried out 

as if these procedures were being performed on the parental functional represen­

tations, with the asymptotic nature of the result itself being assured [6]. Term­

by-term integration of expansions is allowed (subject to J being an integrable 

function), the result being Poincare asymptotic to the integrated function (see [6] 

for further detail). Differentiation may not always be possible. For example [6], if 

(x real and positive), then since 

o 0 
J(x) rv 0 + - + - + . .. as x --'> 00, 

X x 2 

(2.5) 

(2.6) 

(for reasons that we shall see shortly, see equation 2.21). But f'(x) == cos (eX) -

eX sin (eX) oscillates as x --'> 00, and so J(x) cannot be written in the form of (2.4). 

Differentiation is legitimate when l' (x) is continuous and its asymptotic expansion 

exists. Series reversion (or "inversion") is possible as well. For examples, see [6], 

[7] or [8]. 

A Poincare expansion guarantees a result accurate in magnitude to the order of 

the first term neglected, ie. the (n + 1 )th term. However, (2.4) only states that the 
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remainder is algebraically decreasing in 11/ zI. It gives no information about the 

optimal point numerically to truncate the series, when IRn(z)1 is at a minimum. 

Only if the behaviour of the aT in (2.3) is known is it possible to determine an 

optimal truncation point N. 

Berry [9] illustrated this idea. Consider an infinite series expansion which takes 

the form of a factorial-over-a-power; that is, 

I I 
~ K(r -I)! 

aT ~ IxIT ' K > O. (2.7) 

Note that we will use the "~" symbol whenever an approximation has been made 

in the formal analysis. We have 

laT+ll r 
--~-, 

laTI Ixl 
(2.8) 

thus the minimum term is r = N ~ Ixl. It is expected that the minimum remainder 

term will be at this point also. Therefore 

I I~K(lxl-l)! 
aN Ixllxl 

Stirling's formula for a factorial [4] is 

which, upon substitution into (2.9) gives 

e- 1xl 
laNI ~ ,.,fj;;K-1 • 

IX21 

(2.9) 

(2.10) 

(2.11) 

Poincare asymptotics fixes N to be a constant for all z. If the above series were 

Poincare asymptotic to a function, stopping at the first term would give an error 

of O(I/lzl). We see that by varying N with Izl to find the least term, we can 

obtain exponential accuracy for this series over the lowest order result. This idea 

was termed "superasymptotics" by Berry [9]. 

Figure 2.1 shows how terms in a power-over-factorial type series increase ini­

tially, before rapidly converging to a point. Terms in a divergent factorial-over­

power series typically decrease initially before reaching a minimum and swiftly 

increasing, as shown in Figure 2.2. 

7 



25 

20 • • 
15 • 

Y • 10 • 
5 • • 
0 • • •• 

0 5 10 
n 

Figure 2.1: A plot of the terms y = ~~ with x = 5. Notice that in this power-over­

factorial series the size of the terms initially increase, before converging to as n becomes 

larger. 
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Y 1 • • 
0.5 • • • .-0 • • ••• 0 2 4 6 8 10 12 

n 

Figure 2.2: A plot of the terms y = ;l with x = 5. This factorial-over-power series is 

divergent, yet initially the size of the terms is decreasing. 
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The specific form of the series (2.7) allowed us to specify N above. This 

factorial-over-power form of series may appear a very particular choice, but in fact 

series of this type arose in a theorem due to Darboux [4]. It is necessary to know 

the form of the general term in an asymptotic expansion not only to be able to 

gain greater accuracy, but also to guarantee that an expansion is of the expected 

asymptotic form [4]. The Darboux theorem relates the behaviour of terms in a 

series to the singularity structure of the functions they represent, and shows how 

the late terms of a series diverge. 

Suppose ¢U) converges within a circle, and that it can be expanded within a 

Taylor series 2:go ar r. Let Ii be a pole or branch point on or outside this circle 

of convergence. In the vicinity of this point we can write 

(2.12) 

where Pi is a positive integer for a pole and fractional (positive or negative) for a 

branch point, and where ¢U) is expansible as a Taylor series 

(2.13) 

Now, the coefficient of r in (Ii - f)-Pi is (r + Pi - l)!jr!(Pi - l)!I;+Pi so the 

contribution to ar from the singularity at I = Ii is 

(2.14) 

an expansion suitable for late coefficients r » Pi. For such large r the factor r 
in the denominator ensures dominant contributions from those Ii with smallest 

modulus, ie. from singularities lying on the circle of convergence. 

The Darboux theorem shows how late terms in a Taylor series for a given 

function will depend on the behaviour of that function in the neighbourhood of 

the singularity closest to the origin of expansion. We also find that the late terms 

of any asymptotic power series can be expressed in a standard factorial-over-power 

form. 
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Borel (1899) [4] wrote that the sum of a divergent series could be defined as 

(2.15) 

provided the summation on the right converges for some range of u/x (it can then 

be extended by analytic continuation) and the integral converges. This is known as 

Borel summation. Dingle wanted to find a general procedure for the termination 

of an asymptotic series. He developed what he called "terminants" using Borel 

summation techniques. We have seen that late terms of asymptotic series behave 

like factorial-over-power, so let 

(2.16) 

The series on the RHS is assumed to be convergent, and the sum to infinity of a 

geometric progression is easily found as 

a 
1-r 

(2.17) 

where a is the initial term and r is the ratio between terms. Therefore we have a 

unique termination to the asymptotic series. Dingle showed that we can express a 

large class of functions as "first N terms of asymptotic expansion + Nth term x 

terminant". The advantage of this is that the terminants take a universal form of 

either 

(2.18) 

or 

(2.19) 

2.2 The Stokes Phenomenon 

For a given function J(z) in a region S, there is at most one expansion of the form 

al a2 
J(z) rv ao + - + 2" + ... (Izl ----+ 00). 

z z 
(2.20) 
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However, the converse of this is false [6]. Consider for example, the asymptotic 

expansion of e-z with Re(z) > O. From the definition (2.4) and the fact that 

zne- Z --+ 0 as Izl --+ 00, e- Z has a Poincare expansion 

-Z 0 0 
e rv 0 + - + 2" + ... , z --+ +00, 

z z 
(2.21 ) 

the coefficients of each term being identically zero. Hence an arbitrary constant 

multiple of e- Z (or e+z if Re(z) < 0) may be added to the function I(z) without 

altering the Poincare asymptotic expansion (2.20). Therefore an isolated Poincare 

expansion can represent infinitely many functions. 

Asymptotic representations which are the sum of several uniquely determined 

formal series, each multiplied by small exponential prefactors switching in domi­

nance depending on the region in question are, by definition, not Poincare asymp­

totic. A truncated and bounded Poincare representation of this might discard 

the series prefixed by the small exponentials, leading to misinterpretations in the 

Poincare asymptotics of a function if this representation is extended into a do­

main where the initially discarded and retained exponentials swap dominance. 

The Poincare definition therefore introduces ambiguities by failing to represent a 

function outside a sector of the complex plane. Poincare's failure to capture small 

exponential terms in his asymptotic series is highlighted by what is known as the 

Stokes phenomenon [4]. 

A function I can have different asymptotic representations in different sectors 

of the complex plane. As these sectors are crossed, an asymptotic expansion can 

change discontinuously as a parameter is varied. In this way, exponentially small 

terms may be introduced into, or removed from, the expansion in question. This 

change happens across a Stokes line, where the imaginary parts of two contributing 

asymptotic terms are equal. Let Ii (x), Ij (x) be the asymptotic contributions in 

question. Then, a Stokes line is defined as 

Si>j = {x E C : Ij(x) - Ii(x) > O}. (2.22) 

On this line, one exponential is maximally dominant over another. (Lines where 
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Figure 2.3: A plot of the Airy function Ai(z). 

the exponentials are equal in size are known as anti-Stokes lines.) 

A well studied example of a Stokes phenomenon taking place is in the Airy 

function Ai(z) [4], represented by the integral 

Ai(z) = ~ r+ oo 
ei (zHt

3 /3)dt. 
27f i-oo (2.23) 

From the plot shown in Figure 2.3, we can see that the Airy function Ai(z) 

oscillates for z < 0 and decays quickly for z > O. 

The integral in (2.23) has stationary points at t = ±iviz. By making the 

substitution t = iy'z + x into the exponent of the integrand, (2.23) becomes 

Thus, as Izl --+ 00, the lowest order approximation to Ai(z) is 

e-~Z3/2 

Ai(z) ~ -l=---

2Z4 V7F 

(2.24) 

(2.25) 

If the eiz3
/ 3 term in (2.24) is not neglected, the asymptotic form of Ai(z) for large, 

real z is 

(2.26) 

12 



Im(Ai(z» 

0.2 

-0. 

-0.8 

/ 
Ai(z) 

0.6 0.8 
\ 

P · /\ 
Olllcare-type I 

approx. 
I 

Re(Ai(z» 

asymptotics approx . 

• 8=0 

o 8 =Jt 

Figure 2.4: A comparison of the Poincare-type asymptotic expansion (2.25) of the Airy 

function Ai(z) in the upper half-plane (the dashed line) and the lowest order exponential 

asymptotics expansion (2.26) (the thick line). The exact Airy function is also shown as 

the thin black line. We have taken JzJ = V3. As we walk around the complex plane in 

an anti-clockwise sense, the agreement between the approximations and the exact value 

of the Airy function begins well but becomes less accurate as e -> Jr. 
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Im(z) 

e = arg z = 0 

Re(z) 

Figure 2.5: The Stokes lines of the Airy function Ai(z) in the upper-half z-plane. 

where 

(2.27) 

Figure 2.4 [11] shows a comparison between the numerical results obtained 

from expansions (2.25) and (2.26) (using the terms generated by r = 0 and r = 1), 

and the exact value of the Airy function at various points in the complex plane. 

We see that expansion (2.26) agrees far better with the exact Airy function than 

the Poincare-type expansion (2.25), though both are poor as arg z ----7 1f. 

Consider now what happens when z -+ -Izl (that is, purely real, negative z). 

We find that here the Airy function may be approximated by 

Since we may write 
eiz _ e-iz 

sinz= ----
2i 

14 
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Im(Ai(z)) 

0.2 

-f-r-~_-'-"'-~-~,...---"!'-Yr- Re(Ai(z)) 
0.6 0.8 

-0. Ai(z) 

Figure 2.6: A comparison between the exact values of the Airy function Ai(z), and the 

"composite" asymptotic approximation including the Stokes phenomenon (shown in bold). 

We can observe the Stokes phenomenon taking place as the 'jump' visible in the bold line. 

There is considerable improvement in the accuracy of the approximation, except in the 

locality of the Stokes phenomenon. 

we see that an extra exponential term has been introduced as we move from the 

positive real z-axis to the negative real z-axis in the complex plane. Further inves­

tigation reveals a Stokes line at e = 2; (Figure 2.5). As this line is crossed an new 

exponential term is 'born', hence the form of expansion (2.28). The discrepancies 

shown in Figure 2.4 between the real values of the Airy function and the approxi­

mations to it can be explained by this. Neither approximation (2.25) or (2.26) has 

more than one exponential term, so we could not have reproduced a good approx­

imation to Ai(z) throughout the complex plane. Figure 2.6 shows the results of 

a numerical comparison between the exact Airy function and the correct approx­

imations throughout the upper-half z-plane. The accuracy of the approximations 

15 



are vastly improved. Figure 2.6 also shows the Stokes discontinuity, represented 

by the small 'jump' in the bold line. 

The discontinuous jump between asymptotic representations which is the sig­

nature of a Stokes phenomenon can be misinterpreted; that is, sometimes we think 

we see a Stokes phenomenon when in fact there is none. It is important that we 

consider the entire asymptotic expansion of a function in a given sector. An ex­

ample given in Ablowitz and Fokas [12] highlights this fact. 

They consider the asymptotic behaviour of 

I(z) = sinh z-l, z -) 0, (2.30) 

for complex z. Since we have 

(2.31 ) 

and letting z = reiB , then the dominant behaviour in each sector is 

I(z) 
ez - 1 

JargzJ < 7r/2, 
2 

, (2.32) 

I(z) 
e- z - 1 

7r/2 < argz < 37r/2. ---
2 

(2.33) 

The authors conclude that there is a discontinuous change in the asymptotic ex­

pansion of sinh Z-l across the ray e = 7r /2, which they say must be a Stokes line. 

This can be seen to be incorrect when we realise that, in fact, there is no change at 

all in the asymptotic expansions across this ray. The only reason this appears to 

be so from equations (2.32) and (2.33) is because in each of the respective sectors 

of the complex plane, the exponentially small terms have been neglected, so that 

there appears to be a 'switching' occurring between them. This does not happen; 

either side of this ray, both the exponentials ez -
1 

and e-z -
1 

are present. There is 

no Stokes phenomenon at e = 7r /2. In fact, the ray e = 7r /2 is an anti-Stokes line, 

since both exponentials have the same magnitude at this point. 

Berry [9] showed that across a Stokes line, the multiplier of the small exponen­

tial (called the Stokes constant) could be approximated by a smooth function. He 

16 



did this using a combination of Borel summation techniques and what Dingle [4] 

called "singulants". Dingle's singulants are defined as the difference between the 

exponents of the dominant and sub-dominant exponentials. Berry showed that 

the Stokes multiplier in a general problem where an asymptotic expansion has 

just two exponentials could be approximated by an error function. The result was 

rigorously analyzed and proved by McLeod [13]. 

This smoothing of the Stokes phenomenon was interpreted using matched 

asymptotic expansion methods. Olde Daalhuis et al. [14] gave an account of 

the activity of the Stokes lines directly from a differential equation. In particular 

they considered solutions of a class of homogeneous linear second order differential 

equations. They found that, in agreement with Berry's result, the behaviour across 

a Stokes line was described by an error function. However, their methods were 

not generally applicable to higher order or inhomogeneous equations (for reasons 

explained in [14]). 

Chapman [15] showed that in fact not all Stokes lines are described locally 

by error functions. Working within the same framework as Olde Daalhuis et al. 

[14], he demonstrated this by way of an example of a Stokes phenomenon with 

smoothing function of the form 

1: e-
u2m

du (2.34) 

for each integer m 2 2. He considered the delay equation 

J(z) = J(z (2.35) 

for m 2 2, where k is a (real) large parameter. He showed that the transition at 

the Stokes line phz = 0 was not an error function, but was in fact 

(2.36) 

This result showed the non-universality of the error function in Stokes smoothing. 

For a wide class asymptotic approximations though, it will be the case that an 

error function does describe the local behaviour of a Stokes line. 
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2.3 The Importance of 

Exponentially Small Terms 

We have seen how Poincare's definition alone cannot include the effects of or ex-

plain the results of a Stokes phenomenon. The inclusion of exponentially small 

terms in an asymptotic expansion is crucial to improving the accuracy of an ap-

proximation. 

Motivated by the Stokes phenomenon, expansions of the form (2.3) alone are 

no longer satisfactory for all problems. We will now define an asymptotic series 

for a function depending on a large parameter k as 

(k ' ) r-v ~ ar(x) + -kf(x) ~ br(x) 
y ,x ~ kr e ~ kr ' k --7 00. 

r=O r=O 

(2.37) 

The advantage of doing this is that we are explicitly including the exponentially 

small terms that would be missed from the remainder term of the first sum in 

(2.37) under a Poincare regime. We refer to (2.37) as an exponential asymptotic 

expansion. 

Exponentially small terms are often disregarded because of their sub dominant 

behaviour in certain regions of solutions. This can lead to misinterpretation of the 

asymptotics because subdominant exponentials can sometimes grow to dominate 

solutions of time-dependent equations for large time (we will show an example of 

this in the next chapter). Including exponential terms in an asymptotic expansion 

can therefore extend the range of validity for the solution, can give increased 

numerical accuracy (as shown in the previous section, see Figures (2.4) and (2.6)), 

and can often simplify calculations, as we will now show with a simple example. 

Consider for example the linear ODE 

Ey"(X) + y'(x) + y(x) = 0, 

y(O) = CY, 

y(l) ={3, 

18 
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as £ ----+ 0+. This boundary layer equation can be solved trivially exactly, but we are 

using it as a 'toy' model to illustrate some important ideas. A simple perturbation 

expansion of the form 
00 

(2.41) 
n=O 

cannot satisfy all of the boundary conditions. So, initially we attempt to solve this 

problem by finding suitable scalings, considering the inner and outer solutions, and 

matching using Van Dyke's rule [19]. The outer solution expansion can be found 

by using a simple perturbation expansion 

(2.42) 

which, when substituted into (2.38), followed by a balancing at 0(£°), gives 

=? Yo 
° 
A -x e . 

(2.43) 

(2.44) 

Vie now apply the appropriate boundary condition, which for the outer expansion 

is (2.40), so we have 

(2.45) 

To find the inner solution expansion, we need to rescale. The boundary layer is 

0(£) so we write 

X-::!. - , (2.46) 
£ 

and let y(£x; £) = Y(X; E). Substituting these new variables into (2.38) gives us 

the equation 

y" + y' + £Y = 0, y(o) = a. (2.4 7) 

We substitute an expansion of the form 

Y(X; £) = Yo(X) + £Yi (X) + £2Y2(X) + 0(£3) (2.48) 

into (2.47). Balancing at 0(£°) we obtain 

Y~' + Y~ = 0, yo(o) = a, (2.49) 
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which we solve to find 

Yo = (a - C) + Ce-X
, (2.50) 

where C is a constant, left in our solution because we only had one boundary 

condition to apply to our equation. We use Van Dyke's matching rule to find C, 

which says that the outer limit of the inner expansion equals the inner limit of the 

outer expansion. When we do this, we find 

C = 00- (3e. (2.51 ) 

Thus, the (composite) matched approximate solution to the problem is 

y ~ (3e 1- x + (a - (3e)e- X
/

E + O(c:), 0::; x ::; 1, E (2.52) 

Sometimes this is can be an over complicated procedure. This is true for 

this case, as we will now see. Matching is only required here because the small 

exponential term has been neglected. 

We will start with the ansatz 

(2.53) 

Substituting this back into (2.38) and balancing at different orders of c:T and 

c:T exp( - f (x) / c:) for arbitrary x, we generate the following equations: 

O(c:o) a~ + ao = 0, (2.54) 

O(c:1
) 

1 /I al + al = -ao, (2.55) 

O(C1e- f / E
) (f/2 - j')bo = 0, (2.56) 

O(c:oe- f /€) b~ - bo = O. (2.57) 

Equation (2.56) has the non-trivial consequence (that is, taking bo to be non-zero) 

that l' = 1, so 

f(x) = x. (2.58) 
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Now we look to the boundary values of x, which we write as 

x = 0 : { ao(O) + bo(O) = 0; 

an(O) + bn(O) = 0 

, x = 1 : { ao(l) = j3 

an (l) = 0 
(2.59) 

Note that the exponential contribution is ignored at the right-hand boundary. 

Equation (2.54) gives 

(2.60) 

and equation (2.57) gives 

bo(x) = (0; - /3e)ex
. (2.61 ) 

The approximate solution for (2.38) is then 

y ~ /3 exp(1 - x) + (0; - /3e) exp(x - X/E) + O(E), o:s x :S 1. (2.62) 

This example shows that the "exponential" method above arrives at a similar 

answer to that of matching (compare (2.62) and (2.52)) in a quicker and easier 

fashion, without the need for knowledge of matching techniques. 

This is not a new idea; we have used a WKB-type ansatz, also known as Latta's 

method [19]. We have shown that in simple cases such as this it might pay to use 

exponential asymptotics over Van Dyke matching methods. 

The example above shows the role a single exponential can play in the asymp­

totic approximation of a linear system. We will now look at what happens in 

a problem where many exponentials are present. Chapman et al. [16] were the 

first to look at a method for finding sub dominant exponentials arising from singu­

larly perturbed (nonlinear) ODE's. Their method was based on Dingle's method 

of making the exponentials visible by optimally truncating the algebraic asymp­

totic series obtained from the equation. We will use our exponential asymptotics 

approach to tackle this problem. 

Consider the following linear ODE boundary layer problem [19]: 

EY"(X) + (2x + l)y'(x) + 2y(x) = 0 

y(O) = 0;, y(l) = /3, 
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O<c«l. 

The Van Dyke matching algorithm is the same as for the previous example. When 

we apply this to (2.63) we recover a matched approximate solution 

y ~ ~ + (a - 3,8) exp( -x/c), 0::; x ::; l. 
2x + 1 

In comparison, we try the simple exponential asymptotics approach 

CXJ CXJ 

n=O n=O 

(2.64) 

(2.65) 

Automatically we have the condition F(O) = 0 so that the terms in the two series 

(the fn and hn) can balance at x = O. We now substitute (2.65) into equation 

(2.63) and balance at powers of cT and e-F/EcT
• We obtain the following: 

O(cO
) : 

O(c1
) : 

O(e-F/Ec-l) : 

(2x + 1)f~ + 2fo = 0 

f~ + (2x + 1)f{ + 211 = 0 

F'2ho - (2x + 1)F'ho = O. 

The last equation, coupled with the condition F(O) = 0, gives 

F(x) = x2 + X. 

The boundary conditions in (2.63) can now be written 

fn(O) + hn(O) = bnoOO, 

fn(1) + O(e-F(l)/E) = bno,8, 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

where bno = 1 if n = 0, and 0 otherwise. By solving the first equation in (2.66) for 

fo using (2.69), ignoring the exponential error, we find 

Equation (2.68) now gives 

3,8 
fo(x) = (2x + 1) 

ho(x) = 00-3,8. 
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By looking at higher orders of ET we can generate the following recurrence relations: 

I ( ) 
= I~_l(l) - I~_l(x) 

n x 2x + 1 ' 
hi (x) = h~_l (x) . 

n 2x + 1 
(2.72) 

The leading order behaviour of the solution is 

y(x) rv 2x3~ 1 + (0; 3/3) exp (x 2 + x)/c). (2.73) 

Both procedures produce a similar result, but we have shown how matching re­

quires more work than is necessary. However, from an exponential asymptotic 

viewpoint, both matching and the Latta method leaves the right hand condition 

only approximately satisfied. 

This error at the RHS is exponentially small. We now present a exponential 

asymptotic method which can account for this exponential error. Importantly, we 

find that an infinite number of exponentials are required, even for a simple linear 

problem. 

2.3.1 Beyond WKB 

The exponential prefactors of the f-series and h-series in (2.65) match up at x = 0 

by design; to leading order we have 

y(O) ~ 10(0) + e-F(O)/€ho(O) = 10(0) + ho(O). (2.74) 

At the x = 1 boundary, we have 

y(l) ~ 10(1) + e-F(l)/€ho(l). (2.75) 

In order for the exponential prefactors to balance, there must also be a factor 

of e-F(l) in front of the I-series. But, if this were the case, things would not 

balance up at the x = 0 boundary. Thus, we deduce there must also be an extra 

exponential prefactor included at x = 0, of the form 

y(O) ~ CF(l) 10(0) + e-(F(O)+F(l))ho(O), (2.76) 
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Figure 2.7: Figurative explanation of the 'ladder' of exponentials. The middle column 

in each of the three diagrams can be visualised as a sliding scale which is used to match 

up each exponential scale, represented as one 'rung' on the ladder. Refer to the text for a 

full explanation. 24 



ensuring that the exponentials balance. Of course, this then means that there is a 

need for a prefactor e-2F(1) in front of the f-series at x = 1, and so on and so forth. 

In summary, the boundary values generate a ladder of series with exponential 

prefactors with arguments as follows. The middle column of Figure 2.7(1) can be 

visualised as a sliding scale that can be used to line up different exponential scales. 

Each 'rung' of the ladder represents one such exponential scale in the complete 

expansion. The left ladder represents scales which must be satisfied at the left 

hand boundary; the right ladder represents scales which must be satisfied at the 

right hand boundary. The middle ladder must be shifted up and down via f(x) as 

x goes from 0 to 1. 

At x = 0, the middle ladder lines up with the 0 at the LHS and also the scales 

at pF(l), for integer p ~ O. This ensures that the boundary conditions at x = 0 

are satisfied (Figure 2.7(2)) . As x travels from 0 to 1 this scale slides down so 

as to line up with pF(l) (p ~ 1) series so that the boundary data at x = 1 can 

be satisfied exactly (Figure 2.7(3)). With this ladder, the zero-prefactored series 

exactly satisfies the boundary condition at x = 1, without an exponential error. 

The template for the full expansion is then 

(Xl (Xl (Xl (Xl (Xl 

y rv L fn(x)cn + L e-pF(l)/E L f~p)(x)cn + L e-(F(x)+pF(l))/E L h~)(x)cn, 
n=O p=l n=O p=O n=O 

00 (Xl (Xl (Xl L e_pF~l) L f$r)(x)cn + L e-~(F(x)+pF(l)) L h~)(X)En. (2.77) 
p=o n=O p=o n=O 

Substitute (2.77) into (2.63). By balancing at orders of e-pF(l)/Ecn and e-(F(x)+pF(l))/Ecn, 

we again find that F(x) = x 2 + x. The boundary conditions are 

f~p)(O) + h~)(O) = onOopoa, 

f~p)(l) + h~-l)(l) = onoopo(3, 

where onO = 1 if n = 0, and 0 otherwise. Solving the equations, we find 

+(0)( ) =~. +(p)( ) = -3
P

(a - 3(3). h(p)( ) = 3P ( 
J 0 x 2x + l' J 0 x 2x + 1 ' 0 x a 3(3). 
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The lowest order solution can then be written as 

y(x) rv ~ - 0: - 3(3 ~ 3Pe-pF(1)/€ + (0: - 3(3) ~ 3Pe-(F(x)+pF(1))/€. (2.81) 
2x+1 2x+1 ~ ~ 

p=l p=O 

This is a new form of solution for an exponential asymptotics approach to a prob­

lem such as this. The series in (2.81) take the form of transseries ([20]' [23]). This 

method is related to the method of multiple scales, but we will not explore this 

here. 

Summing the p-series, we obtain: 

3 { (3 - 0: exp ( - F (1) / f) } 
y(x) = (2x+1) 1-3exp(-F(1)/f) 

{ 
0: - 3(3 } F(x)/€ O() ( ) + 1 - 3 exp( -F(l)/f) e- + f. 2.82 

3 {(3 - o:e-
2
/€ } { 0: - 3(3 } -(x2 +x)/€ O() 

(2x + 1) 1 _ 3e-2/€ + 1 _ 3e-2/€ e + f. 

(2.83) 

Note that if the terms in exp( -2/f) are neglected then we have the simple leading 

order result (2.73), as we should expect. However, whereas (2.73) only satisfied 

one of the boundary conditions, the approximation (2.82) satisfies both, without 

exponential error at the right boundary. The 0 (f) error is therefore accounting 

for everything. 

Note that if the exponentials in the denominator of the terms in curly brackets 

in (2.82) depend on x, then the generation of singularities will change; we will in 

fact be dealing with infinite arrays of exponentials. We will see this later on in 

Chapter 4. 

2.4 Hyperasymptotics and the Borel Plane 

It had been suggested as far back as Stieltjes (1886) [4] that improvement may 

be made to an optimally truncated asymptotic approximation by looking at the 

remainder from that truncation. We have seen that Dingle carried out his work 
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based on Borel summation and developed a systematic method of gaining his 

terminants. Airy [24], Miller [25] and Boyd [26] took steps towards developing 

similar ideas. We will look at a method which was developed by Berry & Howls 

for systematically studying the remainder of an asymptotic series, which they 

called hyperasymptotics. 

Hyperasymptotics is defined as the systematic improvement to the exponen­

tially small remainder of an optimally truncated series. Berry and Howls [27] dis­

cussed Helmholtz-type second order linear ODE's. They were able to re-expand 

the late terms in the expansion of one formal solution in terms of the early terms 

of a second. A Borel summation, followed by iteration of the method, led to a 

sequence of finite "hyperseries". Each of these hyperseries contained early terms 

from one of the formal solutions multiplied by certain multiple integrals called 

"hyperterminants", which had a universal form. This method produces an ex­

ponential improvement in accuracy over the first term of the original expansion. 

It relied on truncating each successive hyperseries at its least term, which led to 

the termination of the iteration when one of the hyperseries had just one term. 

Several papers followed this one, extending the method to other special cases; see 

in particular [28], [29], [30], [31], [32]' and [33]. 

It is more instructive at this point for us to review some of the ideas in Berry 

& Howls' second paper. They set out a method of applying hyperasymptotics to a 

specific class of integrals [28] (a rigorous proof of the approach was given by Boyd 

[34]). 

Consider an integral of the form 

I(n)(k) = r dzg(z)e-k!(z). 
}Cn(Bk ) 

(2.84) 

where Ikl is the large asymptotic parameter and the functions f and g are analytic, 

at least in a strip containing the contour en (Ok)' A saddle of f is defined to be 

where 

j'(z) =0, (2.85) 
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Figure 2.8: The steepest path Cn (8k) (the thick line) through saddle Zn, with the loop 

rn(8k) enclosing it. 

with 1" (z) -I 0 (this constraint is added for simplicity, and may be removed later 

on). If i is an mth order polynomial, there will be (m - 1) saddles. The infinite 

oriented contour Cn (8k) is the path of steepest descent through the nth saddle 

Z = Zn, define as 

Re[k(f(z) - in)] > 0, (2.86) 

where in == i(zn). Now let 

k-~ e-kfnT(n) (k), (2.87) 

k~ r dzg(z)e-k[J(z)-fnl 
}Cn(Bk) 

(2.88) 

The coefficients T/;n) are required in the formal (divergent) asymptotic expansion 

00 (n) 
T(n) (k) '" L T~1' . 

1'=0 
(2.89) 

It can be shown (refer to details in Appendix B) that 

'" - du dz---'-~--:-= 
N-l 1 100 e-uu1' - 1/ 2 i g(z) 

~ k1' 0 21fi rn(Bk) (f(z) - inY+l/2 

+R(n)(k, N) (2.90) 

N-l (n) 

='?T(n)(k) = LT~1' +R(n)(k,N), 
1'=0 

(2.91) 

where the coefficients T/;n) are defined as 

(r 1/2)! 1 d g(z) 
21fi In Z (f(z) - inY+l/2' 

(2.92) 
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Crucially, the remainder R(n) in (2.91) is exact: 

R(n)(k, N) = 

(2.93) 

Consider all of the steepest paths through the saddle Zn, as Bk is varied. Some 

of them will encounter other saddles m. These saddles are said to be adjacent 

to n (see Figure 2.9). To specify these paths through adjacent saddles, Dingle's 

singulants are used, in the form 

These special steepest paths correspond to where 

Re[kFnml > 0, 

Im[kFnml 0, 

that is 

Thus it follows that 

(2.94) 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

where O"nm = arg Fnm. The steepest path Cn( -O"nm) turns sharply through a 

right angle at Zm to continue descending into a valley of e-k[/(z)- Inl. This is the 

signature of the occurrence of a Stokes phenomenon. 

If we are able to write an integral in the form (2.84), then we can find out 

about the presence of singularities and their position with respect to others by 

looking in the complex kf-plane, also known as the Borel plane. The singularities 

are represented in the Borel plane as branch points with cuts running from them 

to infinity at constant values of Im(kf) ([35]' [33]). 
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Figure 2.9: A simple schematic adjacency diagram. Saddle n is adjacent to Saddles 1,2, 

and 3 (and vice-versa); for example, nand 1 lay on the same steepest path (i.e the same 

phase contours of i(z) - in). None adjacent saddles (empty circles) are also shown. 
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This method introduces a Riemann sheet structure. For two singularities to 

be lying on the same Riemann sheet is for the same singularities to be adjacent to 

each other and is what leads to divergent saddle expansions ([33], [10]). The Stokes 

phenomenon can be well illustrated in the Borel plane (Figure 2.10); it corresponds 

to a singularity passing through the contour of integration emanating from another 

singularity as arg k is varied. If the two points are adjacent, the singularity passing 

through the cut can "drag" the integration contour with it, creating an extra 

contribution to the expansion. If the singularities are not adjacent, then they 

are not on the same Riemann sheet; no new contributions arise as a result of 

the crossing. The Borel plane approach applies equally to the asymptotics of 

differential equations as to integrals [33]. 

The algorithm for using the Borel plane method of approach is summarised as 

follows: 

(i) Locate the singularities in the Borel plane, 

(ii) Categorise each singularity (saddle, endpoint, pole etc.), 

(iii) Calculate the values of the Fnm , 

(iv) Calculate the adjacency of the singularities, 

(v) Find the position of the Stokes lines. 

In the next chapter, we shall see that this simple template can handle complicated 

and subtle behaviour. 

The loop r n(Bk ) (Figure 2.8) is expanded in such a way that symbolically we 

can write 

1 dz ... = LKnm r dz .... 
)rn(ek) m }Cm(-anm) 

(2.100) 

The Knm are known as Stokes constants, and these (in general) take the value 

if m adjacent to n 

m not adj acent to n 
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(i) 

(ii) 

(ii i) 

o 

o 

-

o 
o 2 
1 

2 

o 

2 
o 

o ,.. 0----1 

Figure 2.10: The Stokes phenomenon as seen from steepest descent plots and simul­

taneously in the Borel plane. (i) The steepest descent plot shows saddle 0 is the only 

contributing singularity. In the Borel plane we see the branch cut emanating form 0 ac­

cordingly. (ii) A Stokes phenomenon occurs between saddles 0 and 1. This is signified in 

the Borel plane by saddle 1 crossing the cut from O. (iii) Since they are adjacent, saddle 

1 'drags ' on the cut from saddle 0 as it passes through, introducing a new asymptotic 

contribution. 
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We will discuss the significance of these constants shortly. Via a transformation 

of variables, the remainder term (which is exact) is 

R(n)(k, N) = ~ L Knm N t XJ 

dv v
N

-
1
ev-

V 

T(m) (~), 
27fz (kFnm) io 1 -k'" Fnm m rnm 

(2.102) 

and thus an exact resurgence formula is obtained in the form 

N-1 T(n) 1 K 100 N-1 -v ( ) 
T(n)(k) = L ~ + -. L nm N dv v ev T(rn) _v_ . 

r=O k 27fZ m (kFnm) 0 1 - kFnm Fnm 

(2.103) 

This is called a resurgence formula since the 'closest' saddle n is connected to 

'later' saddles m [36]. This is exact for all finite N :::: 0, and IFnrn I > O. 

The form of these results means that resurgence formula (2.103) can be iter­

ated. After m iterations this results in being able to write 

r=O 
Nnm1 -1 

+ L Knml L Tj:md K(nm1 ) 

+ 

X (Nn'f-1 Tj:mM)K~n ... mM) + R(n ... mM) (Nn, ... , NmM)) 

r=O 

(2.104) 

The Kr's represent hyperterminants, an extension of Dingle's terminants. In 

the notation of Berry and Howls, these are 

1 
(2.105) 

K(Ol...s) 
r 

(

S-l roo ) Do io dvp J~Ol...s), (2.106) 
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(2.107) 

J(01...s) = 
r (2.108) 

The superscript (0) represents the starting saddle no, (1) represents the saddles nl 

which are adjacent to no, etc., so that (8) represents the saddles that are reached 

in the 8th iteration. In [37] and [38], Olde Daalhuis showed how to compute the 

numerical values of these hyperterminants. 

After 8 + 1 iterations, the remainder is 

R(o ... s) = (tr roo dV
P

) L J~o ... s+l)T(s+l) (F Vs ). 

p=o io s+l s,s+1 
(2.109) 

Berry & Howls determined that the optimal truncation points in their proce­

dure were 

No 

1 + IFs-l,s/ Fs,(s+l)* I· 

(2.110) 

(2.111) 

Here, 1* stands for the nearest saddle to saddle 0, and is not necessarily adjacent 

to it. Also, 

IFs-l,s/ Fs,(s+l)* I 2: 1, (2.112) 

so that the nearest saddle to 8 cannot be more distant than the previous saddle 

8 - 1, and 
1 

Ns :S "iNS-I, (2.113) 

so each hyperseries is no more than half the length of its predecessor. 

In [31], [32] and [33] (see also [35]) it was shown that the numerically optimal 

truncation scheme was not that of truncating every hyperseries at its least term. 

The updated algorithm was derived from locally minimizing the estimate for the 

remainder after M iterations. From [28] (cf. [33]) we have 

NNo-l/2 -No 
o e 17Y *)1 

V21Tl kFol* INo 0 , 
(2.114) 
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where ITJl *) I is the first term of the asymptotic expansion about the closest adja­

cent saddle. Berry & Howls only allowed the last truncation N o ... s to vary, with 

the previous NO ... s - 1 fixed. If this restriction is relaxed so that all values of NO ... s-l 

are allowed to vary, globally minimizing the remainder, then for M stages of hy­

perasymptotics the optimal truncation scheme is shown below (in the notation of 

Howls). 

{

shortest directed path of M + 1 steps in the } 

kf plane between singularities, starting at n 

max {a, N n IkFnm11} , 

(2.116) 

Here, ml represents the first adjacent saddles to n, m2 the second, and so on. 

In his papers (particularly [33]), Olde Daalhuis tackled hyperasymptotics from 

a different viewpoint, culminating in similar results. He studied linear ordinary 

differential equations. His method was based on the properties of the Borel trans­

form, which proved to be a very useful breakthrough, since it meant that hyper­

asymptotic analysis could be performed on any function that possessed a Borel 

transform regardless of whether they originated from differential equations or not. 

A formal (divergent) series of the form (2.3) becomes a convergent series under a 

Borel transform. A Laplace transform of this series would then give us the integral 

form presented in [28], and the hyperasymptotic method proceeds from there as 

before. 

The hyper asymptotic techniques discussed above were applied to multidimen-
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sional integrals by Howls [35], the results of which implied that dimensionality has 

little effect on the general form of the exact remainder term. By using the Borel 

plane method, all references to the dimension d of the integral 

fen) (k) = J ... hn dz(1) dz(2) ... dz(d) g(z(1), ... , z(d))exp{ -kf(z(l), ... , zed))} 

(2.117) 

are incorporated into the T(n)(k) and T(m)(v/Fnm ) factors, and the result is an 

identical resurgence formula to (2.103). Thus, the case for d = 1 is the same as 

for all cases d > 1. More complicated examples of the use of hyper asymptotic 

techniques can be found in [39], [40] and [41]. 

2.5 Stokes Constants 

A factorial-over-power approximation for the late terms of a series is very good for 

leading order results, but this alone cannot include more distant singularities. This 

is because, as we have seen, only the closest singularity to an expansion point will 

be included. For singularities further away, no Stokes information would be found. 

Hyperasymptotics makes it possible to look further away and include more distant 

singularities. The Stokes constant allows us to determine which singularities are 

adjacent to others, and which are not. 

The problem of determining whether or not two saddles are adjacent, and also 

the Riemann sheet structure of the f plane, comes down to the calculation of the 

Knm. These are related to the so called 'intersection numbers' (Pham 1967) [35] 

prescribing whether or not two singularities lie on the same Riemann sheet. Olde 

Daalhuis [33] introduced the following method of calculating these constants. It 

proceeds (in the notation of Howls) by noting that 

T(n)(k) = Nfl ~~ + R(n)(Nn), 

r=O 

(2.118) 

N n ~ 
" 2.. + R(n)(N + 1) ~kr n, 
r=O 

(2.119) 
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thus 

Nnm1-l 

- L Knml L Tjm 1
) ~K~nmI) 

ml r=O 

(2.120) 

where 

(2.121) 

with a similar expression for ~R(nml .. ·mp). Knowledge of the coefficients Tjmp) 

and the hyperterminants K~n ... mp) means that each expression of the form (2.120) 

reduces to an equation for the Knm with an exponentially small error coming 

from the unevaluated remainder term. Using the truncation method (2.116), then 

numerically solving a system of algebraic equations, it is then possible to determine 

very good approximations to the Knm. If any of the Knm in (2.120) are individually 

zero then all hyperseries containing it can be terminated at the earliest possible 

stage. Once sufficiently many Knm have been calculated, the full expansion (2.104) 

gives the hyper asymptotic expansion of the integral to the accuracy required. 
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The most general form for a tree-structure of a hyperseries, expanded about a 

singularity 0 is 

K K ",NOlO-1 T(O) K(OlO) + 
01 10 L...r=O r r ... 

K ""NOl-1 1:(1) K(Ol) + 
01 ur=O r r 

K K ",N012-1 fT'(2) K(012) + 
01 12 L...r=O i r r ... 

K K ",N013- 1 T(3) K(013) + 
01 13 L...r=O r r ... 

K K ",No2o-1 T(O) K(020) + 
02 20 L...r=O r r ... 

K K 
",N021-1 T(l) K(021) + 

02 21 L...r=O r r ... 

K K ",N023-1 T(3) K(023) + 
02 23 L...r=O r r ... 

K K ",N030- 1 fT'(0) K(030) + 
03 30 L...r=O i r r ... 

K ""Nor 1 T(l) K(03) + 
03 ur=O r r K K 

",N031-1 T(l) K(031) + 
03 31 L...r=O r r ... 

K K 
",N032-1 T(2) K(032) + 

03 32 L...r=O r r ... 

We can obtain an equivalent expansion for a term T},?j jkNo by replacing T(O)(k) 

on the left of (2.122) with T},?j jkNo and removing the first sum on the right. We 

also replace the K~Ol .. ') with _~K~Ol''') (see (2.121)). 

Note that there is a difference in the literature between the Stokes Constants 

of Howls and those of Olde Daalhuis, resolved by the relation 

(2.123) 

In the next chapter we will see further how calculating the Stokes constants 
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and understanding the adjacency of a singularity can be critical to understanding 

the underlying behaviour of a problem. 

We have reviewed the development of the continually improved accuracy of 

asymptotic techniques. Has everything been studied, and is everything well un­

derstood, or is there perhaps some surprise still left to be found? The next chapter 

shows that the answer to this last question is yes; indeed we do discover a subtle, 

but general, new result. 
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Chapter 3 

The Higher Order Stokes 

Phenomenon 

In this chapter we apply some of the existing hyperasymptotic methods to a PDE 

example. Hyperasymptotics has been derived for linear equations ([31], [14]) and 

steepest descent expansions of single and multidimensional integrals ([35]); work 

has also been done on nonlinear ordinary differential equations by Costin (see, for 

example, [21] and also in [41]). Partial differential equations are still relatively 

unstudied in areas related to hyperasymptotics. 

The Pearcey function ([42], [43]) 

satisfies the system 

1
+00 

P(x,y)= -00 dzexp{-i(z4+yz2+xz)} 

83p 1 8P 
-- - -y- - ixP = 0 
8x3 2 8x ' 

-00 < x < +00, - 00 < y < +00 

(3.1) 

(3.2) 

with suitable conditions given for P(O,y), Px(O,y), PxAO,y). The Pearcey func­

tion has been used by Berry and Howls [28] to demonstrate their hyper asymptotic 

techniques. In this chapter, we explicitly look at applying hyperasymptotics di­

rectly to a PDE. 
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We will demonstrate that for systems with additional parameters a, knowledge 

of any Stokes phenomena alone is not sufficient to understanding the global connec­

tion problems when there are three or more possible asymptotic behaviours. Berk 

et al. [44] have shown that when more than two possible asymptotic behaviours are 

present, so-called 'new Stokes lines' [45] must be introduced to fully describe the 

analytic continuation. However, we shall demonstrate in this chapter that it is also 

necessary to introduce the concept of a 'higher order Stokes phenomenon'. At a 

higher order Stokes phenomenon, the potential for a 'regular' Stokes phenomenon 

to occur is changed. We show that without knowledge of the existence of a higher 

order Stokes phenomenon, it is possible to draw incorrect conclusions as to the 

existence of Stokes lines (or coalescences of singularities) as a-space is traversed. 

This effect is much more subtle than a Stokes phenomenon, yet can generate terms 

that can grow to dominate the asymptotics, and can affect the possible occurrence 

of a Stokes phenomenon. 

We introduce the higher order Stokes phenomenon by means of a simple inte­

gral example. This is followed by an explanation of how the higher order Stokes 

phenomenon fundamentally influences asymptotic expansions by reference to the 

remainder terms derived from hyperasymptotics. Finally, we will demonstrate the 

findings in the context of a PDE example. 

3.1 Introduction to the Higher Order Stokes 

Phenomenon 

In order to illustrate a higher order Stokes phenomenon occurring, we study the 

integral 

(3.3) 

where C is a contour which runs from a valley VI = 00 exp ( - 37fi /8) to valley 

V2 = 00 exp(7fi/8) , and k is a large positive parameter. This integral is clearly 
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related to the Pearcey integral (3.1). The parameter a is a complex variable and 

we shall look at specific points in the complex a-plane. 

Since (3.3) is of the form 

J(k) = fc dzg(z)e-k!(z) 

(with g(z) = 1), we define 

f(z; a) = -i (~z4 + ~Z2 + az) . (3.4) 

There are 3 saddle points, where I'(z) = ° (but 1"(z) -I- 0), i.e, 

z~ + Zn + a = 0, n = 0,1,2. 

The heights of the saddles, after re-writing equation (3.4) as 

(3.5) 

(where I = djdzn ) are given by 

(3.6) 

The steepest descent paths through the saddles Zn are the connected paths passing 

through the Zn that satisfy 

Cn = {z E C : k(f(z; a) - fn(a)) 2 O}. (3.7) 

Let us choose a point a = a1 and plot the corresponding steepest descent path in 

the z-plane (Figure 3.1). 

Here, we take C = Co as the contour of integration, so that only the saddle Zo 

will contribute to the large-k asymptotics of P(k; a). Now we vary a and notice 

that the steepest path is deformed. At the value a = a3, we have to choose 

C = Co U C1 if the contour is still to be a steepest descent path. Hence, for this 

value of a, both saddles Zl and Zo contribute to the large-k asymptotics. 

As we travelled from a1 to a3, an extra asymptotic contribution has been 

introduced; that is, a Stokes phenomenon has taken place. Therefore, somewhere 
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Figure 3.1: The Stokes curves in the a-plane and the steepest descent contours of inte­

gration in the integrand z-plane passing over saddles 0, 1 and 2 for selected values ai for 

integral (3.3). The dashed Stokes line passing through ag is active, but irrelevant to the 

function defined by the integral. 
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between al and a3 there is a Stokes line, across which this change in asymptotic 

contribution occurs. As in Chapter 2 (equation (2.22)) this is defined as 

SO>1 = {a E C : JI(a) - lo(a) > o}. (3.8) 

The point a2 lies on this Stokes line and we can see from the steepest descent 

paths that C must be made up from the part of Co running from VI to ZI, and 

the part of C1 running from ZI to V2. This is the visual 'signature' of the Stokes 

phenomenon taking place. 

For the three points Zn, we display the corresponding values for Ij(a) in the 

complex I-plane (the Borel plane) in Figure 3.2. Mapping from the Z to the I-plane 

generates singularities at the images Ij (a). The steepest path maps to horizontal 

loop contours, starting and finishing at infinity, circling around the corresponding 

saddle images. By writing the integral in terms of the I-plane, it can be seen 

that it is precisely the presence of other such singularities on the same Riemann 

sheet that causes that saddle-point expansions about any of the fJ (a) to diverge 

([33], [10]). The Stokes phenomenon occurs at the point a2 when JI(a) crosses the 

horizontal half-line emanating from lo(a), which corresponds to the image of Co 

in the I-plane. 

It seems that all we need do is study the relative alignment of the fJ ( a) in 

the complex I-plane in order to locate the Stokes lines. However, in general more 

information is required. For example, the plot for the values of !j(a4) shows that 

h(a4) is crossing the horizontal half-line starting from 10(a4). Viewed in this plane, 

a Stokes phenomenon is occurring, yet there is obviously no Stokes phenomenon 

at this point in the z-plane. This apparent contradiction is resolved as follows: the 

branch point at h(a4) does not lay on the same Riemann sheet as !0(a4) and thus 

cannot be seen from !0(a4). (Equally we can say that saddle Z2 is not adjacent to 

Zo at a = a4 and so this crossing in the I-plane has no consequence.) 

Having travelled from al to a4, we now continue to walk anti-clockwise around 

the a-plane. At a5, a Stokes phenomenon occurs between saddles ZI and Z2, so 

44 



o o 0 

• 0 • 

a4 as 
oar 

",0;;/" 
0 

• 0 0 
...... , .............. • 0 

0 Re(a) 

oa
6 

• • • 0 
o o 0 o o 

Figure 3.2: Sketches of the Borel planes for (3.3) at values of the ai corresponding to 

those in figure 1. In each Borel plane the solid dot is the image of saddle O. The other dots 

are the images of saddles 1 and 2. Note that a box labelled a3 has been omitted as it is 

identical to a4. At a Stokes phenomenon two or more solid dots are horizontally collinear 

as the steepest paths map to horizontal lines. At a higher order Stokes phenomenon (al 

and a6) three or more are collinear in any direction. 
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now all three saddles are involved in the large-k asymptotic contribution and, at 

a6, C = Co U C1 U C2 . Another Stokes phenomenon at a7 removes the contribution 

from Zl; Z2 is removed at as. At this point we have the same contributions at as as 

at aI, but we have yet to cross the continuation of Stokes line 5 1>2. Since saddle 

Zl has been removed and no longer contributes to the asymptotics of P(k; a) at 

this point, there is no Stokes phenomena at ag. The Stokes line appears dotted in 

Figure 3.2 because it is irrelevant to our choice of contour in (3.3). (Note that this 

is different to the lack of a Stokes line at a = a4, which was due to non-adjacency.) 

We will call the point where all the Stokes lines meet in the a-plane the Stokes 

crossing point (SCP). The part of the positive real axis connecting the origin to 

the SCP is not an active Stokes line, as shown above, yet the portion to the right 

of the SCP is a Stokes line (50)2)' If our point a lies on either part of the line, 

h (a) is crossing the horizontal half-line emanating from fa (a). For a to the left of 

the SCP, h (a) is not on the same Riemann sheet as fa (a). For a to the right of 

the SCP, it is. 

\iVe explain this change in the Riemann sheet structure with the higher order 

Stokes phenomenon, which takes place across a higher order Stokes curve (HSC) 

in the complex s-plane passing through the SCP. 

In the example above, we have chosen to let a1 lie on the HSC. We see that the 

steepest descent paths show nothing of interest happens at this point, however the 

Borel plane reveals something significant. Let the points at and a1 be values of a 

lying slightly to the right and left of a1 respectively. Figure 3.3 shows that heal) 

is actually crossing the continuation of line from fa (a1) to h (a1)' On the HSC, 

the three points fJ (a) are collinear in the Borel plane. As collinearity occurs, the 

Riemann sheet structure of the Borel plane changes. For a = at, the point h(a) 

lies on the principal Riemann sheet as seen from fa (a), but for a = a1 it is not. 

This means that in order to walk from fa (al) to h (an we must first walk around 

II (a1), and then "drop" on to the relevant Riemann sheet. 
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Figure 3.3: The higher order Stokes phenomenon in the Borel plane for values of a near 

to aI. At the higher order Stokes phenomenon h eclipses h when viewed from fa. The 

Riemann sheet structure of the Borel plane changes as h passes through a radial cut from 

h· At aI, h is invisible from fa and so no Stokes phenomenon between fa and h can 

take place. At at, h is visible and so a Stoke phenomenon is then possible. 

On a traditional Stokes line we have 

Im[k(Jm(a) - fJ(a))J = 0, (3 .9) 

(k an arbitrary complex value) which means that the two points Jm, Jj can be 

joined by a horizontal line in the J-plane. The Stokes lines are only active when 

the relevant fJ(a) are on the same Riemann sheet. Previously it was thought that 

in the a-plane Stokes lines could only emanate from turning points, where two 

or more Jj(a) coalesce, or from other singularities. However, the example above 

shows that Stokes lines may start and end from other regular points in the a-plane, 

where two or more Stokes lines cross. This effect has also been observed by Berk 

et at [44J and Aoki et at [45J. 

We would like to stress at this point the difference between the SCP and the 

so called "new turning points" highlighted in [44J and [45J . This difference can be 

viewed best in the Borel plane. At a Stokes Crossing Point, no coalescence of the 

fJ(a) is taking place, and there is no breakdown in the large k asymptotics there. 

Furthermore, no Stokes lines are actually born at this point, they just change their 

behaviour. In the Borel plane, the SCP will be signified by the Jj(a) lying in a 

straight and horizontal line. This is obvious when one considers that the SCP will 

necessarily be part of the HSC. A higher order Stokes phenomenon requires that 
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the Ij(a) are collinear (in any direction), and if the Stokes lines cross we must 

also have the simultaneous horizontal lining up (pair-wise) of the Ij (a). Hence the 

resultant view in the Borel plane. 

When viewed from the Borel plane, a new turning point (also known as a 

Virtual TUrning Point) exhibits the apparent coalescence of the /j (a) with one 

another. In fact, at this point, there is no coalescence taking place, and the virtual 

turning points do not cause any breakdown of the large k asymptotics. This is 

because each of the /j lie on mutually different Riemann sheets. Analogously, at 

a Virtual TUrning Point, the values of the exponents of two different saddle points 

are identical, but the saddle points themselves have not coalesced as they would 

have done at a real turning point. 

We will explain this and discuss these points at length in the next chapter. 

Here it suffices to draw the distinction between the SCP and the new turning 

points, and to correct the misunderstanding made by the authors in [49]. It is 

clear from the above descriptions that the SCP and the new turning points are 

not the same phenomena. 

It is important to note the difference between an inactive Stokes line and an 

irrelevant Stokes line. We have seen that there is no Stokes line drawn between 

a = 0 and the SCP; this is because no Stokes phenomenon occurred as a result of 

the fact that h(a) was not on the principle Riemann sheet as viewed from lo(a) 

(ie., they were not adjacent). Hence this Stokes line is inactive. In the case of the 

line from the SCP along the continuation of the Stokes line 3 1>2 in the direction of 

ag, we find that a Stokes phenomenon does in fact take place between the saddles 

at Zl and Z2. However, this particular phenomenon is irrelevant to the saddle-point 

asymptotics of P(k; a) due to our choice of valleys in (3.3); at this point, Zl does 

not contribute to the asymptotics of P(k; a) at all. 

A higher order Stokes phenomenon requires that at least three of the Ij (a) 

are collinear in the I-plane, as opposed to the traditional Stokes phenomenon 

which required only two of the Ij(a) to differ by a real number. This suggests 
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that a higher order Stokes phenomenon is less common, due to the apparent extra 

constraint on the positioning of the third h(a) relative to the other two. However, 

for a higher order Stokes phenomenon there is no constraint on the positioning of 

the first two Ij(a) in the I-plane, since a straight line can join any two points. 

Therefore there is actually only a single constraint on the position of the third 

h (a). Provided three or more Ij (a) exist, a traditional Stokes line and a higher 

order Stokes curve have the same co-dimensionality. 

When k takes an arbitrary complex value, the traditional Stokes line Si>j is 

defined by 

Si>j = {a : k(fj(a) - li(a)) > O}. (3.10) 

This means that the position of these lines in the a-plane depends on the phase of 

k. The collinearity condition in the I-plane for a higher order Stokes phenomenon 

does not depend on k. We require 

(3.11) 

so the higher order Stokes curves are invariant under a change of k. This shows 

that the SCP is k-dependent whereas a traditional turning point is k-independent. 

A HSC will emanate from the same points as the traditional Stokes lines (turning 

points or singularities of the phase function f). 

We have so far talked about the higher order Stokes phenomenon in terms 

of asymptotic expansions arising from saddle-point integrals. However, since we 

have expressed everything in terms of the Ij (a), the ideas are more generally ap­

plicable. The ability to determine all the different types of exponential asymptotic 

behaviours exp ( - k h (a)) associated with an expansion is all that is required. For 

the saddle-point integral we have used steepest descent contours in the z-plane of 

the integrand to determine the activity of the Stokes lines. We could also look to 

compute the Stokes constants of the problem, as discussed earlier in the thesis. 

The higher order Stokes phenomenon requires the collinearity of at least three 

h (a), so we expect such a phenomenon to occur in any expansion involving more 

49 



o 

TP TP~----~~~-------

Figure 3.4: The Stokes geometry for ph k = 0 (left) and ph k = 7'1/4 (right). The 

thin curves are the normal Stokes curves, and the bold curves are the higher order Stokes 

curves. 

than two different asymptotic behaviours depending on an additional set of pa­

rameters a. These expansions may arise from integrals (of any dimension), from 

the solutions of inhomogeneous second-order linear differential equations, higher 

order linear ODEs, non-linear ODEs, and especially partial differential equations. 

3.2 Explanation of the Higher Order Stokes 

Phenomenon 

We can explain the higher order Stokes phenomenon and why it gives rise to 

fundamental changes in the analytic structure of an expansion by using some of the 

hyperasymptotic procedures already developed ([28], [31]' [35], [33], [46]). What 

follows is valid for any function that possesses a Borel transform representation. 

Consider an integral of the form 

(3.12) 

It is assumed that f possesses at least three saddles situated at z = Zn (n = 0, 1,2), 
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where l' (z) = 0 by definition; again we assume that the saddles are simple, ie., 

J"(z) i- o. As before, fn = fn(a) = f(zn; a). The contour Cn(ek ; a) is the steepest 

descent path running through (in general) a single specific saddle at Zn, between 

specified asymptotic valleys of Re{J(z) - fn} at infinity ([47], [7]). The functions 

fez; a) and g(z; a) are analytic at least in a strip including Cn(ek ; a) and in the 

range of a values considered. 

For the purpose of this explanation, and without loss of generality, we label the 

saddles such that Re{Jo} < Re{JI} < Re{h} for the values of a under discussion. 

We consider the integral through saddle 0, and choose a such that saddle 2 is 

adjacent to saddle 1 but not to saddle O. 

Integral (3.12) may be rewritten to extract the exponential dependence at 

saddle 0 as 

(3.13) 

where 

As we saw in the previous chapter, we can overcome the divergence of T(n) and 

gain an exact remainder term linking saddle 0 to saddle 1: 

where 

No-l T;O) (a) 
T(O) (k) = ""--'---'­

L...J kr 
r=O 

+ _1_ KOl roo dv..,--_e_-_V_v_N_o -_l_...,..T(1) ( __ v_. a) 
2i7r (kFOl(a))No Jo (1 vjkFOl(a)) Fo1(a) , 

(3.14) 

The Stokes multiplier KOI represents the contribution of saddle 1 to the expansion 

about saddle O. 

As a direct consequence of definition (3.10), a Stokes phenomenon will occur 

between saddle 0 and saddle 1 when arg(kFOl) = 2q7r for any integer q. The 
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integral in the remainder encounters a pole at this phase, introducing a residue 

contribution of the form (up to a sign) 

Combining this with the exponential prefactor exp( -kIo) produces an exponen­

tially small contribution 

exp( -kIo) exp( -kFo1 ) = exp( -k{Jo + !I Io}) = exp( -k!I), (3.16) 

leaving us with a exp( -k!I)T(1) (k) contribution. This is the integral over the 

steepest contour passing through Zl (cf. equation (3.13)). 

The remainder term in (3.14) is exact. However, it contains within it the 

term T(1), so it is implicit. We will in general know no more about T(l) than 

we do about T(O). Using the technique of Berry & Howls, we overcome this fact 

by writing down a similar expression for T(l) based on (3.14) in terms of its own 

adjacent terms: 

(~= v/Fol(a)) and then substituting it back in to (3.14). We now have a double 

integral term of the form 
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which has a pole when the Stokes phenomenon takes place at 

kFOl(a) > O. (3.19) 

There is also another potential pole if a is varied independently of k such that 

(3.20) 

which is identical to the collinearity condition (3.11). The occurrence of the pole 

and the higher order Stokes phenomenon are therefore intimately linked (an ex­

plicit calculation appears in the next section). The residue from this second pole 

is calculated to be (up to a sign) 

01 12 e u T(2) _u__ du K K 100 -u No-1 ( ) 

21rikNOF02(a)No 0 1- u/kF01(a) F02(a) 
(3.21) 

where u = VF02/ F01 . This new contribution to the remainder term is equivalent 

to the contribution that one would expect if saddle 2 were adjacent to saddle 0 

(cj. (3.14) & (3.15), remembering that KOl and K12 are ±1). If the parameters 

a (or k) are varied further so that kF02 becomes real and positive then a Stokes 

phenomenon can occur between saddle 2 and saddle 0, where before it could not. 

Equally, a coalescence could take place on a caustic. This change in the potential 

for a Stokes phenomenon to occur has arisen from a higher order hyper asymptotic 

expansion and is caused by the poles in the same way as a traditional Stokes 

phenomenon. 

3.3 PDE Example 

We can further illustrate the findings of the previous two sections via the following 

example. We show how an understanding of sub-subdominant terms can be vital 

in understanding the large time behaviour of a PDE. 

We are interested in the large time behaviour of the following system 

1 

1 + x 2 ' 
(3.22) 
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-00 < X < +00, t> 0, 0 < t « 1, 

u(x,O) = arctan x, 

u, U x , U xx ----7 0 as Ixl ----700. 

We can solve this exactly using Fourier transforms as follows. 

Using Fourier's Theorem 

where 

equation (3.22) becomes 

(3.23) 

(3.24) 

(3.25) 

The integral in (3.25) can be evaluated in the following way. There are poles 

of the integral at x = ±l. We can navigate this pole in the complex x-plane in two 

ways depending on whether Re(k»O (x > 0) or Re(k)<O (x < 0). When x > 0 

then 

1
00 eikx 

dx-­
-00 1 + x 2 

eikx 

+21fi lim ,(x - i)---2' 
X--->+2 1 + x 

e ikx 

= 21fi lim --., 
x--->+i X + 2 

= 1fC1kl . 

Similarly when x < 0 we find 

Thus 

1
00 eikx 

dx-- = 1fe-1kl . 
-00 1 + x 2 
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(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 



This can easily be solved, using an integrating factor eik (1-E
2

k
2
)t and the initial 

condition 

u(x,O) = arctanx. (3.32) 

Under a Fourier transform this becomes 

(3.33) 

(3.34) 

which can be seen by using integration by parts. This last integral we have evalu-

ated already in (3.28) and (3.29), hence 

(3.35) 

(3.36) 

By applying an inverse Fourier transform, the solution takes the form of 2 

time-dependent and 2 time-independent integrals 

2 4 

u(x, t; E) = arctan x + L 1j (x, t; E) + L 1j(x; E), (3.37) 
j=l j=3 

where 

100 ipn [-p . . 2] hex, t; E) == dp--2exp -{(I + zx) + z(I- P )t} 
o 1- p E 

= 1~(x, t; E), (3.38) 

100 in [-p 
hex; E) == dp ( 2) exp -(1 

o pI-p E 
(3.39) 

(Stars denote complex conjugation.) Note that the integrals that appear in [49] 

for h - 14 are incorrect; those which appear above are the correct results. 

The contours in hand 14 are taken around the poles at p = + 1 in a clockwise 

direction; the contours in 12 and h taken around the poles at p = + 1 in an 

anti-clockwise direction. This ensures that the initial conditions are satisfied; we 
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require no E-dependence at t = 0, and in the sum of all four integrals there is no 

pole (hence we can neglect the P = 0 pole in hand 14). 

Let 

then at t = 0: 

1total 100 ipn [-p ] dp--2exp -(1 + ix) 
o 1- p E 

- dp--exp - (1 - ~x) 100 ipn [-p .] 
o 1 - p2 E 

roo in [-p ] + io dp p(l _ p2) exp -E (1 - ix) 

roo dp ( in 2) exp [-p (1 + iX)] . io p 1 - P E 
(3.40) 

Thus, to cancel the E-dependence for u(x,O), we pair h with 14 and h with Is. 

Steepest descent plots at t = 0 indeed reveal that we traverse the poles in the 

manor stated above. 

For t > 0, there are 3 possible asymptotic contributions to hand h. These 

are an endpoint (at p = 0), a pole (p = +1) and a saddle point. For hand h, 

contributions may only arise from the endpoint and the pole at p = + 1. From this 

point on, we focus on the time-dependence of the problem; furthermore we may 

look only at the integral h, due to the symmetry of the integrals. h is of the form 

(3.12) with 

k =~, a = {x, t}, !(p; x, t) = [ ~p {(I + ix) + i(l - p2)t}] , (3.41 ) 

plus the additional endpoint and pole contributions. We adopt the following la­

belling: 

(i) e = endpoint at p = 0, 

(ii) PI = poles at p = +1, 

(iii) P2 = poles at p = -1, 
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(iv) 81 = saddle at P = +J 3h(1 + i(x + t)), 

(v) 82 = saddle at P = -J 3~t(1 + i(x + t)). 

The asymptotic behaviours are given by 

where j = e, PI or 81 and 

(3.42) 

fe(x, t) = 0, (e). '" 1 ~ (~ r(2r + l)(it)m ) 2r. 
T (E, X, t) 2i ~ ~ m!(l + i(x + t))2r+m E , 

2i(-i+t+X)3/2 

3V3t 

1 + ix, 

00 

T(Sl)(E' X t) '" ~ T(Sl)ET +1/ 2 . 
" ~ T , 

r=O 

T(Pll(E; X, t) = 1l' 
2 

(3.43) 

Notice that the contributions from the saddle and endpoint are both asymptotic 

infinite series. The pole contribution is exact. Since h is the complex conjugate of 

h, it has an identical analytic structure and the relevant expansions are just the 

corresponding conjugates of (3.43). Expansions for Is (and 14) may be obtained 

by setting t = 0 in the relevant expansions in (3.43) and multiplying by -1. 

The real (x, t > 0) half-plane is split into six regions by potential Stokes lines, 

separating areas of different asymptotic contributions. Three such lines are possi-

ble: 

1. Along the line x = 0 where 

the endpoint may switch on a pole (residue) contribution; 

2. Along a line running forward in time from negative to positive x where 

. (x + t - i)3/2 
2~ ;-;:u > 0, 

3y3t 

a saddle may switch on a pole contribution; 
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3. Along a line running forward in time from positive to negative x where 

. (x + t - i)3/2 
Ie = 2~ y3t > 0, 

3 3t 

the endpoint may switch on a saddle. 

A sequence of steepest descent contours as a function of x and t allows us to 

plot the Stokes lines and determine which contributions are made in each of the 

six regions between them. The endpoint e contributes for all x and t. 

Numbering the regions as in Figure (3.5), we can interpret the diagram as 

follows: 

In region 1, only e contributes. Across the Stokes line into 2, the dominant 

endpoint switches on a 8ubdominant contribution from 81. Across the Stokes line 

into 3, 81 switches on a (relatively) subdominant contribution from Pl. 

Moving now across the Stokes line from 1 to 6, e switches on a sub dominant 

pole contribution from Pl. From 6 into 5 nothing changes, since there is no 81 

yet present to switch on contribution from Pl. Moving into 4 from 5, 81 is finally 

switched on bye. Thus in both 3 and 4 there are contributions from e, 81 and Pl. 

Previously we calculated that the line x = 0, t > 1/V3 should be a Stokes line. 

However, the analysis above seems to suggest that the presence of such a line here 

would be a contradiction. The conclusion we draw is that despite the presence of 

the necessary dominant and subdominant terms, no Stokes phenomenon can take 

place. This is confirmed by the steepest descent analysis. 

We resolve this apparent paradox via a U-shaped higher order Stokes line 

defined by 

(3.44) 

that runs between infinities in 2 and 5 through the point (0, 1/ V3) (see Figure 

3.6). 

In terms of a Borel transform, the higher order Stokes phenomenon may be 

observed by an extension of the arguments used above to include endpoints and 

poles. This requires a combination of techniques (see [28], [10]' [34], [35]). A short 
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----- --

x 

Figure 3.5: The six regions in the (x , t > 0) half-plane in which different asymptotic 

behaviours for II are possible. These regions are delineated by Stokes lines. The notation 

"es" , for example, refers to an endpoint switching on a saddle contribution. The dashed 

Stokes line between V and VI is active, but irrelevant. The dotted line between regions 

III and IV is an inactive Stokes line. 
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Figure 3.6: The Stokes lines and the higher order Stokes line for h. 

calculation results in an exactly terminated expansion for each type of asymptotic 

expansion. 

The endpoint expansion is 

N-l 

T(e)(E) = 2: Tje)Er + RW. (3.45) 
r=O 

The remainder term may be written exactly as 

(3.46) 

which has within it a contribution from the pole and from the saddle. Re-writing 

the remainder to include these terms gives 

N-l N 100 -u N 
~ T(e) r _ ~ ~ d e u 
~ r E ~ N+l U( ) 
r=O P Fep 0 1 - ];e: 

+ dv T(m) ~ EN 100 
e-vv

N
-

1
/

2 (F.) 
~ 2i7r Fe%+1/2 0 (1 _ ;.:.) v' 

(3.47) 

where gp is the residue of Ir at p = ±l. Note that the integral containing Fep is 

an explicit integral, since the contribution of a pole to the remainder term can be 

evaluated explicitly. In a similar way, the expansion about s can be written as 

M-l M 100 -u M-l/2 
~ T(SI)Er _ ~ E gp du--;e,--u __ ""7'" 

~ r ~FM+l/2 (1 U€ ) 
r=O p SIP 0 - F

s IP 
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Im(x) 

Re(x) 

Figure 3.7: The regular Stokes lines plus the bean-shaped higher order Stokes curve 

plotted in the complex-x plane. 

(3.48) 

Note that while there is again an explicit contribution from the poles, there is 

now only a single further implicit s2-dependent integral contribution. There is 

no contribution from the endpoint since in general saddle points do not observe 

endpoints. A corresponding exact expression for T(S2) can be obtained by letting 

The first hyperasymptotic expansion is then obtained by inserting (3.48) into 

(3.47), since this becomes 

(3.49) 
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hIgher order curves 

~ 

-
---.. 

Im(x) 

Figure 3.8: This figure shows the coincidence of the real (x, t) plane with the complex 

x-plane. The higher order lines meet at the point x = 0, t = 1/ yI3, shown by the black 

dot. 
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Thus 

(3.50) 

The terms crucial to understanding the absence of a Stokes line at x = 0, t > 1/V3 
are 

+ 

+ (3.51) 

For x = 0, t < 1/ V3, the single integral encounters a pole since Fep > 0, and 

in doing so generates a Stokes phenomenon between e and p = +1. As t advances 

and crosses the higher order Stokes line where Fesl / FS1P > 0, the double integral 

encounters a pole. The residue of this pole at u = FS1P / Fesl exactly cancels the 

single integral. The remainder term of T(e)(E) no longer contains a contribution 

from p = +1 at this exponential level and no Stokes phenomenon is generated 

between e and p = +1. This is why there is no Stokes line for x = 0, t> 1/V3. 
A further significant consequence of this example is the necessity to include 

exponentially sub-subdominant terms in the large time asymptotic analysis. For 
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just 
endpoint 

V 

---
,," 

.,.." 
-_ ... " VI 

endpoint4-
Badillepeint 

x 

Figure 3.9: The asymptotic contributions in each region for the complete expansion of 

generated by the sum of integrals in (3.37) 

x > 0, t ~ 0, the dominance of the asymptotic contributions is (cf. (3.43)) 

(3.52) 

The long time behaviour in region 3 involves all 3 such contributions, with e-JsdET(sI) 

a decaying function of time but e-Jp;/€T(pI) is independent of time. Consequently 

e-Jp;/€T(pI) develops as the principle time-independent oscillatory background to 

the monotonic e- JelET(e). If the sub-sub dominant e-Jp;/€T(pIl had been initially 

neglected as irrelevant near to t = 0, then an incorrect large-t, finite-x behaviour 

would have been predicted. This can be verified by carrying out a similar analysis 

for the other integrals and combining the results. 

Figure 3.9 shows the overall combination of terms that contribute from the 

sum of the four integrals. For the integrals hex; E) and 14(x; E), a single Stokes line 

exists along the whole of the t-axis. Superposing this on the integrals h (x, t; E) and 

hex, t; E), we find that the composite expansion has a Stokes line along the t-axis 

for t > 1/ v'3. This does not alter the role of the higher order Stokes phenomenon, 

which has determined the constituent Stokes behaviour of h (x, t; E) and hex, t; E). 

Hence, in regions I, VI and V, only the endpoints of the four integrals contribute 

to the asymptotics. In regions II and IV, there are also contributions from the 

saddle points, and region III is the only region where the pole also contributes. 
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t 

Figure 3.10: The middle plot is the solution of the PDE (3.3) minus arctan x with E = 

0.125. The bottom plot is the result of taking leading-order behaviours of all asymptotic 

contributions in each region of Figure 3.9, and the top plot at the top is the same, except 

that the contributions from the sub-subdominant poles is omitted. 
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(i) 

u(x,30) 
10 

-. 
-so 

(ii) 

-. 
-so 

(iii) 

i -4 

-25 25 so 7S 100 

-25 25 so 7S 100 

I ~--~~--~--~--~~~~--~--~ I -50 -25 25 50 75 100 

Figure 3,11: Plot (ii) shows the exact solution of equation (3.22), for t = 30, E = 0.5. 

The other two plots are the results of taking the leading order asymptotic contributions 

from each region (see Figure 3.9; plot (i), however, does not include the sub-subdominant 

pole contribution. It is clear that this term must be included for an accurate result. The 

visible 'bumps' at x :::::; -30 and x :::::; 60 are caused by the nearby caustics in the complex 

x-plane. 
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Figure 3.10 (see also Figure 3.11) shows a comparison of a numerical evaluation 

of the sum of the four integrals in (3.37) in the real (x, t)-plane against the leading 

order behaviours of the asymptotics within each Stokes region for f = 0.125. The 

plot in the middle of Figure 3.10 is the sum of the four integrals. The brightness 

indicates the height. The plot at the bottom of Figure 3.10 is the result of taking 

just the leading order behaviours of all asymptotic contributions in each region, 

as detailed in Figure 3.9. The agreement of all three is obvious in regions IV, V 

and VI when x < O. The asymptotic approximation arising from the neglect of 

the sub-sub dominant pole contribution (the top plot) is, however, at odds with 

the exact result in region III. The exact wave structure is dominated at larger 

times in this region by the initially sub-subdominant pole contribution. A neglect 

of this would have resulted in a false conclusion being drawn as to the large time 

behaviour. Finally, only in the neighbourhoods of the active Stokes curves do we 

observe that the sum of the leading order behaviours changes discontinuously. 

The example presented in this section has also been studied by Chapman 

and Mortimer [52]; they have based an alternative approach on the work of Olde 

Daalhuis et al. [14]. 

3.4 Summary and Conclusions 

In this chapter we have shown how the application of existing hyperasymptotic 

techniques to a PDE system reveals the higher order Stokes phenomenon. It is 

fair to say that it was previously known that this extra piece of information was 

necessary to explain the asymptotic behaviour behind some systems, but here we 

have presented for the first time a full explanation and reasoning for this phe­

nomenon. Above all, we have highlighted that small exponential terms, however 

unimportant they may seem at first glance, should not be disregarded from an 

asymptotic approximation. As we have seen, they can sometimes grow to domi­

nate the solution at a later time, and although numerically they may have a small 
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effect on things, they are critical to the understanding of the behaviour behind the 

results. 

Importantly, the higher order Stokes phenomenon is not restricted to PDEs. 

Its generality was demonstrated by Olde Daalhuis [50], who discussed the higher 

order Stokes phenomena attached to a particular integral of an inhomogeneous 

ordinary differential equation with a large parameter. 

This chapter has highlighted two interesting factors of the higher order Stokes 

phenomenon. The higher order Stokes phenomenon is, in fact, just as likely to 

occur as a regular Stokes phenomenon. Also, a higher order Stokes line remains 

invariant under changes in the small asymptotic parameter. These results stem 

from the fact that for a higher order Stokes phenomenon to occur, we require only 

that 
F 
~>O 
Fjk 

(3.53) 

for singularities i, j, k. Inherent in this definition is the collinearity of the 3 points, 

which at first may mislead us into thinking there is an extra constraint over a regu­

lar Stokes phenomenon. This is not true, since any two points lie on a straight line. 

The definition of a higher order Stokes phenomenon also appears independently of 

the asymptotic parameter, so although Stokes lines may change with a change in 

this parameter, a higher order line does not. 

The work in this chapter appeared in print in 2004 [49]. 
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Chapter 4 

The Role of the Higher Order 

Stokes Phenomenon in Shock 

Wave Formation 

4.1 Burgers' Equation 

Having rigourously examined the nature of the higher order Stokes phenomenon 

and demonstrated its effects on a PDE system, we will now make the logical 

step forward of studying the effects of the higher order Stokes phenomenon on a 

nonlinear PDE. 

In particular we will examine the role it plays in the development of smoothed 

shock waves via Burgers' equation [54]. Burgers' equation is well understood, and 

as such is a trivial example. However, the pedagogical nature of the problem will 

help us gain extra insight into the underlying structure of the higher order Stokes 

phenomenon. 

Much previous work has been carried out on Burgers' equation, analysing the 

structure of the singularities in the problem; for example, see Senouf et al. [53]. 

However, the following work is approaching the problem from a new perspective. 
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Burgers' equation is 

( 4.1) 

-00 < x < +00, t> 0, 0 < E « 1, 

u(x, 0) = uo(x). 

It is possible to make a change of variables to transform Burgers' equation into 

the form of the diffusion equation, from which a solution to (4.1) can be found via 

a Green function [55]. Let 

u(x, t) = vo(s, T) + VI (S, T) + V2(S, T), (4.2) 

such that Vo = 0(1), VI = O(e-f/E
) and V2 = 0(e-2J / E

). By substituting this back 

into Burgers' equation and balancing the terms at exponential orders, we find that 

in general 

(4.3) 

There is a formal solution in terms of a Green function 

V(S, T; E) = 1t

oo 1: G(s, T; x, T)F(X, T)dX dT, ( 4.4) 

and it can be shown that 

H(T-T) ((S-X)2) 
G(s,T;X,T,E) = exp - 4 ( T)' 

2EV1T(T - T) E T-
(4.5) 

We can also solve Burgers' equation in the following way. Via the Cole-Hopf 

transformation ([56], [57], [58]) 

a 
u = -2E ax log(¢(x, t)) (4.6) 

we can rewrite equation (4.1) as 

(4.7) 

The initial condition 

u(x, 0) = uo(x) (4.8) 
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leads to 

¢(x,O) = ¢o = exp ( ;:) fox uo(s)ds. (4.9) 

The solution to (4.7) is 

¢(x, t) = ~ 100 

¢o(X) exp (_ (x ~ X)2) dX (4.10) 
y411"Et -00 Et 

which can be derived using Fourier transforms. If we now write 

1 100 

¢(x, t) =~ exp( - f(x, x, t)/2E)dx 
y 411"Et -00 

(4.11) 

where 
(x X)2 (x 

f(x, X, t) = 2t + Jo uo(s)ds (4.12) 

then the general solution of Burgers' equation has the form 

J~OO(¥) exp{ - f(x, X, t)/2E}dX 
u(x, t) = fOO 

-00 exp{ - f(x, X, t) /2E }dX 
(4.13) 

Let us split each of these integrals and write the solution as 

( ) _ JoOO(¥) exp{ - f(x, -X, t)/2E}dX + JoOO(¥) exp{ - f(x, X, t)/2E}dX 
u x, t - roo roo 

Jo exp{ - f(x, -X, t)/2E}dX + Jo exp{ - f(x, X, t)/2E}dX 
(4.14) 

Note the form of this solution suggests that we will have an array of Borel plane 

singularities (see Section 2.3.1). 

4.2 Analysis of Stokes lines and Caustics 

4.2.1 Steepest descent analysis 

From the solution to Burgers' equation (4.13) via the Cole-Hopf transformation, 

we note that the saddles of the integral occur where fx = 0, which means 

x = X + u(X, O)t ( 4.15) 
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at a saddle (cf. equation (4.12)). Note that this is also the equation of the char­

acteristic rays. The rays of the equation passing through the point (x, t) originate 

at (X,O). Imposing the initial condition 

means that 

and 

1 
u(x,O) = --2 

l+x 

(x - X)2 l x 1 
f(x, X, t) = 2 + dX-

1 
-2 

t 0 + x 

t 
x = X + 1 + X2' 

(4.16) 

(4.17) 

(4.18) 

that is, there are three saddles for the problem (corresponding to the 3 solutions 

of (4.18) for X). The saddle heights are given by 

fp == f(x, X p, t), p = 1,2,3. (4.19) 

Figures (4.1) and (4.2) show the caustics of this integral, at which two saddle 

points coalesce (fx = fxx = 0) and the asymptotics blows up. These lines are 

given by the equation 

(4.20) 

There are two real and two complex caustics in the (x, t)-plane under considera­

tion. We will be concerned only with the real caustics. The area 'between' these 

caustics in the real (x, t)-plane is where the classical smoothed shock of Burgers' 

equation forms. 

H we take a section of Figure (4.2), constant in t, then the caustics reduce 

to a pair of turning points. We are interested in what happens as we cross the 

caustic in the (x, t)-plane and in looking at the Stokes phenomena that occur in the 

neighbourhood of these points. We choose the point Xc = 5, tc = 227 (170 - 22V22) 

and walk around this point in the complex x-plane. Since we are on a caustic, 

the usual asymptotic techniques break down here, so we expand the positions of 
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Im(x) 

i 

Figure 4.1: Caustics in complex-x space for real t and a path of analytic continuation 

around them . 

Figure 4.2: The caustics of Burgers' equation with u(x,O) = H~X2 can be seen at the 

tangency of the rays. 
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the saddles and the saddle heights in a Taylor series about the point Xc on this 

t-section. We find that the saddles are located at 

where 

ex + (3(x - 5) + 0 ((x 5)3/2), 

a + I'(x - 5)1/2 + ,8(x - 5) + 0 ((x - 5)3/2) , 

a -I'(x - 5)1/2 + ,8(x - 5) + 0 ((x - 5)3/2) , 

(3 

,8 

I' = 

1 
'3(5 + 2)22), 

1 
'3(5 - )22), 

:9 (61 + 10)22), 

9
1
9 (19 5)22), 

.!:...J28 (2 -10. 
99 Vu 

As usual we define the difference in saddle heights to be 

t 

Fnm(x, t) = fm(x, t) - fn(x, t). 

( 4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

( 4.27) 

(4.28) 

(4.29) 

We find that in the vicinity of the turning point it is only saddles X 2 and X3 which 

are coalescing, since there is no vanishing of F31 or F21 at this point. 

Having done this we can calculate the position of the potential Stokes lines, 

defined by 

Si>j = {x E C, t E R : fJ(x, t) - fi(X, t) > O}, (4.30) 

via steepest descent plots. These are shown in Figure 4.3. 

The presence of the arctan X in f means that there are logarithmic branch 

points at x = ±i, so there are an infinite number of Borel plane singularities 

arising from the three basic saddle points. The calculations to find the Stokes 

lines use only the saddles on the principal Riemann sheet. 
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Im(x) l3, 21, 23 : 

Re(x) 

Figure 4.3: The combined Stokes lines for Burgers' equation, with x = 5, t = ;7 (170 

22V22). The notation 13, for example, represents the Stokes line where saddle 3 is switched 

on by saddle 1. The line running along the negative x-direction Xc is a possible Stokes line 

between 13, 21 and 23. 
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Irn(x) 

o 

Re(x) 

Figure 4.4: The signature bean-shaped higher order Stokes curve in the complex-x plane 

(t = 227 (170 - 22V22)). 

The higher order Stokes line is where the principal sheet values of iI, 12, h 

are collinear in the Borel plane. The line is defined by 

_ { . fj(x, t) fk(x, t) } 
Sijk - x E C, t E R. hex, t) _ hex, t) E R , (4.31) 

for i i= j i= k. The resulting plot is shown in Figure 4.4. In order to determine 

the adjacency of the saddles, we plot the steepest descent contours in the complex 

x-plane. We walk around the turning point from arg x = e = 0 to e = 'if. An 

example of a contour plot and the steepest descent lines through the saddles is 

shown in Figure 4.6, which represents the e = 'if /18 plot. 

At first glance, this is a confusing and slightly ambiguous diagram. It can 

be interpreted in the following way. Since the steepest paths must run from -00 

to +00, we begin in the valley at -00 and pass over saddle 2 before following 

around through the branch cut at +i. This means that we drop onto an adjacent 

Riemann sheet. The contour then sweeps back into the valley at -00, picking 

up half a contribution at saddle 2 on the way (due to the "dog-leg" encountered 

there [28]). In the valley, the contour connects with an another contour which 
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Figure 4.5: The Stokes lines in the complex-x plane with the higher order Stokes line 

superimposed around the SCP at XC. 

Figure 4.6: A steepest descent plot at (J = 7f/18. The branch cuts at ±i are clearly 

shown. 
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Figure 4.7: The contour plot at () = Jr, showing the apparent linking of all 3 saddles. 

However, there is no Stokes phenomenon taking place here. (Refer to the text for details .) 

runs back through the cut (and thus back onto the principal sheet) where it passes 

through saddle 1 and then on to +00. Thus, only saddles 1 and 2 contribute to 

the asymptotics, but the branch cut means that we may have contributions from 

different Riemann sheets. This situation continues as we walk around the turning 

point, until we reach the e = 7r position, when all 3 saddles link up. 

Figure 4.7 shows this point. There appears to be a Stokes phenomenon occur­

ring here between saddles 2 and 3, suggesting that the contour simply runs from 

-00 to +00 straight through each saddle. This is not the case; the way the plot 

must be interpreted is as follows. The contour from -00 runs straight through 

saddle 2, picking up a whole contribution, and then runs over saddle 3 turning 

through a right-angle (picking up a (directionally) negative 1/2-contribution) and 

across the branch cut onto an adjacent Riemann sheet. It then picks up a neg­

ative 1/ 2-contribution from saddle 2 before returning to the valley at -00. The 

contour then returns across the branch cut in the same way, picking up a positive 
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1/2-contribution from saddle 2. After crossing the branch cut and returning to 

the principal sheet, the contour picks up a final 1/2-contribution from saddle 3 

before passing through 1 and on to +00. The net effect is that saddle 3 makes 

no contribution to the asymptotics here. Thus we see how Figure 4.7 is, in that 

sense, misleading. 

The conclusion we can draw from the above analysis is that the Stokes line 

Sl>2 at 0 < e < 7r /18 is an active Stokes line. At e = 7r /3 there is also an active 

Stokes line but the fact that saddle 3 is not involved in the asymptotics at this 

point makes it irrelevant. At e = 7r we have crossed the higher order Stokes line, 

which has the effect of turning Sl>2 off so that at e = 7r no Stokes phenomenon 

takes place (which would essentially remove 2), and again because 3 is not involved 

here, neither of the other possible Stokes lines is relevant at this point. 

In this case, we have seen that the method of steepest descent is not necessarily 

the most efficient way of calculating the position of the Stokes lines, and the effect 

of the higher order Stokes line, due to the ambiguousness nature of some of the 

contour plots. For a clearer view of what is happening, let us look at the problem 

in the Borel plane. 

4.2.2 Borel plane analysis 

Since we are dealing with initial conditions that lead to 3 saddle points, Dingle [4] 

says that we can write the general solution (4.13) as 

where 

Thus 

u(x, t) rv 

e-fO/ETCO) + e-h/ET(1) + e-h /ET(2) 

e-fO/ESCO) + e-h/ES(1) + e-h /ES (2 ) , 

u(x, t) rv 

TCO) (1 + [e-Ch-fo)/ETC1) + e-Ch-fo)/ETC2)] (TCO))-l) 

SCO) (1 + [e-Ch-fo)/ESC1) + e-Ch-fo)/ESC2)] (SCO))-l) , 
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(4.32) 

( 4.33) 

(4.34) 



TCO) 
SCO) (1 + [cCh-fo)/€TC1) + e-Ch-fo)/€TC2)] (TCO»)-l) 

x (1 + [e-Ch-fo)/€S(1) + e-Ch-fo)/€SC2)] (8CO»)-1) -1, (4.35) 

TCO) ( [ SCO) 1 + e-Ch - fo )/€TC1) + e-Ch - fo )/€T(2)] (TCO»)-l) 

00 ( l)T 
X ~ ~O) (e- Ch - fo )/€S(1) + e-Ch - fo )/€sC2)f· ( 4.36) 

The different terms that can arise from the multiplicative expansion of (4.36) tell us 

where to expect the branch points in the Borel plane. Let us rename the exponents 

(4.37) 

and note that there is a third present, except that we now have fCO) = O. 

We now see that in general we should expect to find Borel branch points at: 

This means that we have an infinite array of singularities in the Borel plane; a 

figurative example is given in Figure 4.8. 

Our chosen initial point is on the real x-axis, at x = Xc + 0.5 (point 1). This 

point does not lie on a Stokes line. We walk around the semi-circle set out in 

Figure 4.9 in an anticlockwise direction; Figure 4.10 reveals the layout of the f's 

in the Borel plane at selected points. By the time we have reached point 2, we 

see that f (2 ) has risen through the branch cut emanating from 0, which tells us 

that a possible Stokes phenomena has occurred between 1 and 2. Topologically 

the Borel plane then remains the same until we reach point 3, which we know 

should lie on a Stokes line. Indeed, there is a potential for a Stokes phenomena to 

occur between f (2 ) and f (1 ), signified by the lining up of f (2 ) and f(1) in the Borel 

plane. At point 4 we are approaching the area where we expect the higher order 

Stokes line to be. If we compare what is happening between points 4 and 5, we see 

that at some stage all three singularities will have been perfectly aligned (albeit 
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3r1) ...... 

2r1) 
.0-'" ... ... 

rl) 
~ ... 

... ... 
... .0--'" 

rO) .... ... 
.... .... 

.... "0-
r2) ........ .... "0-

2r2) .... .... 
... -0. ... 
3r2) ..... 

Figure 4.8: A figurative example of an array of Borel singularities, as seen from O. 

path 

~ .... 
•• : • 

higher order 
Stokes line 

13 

21 

23 

13 

Figure 4.9: The path taken around the point Xc in the complex plane. We walk anti­

clockwise from () = 0, which is the point on the real x-axis to the right of Xc' 
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Figure 4.10: The central picture shows the complex x-plane for constant t = 227 (170 -

22../22, illustrating t he Stokes lines, higher order Stokes lines and t h e chosen path around 

them, For each of t he highlighted points 1- 8, an accompanying diagram of t he Borel plane 

is shown, each as viewed from the singularity j(O)=O. The thick-rimmed circles are the 

j(1) . Refer to the main text for an explanation of each diagram. 
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diagonally), confirming that a higher order Stokes phenomenon has occurred. As 

viewed from singularity 0, across a higher order Stokes line the singularity j(2) 

moves across a cut emanating from j(1) and onto a different Riemann sheet from 

o. 
Of course, this case is different to that in the previous chapters. Rather than 

having a finite number of collinear singularities, we are now dealing with an infinite 

set and hence an infinite number of Riemann sheets. (Similarly, across the higher 

order Stokes line, when viewed from nj(2), the singularity at (n + 1)j(2) will move 

across at cut emanating from nj(2) + j(1) and onto a different sheet from nj(2).) 

This means that it is possible for all of the singularities j(2), 2](2), 3j(2) ... to be 

directly invisible from 0, and also that nj(2) cannot see (n + 1)j(2) either. 

At point 6, the singularities are no longer collinear with one another, although 

the (n+ 1)j(2) remain collinear with 0, even though they are are different Riemann 

sheets. At point 7 the singularities are again all collinear. There is the potential 

for a Stokes phenomenon between 0 and the (n + 1) j(2), or between 0 and the 

(n + 1)](1). However, the (n + 1) j(2) are now on different Riemann sheets to 0 

and so cannot cross the Borel integration contour on the principal Riemann sheet, 

hence the Stokes line between the two singularities is inactive. There is no Stokes 

phenomenon between 0 and the (n + l)j(1) at this point either since, as we saw 

above, ](1) does not contribute to the asymptotics here. (The potential exists for 

a Stokes phenomenon between j(2) and j(1), or even 0 and ](2), but we will not 

concern ourselves with this here.) 

On the real x-axis (where e = n), the conditions for a higher order Stokes line 

are seemingly also fulfilled: the three singularities are collinear (see plot 7 of Figure 

4.10). This is a necessary but perhaps not sufficient condition for a higher order 

Stokes phenomenon to be taking place; the calculations above did not initially 

produce a higher order Stokes line at this position. Closer investigation is needed 

here. There is also a branch cut present in the calculations, extending from the 

turning point (thus far neglected from the plots of the higher order Stokes line). 

83 



1.5 20 

15 

0.5 

8 A 
10 

Imx 0 

-0.5 5 

-1 
0 

-1.5 2 2.5 3 3.5 4 4.5 

Rex 
2 3 4 5 6 

Rex 

Figure 4.11: The paths indicated on the above diagrams from A to B are equivalent. 

These two together mean that things are a little complicated for e > 1[", as we enter 

the lower half plane. 

The steepest descent contour plots show that there is a smooth transition 

across the x-axis at e = 1[", but the singularities f(2) and j(1) instantaneously 

switch position, while at the same time, the adjacency of the saddles is switched 

as well (saddle X3 is now adjacent to Xl, not X 2). In order for the story to 

make sense, the interpretation is that the branch cut accounts for the swapping 

of the saddle positions, whilst a higher order Stokes phenomenon accounts for the 

swapping of adjacency at this point. We find that if this is the case, the second 

Stokes line at -1["/18 < e < 0 is active, switching saddle X 2 off and leaving saddle 

Xl as the only contributing saddle. Thus the circle around the turning point is 

complete. 

We will now show how the higher order Stokes phenomenon is crucial to the 

formation of smoothed shock waves in this problem. Let us move along the line 

SO>l in the negative x-direction (as indicated in Figure 4.11), which corresponds 

to walking away from point 7 in the direction of point 8 in Figure 4.10. At the 

point A in Figure 4.11, we are sat on a caustic where saddles X2 and X3 have 
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virtual caustic 

/----
-_ ..... - @ 

L:x ® 

Figure 4.12: When is a caustic not a caustic? This diagram indicates the regions P and 

Q, and the approximate position of the virtual caustic. The form of u(x, t) changes from 

P to Q (see equations (4.39) and (4.42) respectively). 

coalesced, which of course means that j(1) and j(2) coalesce in the Borel plane. 

At the point B, the same saddles again coalesce. 

An analysis of the Borel plane along the line between A and B reveals the 

following. We find that all of the (n + 1) j(2) rush towards 0 and appear to coalesce 

at x ~ 3.65. We are tempted, therefore, to announce the presence of a third caustic. 

However, this is only an apparent coalescence, and in fact we have uncovered a 

'virtual caustic' (Figure 4.12). The lack of a third caustic can be explained by the 

above analysis of the Riemann sheet structure. It must be the case that 0 and the 

(n + 1)j(2) lie on mutually different Riemann sheets, and do not actually coalesce. 

Thus we only have a virtual turning point. Contour plots confirm that there is no 

saddle coalescence at this point. Classically, this is position of the smoothed shock, 

where the solution changes rapidly from one point to the next. The higher order 

Stokes phenomenon is the reason why the singularities lie on different Riemann 

sheets, and without it we would find that the shock would in fact be a caustic. 

We now analyse the Cole-Hopf solution (4.13) in the region of the caustic. 
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Since we have 

( 4.38) 

then it is clear that in region P of Figure 4.12, the leading order solution is just 

T(O) 

u(x, t) = 5(0) + O(c) ( 4.39) 

since e- j(1) /cT(l) + e- j(2) /ET(2) is exponentially small. Inside the caustics (region 

Q in Figure 4.12) we know from the Borel plane analysis that we are in a region 

where j(l) can approach 0. Hence, C j (2)/ET(2) can approach 0(1) and interfere 

with other 0(1) terms. Terms in e- j (1)/ET(l) remain exponentially small. Thus, 

in region Q, 

u(x,t) (4.40) 

(4.41) 

( 4.42) 

Note that the form of u(x, t) in region Q takes the form that was discussed in 

Section 2.3.1. 

Let us return to the Cole-Hopf solution (4.13), and consider the leading order 

two saddle problem 

( 4.43) 

where 

( 4.44) 

(4.45) 

where j = 0, 1. From (4.13) we know that 

(0) _ x - Xo 
qo - t ' ( 4.46) 
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but at a saddle we have 

(4.47) 

(with the convention that aj (x, t) = aj (x)), thus at saddle 0 we can write 

(4.48) 

and also 

(4.49) 

It is also clear that 

(4.50) 

Thus the leading order solution is 

u(x, t) rv (4.51) 

(4.52) 

(4.54) 

(4.56) 

87 



We can simplify this expression since we have 

x = Xo + ao(Xo)t, 

x = Xl + aO(Xl)t, 
Xl-XO 

=? t=-----­
ao(Xo) - ao(Xl )' 

( 4.57) 

( 4.58) 

(4.59) 

With a little simple algebraic simplification, the result is 

u(x, t) rv ao(Xo) + e-[J(1)-j(O)l/E (ao(Xl ) - ao(XO)) 

{ 
ao(XO) ao(Xl ) + a~(XO)(Xl - XO)} (4.60) 

x ao(Xo) - ao(Xl ) + a~(XI)(Xl - Xo) . 

If we repeat the above calculation for the full solution case, then (4.55) becomes 

Let 

then 

Since 560
) = 1, 

So, we have 

(4.62) 

(4.63) 
r r 8 

00 n 

=? LT~O)En = L L an_85~0)En (n = r + s) (4.64) 
n n=O 8=0 

n 

an = T~O) L an_85~0). 
8=1 

(0) 5(0) () To = ao 0 = ao Xo , 

(1) () To = aO Xl , 

560
) = 561

) = 1, 
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(4.65) 

( 4.66) 

(4.67) 

(4.68) 



and thus 

a - T(O) - a S(O) 
1- 1 01' (4.69) 

Let us define 

T(O) rv _1_ (r - 1)!r,(1) 
T 2' fT 0' 7rZ 1 

(4.70) 

where 

(4.71) 

Then 

(4.72) 

(4.73) 

So 

(n - I)! {rr(l) _ S(l) _ } 

2 'fn .1- 0 ao 0 ..., 
7rZ 1 

(4.74) 

(n - 1)' 
2 'r' {ao(Xr) - ao(Xo)} , 

7rZ 1 
(4.75) 

and as Xl -7 Xo (ie., near a caustic) then 

(4.76) 

We will not often have the luxury of an integral solution to a problem, which 

helps us considerably on our way to finding the higher order Stokes behaviour, be 

it through steepest descent methods or Borel plane methods. We have highlighted 

how steepest descent approaches to complicated problems may not always provide 

clear solutions. With this in mind we will now summarize an approach to the 

above problem by Howls and Olde Daalhuis (henceforth referred to as HD)([62], 

see also [63]), who arrived at the same results without an integral solution to 

Burgers' equation. We will present the outlines and important points of their work. 

More details and calculations are given in their paper. The extra complications 

introduced into the Borel analysis by nonlinearities are also discussed elsewhere; 

for example, see [20]. 
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The problem is the same as equation (4.1) above, with initial condition (4.16). 

Since the assumption is that there is no integral solution available, HD approach 

the problem from an exponential asymptotics point of view, and seek a formal 

solution of the form 

00 00 

( 4.77) 
n=l n=l 

where 

(4.78) 
r=O 

00 

u(n,j) (x, t; c:) rv e-njj(X,t)/E L a}n,j) (x, t)c:T , (4.79) 
r=O 

j = 1,2 n = 1,2,3, .... 

By substitution into (4.1), it can be seen that ao(x, t) satisfies the inviscid Burgers' 

equation 
oar oao 
ot + ao ox = 0, 

and for r 2: 1 the ar(x, t) satisfy 

1 
ao(x,O) = -1--2 ' 

+x 
(4.80) 

(4.81) 

Similarly, balancing at O( e-nj /E) leads to finding that the exponential functions 

fj (x, t) satisfy the first order nonlinear equation 

(4.82) 

The boundary data for these functions can be found by consideration of the rays 

of (4.80). There are 3 rays through each point (x, t). These are the lines 

x=xj+ao(xj)t, j=0,1,2 (4.83) 

where here and henceforth, ao (x j , 0) is abbreviated to ao (x j ), and the x j are the 

intersection points of these rays with the complex plane t = O. (They are also the 
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locations of the saddle points of the Cole-Hopf solution.) On these rays the ao 

take the constant values 

j=0,1,2. (4.84) 

The root Xo is chosen to be the one that is real for all real (x, t). The families 

of rays generated by the Xj are tangential at the caustics which simultaneously 

satisfy (4.83) and 

0
_ dao(Xj) 
- 1 + d t, 

Xj 
j = 0,1,2. (4.85) 

The caustics are as before (equation (4.20)). 

On the complex caustic with Im(x) > ° (see Figure 4.1), roots Xo and Xl 

coalesce and so the caustic is called COl. On the complex caustics with Im( x) < 0, 

Xo and X2 coalesce and is labelled CO2 . On the real caustics C R, Xl and X2 coalesce. 

The exponents fj(x, t) must vanish on the complex caustics, since here they 

coalesce with the exponents of the leading order solution, ie., fo(x, t) == 0, so that 

the exponential correction terms there are of the same order as the first series in 

(4.77). Thus the boundary data for the solutions of (4.82) are 

fj (x, t) = ° on COj, j = 1, 2 ( 4.86) 

and 

h (x, t) = h(x, t) on CR· (4.87) 

(Note that fj = f(j) from the previous section.) Direct analysis of the PDE reveals 

that 

11Xj 

fJ(x(xo, Xj), t(xo, Xj)) = - ao(z)dz 
2 Xo 

1 
4(ao(xo) + ao(xj))(Xj - xo), j = 1,2. 

(4.88) 

It can also be shown that 

ao(xI) - ao(xo) a~(xo)(XI - xo) 
ao(xI) - ao(xo) - a~(xI)(XI xo)' 

( 4.89) 

(cf. equation (4.60)). This result holds for all values of Xo and Xl. 
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0.7 

Summed Transseries 

-4 -2 2 6 

Figure 4.13: The wave produced by Burgers' equation for t = 5 and E = 0.05. The 

classical position of the smoothed shock is shown, as well as an indication of the position 

of the summed transseries. 

HD now turn to the structure in the Borel plane. It is a complicated problem, 

but it will suffice to provide only an outline of the full picture here. 

The location of the singularities visible from T = fo(x, t) are as indicated in 

Figure 4.10 in the previous section. From (4.77) it is possible to deduce that 

in the Borel plane (logarithmic) branch-points exist at T = nf;, j = 1,2, n = 

1,2,3, .... A detailed analysis of the transseries or of the Cole-Hopf representation 

shows that the Borel transform of u(l,l)(X, t; T) must see a branch-point at T = 

h(x, t). Likewise, the Borel transform of u(1,2)(x, t; T) must see a branch-point at 

T = !I (x, t). Note that for certain values of (x, t) these singularities may appear 

to coalesce in the Borel plane. However only when the singularities lie on the 

same Riemann sheet can this give rise to actual caustics and divergences in the 

asymptotic representations. 

Now HD consider the analytic continuation of the transseries expansion in the 

real plane from regions outside the CR to inside. The chosen point is Xc as above. 

The path taken in the complex x-plane is as shown in Figure 4.9. This path 
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avoids any singular behaviour in the exponentially small transseries u(n,1) and 

u(n,2). (Note that u(O) is actually regular at CK) 

The analysis of the Borel plane is essentially as above, and we will refer to 

the central diagram of Figure 4.10. At the point 1, to satisfy the decay of u as 

Ixl ----7 00, comparison of the full template for the asymptotic expansion reveals 

that C1 = C 2 = O. Hence 

u(l, t; c:) rv u(O)(l, t; c:) (4.90) 

is the complete asymptotic expansion at that point. 

The Stokes lines are revealed in the same places as in the previous analysis. 

After crossing the first line (at point 2) the asymptotics is now a transseries that 

takes the form 
(Xl 

u(x, t; c:) rv u(O)(x, t; c:) + L K o\u(n,1) (x, t; c:), (4.91) 
n=1 

where KOl is a Stokes constant (in fact K01 = 1). 

The activity of each Stokes line is examined and the results are the same as 

revealed above. 

It is important to recall that x = Xc is not a turning point/caustic for fo and 

(n + l)h. Hence the activity of the Stokes curve SO>1 has changed at a regular 

point across the higher order Stokes curve that passes through x = xc. 

The 'dominant' part of the transseries on the real x-axis inside the caustics is 
(Xl 

u(x, t; c:) = ao(x, t) + L K01 e-nh(x,t)/Ea~n,1) (x, t) + O(c:) (4.92) 
n=1 

as c: ----7 0+. Again, the exponentially small terms are included before the O(c:) 

because in this region h(x, t) may decrease to zero. 

By combining (4.78), (4.79) and (4.82), it can be deduced that 

(n,1) _ ( (1,1))n (_20h) I-n 
ao - ao ox' n = 2,3,4, .... (4.93) 

From this relationship the n-sum in the transseries (4.92) may be summed to 

obtain 
2KOla~1,1)(X, t)!!Jfe-h /E 

u(x, t; c:) = ao(x, t) + !!h. (11) + O(c:), 
28: + KOlao ' (x, t)e-h / E 

(4.94) 
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Comparing this result with equation (4.42) we see that both methods recover a 

similar form of the solution u(x, t) in this region. 

Continuing along from point 7 in the negative x-direction again sees the (n) h 

all move towards fo in the Borel plane, so we see the apparent third caustic. In 

this case an examination of the coefficients ar(x, t) shows that individual terms in 

the asymptotics do not diverge at this point; it is not a true turning point. The 

terms themselves in the transseries do not diverge at the position of the smoothed 

shock. 

This approach has shown that information regarding the higher order Stokes 

behaviour of Burgers' equation can be extracted without the integral form of so­

lution that we used at the beginning of this chapter and in the previous chapter. 

4.3 Summary 

This chapter has shown how the higher order Stokes phenomenon is relevant to 

smoothed shock formation in a nonlinear PDE. 

We began by analysing the Stokes structure of Burgers' equation using steepest 

descent methods. Due to the presence of branch cuts in the problem (arising form 

our choice of initial data), this proved to be an unsatisfactory way to approach 

the problem. We then changed to Borel plane analysis, which proved to be a more 

reliable and revealing method in extracting information on the higher order Stokes 

behaviour of the problem. 

We found that at the position of the smoothed shock, there is no caustic or 

turning point. The reason for this is that the higher order Stokes phenomenon 

causes the singularities to lie on mutually different Riemann sheets, and there is 

only a virtual coalescence. It is a very subtle, yet crucial role. 

Although this is a very specific example of a smoothed shock problem, chosen 

because of its pedagogical nature, we believe that the underlying results and analy­

sis are general. For both the integral approach and the 'direct' approach, if a Borel 
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plane structure exists for a given problem with infinitely many Borel singularities, 

then it must be the case that these singularities lie on mutually different Riemann 

sheets at a shock where the asymptotics does not diverge. 

The practicality of examining the effects of a higher order Stokes phenomenon 

should not be underestimated. The example of Burgers' equation was chosen as 

it is easily solved, providing a foot-up into the problem. The work included in 

the last section by Howls et al. provides an alternative which reaches the same 

conclusions as that of an integral approach. However, it should be noted that it is 

entirely dependent on being able to solve the equation (4.82), and often sufficient 

boundary data is lacking. In the next chapter will discuss this further. 

The higher order Stokes phenomenon has clearly given a valuable extra insight 

into the underlying analytic structure of the asymptotics. Canonical examples 

such as Burgers' equation should therefore be regarded as important, even though 

they may be examples of PDE's that are already well studied. 
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Chapter 5 

Discussion and Conclusions 

The Borel plane approach to the higher order Stokes phenomena is, in effect, a 

'plug and play' method. We have shown in this thesis that it works very well as 

a tool for determining the activity of Stokes lines and for determining the more 

subtle higher order Stokes behaviour of a given problem. 

In this final chapter, we will consider ideas which could lead to further areas of 

research in the future. The main one of these will be what we will call the 'direct' 

method approach to extracting the Stokes behaviour of a problem. In essence, 

this is a Borel-type approach without an integral solution. We have encountered 

this in the previous chapter through Howls and Olde Daalhuis' work on Burgers' 

equation. 

The new work in this thesis has focused mainly on PDE problems, both linear 

and nonlinear, and some interesting results have been uncovered. This should 

encourage further research of this type in PDEs. With this is mind, in this chapter 

we will briefly discuss formal methods of solving PDEs to produce integral solutions 

(in order to implement the integral approach, should a Borel plane structure exist), 

which are often hard to find or do not exist. We will then introduce and discuss at 

length work on the 'direct' method that has been carried out so far, and suggest 

future avenues of investigation. 
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5.1 Formal Solutions of PDE's 

There are a few approaches to solving a given PDE problem that may be con­

sidered. Perhaps an exact solution is easily found, by change of variables and 

simple integration, etc., but this is unlikely. We might attempt to solve a PDE 

directly using matched asymptotic techniques for an approximate result. It may 

also be possible that formal integral solutions may exist. For example, hyperbolic 

equations may be solved formally in terms of an integral solution via Riemann's 

method [55]. The Riemann function R(x, y) arises in the solution of the hyperbolic 

partial differential equation 

Lu = uxy + aux + buy + cu = j, 

u(O, t) = ¢(t), 

u(t, 1) = 'IjJ(t), 

¢(1) = ¢(O). 

R(x,y) is the solution of the equation 

with 

Rxy (aR)x (bR)y + cR = 0 

R(~, y) = exp [i Y 

a(~, t)dt] , 

R(x,71) = exp [.Ix b(t, 71)dt] , 

(5.1) 

(5.2) 

on the characteristics x = ~ and y = 71. The solution is then given by the formula 

u(x, y) = fox d~ l Y 
R(~, 71; x, y)j(~, 71)dT}. (5.3) 

By [35] this multiple integral can be rewritten as a single integral, and thus we 

have an integral solution of the form (2.84). 

Elliptic equations may be tackled in a similar way via Green functions, which 

will again lead to a formal integral solution for the problem [55]. Green functions 
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can also be applied to some parabolic equations, such as the diffusion equation. 

Consider the one-dimensional form 

¢(x, t)t = ¢xx + f(x, t). 

The solution is given by 

¢(x, t) = [00 I: G(x, t; y, r)f(y, r)dydt, 

with the associated causal Green function G(x, t; y, r) satisfying 

Gt - Gxx = r5(t - r)r5(x y). 

In this case, it can be shown that 

H(t-r) ((X- y )2) 
G(x, t; y, r) = 2J7r(t _ r) exp - 4(t r) , 

where H (t r) is the Heaviside function 

H(x) ~ 1: J(I')d< ~ { 
o x < 0 

1 x> 0 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

In many cases however, is it not a trivial exercise to find the value of G(x, t; y, r). 

The form of these solutions is interesting to us, because from them we may be 

able to develop theory linked to the areas we have discussed already. We may be 

able to deduce the existence of a Borel plane structure and of course this could 

introduce exponential asymptotic results for multiple integrals as a result. 

For example, consider the work of Balian and Bloch [59] (see also [60]). They 

studied the Helmholtz equation 

(5.9) 

where 'Ij; = 0 on a specified boundary S. We will not consider the physics of the 

problem here, only the outline of the mathematics. The Green function satisfies 

(5.10) 
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Thus 

G = is d 8Go(r,OO)j( ) (Ja.;:) OO,ro, 
S una. 

(5.11) 

where Go is known as the 'free' Green function. The variable (J measures out 

the boundary and n the outward normals from the boundary at a specified points 

a lying on the boundary. The function j is determined by the boundary condi­

tions. Equation (5.11) is then rearranged to find an integral equation in j, whence 

iteration leads to the full Green solution of the form 

G= is d 8Co(r,oo)C ( ) 
(J a.;:) 0 a, ro 

S una. 

is d d 8Go(r, oo)8Go(oo, (3) G ((3 ) + (Ja. (Jj3 ;:) 0 ,ro 
S una. 

is d d d 
8Go(r, oo) 8Go(oo, (38Go((3, i) C ( ) + (Ja. (Jj3 (J'Y ;:) 0 i, ro 

s una. 

+ (5.12) 

a, (3, ,,(, ... are points on the boundary S. The important thing from our point of 

view is that Go is known, and takes the following forms: 

Go 
-~ 

4Ho(klr rol) (2-dim) , (5.13) 

Go 
eiklr-rol 

(3-dim). (5.14) 
Ir - rol 

Since the Hankel function asymptotically goes like an exponential 

Hv(k) = f2ei(X-a.v ). x -+ 00, y;-;; (5.15) 

(where OOv = (2v + 1)i [12]) this means that the integrals in (5.12) begin to take 

the form that we require for our Borel plane method. If we now employ the results 

of Howls [35], we can reduce the string of multi-dimensional integrals to single 

integrals. We are then in a position to begin looking for Borel plane structures for 

the problem. 

We see, then, that there may be scope for approaching complicated PDE prob­

lems from the point of view of an integral Borel method. But what if this is 

not possible? The next section will discuss this idea and develop techniques to 

overcome this problem. 
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5.2 The Direct Method 

We begin by reviewing the work of Olde Daalhuis [61] (hereafter referred to as 

OD) who was the first to produce work on this approach. 

The PDE he studies is 

Ut 
2 1 

Ux = E Uxxx - 1 +ix' u(x,O) = -iln(1 + ix). (5.16) 

OD first rewrites the equation in terms of new variables S = x + t, r = t, such that 

U(x, t) = -i In(1 + ix) + v(s, r). (5.17) 

Thus (5.16) becomes 

(5.18) 

Substituting the expansion 

00 

v(s, r) rv L an(s, r)E2n (5.19) 
n=l 

into (5.18) obtains 

(5.20) 

and 

(5.21) 

It is easy to see that 

i i 
(l+i(s r))2 (l+is)2' 

(5.22) 

(5.23) 

This important step in the method highlights a possible drawback at this early 

stage. From the form of al (s, r) it can be seen that there will be blow up at 

s = i and s - r = i, so a general form for the an(s, r) can be extracted from this. 
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Therefore it is necessary that al (s, T) can be calculated explicitly. The method 

from this point on is reliant on this fact. 

The ansatz 

( ) 
K(s,T)r(2n+a) 

an s, T rv (f(s, T))2n+a ' as n ----7 00 (5.24) 

is made and substituted into (5.21), obtaining the equation 

(5.25) 

Note that the Stokes multiplier K is a function of sand T, not simply a 

constant. In general, a # a. 

Again, the derivation of equation (5.25) must be possible in order for this 

method to proceed. 

Attention now turns to the blow up at s = i in particular. Substituting a 

general form of f(s, T) into (5.25) leads to 

and so now 

(s - i)3/2 
f(s, T) = ( )' 

9 S,T 

( ) 
K(s, T)f(2n + a)(g(s, T))2n+a 

an s, T rv (s _ i)3n+3a/2 

(5.26) 

(5.27) 

By comparing this term to the blow up of al(s, T) it is possible to obtain the value 

a = -l Once more this step is only possible since al can be found explicitly. 

Thus 
K(s, T)f(2n + a)(g(s, T))2n-2/3 

an(s, T) rv (s i)3n-l as n ---7 00. (5.28) 

To include the condition an(s, 0) = 0, the simplest assumption to make is 

g(s, T) rv ATi3, T ----7 O. (5.29) 

Via equation (5.25) it may be seen that j3 = ~. 

At this stage, f (s, T) is rewritten as 

2i(s i)3/2 
f(s, T) = V3T h(s, T) 

3 3T 
(5.30) 
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in order to simplify what follows. Upon substitution into (5.25) the following 

non-linear PDE is obtained: 

(5.31) 

A Taylor expansion of h(s, T) about s = i, T = 0 

h(s, T) = h(i, 0) + hs(i, O)(s - i) + hT(i, O)(T - 0) + ... (5.32) 

reveals that the only sensible solution of the PDE near (s, T) = (i,O) is h(s, T) = 

±l. This is seen by substituting (5.32) into (5.30) and then (5.25), and balancing 

terms. Hence, the first solution obtained is 

2i(s i)3/2 
h = 3V3T (5.33) 

The same techniques are applied to the blow up at s - T = i, by setting 

f(s, T) = (1 + i(s - T))k(s, T). (5.34) 

Now let x = 1 + i(s - T), and t = iT, so that f = xk(x, t) and 

(5.35) 

In exactly the same fashion as above, it can be seen that the only analytic solution 

near (x, t) = (0,0) is k(x, t) = ±l. Hence the second value of f is found to be 

h=l+i(s T). (5.36) 

Relying on the fact that the al (s, T), ... , a6 (s, T) are easily computable, the general 

form for the blow up near s = i is found to be 

as s ----7 i. (5.37) 

This dominant behaviour near s = i also satisfies the recurrence relation in (5.21), 

so (5.37) holds for all n. It follows that a = - ~. Similarly, for all n 

( ) i(-1)nr(2n) aSS-T----7,;. 
an s, T rv ( ')2 ' " S-T-Z n 

(5.38) 
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Note that this result cannot be valid near T = O. 

The activity of the Stoke lines can be determined using the asymptotic be-

haviour 

as n -700. 

(5.39) 

Kl ;:::;; 1 near s = i and K2 ;:::;; 1 near s - T = i. At this stage, values of n, sand 

T are substituted into the system, which is then solved for K 1(s,T) and K2(S,T). 

Obviously the particular value of n chosen depends on the ability to calculate the 

corresponding an (s, T). 

When s is large and s - T is bounded then the second term of the right-hand 

side of (5.39) is the dominant term in the asymptotics. Substituting this term into 

recurrence relation (5.52) gives 

fJK2 3 fJK2 = 0 
fJT + fJs ' 

(5.40) 

with general solution 

(5.41) 

where g(u) is an arbitrary function. Now take s = T + d with T large and d 

bounded. Computing the large T asymptotics of al (s, T), ... ,a6(s, T) shows that 

i( -1)nr(2n) 
an(s, T) rv (d _ i)2n ' as T -7 00. (5.42) 

On comparison with (5.39), g(2T - d) rv 1 as T -7 00, that is, 

K 2(s, T) rv 1, as t -7 00 along x=constant, (5.43) 

where x and t are the original variables. This compares favourably with the nu­

merical results produced above. This procedure is repeated using the first term on 

the right-hand side of (5.39). The equation obtained upon substituting this term 

into (5.52) is 
fJK1 . fJK1 

T- + (s - z)- = O. 
fJT fJs 

(5.44) 
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Thus 

(5.45) 

where h(u) is an arbitrary function. Take s fixed and look at the large T asymp­

totics of al (s, T), . .. ,a6(s, T). Then 

( ) 
i( -T)nr(2n) 

an s, T rv (s _ i)3n-l as T ---; 00. (5.46) 

Thus h(T/(S i)) rv 1 as T ---; 00, that is, 

K1(s, T) rv 1, as t ---; 00 along x + t = constant (5.47) 

This direct approach has been very successful in revealing the Stokes activity of 

the problem. However, we have highlighted a few questions raised by the method. 

It is already clear that in order for us to be successful, we require a certain amount 

of 'luck' to be able to proceed at each stage; in this particular case, it is in being 

able to calculate the an's explicitly. 

Following the same method, we now attempt to finish off this problem by 

including an exponentially small term in front of the approximation for v( S, T); 

thus 

u(x, t) 

V(S,T) 

and 

-i In(l + ix) + v(s, T), 
00 

exp (-1(s, T)/E) L an(s, T)En, 
n=O 

s = x + t, T = t. 

(5.48) 

(5.49) 

(5.50) 

In the original work, the value of 1 in (5.49) was zero; we had an "endpoint" 

expansion from which we found out about the interaction of the saddle and the 

pole with the endpoint. We now want to find out what the saddle and the pole 

know about each other. 

If we substitute the above into the original equation (5.16) we recover the 

following equations: 

0, (5.51) 
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(- fT + (fS)3)al 

(- fT + (fS)3)a2 

3fsfss ao + 3(fs)2osao - OtaO, 

3fsfss al + 3(fs)2osal - Otal 

- {fsssao + 3fssosao + 3fsossao} , 

3fsfssan + 3(fs)20san Otan 

(n ~ 3). 

(5.52) 

(5.53) 

(5.54) 

In theory, equation (5.51) should lead us to all of the an, via the other equations; 

for example, al should come from equation (5.52) since the left-hand side is zero 

if we assume al =1= O. The problem lies in the fact that finding the an in the above 

system requires that we can solve the equation 

(5.55) 

without any initial data (compare this with equation (4.82) from the previous 

chapter). One method we could use to try and solve it is Charpit's method [55]. 

Let 

fT == p, fs == q, 

then 

_p + q3 = O. 

For simplicity, we set 

s = x + t - i, t = T. 

The rays of the equation are as follows: 

T TO f, 

s 

f fo + (-Po + 3q8)f 

fo + (-q8 + 3q8)f 
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dfo 
ds 

fo+2q8 1' , 

dTo dso 
Po ds + qo ds . 

(5.61) 

(5.62) 

We must apply the initial condition fo = 0 in order to make the initial approx-

imation (5.49) hold. 

The cases So = S, TO = 0 and So = 0, TO = s both return the answer Po = qo = 0 

(equations (5.62) and (5.57)). To avoid this, we have two other cases to consider. 

Firstly we could have So = 0, to = O. The rays in this case are 

T -1', 

s 3 2-qoT, 

f 2 3-qoT. 

(5.63) 

(5.64) 

(5.65) 

This case means that the equation (5.62) becomes irrelevant (0 = 0). We proceed 

by eliminating qo between the equations, giving 

Therefore 

-~ 
f-V~ 

is the solution to (5.55). 

~
S3 

±i -
217 

2i(x + t - i)3/2 
± --3J3t;-;:3=t,------

(5.66) 

(5.67) 

(5.68) 

The next case to look at is where So = S, TO = S. The rays in this case are 

T S- 1', 

s S + 3q51', 

f 2 3-qoT. 

This time (5.62) gives us 

0= Po + qo =? Po = -qo· 
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Therefore from (5.57) we find that qo = 0 or qo = ±i. Then, eliminating sand T 

from the above equations, we find that the solution to (5.55) is 

f ±i(s - T) 

±(1 + ix). 

(5.73) 

(5.74) 

We note here another flaw in the method we are presenting. In general we may 

not be able to solve the equivalent equations to (5.51) and we could not proceed 

any further, since we will not have enough boundary data to do so. The example 

of Howls and Olde Daalhuis in the previous chapter shows that, again, a certain 

degree of luck is required in order to solve such equations. They were able to use 

boundary data given on complex caustics in order to solve (4.82); in our case, there 

is no such information we can use. 

Now, the LHS of equation (5.52) is zero, and having now found the solution 

to equation (5.51), we try and calculate the first few an terms. We face a huge 

problem, of course, in that we have no boundary data for the an at all. Consider 

f = +ij4J;~3. We can solve the first of our recurrence relations (5.52) to find 

ao = ~C [~] vt t' 
(5.75) 

where C represents a constant function, and effectively this is as far as we can go. 

The same goes for f = i(s - T) as well. Unfortunately, we cannot calculate any 

more information about the an's. 

Chapman and Mortimer (hereafter referred to as CM) [52] provided an alter­

native approach, which we will review in this section. Even though many of the 

results are the same as we have have shown above, it still bears including their 

work in this section, as it provides a good summary of an alternative approach 

to this problem. CM draw on the work of Chapman et al. [16] and base their 

approach on the method of matching. 

The equation they investigate is 

(5.76) 
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¢(s,O) = tan- 1 s, 

¢ --'> ±~ as s --'> ±oo. 

Making the change of variables 

T = t, 

eJ=s+t-i , 

equation (5.76) becomes 

and in general 

d.(n) _ d.(n-l) 
lPT - 'f'aaa , 

They make the ansatz that the solution of (5.76) has the form 

¢(n) '" A(eJ, T/(2n + l'(eJ, T))( -l)n, 
u( eJ, T )2n+y(",T) 

as n --'> 00. Substituting (5.84) into (5.82) obtains the following equations; 

UT + (u,,)3 

I'T + 31'" (u,,)2 

AT + 3(u,,)2 A" + 3u"u""A 

0, 

0, 

O. 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

CM use Charpits method to solve (5.85). They note that the factorial-over-power 

divergence is generated by repeatedly differentiating the singularities of the early 

terms ¢(O) and ¢(l) and impose the condition that u = 0 at such a singularity. 

There are 2 singularities to consider, the static singularity at s = i (eJ = T) and 

the moving singularity at s = i - t (eJ = 0). 

Considering first the static singularity at s = i, another change of variable is 

made 

u = eJ - T, (5.88) 
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simplifying equations (5.86) and (5.87) to 

° 
° 

(5.89) 

(5.90) 

respectively. Hence i = i(0'-3T) and A = A(O' 3T). Here they reason that since 

(PI has a double pole at 0' = T we must have that i == 0. 

To determine A matching is used. A change of variables is made: 

The inner expansion is 

as Z ---> 00. They find 

O'-T EZ, 

0' - 3T y, 
. . 

-~ ~ 
-lOgE - _nl, 
2 2'f/, 

~ an(y) 
'IjJ = log Z + L.. ~' 

n=l 

(5.91 ) 

(5.92) 

(5.93) 

(5.94) 

(5.95) 

To match with the outer expansion, (5.84) is rewritten in the inner coordinates 

(5.96) 

They find that A = i /2 and so 

(5.97) 

To determine the late terms of the moving singularity, eM impose the bound­

ary conditions 0' = T = ° at the singularity, thus 

u = (40'3) 1/2 

27T 

The equivalent equations to (5.86) and (5.87) are 
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with solutions, = ,(0" IT) and A = T- 1/ 2 B(O" IT). Note that this is the same result 

that we arrived at with our method (cf. equation (5.75)). However, eM are able 

to go a step further with their calculations. 

The functions, and B are determined by matching with a region near the 

singularity. The inner coordinates are 

and the inner expansion is 

0" 
Y= -, 

T 

EZ = U, 

i i'IjJ 
¢ = - '2 log E + 2' 

0/' = -10 (3 3
/

2
Z(Y - 1)) ~ Bn(Y) 

'f/ g 2 3/2 + L.J z2n ' 
Y n=l 

It is shown that B satisfies 

and that the late terms will be of the form 

(5.101) 

(5.102) 

(5.103) 

(5.104) 

(5.105) 

(5.106) 

eM are unable to determine b(y). However, they are able to 'spot' the solution 

for Bn from previous calculations; it is written as 

So, although eM reach a solution, it is dependent on being able to spot the 

solution; it could not be calculated explicitly. 

5.3 Summary 

What we have seen in this chapter is that the direct method approach, be it from 

the point of view of a Borel-type approach, or from matching methods, is still very 
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much a 'work in progress'. However, it is most certainly a route worth pursuing 

further, since it could eventually allow us to investigate Stokes and higher order 

Stokes behaviour in complicated problems where there is no integral solution avail­

able. It is yet to be determined whether or not the problems we have encountered 

here can be overcome in general or not. 

We have also shown, through the inclusion of work by Howls & Olde Daalhuis 

and Chapman & Mortimer, that we do not have to use the integral-type approaches 

endorsed by the work in this thesis in order to reproduce the results we have gained. 

The fundamental results of this thesis do not necessarily arise from the tech­

niques used to derive them. In Chapter 2 we introduced the notion that a 'ladder' 

of exponentials could be present in the solution of a boundary layer linear ODE. 

Coupled to this was the message that using an exponential asymptotic approach 

to finding approximate solutions to linear ODEs can be as good as matching tech­

niques in terms of accuracy, and can sometimes simplify the whole process. 

Chapter 3 revealed the existence of the higher order Stokes phenomenon, and 

crucially showed that even sub-subdominant exponentials should not be disre­

garded. We saw how such terms can in fact grow to dominate solutions. We 

showed how the Borel plane technique can handle this subtle effect, and actually 

illustrates the process very nicely. 

In Chapter 4, we developed the ides from the previous chapter for nonlinear 

PDEs. Burgers' equation was a good choice because of its pedagogical nature; 

we had a integral solution to work with, and so progress with our integral-Borel 

approach was unhindered. We showed how the higher order Stokes phenomenon 

is a relevant effect to the behaviour of a nonlinear PDE. The classically smoothed 

shock of Burgers' equation is a consequence (albeit a very subtle one) of the higher 

order Stokes phenomenon. 

We believe that future research in related areas, for example, the KdV equation 

Ut + U xxx = 6uux (5.108) 
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may well produce similarly interesting results. Further to this, and inspired by the 

work of [67], it may be possible to extend the work on Burgers' equation to more 

general non-linear terms, and could potentially go some way to resolving some of 

the outstanding issues we have highlighted in this last chapter. 
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Appendix A 

Form of the Late Terms in 

PDEs. 

Can we see the factorial-over-power form of the late term asymptotics for PDE's? 

Let us consider the heat equation with the following boundary conditions: 

Ut = U xx 

0:::; x :::; b(ct), t> 0, 

U(x, 0) = ?jJ(x) , 0:::; x :::; b(O), 

u(O, t) = ¢(ct), u(b(ct), t) = 0, E ---) 0+. 

Upon setting T = ct this becomes 

0:::; x :::; b(T), T> 0, 

u(x,O) = ?jJ(x) , 0:::; x :::; b(O), 

u(O, T) = ¢(T), U(b(T), T) = 0, E ---) 0+. 

A perturbation solution of the form 

00 

u(x, t) '" L fn(x, t)En 
n=O 
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cannot satisfy all of the conditions above. Again, we could use the methods of 

matched asymptotic expansions, but instead we will impose the ansatz 

~ (-g(X,T)) ~ u(x, T) '" ~ fn(x, T)En + exp E ~ hn(x, T)En. 

This gives us a new set of boundary conditions to work with: 

fn(O, T) = 0, n 2: 1, 

fn(b, T) = 0 \In, 

hn(O, T) = 0 \In, 

fo(x, 0) + ho(x, 0) = 1jJ(x), 

fn(x,O) + hn(x, 0) = 0, n 2: 1. 

(A.4) 

(A.5) 

(A.6) 

Substituting this form of u(x, T) into equation (A.2) and balancing at orders 

of E and E exp ( - g / E) leads to the following equations: 

fo,xx 0, 

fn,xx, 

o =>g=g(T), 

ho,xx, 

hn,xx. 

(A.7) 

(A.S) 

(A.9) 

(A.10) 

(A.11) 

Equation (A.7) can be integrated twice and using the appropriate boundary con­

dition we find 

fO(X,T) = ¢(T) (1- b~)) . 
We also have enough information to tackle equation (A.10). 

ho,xx, 

=> ho A sin Vfj;x + B cos Vfj;x. 
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From the boundary conditions, we know that we must have 

ho(x, 0) 1jJ(x) - fo(x, 0) 

{1jJ(X) - ¢(O) (1- b~)) }, (A.15) 

hn(O, T) = 0 =? B=O, (A.16) 

hn(b, T) = 0 =? Asinvg:;b(T) = O. (A.17) 

Therefore we have that either A = 0 or vg;b( T) = k7r. Since the first result is 

trivial, we take the latter as true, so 

(A. IS) 

(A.19) 

We require g(O) = 0 in order to agree with the boundary data. 

We now have the leading order solution to our problem. 

u(x, T) = fo(x, T) + L exp (-g(T)/E)hbkl(x, T) (A.20) 
k 

¢(T) (1-~) + Lexp [_~ r (~)2 dE,] A(kl sin (k7rx) , 
b(T) k E Jo b(E,) b(T) 

(A.21) 

where 
rb(Ol [ ( A(kl = Jo 1jJ(x) - ¢(O) 1 (A.22) 

Let us choose some boundary data and provide an example solution. Let 

b(T) ~, (A.23) 

¢(T) 1, (A.24) 

1jJ(x) O. (A.25) 

Then, 
x 

(A.26) fo(x, T) = 1 - J1+T2' 
1 + T2 
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and 

1
T k27r2 

g(T) = ~d~ = (k7r)2 arctan T. 
o 1 + <, 

(A.27) 

The leading order solution to this problem would then be 

(A.28) 

since 

10
1 
(x - 1) sin (k7rx)dx (A.29) 

1 
k = 1,2,3, .... (A.30) 

We are now free to calculate the 1 terms, and look to recover the factorial-over­

power form 

f ( ) - ,(x, T)r(n + a) ----+ 
n x, T - F(x, T)n+a ,n 00. (A.31) 

We calculate explicitly the values of h, ... , 16 (using the relevant information from 

(A.6)) and by inspection we find that in general the form of the 1's will be 

(A.32) 

Using the same values of b, cj; and 'IjJ as in (A.23)-(A.25), the In's would become 

Tnx2n+1 r(n + 2) . 
In ( x, T) = 2n 1 , n ----+ 00, T --> ±~. 

(1 + T2 )-2-r(2n + 2) 
(A.33) 

This demonstrates that the factorial-over-power form is also found in the late terms 

of series' arising from PDE's. 
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Appendix B 

Hyperasymptotics 

The infinite oriented contour Cn (Bk) is the path of steepest descent through the 

nth saddle Z = Zn, that is 

Re[k(f(z) - in)] > 0, 

where in == i(zn). Now let 

k-~ e-kfnT(n) (k), 

k~ r dzg(z )Ck[J(z)-fn] 
}Cn(Bk) 

(B.1) 

(B.2) 

(B.3) 

The coefficients T;n) are required in the formal (divergent) asymptotic expansion 

(B.4) 

A new variable 

u(z) == k[J(z) - in] (B.5) 

is introduced. For each point z on the contour Cn (Bk ), u is real and non-negative 

(by (B.1)), but for all u =I 0, there are two values of z. This is because there exists 

a value z+(u) on the half of the steepest descent path emerging from Zn, and a 

value z- (u) on the half leading into Zn. Applying this transformation gives 

(B.6) 
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Crucially, the quantity in curly brackets can be written as the contour integral 

(B.7) 

where r n(Ok) is the positive (antic1ockwise) loop surrounding Cn(Ok), as shown in 

Figure 2.S. Combining (B.6) and (B.7) gives the representation 

This is an exact representation of T(n) and provides the basis for what follows. 

The denominator of the second integral in (B.S) can be expanded binomially in 

powers of k-1 : 

(B.9) 

and 

(1 k(f(z~ _ in)) -1 ~ (k(f(Z~ - j"J 
UN 1 

+ kN(f(z) - in)N (1 - u/k(f(z) - in)' 
(B.I0) 

so 

N-1 (n) 
=?T(n)(k) = LT~r +R(n)(k,N), 

r=O 

(B.12) 

where the coefficients Tj:n) are defined as 

(r - 1/2)! 1 d g(z) 
21fi !n z (f(z) - in)r+1/2' 

(B.13) 

lIS 



The contour r n(Bk) has now been shrunk to a small positive loop around Zn. Inte­

grals of this form can be evaluated exactly in terms of coefficients in the expansions 

of f and g about Zn, to yield explicit terms in the saddle expansion. For example, 

Dingle gives the leading r = 0 term 

(B.14) 
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Appendix C 

Kuzmak's Method 

Motivated by the form of (2.82) we can look for a solution that corresponds to the 

summation of all the p-exponentials in (2.77). This is similar to Kuzmak's method 

([64], [65]) and is related to the method of multiple scales. We look for a solution 

of (2.63) based on the extended WKB ansatz: 

00 00 00 00 

y(x) rv L e-pF(l)/E L f;,p) (X)En + L e-(F(x)+pF(l))/E L h~)(X)En 
p=O n=O p=O n=O 

00 00 

(C.l) 
n=O n=O 

where X = F(l)/E. We now substitute the ansatz (C.l) into (2.63) and balance at 

O(En) and O(exp(-F(X)/E)), ignoring the E-dependence in the X terms. Since the 

"variable" X is actually just a constant, we do not generate a derivative in a/ax, 
and as a consequence we simply arrive at the recurrence relations we obtained 

from substituting (2.65) into (2.63), but in Wand V: 

c - W' (x X) 11:/1 (x X) 
W ( X) = n n-l' . 11:'( X) = n-l , . n 2: 0 

n X, 2x + 1 'n X, 2x + 1 ' (C.2) 

with W_1(x,X) = V_1(x,X) == O. The constants Cn are determined from a mod­

ified set of boundary conditions. Due to the similarity of (2.65) and (C.l), again 

we find that (C.l) cannot satisfy the boundary condition at x = 1 exactly without 
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including further series. So, instead of (2.68) and (2.69) we have 

Wn(O, X) + Vn(O, X) = OnOOO, 

Wn(1, X) + exp( -X)Vn(1, X) = onO{3. 

(C.3) 

(C.4) 

Note that the exponential in (C.4) is exp(-F(l)/E), precisely of the order that 

was neglected in (2.69) and which lead to ansatz (2.77). We see then that had 

we included this exponential in (2.69) we would have avoided the need for section 

2.3.1 (at the expense of missing out on the ladder structure of the problem). That 

we can now include this exponential term is a result of treating X as varying on a 

different scale to E. 

Using (C.3) and (C.4) we can now find the constants en. Some short calcula­

tions lead to 

w. ( X) = (3{3 - (0) + 00(1 - 3 exp( -X)) (C.5) 
o x, (1- 3exp(-X))(2x + 1) , 

( ) 
(W~_l(l,X) - W~_l(x,X)) - 3exp(-X)(W~_1(O,X) - W~_l(x,X)) 

Wn x,X = ; 
(1 - 3 exp( -X))(2x + 1) 

(00 3(3) 
VO(x,X) = (1 3exp(-X)) , 

TT( )_W~_l(O) W~_l(l) 
v n X X - ---'-'---''-'-'----'-'-...::....:.-'.. 

, (1-3exp(-X)) 

We find that we recover (2.82) if we insert the value of EX = F(l) = 2 at leading 

order in E. Note that neglecting the terms in exp( -X) reduces the recurrence 

relations (C.5)-(C.8) to those in (2.72), as we should expect. 

By addressing the issue of satisfaction of the boundary condition at x = 1, 

we derived a more sophisticated version of the WKB expansion (2.65). This is 

simply a more complicated E-dependence in the coefficients. However we have not 

addressed the overall divergence of the perturbation expansion as a function of x. 

The series in (C.1) with coefficients according to (C.5)-(C.8) satisfy the boundary 

conditions at each order, but the sums of the Wand V terms are still divergent. 
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