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WHEN IS A STOKES LINE NOT A STOKES LINE?

by Philip John Langman

During the course of a Stokes phenomenon, an asymptotic expansion car
change its form as a further series, prefactored by an exponentially small
term and a Stokes multiplier, appears in the representation. The initially
exponentially small contribution may nevertheless grow to dominate the be-
haviour for other values of the asymptotic or associated parameters.

We introduce the concept of a higer order Stokes phenomenon, at which
a Stokes multiplier itself can change value. We show that the higher order
Stokes phenomenon can be used to explain the apparent sudden birth of
Stokes lines at regular points, why some Stokes lines are irrelevant to a given
problem and why it is indespensible to the proper derivation of expansions
that involve three or more possible asymptotic contributions. We provide
an example of how the higher order Stokes phenomenon can have important
effects on the large time behaviour of linear partial differential equations.

Subsequently we apply these techniques to Burgers equation, a non-linear
partial differential equation developed to model turbulent fluld flow. We find
that the higher order Stokes phenomenon plays a major, yet very subtle role
in the smoothed shock wave formation of this equation.
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Chapter 1

Introduction

The question posed by the title of this thesis, “When is a Stokes line not a Stokes
line?”, requires a mixture of accepted asymptotic techniques and subtle new ex-
tensions of these ideas in order to be answered. In doing so, this thesis intends
to highlight the importance of the seemingly insignificant: the small exponential
term.

Poincaré’s initial definition of an asymptotic series is well known to have ne-
glected terms of this nature. This was not necessarily a bad thing; an approxima-
tion with an exponentially small error term is not always necessary. We only really
see how exponentially small terms being forgotten in an asymptotic approximation
can be a mistake when we consider how a Poincaré asymptotic approximation can-
not account for what is known as the Stokes phenomenon. This is characterised
by the sudden introduction or removal of asymptotic terms in an expansion pref-
actored by a small exponential as the asymptotic parameter is varied.

Once it was acknowledged that these ‘subdominant’ exponentials existed, al-
ternative approaches to asymptotics were introduced, where small exponentials
were explicitly included in an approximation. The most recent and most accu-
rate method for handling these small exponentials (and the Stokes phenomenon)

is called hyperasymptotics, developed by Berry and Howls. Not only does hy-



perasymptotics give exponential accuracy over a Poincaré approximation, it also
culminates in an exact remainder term.

It is the hyperasymptotic techniques developed by, in particular, Berry & Howls
and Olde Daalhuis that leads to the main result of this thesis, which we have called
the Higher Order Stokes Phenomenon. This occurs across a Higher Order Stokes
curve, and changes the potential for a regular Stokes phenomenon to occur. This
is a subtle effect, and we show that as a result, initially sub-subdominant terms
(those which might normally be neglected in an asymptotic approximation) can
grow to dominate the behaviour of some asymptotic expansions, the neglect of
which would lead to incorrect assumptions about the long-term behaviour. This
is a general result which is not only confined to the examples we have chosen.

The layout of the thesis is as follows.

Chapter 2 will give a brief historical summary of asymptotic analysis. We
will begin by looking at infinite series. We will summarise Dingle’s philosophy
regarding divergent series, and via a theorem due to Darboux we will see that in
general, the late terms of a divergent series have a general form of a factorial over a
power. Knowledge of the form of the late terms leads to the development of optimal
truncation, which allows the truncation point of an asymptotic series to vary. This
provides an advantage over Poincaré’s asymptotic series which has strictly fixed
truncation points. By allowing the truncation point to vary, exponential accuracy
can be achieved over a Poincaré asymptotic series truncation. We define the Stokes
phenomenon and explore its relevance through the Airy function Ai(z). We show
how the explicit inclusion of exponential terms in an asymptotic approximation
(“exponential asymptotics”) can make calculations simpler, and we compare this
approach with matching techniques. We show how a “ladder” of exponentials is
necessary to improve the accuracy of an approximate solution to boundary layer
ODEs, which often leave one boundary condition only approximately satisfied.
We review hyperasymptotics, and introduce the notion of the Borel plane; a vital

technique used throughout the rest of the thesis.



Chapter 3 explains the higher order Stokes phenomenon, both in a general case
and via a PDE example. This chapter contains new results.

Chapter 4 extends the work of the previous chapter to a nonlinear PDE, and
we find that the higher order Stokes phenomenon contributes to some very subtle
behaviour. We show how it has a real effect on the behaviour of a nonlinear PDE.

Chapter 5 offers some suggestions for future work, and reviews the results of

the thesis.



Chapter 2

Asymptotics and Small

Exponentials

This thesis is primarily interested in exploring the role of exponentially small terms
in asymptotic analysis, particularly when applied to differential equations (both
linear and non-linear). This chapter is intended to introduce the necessary topics
within the broad field of asymptotic analysis to the reader. We shall also dis-
cuss briefly the historical development of the tools which we will be implementing
throughout the work within this thesis.

Some new ideas to improve the accuracy of solutions of boundary layer ODEs

are also included in this chapter.

2.1 Infinite Series

The history of divergent series has been fraught with antagonism amongst mathe-
maticians. Hardy [1] wrote an account of the “fall and rise” of divergent series in
analysis. He says that there was a disinclination amongst mathematicians to give
formal definitions, combined with an inadequate theory of complex variables and

analytic continuation at the time. Perhaps the most famous quote on this subject



is attributed to Abel (1828): “The divergent series are the intention of the devil,
and it is a shame to base on them any demonstration whatsoever”. Of course,
Abel’s view has since been shown to have been somewhat blinkered, as divergent
series now have many applications in analysis.

Let a, be an infinite sequence aj, as,as,...,an,.... Then
(o]
Sn=Yan (2.1)
n=1

is called an infinite series. The task of computing the sum of such a series presents
many problems. We cannot add up all the infinitely many terms, so instead we
sum an ever increasing number of terms; a new sequence called the partial sum of

the original series. The expression

N
lim S, =) an, N=1,23,... (2.2)
n=1

n—oo
is the Nth partial sum of the series (2.1) [2].

If lim S, exists and is finite, the series a, is said to converge to this limit (a,
is a convergent series). If lim S, is infinite, or does not exist, then the series a, is
said to diverge (a, is a divergent series).

Historically, it seems mathematicians disliked divergent series due to the prob-
lems in assigning meaningful values to them. The sum of a convergent series can
be computed to arbitrarily high accuracy (subject to the necessary effort and suffi-
cient computing power), but the approximation of a divergent series is restricted to
only a finite number of terms in the series, before the series tends to its divergent
limit.

In 1849, G.G. Stokes [3] wrote a paper in which he implied that infinite series
that do not converge are useful as “symbolic” representations of functions (an
idea later embraced by Dingle [4]). He suggested that a divergent series could be
employed as an abbreviated way of expressing the limit of a convergent series. The
problem lay in how to correctly interpret divergent series expansions of functions.

In 1886, Poincaré [5] was the first to wrote down his definition for an asymptotic

series:



Let f(z) be a function of the real or complezx variable z, and > as;z7° be a

formal power series (convergent or divergent). Then, if
[ee)
f(2)~> az* (2.3)
s=0

for |z| — oo, then for every fixed integer n > 0 the remainder term
Rn(z) = f(z) — Zasz_s (2.4)

is O(z™™) as |z| — oo in some sector S.

The series D asz~* is said to be a Poincaré asymptotic expansion of f(z). If
the series ) a,2~° converges, then it is an asymptotic expansion of its sum [6].

Poincaré’s definition allows basic formal manipulations. Addition, subtraction,
multiplication and division of Poincaré expansions of functions can be carried out
as if these procedures were being performed on the parental functional represen-
tations, with the asymptotic nature of the result itself being assured [6]. Term-
by-term integration of expansions is allowed (subject to f being an integrable
function), the result being Poincaré asymptotic to the integrated function (see [6]

for further detail). Differentiation may not always be possible. For example [6], if
f(z) = e *sin (e¥) (2.5)

(z real and positive), then since

0
z x

(for reasons that we shall see shortly, see equation 2.21). But f'(z) = cos(e*) —
e~ "sin (e*) oscillates as © — oo, and so f(z) cannot be written in the form of (2.4).
Differentiation is legitimate when f’(x) is continuous and its asymptotic expansion
exists. Series reversion (or “inversion”) is possible as well. For examples, see [6],
7] or [8].

A Poincaré expansion guarantees a result accurate in magnitude to the order of

the first term neglected, ie. the (n+ 1) term. However, (2.4) only states that the
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remainder is algebraically decreasing in [1/z|. It gives no information about the
optimal point numerically to truncate the series, when |R,(z)| is at a minimum.
Only if the behaviour of the a, in (2.3) is known is it possible to determine an
optimal truncation point N.

Berry [9] illustrated this idea. Consider an infinite series expansion which takes

the form of a factorial-over-a-power; that is,

(r—1)!

k4

lar| ~ K , K >0. (2.7)

Note that we will use the “~" symbol whenever an approximation has been made
in the formal analysis. We have

@r41] r
~—, (2.8)
ar|  lz]

. It is expected that the minimum remainder

thus the minimum term isr = N = [z

term will be at this point also. Therefore

z| — 1!
jan| = g2 (2.9)
Stirling’s formula for a factorial [4] is

ol = V2™t 22, (2.10)

which, upon substitution into (2.9) gives

lan| =~ V2rK

e (2.11)

Poincaré asymptotics fixes N to be a constant for all z. If the above series were
Poincaré asymptotic to a function, stopping at the first term would give an error
of O(1/|z|). We see that by varying N with |z| to find the least term, we can
obtain exponential accuracy for this series over the lowest order result. This idea
was termed “superasymptotics” by Berry [9].

Figure 2.1 shows how terms in a power-over-factorial type series increase ini-
tially, before rapidly converging to a point. Terms in a divergent factorial-over-
power series typically decrease initially before reaching a minimum and swiftly

increasing, as shown in Figure 2.2.
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Figure 2.1: A plot of the terms y = % with z = 5. Notice that in this power-over-

factorial series the size of the terms initially increase, before converging to as n becomes

larger.
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0.5

n

Figure 2.2: A plot of the terms y = ;—,'1 with 2 = 5. This factorial-over-power series is

divergent, yet initially the size of the terms is decreasing.



The specific form of the series (2.7) allowed us to specify N above. This
factorial-over-power form of series may appear a very particular choice, but in fact
series of this type arose in a theorem due to Darboux [4]. It is necessary to know
the form of the general term in an asymptotic expansion not only to be able to
gain greater accuracy, but also to guarantee that an expansion is of the expected
asymptotic form [4]. The Darboux theorem relates the behaviour of terms in a
series to the singularity structure of the functions they represent, and shows how
the late terms of a series diverge.

Suppose ¢(f) converges within a circle, and that it can be expanded within a
Taylor series ) " arf". Let f; be a pole or branch point on or outside this circle

of convergence. In the vicinity of this point we can write

o(f) = (fi— H™Peulf), (2.12)

where p; is a positive integer for a pole and fractional (positive or negative) for a

branch point, and where ¢(f) is expansible as a Taylor series
¢i(f) = di(fi) — (fi = DAL + (fi = H2OF(F)/20 — ... (2.13)

Now, the coefficient of f7 in (fi — )™ is (r + pi — 1)I/r!(p; — 1)If{ 7P so the
contribution to a, from the singularity at f = f; is
1) -

% <¢7; - —T—fpi—ilfiqs; +.. ) , (2.14)
an expansion suitable for late coefficients 7 3> p;. For such large r the factor f7
in the denominator ensures dominant contributions from those f; with smallest
modulus, ie. from singularities lying on the circle of convergence.

The Darboux theorem shows how late terms in a Taylor series for a given
function will depend on the behaviour of that function in the neighbourhood of
the singularity closest to the origin of expansion. We also find that the late terms
of any asymptotic power series can be expressed in a standard factorial-over-power

form.



Borel (1899) [4] wrote that the sum of a divergent series could be defined as

—_ = /000 e_“du;i0 % (g)r ; (2.15)

provided the summation on the right converges for some range of u/x (it can then
be extended by analytic continuation) and the integral converges. This is known as
Borel summation. Dingle wanted to find a general procedure for the termination
of an asymptotic series. He developed what he called “terminants” using Borel
summation techniques. We have seen that late terms of asymptotic series behave

like factorial-over-power, so let

/ _“du T+a) (g)”a. (2.16)

The series on the RHS is assumed to be convergent, and the sum to infinity of a

geometric progression is easily found as

a

— (2.17)

where a is the initial term and r is the ratio between terms. Therefore we have a
unique termination to the asymptotic series. Dingle showed that we can express a
large class of functions as “first IV terms of asymptotic expansion + Nth term X

terminant”. The advantage of this is that the terminants take a universal form of

either
1 oo e—uus
Afz)=—= [ d 2.18
o(2) S!/O I (2.18)
or
1 [ e 4yt
B 2.19
IT, (2) S!/O N (2.19)

2.2 The Stokes Phenomenon
For a given function f(z) in a region S, there is at most one expansion of the form
f(2) ~a0+%+%+...(\z| s 0). (2.20)

10



However, the converse of this is false [6]. Consider for example, the asymptotic
expansion of e™* with Re(z) > 0. From the definition (2.4) and the fact that
2"e™%* — 0 as |z| — 0o, e”* has a Poincaré expansion

0 0
e_z~0+—+—2+..., z — +oo, (2.21)
z 0z

the coefficients of each term being identically zero. Hence an arbitrary constant
multiple of e=# (or e™* if Re(z) < 0) may be added to the function f(z) without
altering the Poincaré asymptotic expansion (2.20). Therefore an isolated Poincaré
expansion can represent infinitely many functions.

Asymptotic representations which are the sum of several uniquely determined
formal series, each multiplied by small exponential prefactors switching in domi-
nance depending on the region in question are, by definition, not Poincaré asymp-
totic. A truncated and bounded Poincaré representation of this might discard
the series prefixed by the small exponentials, leading to misinterpretations in the
Poincaré asymptotics of a function if this representation is extended into a do-
main where the initially discarded and retained exponentials swap dominance.
The Poincaré definition therefore introduces ambiguities by failing to represent a
function outside a sector of the complex plane. Poincaré’s failure to capture small
exponential terms in his asymptotic series is highlighted by what is known as the
Stokes phenomenon [4].

A function f can have different asymptotic representations in different sectors
of the complex plane. As these sectors are crossed, an asymptotic expansion can
change discontinuously as a parameter is varied. In this way, exponentially small
terms may be introduced into, or removed from, the expansion in question. This
change happens across a Stokes line, where the imaginary parts of two contributing
asymptotic terms are equal. Let fj(z), fj(z) be the asymptotic contributions in

question. Then, a Stokes line is defined as
Si>; ={z € C: fj(z) — fi(z) > 0}. (2.22)
On this line, one exponential is maximally dominant over another. (Lines where

11



Al z

0.4

TVt Vo ¥ I 2 4

u 02

-0.4

Figure 2.3: A plot of the Airy function Ai(z).

the exponentials are equal in size are known as anti-Stokes lines.)
A well studied example of a Stokes phenomenon taking place is in the Airy

function Ai(z) [4], represented by the integral

1 ‘oo 3
Ai(z) = = / et gy (2.23)
27 J_w
From the plot shown in Figure 2.3, we can see that the Airy function Ai(z)
oscillates for 2 < 0 and decays quickly for z > 0.
The integral in (2.23) has stationary points at t = +i,/z. By making the

substitution ¢ = i1/z + z into the exponent of the integrand, (2.23) becomes

2,3/2

—3Z +o0
Ai(z) = €’ / dze™(F*VE-i2/3) (2.24)

27 oo

Thus, as |z| — oo, the lowest order approximation to Ai(z) is
o % 43/2

Qz%\/?r.

If the €#°/3 term in (2.24) is not neglected, the asymptotic form of Ai(z) for large,

Ai(z) = (2.25)

real z is
—2,3/2 o0

. 3
AI(Z) = m E Ar, (226)
r=0
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Im(Ai(z))
Ai2)

0.2

Re(Ai(2))

Poincare-type
approx.

Exponential
asymptotics approx.

® 0=0
Oo=n

Figure 2.4: A comparison of the Poincaré-type asymptotic expansion (2.25) of the Airy
function Ai(z) in the upper half-plane (the dashed line) and the lowest order exponential
asymptotics expansion (2.26) (the thick line). The exact Airy function is also shown as
the thin black line. We have taken |z| = v/3. As we walk around the complex plane in
an anti-clockwise sense, the agreement between the approximations and the exact value

of the Airy function begins well but becomes less accurate as 6 — 7.
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Im(z)

Stokes Line

O=argz=0
>
Re(z)

Figure 2.5: The Stokes lines of the Airy function Ai(z) in the upper-half z-plane.

where
I'(r+ é)l“(r + g)

2rT(r + 1)(%23/2)7" (2.27)

ar = (—1)"

Figure 2.4 [11] shows a comparison between the numerical results obtained
from expansions (2.25) and (2.26) (using the terms generated by » = 0 and r = 1),
and the exact value of the Airy function at various points in the complex plane.
We see that expansion (2.26) agrees far better with the exact Airy function than
the Poincaré-type expansion (2.25), though both are poor as arg z — 7.

Consider now what happens when z — —|z| (that is, purely real, negative z).

We find that here the Airy function may be approximated by

1 . (2 .
_—T;\TA‘)SIH <§(|23/2) + —>, Iz\ s —00. (2.28)

A1)~ :

Since we may write
sing =S (2.29)
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Tm(Ai(z))

0.2
02 04 06 08 1 Re(Ai(z))

0.2

n Composite/ Ai(z)

approximation
\

Stokes phenomenon

Figure 2.6: A comparison between the exact values of the Airy function Ai(z), and the
“composite” asymptotic approximation including the Stokes phenomenon (shown in bold).
We can observe the Stokes phenomenon taking place as the ‘jump’ visible in the bold line.
There is considerable improvement in the accuracy of the approximation, except in the

locality of the Stokes phenomenon.

we see that an extra exponential term has been introduced as we move from the
positive real z-axis to the negative real z-axis in the complex plane. Further inves-
tigation reveals a Stokes line at § = 2& (Figure 2.5). As this line is crossed an new
exponential term is ‘born’, hence the form of expansion (2.28). The discrepancies
shown in Figure 2.4 between the real values of the Airy function and the approxi-
mations to it can be explained by this. Neither approximation (2.25) or (2.26) has
more than one exponential term, so we could not have reproduced a good approx-
imation to Ai(z) throughout the complex plane. Figure 2.6 shows the results of
a numerical comparison between the exact Airy function and the correct approx-

imations throughout the upper-half z-plane. The accuracy of the approximations

15



are vastly improved. Figure 2.6 also shows the Stokes discontinuity, represented
by the small ‘jump’ in the bold line.

The discontinuous jump between asymptotic representations which is the sig-
nature of a Stokes phenomenon can be misinterpreted; that is, sometimes we think
we see a Stokes phenomenon when in fact there is none. It is important that we
consider the entire asymptotic expansion of a function in a given sector. An ex-
ample given in Ablowitz and Fokas [12] highlights this fact.

They consider the asymptotic behaviour of
I(z) =sinhz"!, z—0, (2.30)

for complex z. Since we have

-1 -1

sinhz™! = -e——_e——, (2.31)

and letting z = re®®, then the dominant behaviour in each sector is

larg z| < /2, (2.32)

T2 < argz < 3mw/2. (2.33)

The authors conclude that there is a discontinuous change in the asymptotic ex-
pansion of sinh 27! across the ray § = 7/2, which they say must be a Stokes line.
This can be seen to be incorrect when we realise that, in fact, there is no change at
all in the asymptotic expansions across this ray. The only reason this appears to
be so from equations (2.32) and (2.33) is because in each of the respective sectors
of the complex plane, the exponentially small terms have been neglected, so that
there appears to be a ‘switching’ occurring between them. This does not happen;
either side of this ray, both the exponentials e " and e=* " are present. There is
no Stokes phenomenon at 6 = /2. In fact, the ray 6 = /2 is an anti-Stokes line,
since both exponentials have the same magnitude at this point.

Berry [9] showed that across a Stokes line, the multiplier of the small exponen-

tial (called the Stokes constant) could be approximated by a smooth function. He
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did this using a combination of Borel summation techniques and what Dingle [4]
called “singulants”. Dingle’s singulants are defined as the difference between the
exponents of the dominant and sub-dominant exponentials. Berry showed that
the Stokes multiplier in a general problem where an asymptotic expansion has
just two exponentials could be approximated by an error function. The result was
rigorously analyzed and proved by McLeod [13].

This smoothing of the Stokes phenomenon was interpreted using matched
asymptotic expansion methods. Olde Daalhuis et al. [14] gave an account of
the activity of the Stokes lines directly from a differential equation. In particular
they considered solutions of a class of homogeneous linear second order differential
equations. They found that, in agreement with Berry’s result, the behaviour across
a Stokes line was described by an error function. However, their methods were
not generally applicable to higher order or inhomogeneous equations (for reasons
explained in [14]).

Chapman [15] showed that in fact not all Stokes lines are described locally
by error functions. Working within the same framework as Olde Daalhuis ef al.
[14], he demonstrated this by way of an example of a Stokes phenomenon with
smoothing function of the form

¢ 2m
/ e du (2.34)
—co

for each integer m > 2. He considered the delay equation
kaZm

f(z)=flz—1/k)+ 7 (2.35)

for m > 2, where k is a (real) large parameter. He showed that the transition at
the Stokes line phz = 0 was not an error function, but was in fact

/d) exp[—(cosec(m/2m))* ™ u*m]du. (2.36)

— 0
This result showed the non-universality of the error function in Stokes smoothing.
For a wide class asymptotic approximations though, it will be the case that an

error function does describe the local behaviour of a Stokes line.
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2.3 The Importance of

Exponentially Small Terms

We have seen how Poincaré’s definition alone cannot include the effects of or ex-
plain the results of a Stokes phenomenon. The inclusion of exponentially small
terms in an asymptotic expansion is crucial to improving the accuracy of an ap-
proximation.

Motivated by the Stokes phenomenon, expansions of the form (2.3) alone are
no longer satisfactory for all problems. We will now define an asymptotic series
for a function depending on a large parameter k as

oo oo
sz ~ S # LM@Y @ k — oo, (2.37)
r=0 =0
The advantage of doing this is that we are explicitly including the exponentially
small terms that would be missed from the remainder term of the first sum in
(2.37) under a Poincaré regime. We refer to (2.37) as an exponential asymptotic
expansion.

Exponentially small terms are often disregarded because of their subdominant
behaviour in certain regions of solutions. This can lead to misinterpretation of the
asymptotics because subdominant exponentials can sometimes grow to dominate
solutions of time-dependent equations for large time (we will show an example of
this in the next chapter). Including exponential terms in an asymptotic expansion
can therefore extend the range of validity for the solution, can give increased
numerical accuracy (as shown in the previous section, see Figures (2.4) and (2.6)),
and can often simplify calculations, as we will now show with a simple example.

Consider for example the linear ODE

ey’ (z) +y' (=) + y(z) =0, (2.38)
y(0) = o, (2.39)
y(1) =5, (2.40)



as € — 0T. This boundary layer equation can be solved trivially exactly, but we are
using it as a ‘toy’ model to illustrate some important ideas. A simple perturbation

expansion of the form

y(z) ~ Y anlz)e” (2.41)
n=0

cannot satisfy all of the boundary conditions. So, initially we attempt to solve this
problem by finding suitable scalings, considering the inner and outer solutions, and
matching using Van Dyke’s rule [19]. The outer solution expansion can be found

by using a simple perturbation expansion
y(z) = yo(z) + eyr () + O(€), (2.42)
which, when substituted into (2.38), followed by a balancing at O(e°), gives

Yo+w = 0 (2.43)

We now apply the appropriate boundary condition, which for the outer expansion
is (2.40), so we have

Yo = PBer 7", (2.45)
To find the inner solution expansion, we need to rescale. The boundary layer is

O(€) so we write

X2 sop=Xo = 1g, (2.46)
€ ox €

and let y(ex;e) = Y (X;€). Substituting these new variables into (2.38) gives us

the equation

Y'4+Y' +eV =0, Y(0)=c. (2.47)
We substitute an expansion of the form
Y(X:6) = Yo(X) + e¥3(X) + €2%3(X) + O(e) (2.48)
into (2.47). Balancing at O(¢") we obtain
Yy + Yy =0, ¥5(0) = ¢, (2.49)
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which we solve to find

Yo =(a—C)+Ce™, (2.50)

where ' is a constant, left in our solution because we only had one boundary
condition to apply to our equation. We use Van Dyke’s matching rule to find C,
which says that the outer limit of the inner expansion equals the inner limit of the

outer expansion. When we do this, we find
C =a—fe. : (2.51)
Thus, the (composite) matched approximate solution to the problem is
Yy~ el + (a— ﬁe)e_””/6 +0(), 0<2<1, -0t (2.52)

Sometimes this is can be an over complicated procedure. This is true for
this case, as we will now see. Matching is only required here because the small
exponential term has been neglected.

We will start with the ansatz
= @)
Yy~ zan(m)6"+eXp{—T}an(m)e", e — 0. (2.53)
n=>0 n=0

Substituting this back into (2.38) and balancing at different orders of ¢ and

" exp(—f(x)/€) for arbitrary z, we generate the following equations:

0(e") ap + ap =0, (2.54)

O(e') ay + a1 = —ag, (2.55)
O(ete™ /) + (/2= )b =0, (2.56)
O(e%e=179) by — by = 0. (2.57)

Equation (2.56) has the non-trivial consequence (that is, taking bg to be non-zero)
that ' =1, so
flz) == (2.58)
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Now we look to the boundary values of x, which we write as

z=0: ,x=1: (2.59)

ao(O) + bo(O) = ao(l) =0
an(0) + 0,(0) =0 an(l) =0
Note that the exponential contribution is ignored at the right-hand boundary.

Equation (2.54) gives
ao(z) = Bel ™, (2.60)

and equation (2.57) gives
bo(z) = (a — Be)e”. (2.61)

The approximate solution for (2.38) is then
y~Pexp(l —z)+ (o — Pe)exp(zx —z/e) + O(e), 0< <1, (2.62)

This example shows that the “exponential” method above arrives at a similar
answer to that of matching (compare (2.62) and (2.52)) in a quicker and easier
fashion, without the need for knowledge of matching techniques.

This is not a new idea; we have used a WKB-type ansatz, also known as Latta’s
method [19]. We have shown that in simple cases such as this it might pay to use
exponential asymptotics over Van Dyke matching methods.

The example above shows the role a single exponential can play in the asymp-
totic approximation of a linear system. We will now look at what happens in
a problem where many exponentials are present. Chapman et al. [16] were the
first to look at a method for finding subdominant exponentials arising from singu-
larly perturbed (nonlinear) ODE’s. Their method was based on Dingle’s method
of making the exponentials visible by optimally truncating the algebraic asymp-
totic series obtained from the equation. We will use our exponential asymptotics
approach to tackle this problem.

Consider the following linear ODE boundary layer problem [19]:

ey’ (z) + 2z + 1)y'(z) + 2y(z) =0

y(0) = o, y(1) =5, (2.63)
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O<ex .

The Van Dyke matching algorithm is the same as for the previous example. When

we apply this to (2.63) we recover a matched approximate solution

QxBi 7T (@—30)exp(—z/e), 0<z<1. (2.64)

~
~

In comparison, we try the simple exponential asymptotics approach
oo oo
Yo S ful@)" + exp(~F(2) /) 3 ha(a)e™. (2.65)
n=0 n=0

Automatically we have the condition F'(0) = 0 so that the terms in the two series
(the fn and h,) can balance at * = 0. We now substitute (2.65) into equation

(2.63) and balance at powers of €" and e~t/¢e". We obtain the following:

O(e%) : (2z+1)f5+2fo=0
O):  fi+@e+1)fi+2H=0 (2.66)
O~ 1) F?hg— (20 +1)F'hg = 0.

The last equation, coupled with the condition F'(0) = 0, gives
F(z) = 2%+ z. (2.67)
The boundary conditions in (2.63) can now be written

fn(0) 4+ hn(0) = bnoc, (2.68)

Fa(1) + O(e7FW/ey = 5,08, (2.69)

where 0,0 = 1 if n = 0, and 0 otherwise. By solving the first equation in (2.66) for

fo using (2.69), ignoring the exponential error, we find

_ 38
fo(z) = @) (2.70)
Equation (2.68) now gives
ho(z) = & — 38. (2.71)
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By looking at higher orders of € we can generate the following recurrence relations:

fn(x) = n_1(12)x_+ f—l(x)7 h/n(x) = h;a:_:_(a]:-) . (2~72)

The leading order behaviour of the solution is

+ (o — 38) exp (— (2 + 7)/e). (2.73)

3
y(=) ~ QIf—l

Both procedures produce a similar result, but we have shown how matching re-
quires more work than is necessary. However, from an exponential asymptotic
viewpoint, both matching and the Latta method leaves the right hand condition
only approximately satisfied.

This error at the RHS is exponentially small. We now present a exponential
asymptotic method which can account for this exponential error. Importantly, we
find that an infinite number of exponentials are required, even for a simple linear

problem.

2.3.1 Beyond WKB

The exponential prefactors of the f-series and h-series in (2.65) match up at x =0

by design; to leading order we have
y(0) ~ fo(0) + =" ¢ho(0) = £o(0) + ho(0). (2.74)
At the z = 1 boundary, we have
y(1) & fo(1) + e F W eno(1). (2.75)

In order for the exponential prefactors to balance, there must also be a factor
of e=F(1) in front of the f-series. But, if this were the case, things would not
balance up at the z = 0 boundary. Thus, we deduce there must also be an extra

exponential prefactor included at z = 0, of the form
y(0) = e~ FW f(0) + e~ FOFFW o0y, (2.76)
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Figure 2.7: Figurative explanation of the ‘ladder’ of exponentials. The middle column
in each of the three diagrams can be visualised as a sliding scale which is used to match

up each exponential scale, represented as one ‘rung’ on the ladder. Refer to the text for a

full explanation. 24



ensuring that the exponentials balance. Of course, this then means that there is a
need for a prefactor e=2F(1) in front of the f-series at = 1, and so on and so forth.
In summary, the boundary values generate a ladder of series with exponential
prefactors with arguments as follows. The middle column of Figure 2.7(1) can be
visualised as a sliding scale that can be used to line up different exponential scales.
Each ‘rung’ of the ladder represents one such exponential scale in the complete
expansion. The left ladder represents scales which must be satisfied at the left
hand boundary; the right ladder represents scales which must be satisfied at the
right hand boundary. The middle ladder must be shifted up and down via f(z) as
x goes from 0 to 1.

At x = 0, the middle ladder lines up with the 0 at the LHS and also the scales
at pF (1), for integer p > 0. This ensures that the boundary conditions at z = 0
are satisfied (Figure 2.7(2)) . As z travels from 0 to 1 this scale slides down so
as to line up with pF(1) (p > 1) series so that the boundary data at ¢ = 1 can
be satisfied exactly (Figure 2.7(3)). With this ladder, the zero-prefactored series
exactly satisfies the boundary condition at z = 1, without an exponential error.
The template for the full expansion is then

y o~ Z Frlz)e™ + Z e—PF(1)/e Z fép)(x)en + Z e~ (F()+pF(1))/e Z h;p) (z)e",
n=0 p=1 n=0

p=0 n=0

-~ Z €—p¥ Z fép) (CE)OETL + Z 6—%(F($)+pF(1)) Z hglp) (1-)67" (277)
p=0

n=0 p=0 n=0

Substitute (2.77) into (2.63). By balancing at orders of e P¥(1)/¢n and ¢~ (F(2)+pF))/een,

we again find that F(z) = 22 4+ z. The boundary conditions are

FP(0) + hP(0) = Snodpoc, (2.78)
FP Q) + hP=D(1) = 6,00,08, (2.79)

where 0,9 = 1 if n = 0, and 0 otherwise. Solving the equations, we find

3 —3P(v— 3
10) = ﬁ; () = QSJa_Hﬁ); WP(c) = 3P (a— 36).  (2.80)
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The lowest order solution can then be written as

30 _ 0= 305 gneaP e (o 35)S " gre-(F@mRe
V)~ el Batl ;3 ¢ +(« 35)123 e . (2.81)

This is a new form of solution for an exponential asymptotics approach to a prob-
lem such as this. The series in (2.81) take the form of transseries ([20], [23]). This
method is related to the method of multiple scales, but we will not explore this
here.

Summing the p-series, we obtain:

_ 3 B — aexp(—=F(1)/e)
we) = (2w+1){1—3exp “F(D)/ }
+{1—3e§p 35 } 7@/ 1 0(e). (2.82)
3 5—616"2/6 a— 38 (et
(22 + 1) { 1 — 3e—2/¢ } + {1 302/ } e~ T+ O(e).

(2.83)

Note that if the terms in exp(—2/¢) are neglected then we have the simple leading
order result (2.73), as we should expect. However, whereas (2.73) only satisfied
one of the boundary conditions, the approximation (2.82) satisfies both, without
exponential error at the right boundary. The O(e) error is therefore accounting
for everything.

Note that if the exponentials in the denominator of the terms in curly brackets
in (2.82) depend on z, then the generation of singularities will change; we will in
fact be dealing with infinite arrays of exponentials. We will see this later on in

Chapter 4.

2.4 Hyperasymptotics and the Borel Plane

It had been suggested as far back as Stieltjes (1886) [4] that improvement may
be made to an optimally truncated asymptotic approximation by looking at the

remainder from that truncation. We have seen that Dingle carried out his work
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based on Borel summation and developed a systematic method of gaining his
terminants. Airy [24], Miller [25] and Boyd [26] took steps towards developing
similar ideas. We will look at a method which was developed by Berry & Howls
for systematically studying the remainder of an asymptotic series, which they
called hyperasymptotics.

Hyperasymptotics is defined as the systematic improvement to the exponen-
tially small remainder of an optimally truncated series. Berry and Howls [27] dis-
cussed Helmholtz-type second order linear ODE’s. They were able to re-expand
the late terms in the expansion of one formal solution in terms of the early terms
of a second. A Borel summation, followed by iteration of the method, led to a
sequence of finite “hyperseries”. Each of these hyperseries contained early terms
from one of the formal solutions multiplied by certain multiple integrals called
“hyperterminants”, which had a universal form. This method produces an ex-
ponential improvement in accuracy over the first term of the original expansion.
It relied on truncating each successive hyperseries at its least term, which led to
the termination of the iteration when one of the hyperseries had just one term.
Several papers followed this one, extending the method to other special cases; see
in particular [28], [29], [30], [31], [32], and [33].

It is more instructive at this point for us to review some of the ideas in Berry
& Howls’ second paper. They set out a method of applying hyperasymptotics to a
specific class of integrals [28] (a rigorous proof of the approach was given by Boyd
34)).

Consider an integral of the form
1™y = / dzg(z)e @), (2.84)
Cn(0k)

where |k| is the large asymptotic parameter and the functions f and g are analytic,
at least in a strip containing the contour Cp,(0;). A saddle of f is defined to be

where

f'(z) =0, (2.85)



Figure 2.8: The steepest path C,,(6;) (the thick line) through saddle z,, with the loop

T (8x) enclosing it.

with f”(z) # 0 (this constraint is added for simplicity, and may be removed later
on). If f is an mth order polynomial, there will be (m — 1) saddles. The infinite
oriented contour C,(0;) is the path of steepest descent through the nth saddle

Z = zn, define as

Re[k(f(z) - fn)J > 07 (286)
where f, = f(zn). Now let
IM(k) = k- ze P TM(k), (2.87)
T (k) = k3 / dzg(z)e FF (&) =1l (2.88)
Cn(ek)

The coefficients TT(") are required in the formal (divergent) asymptotic expansion

% p(n)

T (k) ~ 7; _ (2.89)
r=0
It can be shown (refer to details in Appendix B) that
T(n)(k) Z / P e~y 1/2 f i g(z)
= s Y
Tu()  (f(2) = fn)r+1/2
+R(”) (k, N) (2.90)
T(”)

=T (k) = - + RM(k, N), (2.91)

r=0

where the coefficients T, T(") are defined as

(r— 1 2)!
™ = / ?{d R r+1/2 (2.92)




Crucially, the remainder R in (2.91) is ezact:

(n) 1 > —u, N-1
R (k,N) == W o due™"u 2

x% dz _9() . (2.93)
Ta(6e)  [f(2) = fl V{1 = w/k(f(2) — fu)}

Consider all of the steepest paths through the saddle z,, as 8 is varied. Some
of them will encounter other saddles m. These saddles are said to be adjacent
to n (see Figure 2.9). To specify these paths through adjacent saddles, Dingle’s

singulants are used, in the form
Fom = |Foum|€"™ = fin — fn. (2.94)

These special steepest paths correspond to where

RelkFnm| > 0, (2.95)
Im[kFom| = 0, (2.96)
that is
Im[emkemm] =0, (2.97)
Im[ei(9k+anm)] —=0. (2.98)
Thus it follows that
ek = —Onm, (299)

where o,,, = argF,,. The steepest path C,(—0um,) turns sharply through a
right angle at zp, to continue descending into a valley of ekl (2)=fal This is the
signature of the occurrence of a Stokes phenomenon.

If we are able to write an integral in the form (2.84), then we can find out
about the presence of singularities and their position with respect to others by
looking in the complex k f-plane, also known as the Borel plane. The singularities
are represented in the Borel plane as branch points with cuts running from them

to infinity at constant values of Im(k f) ([35], [33]).
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Figure 2.9: A simple schematic adjacency diagram. Saddle n is adjacent to Saddles 1,2,
and 3 (and vice-versa); for example, n and 1 lay on the same steepest path (i.e the same

phase contours of f(z) — f,). None adjacent saddles (empty circles) are also shown.
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This method introduces a Riemann sheet structure. For two singularities to
be lying on the same Riemann sheet is for the same singularities to be adjacent to
each other and is what leads to divergent saddle expansions ([33], [10]). The Stokes
phenomenon can be well illustrated in the Borel plane (Figure 2.10); it corresponds
to a singularity passing through the contour of integration emanating from another
singularity as arg k is varied. If the two points are adjacent, the singularity passing
through the cut can “drag” the integration contour with it, creating an extra
contribution to the expansion. If the singularities are not adjacent, then they
are not on the same Riemann sheet; no new contributions arise as a result of
the crossing. The Borel plane approach applies equally to the asymptotics of
differential equations as to integrals [33].

The algorithm for using the Borel plane method of approach is summarised as

follows:
(i) Locate the singularities in the Borel plane,
(ii) Categorise each singularity (saddle, endpoint, pole etc.),
(iif) Calculate the values of the F,,,
(iv) Calculate the adjacency of the singularities,
(v) Find the position of the Stokes lines.

In the next chapter, we shall see that this simple template can handle complicated
and subtle behaviour.

The loop I'),(6x) (Figure 2.8) is expanded in such a way that symbolically we

dz...= Knm/ dz.... (2.100)
}én(%) ; Cm(—0onm)

The K,,, are known as Stokes constants, and these (in general) take the value

can write

1 if m adjacent to n
| K | = (2.101)
0 m not adjacent to n
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0}

(i)

(iii)

Figure 2.10: The Stokes phenomenon as seen from steepest descent plots and simul-
taneously in the Borel plane. (i) The steepest descent plot shows saddle 0 is the only
contributing singularity. In the Borel plane we see the branch cut emanating form 0 ac-
cordingly. (ii) A Stokes phenomenon occurs between saddles 0 and 1. This is signified in
the Borel plane by saddle 1 crossing the cut from 0. (iii) Since they are adjacent, saddle

1 ‘drags’ on the cut from saddle 0 as it passes through, introducing a new asymptotic

contribution.
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We will discuss the significance of these constants shortly. Via a transformation

of variables, the remainder term (which is ezact) is

1 —le—v v
R™(k, N) = 2m kF / dv <><F—>, (2.102)

and thus an exact resurgence formula is obtained in the form
-an

kT 27rz kF / d
(2.103)

This is called a resurgence formula since the ‘closest’ saddle n is connected to
‘later’ saddles m [36]. This is exact for all finite N > 0, and | F,,,,,| > 0.
The form of these results means that resurgence formula (2.103) can be iter-

ated. After m iterations this results in being able to write

Np—1
T (k) = Z MK M
Ny —1
S 3 )
mi r=0
Nnm1m2—1
+ ZZKnTmKnmz Z Tr(mZ)Kr(nmlmZ)
mi1 M2 r=0
+
Z ZKnml .. nm1 AL
mag
Nn.«.mM 1
% Z TT(mM)KT(TL~~~mM) + R(ﬂ...mM)(Nn, ey Nongy)
=0

(2.104)

The K,’s represent hyperterminants, an extension of Dingle’s terminants. In

the notation of Berry and Howls, these are

K© (2.105)

b

|-

s—1 00
KOL9) / du, | JOV-5), 2.106
pl;[o [y, (2.106)
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Ko ’UND—T—le_UO
JOU = 0 2.107
" ZWikNﬂFéY“_T 1 —wvo/kFon (2.107)

Ng_1—1-1 =Y
K 15 v 1 s—1
JOL-8) - — - X = 2.108
i FYe 1T 1= (vs—1/vs—2) (Fomz,s—1/ Fom1,5)- ( )

The superscript (0) represents the starting saddle ng, (1) represents the saddles n;
which are adjacent to ng, etc., so that (s) represents the saddles that are reached
in the sth iteration. In [37] and [38], Olde Daalhuis showed how to compute the
numerical values of these hyperterminants.

After s + 1 iterations, the remainder is

O .5 (0...54+1) (s+1
) = H/ dvy | S U T )<Fss+1> (2.109)

s+1
Berry & Howls determined that the optimal truncation points in their proce-

dure were

Ny = |kFy-|, (2.110)

N,_;
N, = 2 . 2.111
L+ [Foo1,5/Fy (2:111)

Here, 1* stands for the nearest saddle to saddle 0, and is not necessarily adjacent

to it. Also,

|Fo—1,s/ F, (2.112)

so that the nearest saddle to s cannot be more distant than the previous saddle
s—1, and

1
Ny < ZNes, (2.113)

so each hyperseries is no more than half the length of its predecessor.

In [31], [32] and [33] (see also [35]) it was shown that the numerically optimal
truncation scheme was not that of truncating every hyperseries at its least term.
The updated algorithm was derived from locally minimizing the estimate for the
remainder after M iterations. From [28] (cf. [33]) we have

Ng—1/2 _
o o Mot e 2.114
RO ~ T, (2.114)
\/27T‘kF01*| 0
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NSNs—l/Ze—NO 51 (N, — Np+1)(Np—Np+1—1/z)

‘R(Os)‘ ~ — T(S_H)*I,
(27]-)(‘3_!—1)/2“6‘]\70|FS,(S+1)*|NS J;l(:) ‘Fp,p—Fl‘Np Np+1 ‘ 0
(2.115)

where \To(l*)| is the first term of the asymptotic expansion about the closest adja-
cent saddle. Berry & Howls only allowed the last truncation Ny, to vary, with
the previous Ny, s_1 fixed. If this restriction is relaxed so that all values of Ny, 51
are allowed to vary, globally minimizing the remainder, then for M stages of hy-

perasymptotics the optimal truncation scheme is shown below (in the notation of

Howls).
N shortest directed path of M + 1 steps in the
n =
kf plane between singularities, starting at n
Nnm,; = max{0, N, — |kFnm, |},
Nomimy, = max{0, Npm, — |kFmimsl}, (2.116)
NnmlmzA..mM = mnax {07 Nnm1-~mM—1mM - |kaM—1mM ‘} :

Here, m; represents the first adjacent saddles to n, ms the second, and so on.

In his papers (particularly [33]), Olde Daalhuis tackled hyperasymptotics from
a different viewpoint, culminating in similar results. He studied linear ordinary
differential equations. His method was based on the properties of the Borel trans-
form, which proved to be a very useful breakthrough, since it meant that hyper-
asymptotic analysis could be performed on any function that possessed a Borel
transform regardless of whether they originated from differential equations or not.
A formal (divergent) series of the form (2.3) becomes a convergent series under a
Borel transform. A Laplace transform of this series would then give us the integral
form presented in [28], and the hyperasymptotic method proceeds from there as
before.

The hyperasymptotic techniques discussed above were applied to multidimen-
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sional integrals by Howls [35], the results of which implied that dimensionality has
little effect on the general form of the exact remainder term. By using the Borel

plane method, all references to the dimension d of the integral

I(")(k) :// dz(l)dz(2)...dz(d)g(z(l),...,z(d))emp{—kf(z(l),...,z(d))}
(2.117)

are incorporated into the T (k) and T™ (v/Fy,) factors, and the result is an
identical resurgence formula to (2.103). Thus, the case for d = 1 is the same as
for all cases d > 1. More complicated examples of the use of hyperasymptotic

techniques can be found in [39], [40] and [41].

2.5 Stokes Constants

A factorial-over-power approximation for the late terms of a series is very good for
leading order results, but this alone cannot include more distant singularities. This
is because, as we have seen, only the closest singularity to an expansion point will
be included. For singularities further away, no Stokes information would be found.
Hyperasymptotics makes it possible to look further away and include more distant
singularities. The Stokes constant allows us to determine which singularities are
adjacent to others, and which are not.

The problem of determining whether or not two saddles are adjacent, and also
the Riemann sheet structure of the f plane, comes down to the calculation of the
Kpm. These are related to the so called ‘intersection numbers’ (Pham 1967) [35]
prescribing whether or not two singularities lie on the same Riemann sheet. Olde
Daalhuis [33] introduced the following method of calculating these constants. It

proceeds (in the notation of Howls) by noting that
Np—1

T,
TM(k) = o+ B (N, (2.118)
r=0
Np, T
TM(k) = k— + RM™(N, +1), (2.119)
r=0
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thus

T
= RO(N) - RW(Nn +1)
Npmq~
- Sk 55 Ak
Npmymg—
~ 3 Ko 3 g gt
my] mg
_Z ZKnml .. nml MpL
Nn..AmM 1
r=0
(2.120)
where
AKT(nmL.‘mp) — Kr(nmy.-mp)(Nn +1, Nnm17 .. ;Nnm,l--‘mp)
— KT (N Nos -+ Ny o) (2.121)

(mp )

with a similar expression for ARM™™1™»)  Knowledge of the coefficients T

™) means that each expression of the form (2.120)

and the hyperterminants KT(""‘
reduces to an equation for the K, with an exponentially small error coming
from the unevaluated remainder term. Using the truncation method (2.116), then
numerically solving a system of algebraic equations, it is then possible to determine
very good approximations to the K,,,,. If any of the K, in (2.120) are individually
zero then all hyperseries containing it can be terminated at the earliest possible

stage. Once sufficiently many K, have been calculated, the full expansion (2.104)

gives the hyperasymptotic expansion of the integral to the accuracy required.
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The most general form for a tree-structure of a hyperseries, expanded about a

singularity 0 is

Ko 007 TV KREY +

TOW) = > -+ Koo oy VRS +

Kos 0% TV RS +

Ko Ko 3000 T (010

Ko Kip SN0t i 0 ¢

Ko1Kz > oot 7 KO

KoK >3 Now =1 10 g [%0)

KooKy SN 1m0
KoaKas > o003 T KO
KoaKao SN 1 O (050
KosKay SN LMK 4

KosKa SN 1P (0 4

We can obtain an equivalent expansion for a term T](VOO)/kNO by replacing T (k)

on the left of (2.122) with T(O)/kNU and removing the first sum on the right. We
also replace the KO with AP (see (2.121)).

Note that there is a difference in the literature between the Stokes Constants

of Howls and those of Olde Daalhuis, resolved by the relation

Knm‘OD (n) nm‘Howls-

(2.123)

In the next chapter we will see further how calculating the Stokes constants
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and understanding the adjacency of a singularity can be critical to understanding

the underlying behaviour of a problem.

We have reviewed the development of the continually improved accuracy of
asymptotic techniques. Has everything been studied, and is everything well un-
derstood, or is there perhaps some surprise still left to be found? The next chapter

shows that the answer to this last question is yes; indeed we do discover a subtle,

but general, new result.
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Chapter 3

The Higher Order Stokes

Phenomenon

In this chapter we apply some of the existing hyperasymptotic methods to a PDE
example. Hyperasymptotics has been derived for linear equations ([31], [14]) and
steepest descent expansions of single and multidimensional integrals ([35]); work
has also been done on nonlinear ordinary differential equations by Costin (see, for
example, [21] and also in [41]). Partial differential equations are still relatively
unstudied in areas related to hyperasymptotics.

The Pearcey function ([42], [43])

+o0
P(z,y) = / dzexp{—i(z* + yz* + z2)} (3.1)
—o0
satisfies the system
&P 1 9P
Ty _ixP=0. 3.2
08 " 2Yer =0 (3:2)

—o<r<+4oo, —wo<y <+
with suitable conditions given for P(0,y), P»(0,y), Psz(0,y). The Pearcey func-
tion has been used by Berry and Howls [28] to demonstrate their hyperasymptotic
techniques. In this chapter, we explicitly look at applying hyperasymptotics di-
rectly to a PDE.
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We will demonstrate that for systems with additional parameters a, knowledge
of any Stokes phenomena alone is not sufficient to understanding the global connec-
tion problems when there are three or more possible asymptotic behaviours. Berk
et al. [44] have shown that when more than two possible asymptotic behaviours are
present, so-called ‘new Stokes lines’ [45] must be introduced to fully describe the
analytic continuation. However, we shall demonstrate in this chapter that it is also
necessary to introduce the concept of a ‘higher order Stokes phenomenon’. At a
higher order Stokes phenomenon, the potential for a ‘regular’ Stokes phenomenon
to occur is changed. We show that without knowledge of the existence of a higher
order Stokes phenomenon, it is possible to draw incorrect conclusions as to the
existence of Stokes lines (or coalescences of singularities) as a-space is traversed.
This effect is much more subtle than a Stokes phenomenon, yet can generate terms
that can grow to dominate the asymptotics, and can affect the possible occurrence
of a Stokes phenomenon.

We introduce the higher order Stokes phenomenon by means of a simple inte-
gral example. This is followed by an explanation of how the higher order Stokes
phenomenon fundamentally influences asymptotic expansions by reference to the
remainder terms derived from hyperasymptotics. Finally, we will demonstrate the

findings in the context of a PDE example.

3.1 Introduction to the Higher Order Stokes

Phenomenon

In order to illustrate a higher order Stokes phenomenon occurring, we study the

P(k;a) = / dz exp {zk (324 + %zz + az) } , (3.3)
C

where C is a contour which runs from a valley Vi = ocoexp(—3mi/8) to valley

integral

Va = coexp(mi/8), and k is a large positive parameter. This integral is clearly
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related to the Pearcey integral (3.1). The parameter a is a complex variable and
we shall look at specific points in the complex a-plane.

Since (3.3) is of the form
I(k) = / dzg(z)e " ()
C
(with g(z) = 1), we define

f(z;a) = —1i (%z‘l + %zQ + az) . (3.4)

There are 3 saddle points, where f'(z) =0 (but f”(z) # 0), i.e,
zTBL—I—zn—I—a:O, n=20,1,2.
The heights of the saddles, after re-writing equation (3.4) as
1 /
f(zn) = f(zn) - Zznf (Zn); (35)
(where ' = d/dz,) are given by
1
fn(a) = f(zn;a) = —Zizn(zn + 3a). (3.6)

The steepest descent paths through the saddles z, are the connected paths passing

through the z, that satisfy

Cn={2€C:k(f(z;a) — fu(a)) > 0}. (3.7)

Let us choose a point a = a1 and plot the corresponding steepest descent path in
the z-plane (Figure 3.1).

Here, we take C' = Cj as the contour of integration, so that only the saddle zg
will contribute to the large-k asymptotics of P(k;a). Now we vary a and notice
that the steepest path is deformed. At the value a = a3, we have to choose
C = Cy Uy if the contour is still to be a steepest descent path. Hence, for this
value of a, both saddles z; and 2y contribute to the large-k asymptotics.

As we travelled from a; to az, an extra asymptotic contribution has been

introduced; that is, a Stokes phenomenon has taken place. Therefore, somewhere
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as ag &

Figure 3.1: The Stokes curves in the a-plane and the steepest descent contours of inte-
gration in the integrand z-plane passing over saddles 0, 1 and 2 for selected values a; for
integral (3.3). The dashed Stokes line passing through ag is active, but irrelevant to the

function defined by the integral.
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between a; and ag there is a Stokes line, across which this change in asymptotic

contribution occurs. As in Chapter 2 (equation (2.22)) this is defined as
So>1 = {a ceC: fl(a) — fo(a) > O} (38)

The point ag lies on this Stokes line and we can see from the steepest descent
paths that C must be made up from the part of Cy running from Vj to z;, and
the part of C; running from z; to V5. This is the visual ‘signature’ of the Stokes
phenomenon taking place.

For the three points z,, we display the corresponding values for f;(a) in the
complex f-plane (the Borel plane) in Figure 3.2. Mapping from the z to the f-plane
generates singularities at the images f;(a). The steepest path maps to horizontal
loop contours, starting and finishing at infinity, circling around the corresponding
saddle images. By writing the integral in terms of the f-plane, it can be seen
that it is precisely the presence of other such singularities on the same Riemann
sheet that causes that saddle-point expansions about any of the f;(a) to diverge
([33], [10]). The Stokes phenomenon occurs at the point ag when fi(a) crosses the
horizontal half-line emanating from fy(a), which corresponds to the image of Cy
in the f-plane.

It seems that all we need do is study the relative alignment of the f;(a) in
the complex f-plane in order to locate the Stokes lines. However, in general more
information is required. For example, the plot for the values of f;(as) shows that
fa(a4) is crossing the horizontal half-line starting from fy(as). Viewed in this plane,
a Stokes phenomenon is occurring, yet there is obviously no Stokes phenomenon
at this point in the z-plane. This apparent contradiction is resolved as follows: the
branch point at fy(as) does not lay on the same Riemann sheet as fo(as) and thus
cannot be seen from fy(aq). (Equally we can say that saddle z» is not adjacent to
Zo at a = a4 and so this crossing in the f-plane has no consequence.)

Having travelled from a; to a4, we now continue to walk anti-clockwise around

the a-plane. At ag, a Stokes phenomenon occurs between saddles z; and 2z, so
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Figure 3.2: Sketches of the Borel planes for (3.3) at values of the a; corresponding to
those in figure 1. In each Borel plane the solid dot is the image of saddle 0. The other dots
are the images of saddles 1 and 2. Note that a box labelled a3 has been omitted as it is
identical to a4. At a Stokes phenomenon two or more solid dots are horizontally collinear
as the steepest paths map to horizontal lines. At a higher order Stokes phenomenon (a,

and ag) three or more are collinear in any direction.

45



now all three saddles are involved in the large-k asymptotic contribution and, at
ag, C' = CoUC1UC,. Another Stokes phenomenon at a7 removes the contribution
from z1; z9 is removed at ag. At this point we have the same contributions at ag as
at aq, but we have yet to cross the continuation of Stokes line S7.5. Since saddle
21 has been removed and no longer contributes to the asymptotics of P(k;a) at
this point, there is no Stokes phenomena at ag. The Stokes line appears dotted in
Figure 3.2 because it is irrelevant to our choice of contour in (3.3). (Note that this
is different to the lack of a Stokes line at a = a4, which was due to non-adjacency.)

We will call the point where all the Stokes lines meet in the a-plane the Stokes
crossing point (SCP). The part of the positive real axis connecting the origin to
the SCP is not an active Stokes line, as shown above, yet the portion to the right
of the SCP is a Stokes line (Sp>2). If our point a lies on either part of the line,
fa(a) is crossing the horizontal half-line emanating from fy(a). For a to the left of
the SCP, fz(a) is not on the same Riemann sheet as fy(a). For a to the right of
the SCP, it is.

We explain this change in the Riemann sheet structure with the higher order
Stokes phenomenon, which takes place across a higher order Stokes curve (HSC)
in the complex s-plane passing through the SCP.

In the example above, we have chosen to let a1 lie on the HSC. We see that the
steepest descent paths show nothing of interest happens at this point, however the
Borel plane reveals something significant. Let the points af” and a] be values of a
lying slightly to the right and left of a; respectively. Figure 3.3 shows that f2(a1)
is actually crossing the continuation of line from fy(a1) to fi(a1). On the HSC,
the three points f;(a) are collinear in the Borel plane. As collinearity occurs, the
Riemann sheet structure of the Borel plane changes. For a = af, the point fa(a)
lies on the principal Riemann sheet as seen from fy(a), but for a = aj it is not.
This means that in order to walk from fy(a7) to fo(a]) we must first walk around

f1(a7), and then “drop” on to the relevant Riemann sheet.
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a; a, a

/ fi 5 -/0/4

fo

Figure 3.3: The higher order Stokes phenomenon in the Borel plane for values of a near
to a;. At the higher order Stokes phenomenon f) eclipses fo when viewed from fy. The
Riemann sheet structure of the Borel plane changes as f, passes through a radial cut from
fi- At a7, f2 is invisible from fo and so no Stokes phenomenon between fy and f2 can

take place. At a], f2 is visible and so a Stoke phenomenon is then possible.

On a traditional Stokes line we have
Im[k(fm(a) = fj(a))] =0, (3.9)

(k an arbitrary complex value) which means that the two points fm, f; can be
joined by a horizontal line in the f-plane. The Stokes lines are only active when
the relevant f;(a) are on the same Riemann sheet. Previously it was thought that
in the a-plane Stokes lines could only emanate from turning points, where two
or more f;(a) coalesce, or from other singularities. However, the example above
shows that Stokes lines may start and end from other regular points in the a-plane,
where two or more Stokes lines cross. This effect has also been observed by Berk
et al [44] and Aoki et al [45].

We would like to stress at this point the difference between the SCP and the
so called “new turning points” highlighted in [44] and [45]. This difference can be
viewed best in the Borel plane. At a Stokes Crossing Point, no coalescence of the
f;(a) is taking place, and there is no breakdown in the large & asymptotics there.
Furthermore, no Stokes lines are actually born at this point, they just change their
behaviour. In the Borel plane, the SCP will be signified by the f;(a) lying in a
straight and horizontal line. This is obvious when one considers that the SCP will

necessarily be part of the HSC. A higher order Stokes phenomenon requires that
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the f;(a) are collinear (in any direction), and if the Stokes lines cross we must
also have the simultaneous horizontal lining up (pair-wise) of the f;(a). Hence the
resultant view in the Borel plane.

When viewed from the Borel plane, a new turning point (also known as a
Virtual Turning Point) exhibits the apparent coalescence of the f;(a) with one
another. In fact, at this point, there is no coalescence taking place, and the virtual
turning points do not cause any breakdown of the large & asymptotics. This is
because each of the f; lie on mutually different Riemann sheets. Analogously, at
a Virtual Turning Point, the values of the exponents of two different saddle points
are identical, but the saddle points themselves have not coalesced as they would
have done at a real turning point.

We will explain this and discuss these points at length in the next chapter.
Here it suffices to draw the distinction between the SCP and the new turning
points, and to correct the misunderstanding made by the authors in [49]. It is
clear from the above descriptions that the SCP and the new turning points are
not the same phenomena.

It is important to note the difference between an inactive Stokes line and an
irrelevant Stokes line. We have seen that there is no Stokes line drawn between
a = 0 and the SCP; this is because no Stokes phenomenon occurred as a result of
the fact that fo(a) was not on the principle Riemann sheet as viewed from fo(a)
(ie., they were not adjacent). Hence this Stokes line is inactive. In the case of the
line from the SCP along the continuation of the Stokes line S152 in the direction of
ag, we find that a Stokes phenomenon does in fact take place between the saddles
at z1 and 25. However, this particular phenomenon is irrelevant to the saddle-point
asymptotics of P(k;a) due to our choice of valleys in (3.3); at this point, z; does
not contribute to the asymptotics of P(k;a) at all.

A higher order Stokes phenomenon requires that at least three of the f;(a)
are collinear in the f-plane, as opposed to the traditional Stokes phenomenon

which required only two of the f;(a) to differ by a real number. This suggests
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that a higher order Stokes phenomenon is less common, due to the apparent extra
constraint on the positioning of the third f;(a) relative to the other two. However,
for a higher order Stokes phenomenon there is no constraint on the positioning of
the first two f;(a) in the f-plane, since a straight line can join any two points.
Therefore there is actually only a single constraint on the position of the third
fj(a). Provided three or more f;(a) exist, a traditional Stokes line and a higher
order Stokes curve have the same co-dimensionality.
When £ takes an arbitrary complex value, the traditional Stokes line S;»; is
defined by
Si = {a: k(f(a) - fi(a)) > 0}. (3.10)

This means that the position of these lines in the a-plane depends on the phase of
k. The collinearity condition in the f-plane for a higher order Stokes phenomenon
does not depend on k. We require
Jile) — fila) g (3.11)
fr(a) = f5(a)
so the higher order Stokes curves are invariant under a change of k. This shows
that the SCP is k-dependent whereas a traditional turning point is k-independent.
A HSC will emanate from the same points as the traditional Stokes lines (turning
points or singularities of the phase function f).

We have so far talked about the higher order Stokes phenomenon in terms
of asymptotic expansions arising from saddle-point integrals. However, since we
have expressed everything in terms of the f;(a), the ideas are more generally ap-
plicable. The ability to determine all the different types of exponential asymptotic
behaviours exp(—k fj(a)) associated with an expansion is all that is required. For
the saddle-point integral we have used steepest descent contours in the z-plane of
the integrand to determine the activity of the Stokes lines. We could also look to
compute the Stokes constants of the problem, as discussed earlier in the thesis.

The higher order Stokes phenomenon requires the collinearity of at least three

f;(a), so we expect such a phenomenon to occur in any expansion involving more

49



Higher order

Higher order
)/ Stokes curve

/ Stokes curve TP

TP ¢

TP ¢ TP4

Figure 3.4: The Stokes geometry for ph k& = 0 (left) and ph k = 7/4 (right). The

thin curves are the normal Stokes curves, and the bold curves are the higher order Stokes

curves.

than two different asymptotic behaviours depending on an additional set of pa-
rameters a. These expansions may arise from integrals (of any dimension), from
the solutions of inhomogeneous second-order linear differential equations, higher

order linear ODEs, non-linear ODEs, and especially partial differential equations.

3.2 Explanation of the Higher Order Stokes

Phenomenon

We can explain the higher order Stokes phenomenon and why it gives rise to
fundamental changes in the analytic structure of an expansion by using some of the
hyperasymptotic procedures already developed ([28], [31], [35], [33], [46]). What
follows is valid for any function that possesses a Borel transform representation.

Consider an integral of the form
I™ (k;a) = / e kIR g (2 a)dz. (3.12)
Cn(glda)
It is assumed that f possesses at least three saddles situated at z = z,, (n =0, 1, 2),
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where f’(z) = 0 by definition; again we assume that the saddles are simple, ie.,
f"(z) # 0. As before, f, = fn(a) = f(zn;a). The contour Cy,(6; a) is the steepest
descent path running through (in general) a single specific saddle at z,, between
specified asymptotic valleys of Re{f(z) — f,} at infinity ([47], [7]). The functions
f(#;a) and g(z;a) are analytic at least in a strip including C,(6x;a) and in the
range of a values considered.

For the purpose of this explanation, and without loss of generality, we label the
saddles such that Re{fo} < Re{f1} < Re{fs} for the values of a under discussion.
We consider the integral through saddle 0, and choose a such that saddle 2 is
adjacent to saddle 1 but not to saddle 0.

Integral (3.12) may be rewritten to extract the exponential dependence at

saddle 0 as
—k fo(a))
10 (1 ) = SPERO@) 70y 1y 3.13
(k;a) 7 (k;a) (3.13)
where )
=Ty’ (a)
)y —
TO (k) ;O -

As we saw in the previous chapter, we can overcome the divergence of T (") and

gain an exact remainder term linking saddle 0 to saddle 1:

No—1 (0)
TO®m%) = Trkr(a)
=0

1 Kol & . e U’UNO 1 (1) v ‘a
o e A e e (Fm<a>’)
(3.14)

where
Fom(a) = fm(a) — fu(a).
The Stokes multiplier K1 represents the contribution of saddle 1 to the expansion

about saddle 0.

As a direct consequence of definition (3.10), a Stokes phenomenon will occur

between saddle 0 and saddle 1 when arg(kFp;) = 2¢n for any integer g. The
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integral in the remainder encounters a pole at this phase, introducing a residue

contribution of the form (up to a sign)
K —v N[)—l
_Ka g {LT ) (L;a)}
(k'FOl (a)) 0 y—kFpi(a) (1 — U/k)FOl (a) Fn (a)
= Kge ¥ @11 (g q). (3.15)

Combining this with the exponential prefactor exp(—kfy) produces an exponen-

tially small contribution
exp(—k fo) exp(—~kFo1) = exp(—k{fo + f1 — fo}) = exp(—k /1), (3.16)

leaving us with a exp(—kf1)T(V(k) contribution. This is the integral over the
steepest contour passing through z; (¢f. equation (3.13)).

The remainder term in (3.14) is exact. However, it contains within it the
term T(), so it is implicit. We will in general know no more about 7 than
we do about T(®. Using the technique of Berry & Howls, we overcome this fact
by writing down a similar expression for T(!) based on (3.14) in terms of its own

adjacent terms:

N1 p(1)
TG = 3
r=0

1 Kim * w e whi-l (m) W
2im m:ZQQ (gFlm(a))Nl ~/0 4 (1 - w/gFlm(a)) 4 (Flm(a) 7 )
(3.17)

(£ = v/Fpi(a)) and then substituting it back in to (3.14). We now have a double

integral term of the form

1 Ko1 K12
(2m1)? kNo(Foi(a))No—N1(F12(a))M

0 g=vyNo—=Ni=1g,, [0 e~ WM =1y 7(2) w )
>< 7
A 1-— v/ka (a) A 1— me (a)/vF12(a) <F12(a); a

(3.18)

R7?(¢;0) =
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which has a pole when the Stokes phenomenon takes place at
kFpi(a) > 0. (3.19)

There is also another potential pole if a is varied independently of k such that

F01 (a)

Fio(a) > 0, (3.20)

which is identical to the collinearity condition (3.11). The occurrence of the pole
and the higher order Stokes phenomenon are therefore intimately linked (an ex-
plicit calculation appears in the next section). The residue from this second pole

is calculated to be (up to a sign)

Ko1 K12 o e‘“uNO_l U
T® [ —— 3.21
QWikNOFOQ (a)NO /O 1— ’U,/k)FOl (a) B (a) du ( )

where u = vFpg/Fp1. This new contribution to the remainder term is equivalent

to the contribution that one would expect if saddle 2 were adjacent to saddle 0
(¢f. (3.14) & (3.15), remembering that Kp; and Kio are £1). If the parameters
a (or k) are varied further so that kFpy becomes real and positive then a Stokes
phenomenon can occur between saddle 2 and saddle 0, where before it could not.
Equally, a coalescence could take place on a caustic. This change in the potential
for a Stokes phenomenon to occur has arisen from a higher order hyperasymptotic
expansion and is caused by the poles in the same way as a traditional Stokes

phenomenon.

3.3 PDE Example

We can further illustrate the findings of the previous two sections via the following
example. We show how an understanding of sub-subdominant terms can be vital
in understanding the large time behaviour of a PDE.

We are interested in the large time behaviour of the following system

1

— 3.22
— (322

_ 2
Ut — Uz = € Uggy —
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—x<r<+oo, t>0, O<ex],
u(z,0) = arctan z,
U, Ug, Ugg — 0 as |z| — o0.

We can solve this exactly using Fourier transforms as follows.

Using Fourier’s Theorem

Up = (—ik)"a (3.23)

where

= /OO e*oy(z)dz, (3.24)

equation (3.22) becomes

00 eik:m
Uy — (—ik) = 2 (—ik)3a — /_OO da - —

(3.25)

The integral in (3.25) can be evaluated in the following way. There are poles
of the integral at x = £1. We can navigate this pole in the complex z-plane in two

ways depending on whether Re(k)>0 (z > 0) or Re(k)<0 (x < 0). When z > 0

then
o0 etk ezka:
\/;OO dzx T 1‘2 = +42m mli}n_;l—l(l' — Z)m, (326)
ikx
=271 lim - (3.27)
z—+i T + 1
= e ¥, (3.28)
Similarly when z < 0 we find
o0 eikm
/ dx 5 = melH., (3.29)
B
Thus
it + tha = %ik3a — me ¥ (3.30)
i —t+ik(l — k¥)a = —me ¥, (3.31)
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This can easily be solved, using an integrating factor etk(1=e®k")t and the initial

condition

u(z,0) = arctan z. (3.32)

Under a Fourier transform this becomes

oo

u(k,0) = / dze™® arctan (3.33)
—00
1 e} eik:z

(3.34)

= r—
ik J_ o 1422
which can be seen by using integration by parts. This last integral we have evalu-

ated already in (3.28) and (3.29), hence

— k|
a(k,o):-”ik ‘ (3.35)
Then the solution to (3.31) is
— ||
S TC 232 —ik(1—€2k?)t
= o (1- e ). (3.36)

By applying an inverse Fourier transform, the solution takes the form of 2

time-dependent and 2 time-independent integrals

2 4
u(x,t;€) = arctanz + ZIj(:L", tye) + ZIj(at; €), (3.37)
j=1 j=3

where

Ii(z,tje) = /000 dpll‘in;?exp [_Tp{(l +iz) +i(l — pQ)t}} = I;(z,t;¢), (3.38)

Is(z;¢) = /OO dp—m—exp [_—p(l — m)} = Ij(z;€). (3.39)
o p(l-p%) ¢
(Stars denote complex conjugation.) Note that the integrals that appear in [49]
for Iy — I, are incorrect; those which appear above are the correct results.
The contours in I; and I are taken around the poles at p = +1 in a clockwise
direction; the contours in I, and I3 taken around the poles at p = +1 in an

anti-clockwise direction. This ensures that the initial conditions are satisfied; we
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require no e-dependence at t = 0, and in the sum of all four integrals there is no

pole (hence we can neglect the p =0 pole in I3 and Iy).

Let
Itotal = Il + IZ + IB + I47
then at t = 0:
e ipT —
Itatal = / dpl P ZeXp I:_p(l +7’$):|
0 —-p €
< ipm —p
— d —(1—1
[ e[ L0 i)
e i —p )
+/ dp———-exp [— 1—x }
o p(l-p?) e )
0o .

_/O dpal%wpijexp [_Tp(um)] (3.40)

Thus, to cancel the e-dependence for u(z,0), we pair I with Iy and I, with I5.
Steepest descent plots at t = 0 indeed reveal that we traverse the poles in the
manor stated above.

For t > 0, there are 3 possible asymptotic contributions to I; and I3. These
are an endpoint (at p = 0), a pole (p = +1) and a saddle point. For I3 and Iy,
contributions may only arise from the endpoint and the pole at p = +1. From this
point on, we focus on the time-dependence of the problem; furthermore we may
look only at the integral I;, due to the symmetry of the integrals. I; is of the form

(3.12) with
k=< a={ot), o= | 2{Ari) il -], (64D

plus the additional endpoint and pole contributions. We adopt the following la-

belling:
(i) e = endpoint at p =0,
(i) p1 = poles at p = +1,
(iii) pp = poles at p = —1,
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(iv) s1 =saddle at p=+4/5=(1 + i(z + 1)),

(v) sy = saddle at p = —\/3—175(1 +i(z +1)).
The asymptotic behaviours are given by
e~ fi/eTU) (¢ (3.42)

where j = e, p; or $; and

o0 r—1
1 T(2r + 1)()™
e t — T(E) . ~ —— 2r.
fe(z,t) 0, (6;x,1) Zi; (T; eyl R
2(—i+t+x)3/? >

(o) = T,y ~ S T,
fo (2,1) 33 (62,1) 20 €
fo(z,8) = 1+iz, TP (e; 2, 1) = —g.

(3.43)

Notice that the contributions from the saddle and endpoint are both asymptotic
infinite series. The pole contribution is exact. Since I3 is the complex conjugate of
I, it has an identical analytic structure and the relevant expansions are just the
corresponding conjugates of (3.43). Expansions for I3 (and I;) may be obtained
by setting ¢ = 0 in the relevant expansions in (3.43) and multiplying by —1.

The real (z,t > 0) half-plane is split into six regions by potential Stokes lines,
separating areas of different asymptotic contributions. Three such lines are possi-

ble:
1. Along the line x = 0 where
Fep (z,t) = fp, — fe=1+1z >0,
the endpoint may switch on a pole (residue) contribution;
2. Along a line running forward in time from negative to positive x where
Forp: (4,8) = fpy — for = 1 +iz — Zi(—mi?i/—%—;fﬁ >0,

a saddle may switch on a pole contribution;
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3. Along a line running forward in time from positive to negative « where

Az +t—1)%?
Fog(x,8) = fo, — fo=2i—————L — >,
l( ) f] f 3@

the endpoint may switch on a saddle.

A sequence of steepest descent contours as a function of x and ¢ allows us to
plot the Stokes lines and determine which contributions are made in each of the
six regions between them. The endpoint e contributes for all = and ¢.

Numbering the regions as in Figure (3.5), we can interpret the diagram as
follows:

In region 1, only e contributes. Across the Stokes line into 2, the dominant
endpoint switches on a subdominant contribution from s;. Across the Stokes line
into 3, s1 switches on a (relatively) subdominant contribution from p;.

Moving now across the Stokes line from 1 to 6, e switches on a subdominant
pole contribution from p;. From 6 into 5 nothing changes, since there is no s;
yet present to switch on contribution from p;. Moving into 4 from 5, s1 is finally
switched on by e. Thus in both 3 and 4 there are contributions from e, s; and p;.

Previously we calculated that the line z = 0, t > 1/4/3 should be a Stokes line.
However, the analysis above seems to suggest that the presence of such a line here
would be a contradiction. The conclusion we draw is that despite the presence of
the necessary dominant and subdominant terms, no Stokes phenomenon can take
place. This is confirmed by the steepest descent analysis.

We resolve this apparent paradox via a U-shaped higher order Stokes line

defined by
Fesl
—e1 5 (3.44)
FS]Pl
that Tuns between infinities in 2 and 5 through the point (0,1/+/3) (see Figure
3.6).

In terms of a Borel transform, the higher order Stokes phenomenon may be
observed by an extension of the arguments used above to include endpoints and

poles. This requires a combination of techniques (see [28], [10], [34], [35]). A short
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Figure 3.5: The six regions in the (z,# > 0) half-plane in which different asymptotic
behaviours for I; are possible. These regions are delineated by Stokes lines. The notation
“es”, for example, refers to an endpoint switching on a saddle contribution. The dashed
Stokes line between V and VI is active, but irrelevant. The dotted line between regions

ITI and IV is an inactive Stokes line.
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Figure 3.6: The Stokes lines and the higher order Stokes line for I;.

calculation results in an exactly terminated expansion for each type of asymptotic
expansion.

The endpoint expansion is

T (e) Z T + R, (3.45)
r=0

The remainder term may be written exactly as

() 1 N 1/2 (m)
;= —Tm [ == 46
Ry = 5— > NW/ du(_;_e)T (U) (3.46)

= Fem
m=s1,52 -

which has within it a contribution from the pole and from the saddle. Re-writing

the remainder to include these terms gives
N-1 .
T = ZTT(E) T_Z N‘Z—pl/ e
r=0 Fep)

e~ Vv N 1/2 (m) .
m m
+§ N+1/2/ dv——U;—T ( : ) (3.47)

em

where g, is the residue of I; at p = 1. Note that the integral containing Fe, is
an explicit integral, since the contribution of a pole to the remainder term can be

evaluated explicitly. In a similar way, the expansion about s can be written as

M-1 M oo —u,, M—1/2

_ Mg, e vu

T(31) — § :TT(SI)ET B § ‘_m/ du—ue
r=0 14 FSIP 0 (1 - )
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Im(x)

Sp cp
Re(x)

Figure 3.7: The regular Stokes lines plus the bean-shaped higher order Stokes curve

plotted in the complex-z plane.

M —v,, M-1
b Oodye_v___T(S:z) Fas ) (3.48)
2m EMY? Jo (1 ve ) v
8182 —F

9182

Note that while there is again an explicit contribution from the poles, there is
now only a single further implicit sg-dependent integral contribution. There is
no contribution from the endpoint since in general saddle points do not observe
endpoints. A corresponding exact expression for 7¢2) can be obtained by letting
81 — Sa.

The first hyperasymptotic expansion is then obtained by inserting (3.48) into

(3.47), since this becomes

M
o (B} o g (B ) ) w e i
v - r=0 ' v FMF2 o u(l—“'Fﬂ)

D s1p stlp

+—._—__
. M+1/2 I

2inFy |- ooy
5182

()" i g (Fan). s
0 ( v
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Figure 3.8: This figure shows the coincidence of the real (z, t) plane with the complex
z-plane. The higher order lines meet at the point = 0, t = 1/4/3, shown by the black
dot.
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N-—1
O = 3.1
r=0
N o0 e U N o} —v,,N-1/2
€ gp/ du v / e Y
—Z +Z dv—r
N+1 . N+1/2
" Fep 0 (1—#@) 2% F (1 Fem)
M-1 ( o Ler o) e~ M 1/2
S () - () e e
r=0 D — OF 5117)
F651 M 1 /OO e—w'UJM_l
+ dw—-———-—- 5. 3.50
( v > 2@71'Fsls2 w<1_bw_Fe§’L) ( )
5182

The terms crucial to understanding the absence of a Stokes line at z =0, t > 1/\/3

are

e €9
T()(e):‘-- — FN+p1/

Fep)
EN o0 e~V N 1/2
N+1/2/ dv

2, (1 —wve/Forn)

M 0 —u, M-1/2

es 9p e "u
X 1 dy————
Z( ) 2, )

vFs1p
o (3.51)

Forx =0,t < 1/\/3, the single integral encounters a pole since Fg, > 0, and
in doing so generates a Stokes phenomenon between e and p = +1. As t advances
and crosses the higher order Stokes line where Fis, /Fs,p > 0, the double integral
encounters a pole. The residue of this pole at u = Fj,,/F.s, exactly cancels the
single integral. The remainder term of T(¢)(¢) no longer contains a contribution
from p = 41 at this exponential level and no Stokes phenomenon is generated
between ¢ and p = +1. This is why there is no Stokes line for z = 0, t > 1/+/3.

A further significant consequence of this example is the necessity to include

exponentially sub-subdominant terms in the large time asymptotic analysis. For
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Figure 3.9: The asymptotic contributions in each region for the complete expansion of

generated by the sum of integrals in (3.37)

z > 0, t = 0, the dominance of the asymptotic contributions is (¢f. (3.43))
le=fe/eT@) (€)] > |ef/ems) (e)| > [e~m/epPr)(¢)). (3.52)

The long time behaviour in region 3 involves all 3 such contributions, with e~fs1/¢7(s1)
a decaying function of time but e~f»i/¢T(®1) is independent of time. Consequently
e~ fri/eT(1) develops as the principle time-independent oscillatory background to
the monotonic e~f¢/¢T(€) If the sub-subdominant e=/»/¢7(®1) had been initially
neglected as irrelevant near to t = 0, then an incorrect large-¢, finite-z behaviour
would have been predicted. This can be verified by carrying out a similar analysis
for the other integrals and combining the results.

Figure 3.9 shows the overall combination of terms that contribute from the
sum of the four integrals. For the integrals I3(x;¢) and I4(z;€), a single Stokes line
exists along the whole of the ¢-axis. Superposing this on the integrals I1(z, ¢; €) and
I>(z,t;€), we find that the composite expansion has a Stokes line along the t-axis
fort > 1/ /3. This does not alter the role of the higher order Stokes phenomenon,
which has determined the constituent Stokes behaviour of I (z,¢; €) and Ix(z, t;¢).
Hence, in regions I, VI and V, only the endpoints of the four integrals contribute
to the asymptotics. In regions II and IV, there are also contributions from the

saddle points, and region III is the only region where the pole also contributes.
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920 -10 z 20

Figure 3.10: The middle plot is the solution of the PDE (3.3) minus arctanz with € =
0.125. The bottom plot is the result of taking leading-order behaviours of all asymptotic
contributions in each region of Figure 3.9, and the top plot at the top is the same, except

that the contributions from the sub-subdominant poles is omitted.
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100
RE(Xy

(i)

(i)

10

Figure 3.11: Plot (ii) shows the exact solution of equation (3.22), for ¢ = 30, € = 0.5.
The other two plots are the results of taking the leading order asymptotic contributions
from each region (see Figure 3.9; plot (i), however, does not include the sub-subdominant
pole contribution. It is clear that this term must be included for an accurate result. The
visible ‘bumps’ at z &~ —30 and x ~ 60 are caused by the nearby caustics in the complex

z-plane.
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Figure 3.10 (see also Figure 3.11) shows a comparison of a numerical evaluation
of the sum of the four integrals in (3.37) in the real (z,t)-plane against the leading
order behaviours of the asymptotics within each Stokes region for ¢ = 0.125. The
plot in the middle of Figure 3.10 is the sum of the four integrals. The brightness
indicates the height. The plot at the bottom of Figure 3.10 is the result of taking
just the leading order behaviours of all asymptotic contributions in each region,
as detailed in Figure 3.9. The agreement of all three is obvious in regions IV, V
and VI when = < 0. The asymptotic approximation arising from the neglect of
the sub-subdominant pole contribution (the top plot) is, however, at odds with
the exact result in region III. The exact wave structure is dominated at larger
times in this region by the initially sub-subdominant pole contribution. A neglect
of this would have resulted in a false conclusion being drawn as to the large time
behaviour. Finally, only in the neighbourhoods of the active Stokes curves do we
observe that the sum of the leading order behaviours changes discontinuously.

The example presented in this section has also been studied by Chapman
and Mortimer [52]; they have based an alternative approach on the work of Olde
Daalhuis et al. [14].

3.4 Summary and Conclusions

In this chapter we have shown how the application of existing hyperasymptotic
techniques to a PDE system reveals the higher order Stokes phenomenon. It is
fair to say that it was previously known that this extra piece of information was
necessary to explain the asymptotic behaviour behind some systems, but here we
have presented for the first time a full explanation and reasoning for this phe-
nomenon. Above all, we have highlighted that small exponential terms, however
unimportant they may seem at first glance, should not be disregarded from an
asymptotic approximation. As we have seen, they can sometimes grow to domi-

nate the solution at a later time, and although numerically they may have a small
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effect on things, they are critical to the understanding of the behaviour behind the
results.

Importantly, the higher order Stokes phenomenon is not restricted to PDEs.
Its generality was demonstrated by Olde Daalhuis [50], who discussed the higher
order Stokes phenomena attached to a particular integral of an inhomogeneous
ordinary differential equation with a large parameter.

This chapter has highlighted two interesting factors of the higher order Stokes
phenomenon. The higher order Stokes phenomenon is, in fact, just as likely to
occur as a regular Stokes phenomenon. Also, a higher order Stokes line remains
invariant under changes in the small asymptotic parameter. These results stem
from the fact that for a higher order Stokes phenomenon to occur, we require only
that

5—]” >0 (3.53)
for singularities 4, 7, k. Inherent in this definition is the collinearity of the 3 points,
which at first may mislead us into thinking there is an extra constraint over a regu-
lar Stokes phenomenon. This is not true, since any two points lie on a straight line.
The definition of a higher order Stokes phenomenon also appears independently of
the asymptotic parameter, so although Stokes lines may change with a change in
this parameter, a higher order line does not.

The work in this chapter appeared in print in 2004 [49].
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Chapter 4

The Role of the Higher Order
Stokes Phenomenon in Shock

Wave Formation

4.1 Burgers’ Equation

Having rigourously examined the nature of the higher order Stokes phenomenon
and demonstrated its effects on a PDE system, we will now make the logical
step forward of studying the effects of the higher order Stokes phenomenon on a
nonlinear PDE.

In particular we will examine the role it plays in the development of smoothed
shock waves via Burgers’ equation [54]. Burgers’ equation is well understood, and
as such is a trivial example. However, the pedagogical nature of the problem will
help us gain extra insight into the underlying structure of the higher order Stokes
phenomenon.

Much previous work has been carried out on Burgers’ equation, analysing the
structure of the singularities in the problem; for example, see Senouf et al. [53].

However, the following work is approaching the problem from a new perspective.
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Burgers’ equation is

U + Uy = CUgy, (4.1)
—o<r<4o0,t>0, 0<eg,
u(z,0) = uo(x).
It is possible to make a change of variables to transform Burgers’ equation into

the form of the diffusion equation, from which a solution to (4.1) can be found via

a Green function [55]. Let
u($7t) :UO(SaT)—I'Ul(S:T)—I_U?(S)T)a (42)

such that vg = O(1), v1 = O(e~7/€) and vy = O(e~2//¢). By substituting this back
into Burgers’ equation and balancing the terms at exponential orders, we find that
in general

Oyun, — €055, = F (v, v1, ..., Un—1). (4.3)

There is a formal solution in terms of a Green function

t [o%e]
v(s,T;€) :/ / G(s,7; X, T)F(X,T)dXdT, (4.4)
and it can be shown that
H(r-T) (s — X)?
. — A S S A 4.5
o, X,T,6) = 2T enp (5T (@5)

We can also solve Burgers’ equation in the following way. Via the Cole-Hopf

transformation ([56], [57], [58])
25 log(6(z. ) (46)
u=—2¢;—lo :
9z 08 ;
we can rewrite equation (4.1) as

Ot = €Pug. (47)

The initial condition

u(z, 0) = uo(z) (4.8)
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leads to

é(x,0) = ¢o = exp (;—61) /Oz up(s)ds. (4.9)
The solution to (4.7) is
b(x,t) = \/41% /_: Bo(X) exp <—(—$—;§ﬁ) e (4.10)
which can be derived using Fourier transforms. If we now write
1 oo
oz, t) = m/_m exp(—f(z, X,t)/2¢)dx (4.11)
where
flz, X, t) = E%)SX + /OX up(s)ds (4.12)

then the general solution of Burgers’ equation has the form

w(z,t) = S0 (555 ) exp{~f (2, X, 1) /2¢}dX
, [%, exp{—f(z, X, t)/2€e}dX

Let us split each of these integrals and write the solution as

J52 (=) exp{—f (2, ~ X, )/26)dX + [2(55%) exp{~f(z, X, 1)/ 2e}dX

0
fooo exp{—f(z,—X,t)/2e}dX + fooo exp{—f(z, X,t)/2e}dX

(4.13)

u(z,t) =
(4.14)

Note the form of this solution suggests that we will have an array of Borel plane

singularities (see Section 2.3.1).

4.2 Analysis of Stokes lines and Caustics

4.2.1 Steepest descent analysis

From the solution to Burgers’ equation (4.13) via the Cole-Hopf transformation,

we note that the saddles of the integral occur where fx = 0, which means

2= X +u(X,0)t (4.15)
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at a saddle (cf. equation (4.12)). Note that this is also the equation of the char-
acteristic rays. The rays of the equation passing through the point (z,t) originate

at (X,0). Imposing the initial condition

u(z,0) = T2 (4.16)
means that , N
fa, Xty = & QtX) + | (4.17)
and
=X+ Tf’)ﬁ’ (4.18)

that is, there are three saddles for the problem (corresponding to the 3 solutions

of (4.18) for X). The saddle heights are given by
fp’:—f(x7XP)t)7 p:1’273' (4‘19)

Figures (4.1) and (4.2) show the caustics of this integral, at which two saddle
points coalesce (fx = fxx = 0) and the asymptotics blows up. These lines are

given by the equation
2
t= 7 (sc(ch +9) £ (22 - 3)3/2> . (4.20)

There are two real and two complex caustics in the (x,t)-plane under considera-
tion. We will be concerned only with the real caustics. The area ‘between’ these
caustics in the real (z,t)-plane is where the classical smoothed shock of Burgers’
equation forms.

If we take a section of Figure (4.2), constant in ¢, then the caustics reduce
to a pair of turning points. We are interested in what happens as we cross the
caustic in the (z, t)-plane and in looking at the Stokes phenomena that occur in the
neighbourhood of these points. We choose the point z. =5, . = 22—7(170 —22/22)
and walk around this point in the complex z-plane. Since we are on a caustic,

the usual asymptotic techniques break down here, so we expand the positions of
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Figure 4.1: Caustics in complex-z space for real ¢ and a path of analytic continuation

around them.

Figure 4.2: The caustics of Burgers’ equation with u(z,0) = 1757z can be seen at the

tangency of the rays.
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the saddles and the saddle heights in a Taylor series about the point z. on this
t-section. We find that the saddles are located at

X1 = a+BE-5+0 ((a: - 5)3/2) : (4.21)
Xo = a+y@—5"2+3z—5+0 ((a:— 5)¥2), (4.22)
Xy = a—ya@—-5Y 1 F@—5+0 ((a: - 5)3/2) , (4.23)
where
o = %(5 1 2v22), (4.24)
a = %(5 —22), (4.25)
g = 91—9(61 +10v/22), (4.26)
g = %(19 — 5v/22), (4.27)

i |2
= “iles/ = — 10, 498
" ool By g 10 (4.28)

As usual we define the difference in saddle heights to be
i
Fom(z,t) = f(z,t) — fnlz,t). (4.29)
We find that in the vicinity of the turning point it is only saddles X5 and X3 which
are coalescing, since there is no vanishing of Fz; or Fy; at this point.
Having done this we can calculate the position of the potential Stokes lines,
defined by
Sis; ={x e C,te R: fij(z,t) — fi(z,t) > 0}, (4.30)

via steepest descent plots. These are shown in Figure 4.3.

The presence of the arctan X in f means that there are logarithmic branch
points at x = #4i, so there are an infinite number of Borel plane singularities
arising from the three basic saddle points. The calculations to find the Stokes

lines use only the saddles on the principal Riemann sheet.
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13,21, 23 21
23

Im(x)

Re(x)

Figure 4.3: The combined Stokes lines for Burgers’ equation, with z =5, ¢t = 2(170 —
22+/22). The notation 13, for example, represents the Stokes line where saddle 3 is switched
on by saddle 1. The line running along the negative z-direction z, is a possible Stokes line

between 13, 21 and 23.
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Im(x)

Re(x)

Figure 4.4: The signature bean-shaped higher order Stokes curve in the complex-z plane

(t= £ (170 — 22v/22)).

The higher order Stokes line is where the principal sheet values of f1, fa, f3

are collinear in the Borel plane. The line is defined by

Sijk = {w cC,teR: fi(x’t) D € R}, (4.31)

for i # j # k. The resulting plot is shown in Figure 4.4. In order to determine

the adjacency of the saddles, we plot the steepest descent contours in the complex
z-plane. We walk around the turning point from argz = 8 = 0 to § = 7. An
example of a contour plot and the steepest descent lines through the saddles is
shown in Figure 4.6, which represents the § = 7/18 plot.

At first glance, this is a confusing and slightly ambiguous diagram. It can
be interpreted in the following way. Since the steepest paths must run from —oo
to +oo, we begin in the valley at —oo and pass over saddle 2 before following
around through the branch cut at +i. This means that we drop onto an adjacent
Riemann sheet. The contour then sweeps back into the valley at —oo, picking
up half a contribution at saddle 2 on the way (due to the “dog-leg” encountered

there [28]). In the valley, the contour connects with an another contour which
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higher order
Stokes curve b

SCP

higher order

Stokes curve

Figure 4.5: The Stokes lines in the complex-z plane with the higher order Stokes line

superimposed around the SCP at z..

s

Figure 4.6: A steepest descent plot at § = 7/18. The branch cuts at +i are clearly

shown.
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Figure 4.7: The contour plot at § = 7, showing the apparent linking of all 3 saddles.

However, there is no Stokes phenomenon taking place here. (Refer to the text for details.)

runs back through the cut (and thus back onto the principal sheet) where it passes
through saddle 1 and then on to +00. Thus, only saddles 1 and 2 contribute to
the asymptotics, but the branch cut means that we may have contributions from
different Riemann sheets. This situation continues as we walk around the turning
point, until we reach the # = n position, when all 3 saddles link up.

Figure 4.7 shows this point. There appears to be a Stokes phenomenon occur-
ring here between saddles 2 and 3, suggesting that the contour simply runs from
—oo to 400 straight through each saddle. This is not the case; the way the plot
must be interpreted is as follows. The contour from —oo runs straight through
saddle 2, picking up a whole contribution, and then runs over saddle 3 turning
through a right-angle (picking up a (directionally) negative 1 /2-contribution) and
across the branch cut onto an adjacent Riemann sheet. It then picks up a neg-
ative 1/2-contribution from saddle 2 before returning to the valley at —oo. The

contour then returns across the branch cut in the same way, picking up a positive
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1/2-contribution from saddle 2. After crossing the branch cut and returning to
the principal sheet, the contour picks up a final 1/2-contribution from saddle 3
before passing through 1 and on to 4+oco. The net effect is that saddle 3 makes
no contribution to the asymptotics here. Thus we see how Figure 4.7 is, in that
sense, misleading.

The conclusion we can draw from the above analysis is that the Stokes line
S1s2 at 0 < 6 < 7/18 is an active Stokes line. At 6 = 7/3 there is also an active
Stokes line but the fact that saddle 3 is not involved in the asymptotics at this
point makes it irrelevant. At @ = 7m we have crossed the higher order Stokes line,
which has the effect of turning Si159 off so that at § = m no Stokes phenomenon
takes place (which would essentially remove 2), and again because 3 is not involved
here, neither of the other possible Stokes lines is relevant at this point.

In this case, we have seen that the method of steepest descent is not necessarily
the most efficient way of calculating the position of the Stokes lines, and the effect
of the higher order Stokes line, due to the ambiguousness nature of some of the
contour plots. For a clearer view of what is happening, let us look at the problem

in the Borel plane.

4.2.2 Borel plane analysis

Since we are dealing with initial conditions that lead to 3 saddle points, Dingle [4]

says that we can write the general solution (4.13) as

e—fo/e(0) o g=f1/e(1) 4 g=fa2/e(2)

uE, )~ @ 5 e h/eg) § o fale S @) (4.32)
where
0 _ T 0) r
7O =, /2]“/(0) ZOTT( €. (4.33)
Thus

7(0) (1 + [e—(fl—fo)/eT(l) + e—(fz—fo)/eT(z)] (T(O))—l)

wet) ~ 5w (1 + [e-Gi—Fo)/eSM 1 e=(F~fo)/eSI] (S@)-1) (4.:34)
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0
~ % (1 i [e—(fl—fo)/eT(l) i e—(fz—fo)/eT(Q)} (T(o>)—1>

x (14 [em o PVes@) y = (hmeg] (5O)7) T (4.35)

0
~ ZT(O; (1 4 [e—(fl—fo)/eT(l) +e—<fz—fo>/eT<2)] (T(o))—1>

¢ -1\’ —(f1i— € —(fa— € r
XZO(W> (e eg) 4 o= Ur=serres@)" . (a30)

The different terms that can arise from the multiplicative expansion of (4.36) tell us

where to expect the branch points in the Borel plane. Let us rename the exponents
hi=fo=19 fa=fo=1®, (4.37)

and note that there is a third present, except that we now have f(@ = 0.

We now see that in general we should expect to find Borel branch points at:
0, (n+ 1Y, (n+ )P, fOenf® f@ nf®,

This means that we have an infinite array of singularities in the Borel plane; a
figurative example is given in Figure 4.8.

Our chosen initial point is on the real z-axis, at @ = z, + 0.5 (point 1). This
point does not lie on a Stokes line. We walk around the semi-circle set out in
Figure 4.9 in an anticlockwise direction; Figure 4.10 reveals the layout of the f’s
in the Borel plane at selected points. By the time we have reached point 2, we
see that f®) has risen through the branch cut emanating from 0, which tells us
that a possible Stokes phenomena has occurred between 1 and 2. Topologically
the Borel plane then remains the same until we reach point 3, which we know
should lie on a Stokes line. Indeed, there is a potential for a Stokes phenomena to
occur between f) and f®), signified by the lining up of f® and f(!) in the Borel
plane. At point 4 we are approaching the area where we expect the higher order
Stokes line to be. If we compare what is happening between points 4 and 5, we see

that at some stage all three singularities will have been perfectly aligned (albeit
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Figure 4.8: A figurative example of an array of Borel singularities, as seen from 0.

higher order
Stokes line 13

Figure 4.9: The path taken around the point z. in the complex plane. We walk anti-

clockwise from 6 = 0, which is the point on the real z-axis to the right of z..
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Figure 4.10: The central picture shows the complex z-plane for constant ¢ = (170 —
22+/22, illustrating the Stokes lines, higher order Stokes lines and the chosen path around
them. For each of the highlighted points 1-8, an accompanying diagram of the Borel plane
is shown, each as viewed from the singularity f(®)=0. The thick-rimmed circles are the

). Refer to the main text for an explanation of each diagram.
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diagonally), confirming that a higher order Stokes phenomenon has occurred. As
viewed from singularity 0, across a higher order Stokes line the singularity f®
moves across a cut emanating from f(U and onto a different Riemann sheet from
0.

Of course, this case is different to that in the previous chapters. Rather than
having a finite number of collinear singularities, we are now dealing with an infinite
set and hence an infinite number of Riemann sheets. (Similarly, across the higher
order Stokes line, when viewed from nf®), the singularity at (n+ 1)f® will move
across at cut emanating from nf® + f(1) and onto a different sheet from nf®).)
This means that it is possible for all of the singularities f®, 27@ 32 tobe
directly invisible from 0, and also that nf®) cannot see (n + 1)f(? either.

At point 6, the singularities are no longer collinear with one another, although
the (n+1) £ remain collinear with 0, even though they are are different Riemann
sheets. At point 7 the singularities are again all collinear. There is the potential
for a Stokes phenomenon between 0 and the (n 4+ 1)), or between 0 and the
(n + 1)fO. However, the (n +1)f® are now on different Riemann sheets to 0
and so cannot cross the Borel integration contour on the principal Riemann sheet,
hence the Stokes line between the two singularities is inactive. There is no Stokes
phenomenon between 0 and the (n + l)f(l) at this point either since, as we saw
above, f(1) does not contribute to the asymptotics here. (The potential exists for
a Stokes phenomenon between f( and f(, or even 0 and (2, but we will not
concern ourselves with this here.)

On the real z-axis (where § = ), the conditions for a higher order Stokes line
are seemingly also fulfilled: the three singularities are collinear (see plot 7 of Figure
4.10). This is a necessary but perhaps not sufficient condition for a higher order
Stokes phenomenon to be taking place; the calculations above did not initially
produce a higher order Stokes line at this position. Closer investigation is needed
here. There is also a branch cut present in the calculations, extending from the

turning point (thus far neglected from the plots of the higher order Stokes line).
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Re x

Figure 4.11: The paths indicated on the above diagrams from A to B are equivalent.

These two together mean that things are a little complicated for 8 > =, as we enter
the lower half plane.

The steepest descent contour plots show that there is a smooth transition
across the z-axis at & = 7, but the singularities f® and f(1) instantaneously
switch position, while at the same time, the adjacency of the saddles is switched
as well (saddle X3 is now adjacent to Xj, not X3). In order for the story to
make sense, the interpretation is that the branch cut accounts for the swapping
of the saddle positions, whilst a higher order Stokes phenomenon accounts for the
swapping of adjacency at this point. We find that if this is the case, the second
Stokes line at —7/18 < 8 < 0 is active, switching saddle X5 off and leaving saddle
X1 as the only contributing saddle. Thus the circle around the turning point is
complete.

We will now show how the higher order Stokes phenomenon is crucial to the
formation of smoothed shock waves in this problem. Let us move along the line
So>1 in the negative z-direction (as indicated in Figure 4.11), which corresponds
to walking away from point 7 in the direction of point 8 in Figure 4.10. At the

point A in Figure 4.11, we are sat on a caustic where saddles X and X3 have
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virtual caustic

Figure 4.12: When is a caustic not a caustic? This diagram indicates the regions P and
@, and the approximate position of the virtual caustic. The form of u(z,t) changes from

P to Q (see equations (4.39) and (4.42) respectively).

coalesced, which of course means that f(1) and f(2) coalesce in the Borel plane.
At the point B, the same saddles again coalesce.

An analysis of the Borel plane along the line between A and B reveals the
following. We find that all of the (n+1)f®) rush towards 0 and appear to coalesce
at x =~ 3.65. We are tempted, therefore, to announce the presence of a third caustic.
However, this is only an apparent coalescence, and in fact we have uncovered a
‘virtual caustic’ (Figure 4.12). The lack of a third caustic can be explained by the
above analysis of the Riemann sheet structure. It must be the case that 0 and the
(n+1)f @ lie on mutually different Riemann sheets, and do not actually coalesce.
Thus we only have a virtual turning point. Contour plots confirm that there is no
saddle coalescence at this point. Classically, this is position of the smoothed shock,
where the solution changes rapidly from one point to the next. The higher order
Stokes phenomenon is the reason why the singularities lie on different Riemann
sheets, and without it we would find that the shock would in fact be a caustic.

We now analyse the Cole-Hopf solution (4.13) in the region of the caustic.
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Since we have
TO) 4 ¢=F W /ep(l) L o=F®) /ep(2)

S0 4 e=fW/eg(l) 4 ¢—fP/eg(2)

then it is clear that in region P of Figure 4.12, the leading order solution is just

U= (4.38)

T(0)
u(z,t) = 5O + O(e) (4.39)

since e~ /() =S P/e(2) ig exponentially small. Inside the caustics (region
@ in Figure 4.12) we know from the Borel plane analysis that we are in a region
where f() can approach 0. Hence, e=fP/er® can approach O(1) and interfere
with other O(1) terms. Terms in e=f/e7() remain exponentially small. Thus,
in region @,

70) 4 ¢=FP/e(2)

u(z,t) = SO 1 oI ®/eg®) + O(e) (4.40)
T(0) @, 5@
= - — _f /6__

SO <1 e 50 + O(e) (4.41)

T(0) ( 5(027(2) _ g(0) g(2)7(0)

I 4.42
5(0) + 5(0)2(5(0) +e_f(2>/€T(2))> € +O0(e). (442)

Note that the form of u(z,t) in region @ takes the form that was discussed in

Section 2.3.1.
Let us return to the Cole-Hopf solution (4.13), and consider the leading order

two saddle problem

e FOLep(0) | =D ferp(D)

' _ 4.43
u(zr,t) e—F@/eg(0) 4 e—fM/eg(1) ( !
where
O = [T ST

oo

; a N or
gl = /W ZST(J)f 7 (4.45)
r=0

where j = 0,1. From (4.13) we know that

= (4.46)
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but at a saddle we have

Tr = Xj -+ CLj(Xj)t

(with the convention that a;(z,t) = a;(z)), thus at saddle 0 we can write

TO(O) = (10(X0)7

and also
It is also clear that

Thus the leading order solution is

(0 0 po &) 1
Y o) e f /eTé ) 2f”(1) e f /e/lé )

0 T 1
2f7”(0 e f(O)/ESC() ) /2f// e f(l)/e 5’8 )

\/— f(o)/fT(O) 14+ /29 5_ [FO—f @] /e
TR O
50 /¢ o(0) [P 53 _ir_ oo
/We ! /55 { ”(I)EE()_ [f—f /]
0

u(z,t)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(0) 1(0) T i f//(O 1 0 '
~ 0 _J14 _f 0_6 [FO—r@] o LFO =]
0 { D 5 /s

~  — R

7, L L(O)T(l)e [F0) -7 O)/e
S(()O) f//(l) TéO)

" (1) ;
X {1 — %%e—[ﬂ”—f@]/e + O(J—[f“’—ﬂ‘”]/f)}
So

5 ) © 70 S(()O)

f”(o) aO(Xl)_ 2—[fM—£(®] /¢
GO{H 70 \aolxo) ) (7O )
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(4.53)

(4.54)

o) ; M g
Lo {1+ IO -y Ol (T _ 5 >}+o(62—[f<1>—f<0>1/f)

(4.55)

(4.56)



We can simplify this expression since we have

z = Xo + ag(Xo)t, (4.57)

z=X1+ ao(X1)t, (4.58)
Xi—X

- t= 1— 70 (4.59)

-~ ap(Xo) — ao(Xy)’

With a little simple algebraic simplification, the result is

w(z,t) ~ ag(Xo) + e TN (ag(X1) — ag(Xo))

a0(Xo) — ao(X1) + a5 (Xo) (X1 — Xo)
X {\/ao(Xo) —ag(X1) + ah(X1) (X1 — Xo) } . (4.60)

If we repeat the above calculation for the full solution case, then (4.55) becomes

T 1 r 7‘
u(z, t) ~ S0 \/We_[fm_f(oq/e >, TV 5 5
3, 5 e S 10 5 5O

(4.61)

Let )
T €
grfl(o)E - are’, (4.62)
=T € T

then

ST = g > 5(0es, (4.63)

= > TV =>"> "0, SO (n=r+3) (4.64)
n n=0 s=0

Since S(go) =1,

an =T = > a,_,SY. (4.65)
s=1
So, we have

79 = ao55 = ag(Xo), (4.66)
T = ap(X1), (4.67)
S = giV =1, (4.68)
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and thus

ay =T — 4,89, (4.69)
Let us define
1 ('r—l)' 1
70 2 = ) p) 4.7
T omi fr 07 (4.70)
where
fi= f(l) _ f(O). (4.71)
Then
1 (n—1)! (1) " (s — Dlan_s (1)
.= T -y B s g1 4.72
a4 2mi f7 0 Z 2mif; 50 (472)
(n=1!" 1y ao(n-=1)"!_1 ai(n—2)! (1)
~ TV - T - 4.73
omifp 0 2mifp 0 omifr=t 70 * (4.73)
So
(n—D1! 1) (1)
n g {18 —aos{? -}, (4.74)
(n—1)!
~ — 4.
omifr {ao(X1) — ao(Xo)}, (4.75)

and as X7 — Xp (ie., near a caustic) then

(n—1)!

omifT ap(X1) (X1 — Xo). (4.76)

Qp ~

We will not often have the luxury of an integral solution to a problem, which
helps us considerably on our way to finding the higher order Stokes behaviour, be
it through steepest descent methods or Borel plane methods. We have highlighted
how steepest descent approaches to complicated problems may not always provide
clear solutions. With this in mind we will now summarize an approach to the
above problem by Howls and Olde Daalhuis (henceforth referred to as HD)([62],
see also [63]), who arrived at the same results without an integral solution to
Burgers’ equation. We will present the outlines and important points of their work.
More details and calculations are given in their paper. The extra complications
introduced into the Borel analysis by nonlinearities are also discussed elsewhere;

for example, see [20].
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The problem is the same as equation (4.1) above, with initial condition (4.16).
Since the assumption is that there is no integral solution available, HD approach
the problem from an exponential asymptotics point of view, and seek a formal

solution of the form

u(x, t;€) ~ ul® (z,t;€) + Z C’fu(”’l)(az7 tie) + Z C’;u("’m (z,t;€) (4.77)

n=1 n=1
where
(o]
uO(z,t;€) Z(zr (4.78)
r=0
u(”'j)(m,t;e) ~ e—nfj(w}t)/éZaﬁw’)(%t)eﬂ (4.79)
r=0

i=1,2 n=123,....

By substitution into (4.1), it can be seen that ag(z, t) satisfies the inviscid Burgers’

equation
8ar 8&0 1
= - 4.80
ot +ap5—- 9z =0, a0($70) 1+$23 ( )
and for » > 1 the a,(x,t) satisfy
da, 4 das  O0%ar_1
B T arsgt =t an(e,0) = 0. (4.81)

s=0
Similarly, balancing at O(e™"//¢) leads to finding that the exponential functions

fj(z,t) satisfy the first order nonlinear equation
fe+aofe+ f7 =0. (4.82)

The boundary data for these functions can be found by consideration of the rays

of (4.80). There are 3 rays through each point (z,t). These are the lines
r=u1a;+a(z;)t, j=0,1,2 (4.83)

where here and henceforth, ag(z;,0) is abbreviated to ag(z;), and the z; are the

intersection points of these rays with the complex plane t = 0. (They are also the
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locations of the saddle points of the Cole-Hopf solution.) On these rays the ag
take the constant values

1

o =012 (4.84)
J

ao(z;) =

The root zg is chosen to be the one that is real for all real (z,t). The families
of rays generated by the z; are tangential at the caustics which simultaneously

satisfy (4.83) and

0=1 4 do0), j=0,1,2. (4.85)
diEj

The caustics are as before (equation (4.20)).

On the complex caustic with Im(z) > 0 (see Figure 4.1), roots zg and z;
coalesce and so the caustic is called Cp;. On the complex caustics with Im(z) < 0,
zg and x5 coalesce and is labelled Cpy. On the real caustics Cg, 1 and z2 coalesce.

The exponents f;(x,t) must vanish on the complex caustics, since here they
coalesce with the exponents of the leading order solution, ie., fo(z,t) =0, so that
the exponential correction terms there are of the same order as the first series in

(4.77). Thus the boundary data for the solutions of (4.82) are
fi(z,t) =0 on Cp;, j=1,2 (4.86)

and

fi(z,t) = fa(z,t) on Ch. (4.87)

(Note that f; = £U) from the previous section.) Direct analysis of the PDE reveals

that

ﬁ@@m%%ﬂmﬂw%:%/M%@Mz—%%@@+%@ﬂﬂq—x@,j:LZ
e (4.88)

It can also be shown that

ao(x1) — ao(®o) — ap(xo) (21 — 20)
ao(z1) — ag(zo) — ah(x1) (x1 — 0)’ (4.89)

ay™(z0, 1) = (ao(a1) - ao<xo>>\/
(cf. equation (4.60)). This result holds for all values of zg and z;.

91



Smoothed
shock

Summed Transseries

Figure 4.13: The wave produced by Burgers’ equation for t = 5 and ¢ = 0.05. The
classical position of the smoothed shock is shown, as well as an indication of the position

of the summed transseries.

HD now turn to the structure in the Borel plane. It is a complicated problem,
but it will suffice to provide only an outline of the full picture here.

The location of the singularities visible from 7 = fo(z,¢) are as indicated in
Figure 4.10 in the previous section. From (4.77) it is possible to deduce that
in the Borel plane (logarithmic) branch-points exist at 7 = nf;, j = 1,2, n =
1,2,3,.... A detailed analysis of the transseries or of the Cole-Hopf representation
shows that the Borel transform of u(l’l)(m,t; 7) must see a branch-point at 7 =
fo(z,t). Likewise, the Borel transform of u(12)(z, ¢; 7) must see a branch-point at
T = fi(z,t). Note that for certain values of (z,t) these singularities may appear
to coalesce in the Borel plane. However only when the singularities lie on the
same Riemann sheet can this give rise to actual caustics and divergences in the
asymptotic representations.

Now HD consider the analytic continuation of the transseries expansion in the
real plane from regions outside the Cg to inside. The chosen point is x. as above.

The path taken in the complex z-plane is as shown in Figure 4.9. This path
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avoids any singular behaviour in the exponentially small transseries u(™! and
u(™2) . (Note that u(® is actually regular at Cg.)

The analysis of the Borel plane is essentially as above, and we will refer to
the central diagram of Figure 4.10. At the point 1, to satisfy the decay of u as
\z| — oo, comparison of the full template for the asymptotic expansion reveals
that C1 = Cy = 0. Hence

u(l,te) ~uO(1,t;¢) (4.90)

is the complete asymptotic expansion at that point.

The Stokes lines are revealed in the same places as in the previous analysis.
After crossing the first line (at point 2) the asymptotics is now a transseries that
takes the form

u(@, t;€) ~ uO(z, t5e) + Y Kgulm(z, ;5 ¢), (4.91)

n=1

where Ky is a Stokes constant (in fact Ko = 1).

The activity of each Stokes line is examined and the results are the same as
revealed above.

It is important to recall that = z. is not a turning point/caustic for fo and
(n+ 1)f,. Hence the activity of the Stokes curve Sps; has changed at a regular
point across the higher order Stokes curve that passes through =z = z..

The ‘dominant’ part of the transseries on the real z-axis inside the caustics is

oo
u(z,t;€) = agz,t) + Z Kie ™ (z’t)/ea(()”’l)(a:, t) + O(e) (4.92)

n=1

as € — 07. Again, the exponentially small terms are included before the O(e)

because in this region fi(x,t) may decrease to zero.

By combining (4.78), (4.79) and (4.82), it can be deduced that

n 1-n
o = (o) (_2%> C n=2,34,. ... (4.93)

From this relationship the n-sum in the transseries (4.92) may be summed to

obtain Wy on )
2Ko1ag " (z, 1) e N1/e
uli,t5¢) = aole, t) + —o% (Do 1 o

(4.94)
291 1 Koal"Y (e, t)eh/e

~—
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Comparing this result with equation (4.42) we see that both methods recover a
similar form of the solution u(z,t) in this region.

Continuing along from point 7 in the negative z-direction again sees the (n)fi
all move towards fp in the Borel plane, so we see the apparent third caustic. In
this case an examination of the coefficients a,(z,t) shows that individual terms in
the asymptotics do not diverge at this point; it is not a true turning point. The
terms themselves in the transseries do not diverge at the position of the smoothed
shock.

This approach has shown that information regarding the higher order Stokes
behaviour of Burgers’ equation can be extracted without the integral form of so-

lution that we used at the beginning of this chapter and in the previous chapter.

4.3 Summary

This chapter has shown how the higher order Stokes phenomenon is relevant to
smoothed shock formation in a nonlinear PDE.

We began by analysing the Stokes structure of Burgers’ equation using steepest
descent methods. Due to the presence of branch cuts in the problem (arising form
our choice of initial data), this proved to be an unsatisfactory way to approach
the problem. We then changed to Borel plane analysis, which proved to be a more
reliable and revealing method in extracting information on the higher order Stokes
behaviour of the problem.

We found that at the position of the smoothed shock, there is no caustic or
turning point. The reason for this is that the higher order Stokes phenomenon
causes the singularities to lie on mutually different Riemann sheets, and there is
only a virtual coalescence. It is a very subtle, yet crucial role.

Although this is a very specific example of a smoothed shock problem, chosen
because of its pedagogical nature, we believe that the underlying results and analy-

sis are general. For both the integral approach and the ‘direct’ approach, if a Borel
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plane structure exists for a given problem with infinitely many Borel singularities,
then it must be the case that these singularities lie on mutually different Riemann
sheets at a shock where the asymptotics does not diverge.

The practicality of examining the effects of a higher order Stokes phenomenon
should not be underestimated. The example of Burgers’ equation was chosen as
it is easily solved, providing a foot-up into the problem. The work included in
the last section by Howls ef al. provides an alternative which reaches the same
conclusions as that of an integral approach. However, it should be noted that it is
entirely dependent on being able to solve the equation (4.82), and often sufficient
boundary data is lacking. In the next chapter will discuss this further.

The higher order Stokes phenomenon has clearly given a valuable extra insight
into the underlying analytic structure of the asymptotics. Canonical examples
such as Burgers’ equation should therefore be regarded as important, even though

they may be examples of PDE’s that are already well studied.
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Chapter 5

Discussion and Conclusions

The Borel plane approach to the higher order Stokes phenomena is, in effect, a
‘plug and play’ method. We have shown in this thesis that it works very well as
a tool for determining the activity of Stokes lines and for determining the more
subtle higher order Stokes behaviour of a given problem.

In this final chapter, we will consider ideas which could lead to further areas of
research in the future. The main one of these will be what we will call the ‘direct’
method approach to extracting the Stokes behaviour of a problem. In essence,
this is a Borel-type approach without an integral solution. We have encountered
this in the previous chapter through Howls and Olde Daalhuis’ work on Burgers’
equation.

The new work in this thesis has focused mainly on PDE problems, both linear
and nonlinear, and some interesting results have been uncovered. This should
encourage further research of this type in PDEs. With this is mind, in this chapter
we will briefly discuss formal methods of solving PDEs to produce integral solutions
(in order to implement the integral approach, should a Borel plane structure exist),
which are often hard to find or do not exist. We will then introduce and discuss at
length work on the ‘direct’ method that has been carried out so far, and suggest

future avenues of investigation.
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5.1 Formal Solutions of PDE’s

There are a few approaches to solving a given PDE problem that may be con-
sidered. Perhaps an exact solution is easily found, by change of variables and
simple integration, etc., but this is unlikely. We might attempt to solve a PDE
directly using matched asymptotic techniques for an approximate result. It may
also be possible that formal integral solutions may exist. For example, hyperbolic
equations may be solved formally in terms of an integral solution via Riemann’s
method [55]. The Riemann function R(z,y) arises in the solution of the hyperbolic

partial differential equation

Euzuzerauz +buy +cu=f, (5.1)
u(0,1) = ¢(2),
u(ta 1) = ¢(f),
o(1) = ¢(0)

R(x,y) is the solution of the equation
Ryy — (aR)y — (bR)y +cR =0 (5.2)

with

R(£,y) = exp [ / ya(f,wdt} ,

R(z, 1) = exp [/E b(t,n)dt} ,

on the characteristics x = £ and y = 7. The solution is then given by the formula

w(z,y) = / e / " R, ms e, ) (€, m)dn. (5.3)

By [35] this multiple integral can be rewritten as a single integral, and thus we
have an integral solution of the form (2.84).
Elliptic equations may be tackled in a similar way via Green functions, which

will again lead to a formal integral solution for the problem [55]. Green functions
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can also be applied to some parabolic equations, such as the diffusion equation.

Consider the one-dimensional form
¢(@, )t = duz + f(2,1). (5.4)
The solution is given by
om0 = [ [ casymis i (5.5)

with the associated causal Green function G(z,t;y, 7) satisfying
Gt —Gag =0t —71)d(z —y). (5.6)

In this case, it can be shown that
H(t—17) ( (w—y)Q)
Gz, ty,7) = —=exp | ———°~ |, 2.7
(@ty,7) =3 s R A (5.7)

where H(t — 7) is the Heaviside function

) = [ s = Vst (5.8)

-0 1 z>0

In many cases however, is it not a trivial exercise to find the value of G(z,t;y,7).
The form of these solutions is interesting to us, because from them we may be
able to develop theory linked to the areas we have discussed already. We may be
able to deduce the existence of a Borel plane structure and of course this could
introduce exponential asymptotic results for multiple integrals as a result.
For example, consider the work of Balian and Bloch [59] (see also [60]). They

studied the Helmholtz equation
(V2 + E)y(r) =0, (5.9)

where 1 = 0 on a specified boundary S. We will not consider the physics of the

problem here, only the outline of the mathematics. The Green function satisfies
(V24 k)G =6(r—1g), r,ryes. (5.10)
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Thus

0G|
G = / gﬂza 7@, o), (5.11)

where Gp is known as the ‘free’ Green function. The variable ¢ measures out
the boundary and n the outward normals from the boundary at a specified points
a lying on the boundary. The function f is determined by the boundary condi-
tions. Equation (5.11) is then rearranged to find an integral equation in f, whence

iteration leads to the full Green solution of the form

OGo(r, o)
G = LdaaWGo(a, ro)
oG
+ / dUadUg O(I‘,Oé)aGo(Oé,,B) GO(/B7r0)
S 8na
+ / doadogdo, 9Co(r, 2)0C0(, §5G0(6, 7) Go(7, 1)
S 8Tla
o (5.12)
o, f3, 7y, ... are points on the boundary S. The important thing from our point of
view is that G is known, and takes the following forms:
Gy = %Ho(k\r —rol) (2-dim), (5.13)
G I 5.14
0o = m (3-dim). (5.14)

Since the Hankel function asymptotically goes like an exponential

H,(k) = %e“w—av). T — 00, (5.15)

(where o, = (2v + 1)% [12]) this means that the integrals in (5.12) begin to take
the form that we require for our Borel plane method. If we now employ the results
of Howls [35], we can reduce the string of multi-dimensional integrals to single
integrals. We are then in a position to begin looking for Borel plane structures for
the problem.

We see, then, that there may be scope for approaching complicated PDE prob-
lems from the point of view of an integral Borel method. But what if this is
not possible? The next section will discuss this idea and develop techniques to

overcome this problem.
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5.2 The Direct Method

We begin by reviewing the work of Olde Daalhuis [61] (hereafter referred to as
OD) who was the first to produce work on this approach.
The PDE he studies is

1

T u(z,0) = —iIn(1 + iz). (5.16)

Ut — Uy = Ezuzzz -
OD first rewrites the equation in terms of new variables s = z + ¢, 7 = ¢, such that
u(z,t) = —¢ln(l +iz) + v(s, 7). (5.17)

Thus (5.16) becomes

2¢2

2
T = $§§ T 71 | /. \\3° ) =Y. 1
Ur = €7 A=) v(s,0) =0 (5.18)
Substituting the expansion
>0
v(s,T) ~ Z an (8, 7)€" (5.19)
n=1
into (5.18) obtains
0 -2
—0 = ——————= = 5.20
8Ta1 (1+i(s—7))% a1(s,0) = 0 ( )
and
0 ok
a—Tan = @an_l, an(s,O) :0, n:2,3,4,---. (521)
It is easy to see that
i i
= - 5.22
a(s,7) 1+i(s—7))2 (1+1is)?’ (5:22)
T 83 o
an(s,7) = | man_l(s,f)dr (5.23)

This important step in the method highlights a possible drawback at this early
stage. From the form of ai(s,7) it can be seen that there will be blow up at

s =1 and s — 7 =1, so a general form for the a,(s,7) can be extracted from this.
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Therefore it is necessary that ai(s,7) can be calculated explicitly. The method
from this point on is reliant on this fact.

The ansatz
K(s,7)T'(2n+ &)

(f(s,m))yorte

is made and substituted into (5.21), obtaining the equation

asn — 0o (5.24)

an(8,7) ~

fr=(fs)°. (5.25)

Note that the Stokes multiplier K is a function of s and 7, not simply a

constant. In general, @ # a&.

Again, the derivation of equation (5.25) must be possible in order for this

method to proceed.
Attention now turns to the blow up at s = ¢ in particular. Substituting a

general form of f(s,7) into (5.25) leads to

(s — i)3/2

o) (5.26)

f(S,T) =

3

and so now
K(s,m)T'(2n + a)(g(s, T))Q”'*‘a

(s — i)3n+3a/2 (5.27)

an(saT) ~

By comparing this term to the blow up of a1 (s, 7) it is possible to obtain the value

a = —%. Once more this step is only possible since a; can be found explicitly.

Thus
K(s,7)T(2n + a)(g(s, 7))*"~%/*
(S _ i)3n—1

To include the condition a,(s,0) = 0, the simplest assumption to make is

as n — 00. (5.28)

an(s,T) ~

g(s,7) ~ A%, 10, (5.29)

Via equation (5.25) it may be seen that § = .
At this stage, f(s,7) is rewritten as

2i(s — 1)3/2

fs,7) = —Wh(s,r) (5.30)
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in order to simplify what follows. Upon substitution into (5.25) the following

non-linear PDE is obtained:

(h+ %(s —i)hs)® = h — 27h,. (5.31)

A Taylor expansion of h(s,7) about s =1, 7=0
h(s,T) = h(3,0) + hs(7,0)(s — %) + hr(3,0)(7 — 0) + ... (5.32)

reveals that the only sensible solution of the PDE near (s, 7) = (7,0) is h(s,7) =
+1. This is seen by substituting (5.32) into (5.30) and then (5.25), and balancing
terms. Hence, the first solution obtained is

o \3/2
p=te \/312 . (5.33)

The same techniques are applied to the blow up at s — 7 = 1, by setting
J(s,7) = (1+i(s — 7))k(s, 7). (5.34)
Now let  =144i(s — 7), and t = i7, so that f = zk(x,t) and
(k+xky)® = k 4+ x(ky — k). (5.35)

In exactly the same fashion as above, it can be seen that the only analytic solution

near (z,t) = (0,0) is k(z,t) = 1. Hence the second value of f is found to be
fo=1+4i(s—7). (5.36)

Relying on the fact that the a) (s, 7),- -+, as(s, 7) are easily computable, the general

form for the blow up near s =4 is found to be

i(—7)" 1T (3n — 1)
(=PI

an(s,7) ~ as s — 1. (5.37)

This dominant behaviour near s = 7 also satisfies the recurrence relation in (5.21),
so (5.37) holds for all n. It follows that @ = —%. Similarly, for all n

i(~1)T(2n)

m, ass — 7 — 1. (538)
— T —

an(8,7) ~
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Note that this result cannot be valid near = = 0.

The activity of the Stoke lines can be determined using the asymptotic be-
haviour

(1) 10(3n — 1)
(s —1)*"~1T'(n)

+ KQ(S;T)%%.Q)—Z%, as n — 0o.
(5.39)

an(s,7) ~ K1(s,7)

K; = 1near s =7 and K = 1 near s — 7 = 4. At this stage, values of n, s and
T are substituted into the system, which is then solved for K;(s,7) and Ks(s, 7).
Obviously the particular value of n chosen depends on the ability to calculate the
corresponding an(s, 7).

When s is large and s — 7 is bounded then the second term of the right-hand
side of (5.39) is the dominant term in the asymptotics. Substituting this term into

recurrence relation (5.52) gives

0Ky 0K,
e el 5.4
or +3 ds 0, (5.40)

with general solution

Ky(s,7) =g(31 — 9), (5.41)

where g(u) is an arbitrary function. Now take s = 7 + d with 7 large and d
bounded. Computing the large 7 asymptotics of a1(s,7),...,as(s,7) shows that

i(—1)"T(2n)

FEnE as T — o0, (5.42)
— 1 n

an(s,T) ~
On comparison with (5.39), g(27 —d) ~ 1 as 7 — o0, that is,
Ky(s,7) ~1, ast— oo along r=constant, (5.43)

where = and t are the original variables. This compares favourably with the nu-
merical results produced above. This procedure is repeated using the first term on
the right-hand side of (5.39). The equation obtained upon substituting this term

into (5.52) is
0K,

Lo 5.44
55 = (5.44)

T— + (s — 1)
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Thus

§—1

K1(5,7)2h< T ) (5.45)

where h(u) is an arbitrary function. Take s fixed and look at the large 7 asymp-

totics of a1(s,7),...,a¢(s,7). Then
i(—7)"T'(2n
an(S,T) ~ —E;—)TS"E_—I_), as 7T — 0OQ. (546)

Thus h(7/(s —1)) ~ 1 as 7 — oo, that is,
Ki(s,7) ~1, ast— oo along z +t = constant (5.47)

This direct approach has been very successful in revealing the Stokes activity of
the problem. However, we have highlighted a few questions raised by the method.
It is already clear that in order for us to be successful, we require a certain amount
of ‘luck’ to be able to proceed at each stage; in this particular case, it is in being
able to calculate the a,’s explicitly.

Following the same method, we now attempt to finish off this problem by

including an exponentially small term in front of the approximation for v(s,7);

thus
u(z,t) = —iln(1+iz)+v(s,7), (5.48)
v(s,T) = exp(—f(s,T)/e)ian(s,T)e”, (5.49)
and -
s=xz+t, T=t. (5.50)

In the original work, the value of f in (5.49) was zero; we had an “endpoint”
expansion from which we found out about the interaction of the saddle and the
pole with the endpoint. We now want to find out what the saddle and the pole
know about each other.

If we substitute the above into the original equation (5.16) we recover the

following equations:
(—fr +(fs)%)a0 = 0, (5.51)
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= agp
(=fr+ (fs)S)al
(_fT + (fs)S)G'?

(=fr + (F5))an+

Qor fr = (fS)S

3fsfssao + 3(fs)20sa0 — O;ap, (5.52)
3fsfssar + 3(fs)?8sa1 — an (5.53)
— {fsssa0 + 3550500 + 3 fs0ssa0} ,

3fsfsstn + 3(fs)?0san — Bran (5.54)

- {fsssan—l + 3fssasan—1 + 3fsassan—l} + Osssan—2,

(n >3).

In theory, equation (5.51) should lead us to all of the a,, via the other equations;

for example, a; should come from equation (5.52) since the left-hand side is zero

if we assume a1 # 0. The problem lies in the fact that finding the a, in the above

system requires that we can solve the equation

_fT + (fS)S =0,

(5.55)

without any initial data (compare this with equation (4.82) from the previous

chapter). One method we could use to try and solve it is Charpit’s method [55].

Let
fr=p fs=q

then
—p+¢*=0.

For simplicity, we set

s=zx+t—1, t=T.
The rays of the equation are as follows:
T = To—T,
— 2=
§ = sp+3¢)T,

f o= fo+ (=po+3g)7

= fo+(—gf +3a3)7
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(5.57)

(5.58)
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= fo+2¢7, (5.61)

do _ 00, 8%
ds  Pogs T

(5.62)
We must apply the initial condition fy = 0 in order to make the initial approx-
imation (5.49) hold.
The cases sg = 8, 70 = 0 and sg = 0, 79 = 5 both return the answer pg = g0 =0

(equations (5.62) and (5.57)). To avoid this, we have two other cases to consider.

Firstly we could have sg = 0, tg = 0. The rays in this case are

T = -7, (5.63)
s = 3¢7, (5.64)
f = 2¢37. (5.65)

This case means that the equation (5.62) becomes irrelevant (0 = 0). We proceed

by eliminating gg between the equations, giving

—$§
do = -—. (566)

—4g3 43
= = i 3 —_— 5-
F=\ % VW arr (5.67)

(5.68)

Therefore

is the solution to (5.55).

The next case to look at is where sg = 5, 79 = 3. The rays in this case are

T = §—T, (5.69)
s = 54 3¢7, (5.70)
f o= 2¢7. (5.71)
This time (5.62) gives us
0=po+g0 = po=—qo. (5.72)
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Therefore from (5.57) we find that go = 0 or gp = +4. Then, eliminating 5 and 7

from the above equations, we find that the solution to (5.55) is

f = zi(s—1) (5.73)

= +(1+ia). (5.74)

We note here another flaw in the method we are presenting. In general we may
not be able to solve the equivalent equations to (5.51) and we could not proceed
any further, since we will not have enough boundary data to do so. The example
of Howls and Olde Daalhuis in the previous chapter shows that, again, a certain
degree of luck is required in order to solve such equations. They were able to use
boundary data given on complex caustics in order to solve (4.82); in our case, there
is no such information we can use.

Now, the LHS of equation (5.52) is zero, and having now found the solution
to equation (5.51), we try and calculate the first few a, terms. We face a huge

problem, of course, in that we have no boundary data for the a, at all. Consider

f=+1 % We can solve the first of our recurrence relations (5.52) to find
1 s
= —c3], 5.75
w="7C3] (5.75)

where (' represents a constant function, and effectively this is as far as we can go.
The same goes for f = i(s — 7) as well. Unfortunately, we cannot calculate any
more information about the a,’s.

Chapman and Mortimer (hereafter referred to as CM) [52] provided an alter-
native approach, which we will review in this section. Even though many of the
results are the same as we have have shown above, it still bears including their
work in this section, as it provides a good summary of an alternative approach
to this problem. CM draw on the work of Chapman et al. [16] and base their
approach on the method of matching.

The equation they investigate is
¢t - ¢s = €2¢Sss - ﬁz, (576)
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#(s,0) = tan"!s, (5.77)

¢ — x5 as s — Foo. (5.78)

Making the change of variables

T=t, (5.79)
o=s+t—1i , (5.80)
equation (5.76) becomes
9 i
T = ocoo ? 5.81
b1 = Pboo + 5 (5.81)
and in general
M = gl (5.82)
o™ (a,0) = 0. (5.83)

They make the ansatz that the solution of (5.76) has the form
I'@n + (o, 7))(=1)"

5(n)
o) Ao, 7) (o 7)o (5.84)
as n — oo. Substituting (5.84) into (5.82) obtains the following equations;
Ur + (UJ)B = 0, (5.85)
Y+ 37 (us)? = 0, (5.86)
Ar 4 3(ug)? Ay + Bususe A = 0. (5.87)

CM use Charpits method to solve (5.85). They note that the factorial-over-power
divergence is generated by repeatedly differentiating the singularities of the early
terms ¢)(0) and ¢)(1) and impose the condition that © = 0 at such a singularity.
There are 2 singularities to consider, the static singularity at s =4 (¢ = 7) and
the moving singularity at s =1 —t (¢ = 0).

Considering first the static singularity at s = 4, another change of variable is

made

u=0—T, (5.88)
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simplifying equations (5.86) and (5.87) to

Y+3% = 0 (5.89)
A +34, = 0 (5.90)
respectively. Hence v = y(0—37) and A = A(o — 37). Here they reason that since

¢1 has a double pole at ¢ = 7 we must have that v = 0.

To determine A matching is used. A change of variables is made:

o—T = ez, (5.91)
c—31 = y, (5.92)
—1 1
= — - = 5.
6 = Sloge— v, (5.93)
The inner expansion is
Y=logz+ > an(y) (5.94)
22n
n=1
as z — oo. They find
an = (—1)"T'(2n). (5.95)

To match with the outer expansion, (5.84) is rewritten in the inner coordinates

I'2n)(—1)»
1M ~ A(y)—(”;%). (5.96)
They find that A =4/2 and so
» _ i(=1)"T(n)
5 T (5.97)

To determine the late terms of the moving singularity, CM impose the bound-

ary conditions ¢ = 7 = 0 at the singularity, thus

403 1/2
= [ — ) 9.98
“ (277’) ( )
The equivalent equations to (5.86) and (5.87) are

T+ % = 0, (5.99)

o 1
Ar+ A, +—A = 0, (5.100)

T 27
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with solutions v = (¢ /7) and A = 77Y/2B(c /7). Note that this is the same result
that we arrived at with our method (cf. equation (5.75)). However, CM are able
to go a step further with their calculations.

The functions v and B are determined by matching with a region near the

singularity. The inner coordinates are

y=12, (5.101)
T
€z = u, (5.102)
) y
qﬁz—%loge—l— %, (5.103)
and the inner expansion is
33%2(y = 1)\ | < Baly)
1 = —log (—72y3/2 + n; g (5.104)
It is shown that B satisfies
B, =o(y") asy— oo, (5.105)
and that the late terms will be of the form
Buly) ~ (—1)"T(2n — 1/2)b(y). (5.106)

CM are unable to determine b(y). However, they are able to ‘spot’ the solution

for B,, from previous calculations; it is written as

|

() r@n)4™y*  (~1)™IrEn)4" T T@n+1) .

277 (y — 1)27 27 TR + 1)

(5.107)

Bn(y) =

Il
o

So, although CM reach a solution, it is dependent on being able to spot the

solution; it could not be calculated explicitly.

5.3 Summary

What we have seen in this chapter is that the direct method approach, be it from

the point of view of a Borel-type approach, or from matching methods, is still very

110



much a ‘work in progress’. However, it is most certainly a route worth pursuing
further, since it could eventually allow us to investigate Stokes and higher order
Stokes behaviour in complicated problems where there is no integral solution avail-
able. It is yet to be determined whether or not the problems we have encountered
here can be overcome in general or not.

‘We have also shown, through the inclusion of work by Howls & Olde Daalhuis
and Chapman & Mortimer, that we do not have to use the integral-type approaches
endorsed by the work in this thesis in order to reproduce the results we have gained.

The fundamental results of this thesis do not necessarily arise from the tech-
niques used to derive them. In Chapter 2 we introduced the notion that a ‘ladder’
of exponentials could be present in the solution of a boundary layer linear ODE.
Coupled to this was the message that using an exponential asymptotic approach
to finding approximate solutions to linear ODEs can be as good as matching tech-
niques in terms of accuracy, and can sometimes simplify the whole process.

Chapter 3 revealed the existence of the higher order Stokes phenomenon, and
crucially showed that even sub-subdominant exponentials should not be disre-
garded. We saw how such terms can in fact grow to dominate solutions. We
showed how the Borel plane technique can handle this subtle effect, and actually
illustrates the process very nicely.

In Chapter 4, we developed the ides from the previous chapter for nonlinear
PDEs. Burgers’ equation was a good choice because of its pedagogical nature;
we had a integral solution to work with, and so progress with our integral-Borel
approach was unhindered. We showed how the higher order Stokes phenomenon
is a relevant effect to the behaviour of a nonlinear PDE. The classically smoothed
shock of Burgers’ equation is a consequence (albeit a very subtle one) of the higher
order Stokes phenomenon.

We believe that future research in related areas, for example, the KdV equation
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may well produce similarly interesting results. Further to this, and inspired by the
work of [67], it may be possible to extend the work on Burgers’ equation to more
general non-linear terms, and could potentially go some way to resolving some of

the outstanding issues we have highlighted in this last chapter.
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Appendix A

Form of the Late Terms in

PDEs.

Can we see the factorial-over-power form of the late term asymptotics for PDE’s?

Let us consider the heat equation with the following boundary conditions:

0 <z <blet), t>0,

u(z,0) = ¢¥(z), 0 <z < b0),
Upon setting 7 = et this becomes

EUr = Ugy (AQ)

0<z<b(r), 7> 0,

u(%ﬂ ~ an(%ﬂﬁn (A.3)



cannot satisfy all of the conditions above. Again, we could use the methods of

matched asymptotic expansions, but instead we will impose the ansatz

T)~n§fn(m,7 +exp< )Zh (z,7) (A4)

This gives us a new set of boundary conditions to work with:

fO(OaT) = ¢(T)a (A5)

f’ﬂ(0$7) = 07 n Z 17

fa(b,7) =0 Vn,
hn(0,7) =0 Vn, (A.6)
hn(b,7) =0 Vn,

fo(2,0) + ho(z,0) = ¥(x),
fn(z,0) + hp(z,0) =0, n > 1.

Substituting this form of u(x,7) into equation (A.2) and balancing at orders

of € and eexp(—g/e) leads to the following equations:

fozz = 0, (A7)

fn1r = fnaa (A.8)

—gzho = 0 =g=g(7), (A.9)

—g-ho = hoga, (A.10)

—grhn +hn1 = hpge. (A.11)

Equation (A.7) can be integrated twice and using the appropriate boundary con-

dition we find

z
= l———=7. A2
o) = 0() (1 - 325 (a12)
We also have enough information to tackle equation (A.10).
—g-ho = hO,zz; (A13)
= hy = Asiny/g-z+ Bcos /grz. (A.14)
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From the boundary conditions, we know that we must have

ho(z,0) = (z) — fo(x,0)

= fv@-o0 (1-535) ), (A15)
ha(0,7) =0 = B=0, (A.16)
hn(b,7) =0 = Asin./g-b(7) = 0. (A.17)

Therefore we have that either A = 0 or /g-b(7) = km. Since the first result is

trivial, we take the latter as true, so

2

g = (%) , (A18)
T 27T2

g(t) = /ol]:(T)?df' (A.19)

We require g(0) = 0 in order to agree with the boundary data.

We now have the leading order solution to our problem.

u(@,7) = fol@,7)+ Y exp(—g(r)/OhS (@, 7) (A.20)
k
T 1 /7 [/ kn \? N krzx
= o) (1-50) ¢ 2 exp {—z/o (50 df} A0sin (575).
(A.21)
where

A® = /Ob(o) [w(a:) — 4(0) <1 - %0))} sin (%) dz. (A.22)

Let us choose some boundary data and provide an example solution. Let

b(r) = V1+72, (A.23)

o(t) = 1, (A.24)

wlz) = 0. (A.25)
Then,

(A.26)



and

T k‘2ﬂ'2 9
g(t) = /0 md& = (km)”arctanT. (A.27)
The leading order solution to this problem would then be
z > 2 1 krzx
w(z,7) ~ 1 — e + Y gllkm) arctanri/e gy <—>, A28
(z,7) VIitre ; km V1472 ( )
since
1
AR = / (x — 1)sin (k7z)dz (A.29)
0
1
= ——, k=123,.... A.30
k:/n_ b ) 3 7 ( )

We are now free to calculate the f terms, and look to recover the factorial-over-

power form

_ &, n)(n+a)
We calculate explicitly the values of fi,..., f¢ (using the relevant information from

(A.6)) and by inspection we find that in general the form of the f’s will be

f(or) = EDTET M E(0) T n £ 2)
e (b(r))"t(n+ 1)T'(2n + 2)

, b(t) = 0, n — oo. (A.32)

Using the same values of b, ¢ and ¢ as in (A.23)-(A.25), the f,’s would become

n 2n+11'1
flpr) = 2 %Y (A.33)

2n

1+ T(2n+2)

This demonstrates that the factorial-over-power form is also found in the late terms

of series’ arising from PDE’s.
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Appendix B

Hyperasymptotics

The infinite oriented contour Cp(f) is the path of steepest descent through the

nth saddle z = z,, that is

Relk(f(2) — fn)] > 0, (B.1)
where f, = f(z,). Now let
IM(k) = k-ze T (k) (B.2)
TM(k) = kb / dzg(z)e K () =fnl (B.3)
Cni{0y)
The coefficients Tr(n) are required in the formal (divergent) asymptotic expansion
0 m(n)
TM (k) ~ 7;; . (B.4)
r=0
A new variable
u(z) = k[f(2) — fa] (B.5)

is introduced. For each point z on the contour C,(6g), u is real and non-negative
(by (B.1)), but for all u # 0, there are two values of z. This is because there exists
a value zy(u) on the half of the steepest descent path emerging from z,, and a

value z_(u) on the half leading into z,. Applying this transformation gives

T = [ S - e ) (B8]
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Crucially, the quantity in curly brackets can be written as the contour integral

{g(z+(u)) g(z—(u)) } 1 ?{ dzg(z)[k{(f(z) — a2 (B.7)
T'n(6k)

Flae(w) ~ Fa-(@) f ~ 2miul” F&) = —u/k
where I',, (k) is the positive (anticlockwise) loop surrounding C,,(6), as shown in

Figure 2.8. Combining (B.6) and (B.7) gives the representation

(L [T e 9(2)[f(2) — fa]'/?
T"W(k) = omi ) duul/2 ?f"n(ek) dz 1)~ fo = ufk (B.8)

This is an exact representation of 7 and provides the basis for what follows.
The denominator of the second integral in (B.8) can be expanded binomially in

powers of k71 :

iy — L[ g . 9(2)[f (z) = fn]*/?
W =55 | ul/ﬁénm)d )= {1 — k(£ (2) = F)}
(B.9)
and
—1 N-1 T
<1 T k(f(z) - m) - ; (k(f(Z) - fn)>
uN 1
T ORGE N A= k() — )
(B.10)
N-1 o0 —u r—1/2
™ (k) — R N 9(2)
TR Z;k/o S ¥ ﬁnwmd G — fay+17
+RM (k, N) (B.11)
(n) =
= TM(k) = z:; o+ Rk, N), (B.12)
where the coeflicients TT(”) are defined as
r—1/2)! z
T — ( 27m./ ) ?idz(f(z) ﬁ(fi)rﬂ/?' (B.13)
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The contour I',(6x) has now been shrunk to a small positive loop around z,. Inte-
grals of this form can be evaluated exactly in terms of coeflicients in the expansions
of f and g about z,, to yield explicit terms in the saddle expansion. For example,

Dingle gives the leading 7 = 0 term

2
™ = [y, (B.14)

n
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Appendix C

Kuzmak’s Method

Motivated by the form of (2.82) we can look for a solution that corresponds to the
summation of all the p-exponentials in (2.77). This is similar to Kuzmak’s method
([64], [65]) and is related to the method of multiple scales. We look for a solution
of (2.63) based on the extended WKB ansatz:

ylz) ~ Z e—PF(1)/e Z P (g)e™ + Z e~ (F(z)+pF(1))/€ Z AP ()€™
p=0 n=0 p=0 n=0
~ Y Wz, X)et + e PNV (2, X)en, (C.1)
n=0 n=0

where X = F(1)/e. We now substitute the ansatz (C.1) into (2.63) and balance at
O(€™) and O(exp(—F(z)/¢)), ignoring the e-dependence in the X terms. Since the
“variable” X is actually just a constant, we do not generate a derivative in 8/0X,
and as a consequence we simply arrive at the recurrence relations we obtained
from substituting (2.65) into (2.63), but in W and V:

Cn — 711—1(va)
2z +1

Ve X)) = >0 C.2
Vale, X) = T n > (C.2)

Wo(z, X) =

J

with W_y(z, X) = V_1(z, X) = 0. The constants ¢, are determined from a mod-
ified set of boundary conditions. Due to the similarity of (2.65) and (C.1), again

we find that (C.1) cannot satisfy the boundary condition at x = 1 exactly without
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including further series. So, instead of (2.68) and (2.69) we have

Wn(0, X) 4+ Vo(0, X) = dnoa, (C.3)

Wn(lz X) + eXp(_X)‘/n(la X) = Onof3- (C4)

Note that the exponential in (C.4) is exp(—F(1)/e), precisely of the order that
was neglected in (2.69) and which lead to ansatz (2.77). We see then that had
we included this exponential in (2.69) we would have avoided the need for section
2.3.1 (at the expense of missing out on the ladder structure of the problem). That
we can now include this exponential term is a result of treating X as varying on a
different scale to e.

Using (C.3) and (C.4) we can now find the constants ¢,. Some short calcula-

tions lead to

(36 — o) + a{l — 3exp(—X))

Wo(z, X) = (1-3exp(—X))(2z+1) ~’
Wi (1,3) = Wiy (2, X)) = 3exp(—X) (W1 (0,X) = Wy s (2, X))
Wh(z, X) = : : (1 —3exp(—X))(2z + 1)1 1
B (a — 303)
‘/O(J:;X) - (1 _ BeXp(—X)),
Volz, X) = ooy 0) = Wy ()

(1 —3exp(—X))

We find that we recover (2.82) if we insert the value of eX = F(1) = 2 at leading
order in e. Note that neglecting the terms in exp(—X) reduces the recurrence
relations (C.5)-(C.8) to those in (2.72), as we should expect.

By addressing the issue of satisfaction of the boundary condition at z = 1,
we derived a more sophisticated version of the WKB expansion (2.65). This is
simply a more complicated e-dependence in the coeflicients. However we have not
addressed the overall divergence of the perturbation expansion as a function of .
The series in (C.1) with coeflicients according to (C.5)-(C.8) satisfy the boundary

conditions at each order, but the sums of the W and V terms are still divergent.
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