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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES
OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

by Joseph Kagga Kakande

Phase sensitive amplification (PSA) is a remarkably powerful tool if implemented correctly - it
allows amplification with a noise figure lower than quantum mechanics normally dictates, and
also allows the development of systems that coherently process the phase of their optical inputs.
PSA at infrared wavelengths can be achieved using second or third order optical nonlinearities -
indeed the first demonstrations of PSA utilised degenerate three photon mixing in bulk crystals,
allowing the observation of effects such as quantum quadrature squeezing. This PhD research
project was aimed at translating the fascinating science of PSAs into applications, based on
Kerr nonlinearity in optical fibres, capable of being deployed in modern core optical networks
runnning at 40 Gbit/s and higher. This objective was an integral part of the European Union
FP7 project PHASORS.

Studies, both theoretical and experimental, were carried out on wideband non-degenerate PSAs.
The inline cascaded fiber optic parametric amplifier (FOPA), in which a first phase insensitive
FOPA is used to generate phase locked signal-idler pairs, followed by a second FOPA in which
PSA takes place, was used to experimentally demonstrate PSA gain characteristics in linear and
saturated modes of operation, with PSA obtained over 20 nm in the telecom C-band. Focus was
then re-directed towards applying a dual pump PSA to DPSK regeneration. The amplitude and
phase limiting characteristics of these devices were experimentally studied, in particular revealing
that amplitude saturation arises due to an interplay between input phase and nonlinear phase
matching along the nonlinear fibre. This feature was used to identify a regime of operation for

DPSK regeneration combining simultaneous phase and amplitude regeneration.

A practical DPSK regenerator based on a degenerate dual pump phase sensitive FOPA was
built. The device advanced the state of the art by incorporating a pump synthesis stage that
allowed black-box operation. Detailed measurements using noise sources with varying frequency
distributions in both amplitude and in phase, are presented, and the ability of the system to
improve the phase and amplitude characteristics of signals at its input was verified. Also pre-
sented are results showing the regenerator installed in the middle of an 800 km dark fiber link.
Finally, a novel scheme was proposed and demonstrated that utilised parametric mixing to per-
form arbitrary phase quantization. This relied on the coherent addition of an M-level PSK signal
with a conjugated (M-1)th phase harmonic, scaled by a coefficient m, to achieve M-level phase
quantization. The concept was successfully demonstrated with QPSK data signals at 56 Gbaud,

as well as used to quantize lower bandwidth test signals from 2 to 6 phase levels.
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Chapter 1

Introduction

1.1 Motivation

The development of the erbium-doped fibre amplifier (EDFA) revolutionized communi-
cations, enabling mass access to data transfer over inter-continental distances. By adopt-
ing wavelength division multiplexing (WDM), coupled with higher on-off-keying (OOK),
data signaling rates of 800 Gbit/s down a single fibre were commercially mainstream
for long haul and high capacity backbone communications by the late nineties, and the
lay perception of the optical fibre was as a channel of effectively limitless bandwidth.
However, demand for bandwidth has started to outstrip supply due to the emergence
of bandwidth intensive services, such as high definition video streaming. To meet the
expected rise in capacity requirements over the coming decades, a combination of higher

signaling rates, coupled with higher spectral efficiency, have become a key research goal.

The ability to signal not only in amplitude but also in phase has long been exploited in
radio telecommunications to boost spectral efficiency. In fibre communications, formats
such as differential phase shift keying (DPSK) and differential quadrature phase shifted
keying (DQPSK) are known to offer significant benefits over amplitude only formats such
as on-off keying (OOK). DPSK in particular offers considerable advantages in terms of
resilience to transmission impairments such as dispersion and nonlinearity, as well as
an inherent 3 dB improvement in receiver sensitivity over OOK if balanced detection
is utilised [1]. Polarization multiplexed QPSK (PM-QPSK) has recently become the
standard for longhaul 100 Gbit/s optical transmission.

Traditionally, end-to-end optical fibre links have been characterised by their Capac-
ity *Distance product, in units of bit/s-km, measured at a fixed received signal quality.

This should in principle allow for a system metric that accounts for all engineerable
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system parameters, from transmitter hardware, signal coding, optical fibre and am-
plifier specifications, detection technology, and receiver-side signal detection and post-
processing. In most current commercial systems, the Capacity*Distance product is lim-
ited by two main factors; the widely deployed doped fibre amplifiers (DFAs) have a finite
amplification bandwidth,while noise pickup during transmission degrades signal quality

as the distance increases.
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FIGURE 1.1: Evolution over time of the Capacity*Distance product for three different
detection schemes, taken from [2].

As shown in Fig. 1.1, the performance of fibre optic links has increased significantly
since the maturity of the EDFA in the mid-nineties. Increase in the number of WDM
channels, as well as scaling the per-channel data rates to 40 Gbit/s whilst using direct
detection increased the capacity by improving both spectral efficiency in bits/s/Hz,
as well as the overall transmission bandwidth. The deployment of balanced detection
and sophisticated error correction improved receiver sensitivity, therefore augmenting
further the maximum transmission distance (reach). Finally, the resurgence in the use
of coherent detection allowed for an increase in spectral efficiency by the adoption of
higher order modulation formats, such as coherent quadrature phase shift keying (QPSK)
[2], as well as the reach due to the ability to digitally compensate, in real-time, for both

linear and nonlinear transmission impairments [3].

The Capacity* Distance product, whilst a measure of the state of the art, is a parameter
that does not incorporate all the variables of interest from a system perspective. Cur-
rent commercial realisations of fibre transmission systems have to be extremely efficient
with regard to cost, as measured in financial capital, as well as in energy requirements.
The term cost will be used hereforth to cover both capital and energy, and will be

interchangeably applied to both.

Fibre optical parametric amplifiers (FOPAs), which can be both phase sensitive (PS)
and phase insensitive (PI), possess a wide range of properties that potentially allow them
to improve the performance of fibre optic communication links, as measured using the

Capacity x Distance/Cost metric. These properties are discussed below.
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Capacity

Despite the common perception outside of the optics community that the optical fibre as
a transmission medium offers limitless bandwidth, only several narrow spectral windows
are utilised for long-haul transmission due to the loss characterictics of silica, as well
as the operating regions of DFAs. Optical amplifiers operating in the near infrared
can be manufactured by doping optical fibres with rare earth elements, such as erbium,
ytterbium and thulium. EDFAs are the dominant technology in use in current fibre optic
communication systems. Since their development [4], they have revolutionised optical
communications due to their ability to amplify multiple signals in the C-band (1530-
1565 nm), which is the spectral region of minimum loss in silica optical fibres. They
are polarization and phase insensitive, offer low noise figure (NF) limited by the 3 dB
quantum limit [5], as well as high gains of up to about 60 dB [6]. DFAs have also been
shown operating in the L-band (1565-1625 nm) by increasing the erbium concentration
[7], and in the S-band (1460-1530 nm) by doping with thulium [8].

DFAs are often utilised in conjunction with Raman amplification to improve perfor-
mance in long span links. Raman gain [9] can be obtained either in lumped devices,
or implemented in a distributed fashion along the transmission fibre. Raman ampli-
fiers offer wider operating bandwidths than DFAs, with a figure of 160 nm achieved by
using a tellurite based fibre [10]. As PI devices, their NF is quantum limited to 3 dB.
Incorporating distributed Raman amplification reduces the need for high signal peak
powers, subsequently lessening the impact of nonlinearities in the link. As such most

high capacity 'hero’ experiments incorporate distributed Raman amplification [2, 3].

FOPAs can be used to increase capacity in a single device as they can have gain band-
widths significantly greater than those achievable with DFAs. Laboratory demonstra-
tions have shown that it is possible to scale the gain up to the 70 dB level [11], and
by careful design achieve gain bandwidth in excess of 300 nm [12]. In addition to large
bandwidths, the central wavelength of FOPAs can be tuned by adjusting the pump(s)
wavelengths and powers [13], allowing gain in spectral windows not accessible with DFAs.
These FOPA properties could be used to increase the channel count of WDM systems
significantly beyond that possible with DFAs, increasing capacity accordingly.

Distance

The reach of fibre links is limited by noise, seeded either linearly due to quantum noise
resulting from loss and quantum limited amplification, as well as nonlinearly due to
interactions between the propagating signal and other optical waves in the same fibre
[14]. Optical amplification can be used to compensate for loss. Typically, DFAs are
required every 60 - 120 km, compensating for around 12 - 24 dB worth of losses. As

discussed in Section 3.2.1.2, it is possible to minimise noise pickup in links by using low
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NF lumped amplifiers and pre-compensating for the loss by amplifying before the lossy

element.

Phase sensitive amplification (PSA) as a process has long been known to offer the pos-
sibility of amplification of optical signals with NF below the 3 dB quantum noise limit
experienced by all other classical amplifiers, including DFAs. In fibre, phase sensitive
fibre optic parametric amplifiers (PS-FOPAs) are operated by having the signal and idler
fields present at the input to the FOPA. If used to replace DFAs in multi-span links,
PS-FOPAs can provide a 3 dB overall NF improvement, which could be used to dou-
ble the transmission distance [15]. While the theory is four decades old, the associated
requirements of narrow linewidth and high power pumps that are phase locked to the
signals (and idlers) being amplified limited research efforts in this field for a long time.
In the early nineties however, following the development of the EDFA and the imple-
mentation of the first long distance optical fibre transmission networks, interest in the
PSA was reignited as a means to extend the reach of the said networks, by reducing the
noise accumulated during repeated amplification [16]. PSA was demonstrated shortly
afterwards in a parametric amplifier based on second order nonlinearity in a Potas-
sium titanyl phosphate (KTP) crystal, with a noise figure under 3 dB measured [17].
FOPA equivalents using highly nonlinear fibre (HNLF) were subsequently studied and
demonstrated [18, 19]. FOPA gain can also be distributed along the transmission span
[20, 21], matching, and even exceeding, the noise benefits of using distributed Raman

amplification.

While optical amplification can be used to offset the detrimental impact of loss, the pres-
ence of optical nonlinearity means that beyond a certain peak power level, amplification
degrades, rather than enhances the received signal quality. An alternative solution to
noise pickup is to periodically regenerate the signal, restoring it back to its original
quality. The first commercial regenerators utilised a process referred to as Optical-
Electrical-Optical (OEO) conversion. This involves the noisy optical signal (i) being
detected using a photoreceiver thereby converting it into an analog electrical signal, (ii)
re-digitising the analog signal thereby removing the noise, and (iii) re-modulating this
digital stream onto a new non-degraded optical carrier. Digital error correction can also

be used on the electrical signal, enhancing the performance of the system significantly.

FOPASs can also be used to perform all-optical signal regeneration. In PI mode, they can
be used to limit the intensity of signals via a gain saturation mechanism [22]. This has
been used to regenerate the intensity of DPSK signals [23], reducing the nonlinear pickup
of noise in transmission spans following the regenerator, with demonstrations showing
reach enhancement [24]. The extinction ratio of OOK signals can also be increased using
a higher-order four wave mixing (FWM) effect in FOPAs, allowing for another optical

regeneration mechanism [25].
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In PS mode, two pump symmetric (degenerate) FOPAs can directly eliminate phase
noise from DPSK signals due to their m-periodic step phase characterictics. When
saturated, they can also use the same amplitude limiting function described earlier
to eliminate amplitude noise [26]. This combination of effects can be used to perform
simultaneous phase and amplitude regeneration of DPSK signals [26, 27]. This phase
regeneration capability could be used to extend the reach of DPSK-bearing fibre links.
This configuration however is limited to two-level PSK signals, and not the higher order

modulation formats such as QPSK that are superceding DPSK.

Cost

For a very long time, all-optical signal processing has been considered to be able to
replicate, but at significantly higher speeds, certain functions that could otherwise only
be performed using electronics. All-optical switching was demonstrated as early as 1983
[28] using nonlinear interactions in a LINbO3 waveguide. By 1990, it was anticipated that
Kerr based switches with their associated functionality such as regeneration, sampling
and multiplexing, would be required to overcome the limits of electronic devices, in novel

all-optical networks [29].

The rapid growth of the internet has led to estimates that by 2025 the internet will
consume 7% of the 2010 global electricity supply [30]. Such predictions have meant that
the power efficiency of systems involved in optical networks has become an issue of
utmost importance. For a long time, research literature on all-optical signal processing
has stated that all-optical techniques are more power efficient, and consequently greener
than electrical (OEQ) alternatives, an assertion repeated in the introductory paragraph

of the majority of papers today on this subject.

In reality, advances in the field of semiconductor electronics have meant that OEO based
switches are currently more efficient than their all-optical counterparts, once the power
consumption of both the switch and ancillary devices (such as optical pump amplifiers
for many Kerr-based devices) is taken into account. Because of the intrinsically low
switching energy of modern CMOS transistors, estimates suggest that OEO techniques
currently outperform (albeit marginally) their all-optical counterparts when it comes to

simple binary operations, as shown in Fig. 1.2 [30].

PS-FOPAs can potentially lead to power reductions in a number of ways. In long opti-
cal links with large repeater spacings, the net power consumption of the link (including
transmitter, receiver and repeaters) is dominated by the consumption of the amplifiers
[31]. In this regime, if DFAs could be replaced by PS-FOPAs of identical power con-
sumption but with 3 dB less noise figure, the repeater spacing could be doubled, leading
to significant reductions in energy use, as well as cost due to the typical overheads per

repeater (maintenance, installation, warehousing etc).



6 Chapter 1 Introduction

10°
107° HNLF PPLN InPHBT
" s SOA \ - ‘/ (DE)MUX
10 c— - / /SiGe
- a4 .
© 1012 e amm-m _0_':' )
= Optical Devices Si Nanowire . T
g 107 E, Eoeo
i 10" | % Total CMOS energy
o s including wires
@ 10 45 E,..
5 30 32 > device,E
@ 107 11
S 1077 CMOS gate Feature
'§ energy size innm
-18
» 10
11
107
10%° - . . -
1980 1990 2000 2010 2020 2030

Year

FIGURE 1.2: Device energies per bit against time at 100 GHz, taken from [30].

In addition, while it is clear that OEO switches acting on single bit/symbol inputs
perform well enough in energetic terms to render optical equivalents redundant, the
situation could be reversed with the advent of complex modulation formats. A fully
coherent regenerator for a single polarization QPSK signal would require a local oscilla-
tor, dual channel high speed analog-to-digital converter, a high speed digital chip, and
a QPSK transmitter. For a hypothetical 50 Gbit/s QPSK coherent (DSP based) re-
generator, the 25 optical Gsymbols/s received would be transformed to two 150 Gbit/s
serial electrical streams due to the requirement of at least 6 bit/symbol resolution in
the ADCs for optimal performance [32]. As a result, an electrical regenerator would
need to process at least 12 times as many symbols as an equivalent all-optical device
that directly regenerated each received symbol. This internal symbol-multiplication, in-
herent to coherent OEO regenerators, may make it possible for all-optical regenerators
to become competitive, as it overcomes the per-bit switching disadvantage relative to
OEO approaches shown in Fig. 1.2. Crucially, moving to even higher order modulation

formats, such as 8-PSK, would make all-optical processing even more competitive.

Research Aims

With all this in mind, PS-FOPAs could lead to significant cost reductions in future op-
tical networks carrying high spectral efficiency phase encoded signals, due to a two-fold
effect; a reduction in the number of amplifiers per span, as well as a more energetically
efficient means of signal regeneration. It is only of recent that PS-FOPAs have become
technologically feasible, due to advances in high power narrow linewidth lasers, optical

phase locking techniques, availability of fibres with high nonlinearity and low dispersion,
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as well as increased stimulated Brillouin scattering (SBS) thresholds. In July 2008, the
University of Southampton and six other international collaborators started work on
a European Union FP7 funded project titled ”Phase Sensitive Amplifier Systems and
Optical Regenerators and their Applications”, often referred to by the acronym PHA-
SORS. The PHASORS project targeted the development and applications of fibre based
PSA technology in 40 Gbit/s broadband core networks. The objectives of PHASORS

included:

e Development of a reliable technology base for the realisation of practical PSAs

e Investigation of both interferometric and non-interferometric fibre based approaches
for PSA.

e Demonstration of a non-interferometric based PSA system.
e Demonstration of a PSA with a record noise figure of less than 1 dB.

e Demonstration of the benefits of the low noise properties of PSA for transmission

applications.

e Demonstration of the use of PSAs for the regeneration of phase encoded signals.

The University of Southampton was involved in several tasks within the project, in-
cluding the design and fabrication of highly nonlinear microstructured fibers suitable
for PSA, characterisation of narrow linewidth laser and phase locking systems, and the
development of practical regenerators for phase encoded signals. The project partners
all contributed in different ways to these work packages. OFS Denmark designed and
fabricated silica based highly nonlinear fibers, including the high SBS threshold sam-
ples used in the regeneration work later in this thesis. Eblana Photonics manufactured
narrow linewidth semiconductor lasers which proved suitable for injection locking, en-
abling black box PSA operation. The University of Athens assisted with theoretical
support, including numerically simulating the regenerator designs. University College
Cork carried out research in optical phase locked loops and optical injection locking,
and knowledge was exchanged with Southampton on these key sub-systems. The Uni-
versity of Chalmers was engaged in building wideband PSAs for low noise amplification,
and joint work was carried out between Chalmers and Southampton early on in exper-
imentally studying PSA behaviour. EXFO Sweden, whose expertise is in the field of
ultra-high speed all-optical sampling, provided their high speed complex sampling scope
allowing for some advanced evaluation of the regenerator prototypes. Last but not least,
OneFive Gmbh carried out research into narrow linewidth lasers based on external cavity

technology, although these were not used in the experiments detailed in this thesis.

This PhD research project was aimed at novel system demonstrations of PSAs within

PHASORS, with particular emphasis on using them for all-optical DPSK regeneration,
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as well as finding ways to extend their functionality to coping with higher order mod-
ulation formats such as QPSK. This meant that a lot of the experimental work here
presented utilised devices fabricated by the project partners. In addition, some of the
experiments were carried out in collaboration either with the external project partners,
or with University of Southampton researchers working on PHASORS, particularly Dr.
Francesca Parmigiani and Dr. Radan Slavik. Whenever experiments were performed

jointly under such circumstances, it is explicitly stated in this thesis.

1.2 Outline

Chapter 2 provides a basis for the theoretical aspects of the work in this thesis. Key
effects during signal propagation in optical fibres are presented, including dispersion
and nonlinear refraction. Fibre optical parametric amplification is introduced, as well as
the phase matching technique that allows efficient parametric amplification by careful
selection of the pump(s) wavelengths relative to the fibre zero dispersion wavelength.
This is followed by a mention of some of the detrimental inelastic scattering mechanisms
to be minimised in FOPA design, particularly stimulated Brillouin scattering. The
Nonlinear Schrodinger Equation is shown and its solution by use of the Split Step Fourier
Method described. This was used to perform numerical simulations of the parametric
devices used for amplification and regeneration, as described in later chapters. Finally,
the process of injection locking of semiconductor lasers is introduced; it plays a key role

in the phase sensitive regeneration demonstrations in this thesis.

In Chapter 3, phase sensitive amplification is introduced as a technique to obtain am-
plification with a NF below the 3 dB quantum limit of classical amplifiers. A basic
introduction to the theory is presented, including the formulae revealing that replac-
ing classical quantum limited (PI) amplifiers with PSAs in a multi-span link should
yield a net 3 dB link margin improvement. The inline cascaded FOPA, in which a first
phase insensitive FOPA is used to generate phase locked signal-idler pairs, followed by
a second FOPA in which PSA takes place, is used to experimentally demonstrate single
pump PS-FOPA gain characteristics in linear and saturated modes of operation. An
improved PSA configuration is then shown, it allows a comparison of single and dual
pump PS-FOPAs, and includes several modifications aimed at improving PSA perfor-
mance relative to the first demonstration. PS amplification over 20 nm is shown with
gain variations under 1 dB. Finally, FOPAs in PI and PS mode are used to amplify a
wideband optical comb. A PI-FOPA was used to flatten a triangular -10 dB/THz input
comb spectrum, and high gains of 33 dB were obtained at the FOPA gain peak. In PS

mode, a clear 4 dB NF improvement was shown, as compared to the PI-FOPA.

Chapter 4 studies issues regarding the application of the degenerate 2P PS-FOPA for
DPSK signal regeneration. The analytical gain functions of the PS-FOPA, as presented
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in Chapter 3, are simplified to show how in the linear high gain regime the device transfer
function can be approximated by adding to the input signal its phase conjugate. Results
of numerical modelling using the parameters of several in-house HNLFs show that good
phase regenerative performance could be delivered in a PS-FOPA if PS swings over
15 dB are achieved. These conclusions are then verified in an experiment based on a
degenerate 2P PS-FOPA in a 2 m bismuth oxide fibre, showing that close to an order of
magnitude reduction in small signal phase fluctuations at the PS-FOPA input could be
practically obtained. PI and PS saturation in a FOPA are experimentally contrasted,
and the dynamics of saturation in a PS-FOPA are practically studied. The experiment
reveals that saturation in a PS-FOPA is more complex than in a PI device due to an
interplay between input phase and nonlinear phase matching along the FOPA fibre,
which modifies the amplitude transfer characteristics quite markedly, particularly at
high input signal levels. This feature is used to identify a regime of operation for DPSK

regeneration combining simultaneous phase and amplitude regeneration.

Chapter 5 discusses the implementation of a DPSK regenerator based on a degenerate
dual pump FOPA. The device advanced the state of the art by incorporating a pump
synthesis stage that allowed black-box operation. This involved the mixing of the in-
coming DPSK signal with a local pump, generating a modulation stripped idler that
was then enhanced using injection locking, providing the second required pump. De-
tailed measurements using sinusoidal phase and amplitude noise are shown confirming
the regenerative effects up to 40 Gbit/s. The regenerator was then modified to make it
less susceptible to thermal and acoustic perturbations and assessed with an input DPSK
signal impaired by artificial broadband non-deterministic noise, and later by real noise
generated by transmission through an 800 km installed link. Modest BER enhancement
was obtained due to the particular noise statistics in the experiments. The analog error
correction ability of the regenerator is discussed, before concluding with an assessment

of the impact of uncompensated signal dispersion.

In Chapter 6, the need for multilevel phase quantization is discussed. A novel scheme is
introduced, relying on the coherent addition of an M-level PSK signal with a conjugated
(M-1)th phase harmonic, scaled by a coefficient m, to achieve M-level phase quantization.
A simple analytical theory can be used to predict the optimal value of m, located using a
numerical misfit factor minimization process. The concept is successfully demonstrated
with QPSK signals, relying on a two stage parametric process - in the first stage a
third order phase harmonic is generated, and in the second this is mixed with the
original signal. A further simplification to the system is to combine the two processes
in a single fibre, by mixing a QPSK signal with two pumps in an HNLF. Constellation
measurements taken up to 56 Gbaud (112 Gbit/s) show up to a four-fold reduction in the
phase error variance. The device is capable of reducing noise in both phase and amplitude

via a saturation mechanism, similar to the DPSK regenerator. The generalised concept
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is further demonstrated up to 6-PSK. Finally, the conclusions from all this work are
addressed in Chapter 7.



Chapter 2

Background

2.1 Introduction

This chapter starts off by briefly covering some of the classical theory of wave propaga-
tion in dielectric media within the context of signal propagation in optical fibres. Linear
dispersion and nonlinear refraction are described, followed by the process of parametric
amplification, which is the basis for most of the experimental work described in this the-
sis. The method of optimising parametric amplification by phase matching is presented.
This is followed by a mention of some of the inelastic scattering mechanisms in fibre of
relevance to parametric amplifier design, particularly SBS. Methods of suppressing SBS
are described, including several experimental realisations. The Nonlinear Schrédinger
Equation is introduced and its solution by use of the Split Step Fourier Method de-
scribed. This was used to perform numerical simulations of the parametric devices used
for amplification and regeneration, as described in later chapters. Finally, the process
of injection locking of semiconductor lasers is briefly introduced due to its incorporation

in the PSK regeneration demonstrations in several chapters of this thesis.

2.2 'Wave Propagation Effects

2.2.1 Chromatic Dispersion

Chromatic dispersion is an effect originating from the frequency dependence of the re-
fractive index of light in dielectric media. The time varying field of an electromagnetic
wave propagating along the axis z of an optical fibre in the x or y directions can be
described as

—

E(z,y,z,t) = % {E (z,y,2,t)-expi (Bz — wt)] + c.c} (2.1)

11
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where { E(z, vy, z,t) represents the envelope of the waveform, 3 the propagation constant,
w the frequency of the carrier and c.c the complex conjugate. The assumption behind
Eqgn. 2.1, which is sometimes referred to as the slowly varying envelope approximation,
is that the envelope of the wave propagating in the z direction changes much slower than
the period of the wave [33]. For spectrally broad signals, one can describe the frequency

dependence of 8 as a Taylor series about a reference angular frequency wy

B(w) = ”(W)% = »30+51(W—w0)+%(W—wo)2+%(w—wo)3+%(w—wo)4+... (2.2)
where 05
Bi = Tos? o (2.3)

and c is the speed of light in a vacuum.

The lowest order wavelength dependent coefficient [3; is inversely related to the group
velocity, vy, which is the speed at which the envelope of the wave propagates along the
fibre and can be written as 4 )
w
Vg = —> = — 24
g dﬁ Bl ( )
The parameter (3 is often referred to as the group velocity dispersion parameter (GVD),

and in relation to the refractive index n can be written as

By =t <2dn n d2n> (2.5)

c dw “’W

By minimising (2, one can minimise the rate at which the various spectral components
within a pulse disperse relative to each other during propagation. An alternative dis-
persion parameter D is more commonly used when fibre parameters are specified. D is
related to Bo as

2me

Typically, there is a wavelength, referred to as the zero dispersion wavelength (ZDW),
at which the GVD becomes zero. For fused silica, this is typically around 1.27 pm
[33]. In nonlinear fiber optics, it is normally beneficial to use nonlinear fibers whose
ZDW is close to the wavelengths of the interacting waves. To achieve this at telecom
wavelengths (around 1550 nm), dispersion shifted fibre (DSF) is used. In DSF, the ZDW
is tuned by a combination of doping, and engineering the device structure, such that a
waveguide contribution to /33 offsets the original material dispersion [34]. By convention,
for wavelengths where 82 > 0,i.e. D < 0, the dispersion is said to be normal, and for
B2 < 0,ie. D > 0, anomalous. By shifting the ZDW to even longer wavelengths, it
is possible to obtain fibres with negative D values in the C band; these fibres are often
used to compensate for accumulated dispersion following propagation in standard single

mode fibre, and are referred to as dispersion compensating fibre (DCF).
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The series in Eqn. 2.2 has been written up to the fourth order as the 84 term can
have significant impact in determining the properties of parametric devices hosted in

low dispersion and low dispersion slope fibres [35].

2.2.2 Polarization Mode Dispersion

In real fibres, cylindrical asymmetry due to random variations in the core shape as well
as stress-induced anisotropy cause the existence of two distinct polarization states. The
mode-propagation constant, 3, is slightly different for the two states, causing relative
dispersion between the two polarizations. The difference between the refractive indices

experienced by the two polarization states is called birefringence.

When a polarized beam is launched down an optical fibre, the two components of the
signal (resolved along the two principal polarization states) experience different propa-
gation delays due to the birefringence, causing a phenomenon referred to as polarization
mode dispersion (PMD) [33]. The instantaneous difference between the delay of the two
components is called the differential group delay (DGD). In long transmission fibres, the
birefringence varies randomly along the fibre length. It is also not static, being sensitive
to temperature and stress, and as a result, the output polarization and DGD in an in-
stalled fibre link will vary with time, albeit slowly (timescales measured in hours to days
[36]). The relationship between the accumulated DGD, A7, and the PMD parameter,

Dpyrp, following propagation over a distance L, is given by [33]
AT = DPMD\/E (27)

PMD is often cited as a limiting factor in the performance of high speed (>40 GHz)
WDM systems, with typical values of 0.1 - 1 ps/vkm [33]. With the advent of real-time
coherent systems however, compensation for dispersion and PMD can be done at the

receiver [37], overcoming this obstacle.

If polarized beams need to be propagated along an optical fibre stably, polarization
maintaining (PM) fibres are typically used. These have a deliberately high built-in
birefringence, making the overall birefringence largely insensitive to small changes caused
by stress or temperature fluctuations. This is usually done by inducing a permanent

internal stress along one of the transverse axes of the fibre core [38].

2.2.3 Effective Length

The effective length accounts for the attenuation « of the transmission medium when
studying nonlinear effects. The effective length L.; of a fibre of loss «, is calculated
from the real length L as

L (1~ exp (—al) (2.8)

Lesr =
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When calculating the impact of nonlinearity, it is necessary to substitute the real length
with the effective length.

2.2.4 Nonlinear Refraction

Nonlinear refraction refers to the dependence of the material refractive index n not just
on a linear frequency dependent term, ng(w), but also on the local intensity, I, of the
electric field [39]

n(I) = no(w) + nal (2.9)

This effect is induced by the third order susceptibility, x>, of the dielectric medium.
During analysis of electromagnetic propagation in optical fibres, a commonly used pa-
rameter is the nonlinear coefficient, v , which incorporates the nonlinear index ny and
the effective area, A.sy, of the propagating mode. The effective area is defined to ac-
count for the fact that the propagating field (in single mode fiber) is not constant in
field across the fiber core, but rather is largest near the fiber axis, and also extends
into the cladding, meaning that the intensity can not be accurately calculated simply by
dividing the power by the core area. The effective area can either be calculated by using
simulations or directly measured, provided in both cases that the other fibre parameters

are known [40], and once this is done, v can then be calculated as [33]

2mny wny
p— p— 2. 10
T Nup  cAuy (2.10)

The intensity dependence of n is responsible for a number of nonlinear effects, e.g. those

described in the following two sub-sections.

2.2.4.1 Self Phase Modulation

During propagation, the E field experiences a nonlinear phase shift ¢y (spar) induced

by its own intensity, which can be quantified as

Onrspamy = YPLesy (2.11)

where P is the optical signal power and L.;s the effective propagation length. Self
phase modulation (SPM) is commonly used for many nonlinear optical processes such

as soliton generation and the spectral broadening of ultra short pulses [33].
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2.2.4.2 Cross Phase Modulation

If a signal, El, is launched into a fibre together with another at either a different wave-
length, polarization or propagating in the opposite direction, 52, the signal E; experi-
ences a nonlinear phase shift ¢ (xpay) induced by the intensity of E, , a phenomenon
known as cross phase modulation (XPM). For co-propagating waves, this phase shift is

equal to

ONL(xpM)y =2r - YPLegy (2.12)

where P is the power of Eyandrisa polarization dependent term of value 1 if E and B
are linearly co-polarized and 1/3 when orthogonally-polarized. Cross phase modulation
has been widely exploited as well, in switching and retiming applications [41], as well as

nonlinear phase matching in parametric amplifiers [13] to name but a few examples.

It is important to note that Eqn. 2.12 is usually only valid for continuous wave signals.
When the interacting beams are comprised of a pair of pulses, it is possible for dispersion
to cause them to separate in time, a process termed as walk-off. In that case calculations
of the nonlinear phase shift should take into account the real interaction length, which

may be significantly less than L.

2.3 Parametric Amplification

Parametric amplification is a phenomenon by which a weak wave, termed the signal,
is amplified by a stronger wave, termed the pump, and in the process a third wave
termed the idler, equally detuned in frequency from the pump as the signal, is generated.
The term ’parametric’ in this case is a legacy of the older field of radio engineering.
Parametric amplification is achieved without energy storage in the amplifier medium, as

compared to the amplification process in an EDFA.

Optical parametric amplification requires a nonlinear process to initiate the direct trans-
fer of energy from pump to signal. This can be performed using second order nonlinearity
in a medium such as a KTP crystal [42] or third order nonlinearity in optical fibre [43].

In optical fibre, the parametric process most commonly used for amplification is FWM.

2.3.1 Four Wave Mixing

When two waves with frequencies w; and ws interact inside a nonlinear medium, the
resulting beating in intensity at the difference frequency, Aw = |w; — w2|, nonlinearly
modulates the refractive index, and consequently the propagating waves, resulting in the
generation of new frequency components (modulation sidebands) at frequencies ws =

w1 — Aw and wyg = we + Aw [44]. Four wave mixing is subject to energy conservation
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rules, such that w3 + wy = wq + ws. In addition, linear momentum must be conserved,
and as such ¢3 + ¢4 = ¢1 + ¢2, where ¢; is the phase of wave j. The new frequency
components are called the idlers. This process leads to signal gain, and FOPAs exploit
this mechanism. To maximise the efficiency of the parametric process, it is necessary
to maintain the phase relationship between the original waves and the idlers, something
that may be altered during propagation by dispersion. Nonlinear phase matching is
a technique to maximise parametric efficiency by using nonlinear refraction to offset

dispersion, and is discussed in the following section.

2.3.2 Nonlinear Phase Matching

As the waves propagate down a fibre, it is possible for the energy transfer to be from
the signal and idler to the pump(s) or vice versa, depending on the waves’ relative
phases. The direction of energy transfer depends on the phase relationship between the
propagating waves and the induced polarization of the bound electrons in the medium
[43]. If ¢, ¢i, and ¢, are the absolute phases of the signal, the idler and the pump(s)
respectively after propagating a distance z along the fibre, the relative phase can be
defined as

Pre1(2) = ¢s(2) + ¢i(2) — 26p(2) (2.13)

If ¢rei(2z) > 0, the energy transfer is from the pump(s) to the signal-idler pair, while if
¢ret(z) < 0, the energy transfer is from the signal-idler pair to the pump(s). Temporarily
neglecting the dispersion effect, the relative phase is modified with distance due to

nonlinear pump induced XPM and SPM. Thus, the relative phase can be re-written as

Prei(z) = ¢5(0) + ¢i(0) — 2¢p(0) + AfnLz (2.14)

where the nonlinear phase mismatch AByy = 2yP and P is the total pump power. In

the presence of dispersion, an additional linear phase mismatch term can be defined as

ABL = Bs + Bi — 20p (2.15)

where 3;, 8; and 3, are the mode propagation constants of the signal, idler and pump

respectively. The relative phase then becomes:
brei(2) = ¢5(0) + ¢i(0) — 2¢,(0) + (ABL + ABNL) 2 (2.16)

The relative phase varies linearly with propagated distance at a rate determined by the

total phase mismatch x, given by

k=ABL +ABNL (2.17)
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If the magnitude of k is greater than zero, an oscillation in the gain of the signal is
observed, which is detrimental to amplifier performance. To optimise a FOPA, one would
like to minimize the total phase mismatch and maximize the signal gain. In FOPAs,
a convenient way of doing this is by locating the pump in the anomalous dispersion
regime and (only) one of the signal or idler in the normal regime, such that the ensuing
negative AJ, cancels out the positive ASyy, [13]. This is referred to as nonlinear phase

matching.

2.3.3 Phase Sensitive Amplification

FOPAs are phase sensitive (PS) when both the signal and the idler fields are present
at the amplifier input and are phase locked to each other. In this case, the terminology
signal and idler is retained only for convenience, in reality they are simply two indepen-
dent waves with the same frequency detuning from the average pump frequency. The
PSA behaviour can be explained physically as a result of the interference between the
fields generated parametrically and the signal/idler fields already present at the amplifier
input. In Chapter 3, PSA in FOPAs will be reviewed in more detail.

2.4 Scattering Effects

A number of scattering mechanisms in optical fibres exist that have an important impact
on the performance of fibre optic devices. Some of these mechanisms are reported in the

following sub-sections.

2.4.1 Rayleigh Scattering

Rayleigh scattering is due to the elastic scattering of photons by non propagating density
fluctuations within the glass fibre structure, fluctuations that result from entropy (in-
trinsic disorder) in the molecular organization. The degree of Rayleigh scattering scales
as A~* and limits the minimum losses achievable in state of the art fibre fabrication [45].
No energy is transferred from the photons to the scattering medium, meaning that the

scattered light is at the same frequency as the incident light.

2.4.2 Stimulated Raman Scattering

Stimulated Raman scattering (SRS) is an inelastic scattering mechanism that originates
from the interaction of propagating light with high frequency vibration modes (optical
phonons) of the molecules of the transmission medium [39]. The scattered light is down-

shifted by the energy of an optical phonon. The resulting frequency shifts are very large,
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typically strongest around 13 THz [33], although Raman effects can be observed over a
broad frequency range. Raman effects will largely be ignored during the analytical work
in this thesis due to their negligible effects on parametric gain [43] at the bandwidths of
interest (with signals between 1530nm to 1560nm).

2.4.3 Stimulated Brillouin Scattering

When a high intensity source, usually called the pump, is coupled into a fibre, inelastic
scattering of the forward propagating pump radiation sometimes occurs due to ther-
mally generated acoustic phonons via a Bragg diffraction mechanism [39]. The scattered
backward propagating light, termed the Stokes wave, is frequency downshifted by a ma-
terial dependent amount, typically around 10 GHz [33]. Interference between the pump
and Stokes wave sets up a standing wave and the resulting high electric field intensity
gradients reinforce the acoustic wave due to electrostriction. This leads to an increase
in both the reflected and acoustic waves until a steady state is reached. Beyond this
point virtually any extra pump power coupled into the fibre input is converted into the

backward travelling Stokes wave.

Suppressing SBS is one of the major challenges in designing high gain FOPAs, as un-
mitigated it severely limits the pump power that can be coupled into a fibre. SBS
is typically characterized by the pump threshold power above which the SBS process
becomes self reinforcing. SBS is a resonant narrowband mechanism (gain bandwidths
typically around 20 - 50 MHz in silica) [33]. It is also a nonlinear process, and is there-
fore enhanced by increasing the interaction length or pump power. The majority of the
methods that exist to suppress SBS rely on either increasing the pump bandwidth such
that the pump spectral density reduces, or reducing the interaction length, for example
by either physically separating various sections of the fibre using isolators, or modify-
ing the fibre properties in a distributed fashion, broadening the effective Brillouin gain
bandwidth and reducing the peak gain. Some of these techniques for increasing this
threshold include [13]:

1. Pump phase modulation: SBS threshold increase is proportional to v,/vg, where
vy is the pump spectral width after modulation, and vp the Brillouin gain band-
width. While high SBS suppression is possible, the method is expensive and makes

phase locking complicated.

2. Inline isolators: Adding N inline isolators provides an N-fold increase in the SBS
threshold, although care must be taken to ensure that if the isolators are pigtailed

the connecting fibres do not distort the FOPA gain spectrum.

3. Strain distribution: Applying varying strain along the length of fibre can provide
over 10 dB SBS threshold enhancement. This can perturb the dispersive properties

of the fibre, although it can conversely be used to optimise dispersion [46].
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4. AlsOgz core doping: State of the art demonstrations today allow for around 6 dB

increase in threshold, although this increases fibre losses significantly.

5. Temperature gradient: Approximately 3 dB threshold increase can be obtained
per 100°C.

2.5 Generalised Nonlinear Schrodinger Equation

2.5.1 The NLSE

The Nonlinear Schrédinger Equation (NLSE) is the typical starting point for both an-
alytical and numerical studies of the propagation of electromagnetic fields in optical
fibre. This classic equation is derived from Maxwell’s equations. For propagation in
single mode fibre such as that typically used in FOPAs, one can separate the temporal

and longitudinal evolution of the electric field, as follows [33].
E(z,y,2,t) = F(z,y)Al=,1) (2.18)

In Eqn. 2.18, F (x,y) describes the mode field distribution of the fundamental fibre
mode and fT(z, t) the propagating envelope of the field. At this stage the slowly varying
envelope approximation, which assumes that the envelope of the field varies slowly com-
pared to the field period, can be employed to simplify the mathematics. The NLSE is
a differential equation describing the propagation of this slowly varying envelope under

the influence of the earlier described linear and nonlinear effects, and can be written as

2 o B2 62A  B36%A

0A

g:ryA

In the numerical simulations in this thesis, all the effects listed in Eqn. 2.19 are in-
cluded. While B4 is an important parameter for ultra wideband parametric amplifiers,
the systems used in the PSA and regeneration work here typically occupied less than 20

nm spectral span, therefore accounting for 84 was not crucial.

2.5.2 The Split-Step Fourier Method

The NLSE can be solved numerically using the Split Step Fourier Method (SSFM). In
the SSFM, the NLSE describing the electric field is solved by discretely calculating the
propagation over short steps in which the linear and nonlinear terms can be approxi-

mated to be independent of each other. Eqn. 2.19 can be written in the form

o _ (—f) + N) A (2.20)
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where D = <% + i%% — i%%) is the differential operator comprising the dispersive

and attenuation effects, and N = iy ’;P’ the nonlinear refractive effects. If the step
along which the NLSE is being solved is of length h, then an approximate solution for
the signal field following propagation is

A(z+h,t) = exp (hﬁ) exp (hN) A(z,1) (2.21)

To solve Eqn. 2.21 ;| the nonlinear contribution to the propagation evolution is first

solved in the time domain giving

—

B(z,t) ~ exp (hN) A(z1) (2.22)

Following this, the linear contribution is accounted for by transforming into the spectral

domain such that

—

B (z + h,w) =~ exp (hl:) (zw)) B(z,w) (2.23)

where B (z,w) and D (iw) are the Fourier transforms of B (z,t) and D respectively.
Finally, the solution is provided in the time domain by performing the inverse Fourier

transform

exp (hﬁ) B(z,t)=F! (exp (h]_:) (zw)) B (2, w)) (2.24)

This process can then be iterated over many small steps to derive high precision approx-

imations of field propagation along the fibre path being studied.

The simulation work carried out in Chapter 3 utilises a generalized analytical solution
describing FOPA gain derived from Eqn. 2.24, the derivation of which is shown in Section
3.3.2. That analytic solution is useful for quickly estimating the gain and bandwidth
of parametric amplifiers, but the accuracy is significantly degraded in the presence of
high losses, high pump depletion and large absolute signal gains. As such the remaining
modeling work as presented was carried out by using VPI Transmission Maker 8.0 which
implements a commercial Split Step Fourier solver algorithm. Such modeling tools
have their limits though; this work utilised narrow linewidth lasers (sub 100 kHz) but
modeling such long timescales requires vast amounts of computational time, hence in

the simulations the laser linewidths are effectively treated as zero.

2.6 Optical Injection Locking

Optical injection locking (OIL) refers to a technique by which the frequency and phase
properties of a laser, termed the slave, are forced to follow to those of another laser,
termed the master, by injecting some light from the master into the slave [47]. The

injected light distorts the lasing dynamics within the laser cavity, such that the master
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frequency experiences preferential resonant gain, even if the natural frequency of the

slave laser was elsewhere.

(a) (b)

Master Circulator Master Isolator
B H—
Optical

Attenuator Slave

Optical
Attenuator |, T

Slave

FIGURE 2.1: Optical injection locking of semiconductor lasers - (a) Reflection style,
(b) Transmission style.

Fig. 2.1 shows how OIL of semiconductor lasers is typically implemented. In reflection
style OIL, Fig. 2.1(a), light from the master is coupled into the slave laser cavity using
the same facet from which the slave laser light is coupled out. This requires a circulator
to separate the slave output from the master input. An alternative is to use transmission
style OIL, Fig. 2.1(b), in which light from the master is injected into the slave cavity
via one of the slave’s facets, while the slave output is extracted from the other. In both
cases the polarization of the master needs to be aligned to the principal polarization axis
of the slave laser. Reflection style OIL is usually preferable as it only requires coupling

optics on one of the slave laser facets, and is the technique used throughout this thesis.

The dynamic characteristics of the OIL process are rather complex, but generally speak-
ing, depend on a combination of the injected master power/polarization, as well as the
state of the slave cavity [48]. As such the frequency response of the OIL process can
be tailored using those properties. Fig. 2.2 shows the OIL frequency response for a
discrete mode semiconductor laser from Eblana Photonics as measured by Stylianos
Sygletos, University College Cork. Similar lasers were supplied by Eblana Photonics to
be used in the regeneration work in Chapters 5 and 6. The lasers had output power of

approximately 6 dBm.

For these lasers, at weak injection levels (such as -21.5 dBm in Fig. 2.2), OIL transfers
phase modulation from master to slave, but this is a very narrowband mechanism,
with 3 dB width approximately 1 GHz. There is very strong suppression of amplitude
fluctuations present on the master, although input phase fluctuations lead to some weak
(-20 dB) amplitude changes on the slave output. Amplitude fluctuations on the master
cause some phase changes on the slave, but this is a narrowband process with similar
bandwidth to the phase transfer characteristics, albeit significantly weaker. In general,
the injection locked laser during weak injection can be regarded as performing a low
pass filtering function on the optical phase of the master, and as a limiting amplifier in

amplitude.
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FIGURE 2.2: OIL Transfer function for Eblana Photonics Discrete Mode semiconductor
laser.

At strong injection levels (such as -3.5 dBm in Fig. 2.2), the OIL dynamics are sig-
nificantly altered and a strong resonance can be seen emerging (at approximately 10
GHz for these lasers). Phase fluctuations are transferred from master to slave over a
much wider bandwidth than in the weak injection case, and any fluctuations close to the
resonance are enhanced significantly. There is also a strong phase to amplitude transfer

at the resonance frequency.

For the regeneration work in this thesis the weak injection regime was used, and this
is the regime of choice in most other applications of injection locking. The strong
OIL regime does have its uses though, such as enhancing the resonant frequency of
semiconductor lasers to >100 GHz [49], useful for high speed communications with

directly modulated lasers.

2.7 Conclusion

This chapter gives a theoretical overview of the main topics that need to be known to al-
low a detailed understanding of the experimental work in this thesis. Chapter 2 provides

a basis for the theoretical aspects of the work. Key effects during signal propagation in
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optical fibres are presented, including dispersion and nonlinear refraction. Fibre optical
parametric amplification is introduced, as well as the phase matching technique that
allows efficient parametric amplification by careful selection of the pump(s) wavelengths
relative to the fibre zero dispersion wavelength. This is followed by a mention of some of
the inelastic scattering mechanisms in fibre of relevance to parametric amplifier design,
particularly stimulated Brillouin scattering (SBS). The Nonlinear Schrodinger Equation
(NLSE) is introduced and its solution by use of the Split Step Fourier Method (SSFM)
described. This was used to perform numerical simulations of the parametric devices
used for amplification and regeneration, as described in later chapters. Finally, the pro-
cess of injection locking of semiconductor lasers is briefly introduced. Injection locking
plays a key role in the phase sensitive regeneration demonstrations presented in this

thesis.






Chapter 3

Phase Sensitive Amplification

3.1 Introduction

Phase sensitive optical amplifiers exhibit gain characteristics that depend on the phase
of the input optical signal relative to some local optical reference. The theory of PSAs
is more than five decades old, and interest in them first stemmed from a semi-classical
realisation that knowledge of signal phase allows signal measurements to be made more
precisely than the Uncertainty Principle dictates [50], and later from a more in-depth
analysis by Caves [51] that showed how this could be used for noiseless amplification.
Research efforts into PSA increased significantly due to the new knowledge of their
ability to squeeze the characteristics of any input light causing fluctuations below the
quantum limit in one of the two phase quadratures; an excellent review by Slusher and
Yurke [52] highlights the diverse applications of squeezed light in communications and
sensing. Second order nonlinearity in bulk crystals was used to demonstrate degenerate
phase sensitive amplification, both for squeezing [52] and amplification below the 3 dB

quantum noise limit [17].

Practical PSAs deployed within optical networks would allow significant benefits - in-
creased receiver OSNR allowing more spectrally efficient communications, increased
amplifier spans and interesting photon correlation characteristics of possible interest
for quantum communications. The ability to provide different gains to the two phase
quadratures can also be used for all-optical signal processing, including phase regen-
eration and signal sampling/characterisation. Performing PSA using third order non-
linearity in optical fibers rather than in second order crystals was a first step towards
practical network applications due to increased robustness, improved power efficiency
and ease of system integration. Marhic et. al. successfully demonstrated the first de-
generate FOPA by 1991 [53], but progress in the field was quite limited up until the
demonstration of amplification with 1.8 dB NF by Imajuku et. al. in 1999 [54]. Further

experimental work by Tang et. al. showed that phase sensitive gain could be obtained

25
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over wide bandwidths [55, 56], although these results were not accompanied by noise

figure measurements.

Prior to the start of PHASORS, PSAs were generally regarded as interesting, but im-
practical. They require precise phase-locking between the pump and signal waves to
obtain stable low noise amplification, an issue that was sidestepped in the early demon-
strations either by locally generating the pump and signal fields and ensuring that they
never lose coherence [53], or by using phase modulation free beams that can be directly
synchronised using techniques such as injection locking [57] and optical phase locked
loops [58]. In addition, SBS was clearly identified as a limiting factor in FOPA per-
formance by Imajuku et. al. [18], hence the need for the development of new SBS
suppressed HNLF designs. PHASORS sought to bring together various groups of exper-
tise to collectively tackle these challenges and develop practical PS-FOPAs exhibiting
flat gain over at least 20 nm. This chapter documents the steps towards achieving this
target, including an initial understanding of low noise amplification as a concept, devel-
opment of a theoretical modelling capability for PS-FOPAs, detailed characterisation of
wideband PS-FOPASs, and several experimental demonstrations of PS-FOPA.

3.2 Background

3.2.1 Amplifier Noise Figure
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F1cURE 3.1: Representation of the noiseless E-field.
Ei /4 /
AX;
-
o
t
Q Q

FIGURE 3.2: Representation of a real time E—ﬁeld, classical signal, and vacuum state.
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The electric field component of electromagnetic waves can be represented either by a time
varying intensity plot, or in the complex form in which the magnitudes of the in-phase
and quadrature components, X; and Xy, are plotted, as shown in Fig 3.1. The power
of the wave, which is proportional to the square of intensity, is given by E? = X? + X3,
while its phase ¢ = tan™!(X1/X>) . In reality, the inherent uncertainty in position and
momentum of photons means that there are always fluctuations in the values of X; and

Xs [51]. As a result, a better representation of the electric field is as shown in Fig. 3.2.

Rather than being perfect, uncertainty means that the waves have fluctuations in both
I and Q quadrature components. As such they are best depicted on the constellation
diagram as circles, rather than points. The standard deviations of these fluctuations
are AX; and AX,. These fluctuations can be thought of as noise, and the noise power
AE? = AX? + AX2 . The area of the circle is consequently a good measure of the
noise power in the wave. There is a minimum uncertainty possessed by every elec-
tromagnetic wave, and therefore the circle can not be shrunk to a point, not even if
the wave is attenuated to the point where its mean intensity is zero - this is called
a vacuum state. The quality of a signal is given by the signal-to-noise ratio (SNR),
E?/AE? = (X} + X2)/(AX? + AX3).

Because classical measurement devices (such as photodiodes) are very noisy in relation to
their quantum counterparts, optical amplification is required to meet the receiver power
requirements in optical communications links. Optical amplifiers can be classed into
linear and nonlinear categories. With linear amplifiers, the output power is a constant
multiple of the input power, with this multiple (the gain) being independent of the
input power. With nonlinear amplifiers, the gain is a function of input power. All real
amplifiers are nonlinear; linearity is only observed by constraining the input powers to a
defined range. Note that linearity is a characteristic of the gain, not the gain mechanism,
and therefore amplifiers based on optical nonlinearity as the gain mechanism, such as
the FOPA, can still be made to operate linearly, for all intents and purposes. Linear
amplifiers are characterized by their gain, as well as noise figure (NF).The noise figure
of a linear amplifier is the ratio of the SNR before and the SNR after the amplifier, i.e.
(NF)=SNR;;/SN Ryt

3.2.1.1 Quantum Noise Limit

For conventional PI amplifiers (such as EDFAs and PI-FOPAs) with gain G, where

G > 1, there is a minimum NF derivable from Heisenbergs Uncertainty Principle [51]:
NF > |2 ! (3.1)
PIA =2 G .

For large values of G, the NF tends to 2 (or 3 dB in logarithmic terms). This is often

referred to as the classic 3 dB quantum noise limit. The origin of this minimum NF is the
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quantum nature of both the signal and the amplifier. The internal mechanisms (modes)
of the amplifier interact with the input signal to generate gain. These modes are always
subject to a certain amount of fluctuations in phase and amplitude (uncertainty), which
are added to the signals during amplification [51]. Taking the FOPA as an example,
the signal experiences gain through an interaction involving the idler, which will add
its quantum fluctuations to those already present in the signal at the amplifier input
[17]. Note that there will always be a minimum amount of energy present at the idler
input, corresponding to vacuum fluctuations [51]. In the EDFA| the gain mechanism is
accompanied by a spontaneous emission process that adds extra noise to the amplified

signals [51].

In phase sensitive amplifiers, the gains experienced by the I and () quadratures are
different, and can be denoted as G and G4 respectively. The minimum noise figure for
such an amplifier (provided that at least one of G; and G is greater than or equal to
1) is then given by [51]

(3.2)

By designing the amplifier such that G5 = G171, the NF can be made to equal 1 ( 0 dB).
It is important to question why this condition does not violate the Uncertainty Principle.
The answer lies in the fact that attenuation intrinsically adds noise to quantum noise
limited signals. It can be shown that applying an attenuation of G~! to a shot-noise
limited signal is equivalent to a noise figure of G [15], and therefore the PSA is able to
selectively add all its noise to the de-amplified quadrature, and therefore information
in the orthogonal quadrature can be amplified perfectly. The better noise performance
comes at the cost of the de-amplified quadrature not being available to transmit informa-
tion. While this as a result might be seen to offer no overall benefit, there are systems in
which information is encoded in one quadrature only to make detection easier, in which

case the benefits of PSA amplification may be extracted.

3.2.1.2 Noise Figure of Cascaded Links

Communications links typically contain cascades of amplifiers and lossy sections. Given
that single PSAs have a 3 dB NF advantage over PIAs , what is the net benefit in a

chain of multiple amplifier + loss sections?

There are two broad classifications of gain-equalised cascaded amplifier links (see Fig.
3.3). In type A links, every lossy section is pre-compensated by amplification, while in
type B links the compensation happens after the loss. The aggregate noise figure for
such cascades has been studied extensively [15, 59]. For the case of a chain of n amplifier
+ loss spans where all amplifiers have identical noise figure F', then the aggregate NFs
are

NFy=1+nF(1- é) (3.3)
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F1aURE 3.3: Classes of gain equalised amplifier+loss cascades.

NFg = 1+ nFG(1 - é) (3.4)
If n > 1and G > 1, from Eqns. 3.3 and 3.4 it can be deduced that improving the NF of
each amplifier by M dB leads to an M dB improvement in the overall NF for both type A
and type B links. As such substituting quantum limited amplifiers with phase sensitive
amplifiers in a long, multi-span link yields on overall 3 dB NF improvement. This addi-
tional margin can be used in a number of ways. First, from Shannon’s communication
theorem [60], 3 dB SNR improvement is sufficient to increase the information carrying
capacity of the link by 1 bit/s/Hz, and therefore the modulation format of signals in
the link for a fixed receiver BER could, as an example, be upgraded from 3 bit/symbol
8-PSK to 4 bit/symbol 16-PSK with no penalty (in principle). The situation in a real
link is more complicated because of the presence of deleterious nonlinear interactions
during transmission. A simple numerical comparison is shown here by simulating a
single 10 Gbit/s DPSK channel, propagating down a 3000 km dispersion compensated
link, evaluated using the split-step method implemented with commercial software, VPI
Transmission Maker. The link configuration is shown in Fig. 3.4, and compares the use
of classical amplifiers of NF 3.5 dB with sub-quantum amplifiers of NF 0.5 dB. Note
that a blackbox amplifier model used, and therefore the simulation is not specific to any
particular amplifier technology. The estimated BER at the link output as the launch

power is varied is shown in Fig. 3.5.

From Fig. 3.5, it is visible that the span using the 0.5 dB NF amplifiers provides better

performance at almost all launched power levels. In the low launch power regime (around
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FIGURE 3.4: Numerical simulation of a type B link.
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FiGURE 3.5: Launch power vs BER for simulated type B link, blue circles show link
with 0.5 dB NF amplifiers, red crosses show 3.5 dB NF amplifier link.

-5 dBm), the link is dominated by linear noise, predominantly quantum noise from the
lossy fibre sections and the amplifier added noise, and the 3 dB advantage of the 0.5 dB
NF link can be observed. As power levels rise further, nonlinearity starts to become a
significant impairment, providing a lower bound on the measured BER. However, the
lower NF still demonstrates better BER performance. The reason for this is that most
of the nonlinear impairment arises from Kerr induced interactions between noise and
the signal, and as a result the 0.5 dB NF link in which less noise is generated is less

degraded by nonlinearity.

In order to implement a fully non-degenerate PSA link, both signal and idler fields

would have to propagate down the channel, bearing identical information, and with
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equal power. Tong et. al. [59] have argued that in the case of non-degenerate PSAs, the
overall link improvement can be 6 dB compared to using PIAs. This conclusion is reached
if the NF is measured by comparing the SNR of the signal before and after the link, with
a -3 dB NF suggested as being possible for a type A link. However, it is obvious that
this argument is flawed even without knowing the details of the amplification mechanism
in non-degenerate PSAs - a negative NF implies that more information is received at
the output of the link than was present at its input. This incorrect conclusion is drawn
by neglecting the power of the idler beam in the SNR calculation - if both signal and
idler powers coherently combined are taken to constitute the amplifier input (as is the
physical case), then the overall link improvement for PSA over PIA links returns to a
more plausible 3 dB. It is prudent to note that this 3 dB advantage comes at the expense
of half the information carrying capacity of the link being unused because the signal and

idler channels must be correlated.

3.3 Fibre Based Phase Sensitive Amplification

3.3.1 Interferometric Fiber Based PSA

The first demonstrations of PSA in optical fiber relied on interferometric techniques [53,
54]; Marhic et. al. (1991) mention the reasons for this preference over non-degenerate
four wave mixing (NDFWM), “Although high parametric gains have been achieved in
fibres by NDFWM, the scheme suffers from limitations due to dispersion, such as re-
stricted choice of wavelengths and limited speed ... Also, NDFWM requires the use of at

least two different frequencies, thereby complicating experiments.”

Nonlinear

Signal _Pi )
In
I‘/Amplified In
Signal Out

FIGURE 3.6: Interferometric fiber based PSA schematic

Fig. 3.6 shows the setup for a typical interferometric PS-FOPA, based around a Sagnac

interferometer. A 3 dB splitter is used to combine a strong pump with a signal, both
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of which are phase locked at the same frequency. The outputs of the splitter are then
coupled either into the opposite ends of a nonlinear fiber, allowing the combined beam
from each splitter port to travel separately from that emerging from the other splitter
port. Following a nonlinear interaction in the fiber, the two beams are recombined in
the splitter, and an amplified version of the signal can be seen to emerge from the same
splitter input port as the signal, and can be retrieved using a circulator as shown. A
modification to this setup would be to send the two combined outputs through separate
fibers and have a second 3 dB splitter to separate the signal and pump, effectively
creating a nonlinear Mach-Zender interferometer, but this requires two length matched
nonlinear fibers and is susceptible to acoustic and thermally induced phase pertubations,

hence is more unstable.

The gain expression for this device can be found in a straightforward fashion. Assuming
P, and P, to be the input signal and pump powers respectively, v to be the nonlinear
coefficient of the fiber, L to be the effective length of the fiber and ¢ to be the phase
difference between signal and pump at the splitter, then the output signal power Pg can
be found as [53, 61]

Ps(¢) = P cos? (P cos(¢)) + Py sin? (Pn cos(9))
— 1/ (PpPs)sin (¢) sin (2@, cos (¢))
where
Oyp = yL\/P.P, (3.6)

Note that Eqn. 3.5 assumes that dispersion is negligible (a valid assumption for narrow-
band signals) and that the losses in the fiber are small. If P, > P and &y, < 1, then

the small angle approximation can be applied to Eqn. 3.5, giving

Ps(¢) = Ps <1 — (I)];L2 cos2(¢)> + PPCI)NL2 cos?(¢)

_ 2q>NL\/(Pp7PS) sin (¢) cos(¢)

It is clear from Eqn. 3.7 that the signal gain will vary with phase ¢ with 27 periodicity.

(3.7)

The solutions for the maximum and minimum gain, G; and G respectively, are well
known to be [61]

G1=1+20% +20/1 4 32 (3.8)
Go =1+20% —20/1 + &2 (3.9)

where p
o= % (3.10)

Because G1-G2 = 1, from Eqn. 3.2 it can be calculated that the NF for such an amplifier
would be 0 dB. This of course is only a semi-classical derivation, for a more detailed

quantum-mechanical analysis see Shirasaki et. al. [62]. Note that the maximum gain
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varies with (yLP,)?; this will be referred to shortly while comparing interferometric and

non-interferometric PSAs.

3.3.2 Non-Interferometric Fiber Based PSA

(a) (b)
Pump Pump 1 Pump 2
J L, SO
Idler Signal ¥
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) ' > w ' Ly w
Ws (b1 W2 W (IUZ w3
(c) (d)
Pump 1 Pump 2 Pump 1___~ Pump 2
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FIGURE 3.7: Phase sensitive FOPA configurations: (a) non-degenerate single pump,
(b) degenerate dual pump, (c) non-degenerate dual pump, (d) dual pump wavelength
exchanger.

There are four possible FOPA configurations for all optical network applications. In
the non-degenerate single pump (1P) FOPA, two photons, one at each of the signal
and idler wavelengths, are created following the annihilation of two pump photons, Fig.
3.7a. In the degenerate dual pump (2P) FOPA , two photons, one from each pump, are
annihilated as the signal gains two photons, Fig. 3.7b. In the non-degenerate 2P FOPA,
each pump loses a photon while the signal and idler simultaneously gain one, Fig. 3.7c.
Finally, a modification of the non-degenerate 2P FOPA is the dual pump wavelength
exchanger [63]. In this device, the signal/idler naming conventions are maintained only
for convenience; in fact the signal serves to pump the idler and vice versa, Fig. 3.7d.
The efficiency of all these parametric processes, particularly wavelength exchange, is
very sensitive to the location of the central frequency relative to the zero dispersion

wavelength.

The solutions to the coupled equations linking the pump, signal and idler in a non-

degenerate FOPA have been studied analytically in [44, 64]. For a non-degenerate single
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pump PS-FOPA, assuming a fiber of effective length L and nonlinear coefficient v, input
signal and idler power P and P; respectively, and pump power P,, then neglecting pump

depletion, the FOPA signal gain G can be found as
(K . .
G = cosh(gL) + p (5 +ry exp(—zqﬁrel)) sinh(gL) (3.11)

Where n? = %, r = 27P,, the phase mismatch « is as defined in Eqn. 2.17, the relative
phase ¢,¢ is as defined in Eqn. 2.14 (for z = 0), and the parametric gain coefficient
g=/1%— 32. If the FOPA is perfectly phase matched, i.e kK = 0, and np = 1, then Eqn.

3.11 reduces to
. ™ .
G = cosh(2vP,L) + exp (—z (qul + 5)) sinh (2P, L) (3.12)

The maximum and minimum values of G (i.e. G; and G2 respectively) are found by
substituting ¢,..; = —7/2, /2 into Eqn. 3.12, and using the identities linking exponential

and hyperbolic functions, leading to
G1 = exp(2vP,L) (3.13)

G2 = exp(—2vP,L) (3.14)

Once again, G1 - Go = 1, and from Eqn. 3.2 it can be calculated that the NF for such
an amplifier would be 0 dB. This solution is generally valid up to pump depletion levels
of around 50% [13].

Code was written in MATLAB to implement this solution to show some key non-
degenerate FOPA characteristics. Unless stated otherwise the parameters used are ZDW
1542 nm, dispersion slope 0.02 ps/nm? /km, nonlinear coefficient 11.7 /W /km and length
150 m. For the 1P-FOPA the pump was at 1553 nm, while for the 2P-FOPA the pumps
were at 1545 nm and 1561 nm. The model neglects fibre losses which thanks to ad-
vances in conventional HNLF design and fabrication are typically very low; for losses of
2 dB/km (which are often bettered in conventional Ge-doped silica HNLF), the effective
length (as calculated using Eqn. 2.8) would be 143 m which is very close to the true 150
m length, justifying this simplification.

As discussed previously, when both signal and idler are present at the FOPA input,
the behavior is phase sensitive and the gain varies as a function of the relative input
phase (with a period of 27). The difference between the maximal gain and maximal
attenuation (~38 dB for a pump power of 2W as shown in Fig. 3.8) will be referred to

as the phase sensitive swing.

The maximal gain is equal to the maximal attenuation if the signal and idler intensities
are equal at the amplifier input. An increase in the pump power leads to higher gains,

while the absolute relative input phase for which the maximum is achieved changes, Fig.
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FIGURE 3.8: Simulated gain and phase transfer characteristics of 1 pump non-
degenerate PS-FOPA showing phase dependent gain and step phase transfer function
at high gain.

3.8. As expected, the maximum attenuation also increases, while the associated dip in
the gain-versus-phase characteristic is narrower, leading to a stricter phase stabilization
requirement in order to achieve the maximum de-amplification. The phase transfer
characteristic shows an important property of PS-FOPAs at high gains (PS swing > 10
dB), they have a flat relative phase transfer characteristic. This suggests that PS-FOPAs
can be used for performing phase regeneration. Similar characteristics can be derived
for the 2P PS-FOPA case.

3.3.3 Comparison Between Interferometric and Non-Interferometric
PS-FOPA

The expressions for the maximum gain of the interferometric PS-FOPA, Eqn. 3.8, and
that of the phase-matched non-interferometric non-degenerate PS-FOPA, Eqn. 3.13
show that in the case of the former, the gain scales quadratically with pump power as
compared to exponentially in the latter. As an example, for a fiber of nonlinear coefficient
12 /W/km and effective length 200 m (values chosen to correspond to parameters of
OFS Ge-doped silica HNLF available in the lab for experiments), the expected gains in

interferometric and non-interferometric mode are shown in Fig. 3.9.

For these parameters, achieving 20 dB gain would require 4 W of pump power in the
interferometric PSA, as compared to 1 W in the non-interferometric. In addition, the
interferometric PSA is inherently single channel, while the non-interferometric device
can operate with multiple signals provided that corresponding idlers are presented at
the device input. With all this in mind, non-interferometric PSA was chosen as the
preferred choice for PHASORS, and any reference to PS-FOPA hereon refers to the

non-interferometric configuration.
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FIGURE 3.9: Comparison of gain characteristics in single pump PS-FOPA based on
interferometric and phase matched non-interferometric approaches.

3.4 Wideband Experimental PS-FOPA Characterisation

Having chosen the non-interferometric PSA as the configuration of choice for further
investigations into PSAs, it was necessary to develop an experimental testbed to inves-
tigate practical issues regarding the suitability of components developed by consortium
partners for incorporation in a PSA, understand the practical limits to PSA performance,

and to develop simple but proven theoretical modelling tools for these subsystems.

A non-interferometric PS-FOPA requires the injection of three or four waves: one or two
pumps, and a signal-idler pair to be amplified /de-amplified. Several different signal-idler
pairs can be phase-sensitively amplified at the same time and, thus, is in principle com-
patible with WDM systems. Note that transmission of both signal and idler in separate
channels means that twice as much bandwidth is required as compared to a system based
on PIAs. The interacting waves need to be phase-locked to observe the phase sensitive
behavior. Such phase-locked waves can be derived by using electro-optic modulation
(EOM) of a narrow linewidth optical source, producing multiple sidebands locked to the
carrier [65]. However, current EOM technology limits the bandwidth achievable via this
technique to a few 100 GHz at best.

A wideband PSA can also be created by cascading two FOPAs, generating a phase-locked
but conjugated idler in the first FOPA, and achieving PSA operation in the second

one. This was first demonstrated in [55] using a short dispersive fibre to introduce a



Chapter 3 Phase Sensitive Amplification 37

wavelength-dependent relative phase shift'. This cascaded FOPA concept is introduced
here, and its suitability for wideband PSA demonstrations without needing to perform

sophisticated phase locking will soon be apparent.

3.4.1 Cascaded PS-FOPA Concept

Pump Fump
Pp @p
. FOPA1 Signal Idler FOPAZ
Signal Ps 2995
Ps T T
—
Propagation Phase Tuning
direction ’ ,
Phase Insensitive Relative Relative  Phase Sensitive
Amplification phase=0 phase=® Amplification

FI1GURE 3.10: Cascaded PS-FOPA demonstration; in FOPA1 phase uncorrelated pump
and signal are mixed to generate an idler that is phase locked to the pair of them, in
FOPA2 a PS interaction between all three waves can be observed.

To easily observe the PS interaction in the time domain it was necessary to stabilize
the relative phase of the interacting waves for the whole duration of the observation;
this could be done using the cascaded PS-FOPA approach as discussed above [55] and
is illustrated in Fig. 3.10. The idea is to inject a pump and a signal into a first HNLF
thereby generating a phase conjugated idler. The relative phase between pump, signal
and idler is then altered in a controlled way before all three waves are coupled into a
second HNLF, in which they now interact in a PS manner. Note that the output relative
phase of the first stage FOPA is always stabilized regardless of phase fluctuations between
signal and pump, since all the waves travel in the same path . It is therefore locked at
the input to the second stage. By changing the phase of one or more of the waves, the
relative phase, ¢,;, at the input of FOPA2 can be set to an arbitrary value. The first
demonstrations of PSA using this technique relied on using dispersion between FOPA1
and FOPA2 to induce a wavelength dependent relative phase modulation [55]. In the
following section a similar experiment is reported, where a programmable filter (Opt.
Proc., Finisar Waveshaper 4000E) was used in order to conveniently and controllably

vary the input relative phase.

3.4.2 Cascaded PS-FOPA Experimental Demonstration

At the point in time in which these first detailed PSA studies were carried out, there

were no low dispersion SBS suppressed fibers available from the project partners to

!The same method was later used by PHASORS partners at the University of Chalmers [66, 67] to
demonstrate a sub-quantum limit NF of the PSA stage. However, it should be noted that the NF of the
combined system is limited by the 3 dB quantum limit of the PIA stage.
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work with. Consequently, the choice of experimental setup had to be compatible with
conventional SBS suppression techniques, and the most convenient of these is pump
phase modulation. The cascaded FOPA was therefore an ideal approach because it is
possible to phase modulate the pump before the first stage and still observe PSA in the

second.

Having carried out a few preliminary experiments using two FOPAs with the Waveshaper
between them, a decision was made to collaborate with the partners at the University of
Chalmers on an experiment that was directly relevant both to Southampton, as a basis
for the phase regeneration work carried out later on, and to Chalmers for the low noise
PSA work. At the time, there was a developed testbed for phase insensitive FOPAs at
Chalmers, with an SBS suppression setup optimised to couple more than 4 W of power
into 200 m silica HNLF's, and with pump wavelengths optimised for the fiber samples at
hand. A joint set of experiments was an opportunity to leverage both groups’ knowledge.
These experiments were performed in Chalmers, and their results are described here.
The measurements and data analysis were performed jointly in April 2009 with Carl
Lundstréom, a PhD student in the group of Prof. Peter Andrekson at the University of

Chalmers.

3.4.2.1 Experimental Setup

i FOPA 2
1-4Tone RF E PC
Oscillator Opt H 99 1
Proc. ) % OSA2
EDFA 2 OSA 1 Beam
Signal Dump

..
T

F1cURE 3.11: PSA setup based on cascaded PS-FOPA. PM: phase modulator, PC: po-
larization controller, OBPF': optical bandpass filter, VOA: variable optical attenuator,
OSA: optical spectrum analyzer.

The experimental setup is shown in Fig. 3.11. A tunable laser (TL) set at 1553.0 nm
was used as a pump source. Unless stated otherwise the pump was phase modulated
with four RF tones at approximately 100, 300, 900 and 2700 MHz, increasing the pump
linewidth up to 10 GHz to suppress SBS. The pump was then amplified to 3.8 W in
EDFA1, and filtered by a 2 nm-bandwidth optical filter to suppress ASE. A second
tunable laser was used as the signal source and the pump and signal were combined via
a 10 dB coupler into FOPA1, where a conjugated idler was generated by FWM. FOPA1
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was implemented using a 150 m long HNLF, with a nonlinearity coefficient of 10 /W /km
and ZDW 1542 nm.

The output, consisting of three phase locked waves, was then passed through a 10 dB
coupler, a polarizer and a variable optical attenuator (VOA). The polarizer provided
a polarization reference for all three waves going into FOPA2 and ensured that the
signals were aligned with the principal axis of EDFA2 in order to minimize the DGD
accumulated in EDFA2 (measured at approximately 0.5 ps/nm). After the polarizer, the
waves were subsequently passed through the Waveshaper in which the desired relative
amplitudes and phases could be set. Note that by setting the idler channel attenuation to
the device upper limit (35 dB) PI operation of FOPA2 could be obtained. The processor

also allowed for very narrow filtering of the pump wave, removing any residual ASE.

The three waves were then amplified by EDFA2 up to 2 W, with the pump signal
completely dominating the power, and injected into FOPA2. FOPA2 was implemented
with a 250 m HNLF with nonlinear coefficient of 11.7 /W /km and a ZDW of 1542 nm.
The input and output from FOPA2 were monitored on two optical spectrum analyzers
(OSAs) via two 20 dB tap couplers.

3.4.2.2 Experimental Results

30
1.2wW
20 2.0W (]
&
T, 10 b
o
2 Of 1
o]
o
_10 - -
-20 I I I I I I
1535 1540 1545 1550 1555 1560 1565 1570

Signal Wavelength [nm]

FI1GURE 3.12: FOPA2 output spectra when pump and ASE from FOPA1 are coupled
into FOPA2 without mid-stage filtering.

With the signal laser off and the Waveshaper configured so as to couple the paramet-
rically amplified residual ASE from FOPA1 into FOPA2, it was possible to quickly
characterize the system in terms of bandwidth, peak gain, and with limited accuracy,
phase sensitivity. Fig. 3.12 shows output spectra from FOPA2 using pump power levels
of 1.2 W and 2 W in FOPA2 (the pump power in FOPA1 was kept constant). Symmetric
gain peaks can be seen around 1563 and 1543 nm, with the bandwidth being slightly
more with the stronger pump. The ripple in the curves is a clear sign of PSA, with dis-

persion from the optical elements placed between the two FOPAs (fiber pigtails, EDFA
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F1GURE 3.13: PSA gain at varying pump powers with signal and idler powers equalized.
Solid lines are theoretical fits.

etc) causing a wavelength dependent relative phase modulation [55]. As the dispersion-
induced phase scales quadratically with the frequency separation between signal and

idler, the periodicity of the rippling increases with wavelength detuning from the pump.

Fig. 3.13 shows the variation of gain as a function of the relative phase for a signal
at 1 nm detuning from the pump at three different pump power levels, 0.6, 1.2 and 2
W respectively. The signal and idler powers were equalized and kept 30 dB lower than
the pump. At lower pump power, and consequently lower gain (circles), the maximal
amplification was the same as the maximal attenuation (11 dB at 0.6 W pump power).
However, as the pump power increased, this behaviour was lost. Theoretical fits were
determined (as shown) by the SSFM method in Matlab, with an estimated 1 dB insertion
loss between EDFA 2 and FOPA 2.

To study the sensitivity of the PSA to the signal and idler power ratio, the idler was
systematically attenuated and the phase dependent gain on the signal recorded, as shown
in Fig. 3.14. As expected from Eqn. 3.11, as the signal becomes significantly greater
than the idler, the maximal gain and attenuation decrease and approach the gain of the
PIA. Furthermore, the maximal attenuation drops off much faster than the maximal
gain. It is worth noting that in Fig. 3.14 a signal/idler relative fluctuation of 1dB from
the 0 dB optimal point would lead to a 7.5 dB reduction in the PS swing, of which 7 dB
would be due to reduced PSA attenuation, and only 0.5 dB due to reduced maximal PSA
gain. Such a fluctuation would have an impact on the device NF due to the subsequent

reduction in phase squeezing.

The pump power was then varied and the phase dependent gain recorded as shown in Fig.
3.15 for a signal at a 1 nm detuning from the pump. As the pump power increased, the
maximum phase sensitive gain increased by approximately 1.5 dB/dB, and the maximum
phase sensitive attenuation by -1.2 dB/dB. The difficulty in achieving the theoretical

maximal attenuation further highlights the limited maximal attenuation demonstrable
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FIGURE 3.14: PSA gain as the signal-to-idler power ratio is varied. The lines are
respective results of simulations using the same parameters as in the experiment. Pump
power is 1.2 W and two pump modulation tones were used.

with this experimental technique. The difference between the maximal phase sensitive
and the phase insensitive gain is also seen to approach 6 dB beyond a pump power of 0.8
W. Furthermore, the maximum difference PS swing achieved was 30 dB. While a higher
figure of 35 dB had been previously demonstrated [27] using a Bismuth oxide fibre, the

real fibre gain was not stated.

15 U
------ -
_—’—‘—
or e o @
T :
e A ®
5 - ‘ _______ iA‘ A A A A
) r -
T o o
c oPIA
8 s | m * PSA Max
) RN ®PSA Min
L s PSA-PIA
10 | TR~
-
.._‘.“_.‘--~
-15 ‘ ‘ ‘ ‘ L.
0 0.2 0.4 0.6 0.8 1.2
Pump Power (W)

FIGURE 3.15: Measured PIA (circles), PSA maximum (diamonds), PSA minimum
(squares) and difference between PIA and PSA maximum (triangles) gains of FOPA2
versus pump power. Two pump modulation tones were used.

An investigation of the gain saturation properties of the PSA was carried out by in-
creasing the signal/idler power, while keeping the input pump power constant at 1.2 W

(still at 1 nm detuning from pump). The resulting FOPA2 gain is shown in Fig. 3.16,
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with a measured PSA dynamic range of about 23 dB. Since the maximum gain achiev-
able for the PSA case is higher, it saturates before the PIA gain as can be seen by the
reduction in the PSA-PIA gain difference (triangles in Fig. 3.16) from the theoretical
maximum of 6 dB. Additional measurements revealed no saturation for the minimum
phase sensitive gain as would be expected. By moving the signal wavelength to 1563.8
nm, which corresponded to the PSA gain peak, and increasing the pump power to 2
W, 33 dB of maximal PSA gain was achieved, albeit at the expense of a reduced PSA
swing (6 dB rather than the theoretical 66 dB). This discrepancy between the expected
and measured PSA swing is in some ways consistent with what was observed for the
lower gain measurements earlier, although it was surprising that the difference was so

big- perhaps the attenuation measurement was compromised by SBS.

Fig. 3.17 shows the measured characteristics of the PIA gain, maximum PSA gain and
maximal PSA attenuation of FOPA2 as the signal and idler wavelengths were detuned
from the pump. The maximum PSA gain increased with signal wavelength detuning up
to 19 dB at the gain peak for a pump power of approximately 1.2 W. The PS swing was
highest closest to the pump, and reduced steadily as the signal wavelength approached
that of the PSA gain peak.

30 o ' ' : :
Bl DY —e—PIA
301 Sso —4— PSA Max
05| S~ | —=— PSA Min |
A PSA Max-PIA
20 | - - 2W PSA MaX J
S 15}
c
.a 10 L
©
5 n
O L
-5t
-10

-15 10 -5 0 5 10 15 20
Input signal power (dBm)

FIGURE 3.16: Measured PIA (circles), PSA maximum (diamonds), PSA minimum and

difference between PIA and PSA maximum (triangles) gains of FOPA2 versus input

signal power at Inm detuning and 1.2W pump. Dashed line shows PSA gain at the
gain peak with 2W pump.

3.4.2.3 Origin of Compromised Attenuation

In this set of experiments there appeared to be a limit to the maximal attenuation
achievable either by varying signal phase, wavelength or pump power. This could have

been due to any of a combination of phenomena. Firstly, as the maximal gain increases
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FIGURE 3.17: Measured PIA gain (circles), PSA maximum gain (diamonds), PSA
maximum attenuation (squares) and difference between PIA and PSA gain (triangles)
gains of FOPA2 as a function of the signal wavelength with pump power of 1.2 W.

the tolerance required to achieve maximal attenuation becomes stricter as can be seen
by the narrowing of the dip in Fig. 3.12. Secondly, the use of pump dithering to suppress
SBS meant that the pump and idler had linewidths on the order of 10 GHz. This rapid
variation in wavelength is translated to a rapid variation in phase through dispersion,
and thereby potentially distorts the relative phase. The tolerance to relative phase
variations is lower closer to the gain peak (this can also be noted in the ripples in Fig.
3.12, which increase as the signal wavelength detuning increases). In addition, the PMD
in EDFA2, which was estimated to be around 0.5 ps/nm, will certainly have meant that
the polarization states of the various waves relative to each other at the input to FOPA2
will have varied as the detuning was increased, leading to compromised phase dependent
gain. Also, as the spacing in wavelength from the pump increases, longitudinal ZDW
fluctuations act to randomly detune the relative phase between the propagating waves

from that precise value required for maximal attenuation [68].

3.4.3 Modified PS-FOPA With Dual Pump Capability

Analysis of the results from the joint experiments at Chalmers, as discussed previously
(Section 3.4.2.3), left a number of questions unanswered, particularly with regard to
achieving symmetrical PS gain and attenuation. On returning to Southampton, an in-
house testbed was developed, seeking to address some of these issues, as well as extend
the investigations to dual pump PSA operation. The 2P PS-FOPA was of relevance
because a literature survey had indicated that this would be a good starting point from

which to develop a DPSK regenerator.
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The new setup, being a cascaded FOPA, had some similarities to that shown in Fig.
3.11. An additional modification was the addition of a second pump laser so that the
properties of 2P PSAs could be investigated. A PM EDFA replaced the existing EDFA
at the input of the PSA stage to minimize PMD and its detrimental impact. The 90-10
coupler which was previously used to combine the pump and the signal was replaced
by a circulator and grating filter configuration [69] in order to filter the ASE noise
coming from the EDFA and at the same time to improve by about 8 dB the insertion
loss experienced by the signal. By independently modulating the two pumps using
complementary electrical drive signals generated using a single RF comb and a 90° RF
splitter (see Appendix A for more details), it was also possible to minimize the spectral
broadening effect on the idler following FOPA1. Finally, a high speed DPSK modulator
was added to the signal path to observe the PSA’s effect on wideband data signals. The
pump power(s) and wavelength(s) were then optimized to try and obtain up to 10 dB
PSA maximal gain, which would correspond to a 20 dB PS swing.

3.4.3.1 Experimental Setup

P1 P2

Pump 1 pg HNLF 1 DCF oM HNLF 2

1GHz , 64
MHz Spacing
RF Comb

Optical
Processing

406G
Pattern
Generator

Signal ! |

FIGURE 3.18: Improved inline PSA with added polarization and dispersion manage-
ment., CW: tunable laser source, PC: polarization controller, PM: phase modulator,
Pol: Polarizer, OBPF: optical bandpass filter.

This improved experimental setup for 1P and 2P PSA configurations is shown in Fig.
3.18. Two tunable lasers were counter-phase modulated using a 1 GHz RF comb of 64
MHz spaced lines to suppress SBS before being combined in a 3 dB coupler and amplified
to provide pumps at 1540 and 1560.5 nm. Alternatively, one of the lasers was turned
off and the other tuned to 1550 nm to convert to the 1P equivalent. The pump(s) were
then launched into port 1 of circulator C1 and reflected off a single (dual) window 0.5
nm FWHM fibre grating filter to reject any out-of-band ASE. A third tunable laser was
externally modulated to provide a 40 Gbit/s DPSK signal that was coupled into port 1
of circulator C2. Since the signal wavelength was different as compared to the pump(s),
it was transmitted through the grating and, thus, coupled together with the pump(s)

emerging from circulator C1 port 3 with a pump insertion loss <1 dB.
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The pump(s) and signal were launched into HNLF 1 to generate an idler, which was
phase locked to the signal and pump(s). The HNLF was 500 m long with a nonlinear
coefficient of 11 /W /km and a ZDW of 1555 nm (OFS Fitel, Denmark). This was
followed by a few meters of dispersion compensating fibre (DCF) to compensate for the
dispersion between HNLFs 1 and 2, a Waveshaper to control the signals relative phase
and amplitude, a polarizer to ensure uniform polarization alignment and a PM EDFA
to boost the signals up to 0.5 W with the pump(s) dominating the power. The amplified
waves were then coupled into HNLF 2 via a 3 dB coupler where they experienced PS
amplification. HNLF 2 was 220 m long with nonlinear coefficient 11/W/km and ZDW
1550 nm. The second port of the coupler was used to launch the data signal from the
transmitter directly into HNLF 2 to allow measurements of the absolute PI amplification
by comparing the output of HNLF2 on an OSA with the pump on and off respectively.
While HNLF 2 was not PM, it was assumed that this was not crucial as the fiber was

not specified as having significant PMD.

3.4.3.2 Experimental Results
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FIGURE 3.19: Spectral traces of a 40 Gbit/s DPSK signal at 2P-PSA output. Black
solid thick (thin) line - No compensation PS maximum (minimum), red dashed thick
(thin) line - compensated PS maximum (minimum).

Fig. 3.19 shows the impact of mid-stage dispersion compensation on a 40 Gbit/s DPSK
signal when 2P-PSA configuration was considered. Although not shown, similar results
were achieved for 1P-PSA. From these optical spectra, it is clear that amounts of dis-
persion corresponding to just a few metres of SMF between the PIA (HNLF 1) and PSA
(HNLF 2) can greatly distort the transmitted data signals due to the quadratic wave-
length dependence of the added phase within the signal bandwidth. This distortive effect
in the spectral amplitude envelope is visibly more severe when attempting to achieve
maximum PS de-amplification across the entire spectrum, due to the PSA amplitude
transfer function which is steepest during de-amplification. Mid-stage dispersion com-

pensation allows this problem to be alleviated. Note that similar minimum attenuation
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at the very centre of the spectrum is achieved for compensated and uncompensated sys-
tems, implying that dispersion does not affect narrowband PSA behavior and thus could

not have been the cause of compromised attenuation as proposed in Section 3.4.2.3.
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Ficure 3.20: 2P PS-FOPA output spectra showing unwanted broadband secondary
mixing products, when the signal’s relative phase is optimized for maximum gain.
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FIGURE 3.21: Impact of second order mixing products, labelled 1 - 4, generated in 2P
PI-FOPA.

Figs. 3.20 and 3.21 highlight the presence of extra sidebands in 2P FOPAs. This is due
to the coexistence of single pump interactions between the signal, idler and pumps at the
FOPA input. These affect the PS operation, particularly during PS attenuation, and this
is more severe for the case of maximal attenuation. The sidebands labelled 3 and 4 in Fig.

3.21 are generated at an early stage in HNLF 2, experience PIA and eventually become
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larger than the signals, and start to affect the amount of signal attenuation achievable,
adding noise to the signals in the process. These extra interactions compromise the NF
obtainable with 2P FOPAs [19, 70, 71].
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F1GURE 3.22: 1P PS-FOPA gain over 20 nm for a 0.5 W pump at 1550 nm.
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F1cURE 3.23: 2P PS-FOPA gain over 20 nm for pumps at 1540 and 1560.5 nm, a total
power of 0.5 W.

Figs. 3.22 and 3.23 show the PS maximal gain, maximal attenuation and PIA gain
achieved for 1P and 2P PS-FOPA for the same power level of 0.5 W and centre wave-
length. The PI-FOPA gain in both cases was around 1 dB, with the maximal PS gain
being 4 to 5.5 dB higher. The 1P PS-FOPA gain spectrum was flat due to the pump
proximity to the fibre ZDW. In the 2P PS-FOPA case the gain variation was approxi-
mately 2.5 dB. The 2P PI-FOPA gain was around 1 dB close to the pump wavelength
but decreased as the signal wavelength was further detuned from the pump wavelength.

Similar behavior was observed for the PSA attenuation curves. Note that the maximal
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gain and attenuation were approximately equal and opposite as expected theoretically

over the full 20 nm operating bandwidth assessed for all the three cases.

Despite the modifications to the setup there were still limits to the attenuation that could
be achieved experimentally, with measured peak PS swing of about 20 dB (comprising
13 dB gain and 7 dB attenuation) with the single pump configuration of this new setup.
It may have been that the issue, rather than being purely with the PS-FOPA, was
with the measurement technique, which relied on an OSA with a limited spectral, and
consequently low temporal, resolution. Frequency or phase jitter, due to the finite pump
linewidth for example, may have caused the gain to fluctuate faster than the acquisition
time of the OSA, which would have caused an average power measurement higher than

the instantaneous minimum signal power.

3.5 Phase Sensitive Amplification of Optical Combs

3.5.1 Introduction

Having investigated the wideband capabilities of PS-FOPAs, thought went into inves-
tigating application spaces other than phase regeneration and low noise amplification
of telecom signals, both of which were already defined as PHASORS objectives. The
performance of FOPAs today has been significantly improved by the advances in HNLF
design, as well as improved pump sources offering high coherence and high power (es-
pecially when combined with pump pre-amplification in a DFA or Raman amplifier).
Improvements in the achievable tolerance in the distributed physical characteristics of
HNLF allow phase matching over long distances (on the order of hundreds of meters),
allowing much broader gain bandwidths than DFAs, as well as engineerable operating
windows across the IR spectrum [72] . High coherence pump sources also enable PS-
FOPA operation, allowing both a NF below the 3 dB quantum limit when operated as
linear devices [67], and the possibility of sophisticated signal processing functions such as
phase regeneration when designed to be nonlinear [26]. Finally, by boosting pump power

sufficiently FOPAs can provide very high signal gains with over 40 dB demonstrated [13].

Despite all these desirable characteristics, FOPAs as of 2011 do not offer an economically
competitive alternative to DFAs, particularly for telecoms applications. This is due to
a combination of many factors. DFAs are low cost and proven, having benefited from
two decades of refinement in fibre and pump diode technology. DFAs [73] and FOPAs
[74] have both been demonstrated to have quantum conversion efficiencies over 50%,
but DFAs can achieve this figure for multi-channel WDM inputs, whilst higher levels
of FWM, SPM and XPM in FOPAs make cross-talk free high quantum efficiencies in
WDM operation hard to attain [13]. DFAs are also robust, have low susceptibility to

stimulated Brillouin scattering SBS, and conveniently already cover the C and L band
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portions of the low loss wavelength region in silica which are of most interest for current
long haul optical communications. While many of these issues are being addressed by
the fabrication of fibres with novel structure and composition [75] , it is interesting to
assess the linear FOPA in a different light, as a device allowing multiple functionalities
inherently suitable for the amplification of optical combs, particularly those derived from
resonant cavity + modulator structures.
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F1GURE 3.24: Illustration of aim of experiment - triangular comb amplification with
intrinsically gain shaped parametric amplifier.

Input Comb

Optical combs provide an absolute reference in either the spectral or time domains,
and as such have a vast range of applications in physical and life sciences [76]. In most
comb generators, energy is transferred from a seed beam to a large number of frequency
detuned comb lines, and energy conservation dictates that the individual comb lines
consequently have low power and low SNR, which is further compromised whenever
attempts are made to transmit the comb(s) through lossy media [77]. In addition, some
combs, particularly those generated from resonant cavity structures [78] inherently have
a spectral roll-off, with less power as the comb line detuning from seed carrier increases.
Finally, the requirement to act as a reference means that combs are often required in
spectral areas outside the telecom window. As a result, an ideal amplifier for optical
combs should combine low noise with gain shaping (see Fig. 3.24) and a frequency
translation capability. Here, a demonstration of how FOPAs allow all these features to
be attained is made, and an attempt to objectively assess their ultimate suitability for

this application follows.

3.5.2 Experimental setup

The setup is shown in Fig. 3.25. A narrow linewidth CW signal at 1550.92 nm seeded an
optical frequency comb generator (OFCG) from Optocomb Inc. The OFCG comprises
a phase modulator inside a high finesse Fabry Perot cavity driven with an internal 10
GHz RF clock. The output comb has a triangular 10 dB/nm spectral roll off, as well
as a high insertion loss of approximately 30 dB. The comb was then passed through
a reconfigurable filter (Finisar Waveshaper 4000E) which was used to switch between

amplifying the full spectrum or only half of it, the necessity of which is discussed shortly.
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F1GURE 3.25: FOPA setup up to amplify input optical comb.

For a parametric comb amplifier, it is essential that the pump beam is locked in frequency
to the comb, and for a comb spacing of Af, at least a whole multiple of Af away from
the nearest comb line. In addition, the pump linewidth should be no more than that of
the comb lines. This requirement is easily satisfied by injection locking a semiconductor
laser to one of the comb lines. For simplicity though, a tap from the same laser as the

comb seed was used as the pump.

The comb and pump were combined with a 100 GHz add-drop multiplexer at the pump
wavelength. This suppressed comb lines within 50 GHz of the pump, although this
could be reduced by using either a narrower multiplexer or a narrow grating. Polar-
ization controllers and a polarizer ensured the comb and pump were co-polarized, and
they were then launched into the fast axis of a 493 m PM HNLF (the FOPA), with
fast axis ZDW 1544 nm, dispersion slope 0.029 ps/nm?/km at 1550 nm and nonlinear
coefficient 10.7 /W/Km (OFS Fitel, Denmark). The SBS threshold of this fibre was
around 18 dBm, which was significantly lower than the desired launch pump power.
While SBS suppression can be derived without degrading the effective pump linewidth
in the parametric process by a number of techniques (as discussed in Section 2.4.3), for
ease of implementation given the low dispersion fibres available, a decision was made to
use a quasi-CW pump gated in an amplitude modulator at 400 kHz with a 10% duty
cycle, effectively restricting the nonlinear Brillouin interaction to approximately 100 m.
The comb power at the input to the FOPA was -40 dBm.

The FOPA was operable in both PI mode, in which case only the half of the comb
with wavelength shorter than that of the pump was coupled into the FOPA, as well as
in PS mode, in which the pump was located precisely in the middle of the symmetric
comb spectrum. In PS mode, the gain experienced by each comb line depends on the
instantaneous phase relationship between that comb line, the pump, and the comb line

at the same spectral detuning but on the other side of the pump in frequency.

To maintain the PS-FOPA at optimal phase a feedback loop monitoring the PS-FOPA

output is normally required to compensate for relative phase drifts resulting from thermal
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and acoustic pickup. If n uncorrelated channels (such as multiple dispersed comb lines)
are being amplified, n feedback loops ( one per channel are required), an undesirable
level of complexity. Instead, the OSA was set to perform multiple spectral sweeps of the
output of the unlocked PS-FOPA while in maximum-hold mode. The resulting spectrum
rapidly converges to that which would be measured if the pump and all the comb lines
were phase locked at the PS maximum gain value. Conversely, operating the OSA in

minimum-hold mode provides the PS-minimum spectrum.

3.5.3 Experimental Results
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FI1GURE 3.26: Output spectra in PI mode; Top - Pump off, Middle - Peak pump power
33 dBm, Bottom - Peak pump power 36 dBm.

The spectrum at the FOPA output with the pump off is shown in Fig. 3.26 (top). The
OFCG provides a comb with -10 dB/ THz spectral roll-off as specified. The pump power
was adjusted to ensure that the non-flat gain spectrum of the FOPA cancelled out the
spectral roll-off of the input comb, i.e. obtain a +10 dB/ THz gain shape. Positive gain
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slopes are easiest obtained by placing the pump in the anomalous dispersion regime,
and the magnitude of the slope can be controlled by the pump power [13]. The output
spectra with the pump turned on are also shown in Fig. 3.26 (middle and bottom). Note
that the region between 1550 and 1551 nm should ignored as this is where the pump is
filtered with some energy remaining. With peak pump power of 33 dBm, the comb line
power variation at the output was reduced to under 1.5 dB variation over 8 nm (~ 1
THz). This is best observed by viewing the right side of the spectrum (wavelengths >
1551 nm). The apparent deviation from this behaviour for short wavelengths is only an
artifact of the 10% gating of the pump at the FOPA input, with the OSA measuring
average power over both pump-on and pump-off cycles. Data was measured for average
pump powers of 23 and 26 dBm, corresponding to 33 and 36 dBm pump peak powers

approximately.
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FIGURE 3.27: Single sided PI gain curves for 33 dBm (solid line) and 36 dBm (dotted
line) peak pump powers.

Fig. 3.27 shows the gain measurement for single sided PI mode at 33 and 36 dBm peak
pump power. The maximum gains obtained are 19 and 33 dB respectively. The slope
of the curve at 33 dBm is very close to the + 10 dB/ THz target. In addition, in PI
mode, the generation of idlers of the input comb lines means that the output spectrum
is twice the width of the input, a useful benefit for the comb applications where a wide

comb span is required, such as THz frequency generation.

Fig. 3.28 shows the output spectrum in the absence of the input comb. The noise
present on the pump beam prior to the HNLF (residual ASE), as well as quantum noise
generated in the FOPA, are amplified, and this is what limits the output comb SNR as
observable in Fig. 3.26 (middle and bottom). Its impact should be less critical for higher
input signal powers. Fig. 3.29 shows a narrow section of the spectrum when operated in
PI and PS modes. The PS output shows both higher power and higher OSNR, as would
be expected from the 6 dB OSNR advantage with non-degenerate PSAs. Comparing the

two spectra reveals a maximum observed PS advantage or 4 dB (rightmost comb line).
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FI1GURE 3.28: Output spectrum at 33 dBm peak power in absence of input comb signal.
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FIGURE 3.29: Magnification of comb lines amplified in PI (solid) and PS (dotted)
showing a PS noise figure improvement greater than 3dB.

In simplistic terms, the 4 dB advantage of this particular PS-FOPA should be observed

when benchmarked against any PI amplifier, such as a DFA.

3.6 Conclusion

PSA has been introduced as a technique to obtain amplification with a NF below the 3
dB quantum limit. The origin of this improved performance lies in the fact that the PSA
only amplifies one of the two information quadratures, in a noiseless manner, while de-
amplifying the other, consequently adding noise to it. As such no quantum mechanics
laws are violated. This 3 dB NF improvement, if deployed in a multi-span amplifier
chain would result in an overall 3 dB link margin improvement, which could be used to
either extend the reach of the link, or allow the use of a denser signal constellation on

the amplified quadrature.
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PSA can be obtained using third-order nonlinearity in optical fiber by either interfer-
ometric or non-interferometric means. The non-interferometric approach has a signif-
icant advantage, in that when properly phase matched, its gain scales exponentially
with pump power, as compared to quadratically with the interferometric scheme. Non-
degenerate FOPAs allow PSA in 1P and 2P configurations if both signal and idler fields
are present at the amplifier input. The interacting waves need to be frequency and
phase locked, a task that can be challenging to perform. The inline cascaded FOPA,
in which a first PI-FOPA is used to generate phase locked signal-idler pairs, followed
by a second FOPA in which PSA takes place, is an easy way to demonstrate PS-FOPA
properties. A demonstration of PS-FOPA was made using this technique, and used to
study the gain characteristics of a PS-FOPA in linear and saturated modes of operation.
In phase-matched PS-FOPAs, as with most nonlinear devices, increasing pump power
linearly boosts the gain exponentially. Linear PS gain of up to 20 dB was recorded in
experiments. While theory predicts that 20 dB peak gain should be accompanied by
-20 dB maximal de-amplification, measuring high de-amplification values proved to be
a challenge. The sensitivity of the PSA to signal-idler ratio was experimentally studied,
and by boosting pump powers even higher, a peak PSA gain of 33 dB was attained, a
record at the time, although this measurement was accompanied by severely degraded

de-amplification (with only a 6 dB PSA swing seen).

An improved PSA configuration was devised in an attempt to demonstrate 2P PS-FOPA
performance as well as verify the effect of several experimental factors, such as wideband
SBS suppression, and mid-stage dispersion, on the 1P PS-FOPA already tested. The
new setup had lower signal insertion loss, used PM amplification before the PSA, had
counter-phased pumps to reduce idler broadening and had mid-stage dispersion compen-
sation. Flat 1P amplification was obtained over 20 nm, with symmetric amplication/de-
amplification of +6 dB. The 2P PS-FOPA had comparable gain. Recording higher levels
of PS de-amplification once again proved problematic, which may have been due to the

use of an OSA to perform the measurement.

A final experiment was devised to highlight the suitability of FOPAs for the amplifica-
tion of optical combs.While certain attributes of FOPAs are undesirable in a telecoms
environment, such as the high levels of nonlinearity in the amplifier, optical comb am-
plifiers would benefit from adding extra functionality, such as comb reshaping, wing
enhancement and low noise amplification. A PI-FOPA was used to flatten a triangu-
lar -10 dB/THz input comb spectrum, and high gains of 33 dB were obtained at the
FOPA gain peak. In PS mode, a clear 4 dB SNR improvement was shown, as com-
pared to the PI-FOPA. It is worth noting that a more conclusive measurement would
require proper phase locking, rather than the max/min hold technique used, although

subsequent measurements with phase locking were in agreement.
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Regenerative Parametric Mixer

Design Considerations

4.1 Introduction

The ability of a PSA to amplify one signal quadrature while de-amplifying the other in-
herently leads to a sub 3 dB noise figure for amplifiers in the high gain regime. Chapter
3 explains the origin of this property and details some experimental characterisation of
wideband PS-FOPAs based on non-degenerate techniques. Within PHASORS however,
delivery of a sub 3 dB NF amplifier was a role allocated to the University of Chalmers,
with Southampton tasked with delivering a high performance DPSK regenerator based
on the other property of the PSA, i.e. its ability to constrain signal phase to one quadra-
ture. As such, there was a shift in emphasis from studying gain and noise properties
of parametric amplifiers, to realisation of practical regeneration schemes. The low noise
work did continue at Chalmers however, and a record low 1.1 dB NF was demonstrated
by Tong, Lundstrom et. al. [67] using the cascaded FOPA concept (note that it is

referred to as copier-PSA in their publications).

The concept behind the use of a degenerate PS parametric amplifier for the regeneration
of binary phase encoded signals is well known, and has been previously assessed both
theoretically [26] and experimentally [27, 79]. As mentioned in Chapter 3, while the PSA
effect, and consequently phase regenerative capability, can be obtained in an interfero-
metric PS-FOPA (indeed demonstrated by Croussore et. al. [79]), non-interferometric
means were the method of choice for this study due to the prospects for more power

efficient operation (see Section 3.3.3), a key issue for a telecommunications device.

This chapter details the preliminary groundwork carried out to enable a practical DPSK
regenerator using FWM in HNLF. In particular, it looks into issues surrounding the

design of PS-FOPAs for this application, including fibre selection and phase locked pump

55
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requirements. This knowledge would later translate into development of regenerators
for DPSK, and later on, QPSK.

4.2 Dual Pump PS-FOPA Transfer Function

4.2.1 Simplification of Analytical Gain Expression

An analytical expression for the gain in a FWM based parametric mixer has been pre-
viously shown, Eqn. 3.11 [13]. For the dual pump (degenerate) PS-FOPA, this can be

re-written as

Gs(z) = cosh(gz) + ;; sinh(gz) + ;’I“ exp (fi (Qf)rel - g)) sinh(gz) (4.1)

Where r = 2v4/P; P, and the parametric gain coefficient g = /72 — 32. In a well phase

matched parametric amplifier, x = 0, therefore Eqn. 4.1 reduces to:

Gs(z) =~ cosh(gz) + exp (—i <¢rel - g)) sinh(gz) (4.2)

By setting the sum of the pumps’ phases as the phase reference, then
Gs(2) = cosh(gz) + exp (—i <2¢>S - g)) sinh(gz) (4.3)

Gs(z) =~ cosh(gz) [1 + exp (—i (2(;55 - g)) tanh(gz)} (4.4)

Assuming an input analytical signal exp(i¢s), then the output of the PSA can be ob-
tained by multiplying the analytical input with the gain function, hence

exp(ips)Gs(z) ~ cosh(gz) [exp(iqﬁs) + exp <—i ((;55 - g)) tanh(gz)} (4.5)

Observe that tanh(gz) is bounded within the range +1, and that cosh?(gz) gives the
peak power gain. Substituting m = tanh(gz) and G = cosh(gz) leads to the following
simplified output function for the phase matched degenerate PSA,

G [exp(i%) +m - exp (—iqbs - g)] , where -1 <m <1 (4.6)

Eqn. 4.6 is evaluated in Fig. 4.1 for various values of m. It is clear that as m increases,
the output power becomes more sensitive to the input phase, and simultaneously the
output phase transfer function approaches a two level, m-step staircase. There is a
direct correlation between the swing in power at the PSA output with the level of phase
restoration achieved, and as a result the PS swing can act as a measurement of how well
the PSA will perform as a phase regenerator. This is extremely useful in experimental

terms, as the system can be optimised whilst monitoring the output power using a simple
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photodiode, without having to have a coherent detection system to monitor the output

signal phase.
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FIGURE 4.1: Evaluation of simplified degenerate PSA transfer function as written in
eqn. 4.6, for various values of m.

4.2.2 Numerical Assessment of HNLF Samples

As discussed in Section 4.2.1, the dispersive and nonlinear characteristics of the HNLF
used for the PS-FOPA dictate the ultimate performance of the phase regenerator. The
product of the parametric gain coefficient g = 2P, and the fibre length, directly control

how much PS swing is achieved, hence the flatness of the phase transfer function.

A series of numerical simulations were carried out using VPI Transmission Maker 8.0 to
ascertain the phase regenerative capability of three different nonlinear fibres available
at the time for experimental work. The fibre and pump parameters used were as follows
(at 1550 nm) :

1. Bismuth oxide fibre [80]: Dispersion -260 ps/nm/km, slope 0.947 ps/nm? /km, non-
linear coefficient 1350 /W /km, length 2 m, loss 0.9 dB/m, total pump power 1 W.
This is a fibre with high dispersion but this is offset by the short length and high

non-linearity suitable for degenerate narrowband PSA.

2. W-type soft glass fibre [81]: Dispersion -4 ps/nm/km, slope 0.947 ps/nm?/km,
nonlinear coefficient 850 /W /km, length 2 m, loss 2 dB/m, total pump power
1 W. This fibre has less dispersion than the bismuth oxide, potentially allowing
higher parametric gain.

3. Germanium doped HNLF: Dispersion -0.18 ps/nm/km, slope 0.029 ps/nm?/km,
nonlinear coefficient 11/W /km, length 200 m, loss 0.83 dB/km, total pump power
0.4 W. This HNLF was provided by OFS Fitel. The low loss and dispersion allow

long fibre lengths to be used, hence less pump power is required.
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FIGURE 4.2: Test scenario for degenerate 2P PS-FOPA modelled to evaluate suitability
of various in-house HNLF samples for BPSK regeneration.

The modelled scenario is shown in Fig. 4.2. A signal at frequency fs was slowly phase
modulated using a sinusoidal tone in a phase modulator driven up to V;, hence ensuring
that its phase varied by over a full 7 radians. Two pumps at + 200 GHz from the
signal were launched into the HNLF together with the modulated signal. The signal
was weak compared to the pumps hence no saturation would be expected in the PSA.
Also, the pumps and signals were assumed to be frequency and phase locked during the
simulation. The physical bismuth oxide and W-type fibres available had insertion losses
of 3 and 6 dB respectively. These losses were not considered in the simulations, hence
during experiments the pump powers would ultimately need to be increased accordingly
to offset them.

4.2.2.1 Bismuth Oxide Fibre

For the degenerate PSA based regenerator high fibre dispersions are tolerable because
the signal and pumps are spectrally close, with 200 GHz detuning in this case. Fig.
4.3(a) shows the gain with two 0.5 W pumps (overall power of 1 W) coupled into the 2
m long bismuth fibre. Fig. 4.3(b) shows the phase sensitive gain. The PS swing was 17
dB.

4.2.2.2 W-type Fibre

Fig. 4.4 shows the gain with two 0.5 W pumps (total power of 1 W) coupled into the
W-type soft glass fibre. There is a higher PS swing (close to 18 dB), as compared to the

bismuth oxide fibre, due to the lower dispersion parameter.
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FIGURE 4.3: Gain (a) and output phase (b) characteristics as a function of the time
for the bismuth oxide fibre (Green curves input, blue curves output).
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FIGURE 4.4: Gain (a) and output phase (b) characteristics as a function of the time
for the W-type fibre (Green curves input, blue curves output).

4.2.2.3 Ge-doped Silica Fibre

The results shown in Fig. 4.5 utilise a 200 m germanium doped HNLF with operation
close to the zero dispersion wavelength, i.e. dispersion under 0.2 ps/nm/km. The major
point worth noting is that significant phase to amplitude conversion (over 15 dB) can be
achieved for a total pump power of only 0.4 W (less than half of the power as compared
to the previous experiments), which corresponds to 0.2 W per pump. This lower pump
power is a key advantage, as it would translate both to lower component cost and better
energy efficiency. The SBS threshold for this sample was under 20 dBm however, and
therefore 0.2 W of CW pump power could not be directly coupled into the fibre without

the use of active SBS suppression, such as pump phase dithering.

4.2.3 Experimental Validation of Phase Compression Behaviour

Following the theoretical simulation work an initial experiment was carried out to as-
certain whether the PSA could perform comparably to the theoretical predictions. The
bismuth oxide fibre was selected because of its relatively high SBS threshold (around 27

dBm per pump), as well as lower insertion losses than the W-type. For regeneration, the
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FIGURE 4.5: Gain (a) and output phase (b) characteristics as a function of the time
for the Ge-doped silica fibre (Green curves input, blue curves output).

use of pump phase modulation for SBS suppression is not possible as the phase modu-
lation would distort the signal phase during the parametric process. Work was taking
place at OFS Denmark to deliver low loss SBS suppressed fibers using alumino-silicate
doping, but in the interim the bismuth fiber that was already available in the lab proved
to be a useful short term alternative. The experiment was performed with Dr. Radan
Slavik, who had been working on injection locking of semiconductor lasers to optical

combs, which is how the pumps for the following experiment were generated.

4.2.3.1 Experimental Setup

To generate phase locked pumps for the degenerate PSA, an injection locking technique
was used. The corresponding set-up is shown in Fig. 4.6. A 1555.4 nm fibre Fabry-
Perot laser (Rock by NPhotonics, with 3 dB linewidth below 10 kHz) was split into
two paths; one portion was used as the signal for the PSA and the other was fed to
a 10 GHz optical frequency comb generator (OFCG, OptoComb Inc.) The comb was
then coupled into two discrete mode semiconductor lasers (manufactured by Eblana
Photonics), operating at different wavelengths, via a circulator and a 100 GHz arrayed
waveguide grating (AWG), so as to injection lock the two sources to the corresponding
comb lines (forming two pumps for the PSA), and consequently phase-lock the three
together. The narrow-bandwidth of the AWG channels was beneficial in improving the
SNR of the two phase-locked beams to the >70 dB level, see Fig. 4.7 (left). The two
combined phase-locked CW pumps were then amplified up to about 32 dBm, coupled
with the CW signal and launched into the 2 m long bismuth oxide fibre.

The relative phase of the three combined lasers needed to be controlled dynamically, since
it varies due to thermal changes and acoustic pick-up in the optical fibres. Fortunately,
these induced drifts are relatively slow phase variations (mostly in the kHz range) and
could be compensated electronically by driving a piezo-transformer (PZT) stretcher
placed in the path of the master laser prior to combination with the two slaves (PSA

pumps), Fig. 4.6. The feedback was derived from a second PSA, whose phase maximum
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FIGURE 4.6: Experimental setup to observe phase squeezing in a 2P degenerate PS-
FOPA. OSO - optical sampling oscilloscope.

was shifted by about 45° compared to the first one using a pre-calculated length of single
mode fibre (SMF) [55].

4.2.3.2 Experimental Results

The spectra corresponding to the maximum and minimum PSA gain are shown in Fig.
4.7 (left), where a PS swing of about 10 dB was observed. The difference between the
maximum signal gain and the signal power when the pumps were off was about 4 dB.
To characterise the phase regeneration, a phase modulator was added to the signal arm

(driven sinusoidally at 6 MHz) to induce about £25 degrees of phase noise into the

signal.
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FIGURE 4.7: (Left) Optical spectra corresponding to maximum and minimum PSA

gain. The signal spectrum corresponding to the case of pumps off is also shown as a

reference. Right) Optical power as a function of time when the PZT was unlocked or
locked to the PSA minimum gain (black) or PSA maximum gain (red).
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At the output of the PSA, the two pumps were filtered out and the phase properties
of the signal were studied. For this study, a delayed Mach-Zehnder interferometer was
used together with balanced detection, Fig. 4.8. This device was constructed by Dr.
Radan Slavik for purposes of laser characterization, but was ideal for characterising
the signal quality before and after the regenerator. As such rather than a laser under
test, the input was the filtered signal after the PSA. The interferometer served as a
frequency-to-amplitude converter, and therefore frequency (phase change) information
on the signal could be studied following direct optical-to-electrical conversion. The
delay was optimised for the bandwidth of interest, and set to 6 m, corresponding to a
free spectral range of 33 MHz (around 3 times the maximum frequency of interest for

this experiment).

Laser RF spectrum
under test analyzer

A
Acoustic/thermal Sig 1-2
isolation ’

Balanced:

Det. 1 }
Det. 2

FIGURE 4.8: Set-up for frequency noise measurement using a delayed Mach-Zender
interferometer [82]. Frequency fluctuations at the input are converted to amplitude
fluctuations at the output, prior to electrical detection.

Phase noise, PSD, dBm

Frequency, MHz

FIGURE 4.9: Balanced detection results illustrating suppression of 6 MHz phase noise
tone; red line - before PSA, black line - after PSA.

Frequency noise power spectral density (PSD) results are shown in Fig. 4.9. The 6 MHz
tone visible on the signal at the input with a measured improvement of 17 dB, which

equates to about 8.5 dB improvement in terms of optical noise power suppression. The



Chapter 4 Regenerative Parametric Mixer Design Considerations 63

12 MHz tone visible at the output was due to phase-to-amplitude conversion in the PSA
(for every 27 phase change at the PSA input the output amplitude goes through two
cycles); this amplitude noise is not cancelled out completely in the balanced detector
because the Mach-Zender interferometer is not path length matched. This amplitude
tone does not affect the conclusions drawn here however, as it is at a different (harmonic)
frequency to the phase tone. It was already known that the input perturbations were
+25° (estimated by measuring electrical drive signal to the phase modulator whose V;
was known). This information could then be used to calculate the peak-to-peak phase
fluctuations on the output signal by reducing the input phase deviations by 8.5 dB
(£25 = 10_%), with a result of approximately +3.5° .

Fig. 4.10 shows a numerically evaluated phase transfer characteristic simulated using a
total pump power of 27 dBm which approximately matches the experimental conditions.
The simulation approach used was the same as in Section 4.2.2. The green line shows a
time varying phase ramp on the signal at the PSA input, while the blue shows the phase
compressed signal at the PSA output. The relative difference in slope between the PSA
input (green line) and PSA output (blue line) indicates a phase compression by a factor
of 8.4 in linear units, or 9.2 dB. This compares well with the experimental value of 8.5
dB. This level of phase compression suggested that the PSA would be a good choice for

a BPSK phase regeneration experiment.
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FIGURE 4.10: Theoretical phase transfer characteristic for bismuth oxide fibre with

27 dBm total pumping; relative slopes of the two lines indicate phase compression by

a linear factor of 8.4 in the PSA. The horizontal axis corresponded to time in the
simulation, but is irrelevant as information of interest is all in the vertical axis.

4.3 Saturation of PSA for Amplitude Noise Improvement

The phase regeneration function in degenerate PS-FOPAs is accompanied by phase-to-
amplitude conversion, as shown in Fig. 4.1. As a result phase noise at the PSA input is
transformed into amplitude noise at the output. In long-haul optical links, the dominant
source of phase noise is nonlinear refraction (XPM and SPM) [14]. As a result, if such a
PSA was used as a mid-span optical phase regenerator, the amplitude noise added within

the regenerator would act to generate more phase noise in the next transmission span,
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reducing the overall benefit of having a phase regenerator in the first place. In fact, it has
been demonstrated that employing pure amplitude regenerators (limiters) in an optical
link with DPSK signal modulation can significantly improve the BER at the receiver,
by suppression of this amplitude-to-phase conversion process during transmission [24].
Saturation (also referred to as pump depletion) of PS-FOPAs, by boosting the input
signal power, is a process known to reduce the impact of phase-to-amplitude conversion
within a PS-FOPA phase regenerator [26]. The following experiment was carried out to

study the saturation process in a degenerate 2P PS-FOPA.

4.3.1 Experimental Setup

Narrow Linewidth HNLF 1 HNLF 2
Pump Laser

To
Oscilloscope

Photodiode

Narrow
Linewidth PZT Drive
Signal Laser50 Source
E ]
©
< )

F1GURE 4.11: Experimental setup of dual pump degenerate PS-FOPA. OBPF: Optical
Bandpass Filter

The experimental setup is shown in Fig. 4.11. Two narrow linewidth signals 200 GHz
apart were mixed in a Ge-doped HNLF generating a weak idler. The HNLF length, dis-
persion, nonlinear coefficient and attenuation were 500 m, 0.09 ps/nm/km, 11.5 /W /km
and 0.83 dB/km respectively. The idler wave was then injected into a (slave) semi-
conductor laser from Eblana Photonics to generate a third high SNR wave locked in
frequency and phase to the PIA input signal. The three waves spaced 200 GHz apart
could then be used as the two pumps and signal for the PS-FOPA. A variable attenuator

(not shown in Fig. 4.11) allowed control of the signal power relative to the pumps.

The phase of the signal wave was modulated using a 50 kHz ramp function applied to a
piezo-electric fibre stretcher. The choice of the ramp frequency was chosen to correspond
to the resonant frequency of the piezo-electric stretcher used, allowing the phase to be
swept by many multiples of 180° for a peak-to-peak drive voltage of under 100 V. The
three waves were then combined, amplified to a fixed total power and launched into the
degenerate PS-FOPA. This utilised a high SBS threshold strained alumino-silicate HNLF
from OFS. The length, dispersion, polarization mode dispersion, nonlinear coefficient
and attenuation of the fibre were 177 m, -0.13 ps/nm/km, 0.11 ps/km?, 7.1 /W /km and
15 dB/km, respectively.
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4.3.1.1 PIA Saturation
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FIGURE 4.12: Phase insensitive saturation characteristics for total powers into 1P
FOPA of 31 dBm (circles) and 32 dBm (crosses).

First, the PI saturation characteristics were measured by turning off one of the pump
lasers. The signal power into the high power EDFA was then systematically incremented
to increase the signal-to-pump ratio in the FOPA, for a fixed total power into the FOPA.
The output signal power after the FOPA was monitored using an optical spectrum
analyser and the normalised gain plotted on a logarithmic scale as a function of the
input signal-to-pump power ratio. This was done for two total power levels out of the
EDFA. The result is shown in Fig. 4.12.

Both gain curves measured show the expected PI saturation behaviour, with the gain
dropping off as the signal-to-pump power ratio increases. The offset between the two
curves arises from a combination of the increased absolute pump and signal power,
leading to an earlier onset of saturation as a function of the signal-to-pump ratio. The
trend is monotonic within the range of signal powers assessed, something that contrasts

with PS saturation as discussed shortly.

4.3.1.2 PSA Saturation

The FOPA was then modified for PS operation by turning on the second pump laser.
The signal at the PS-FOPA output was filtered, attenuated and coupled into a low
power photodiode. The electrical signal from the photodiode was then observed using
a high speed real-time digital sampling oscilloscope. Post-processing was carried out to

eliminate high-frequency noise and normalise the gain curves.

The normalised signal gain curves for a total power of 29 dBm (pumps and signal

combined) coupled into the fibre are shown in Fig. 4.13. At this moderate pump power,
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FI1GURE 4.13: Phase-to-amplitude transfer characteristics for degenerate 2P PS-FOPA
while pump-to-signal ratio is varied for various powers, as well as characteristics for
two pump powers at a fixed 8 dB pump-to-signal ratio (bottom).
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for low input signal levels, the gain versus relative phase curve is sinusoidal as expected
from theory. As the signal power increases, the curves accumulate a skew, with the gain
peak seemingly detuned in phase from the central phase position. Because each curve is
captured for a fixed signal power at the PS-FOPA input, this differs from PI saturation
(in which the gain varies with input signal power) because a nonlinear dependence on
input signal phase exists. In this case, every point on the curve experiences a gain shift
due to the alteration of the phase matching condition by the variation in the signal /pump
power proportions during propagation. As the signal and pumps propagate down the
fibre in which the PS interaction occurs, at every point a nonlinear contribution to
the phase matching exists as a result of self- and cross-phase modulation (SPM and
XPM respectively). Because the gain is dependent on the signal phase, the absolute
powers and therefore the nonlinear phase matching varies with the input phase. For
strong signal levels, this phase dependent behaviour leads to a modification of the gain

characteristic, and ultimately to gain saturation.

For applications such as the regeneration of DPSK signals, a crucial requirement would
be that the PS gain curves have a flat-top, minimising the transfer of phase to amplitude
noise. To obtain such flattening, it was necessary to increase the total power coupled
into the PS-FOPA to 32 dBm. A selection of the resulting gain curves are shown in Fig.
4.13. At the lowest signal level assessed a sinusoidal gain curve is obtained indicating
the absence of significant gain saturation. As the signal power is increased, the gain
curve is seen to acquire a flat-top. Increasing the signal power further reveals that the
flattening is in fact due to the growth of a second peak in the gain curve that detunes

in phase from the central position as the signal level is increased.

The total signal power was then increased further to 33 dBm and the gain measured.
The gain curve goes from sinusoidal at low signal levels to skewed at moderate power
levels. At high signal level (within 8 dB of pump power) it was possible to have two
peaks in the gain curve for a 180° change in the input signal phase, contrasting with the
single peak for an unsaturated PSA, with the separation between the peaks tuneable by
varying the total pump power. This ability to tune the periodicity of the phase response

of a PSA by saturation might open up several yet unknown applications.

4.4 Conclusion

Considerations regarding the application of the degenerate 2P PS-FOPA for D(or B)PSK
signal regeneration have been presented. Substitutions have been made into the analyt-
ical gain functions of the PS-FOPA to enable the phase transfer characteristics in the
linear high gain regime to be easily predicted. Numerical modelling was performed using
the parameters of several in-house HNLF's, showing that good phase regenerative per-
formance could be delivered in a PS-FOPA if PS swings over 15 dB are achieved. These
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conclusions were verified using in an experiment based on a degenerate 2P PS-FOPA in
a 2 m bismuth oxide fibre. In that proof of concept work, close to an order of magnitude
reduction in small signal phase fluctuations at the PS-FOPA input were obtained. The
experiment was also a validation of the use of injection locking to synthesis phase locked
pumps for the FOPA.

The phase-to-amplitude conversion that accompanies the phase regeneration is unde-
sirable in a telecom transmission environment, but fortunately this can be mitigated
somewhat by increasing the signal power at the PS-FOPA input up to a PS gain sat-
uration point. PI and PS saturation in an FOPA are experimentally contrasted, and
dynamics of saturation in a PS-FOPA studied practically. The experiment revealed that
saturation in a PS-FOPA is more complex than in a PI device - there exists an interplay
between input phase and nonlinear phase matching along the FOPA fibre, which mod-
ifies the amplitude transfer characteristics quite markedly, particularly at high input

signal levels. A regime for DPSK regeneration was identified for the available HNLF.
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PSA Based DPSK Regeneration

5.1 Introduction

The electromagnetic wave has the potential to carry vast amounts of encoded information
over distances spanning the galaxies. However, the amount of information that can be
carried down a real world transmission channel depends on the amount of noise added
during transmission, noise that interferes with the devices performing detection at the
receiver end. The limits to how much information can be carried by a wave in the
presence of such noise was discussed in the seminal work of Shannon [60]. Currently,
the trend in long haul optical systems is to use signals modulated in both amplitude
and phase, both to increase spectral efficiency, as well as better mitigate transmission
impairments. However, the use of phase in signalling gives rise to a new dominant

limitation to system performance, namely nonlinear phase noise (NPN) [14].

Fiber nonlinearities

Intrachannel Interchannel
Signal-n\:)ise Signal-signal Signal-noise Signal-signal
Parametric ‘L L L
NPN . .
amplification A/SZM\ NPN WDM nonlinearities
SPM-induced Isolated XPM-induced
NL phase M pulse XPM  IFWM NL phase XPM FWM
noise SPM noise

Ficure 5.1: Classification of nonlinearities in optical fibres. Intrachannel and inter-

channel stand for nonlinearities occurring within or between WDM channels, respec-

tively. SPM: self-phase modulation,(I)XPM: (intrachannel) cross-phase modulation,

(DFWM: (intrachannel) four-wave mixing,MI: modulation instability, NPN: nonlinear
phase noise. Figure and caption taken from [37]

69



70 Chapter 5 PSA Based DPSK Regeneration

As shown in Fig. 5.1, there are several distinct nonlinear phase noise sources in a WDM
system. The major contributor depends on the exact configuration of the link, e.g.
amplifier span, power levels, dispersion management, WDM channel count, and signal
channel bandwidth. However, interchannel XPM is often the main source of phase noise
[83], and increases in a cubic fashion with propagation distance [23]. To ensure that
the bit error rate at the receiver is within the limits for fidelity restoration using FEC,

optical phase regenerators could be introduced periodically along the transmission span.

For links carrying DPSK signals, one approach to optical phase regeneration is to perform
a phase-to-amplitude format conversion and then to apply amplitude regeneration before
converting back to a phase encoded signal [84]. Besides being rather complex, the initial
format conversion will more likely than not degrade the already-noisy signal. As a
consequence, direct elimination of the phase noise is far more desirable. With this in
mind, developing a practical DPSK regenerator was a key PHASORS objective. A
significant amount of preliminary work was carried out, in terms of understanding PSA
behaviour both theoretically and practically, and this is discussed in the earlier chapters
of this thesis. The experiment described in Section 4.2.3 was in fact demonstration of
a phase regenerator, although this was not black-box in the sense that the pumps were

generated from the same laser as the signal.

As discussed in Chapter 3, the degenerate PSA requires two strong pumps located
symmetrically in frequency around the signal to be amplified. In addition, for the PSA
process to be useful, the average phase of the pumps should be locked to the phase of
the signal carrier, even when the signal carrier is suppressed by an overlying modulation
format such as DPSK. Proof of concept experiments on PSA based regeneration at a
data rate of 10 Gbit/s were demonstrated [27] by Croussore et. al. Their demonstration
relied on the use of high-frequency electro-optic modulation to generate multiple phase-
coherent beams to be used as signal and pumps. This limits the pump spacing, and
consequently the bandwidth of the signals that can be regenerated (as the signal should
fit between the two pumps in spectrum) to a few tens of GHz. In addition, in a real
transmission system, it is not desirable to transmit the pumps along with the signal as
that would waste valuable spectrum. As such a key challenge in realizing a practical PSA
based DPSK regenerator system lies in the synthesis of the phase locked pumps. This is
described in the following section, following which the progress towards demonstrating

a black-bor phase regenerator will be detailed.
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5.2 Pump Synthesis by Phase Erasure

5.2.1 Introduction

One approach to synthesize pumps for the PS-FOPA would be to directly recover the
signal carrier from an input DPSK stream, and use the comb techniques shown in Section
4.2.3 to generate them. In fact, an experiment was performed proposing and demon-
strating a novel technique to recover the carrier from PSK signals - this is described in
Appendix B. However, for the dual pump PS-FOPA a simpler method to synthesize the
phase locked pumps was proposed within the PHASORS consortium, and the first such
demonstration using this new technique was by the PHASORS partners at University
College Cork [85]. This scheme, also referred to as phase doubling, involves the use of a
perfect binary phase modulated optical data train whose phase is ¢g;gna1+0, T+ Ppoise to
parametrically pump a narrow linewidth CW probe with phase ¢, in a nonlinear medium.
An idler is generated with phase 2 (¢signat +0, T+ dnoise) — Op = 2+ (Psignal + Pnoise) — Pp,
thus stripped of the data phase modulation whilst maintaining whatever amplitude mod-
ulation was previously on the signal [86]. Any (high frequency) phase noise present on
the signal beam, ¢yise, is transferred to the idler manifesting itself as spectral broad-
ening of the otherwise narrow-linewidth CW idler. The noise can thus be eliminated by
using a narrowband filtering mechanism, resulting in a phase locked pump for the PSA,

free from the high frequency phase noise present on the signal.

It is important to specify the distinction between the carrier and the noise. Laser sources
have finite linewidth, often in excess of 1 MHz, but these random phase fluctuations are
inconsequential in DPSK systems if the baud rate is at least two orders of magnitude
greater than the linewidth, because the demodulator compares the phase of consecutive
bits, and at these time scales the laser is effectively noise free. As a result, any phase
perturbations picked up during transmission that result in low frequency (<1 GHz for
40 Gbaud systems) fluctuations of less than 7 radians do not need to be regenerated.
For coherent PSK systems, the phase tracking algorithms also perform some form of

differential detection and therefore the same criterion applies.

5.2.2 Experimental observation of phase erasure

An experiment was carried out to assess the quality of the recovered carrier from a
DPSK signal. A 40 Gbit/s 23! — 1 pseudo random bit sequence (PRBS) was encoded
onto a narrow linewidth CW at 1545.8 nm to generate a DPSK signal of power 16
dBm. The DPSK transmitter was based on a Mach-Zehnder modulator driven at 2V,
operating in non-return-to-zero (NRZ) mode. The signal was then combined with a 10
dBm CW probe at 1547.6 nm and launched into three different nonlinear devices. The
first was a PPLN waveguide in which an idler is generated via a cascaded SHG/DFG
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FIGURE 5.2: Phase erasure on 40Gbit/s DPSK signal carried out in three difference

nonlinear devices. (a) PPLN waveguide, (b) 220 m Sumitomo HNLF, (¢) 500 m Fu-

rukawa HNLF. DPSK signal is at 1545.8 nm, CW probe at 1547.6 nm and phase erased
idler at 1544 nm.

process [87]. The others were 220 m and 500 m HNLFs, both with nonlinear coefficients
approximately 20 /W /km, and 1550 nm dispersion < 0.1 ps/nm/km. The corresponding
measured results are shown in Fig. 5.2. The phase erased idlers can be seen at 1544 nm.
The fact that the idler is not a narrowband (sub-MHz) CW occurs mainly because the 0
to 7 transitions in the modulator are accompanied by amplitude fluctuations which are
transferred to the ‘phase erased’ idler. This is not a problem in subsequent experiments
as OIL is used to ‘clean’ the idler wave further. As can be seen in Fig. 5.2, the most
efficient idler generation occurs in the 500 m fibre, a fact explained by the long length

resulting in the highest nonlinear interaction.

5.3 First Generation Blackbox DPSK Regenerator

Following the delivery of a novel SBS suppressed alumino-silicate fiber from OFS [75],
and lasers suitable for injection locking from Eblana photonics, a first full system demon-
stration was put together in Southampton targeting 40 Gbit/s DPSK regeneration. A
feedback system to stabilise the PSA was initially provided by University College Cork,
but this did not operate satisfactorily, and therefore the experiment used a feedback con-
troller optimised by Dr. Radan Slavik. Carl Lundstréom from the University of Chalmers
was present during the characterisation stage of this experiment and performed the co-
herent measurement of the signal before and after the regenerator - after this experiment
the author developed a similar tool that was used in some of the QPSK regeneration
work in Chapter 6. Other than these two specific tasks, the rest of the experiment was

jointly carried out with Dr. Francesca Parmigiani and Dr. Radan Slavik.
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5.3.1 Experimental Setup

The setup is shown in Fig. 5.3. The data signal was a 40 Gbit/s NRZ-DPSK, 23! —
1 pseudo random binary sequence (PRBS). In order to emulate the effects of phase
noise, the signal phase was modulated in a deterministic fashion using an additional
phase modulator, driven at a frequency close to half the baud rate and of a controllable
modulation depth to emulate different levels of noise. The distorted signal was then
launched into the black-box regenerator. A portion of the signal was initially tapped off
to facilitate the frequency and phase locking of the two pumps, which occured in two

steps.

First, the tapped signal was mixed in a germano-silicate HNLF with a narrow linewidth
CW laser (Pumpl) detuned from the signal by 200 GHz, to parametrically generate an
idler wave that served as the seed for the second pump. The length, dispersion, nonlinear
coefficient and attenuation of the HNLF were 500 m, -0.09 ps/nm/km at 1550 nm, 11.5
/W /km and 0.83 dB/km, respectively. Note that due to the phase erasure process, the
binary data modulation was not transferred to the idler. Then, the weak idler wave
was filtered and injected into a (slave) semiconductor laser (Pump2) by means of a
wavelength division multiplexer. As the injection locking is a much slower process than
FWM (typically having a (sub)-GHz bandwidth if the master power is < 30 dB that
of slave [88]), any high frequency fluctuations (e.g., bit-to-bit phase variations) present
on the original data signal were not transferred onto the output of the slave laser. The

slave laser output was also free of any amplitude noise present on the idler.

At this stage Pumpl and Pump2 were phase locked to the signal and could serve as
pumps in a degenerate PSA configuration. They were coupled together with the data
signal and the three waves were amplified to a total power of 34 dBm and launched into
an alumino-silicate strained HNLF for phase regeneration. The length, dispersion at
1550 nm, polarization mode dispersion, nonlinear coefficient and attenuation of the fibre
were 177 m, -0.13 ps/nm/km, 0.11 ps/km®® 7.1 /W /km and 15 dB/km, respectively.
The relative powers of the pumps and signal were adjusted for optimal regeneration
performance (by observing the demodulated eye diagram after the regenerator). Any
slow (sub kHz) relative phase drifts between the interacting waves picked up due to
acoustic and thermal effects present prior to the PSA fibre (e.g., in the HNLF that
generates the seed of the second pump) were compensated for by an electrical phase-
locked loop that controlled a piezoelectric-based fibre stretcher in the pump path. The

feedback was implemented using a commercial analog PI controller.
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FIGURE 5.3: Experimental set-up for first generation blackbox DPSK regenerator. AM
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5.3.2 Experimental Results
5.3.2.1 Static Characterization

The initial measurements were carried out at 10 Gbit/s due to the limited bandwidth
of the constellation analysis setup available at the time. The spectrum at the output of
HNLF1 is shown in Fig. 5.4. The power of the generated idler was approximately -17
dBm which provided a sufficient power margin to do the subsequent injection locking
(the power used for injection locking was -25 to -30 dBm). Fig. 5.5 shows a tap of the
input to HNLF2. Note that the pumps both have high OSNR (higher than is shown in
the spectrum due to the 20 dB attenuation of tap). Fig. 5.6 shows the output of the

locked PSA with the PSA set to minimum and maximum gain conditions. This shows
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that 15 dB PS swing was achieved, which from the previous experiments (see Section

4.2.2) was potentially good enough for phase regeneration.
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FIGURE 5.4: Spectrum at the output of HNLF1 showing the 10 Gbit/s DPSK signal,
local pump and phase-erased idler.
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FIGURE 5.5: Spectrum at the input of HNLF2 showing the DPSK signal and two clean

pumps.

5.3.2.2 10 Gbit/s Phase-Only Regeneration Results

The performance of the regenerator was first studied using a constellation analyzer based

on a homodyne coherent receiver and offline digital signal processing (DSP) operating at

10 Gbit/s [89]. The homodyne approach was chosen over the intradyne one to avoid any

artificial phase compression that might be performed during the digital carrier recovery

process if an intradyne system were used. A local oscillator was combined with the

signal using a 90 degree hybrid, and the hybrid’s outputs detected using two balanced
photodiodes and a 20 GHz real-time oscilloscope from Tektronix operating at 50 GS/s.

The local oscillator used in the measurement was obtained by tapping off the signal laser

before data encoding. The signal electrical field could then be reconstructed offline [89],
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FIGURE 5.6: Spectrum at the output of HNLF2 showing the phase-regenerated DPSK
signal as the feedback controller is varied to tune the PSA from maximum gain to
minimum gain condition, showing a PS swing of 15 dB.
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FIGURE 5.7: Signal quality at the input and output of the regenerator; eye diagrams

measured using a high speed balanced photodiode and differential constellation dia-

grams (showing bit-to-bit phase changes) measured at 10 Gbit/s using a homodyne
coherent constellation analyser.
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and from these measurements, amplitude and bit-to-bit phase changes were determined
and the corresponding DPSK constellation diagrams are shown in Fig. 5.7. Note that for
these measurements, the data rate was adjusted to 10 Gbit/s and the phase modulator
that distorted the signal was driven at approximately 5 GHz . The results showed that
the phase noise could be squeezed by the regenerator to the back-to-back level and
almost negligible amplitude noise was induced even for as extreme peak-to-peak values
of phase distortion as £60° (Fig. 5.7).

5.3.2.3 40 Gbit/s Regeneration Results

The regenerator was then fully assessed at 40 Gbit/s. First, the signal was degraded with
sinusoidal phase noise. The RF power driving the phase modulator that imposed phase
noise on the signal was calibrated to deliver two noise levels causing phase deviations of
+30° and £50°). The signal was then demodulated using a 1-bit delay line interferometer
(DLI). BER measurements of the demodulated signals were performed using a high speed
single-ended photoreceiver, while eye diagrams of the demodulated eye were recorded
using an all-optical sampling oscilloscope. Eye diagrams measured at the input and
output of the regenerator for no noise and for the highest level of the added phase noise
are shown in the inset of Fig. 5.8a. Consistent with what was measured at 10 Gbit/s
previously, the regenerator was able to improve a severely degraded eye with an output
close to back-to-back level. BER measurements provide a more quantitative measure of
the improvement, and these are shown in Fig. 5.8a. At the input of the regenerator, the
added phase noise caused significant error levels. At the output of the regenerator an
open eye diagram and error-free performance were achieved with a power penalty under
1 dB as compared to the back-to-back, for both added noise levels.

The signal was then degraded with sinudoidal amplitude noise at 1 GHz, to varying
depths of 25% and 50%. Both BER and eye diagram data are shown in Fig. 5.8b (eye
diagrams shown are for the higher noise level). Again, to allow a more quantitative
analysis of the performance, BER curves are shown in Fig. 5.8b. At the input of the
regenerator, the added amplitude noise caused the BER curves to reach levels ranging
from 107 to 10 for the maximum input power available into the receiver (-22 dBm). At
the output of the regenerator, BER of 10~ was achieved for all noise levels investigated,
albeit with up to 3 dB power penalties compared to the regenerator output in the absence
of input signal degradation. For the highest level of noise, the regenerator output eye
diagrams were quite open, although the corresponding BER curve starts to show a

modest deviation from a straight line.

Finally, the regenerator performance was then assessed for various levels of simultane-
ous amplitude and phase perturbations when the lower levels of amplitude and phase
perturbations were then simultaneously applied, i.e. £30° of phase noise and +25% of

amplitude noise (Fig. 5.8¢).The regenerator successfully eliminated both the amplitude
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and phase noise, with error free BER (10") achieved despite the input having an error
floor at the 1077 level.

It can be seen that in the absence of added noise, the signal at the regenerator output
had better noise performance than that at the input, something that can be seen by the
0.5 - 1 dB power penalty improvement in Fig. 5.8. The reasons for this are unclear,
although possibilities include the fact that perhaps the transmitter output was sub-
optimal, or that the single-polarization components in the regenerator linearly filtered

out noise from the orthogonal polarization.

5.4 Second Generation Blackbox DPSK Regenerator

One of the main challenges with the first generation regenerator was that the configu-
ration (Fig. 5.3), in which the signal is split into two, with half the power being used
for pump synthesis after which the pumps were combined with the other half, was very
unstable. This was due to the pumps and signal being in separate fibres for over 500 m
prior to the PS-FOPA. This made the device very susceptible to thermal and acoustic
pickup, requiring kHz speed analog feedback. In addition, despite using a high voltage
(100 V) driver for the fiber stretcher, the feedback needed a reset quite frequently (ev-
ery 5-10 s) whenever the voltage amplifier had reached its maximum voltage. A new
system was therefore designed that would be more stable, and hence more practical,
by ensuring the interacting waves stayed in the same fibre whenever possible. Also,
while the previous regenerator was only tested using sinusoidal phase and amplitude
noise, measures were now taken to better emulate the white (wideband) noise present
in real links. This natural progression of work was in line with the PHASORS project
plan, that included demonstration of an improved regenerator using state of the art
components. This experiment was jointly carried out with Dr. Radan Slavik and Dr.

Francesca Parmigiani.

5.4.1 Experimental Setup

The set-up is shown in Fig. 5.9. A 40 Gbit/s (or 56 Gbit/s) non-return-to-zero (NRZ)
DPSK 23! — 1 PRBS was modulated onto a narrow linewidth CW fibre laser (a Rock
laser from NP Photonics, USA) with a LiNbO3 Mach-Zehnder modulator symmetrically
driven around its null transmission. To emulate nonlinear phase noise, the data signal
was further modulated in a LiNbO3 phase modulator driven by electrical white noise,
generated by a fast photodiode fed by amplified spontaneous emission (ASE) noise of
0.4 nm 3 dB bandwidth. The 3 dB bandwidth of this electrical noise was measured
using an RF spectrum analyzer to be 16 GHz. Further, it was characterized in the

temporal domain using a fast electrical sampling oscilloscope (bandwidth of 60 GHz).
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and phase (c) noise is present at the input of the regenerator. The performance at the
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black; lower level of amplitude or phase noise: red; higher level of amplitude or phase
noise: green; combined (lower level) amplitude and phase noise: blue).
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FIGURE 5.9: Experimental schematic for second generation blackbox DPSK regenera-
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For emulation of the linear amplitude and phase noise, a portion of the ASE, which was
fed into the photodiode (inset in Fig. 5.9) was directly combined with the data signal.
The magnitude of the amplitude and phase perturbations was controlled by varying the
ASE power. In the PSA characterization, two levels of noise in phase and amplitude
were used. Analyzing the electrical driving signal sent to the modulator with the fast
sampling oscilloscope and using the estimated 5.5 V; of the phase modulator, Levels 1
and 2 of the noise produced about 0.1% and 1%, respectively, of samples with added
phase error of more than £45° (0.25 V). These drive noise statistics in the temporal
domain are shown in Fig. 5.10. As for the ASE noise optically coupled to the signal, its

optical power levels were -15 and -13 dB with respect to the signal.
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FIGURE 5.10: Statistics of the RF signal sent to the phase modulator to emulate
non-linear phase noise for the two levels used.

The 13 dBm DPSK signal, now with added phase and amplitude noise, was launched
into the regenerator. Care was taken to ensure that PM components were used, with
the only exceptions being the section of the setup that operated in reflection, and the
HNLF used for the PSA (HNLF 2). Rather than tapping off the data signal for the
synchronization of the pumps as was the case in the previous implementation (Fig. 5.3),
the data signal in its entirety was used in the phase synchronization process. First,
the signal was combined with a CW local pump (Pump 1, its frequency was 200 GHz

away from the data carrier frequency and its total output power was 17 dBm, Orbits
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lasers Inc.) using an add-drop multiplexer (data insertion loss of 0.5 dB) and then sent
to a PM HNLF (HNLF 1) to generate an idler used for subsequent injection locking,
as explained earlier. The length, dispersion, nonlinear coefficient and insertion loss of
HNLF 1 were 300 m, 1.3 ps/nm/km, 10.5 /W /km and 0.9 dB, respectively. The spectra
at the output of this stage are shown in Fig. 5.11.

Following this stage, the three signals (Data, Pump 1, Idler) were separated in a 4-
channel 200 GHz demux (insertion loss 1 dB) placed behind a circulator. A mirror
provided retro-reflection in the data path as well in the path of Pump 1, which also
included a PZT stretcher (60 mm total length, maximum phase change of 57) and a
variable attenuator. A semiconductor laser, which was injection locked to the idler, was
used to generate Pump 2 in the idler path. Pump 2 was thus phase-locked to the idler
(and thus also to the data and Pump 1). The operation of the demux in the double-pass
(reflection) mode has several advantages: (i) it allows for direct injection locking of the
semiconductor laser, and (ii) it provides filtering characteristics enhanced over those
obtained if only used in single-pass operation, which proved essential in the following
PSA stage. Note that all the optical waves involved in the regeneration process share a
common path through most of the regenerator, except for the output side of the demux.
This contrasted with the 500 m (in HNLF 1) in the previous setup (Fig. 5.3) where
the signal was separate from Pump 1 and the idler. The lengths of fibre at the demux
output ports can be kept short (<2 m in the set-up and could be reduced to a few tens
of cm if needed) and all can be kept in even closer proximity during packaging to ensure
that they experience similar acoustic/thermal pickup further reducing the environmental

sensitivity of the system.
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FIGURE 5.11: Spectrum at the output of the PIA stage

The data stream with the two phase locked pumps was then launched into the PSA which
consisted of a high power EDFA (total power of 29 dBm) and a 180 m sample of a high
SBS threshold HNLF (theshold over 26 dBm). This fibre had an alumino-silicate core
and a linear strain gradient along its length (ranging from 400 to 20 g). The dispersion,
polarization mode dispersion, nonlinear coefficient and attenuation of the fibre were -0.17
ps/nm/km, 0.35 ps/km®5, 7.5 /W /km and 15 dB/km, respectively. The relative powers

of the pumps and signals were adjusted for optimal regeneration performance (using the
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attenuator and the bias current of the slave laser in pump paths 1 and 2, respectively).
For optimum performance the PSA was operated in deep saturation resulting in a strong
variation of pump power at the PSA output as a function of the relative phase between
the pump and signal beams, as shown in Fig. 5.12. This feature was used to control the
PZT fibre stretcher (i.e. the minimum of the pump power corresponds to the maximum
PSA gain of the data, which is the correct operation point of the regeneration). No sign
of acoustic pick-up was observed in the output signal and only low bandwidth control
(Hz range) was needed to compensate for thermal drift. Just 57 of continuous phase
adjustment was required to keep the system locked, indicating in excess of an order of

magnitude improvement over the previous embodiment.
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FIGURE 5.12: Spectra at the PSA output for maximum gain (red, dashed) and deam-
plification (black, dotted).

5.4.2 Experimental Results

The regenerator performance was assessed using an EXFO constellation analyzer (PSO-
200) based on all-optical sampling and capable of operation up to 100 Gbaud, Fig. 5.13.
Severe phase distortions were introduced using the phase modulator (these were larger
than those subsequently used in the BER characterization) in order to verify that the
regenerator can operate at extremely large levels of noise and in order to easily visualize
the noise statistics by being able acquire data samples over a short time period. The
results at 40 Gbit/s and 56 Gbit /s show that the phase noise can be significantly squeezed

by the regenerator with negligible induced amplitude noise.

Subsequently, 40 Gbit/s BER measurements were taken at the input and output of
the regenerator for various levels of the phase-only, ASE-only and combined noise, Fig.
5.14. The receiver consisted of a bandpass filter (0.5 nm bandwidth measured at -0.5
dB), attenuator (the received power was measured at its output), low noise EDFA, a
bandpass filter, a 1-bit DLI, and a photodetector receiving an average power of 7 dBm.
In Fig. 5.14a, it is observable that no power penalty with respect to the back-to-back is
present when there is no noise at the PSA input. For all levels of phase-only (Fig. 5.14a),
ASE-only (Fig. 5.14b) and combined noise (Fig. 5.14c), there is some error flooring for
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FIGURE 5.13: Constellation diagrams for back-to-back and for added phase noise for
two data rates and the corresponding demodulated eyes for 40 Gbit/s.

the signal both with and without the regenerator. The floor levels are summarized in
Fig. 5.14d. Included are simulation results using similar noise statistics '. Fig. 5.14d
clearly shows the agreement between experiments and simulations and also highlights
that the regenerative performance of the PSA is especially good in the case where the

signal is impaired by nonlinear phase noise.

5.5 Field Trial of the PS DPSK Regenerator

5.5.1 Link and Regenerator Configuration

Having previously only tested the regenerator when placed just before the receiver with
the input signal impaired using artificial phase and amplitude noise, a more realistic
assessment was performed by installing it as an inline device in the middle of a dark
fibre link. This experiment was performed jointly with Dr. Radan Slavik. The dark
fibre link was part of the UK JANET Aurora Network and extended from Southampton
to London and back again. Within the 400 km dispersion-compensated transmission
distance were 6 in-line flat-gain EDFAs with maximum input/output powers of -5/15
dBm, operated in automatic gain control, each with nominal gain 20 dB. Configuring the
link involved visiting the various access points, installing EDFAs and ensuring remote
access to them via a telnet connection, installing dispersion compensation modules, and
designing a power budget to ensure that the amplifiers were running at optimum power
and gain levels, crucial for maximising the aggregate gain profile. It proved very useful

exposure to real optical networks.

!The numerical simulations were carried out by A. Bogris, University of Athens, using noise statistics
closely matching those used in the experiment. See [90] for further details.
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error counting simulations. In the simulations the BER calculation was limited to BER
> 107,

The link map is shown in Fig. 5.15. As all the access points along the network com-
prised single racks in large commercial datacentres, it would have been impractical to
have installed the regenerator at an access point other than Southampton, as that would
have needed space for the device and diagnostic equipment, as well as a continual hu-
man presence at these remote sites for the duration of the experiment. Instead, the
solution was to send the data channel all the way through the loop-backed link (400
km), perform the regeneration in the lab in Southampton, and then send the data for
a second pass through the link. This necessitated performing a wavelength conversion
after the regenerator so that the pre- and post- regenerator channels could be present in
the link simultaneously. This also meant that the effective link span was doubled to 800
km, a useful benefit. Obviously, conversion of the wavelength would not normally be
required in most transmission applications, nevertheless, it serves to illustrate another

useful potential application of these parametric devices.

A conceptual outline of the network and its practical implementation are shown in

Fig. 5.15 and Fig. 5.16 respectively. At the transmitter, 37 CW semiconductor lasers
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on a 100 GHz DWDM ITU grid were combined and modulated with a 40 GHz 23! —
1 PRBS. To de-correlate adjacent channels, the odd/even channels were split in an
interleaver, and 55 ns of relative delay introduced between them before they were re-
combined. 37 channels (excluding ITU Channel 23) were sent down the link. The
maximum total power launched into the link was 7 dBm with maximum power along
the link of 15 dBm. At the link output, ITU Channel 27 was routed to a separate path
using an WDM demultiplexer and wavelength converted to I'TU Channel 23 (either with
or without regeneration) and sent through the link again with all other channels. This
is schematically shown in Fig. 5.16. There were a total of 38 channels occupying the

link at any point in time.
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F1GURE 5.15: Dark fibre link configuration. DCF: dispersion compensating fibre.
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FIGURE 5.16: Schematic of link setup with regenerator as an in-line device

The regenerator setup was that shown in Fig. 5.9. A commercial endless polarisation
tracker from General Photonics was installed at the regenerator input to ensure that any
fast polarisation drifts emanating from the link were eliminated before the polarisation
sensitive regenerator. It did turn out that the link was very stable, and it was possible to
manually align the polarisation and it would remain stable for a period greater than the
BER measurement time, i.e. many minutes. This agrees with with other measurements

of installed fibre links [36]. As such the polarisation tracker was useful, but not essential.
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5.5.2 Regeneration Results

The regenerator was configured to perform simultaneous regeneration and multicasting
and was mounted into a standard telecommunication rack along with other network
components and test gear. To enable comparative study with/without regeneration,
conventional wavelength conversion could be carried out by switching off Pump 2, see
Fig. 5.9, resulting in phase insensitive FWM based wavelength conversion. The receiver
consisted of a 0.6-nm bandpass filter, an attenuator (the received power was measured
at its output), a low-noise EDFA, a bandpass filter, a 1-bit DLI, and a balanced pho-

todetector.
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FIGURE 5.17: (a) BER curves at the output of the 1st round-trip (400 km) measured

at the data Channel 23 measured for the maximum power into the link (7 dBm), For

reference, a measurement of the A-converted signal without transmission is also shown

(green triangles). (b) BER measurement for various powers launched into the link and
fixed receiver power of -25 dBm.

First, the transmitter/receiver and wavelength conversion stages were characterised
without propagation through the network, Fig. 5.17a, triangles. Subsequently,the sig-
nal was sent through the network (400 km) and the regenerated 4+ wavelength-converted
signal was analyzed, Fig. 5.17. The regenerator fully restored data fidelity giving a re-
ceived power improvement of 1.5 dB at a BER > 107. Slight reshaping of the eye is also
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FIGURE 5.18: BER curves at the output of the 2nd round-trip (800 km) with and

without mid-span regeneration: (a) for launched power of 5 dBm; (b) as a function of

the launched power for fixed receiver power of -25 dBm. For reference, measurements
of the signal at the mid-point (after wavelength conversion) are also shown.

observed, Fig. 5.18a, which may be responsible for the observed slight improvement of
the BER curve as compared to that measured without transmission. Fig. 5.18b shows
the improvement provided by the regenerator as the total power launched into the link
(for a fixed power at the receiver) was varied. For identical performance, around 2 dB
less total power can be sent through the link when the regenerator is used. As the
BER improves monotonically with the launched power, it can be concluded that the
noise generated in the link was dominated by the linear (ASE) rather than non-linear
noise. This was a consequence of using many channels (low power per-channel) and

propagation over a relatively modest distance.

Results obtained after two round-trips through the link (800 km, regenerator used in-
line) are shown in Fig. 5.18. Use of a mid-point regenerator reduced the BER penalty
by up to a factor of two (e.g., at BER 1079, it reduced the penalty from 2 dB to 1 dB and
at BER 10, from 5 dB to 2 dB). The error floor of the regenerated data was one order

of magnitude less than without regeneration, meaning that the regenerator prevented
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about 90% of errors in this regime. A closer study of the eye diagrams, Fig. 5.18a, shows
about a 20% larger eye opening for the regenerated signal. Varying the input power into
the link, Fig. 5.18b, showed almost 4 dB power penalty in the second round trip. This

value was reduced to 2 dB when the regenerator was used.

5.6 Analog Error Correction in PS Regenerators

No noise Noise of +1t/3
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PsK d T T . 0 [z 0 n-—m/3
AO=2m/3>T/2 N
DPSK 1 0 1
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FIGURE 5.19: Schematic explanation of the PSA for BER improvement in differential
coherent (DPSK) receivers. A data sequence of 0, 7, 7, 0 is considered

As suggested in Fig. 5.19, PS regenerators can correct errors when differential decoding
of DPSK is performed, which is counter-intuitive, as regenerators typically do not im-
prove BER when placed in front of a receiver. This phenomenon is due to a correctable
class of errors specific to a ‘differential’ receiver. Consider an example - two consecu-
tive bits with identical phases of 7 (Fig. 5.19) that during the transmission accumulate
phase error of /3 and —n /3, respectively. A DPSK receiver detects the difference in
the phases of these consecutive bits of 27/3. The receivers decision point is at /2
resulting in an erroneous detection of 7 rather than the correct value of 0. On the other
hand, a PSA corrects the phase of each bit, before the evaluation of their difference in
the differential receiver. Thus, a bit with phase m + 7/3 is corrected to 7, as signal of
any phase within 7/2 to 37/2 is pushed to the value of 7 by the PSA. The process is
similar for the bit of phase m — 7/3. Subsequently, the phase difference evaluated in the

differential receiver results in the correct detection of 0.

This ability to correct for differential errors means that for signals degraded by nonlinear
phase noise, after the PSA process the absolute and differential phase noise exhibit

almost the same statistics [90]. This suggests that a DPSK receiver supported by a PSA
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pre-amplifier could perform as well as an ideal homodyne PSK receiver. In principle this
means that the homodyne coherent receiver, which is usually implemented with power
greedy digital electronics, could be substituted by a simpler DPSK receiver which is
assisted by a PSA regenerator.

5.7 Tolerance to Residual Dispersion

5.7.1 Experimental Measurement

The final test was a study of how the regenerator could cope with residual dispersion.
A single channel at 40 Gbit/s was launched into the fully dispersion-compensated dark
fibre link and propagated once (400 km). Various lengths of SMF-28 fibre were then
added to the link output and the BER measured with and without the regenerator being
placed in front of the differential receiver, Fig. 5.20. For a perfectly compensated link,
the BER power penalty (at 10") of the non-regenerated signal is 2 dB in respect to
that regenerated. For 1 km SMF-28, there was negligible BER penalty both using the
regenerator and without it. However, for 2.5 km of SMF-28, a BER penalty of 1 dB
was measured when using the regenerator, while without the regenerator it rises to 4
dB. Thus, it could be concluded that the regenerator will give better improvements for
small amounts of residual dispersion as compared to fully compensated link. When the
SMF-28 length was increased to 8 km, the use of the regenerator resulted in poorer

performance as compared to the non-regenerated case.
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FIGURE 5.20: BER curves at the output of the Ist round-trip (400 km) using single-
channel transmission when various length of dispersion-uncompensated SMF-28 fibre
were added.
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5.7.2 Analytical Explanation

The impact of uncompensated dispersion prior to the PSA can be understood by recalling
that dispersion adds a quadratic frequency dependent relative phase shift to a dispersed
signal. This phase shift can be calculated quite simply, using the relation [55]

Ae— A

Ore1 = 27c - ( )2.-D-L (5.1)

where D is the fibre dispersion (17 ps/nm/km for SMF-28 at 1550 nm), L the length, A,
the central, or carrier, wavelength and A the wavelength at which the relative phase is
being evaluated. It is then possible to estimate the phase-to-amplitude conversion as a
result of this relative phase by using Eqn. 4.6. Fig. 5.21 shows this expression evaluated
for a PSA of PS swing ~ 20 dB. The effect on the signal power in many ways resembles
a multi-lobe bandpass filter. One could define a 3 dB bandwidth for the main lobe
of this hypothetical filter, and estimate how much residual dispersion is tolerable for a
signal of a given bandwidth by ensuring the signal fits within the 3 dB bandwidth of this
hypothetical filter. As can be seen from Fig. 5.21, 4 km of uncompensated dispersion

would severely distort a 40 GHz signal.
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FIGURE 5.21: Analytical calculation of the frequency dependent relative phase added
by propagation through varying lengths of SMF-28, as well as the resulting phase-to-
amplitude conversion in a hypothetical PSA of 19 dB swing.
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5.8 Conclusion

A DPSK regenerator based on a degenerate 2P-FOPA has been built and tested. The
device advanced the state-of-the-art by incorporating a pump synthesis stage that al-
lowed black-box operation. This involved the mixing of the incoming DPSK signal with
a local pump, generating a modulation stripped idler that was then enhanced using
injection locking, providing the second required pump. Because injection locking is a
gain mechanism, the idler did not have to be very strong, hence modest powers could
be used in the pump synthesis stage. The pumps and idler could then be combined and
coupled into an SBS suppressed HNLF in which the phase was regenerated via the PS
effect, while the amplitude was improved by power saturation. Detailed measurements

using sinusoidal phase and amplitude noise confirmed the regenerative effects up to 40
Gbit/s.

The regenerator was then modified to make it less suceptible to thermal and acoustic
perturbations and assessed with an input DPSK signal impaired by broadband non-
deterministic noise, in both phase and amplitude. The device proved to be more stable.
BER measurements showed signal improvement with the broadband input noise, al-
though the improvement was not as large as was obtained with the sinusoidal noise.
The regenerator was also tested mid-span on an installed 800 km link in a 38 channel
system at 40 Gbit/s. While an order of magnitude BER enhancement was obtained,
it is anticipated that better performance could be shown if the input signal had been
deteriorated by nonlinear phase noise to a greater extent. The DPSK regenerator does
have the ability to correct for a class of errors that occur in a differential receiver due to
the fact that the bit-by-bit phase comparison that occurs in a DLI sums up analog phase
deviations on successive bits, sometimes causing errors. Correcting for these phase devi-
ations prior to the DLI can then prevent these errors from occuring. Finally, the impact
of uncompensated dispersion prior to the regenerator was studied experimentally. It was
concluded that dispersion should be compensated as would be done in a direct detection

system, and a simple analytical theory supported that.

An objective analysis of the work involved in the DPSK regeneration work would con-
clude that it was a success. The final field demonstration was the culmination of 18
months of incremental work, both in terms of device fabrication from the partners, and
system development in Southampton, and the body of results collected elicited a fair
amount of positive feedback from the research community. This is perhaps best encapsu-
lated in the acceptance of two post-deadline papers at the Optical Fiber Communications

conference in 2010 and 2011, as well as a published paper in Nature Photonics.






Chapter 6

Multilevel Quantization of
Optical Phase

6.1 Introduction

The exponentially increasing capacity demand in information systems will be met by
carefully exploiting the complementary strengths of electronics and optics [91, 92]. Op-
tical signal processing provides simple but powerful pipeline functions that offer high
speed, low power, low latency and a route to densely parallel execution [93]. A number
of functions such as modulation and sampling [94-97], complex filtering [98] and Fourier
transformation [99] have already been demonstrated. However, the key functionality of

all-optical quantization still required addressing.

All-optical quantization could be applied to regeneration, in which noise on digital optical
signals is suppressed, crucial for fiber communications as well as photonic computing and
regenerative photonic buffers. Also, it is key for all-optical analog-to-digital conversion
(ADC), with benefits over the electronic equivalent including orders of magnitude higher
bandwidth and quantum limited timing jitter [100]. Phase quantization could also find a
role in processing the analog phase modulated optical signals being increasingly used for
radio-over-fiber and antenna remoting applications, e.g. in radar and radio-astronomy
[101].

All-optical quantizers have mainly been reported with reference to binary optical regen-
eration for legacy telecommunications applications requiring just a two step response.
The Mamyshev regenerator [102] utilises Kerr nonlinearity to shift the carrier frequency
of binary OOK signals, whilst not transferring the lower intensity analog noise. The
nonlinear optical loop mirror (NOLM) performs a similar function, except that the sig-
nal and noise are separated into different ports of an optical coupler [103]. BPSK signals

can be regenerated using NOLMs if in addition to the noisy signal, a pump beam at the

93
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same wavelength is coupled into it [79]. Alternatively, degenerate parametric amplifiers

can be used as is discussed in Chapter 5.

The above mentioned binary schemes are incapable of directly supporting advanced
formats such as quadrature phase shift keying (QPSK), whose four phase states allow
two bits per transmitted symbol. To achieve regeneration of signals with more than
two levels, a number of indirect approaches have been suggested. One of these is the
use of parallel BPSK regenerators, each regenerating one of the I and Q quadratures in
a QPSK signal [104]. Another solution is to perform BPSK to OOK conversion using
linear interferometers, amplitude regenerate the OOK streams in parallel, and perform
all-optical format conversion to synthesize a clean (regenerated) QPSK signal [105, 106]

The parallelistic approach of both these schemes, often favoured in electronics, is
complicated in optics due to the requirement to equalize and stabilise multiple optical
paths (often over 100 m long with silica fiber implementations) in phase, polarization
and propagation delay, which is both complicated and costly. In addition, linear scaling
of component count and power utilisation would offset much of the benefit of adapting

higher order modulation formats.

In addition to regeneration, for more sophisticated processes such as ADC, quantization
to more than two levels is a must. Research into photonic quantizers for ADCs has been
ongoing for four decades. Whilst numerous architectures have been proposed [100], a
niche for an ultrafast all-optical quantizer still exists. Photonic quantizers providing
bandwidths > 100 GHz, effective number of bits (ENOB) of at least 4 and power con-
sumption under 5 W would offer real competitive advantage as compared to the current
electronics alternative [100, 107]. With this in mind, effort was made to realise a scheme
to quantize phase encoded signals to multiple levels. Multilevel phase regeneration was
listed as one of the stretch objectives of the PHASORS project, and following the initial
system demonstrations of DPSK regeneration this piece of work commenced, and run
parallel to the DPSK regeneration work. Dr. Adonis Bogris from the University of
Athens is acknowledged for providing support in terms of numerical simulations that

validated some of the hypotheses behind this concept.

6.2 Concept

In electronics, the use of digital systems relying on the flow of electrical currents, as well
as the fortuitous availability of the pn junction with its intrinsic switching capability
means that quantizers are built acting on input amplitude. Phase on the other hand is
inherently a 27 bounded variable, raising the question as to whether phase quantization

would be easier to achieve than doing the same with amplitude.

Consider the cosine function as an example. For an input ¢ ranging from 0 to 27, cos(¢)

resembles a 2 level phase quantization operation as its result is a variable of phase ¢s = 0
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for 1/2 < ¢ < 37/2, and ¢s = w everywhere else. We can rewrite cos(¢) as the sum of

complex exponentials obtaining:

0 ifn/2<¢<3m/2

7 otherwise

. 1 . .
A4(6) - exp(it,) = cos(6) = 3 (exp(i6) +exp(—id)) = { (61)
where ¢4 is the 2 level quantized phase output, and A4(¢) is the accompanying 7-periodic

amplitude response.

Equation 6.1 suggests that an arbitrarily phase encoded signal exp(i¢(t)) can be quan-
tized in phase to 2 levels phase quantizer by coherently adding to it a phase conjugated
version of the input signal, exp(—i¢(¢)). This is in fact what happens in a degenerate
PS-FOPA, as can be seen in the simplified transfer function, Equation 4.6. The real
leap forwards enabling multi-level phase quantization is the realization that Equation

6.1 can be generalised by rewriting it as

1
M—-1

As() - exp(igs) = exp(i¢) + exp(—ig(M — 1)) (6.2)

where M refers to the number of phase levels. Fig. 6.1 shows the result of evaluating
Equation 6.2 for 3 values of M. For M=2, the phase transfer function is very sharp,
with a perfect 7 step. This is accompanied by a strong phase-to-amplitude conversion.
As the value of M increases, the periodicity of the phase TF matches M as expected,
but the step becomes less defined, and the depth of the phase-to-amplitude conversion
is also seen to reduce. The phase transfer functions as derived in Equation 6.2 are
all monotonic with M turning points. While this provides maximum local flatness at
0, 2/Mm, 3/Mm etc., it is not necessarily ideal for a quantizer in which the target is
to minimise the global phase error variance. One solution is to rewite Equation 6.2 by

substituting the coefficient of the conjugate term with a variable m.
As(9) - exp(ids) = exp(i¢) + m - exp(—ig(M — 1)) (6.3)

Fig. 6.2 shows the result of varying m in Equation 6.3 for M=4. Three values are used,
including 0.33, which is the coefficient as calculated from Equation 6.2. To optimise for
m, a misfit factor was designed such that an ideal value can be numerically identified.
The misfit factor, as shown in Equation 6.4, integrates the difference between a given

phase transfer function, and an ideal step.

9 w /M
Misfit Factor = log(— / lps(m, ¢)|  do) (6.4)

T J—n/M
The impact of varying m on the misfit factor are shown in Fig. 6.3, for M values of
2 to 5. A misfit factor of 0 is obtained for m = 0 for all values of M, indicating that
no phase quantization is achieved, and that the output phase is identical to that at the

input. The smaller the misfit factor, the closer the phase transfer function approaches
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FIGURE 6.1: Evaluation of Eqn 6.2 showing how multilevel phase transfer functions
are achieved as M is varied.
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FIGURE 6.2: Evaluation of Eqn 6.2 for M=4, showing the transfer functions for various
values of ms. Dotted line is for m = 0.25, solid line m = 0.33, and dashed line m = 0.5.
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an ideal step. Clearly, phase quantization is easily achieved for M=2, at m = 1. The
optimal values of m for higher values of M depart somewhat from 1/(M-1). Also, as
M increases, the degree of quantization achievable is compromised, as evidenced by the
decreasing misfit factor. Note also that the minima are fairly broad, meaning that m

does not have to be set very precisely.

Misfit factor

FIGURE 6.3: Evaluation of Eqn 6.3 showing how the misfit factor (as calculated in
Equation 6.4) as a function of m for various values of M. Optimum values for M = 2,
3,4 and 5 are m = 1, 0.71, 0.50 and 0.38 respectively.

6.2.1 Realisation

The advantage of the exponential notation in Equation 6.3 is that it can be immediately
deduced how to phase quantize to M levels an arbitrary analytical phase encoded signal,
exp(ip(t)). This can be done by coherently adding to the signal a conjugated phase
harmonic bearing a temporal phase modulation M-1 times that on the input. Provided
that the conjugation mechanism used is much faster than the data modulation (this
criterion is met by utilising the ultrafast Kerr effect), ¢ in Equation 6.3 can be replaced
by time-varying phase modulation, ¢(t). The question is then how to synthesize, from
1th

an input phase modulated signal, the M-1'" phase harmonic, conjugate it, scale it to m,

and coherently add it to the input.

The functions of phase multiplication, conjugation and coherent addition are performed
using FWM as shown in Fig. 6.4. First, the phase harmonic is generated from the
signal using a cascaded FWM process (Fig. 6.4a). This is done by combining the signal
with a strong pump beam at a frequency detuning Af in a nonlinear medium. By
optimising the phase matching and the strength of the nonlinear interaction, a spectral

cascade of FWM products are generated (Fig. 6.4a). Because FWM is momentum
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conserving, the comb of products possesses an overlying phase modulation that is a
perfect integer multiple of the modulation present on the signal at the mixer input.
Next, a second FWM process is carried out using two pumps located symmetrically
around the signal and phase harmonic (Fig. 6.4b) to coherently conjugate and add the

M-1*" phase harmonic to the signal.
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FIGURE 6.4: Illustration of how the M-level staircase transfer function necessary for

phase quantization is achieved. a, By mixing a pump beam with a phase modulated

signal in a nonlinear medium higher order phase harmonics of the signal can be gener-

ated. b, The signal is then coherently combined with the M-1th harmonic using a two
pump parametric process.

6.3 Dual-Stage Blackbox QPSK Regenerator

An experiment was setup to demonstrate the concept in Fig. 6.4. The dual-stage
quantizer can be operated in blackbox fashion, similar to the DPSK regenerator in
Chapter 5, due to the fact that the FWM process used to generate the phase-multiplied
harmonic also generates a modulation stripped wave that is locked in relative phase to
the signal carrier, and is therefore ideal, once improved by injection locking, to be used
as the second pump in the second stage mixer. The experiment was carried out with a
10 Gbaud QPSK signal.

6.3.1 Experimental Setup

The experimental setup is shown in Fig. 6.5. A CW wave at 1555.7 nm was modulated
in a single MZM with a 23!-1 PRBS pattern to generate a 10 Gbaud BPSK signal.
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FIGURE 6.5: Experimental setup, PZT - piezo fiber stretcher, HNLF - highly nonlinear
fiber, CW - continuous wave, QPSK Tx - QPSK transmitter.

A QPSK signal was then synthesized by passing the BPSK signal through a 400 ps
DLI setup up to have a 90° phase shift between the two arms. To emulate the effects
of nonlinear phase noise, the signal was coupled through a LiNbOs phase modulator
driven by variable power levels of electrical white noise spanning up to 8 GHz, again
repeating the technique used in Chapter 5 during the initial characterization of the

DPSK regenerator.

The signal was amplified to 22 dBm and combined in HNLF 1 (OFS) with a 14 dBm
portion of pump 1 at 1557.5 nm to generate the FWM comb as shown in Fig. 6.6.
HNLF1 was 500 m long with nonlinear coefficient 10.7 /W /km, ZDW 1544 nm and
dispersion slope 0.029 ps/nm?/km. The modulation free harmonic at 1551.2 nm was
de-multiplexed from the comb and injected into a semiconductor laser, providing pump
2. The rest of the comb was passively filtered out leaving the signal and harmonic at
1552.7 nm. These were combined with the pumps in HNLF 2 (OFS), with a total pump
power of 24 dBm. This fiber had a length of 300 m, nonlinear coefficient 11.6 /W /km,
ZDW 1553 nm and DS 0.018 ps/nm?/km. It also had a strain gradient to increase its
SBS threshold. Any slow relative phase drifts at the PSA input were eliminated by
monitoring the signal power at the PSA output and controlling a PZT. The signal was
then assessed using a self-homodyne constellation analyser. The 20 GHz bandwidth of
the constellation analyser was the limiting factor in the choice of signal baud rate for

the experiment.
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The simple study carried out in Section 6.2 predicts that for optimum regeneration the
harmonic to signal ratio should be 0.5 in field, i.e 6 dB in power. This should only
be used as a rough starting point - the exact value will depend on the specific pump
and fiber parameters used. Generally speaking, if high gains are not possible in the
parametric mixer, the power of the harmonic would need to be increased somewhat to

ensure that sufficient energy is transferred from harmonic to signal.
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FIGURE 6.6: FWM comb generation stage input (dotted) and output(solid).
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FIGURE 6.7: Spectrum at HNLF 2 input.

6.3.2 Experimental Results

The PSA input is shown in Fig. 6.7. The phase sensitive swing was measured at
around 7 dB as shown in Fig. 6.8. The constellation diagrams in Fig. 6.9 show the
regeneration for three added phase noise levels. In the absence of any added noise,
there was a slight degradation; see Fig. 6.9(a), (b). This stems primarily from the
amplification and filtering of the signal within the regenerator, as well as ASE added by
the EDFA amplified pumps. Future system iterations would be expected to remedy this
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FIGURE 6.8: Signal spectrum at HNLF2 output, solid line (top) is PS maximum, dotted
line (middle) is PI, and dashed line (bottom) is PS minimum.

degradation. Absolute phase deviations of up to 60° per symbol (peak-to-peak) were
squeezed down to about 30°; see Fig. 6.7(c), (d).

The regenerator was able to squeeze even larger phase fluctuations (6(e), (f)) but this
was accompanied by phase-to-intensity conversion. It is possible to suppress this by
saturating the PS-FOPA. However, for phase-only formats such as QPSK, amplitude
fluctuations impose little penalty, and therefore this is not absolutely crucial. The level
of squeezing illustrates one of the key benefits of PSA regenerators: assuming they are
placed before a differential optical receiver, they have the potential to significantly reduce
the BER for severely degraded signals. This is because phase deviations are magnified by
up to a factor of 2 during differential detection and therefore peak-to-absolute deviations
over 22.5° for DQPSK can cause errors when differentially decoded, but these can be

eliminated by this regenerator.

6.3.3 Further Analysis

It might be interesting to observe the signal and harmonic idler waves at various points
in the regenerator, as shown in Fig. 6.10. These earlier measurements were recorded
with an 18 GHz Agilent N4391 constellation analyser, and were performed at 10 Gbaud.
The comb signal and idler refer to the signal and harmonic waves as measured at the
output of HNLF1. PIA output is the signal after HNLF2 with the idler attenuated
heavily prior to the PSA, while PSA output is the regenerated output.

The comb idler can be seen to be have greater phase fluctuations that the signal, which
agrees with the fact that it is trebled in phase relative to the signal. This is more
noticeable for the constellations recorded with noisy PSA inputs. Also, note that the

PIA output is always noisier than the PSA input,which would be expected given the
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FIGURE 6.9: Signal constellations, (a),(c) and (e) regenerator input, (b), (d) and (f)
regenerator output respectively.

lossy passive components as well as noisy amplifiers between these two points. The
regenerative capability can be observed from the output constellations. Worth noting
also is that the transitions between the data points are transformed by the PSA, with
a phase-to-amplitude conversion taking place that compresses the outermost transitions

from straight to curved.

6.4 Single-Stage QPSK Regenerator

As described in the preceding section, the dual-stage regenerator clearly differentiates
between the first HNLF in which the phase multiplication and pump recovery occurs,
and the second HNLF in which the conjugated idler is coherently added to the signal,

hereby regenerating the phase. A remarkable variant of that scheme was discovered, in
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which phase sensitive gain is obtained directly from a 2P non-degenerate parametric am-
plifier without an idler at the amplifier input, in apparent contradiction to the expected
characteristics of a non-degenerate PSA. This device configuration, in addition to allow-
ing QPSK phase regeneration in a simpler configuration relying on just one nonlinear

element, provides significantly enhanced amplitude noise improvement.

The concept is in effect a fusion of the two separate parametric effects into one distributed
action. Provided that both pumps 1 and 2 as well as the signal are present at the mixer
input, the coherent mixing process can then be distributed along the fiber length; initially
the cascaded mixing process dominates, and then as the harmonic idler starts to grow in
power the coherent conjugated addition takes place. Unlike the dual-stage regenerator,
this setup is not black-box in that phase locked pumps have to be provided prior to the
PSA, but given advances in electronic phase locking it is increasingly possible that this
will not be a significant disadvantage in the near future. An experiment was carried out

to validate this assumption.

6.4.1 Experimental Setup

The output of a CW laser at 1555.7 nm was split into two, with one portion coupled into
a 10 GHz comb generator, see Fig. 6.11. Comb lines at -190 and +570 GHz detuning
were injected into semiconductor lasers, providing two pump beams phase locked to
the signal carrier. The rest of the signal light was modulated with a pseudo-random
binary sequence to generate single polarization QPSK. This was sent through a noise
additive module to emulate the effects of linear (related to quantum noise and ASE)
and nonlinear phase noise (related to nonlinear amplitude to phase conversion). This
module (shown as an inset in Fig. 6.11) comprised an ASE source whose output was
split into two, one portion being detected and the resulting electrical white noise being
used to drive a LiNbO3 phase modulator through which the signal was passed, and the

other portion being optically combined with the signal in a coupler.

The signal was then combined with the pumps and all the waves were amplified in an
EDFA, leading to 50 mW of signal power and 250 mW power per pump. They were
then sent into an HNLF (OFS, Denmark). The HNLF parameters were length 300 m,
nonlinear coefficient 11.6 /W /km, ZDW 1553 nm and 1550 nm DS 0.018 ps/nm? /km. It
also had a strain gradient to increase its SBS threshold, allowing the use of continuous
wave pumps. Slow thermo-acoustic relative phase drifts were suppressed by monitoring
the signal power at the PSA output and controlling the PZT. The signal was then
assessed using an EXFO constellation analyzer (PSO-200) based on all-optical sampling
capable of operation up to 100 Gbaud.
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FIGURE 6.11: Regenerator setup, Tx - transmitter, WDM - wavelength division de-
multiplexer, PZT - piezo-electric fiber stretcher, PM - phase modulator,

6.4.2 Experimental Result

The input and output spectra to the PSA are shown in Fig. 6.12 and Fig. 6.13 respec-
tively. At the input to the PSA, there is a very weak component at the idler frequency
(+380 GHz detuning) emanating from weak FWM in the high power EDFA, but at -40
dB relative to the signal this does not affect the subsequent parametric interaction as
verified by numerical simulations. 7 dB phase sensitive gain variation was obtained at
the PSA output as measured with the feedback to PZT turned off (Fig. 6.15). The
spectrum at the output to the PSA (Fig. 6.13) suggests two separate interactions oc-
cur simultaneously first, the presence of the strong component at +190 GHz detuning
indicates coherent phase multiplication via mixing of the signal with the pump at -190
GHz, and the strong idler at +380 GHz indicates conventional 2P phase insensitive am-
plification. There are many other parametric interactions that occur due to the strength
of the signal and pumps, as shown in the wideband output spectrum, Fig. 6.14. These
extra mixing products can be used to enhance the functionality of the device, such as
being used as a wavelength multicaster by accessing the wavelength-translated copies of
the input signal. It could however be viewed as being energetically inefficient, but this
transfer of energy to unwanted frequencies can be minimised by careful selection of the

fiber parameters.

To characterise the regenerator, colorgrade signal constellations including data on the
phase error variance and normalised variance of amplitude noise are shown in Fig. 6.16.
While this statistical information would be more robust if obtained from a homodyne re-
ceiver without digital phase compensation for the intradyne local oscillator, as measured
in Section 6.3.1, it is still useful for quantifying relative signal improvements derived from

the regenerator.

The regenerator was first assessed at 10 Gbaud with added phase noise only, emulating

the nonlinear regime. Pseudo-Gaussian phase fluctuations would be expected at the
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FIGURE 6.12: PSA input spectrum, signal located at 0 GHz detuning.
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F1GURE 6.13: PSA output spectrum, signal located at 0 GHz detuning, output idler
at +380 GHz.
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FIGURE 6.14: PSA output spectrum showing wideband mixing products
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F1GURE 6.15: Normalised PSA gain fluctuations with electronic stabilisation turned
off.

input, with an artificial roll-off at the tails of the distribution due to saturation of the
photodiode for high ASE levels. The regenerator desirably reduced the phase error
variance by a factor of 6, while the amplitude noise variance only increased by 2.6 (Fig.
6.16, Cell A), suggesting an overall benefit as the input BER is dominated by the phase
noise. This phase noise reduction is comparable to the numerically predicted factor of 5.5
for the parallel BPSK regenerator scheme [104], denoting that the inline compactness
of the approach does not come with an associated performance penalty. For QPSK,
a comparison with studies on the impact of phase estimation errors on BER suggests
that the output phase error variance of 0.0042 rad? (Fig. 6.16, Cell A) approximately
corresponds to an SNR penalty under 0.5 dB for a BER of 1074, while the input variance
corresponds to a penalty > 4 dB [108]. This nonlinear phase noise reduction implies that
i) the reach of the transmission span can be increased ii) the tolerance to nonlinearity

is significantly enhanced; hence higher receiver OSNRs can be envisaged.

In the presence of linear noise emulated by ASE loading (hence degraded OSNR with
both phase and amplitude fluctuations), the phase error variance and normalised ampli-
tude variance are simultaneously reduced by approximately 3.2, indicating even better
net regenerator performance (Fig. 6.16, Cell B). This ability to concurrently reduce both
absolute phase and amplitude variance prior to the receiver suggests that the regenera-
tor should provide significant signal quality improvement if deployed before a differential
receiver, which normally requires a trade off between reduced complexity and lower noise

tolerance compared to a fully coherent one.

The symbol rate was increased to 56 Gbaud and the measurements repeated. Without
added noise, the regenerator preserves the phase quality at the expense of some am-
plitude noise (Fig. 6.16, Cell C). It is believed that this is a result of the wideband
parametric interactions occurring in the PSA, as shown in Fig. 6.14, that transfer some
amplitude noise to the signal. In the presence of phase noise, the phase error variance is
reduced by a factor of 3.2, with increased amplitude noise at the output Fig. 6.16, Cell

D). For QPSK however, in which the information is solely contained in the phase, this
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increased nonlinear phase noise tolerance would translate to increased reach or higher

signal launch powers to improve OSNR at the receiver.

10 Gbaud (20 Gbit/s)
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FIGURE 6.16: Regenerator performance. A - Input phase noise only; B- Phase and
amplitude noise; C- No noise; D- Phase noise only. Uer is the phase error variance,
02,10 is the normalised amplitude noise variance;

6.5 Reconfigurable M-PSK Phase Quantizer

The initial experimental demonstrations all focussed on QPSK regeneration, due to the

importance of that modulation format given its selection for longhaul 100 Gbit /s optical

links. However, having predicted that the device could readily be reconfigured to handle

other PSK modulation formats, an experiment was designed to demonstrate this.

6.5.1 Experimental Setup

A narrow linewidth CW fibre laser (Rock laser, NP Photonics) at 1555.7 nm was split

into two, with one portion coupled into a 10 GHz comb generator (Optical Pulse Gen-

erator LP-5011, Optocomb). Two semiconductor lasers were injection locked to comb

lines, one (Eblana Photonics DM laser, output power 10 mW and natural linewidth be-

low 300 kHz) representing pump 1 at approximately -200 GHz detuning from the signal
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FIGURE 6.17: a, Schematic of the quantizer. EDFA, erbium doped fiber amplifier. b,
Optical spectrum at the input and c, output of the highly nonlinear fiber. The weak
tones (over 35 dB less than pumps) in b result from FWM in the EDFA and can be

ignored.

frequency and the other (EM4 Inc, output power 100 mW and natural linewidth below
1 MHz) at a frequency (M-1)*200 GHz away with the value of M depending on the mod-
ulation format being assessed. For both lasers the injected power was close to -30 dBm.
The rest of the signal light was modulated, either in a Lithium Niobate phase modulator
with information generated in a 12 GS/s Tektronix arbitrary waveform generator, or in
the case of QPSK, in a Lithium Niobate MZM driven by an electrical PRBS pattern,
the optical output of which was coherently multiplexed from BPSK to QPSK in a DLI.

The modulated signal was sent through a noise additive module to emulate the effects

of linear (related to quantum noise and ASE) and nonlinear phase noise (related to
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nonlinear amplitude to phase conversion). The signal (50 mW) was then combined with
the pumps (total power 500 mW) and all the waves were amplified in a PM EDFA. Use
of a PM EDFA ensured that the signal and pumps were co-polarised in the subsequent
HNLF.

They were then sent into an HNLF (OFS, Denmark) HNLF parameters are length 300
m, nonlinear coefficient 11.6 /W /km, zero dispersion wavelength 1552 nm and 1550
nm slope 0.018 ps/nm?/km. This had a strain gradient to increase its SBS threshold,
allowing the use of CW pumps. Optical spectra at the input and output of the HNLF are
shown in Fig. 6.17b and 6.17c respectively. Slow thermo-acoustic relative phase drifts
were suppressed by monitoring the signal power at the PSA output and controlling the
PZT. The processed signal was then combined with a local oscillator (tapped off the
signal laser prior to data modulation) in a 90° hybrid followed by real-time 50 GS/s
(Tektronix 72004) sampling of the two hybrid outputs detected in single ended fashion
using Agilent 83440D 32 GHz lightwave detectors, and off-line post processing to retrieve
the phase and amplitude of the signal.

6.5.2 Experimental Result

To verify the operating principle, the signal phase was first varied over 27 at a rate
of 150 MHz. To switch to M-level quantization, the only requirement is to tune the
frequency of laser 2 to fs+(M —1)Af, and optimise the pump and signal powers into the
HNLF. This means that from a practical point of view, changing the modulation format
or supported signal bandwidth (given by Af) can be achieved in milliseconds or less
without any hardware changes, relying on the rapid tuning capability of semiconductor
lasers. The choice of signal and pump powers depends on the fiber parameters, M-level,
and application, but as an example, 50 mW and 250 mW respectively proved ideal for

QPSK regeneration.

The signal can be represented in constellation diagrams, as shown in Fig. 6.18. Quanti-
zation to 3, 5 and 6 levels in Figs. 6.18b, 6.18c and 6.18d respectively was demonstrated.
As expected, the quantization is accompanied by a sinusoidal amplitude response, whose
depth decreases as M increases. If stronger phase squeezing was required, as might be
for the higher levels of M, multiple nonlinear elements can be cascaded in series. The
quantization is accompanied by phase-to-amplitude conversion which would be undesir-
able for some applications; this however can be eliminated by subsequently regenerating
the signal amplitude in a high dynamic range limiting optical amplifier, such as an
injection-locked semiconductor laser [109]. Fig. 6.19 shows the intermediate stages for
3- and 5-PSK, between the condition of zero pump power hence no nonlinearity, and the

optimum pump power for ideal phase regeneration.
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FIGURE 6.18: Signal constellation diagrams. a, Before the quantizer, signal occupies

every phase state. b, After phase quantizer with pump 2 at f; + 2Af, giving 3 levels.

¢, After phase quantizer with pump 2 at fs + 4Af, giving 5 levels. d, After phase
quantizer with pump 2 at fs + 5Af, giving 6 levels.

The quantizer was then assessed for its phase regenerative properties, as would be re-
quired in an optical telecommunications link. This was done for 3-PSK and QPSK.
Whilst 3-PSK is not a conventional modulation format due to its fractional (1.5) num-
ber of bits per symbol leading to coding complexity, one could envisage a more complex
format being derived based on 3-PSK. It is also a useful demonstration of the ability of
the scheme to deal with odd values of M, which can not be done with other techniques

such as the parallel approach.

The constellation data at the output of the phase regenerator are shown in Fig. 6.20.
First, a pseudo-random 3-PSK signal was generated at 6 Gbaud and noise added to it
by optically adding ASE. This led to a constellation with a broad phase and amplitude
distribution. Following the regenerator, the phase and amplitude excursions weresig-
nificantly reduced. Also plotted are the differential phase error distribution (symbol-
to-symbol phase difference). As can be seen, the probability of differential decoded
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FIGURE 6.19: Output constellations with quantizer configured for 3- and 5-PSK, show-
ing transformation as pump power is increased from zero to an optimum value.

digital errors (when the analog error is over 60° for 3-PSK) is reduced by two orders of

magnitude.

The regenerator was tested with a 10 Gbaud QPSK signal. Phase and amplitude noise
were artificially imposed onto the signal leading to a constellation with a broadband
phase and amplitude distribution. Following the regenerator, the phase excursions are
significantly reduced. The device is also capable of simultaneously reducing amplitude
noise at the input, achieved by slight saturation of the amplifier induced by having
relatively high input signal powers. The differential phase error distribution (symbol-
to-symbol phase difference) are also plotted showing that the probability of differential
decoded digital errors (when the analog phase error is over 45° for QPSK) is reduced by
at least an order of magnitude. This phase squeezing ability could therefore be applied
within a communications link, extending its reach and/or improving the signal quality

prior to the receiver, adding to the system margin.

6.5.3 Conclusion

For the first time, a practical concept for performing QPSK regeneration, that can be
scaled to higher density PSK constellations has been proposed and demonstrated. This
scheme relies on the coherent addition of an M-level PSK signal with a conjugated (M-
1)th phase harmonic, scaled by a coefficient m. A simple analytical theory can be used
to predict the optimal value of m, located using a numerical misfit factor minimization

process. The concept was demonstrated with QPSK signals, relying on a two stage
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parametric process - in the first stage a third order phase harmonic is generated, and
in the second this is mixed with the original signal. Homodyne optical constellation
diagrams showed that the concept works. A further modification is to combine the
two processes in a single fibre, by mixing a QPSK signal with two pumps in an HNLF.
Constellation measurements taken up to 56 Gbaud (112 Gbit/s) showed up to a four-fold
reduction in the phase error variance. The device is capable of reducing noise in both
phase and amplitude via a saturation mechanism, similar to the DPSK regenerator. The

generalised concept was further demonstrated up to 6-PSK.

These results were well received, with a postdeadline paper at the European Conference
on Optical Communications in 2010, as well as published in Nature Photonics in 2011.

In addition, this work generated two patents on the key enabling technologies behind it.



Chapter 7

Conclusions

The body of research presented in this thesis was closely aligned with the goals of the
EU FP7 project PHASORS. Launched in 2008, PHASORS targeted “...the development
and applications of fibre based phase sensitive amplifier (PSA) technology in 40 Gbit/s
broadband core networks”. PSA specifically, and all-optical signal processing in general,
were felt to be technologies able to help deliver the 1.5 dB/year increase in fibre capacity
needed to cope with demand '; the concensus at the time was that electronics on its
own provided neither the speed nor the power efficiency required to meet this growth

curve.

PSA based on Kerr nonlinearity in optical fibres required several key enabling tech-
nologies. The demonstrations of optical regeneration shown here would not have been
possible without access to SBS suppressed HNLF, allowing the use of the high power
narrow linewidth pumps required for the phase sensitive parametric process. While
progress has been made on this front, a few issues remain, particularly with the strained
AlSiOg fibres - non-negligible insertion losses, large ZDW fluctuations along the fibre
length, and PMD. These factors mean that the parametric process is not as efficient as

it can be.

The strained Ge-doped silica HNLF which was used for the multilevel phase quantization
work allowed the use of pump powers (out of the EDFA) of 27 - 28 dBm. Getting to the
level of only 20 dBm per pump would represent a significant milestone, as such power
levels could be delivered directly by semiconductor lasers without the need for optical
booster amplifiers, making parametric devices cheaper and more compact. As stated
before, ensuring uniform dispersion characteristics along the device length significantly
improves efficiency and bandwidth characteristics, but this is very difficult to do over long
(hundreds of metres) fibre spans, although a dispersion optimisation technique relying
on applying variable strain along the fibre length offers some promise [46]. A personal

recommendation, based on a survey of the literature, would be to further investigate the

1Cisco Visual Networking Index: Forecast and Methodology, 2010 - 2015
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use of resonator structures [13] based on short lengths of HNLF with pump reflective
elements on both ends, allowing the peak pump within the nonlinear medium to increase
by orders of magnitude. Cost savings would arise from the use of low power pump diode
lasers, as well as being able to use short HNLF lengths. Devices based on this technology
should also be much more compact. This architecture does present several challenges
however, including stabilising the optical pump to what would effectively be a high

finesse nonlinear Fabry-Perot cavity, as well as managing temperature dissipation.

The demonstrations of blackbox DPSK regeneration herein relied on optical injection
locking to provide a pair of pumps locked in phase to the signal carrier. OIL is a very
handy technique for this purpose - it only requires the addition of an optical circulator
to the setup, and allows large phase locking bandwidths (more than hundreds of MHz).
Electronically assisted phase locking technologies currently offer < 1 MHz bandwidth,
and this should not increase significantly in future. However, the use of narrow linewidth
lasers in telecom systems, driven by the adoption of coherent communications in which
optical phase carries information, means that electronically assisted locking could replace
OIL in these parametric sub-systems, as loop bandwidth requirements would be reduced.
This is of vital importance - electronic locking would allow the DPSK regenerator to
be compressed to a single nonlinear device, and not two as demonstated in Chapter 5.
Also, the QPSK regenerator in Chapter 6 utilises a single nonlinear stage, and while
a blackbox demonstration is shown using a first stage in which a modulation stripped

pump is first generated, this comes at the expense of optical power.

At this stage it is worth assessing the merits of the system demonstrations shown herein,
starting with the DPSK regenerator. An all-optical DPSK regenerator should ideally

have a number of features.

1. High speed operation (> 1 THz): Semiconductor technology has advanced greatly
over the last 3 decades, and the current semiconductor industry roadmap (as of
2008) has targets of transistor bandwidths of 1 THz by 2021, ? implying digital
signal processing speeds in excess of 100 GHz. It is crucial that all-optical process-
ing techniques allow scalable operating bandwidths at least an order of magnitude
greater than this figure, to make their deployment economically viable and future

proof.

2. Power efficiency: All-optical signal processing techniques have for a long time been
touted for their superiority in terms of low power per processed bit in comparison
to electronics. While there is no clear concensus regarding whether this superior-
ity can be maintained indefinitely [93], optical techniques will have to out-perform
electronics in terms of power efficiency, in order to stand a chance of in-field de-

ployment.

Zhttp://www.itrs.net/Links/2008ITRS/Home2008.htm. International technology roadmap for semi-
conductors, Table RFAMS1. Targets 1 THz Fiq CMOS NFET transistors by 2021
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3. Amplitude noise suppression capability: Because amplitude noise within the signal
channel is a major seed of intra-channel nonlinearities, it is important that the
regenerator not only suppresses amplitude noise at its input, but also minimises
the phase-to-amplitude conversion that is a characteristic of linear phase sensitive

amplifiers.

4. Multi-channel (WDM) operation: It goes without saying that multi-channel re-
generation remains the holy grail of all-optical signal processing, and this remains
a goal of research groups in this field. However, provided the single-channel all-
optical regenerator has a small component count and reasonable low power re-
quirement, future advances in photonic integration and in the design of nonlinear
optical materials will certainly make it possible to economically manufacture and

package many such devices together, delivering a multichannel system.

The DPSK regenerator went a long way towards meeting most of these requirements. It
provided significant compression in both amplitude and phase noise. Operation up to 56
GHz was demonstrated, but the setup was capable of achieving up to 200 GHz, limited
by the spacing between the pumps. If a much wider pump spacing was utilised, 1 THz
should be feasible. Achieving these speeds would ultimately be limited by dispersion, not
the nonlinearity. Flat parametric gain over the entire signal bandwith would be required,
but phase sensitive parametric gain bandwidths in excess of 2 THz were demonstrated
in the early stages of this work. The device was also operated with less than 1 W
of optical power, a breakthrough in itself. However, to get below the level of pJ per
bit, even lower pump powers are required. The degenerate PS-FOPA is inherently a
single channel device, and while multi-channel PSA amplification can be achieved in a
non-degenerate PS-FOPA, data information must be duplicated over transmitted signal-
idler pairs, and these must all be coherent relative to a master pump, something that
would require full dispersion and delay compensation prior to the PS-FOPA. Even if
this were practical, cross-talk in the parametric device would be difficult to mitigate,
especially since amplitude noise suppression often requires high signal powers for pump
depletion. An alternative approach has recently been presented [110], this requires
a separate high power pump for each regenerated channel. As would be expected,
this scheme suffers from considerable unwanted FWM between the pumps, ultimately
limiting channel count. It therefore appears best to focus future development efforts on

compact, low power, low component count single channel regenerators.

Ironically, the same relentless match in technology that has enabled the PS-FOPA DPSK
regenerator to be feasible appears to have made it redundant, at least for long-haul
applications. The need for greater system capacities, mean that QPSK has superceded
DPSK, at least for the time being, as the modulation format to which mid-term R&D
efforts should be targeted. This is not to say that no other applications for DPSK
regeneration exist, or will emerge, but what these applications are, or will be, is still

unclear.
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It was therefore a significant development to demonstrate for the first time QPSK re-
generation in a PS-FOPA. Previously, it had been suggested that QPSK regeneraion
could be achieved by taking a QPSK signal, splitting it into two, and using two par-
allel BPSK regenerators to process each of the two phase quadratures separately [104,
105]. This concept should work, although several disadvantages spring to mind. Firstly,
the two BPSK regenerators would have to be matched in length quite accurately, at
56 GHz this would need to be to precisions better than 1 mm. Matching in phase,
gain and polarization would also need to be done. Even when possible using integrated
photonic technologies [106], as discussed in the introduction, having to use one optical
sub-system per processed bit means that any economic advantage all-optical processing

has over electronics would rapidly shrink.

The multilevel phase quantization concept, of combining an MPSK signal with a selected
phase harmonic, is extremely powerful due to the fact that a single device is used per
input symbol, not per input bit. The device is capable of performing QPSK regeneration,
which is demonstrated here at up to 112 Gbit/s with up to a four-fold reduction in the
phase error variance observed. It is also capable of processing higher order modulation
formats, due to the general nature of the concept, experimentally demonstrated up to
6-PSK. One main attraction is the fact that the device is reconfigurable, meaning that
switching between modulation formats could be done without any hardware changes, a

flexibility up to now only accessible using electronic devices.

It is only fair to provide an objective assessment of the weaknesses, and not just the
strengths, of the current approach. There are several. To begin with, achieving high
levels of M, such as 16, is a task complicated by two effects. Firstly, this requires the
generation of high order phase harmonics (the 15th in this case). Note that the highest
generated experimentally during this research project was the 7th. Also, the phase
transfer function is not a perfect staircase, but is smooth, meaning that the device copes
best with signals that are not very noisy, and the smoothness increases the higher the
value of M. At this point it appears that coping with M levels higher than 10 is probably

unfeasible, at least not in a single nonlinear device.

The solution to the first of these problems is to not to use the signal and (M-1)th
harmonic for regeneration, but to use a different pair. For 8-PSK for example, rather
than trying to sum exp(i¢) and exp(—i7¢), combining exp(i3¢) and exp(—i5¢) delivers a
similar 8 level quantization function, except that the phase points get re-ordered, albeit
in a predictable way. The benefit of this is that one only needs to generate harmonics
up to the 5th, and not the 7th. For higher modulation formats, such as 16-PSK, this
becomes even more beneficial - only harmonics up to the 9th, and not the 15th, would
be required. As for obtaining better phase quantization properties, cascading multiple
devices, or somehow synthesizing mixers that allow the combination of the signal with

not just one, but multiple phase harmonics, might be a solution.
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Finally, it is worth discussing the future of PSA technology from a low noise amplification
perspective. Record low noise figure of 1.1 dB has already been demonstrated [67], and it
is estimated that Raman coupled noise will limit PS-FOPAs to 0.5 dB at best [111]. While
2.5 dB advantage over DFAs is noteworthy, it is on its own arguably not sufficient from
a telecom system perspective to justify replacing DFAs with PS-FOPAs. In ultimate
capacity terms, PS-FOPAs render one quadrature redundant for information carrying.
In addition, what long haul links require currently is a breakthrough technology, one
that is capable of delivering orders of magnitude increase in capacity, and not just an
extra 1 bit/s/Hz as upgrading to PSAs would deliver. PI-FOPAs on the hand are still
attractive given their simplicity, and might prove to be a the solution of choice if systems
are built operating outside of the C-band. As for the PS-FOPA itself, discounting it from
fibre telecoms does not mean that applications do not exist - there are single channel
systems that would suit it, such as those where noise performance matters more than

capacity (such as interplanetary communications).






Appendix A

Spectral pump counter phasing in
dual pump FOPAs

Small core Ge-doped silica HNLFs are often the medium of choice for parametric am-
plifiers, due the long nonlinear interaction lengths, and maturity of dispersion tailoring
techniques. From a practical perspective, they are also easy to splice to with low in-
sertion loss, can be designed with various amounts of birefringence, can cope with high
power levels without device damage, and by leveraging advances in fibre draw technology
may be feasible to manufacture in volume '. One main drawback with these fibres, how-
ever, is that their SBS thresholds are lower than the pump powers required for modest

parametric gains, i.e. < 20 dBm.

One method to get around the SBS issue is to apply phase modulation to broaden
the pump(s) linewidth [112]. In the case of 1P PI-FOPAs, the pump modulation is
transferred to the idler wave, an undesirable phenomenon. One way to prevent to this
idler broadening is to use a 2P FOPA and apply complementary phase modulation on
the two pumps [113]. This technique, which is sometimes referred to as 'counter phasing’,
relies on the fact that the idler phase, in the event that the signal was modulation free,
is the sum of the pump phases. By ensuring the pump phases are exactly opposite, no

phase information from the pumps is transferred to the idler.

One method of counter phasing is to individually modulate the pumps using two phase
modulators driven by complementary (inverted) electrical signals.A sample schematic
using discrete components is shown in Fig. A.1. This approach is complicated by the
need to match the propagation lengths between the two phase modulators and the 50/50

coupler in which the pumps are combined. In addition, the frequency response of the

!Compound glass microstructured fibres have started to show some potential in this regard, particu-
larly in terms of achieving low enough dispersion, but this technology was still in its infancy at the start
of this research project.
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phase modulators and RF amplifiers need to be matched across the bandwidth of the

electrical dither signal.
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RF Comb
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FIGURE A.1l: Electrical counter phasing using two phase modulators driven by com-
plementary electrical signals

An alternative to the electrical solution was pursued relying on a nonlinear process to

generate the counter phased pumps.

This experiment was carried out to try and achieve counter phased pumps by using a
periodically poled Lithium Niobate (PPLN) waveguide. with a gain mechanism utilising
a cascaded second order nonlinear process. The first of the two pumps required in the
2P FOPA was spectrally broadened using a phase modulator driven by an electrical
signal. This wideband pump was then mixed with a frequency detuned probe beam,
generating an idler wave that is the phase conjugate of the wideband pump relative to the
probe. The parametric process in the PPLN involved second harmonic generation (SHG)
followed by difference frequency generation (DFG) [87, 114]. This cascaded process has
properties similar to FWM as it involves three photons mixing. Two waves: a wideband
pump, and a probe, with frequencies of wy,;, and w, respectively, are injected into the
waveguide. The probe generates a wave at the second harmonic frequency (2w,) via
SHG, which interacts with the wideband pumpl to generate an idler wave at frequency
w; via the DFG process (w; = 2wy — wup). If dup, ¢; and ¢, are the absolute phases of
the wideband pumpl, idler and probe respectively, then ¢; = 2¢, — ¢up.

This implies that the idler wave was opposite in phase with respect to the wideband
pump, with a small phase error originating from the 2¢, term. By carefully filtering
out the signal-idler pair, they could be used as the spectrally counter phased pumps for
parametric processing in an HNLF based FOPA. The benefit of this approach is that very
large dither bandwidths can be employed while maintaining the counter phasing. Note
that the cascaded SHG/DFG effectiveness in the PPLN sample available was sufficient
to generate a counter phased pump, but not enough to operate as a high gain FOPA on

its own.
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FIGURE A.2: Optically assisted counter phasing using cascaded SHG/DFG in a PPLN
waveguide.

The corresponding experimental setup is shown in Fig. A.2. The goal was to realise two
counter phased pumps around 1539 and 1552 nm. The first wideband pump, at 1539
nm, was generated from a standard distributed feedback (DFB) laser with a linewidth
of 15 MHz, and was subsequently electro-optically phase modulated using a 64 MHz
spacing electrical radio frequency (RF) comb to broaden its linewidth to 1 GHz. This
was then combined with the probe at 1545.5 nm. The probe was derived from a tunable
narrow linewidth laser (Agilent 8168C), with a linewidth under 100 kHz. These two
waves were then mixed in a PPLN waveguidel generating an idler at 1552 nm which
served as the second counter-phased pump. The PPLN waveguide had coupling loss 1.4
dB , propagation loss 0.3 dB/cm, nonlinear SHG coefficient 25 pm/V at 1064 nm. The
total input power was 21 dBm (limited by the device damage threshold), split equally
between the pump and probe.The phase matching wavelength of the PPLN device was
1545.5 nm at 44°C, hence the choice of probe wavelength.
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The generated idler was 17 dB lower than the signal, see Fig. A.3(a), and therefore
an intermediate stage, comprising EDFAs and band-reflect grating filters was used to
equalise the signal-idler pair in power,as well as suppress the probe once the mixing
process is complete. The two remaining waves, the corresponding spectrum of which is
shown in Fig. A.3(b), were then amplified in a PM EDFA providing two co-polarized
counter phased pumps.

To evaluate the phase correlation of the counter-phased pumps and to show its usability
in an FOPA, the following characterization was carried out. A 2P FOPA was setup to
generate an idler from a CW signal and the counter phased pumps. The two pumps
were coupled into a 500 m HNLF (ZDW 1550 nm, dispersion slope 0.03 ps/nm?/km,
nonlinear coefficient 20/W /km and loss 0.53 dB/km) and combined with a 15 MHz
linewidth CW signal at1548 nm, generating an idler at 1542 nm via FWM. A spectral
plot at the HNLF output is shown in Fig. A.3(c). The idler OSNR was better than 20
dB.
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FIGURE A.3: a) Spectral trace at the very output of the PPLN. b) Spectral trace after
the equalizing stage. ¢) Spectral trace at the very output of the system, before optical
filtering.

The idler was then filtered out at the output of the HNLF using a 2 nm bandpass filter.
Subsequently, it was combined with another CW beam with slightly different carrier
frequency (about 520 MHz apart) and electrically detected for further characterization.
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FIGURE A.4: Heterodyne signal generated by mixing idler and a local oscillator, thick
solid line is 60 MHz fit, dashed grey line shows mixing result with both pumps co-
phased.

The signal at the photodetector consisted of the heterodyne beat signal (which gives
information on the linewidth of the idler) and broadband low power noise (with a band-
width roughly given by the bandwidth of the output bandpass filter), mainly due to
ASE from the EDFA being amplified via FWM in the HNLF. To distinguish between
the noise contribution and the heterodyne signal, the beat signal generated by the fil-
tered idler was measured first by switching off the mixing CW signal. Subsequently,
the mixing CW signal was switched on, and a second electrical beat signal detected,
from which the noise contribution could be subtracted. The resulting signal showing
heterodyne beating of 60 MHz full width at half maximum (FWHM) - is shown in Fig.
A.4. Although the beat signal is about two times broader than would be expected by
beating two 15 MHz linewidth signals, the value is well below the linewidth expected
in the absence of counter phasing between the two pumps.As a comparison, the dashed
grey line in Fig. 2(c) shows the mixing result when two co-phased pumps are used in
the same 2P FOPA, revealing the transfer of the pump dither( including the strong 64
MHz spaced tones) to the idler and a linewidth exceeding the 750 MHz measurement
bandwidth. In addition, pump powers in excess of 30 dBm were coupled into the 2P
FOPA without exceeding the SBS threshold, indicating a threshold increase of at least
13 dB.






Appendix B

PSK Carrier Recovery

To access or manipulate the phase information on complex signals, a phase reference
is required. In differential systems, each symbol utilises the previously received symbol
as the phase reference, allowing for easy modulation and demodulation. Differential
schemes such as these are more susceptible to noise than those using an independent
phase reference due to the fact that not only do they allow phase noise on one bit to affect
the demodulation of another. In DSP- based coherent systems, the signal is detected
using a free-running local oscillator, and the reference carrier synthesized in the digital
domain, typically by averaging the modulation stripped signal phase over many bits.
Performing carrier recovery in the optical domain however opens up several possibilities,

such as coherent all-optical regeneration and homodyne signal detection.

A number of all-optical methods to recover the carrier from PSK signals have been
previously been proposed. One utilises injection locking to amplify a residual carrier
left within the signal spectrum [115]. This scheme is modulation format independent,
although it sacrifices some bandwidth due to the need to deploy special line codes min-
imises the amount of low frequency information in the signal. Another utilises a NOLM
in which a BPSK signal serves as a pump in a degenerate PSA, causing the NOLM to
lase at the signal carrier frequency [116]. Here, a new method is proposed (conceived and
experimentally demonstrated jointly with Dr. Radan Slavik) that allows high precision
recovery of the signal carrier from a BPSK signal using FWM in a parametric device.
While demonstrated with BPSK, it is possible to extend the technique to higher order
PSK formats. The concept is described in Fig. B.1.

The concept was experimentally evaluated using BPSK signals up to 56 Gbaud and the
setup shown in Fig. B.2. Rather than performing the two mixing processes simultane-
ously, the setup was designed so that in one direction in an HNLF, the pump was mixed
with probe, while in another direction, the pump was mixed with the BPSK signal. The
signal was at 1555.5 nm, the pump at 1557.3 nm and the probe at 1555.6 nm. The

mixing was performed in 493 m PM HNLF, with all waves aligned to the fast axis whose
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In the absence of data modulation, the
conventional way to force a probe to track the
frequency of a signal is to mix the two waves
together at a photodetector, giving an electrical
beat at Af, where Af is identical to the optical
frequency difference between pump and probe.
Frequency shifting the probe by Af locks it to the
signal’s frequency.

When the signal has phase modulation, the
electrical beat is not narrowband, but is corrupted
by the phase information present on the signal.
As a result, the frequency difference between the
signal carrier and the probe cannot be determined
in a straightforward manner.
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To get around this, first the signal and probe are
mixed (using FWM) with a local pump. This
generates two idlers. As the phase of the signal
idler is twice that on the signal, provided that the
signal modulation was BPSK, the signal idler is a
CW. The frequency difference between the two
idlers can now be detected, and dividing this by 2
gives Af. The probe can now be shifted by Af,
thereby forcing the probe to track the signal
carrier frequency.

F1GURE B.1: Concept behind FWM-based carrier recovery for BPSK signal.
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properties were ZDW 1544 nm, dispersion slope 0.029 ps/nm? /km and nonlinear coeffi-
cient 10.7 /W/Km (OFS Fitel, Denmark).The SBS threshold of the fiber was around 18
dBm. Two optical injection locking stages were used (although not shown in schematic).
The first of these was used to amplify the signal’s idler, thereby eliminating amplitude
noise originating from the BPSK signal itself, noise that would have compromised the
frequency division process. The second one was used to amplify the frequency shifted
probe after the EOM. The signal and probe wavelengths were chosen to be roughly 5
GHz apart, therefore a 10 GHz frequency divider was used.

First, the DPSK modulator was switched off so as to characterise the how well the system
could synchronise a CW probe to a CW signal (200 kHz linewidth laser, Eblana Pho-
tonics, Ireland). For this characterization,the interference pattern between the original
input signal and the recovered carrier was observed, Fig. B.3a. It could be clearly seen
that the two signals were interfering together with a phase difference only varying slowly
(at a time scale of seconds) due to thermal drift in the fibers through which the signal
and probe idler travel separately prior to being combined. This experiment was further
complemented by analyzing the RF spectrum of this interference (to shift it from zero
frequency, a 140-kHz phase dither was introduced at input of the original signal), Fig.
B.3b. Here, was observed that the beating between the two signal and recovered carrier
was narrower than 1 Hz (resolution limited by the RF spectrum analyzer), confirming
the carrier had been recovered to better than 1 Hz precision (more than five orders of

magnitudes below the natural linewidth of the signal laser).
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FIGURE B.3: Set-up (upper panels) and results (lower panels) of the static measurement
- homodyne in temporal domain (a) and heterodyne in the RF frequency domain (b).

Following the static characterization, the system was tested using BPSK modulated data
at various data rates (up to 56 Gbit/s) both straight from the transmitter and also in
the presence of high residual dispersion (after propagation through 50 km of SMF-28
fiber).This time, the characterization was done by performing coherent homodyne de-
tection at to 20 Gbit/s (limited in speed by the real time sampling oscilloscope). The

recovered carrier served as the local oscillator for the coherent receiver. The constellation
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diagrams were processed to compensate for dispersion, but not for any frequency differ-
ence between local oscillator and signal. The results are shown in Fig. B.4a and Fig.
B.4b. Here, it could be seen that binary data was fully recovered with no intermediate
frequency present. For comparison, the constellation obtained with a narrow-linewidth
(kHz- range) free running local tuned carefully to obtain low intermediate frequency is
also shown in Fig. B.4c, with the frequency offset between signal and local oscillator

rotating the symbols (randomly).

a) b)

180 ¥

270 270

FIGURE B.4: Homodyne constellations at 20 Gbit/s stream with no added dispersion

(a) and with 50 km propagation in SMF-28 followed by DSP dispersion compensation

(b). For comparison, the constellation obtained with a free running local oscillator is
also shown (c).

In conclusion, the novel scheme here presented for carrier recovery from PSK signals
proved capable of recovering the carrier with precision better than 1 Hz. The processing
bandwidth is virtually unlimited as it is based on the ultrafast FWM process. The
scheme can be straightforwardly modified for carrier recovery to higher order MPSK
formats by generating higher order FWM idlers in the HNLF (by increasing launch
powers), and the comparing not the first signal and probe idlers as was the case for
BPSK, but the (M-1)*" idlers, and dividing the beat frequency by M.
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